1
|
Peng Y, Liu Y, Yu X, Fang J, Guo Z, Liao K, Chen P, Guo P. First report of Candida auris in Guangdong, China: clinical and microbiological characteristics of 7 episodes of candidemia. Emerg Microbes Infect 2024; 13:2300525. [PMID: 38164742 PMCID: PMC10773663 DOI: 10.1080/22221751.2023.2300525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 12/22/2023] [Indexed: 01/03/2024]
Abstract
Candida auris is an emerging multidrug-resistant fungal pathogen worldwide. To date, it has not been reported in Guangdong, China. For the first time, we reported 7 cases of C. auris candidemia from two hospitals in Guangdong. The clinical and microbiological characteristics of these cases were investigated carefully. Two geographic clades, i.e. III and I, were found popular in different hospitals by whole genome sequencing analyses. All C. auris isolates from bloodstream were resistant to fluconazole, 5 of which belonged to Clade III harbouring VF125AL mutation in the ERG11 gene. The isolates with Clade I presented Y132F mutation in the ERG11 gene as well as resistance to amphotericin B. All isolates exhibited strong biofilm-forming capacity and non-aggregative phenotype. The mean time from admission to onset of C. auris candidemia was 39.4 days (range: 12 - 80 days). Despite performing appropriate therapeutic regimen, 42.9% (3/7) of patients experienced occurrences of C. auris candidemia and colonization after the first positive bloodstream. C. auris colonization was still observed after the first C. auris candidemia for 81 days in some patient. Microbiologic eradication from bloodstream was achieved in 85.7% (6/7) of patients at discharge. In conclusion, this study offers a crucial insight into unravelling the multiple origins of C. auris in Guangdong, highlighting great challenges in clinical prevention and control.
Collapse
Affiliation(s)
- Yaqin Peng
- Department of Clinical Laboratory, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Yue Liu
- Department of Clinical Laboratory, The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, People’s Republic of China
| | - Xuegao Yu
- Department of Clinical Laboratory, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Jingchun Fang
- Department of Clinical Microbiology Laboratory, Nansha Division of The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Zhaowang Guo
- Department of Clinical Laboratory, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, People’s Republic of China
| | - Kang Liao
- Department of Clinical Laboratory, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Peisong Chen
- Department of Clinical Laboratory, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Penghao Guo
- Department of Clinical Laboratory, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People’s Republic of China
| |
Collapse
|
2
|
Gupta N, Haughton S, Kemper S, Koehler M, Antoon R, Edwards CG, Bardin A. The antimicrobial effectiveness of chlorhexidine and chlorhexidine-silver sulfadiazine-impregnated central venous catheters against the emerging fungal pathogen Candida auris. Am J Infect Control 2024; 52:1283-1288. [PMID: 38944155 DOI: 10.1016/j.ajic.2024.06.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 06/20/2024] [Accepted: 06/20/2024] [Indexed: 07/01/2024]
Abstract
BACKGROUND Candida auris is an emerging multidrug-resistant fungus associated with catheter-related bloodstream infections. In vitro efficacy of chlorhexidine (CHX) and CHX-silver sulfadiazine-impregnated (CHX-S) antimicrobial central venous catheters (CVCs) against C auris was investigated. METHODS Minimum inhibitory and bactericidal CHX concentrations were determined against 19 C auris isolates. To assess extraluminal efficacy, segments from CVCs impregnated externally (CHX-S1) and both externally and internally (CHX-S2) were plasma-conditioned for 1- and 6-day, and to assess intraluminal efficacy, CHX-S2 CVCs were preconditioned with saline-lock for 6days, followed by 24-hour C auris inoculation and microbial adherence determination on impregnated and nonimpregnated CVCs. RESULTS CHX inhibited all C auris isolates with minimum inhibitory and bactericidal concentrations range of 8 to 128 μg/mL. C auris adherence was reduced on CHX-S1 and CHX-S2 extraluminally by 100% on day 1, 86.96% to 100% on day 7, and intraluminally on CHX-S2 by 56.86% to 90.52% on day 7. DISCUSSION CHX and CHX-S CVC performance against C auris observed in this study is consistent with antimicrobial benefits observed in prior preclinical and randomized controlled clinical studies. CONCLUSIONS CHX showed strong inhibitory and cidal effects on C auris. CHX-S CVCs proved highly efficacious against this pathogen under in vitro conditions. Additional studies, however, are required to confirm clinical benefit.
Collapse
Affiliation(s)
- Nisha Gupta
- Research and Development, Vascular Division, Teleflex Incorporated, Wyomissing, PA, USA.
| | - Shanna Haughton
- Research and Development, Vascular Division, Teleflex Incorporated, Wyomissing, PA, USA
| | - Sydney Kemper
- Research and Development, Vascular Division, Teleflex Incorporated, Wyomissing, PA, USA
| | - Monica Koehler
- Research and Development, Vascular Division, Teleflex Incorporated, Wyomissing, PA, USA
| | - Roula Antoon
- Clinical and Medical Affairs, Vascular Division, Teleflex Incorporated, Morrisville, NC, USA
| | - Colin G Edwards
- Global Scientific Communications, Teleflex Incorporated, Wayne, PA, USA
| | - Amy Bardin
- Clinical and Medical Affairs, Vascular and Interventional Divisions, Teleflex Incorporated, Morrisville, NC, USA
| |
Collapse
|
3
|
Gong M, Yu H, Qu H, Li Z, Liu D, Zhao X. Global research trends and hotspots on human intestinal fungi and health: a bibliometric visualization study. Front Cell Infect Microbiol 2024; 14:1460570. [PMID: 39483119 PMCID: PMC11525014 DOI: 10.3389/fcimb.2024.1460570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Accepted: 09/27/2024] [Indexed: 11/03/2024] Open
Abstract
Background This article employs bibliometric methods and visual maps to delineate the research background, collaborative relationships, hotspots, and trends in the study of gut fungi in human diseases and health. Methods Publications related to human gut fungi were retrieved from the Web of Science Core Collection. VOSviewer, CiteSpace, R software and Microsoft Excel were employed to generate visual representations illustrating the contributions made by countries/regions, authors, organizations, and journals. Employing VOSviewer and CiteSpace, we conducted a comprehensive analysis of the retrieved publications, revealing underlying tendencies, research hotspots, and intricate knowledge networks. Results This study analyzed a total of 3,954 publications. The United States ranks first in the number of published papers and has the highest number of citations and h-index. Mostafa S Elshahed is the most prolific author. The University of California System is the institution that published the most papers. Frontiers In Microbiology is the journal with the largest number of publications. Three frequently co-cited references have experienced a citation burst lasting until 2024. Conclusion Advancements in sequencing technologies have intensified research into human gut fungi and their health implications, shifting the research focus from gut fungal infections towards microbiome science. Inflammatory bowel diseases and Candida albicans have emerged as pivotal areas of interest in this endeavor. Through this study, we have gained a deeper insight into global trends and frontier hotspots within this field, thereby enhancing our understanding of the intricate relationship between gut fungi and human health.
Collapse
Affiliation(s)
- Ming Gong
- Department of Cardiology, The Second Hospital of Dalian Medical University, Dalian, China
| | - Huiying Yu
- Laboratory of Basic Medicine, General Hospital of Northern Theater Command, Shenyang, China
| | - Hong Qu
- Bidding and Procurement Office, The Second Hospital of Dalian Medical University, Dalian, China
| | - Zhexian Li
- Dalian Medical University, Dalian, China
| | - Di Liu
- First Clinical Faculty, Liaoning University of Traditional Chinese Medicine, Shenyang, China
| | - Xin Zhao
- Department of Cardiology, The Second Hospital of Dalian Medical University, Dalian, China
| |
Collapse
|
4
|
Suárez-Urquiza P, Pemán J, Gordon M, Favier P, Muñoz-Brell P, López-Hontangas JL, Ruiz-Gaitán A. Predicting Fungemia in the ICU: Unveiling the Value of Weekly Fungal Surveillance and Yeast Colonisation Monitoring. J Fungi (Basel) 2024; 10:674. [PMID: 39452626 PMCID: PMC11508630 DOI: 10.3390/jof10100674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 09/18/2024] [Accepted: 09/25/2024] [Indexed: 10/26/2024] Open
Abstract
Fungemia remains a major threat in intensive care units (ICUs), with high mortality rates despite advances in diagnostics and treatment. Colonisation by yeasts is an independent risk factor for fungemia; however, its predictive utility requires further research. In this 8-year study, we analysed 38,017 samples from 3206 patients and 171 fungemia episodes as part of a weekly fungal surveillance programme. We evaluated species-specific colonisation patterns, the predictive value of the Colonisation Index (CI) and Corrected Colonisation Index (CCI), and candidemia risks associated with different yeast species and anatomical site colonisation. Our results showed that C. auris, N. glabratus, and C. parapsilosis colonisation increased with longer hospital stays (0.8% to 11.55%, 8.13% to 16.8%, and 1.93% to 5.14%, respectively). The CI and CCI had low discriminatory power (AUROC 67% and 66%). Colonisation by any yeast genera demonstrated high sensitivity (98.32%) and negative predictive value (NPV) (95.90%) but low specificity and positive predictive value (PPV) (23.90% and 6.64%). Tracheal and urine cultures had the highest PPV (15.64% and 12.91%), while inguinal cultures had the highest NPV (98.60%). C. auris (12.32%) and C. parapsilosis (5.5%) were associated with a higher fungemia risk (log-rank < 0.001). These findings support the use of weekly surveillance to better stratify the fungemia risk and optimise antifungal use in ICUs.
Collapse
Affiliation(s)
- Pedro Suárez-Urquiza
- Department of Medical Microbiology, University and Polytechnic La Fe Hospital, 46026 Valencia, Spain; (J.P.); (P.F.); (P.M.-B.); (J.L.L.-H.)
- Severe Infection Research Group, Health Research Institute La Fe, 46026 Valencia, Spain
| | - Javier Pemán
- Department of Medical Microbiology, University and Polytechnic La Fe Hospital, 46026 Valencia, Spain; (J.P.); (P.F.); (P.M.-B.); (J.L.L.-H.)
- Severe Infection Research Group, Health Research Institute La Fe, 46026 Valencia, Spain
| | - Monica Gordon
- Department of Intensive Care Unit, University and Polytechnic La Fe Hospital, 46026 Valencia, Spain;
| | - Patricio Favier
- Department of Medical Microbiology, University and Polytechnic La Fe Hospital, 46026 Valencia, Spain; (J.P.); (P.F.); (P.M.-B.); (J.L.L.-H.)
- Severe Infection Research Group, Health Research Institute La Fe, 46026 Valencia, Spain
| | - Paula Muñoz-Brell
- Department of Medical Microbiology, University and Polytechnic La Fe Hospital, 46026 Valencia, Spain; (J.P.); (P.F.); (P.M.-B.); (J.L.L.-H.)
- Severe Infection Research Group, Health Research Institute La Fe, 46026 Valencia, Spain
| | - Jose Luis López-Hontangas
- Department of Medical Microbiology, University and Polytechnic La Fe Hospital, 46026 Valencia, Spain; (J.P.); (P.F.); (P.M.-B.); (J.L.L.-H.)
- Severe Infection Research Group, Health Research Institute La Fe, 46026 Valencia, Spain
| | - Alba Ruiz-Gaitán
- Department of Medical Microbiology, University and Polytechnic La Fe Hospital, 46026 Valencia, Spain; (J.P.); (P.F.); (P.M.-B.); (J.L.L.-H.)
- Severe Infection Research Group, Health Research Institute La Fe, 46026 Valencia, Spain
| |
Collapse
|
5
|
Park S, Kim H, Hong D, Oh H. Candida auris: Understanding the dynamics of C. auris infection versus colonization. Med Mycol 2024; 62:myae086. [PMID: 39152089 DOI: 10.1093/mmy/myae086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 08/05/2024] [Accepted: 08/15/2024] [Indexed: 08/19/2024] Open
Abstract
Candida auris is a pathogen of growing public health concern worldwide. However, risk factors contributing to C. auris infection in patients colonized with C. auris remain unclear. Understanding these risk factors is crucial to prevent colonization-to-infection transition and devise effective preventive strategies. This study aimed to investigate risk factors associated with C. auris infection compared to colonization. The study included 97 patients who acquired laboratory-confirmed C. auris in either matrix-assisted laser desorption/ionization-time of flight (MALDI-TOF) mass spectrometry or VITEK 2 system from October 2019 to June 2023. Baseline demographics and known risk factors associated with C. auris infection were collected from electronic medical records. The infection group had C. auris from a sterile site or non-sterile site with evidence of infection. The colonization group was followed up for a median of 30 days for any signs of infection. Associations between relevant variables and C. auris infection were assessed using multivariable logistic regression. The infection group (n = 31) was more likely to be bedbound, with longer hospital stays and more arterial catheters. Chronic kidney disease (odds ratio [OR] 45.070), carriage of multidrug-resistant organisms (OR 64.612), and vasopressor use for > 20 days (OR 68.994) were associated with C. auris infection, after adjusting for sex, age, and prior colonization with C. auris. Chronic kidney disease, carriage of multidrug-resistant organisms, and prolonged vasopressor use emerged as significant risk factors for C. auris infection compared to colonization. They could be used to predict C. auris infection early in patients colonized with C. auris.
Collapse
Affiliation(s)
- Sungsoo Park
- Division of Medicine, Sheikh Khalifa Specialty Hospital, Ras Al Khaimah, UAE
- Department of Pulmonology, Seoul National University Hospital, Seoul, Republic of Korea
| | - Heesuk Kim
- Environmental Safety Healthcare Provider Team, Sheikh Khalifa Specialty Hospital, Ras Al Khaimah, UAE
| | - Duckjin Hong
- Department of Laboratory Medicine, Sheikh Khalifa Specialty Hospital, Ras Al Khaimah, UAE
- Department of Laboratory Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| | - Hyeyoung Oh
- Division of Medicine, Sheikh Khalifa Specialty Hospital, Ras Al Khaimah, UAE
- Environmental Safety Healthcare Provider Team, Sheikh Khalifa Specialty Hospital, Ras Al Khaimah, UAE
- Department of Family Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| |
Collapse
|
6
|
Asadzadeh M, Ahmad S, Alfouzan W, Al-Obaid I, Spruijtenburg B, Meijer EFJ, Meis JF, Mokaddas E. Evaluation of Etest and MICRONAUT-AM Assay for Antifungal Susceptibility Testing of Candida auris: Underestimation of Fluconazole Resistance by MICRONAUT-AM and Overestimation of Amphotericin B Resistance by Etest. Antibiotics (Basel) 2024; 13:840. [PMID: 39335013 PMCID: PMC11428412 DOI: 10.3390/antibiotics13090840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 08/08/2024] [Accepted: 08/26/2024] [Indexed: 09/30/2024] Open
Abstract
Multidrug-resistant Candida auris has recently caused major outbreaks in healthcare facilities. Rapid and accurate antifungal susceptibility testing (AST) of C. auris is crucial for proper management of invasive infections. The Commercial Sensititre Yeast One and Vitek 2 methods underestimate or overestimate the resistance of C. auris to fluconazole and amphotericin B (AMB). This study evaluated the AST results of C. auris against fluconazole and AMB by gradient-MIC-strip (Etest) and broth microdilution-based MICRONAUT-AM-EUCAST (MCN-AM) assays. Clinical C. auris isolates (n = 121) identified by phenotypic and molecular methods were tested. Essential agreement (EA, ±1 two-fold dilution) between the two methods and categorical agreement (CA) based on the Centers for Disease Control and Prevention's (CDC's) tentative resistance breakpoints were determined. Fluconazole resistance-associated mutations were detected by PCR-sequencing of ERG11. All isolates identified as C. auris belonged to South Asian clade I and contained the ERG11 Y132F or K143R mutation. The Etest-MCN-AM EA was poor (33%) for fluconazole and moderate (76%) for AMB. The CA for fluconazole was higher (94.2%, 7 discrepancies) than for AMB (91.7%, 10 discrepancies). Discrepancies were reduced when an MCN-AM upper-limit value of 4 µg/mL for fluconazole-susceptible C. auris and an Etest upper-limit value of 8 µg/mL for the wild type for AMB were used. Our data show that resistance to fluconazole was underestimated by MCN-AM, while resistance to AMB was overestimated by Etest when using the CDC's tentative resistance breakpoints of ≥32 µg/mL for fluconazole and ≥2 µg/mL for AMB. Method-specific resistance breakpoints should be devised for accurate AST of clinical C. auris isolates for proper patient management.
Collapse
Affiliation(s)
- Mohammad Asadzadeh
- Department of Microbiology, Faculty of Medicine, Kuwait University, Safat 13110, Kuwait
| | - Suhail Ahmad
- Department of Microbiology, Faculty of Medicine, Kuwait University, Safat 13110, Kuwait
| | - Wadha Alfouzan
- Department of Microbiology, Faculty of Medicine, Kuwait University, Safat 13110, Kuwait
- Microbiology Department, Farwaniya Hospital, Farwaniya 81004, Kuwait
| | - Inaam Al-Obaid
- Microbiology Department, Al-Sabah Hospital, Shuwaikh 70031, Kuwait
| | - Bram Spruijtenburg
- Canisius Wilhelmina Hospital (CWZ)/Dicoon, 6532 Nijmegen, The Netherlands
- Radboudumc-CWZ Center of Expertise for Mycology, 6500 Nijmegen, The Netherlands
| | - Eelco F J Meijer
- Canisius Wilhelmina Hospital (CWZ)/Dicoon, 6532 Nijmegen, The Netherlands
- Radboudumc-CWZ Center of Expertise for Mycology, 6500 Nijmegen, The Netherlands
| | - Jacques F Meis
- Radboudumc-CWZ Center of Expertise for Mycology, 6500 Nijmegen, The Netherlands
- Institute of Translational Research, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD) and Excellence Center for Medical Mycology, University of Cologne, 50923 Cologne, Germany
| | - Eiman Mokaddas
- Department of Microbiology, Faculty of Medicine, Kuwait University, Safat 13110, Kuwait
- Microbiology Department, Ibn-Sina Hospital, Shuwaikh 70031, Kuwait
| |
Collapse
|
7
|
la Garza PRD, Cruz-de la Cruz CDL, Bejarano JIC, Romo AEL, Delgado JV, Ramos BA, Neira MNM, Rodríguez DS, Rodríguez HMS, Selvera OAR. A multicentric outbreak of Candida auris in Mexico: 2020 to 2023. Am J Infect Control 2024:S0196-6553(24)00611-4. [PMID: 39059713 DOI: 10.1016/j.ajic.2024.07.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/17/2024] [Accepted: 07/20/2024] [Indexed: 07/28/2024]
Abstract
BACKGROUND Candida auris, an emerging multidrug-resistant yeast, has become a global concern due to its association with nosocomial outbreaks and resistance to antifungal medications. The COVID-19 pandemic has exacerbated the situation, with several outbreaks reported worldwide, including in Mexico. We describe the clinical and microbiological characteristics of a multicentric outbreak in private institutions in Mexico. METHODS A retrospective observational study was conducted across 4 Christus Muguerza Hospital Health Care System facilities in Monterrey, Mexico, where simultaneous outbreaks of C auris occurred. Patients with colonization or infection with C auris between September 2020 and December 2023 were included. RESULTS Analysis revealed 37 cases, predominantly male (median age, 55.8years). While most cases were initially colonization, a significant proportion progressed to infection (32.4%). Patients with documented infection had longer intensive care unit and hospital stays, often requiring mechanical ventilation. Antifungal treatment varied, with empirical fluconazole being the first drug in most cases, followed by anidulafungin and caspofungin. Resistance to fluconazole was widespread, but susceptibility to other antifungals varied. The overall mortality rates were high (40.5%), with no significant difference in median survival between colonized and infected patients. CONCLUSIONS We reported a high rate of infection in previously colonized cases associated with longer hospital lenght stay, and a high susceptibility to echinocandins.
Collapse
Affiliation(s)
- Patricia Rodríguez-de la Garza
- Department of Internal Medicine; Christus Muguerza Hospital Alta Especialidad, Universidad de Monterrey, Monterrey, Mexico
| | - Carlos de la Cruz-de la Cruz
- Department of Internal Medicine; Christus Muguerza Hospital Alta Especialidad, Universidad de Monterrey, Monterrey, Mexico
| | | | - Alicia Estela López Romo
- Hospital Epidemiology and Surveillance Unit, Sistemas de Salud Christus Muguerza, Monterrey, Mexico
| | - Jorge Vera Delgado
- Department of Microbiology; Christus Muguerza Hospital Alta Especialidad, Universidad de Monterrey, Monterrey, Mexico
| | - Beatriz Aguilar Ramos
- Department of Microbiology; Christus Muguerza Hospital Alta Especialidad, Universidad de Monterrey, Monterrey, Mexico
| | - Mirna Natalia Martínez Neira
- Department of Microbiology; Christus Muguerza Hospital Alta Especialidad, Universidad de Monterrey, Monterrey, Mexico
| | - Daniel Siller Rodríguez
- Hospital Epidemiology and Surveillance Unit, Sistemas de Salud Christus Muguerza, Monterrey, Mexico
| | | | | |
Collapse
|
8
|
Ismail SA, Fayed B, Abdelhameed RM, Hassan AA. Chitinase-functionalized UiO-66 framework nanoparticles active against multidrug-resistant Candida Auris. BMC Microbiol 2024; 24:269. [PMID: 39030474 PMCID: PMC11264975 DOI: 10.1186/s12866-024-03414-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 07/05/2024] [Indexed: 07/21/2024] Open
Abstract
Candida auris (C. auris) is a yeast that has caused several outbreaks in the last decade. Cell wall chitin plays a primary role in the antifungal resistance of C. auris. Herein, we investigated the potential of chitinase immobilized with UiO-66 to act as a potent antifungal agent against C. auris. Chitinase was produced from Talaromyces varians SSW3 in a yield of 8.97 U/g dry substrate (ds). The yield was statistically enhanced to 120.41 U/g ds by using Plackett-Burman and Box-Behnken design. We synthesized a UiO-66 framework that was characterized by SEM, TEM, XRD, FTIR, a particle size analyzer, and a zeta sizer. The produced framework had a size of 70.42 ± 8.43 nm with a uniform cubic shape and smooth surface. The produced chitinase was immobilized on UiO-66 with an immobilization yield of 65% achieved after a 6 h loading period. The immobilization of UiO-66 increased the enzyme activity and stability, as indicated by the obtained Kd and T1/2 values. Furthermore, the hydrolytic activity of chitinase was enhanced after immobilization on UiO-66, with an increase in the Vmax and a decrease in the Km of 2- and 38-fold, respectively. Interestingly, the antifungal activity of the produced chitinase was boosted against C. auris by loading the enzyme on UiO-66, with an MIC50 of 0.89 ± 0.056 U/mL, compared to 5.582 ± 0.57 U/mL for the free enzyme. This study offers a novel promising alternative approach to combat the new emerging pathogen C. auris.
Collapse
Affiliation(s)
- Shaymaa A Ismail
- Department of Chemistry of Natural and Microbial Products, Pharmaceutical and Drug Industries Research Institute, National Research Centre, P.O. 12622, 33 El Bohouth Street, Dokki, Giza, Egypt.
| | - Bahgat Fayed
- Department of Chemistry of Natural and Microbial Products, Pharmaceutical and Drug Industries Research Institute, National Research Centre, P.O. 12622, 33 El Bohouth Street, Dokki, Giza, Egypt.
| | - Reda M Abdelhameed
- Applied Organic Chemistry Department, Chemical Industries Research Institute, National Research Centre, 33 EL Buhouth St, Dokki, Giza, 12622, Egypt
| | - Amira A Hassan
- Department of Chemistry of Natural and Microbial Products, Pharmaceutical and Drug Industries Research Institute, National Research Centre, P.O. 12622, 33 El Bohouth Street, Dokki, Giza, Egypt
| |
Collapse
|
9
|
Fayed B, Shakartalla SB, Sabbah H, Dalle H, Tannira M, Senok A, Soliman SSM. Transcriptome Analysis of Human Dermal Cells Infected with Candida auris Identified Unique Pathogenesis/Defensive Mechanisms Particularly Ferroptosis. Mycopathologia 2024; 189:65. [PMID: 38990436 DOI: 10.1007/s11046-024-00868-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 06/10/2024] [Indexed: 07/12/2024]
Abstract
Candida auris is an emerging multi-drug resistant yeast that can cause life-threatening infections. A recent report clarified the ability of C. auris to form a biofilm with enhanced drug resistance properties in the host skin's deep layers. The formed biofilm may initiate further bloodstream spread and immune escape. Therefore, we propose that secreted chemicals from the biofilm may facilitate fungal pathogenesis. In response to this interaction, the host skin may develop potential defensive mechanisms. Comparative transcriptomics was performed on the host dermal cells in response to indirect interaction with C. auris biofilm through Transwell inserts compared to planktonic cells. Furthermore, the effect of antifungals including caspofungin and fluconazole was studied. The obtained data showed that the dermal cells exhibited different transcriptional responses. Kyoto Encyclopedia of Genes and Genomes and Reactome analyses identified potential defensive responses employed by the dermal cells and potential toxicity induced by C. auris. Additionally, our data indicated that the dominating toxic effect was mediated by ferroptosis; which was validated by qRT-PCR, cytotoxicity assay, and flow cytometry. On the other hand, the viability of C. auris biofilm was enhanced and accompanied by upregulation of MDR1, and KRE6 upon interaction with dermal cells; both genes play significant roles in drug resistance and biofilm maturation, respectively. This study for the first-time shed light on the dominating defensive responses of human dermal cells, microbe colonization site, to C. auris biofilm and its toxic effects. Further, it demonstrates how C. auris biofilm responds to the defensive mechanisms developed by the human dermal cells.
Collapse
Affiliation(s)
- Bahgat Fayed
- Research Institute for Medical and Health Sciences, University of Sharjah, P.O. Box 27272, Sharjah, UAE
- Chemistry of Natural and Microbial Products, National Research Centre, Cairo, Egypt
| | - Sarra B Shakartalla
- Research Institute for Medical and Health Sciences, University of Sharjah, P.O. Box 27272, Sharjah, UAE
- College of Medicine, University of Sharjah, P.O. Box 27272, Sharjah, UAE
- Faculty of Pharmacy, University of Gezira, P.O.Box. 21111, Wad Medani, Sudan
| | - Hassan Sabbah
- AbbVie BioPharmaceuticals, P.O. Box 118052, Dubai, UAE
| | - Hala Dalle
- AbbVie BioPharmaceuticals, Kuwait City, Kuwait
| | | | - Abiola Senok
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Building 14 Dubai Healthcare City, P.O.Box 505055, Dubai, UAE
| | - Sameh S M Soliman
- Research Institute for Medical and Health Sciences, University of Sharjah, P.O. Box 27272, Sharjah, UAE.
- Department of Medicinal Chemistry, College of Pharmacy, University of Sharjah, P.O. Box 27272, Sharjah, UAE.
| |
Collapse
|
10
|
Reidenberg BE, Jenkins SG, Crandon JL, Hurlburt E, Tan X, Rhomberg PR, Arends SJR, Pfaffle A. In vitro activity of taurolidine against clinical Candida auris isolates: relevance to catheter-related bloodstream infections. Antimicrob Agents Chemother 2024; 68:e0038124. [PMID: 38864612 PMCID: PMC11232392 DOI: 10.1128/aac.00381-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 05/17/2024] [Indexed: 06/13/2024] Open
Abstract
Candida auris is an evolving and concerning global threat. Of particular concern are bloodstream infections related to central venous catheters. We evaluated the activity of taurolidine, a broad-spectrum antimicrobial in catheter lock solutions, against 106 C. auris isolates. Taurolidine was highly active with a MIC50/MIC90 of 512/512 mg/L, over 20-fold lower than lock solution concentrations of ≥13,500 mg/L. Our data demonstrate a theoretical basis for taurolidine-based lock solutions for prevention of C. auris catheter-associated infections.
Collapse
Affiliation(s)
- Bruce E Reidenberg
- Department of Pharmacology, Weill Cornell Medicine, New York, New York, USA
| | - Stephen G Jenkins
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, New York, New York, USA
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, New York, USA
| | | | | | - Xing Tan
- CorMedix Inc., Berkeley Heights, New Jersey, USA
| | - Paul R Rhomberg
- Element Iowa City (JMI Laboratories), North Liberty, Iowa, USA
| | - S J Ryan Arends
- Element Iowa City (JMI Laboratories), North Liberty, Iowa, USA
| | | |
Collapse
|
11
|
Quejada LF, Hernandez AX, Chitiva LC, Bravo-Chaucanés CP, Vargas-Casanova Y, Faria RX, Costa GM, Parra-Giraldo CM. Unmasking the Antifungal Activity of Anacardium occidentale Leaf Extract against Candida albicans. J Fungi (Basel) 2024; 10:464. [PMID: 39057348 PMCID: PMC11277670 DOI: 10.3390/jof10070464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/03/2024] [Accepted: 06/22/2024] [Indexed: 07/28/2024] Open
Abstract
Invasive fungal disease causes high morbidity and mortality among immunocompromised patients. Resistance to conventional antifungal drugs and the toxicity associated with high doses highlight the need for effective antifungal therapies. In this study, the antifungal potential of the ethanolic extract of Anacardium occidentale (Cashew Leaf) leaves were evaluated against Candida albicans and C. auris. The antifungal activity was tested by the broth microdilution method and growth kinetic test. To further explore its antifungal action mode, spectrofluorophotometry, confocal microscopy and scanning and transmission electron microscopy were performed. Additionally, heterozygous knockout strains associated with resistance to oxidative stress were included in the study. We found that A. occidentale could inhibit the proliferation and growth of C. albicans at concentrations of 62.5 and 125 μg/mL. The doubling time was also drastically affected, going from 2.8 h to 22.5 h, which was also observed in C. auris. The extract induced the accumulation of intracellular reactive oxygen species (ROS), resulting in endoplasmic reticulum stress and mitochondrial dysfunction, while it did not show cytotoxicity or hemolytic activity at the concentrations evaluated. Our work preliminarily elucidated the potential mechanisms of A. occidentale against C. albicans on a cellular level, and might provide a promising option for the design of a new treatment for invasive candidiasis.
Collapse
Affiliation(s)
- Luis F. Quejada
- Unidad de Proteómica y Micosis Humanas, Grupo de Enfermedades Infecciosas, Departamento de Microbiología, Facultad de Ciencias, Pontificia Universidad Javeriana, Carrera 7 No. 43-82, 110231 Bogotá, Colombia; (L.F.Q.); (C.P.B.-C.); (Y.V.-C.)
| | - Andrea X. Hernandez
- Grupo de Investigación Fitoquímica Universidad Javeriana (GIFUJ), Departamento de Química, Facultad de Ciencias, Pontificia Universidad Javeriana, Carrera 7 No. 43-82, 110231 Bogotá, Colombia; (A.X.H.); (L.C.C.); (G.M.C.)
| | - Luis C. Chitiva
- Grupo de Investigación Fitoquímica Universidad Javeriana (GIFUJ), Departamento de Química, Facultad de Ciencias, Pontificia Universidad Javeriana, Carrera 7 No. 43-82, 110231 Bogotá, Colombia; (A.X.H.); (L.C.C.); (G.M.C.)
| | - Claudia P. Bravo-Chaucanés
- Unidad de Proteómica y Micosis Humanas, Grupo de Enfermedades Infecciosas, Departamento de Microbiología, Facultad de Ciencias, Pontificia Universidad Javeriana, Carrera 7 No. 43-82, 110231 Bogotá, Colombia; (L.F.Q.); (C.P.B.-C.); (Y.V.-C.)
| | - Yerly Vargas-Casanova
- Unidad de Proteómica y Micosis Humanas, Grupo de Enfermedades Infecciosas, Departamento de Microbiología, Facultad de Ciencias, Pontificia Universidad Javeriana, Carrera 7 No. 43-82, 110231 Bogotá, Colombia; (L.F.Q.); (C.P.B.-C.); (Y.V.-C.)
| | - Robson X. Faria
- Laboratório de Toxoplasmose e outras Protozooses, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz-FIOCRUZ, Rio de Janeiro 21045-900, RJ, Brazil;
| | - Geison M. Costa
- Grupo de Investigación Fitoquímica Universidad Javeriana (GIFUJ), Departamento de Química, Facultad de Ciencias, Pontificia Universidad Javeriana, Carrera 7 No. 43-82, 110231 Bogotá, Colombia; (A.X.H.); (L.C.C.); (G.M.C.)
| | - Claudia M. Parra-Giraldo
- Unidad de Proteómica y Micosis Humanas, Grupo de Enfermedades Infecciosas, Departamento de Microbiología, Facultad de Ciencias, Pontificia Universidad Javeriana, Carrera 7 No. 43-82, 110231 Bogotá, Colombia; (L.F.Q.); (C.P.B.-C.); (Y.V.-C.)
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza Ramón y Caja S/N, 28040 Madrid, Spain
| |
Collapse
|
12
|
Meawed TE, AlNakeera AM, Attia O, Hassan NAM, Anis RH. Candida auris central line-associated blood stream infection in critically ill patients: the worst end of a bad scenario. Int Microbiol 2024:10.1007/s10123-024-00545-3. [PMID: 38940863 DOI: 10.1007/s10123-024-00545-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/29/2024] [Accepted: 06/04/2024] [Indexed: 06/29/2024]
Abstract
BACKGROUND Candida auris (C. auris) is an emerging aggressive pathogen that causes severe infections in critically ill patients. Therefore, the assessment of this pathogen, characterized by inclination for biofilm formation, elevated colonization rate, and resistance to multiple drugs, holds a paramount importance. There is no data regarding the isolation of C. auris in our tertiary care hospitals' intensive care units (ICUs). The current case study was arranged to assess the incidence of C. auris central line-associated bloodstream infection (CLABSI) problem in our (ICUs). METHODS Specimens of central venous catheter blood, peripheral blood, and catheter tips were collected from 301 critically ill patients with suspected (CLABSI). Microbiological cultures were utilized to diagnose bacterial and fungal superinfections. The fungal species identification and antifungal susceptibility testing were conducted using the Brilliance Chrome agar, VITEK® 2 compact system, and MALDI-TOF MS. RESULTS All included specimens (100%) yielded significant growth. Only 14 specimens (4.7%) showed fungal growth in the form of different Candida species. When comparing the identification of C. auris, MALDI-TOF MS is considered the most reliable method. Brilliance CHROMagar demonstrated a sensitivity of 100%, whereas VITEK only showed a sensitivity of approximately 33%. All recovered isolates of C. auris were fluconazole resistant. CONCLUSION C. auris is a highly resistant emerging pathogen in our ICUs that is often overlooked in identification using conventional methods.
Collapse
Affiliation(s)
- Takwa E Meawed
- Medical Microbiology and Immunology Department, Zagazig University, Zagazig, Egypt.
| | | | - Osama Attia
- Internal Medicine Department, Zagazig University, Zagazig, Egypt
| | | | - Reham H Anis
- Medical Microbiology and Immunology Department, Zagazig University, Zagazig, Egypt
| |
Collapse
|
13
|
Hamburger FG, Gales AC, Colombo AL. Systematic Review of Candidemia in Brazil: Unlocking Historical Trends and Challenges in Conducting Surveys in Middle-Income Countries. Mycopathologia 2024; 189:60. [PMID: 38940953 DOI: 10.1007/s11046-024-00867-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 06/06/2024] [Indexed: 06/29/2024]
Abstract
INTRODUCTION Candidemia, a bloodstream infection predominantly affecting critically ill patients, poses a significant global health threat especially with the emergence of non-albicans Candida species, including drug-resistant strains. In Brazil, limited access to advanced diagnostic tools and trained microbiologists hampers accurate identification of Candida species and susceptibility to antifungals testing hindering surveillance efforts. METHODS We conducted a systematic review spanning publications from 2017 to 2023 addressing Candida species distribution and antifungal susceptibility among Brazilian patients with candidemia. RESULTS Despite initially identifying 7075 records, only 16 met inclusion criteria providing accurate information of 2305 episodes of candidemia. The predominant species were C. albicans, C. parapsilosis, and C. tropicalis, followed by notable proportions of Nakaseomyces glabratus. Limited access to diagnostic tests was evident as only 5 out of 16 studies on candidemia were able to report antifungal susceptibility testing results. In vitro resistance to echinocandins was rare (only 6/396 isolates, 1,5%). In counterpart, fluconazole exhibited resistance rates ranging from 0 to 43%, with great heterogeneity among different studies and species of Candida considered. CONCLUSION Our review underscores the critical need for enhanced surveillance and research efforts to address the evolving landscape of candidemia and antifungal resistance in Brazil. Despite some limitations, available data suggest that while resistance to echinocandins and amphotericin B remains rare, there is a growing concern regarding resistance to fluconazole among Candida species.
Collapse
Affiliation(s)
- Flávio Guinsburg Hamburger
- Division of Infectious Diseases, Department of Medicine, Escola Paulista de Medicina, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - Ana Cristina Gales
- Division of Infectious Diseases, Department of Medicine, Escola Paulista de Medicina, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
- Antimicrobial Resistance Institute of São Paulo (Aries), São Paulo, Brazil
| | - Arnaldo Lopes Colombo
- Division of Infectious Diseases, Department of Medicine, Escola Paulista de Medicina, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil.
- Antimicrobial Resistance Institute of São Paulo (Aries), São Paulo, Brazil.
| |
Collapse
|
14
|
Kim HY, Nguyen TA, Kidd S, Chambers J, Alastruey-Izquierdo A, Shin JH, Dao A, Forastiero A, Wahyuningsih R, Chakrabarti A, Beyer P, Gigante V, Beardsley J, Sati H, Morrissey CO, Alffenaar JW. Candida auris-a systematic review to inform the world health organization fungal priority pathogens list. Med Mycol 2024; 62:myae042. [PMID: 38935900 PMCID: PMC11210622 DOI: 10.1093/mmy/myae042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 03/15/2024] [Accepted: 04/29/2024] [Indexed: 06/29/2024] Open
Abstract
The World Health Organization (WHO) in 2022 developed a fungal priority pathogen list. Candida auris was ultimately ranked as a critical priority pathogen. PubMed and Web of Science were used to find studies published from 1 January 2011 to 18 February 2021, reporting on predefined criteria including: mortality, morbidity (i.e., hospitalization and disability), drug resistance, preventability, yearly incidence, and distribution/emergence. Thirty-seven studies were included in the final analysis. The overall and 30-day mortality rates associated with C. auris candidaemia ranged from 29% to 62% and 23% to 67%, respectively. The median length of hospital stay was 46-68 days, ranging up to 140 days. Late-onset complications of C. auris candidaemia included metastatic septic complications. Resistance rates to fluconazole were as high as 87%-100%. Susceptibility to isavuconazole, itraconazole, and posaconazole varied with MIC90 values of 0.06-1.0 mg/l. Resistance rates to voriconazole ranged widely from 28% to 98%. Resistance rates ranged between 8% and 35% for amphotericin B and 0%-8% for echinocandins. Over the last ten years, outbreaks due to C. auris have been reported in in all WHO regions. Given the outbreak potential of C. auris, the emergence and spread of MDR strains, and the challenges associated with its identification, and eradication of its environmental sources in healthcare settings, prevention and control measures based on the identified risk factors should be evaluated for their effectiveness and feasibility. Global surveillance studies could better inform the incidence rates and distribution patterns to evaluate the global burden of C. auris infections.
Collapse
Affiliation(s)
- Hannah Yejin Kim
- Sydney Infectious Disease Institute, The University of Sydney, Sydney, NSW, Australia
- Faculty of Medicine and Health, School of Pharmacy, The University of Sydney, Sydney, New South Wales, Australia
- Westmead Hospital, NSW Health, Westmead, New South Wales, Australia
| | - Thi Anh Nguyen
- Faculty of Medicine and Health, School of Pharmacy, The University of Sydney, Sydney, New South Wales, Australia
| | - Sarah Kidd
- National Mycology Reference Centre, Microbiology and Infectious Diseases, SA Pathology, Adelaide, South Australia, Australia
| | - Joshua Chambers
- Faculty of Medicine and Health, School of Pharmacy, The University of Sydney, Sydney, New South Wales, Australia
| | - Ana Alastruey-Izquierdo
- Mycology Reference Laboratory, National Centre for Microbiology, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - Jong-Hee Shin
- Chonnam National University Medical School, Gwangju, Korea
| | - Aiken Dao
- Sydney Infectious Disease Institute, The University of Sydney, Sydney, NSW, Australia
- Westmead Institute for Medical Research, Sydney, Australia
| | - Agustina Forastiero
- Antimicrobial Resistance Special Program, Communicable Diseases and Environmental Determinants of Health, Pan American Health Organization/World Health Organization (PAHO/WHO), Washington, DC, United States of America
| | - Retno Wahyuningsih
- Department of Parasitology, Division of Mycology, Faculty of Medicine of the Universitas Indonesia and Universitas Kristen Indonesia, Jakarta, Indonesia
| | | | | | | | - Justin Beardsley
- Sydney Infectious Disease Institute, The University of Sydney, Sydney, NSW, Australia
- Westmead Hospital, NSW Health, Westmead, New South Wales, Australia
- Westmead Institute for Medical Research, Sydney, Australia
| | | | - C Orla Morrissey
- Department of Infectious Diseases, Alfred Health, Melbourne, Victoria, Australia
- Monash University, Department of Infectious Diseases, Central Clinical School, Faculty of Medicine, Nursing and Health Sciences, Melbourne, Victoria, Australia
| | - Jan-Willem Alffenaar
- Sydney Infectious Disease Institute, The University of Sydney, Sydney, NSW, Australia
- Faculty of Medicine and Health, School of Pharmacy, The University of Sydney, Sydney, New South Wales, Australia
- Westmead Hospital, NSW Health, Westmead, New South Wales, Australia
| |
Collapse
|
15
|
Khanum N, Alfaraj SH, Alboqmy KN, Alshakrah F, Dar NG, Abdallah H, Kumar D, Alsalam M, Abu-Salah AHM, Alsunaid AA, Alhamed RAR, Cherian PK, Alharbi OM, Alhemaid NY, Mamayabay MAM, Memish ZA. Implementation of effective strategies to prevent Candida auris transmission in a Quaternary Care Center, Riyadh, Saudi Arabia. J Chemother 2024:1-16. [PMID: 38915243 DOI: 10.1080/1120009x.2024.2370207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 06/14/2024] [Indexed: 06/26/2024]
Abstract
This study outlines the results of an investigation of a large C. auris outbreak at King Saud Medical City (KSMC), a quaternary hospital in Saudi Arabia. We identified 122 cases of C. auris (colonization, 74; infection, 48) from June 2021 to June 2022. The mean patient age was 48.4 years, and the median duration of stay before diagnosis was 32.7 days. A significant proportion of patients (87.70%) were diagnosed with C. auris more than 3 days after admission to KSMC. The source of exposure was either nosocomial (from KSMC, 28.68%; from other hospitals, 16.39%) or unknown (54.91%). The hospitalization mortality rate was 45.90%. This report highlights the challenges in investigating and managing C. auris outbreaks, emphasizing the need for a comprehensive approach incorporating strategies for screening and early identification, effective environmental cleaning, and the implementation of stringent infection control measures such as hand hygiene, isolation of patient, standard and contact precaution and decolonization.
Collapse
Affiliation(s)
- Nazia Khanum
- Prevention and Control of Infection Administration, King Saud Medical City, Ministry of Health, Riyadh, Kingdom of Saudi Arabia
| | - Sarah H Alfaraj
- Prevention and Control of Infection Administration, King Saud Medical City, Ministry of Health, Riyadh, Kingdom of Saudi Arabia
| | - Khulood Naser Alboqmy
- Prevention and Control of Infection Administration, King Saud Medical City, Ministry of Health, Riyadh, Kingdom of Saudi Arabia
| | - Faleh Alshakrah
- Prevention and Control of Infection Administration, King Saud Medical City, Ministry of Health, Riyadh, Kingdom of Saudi Arabia
| | - Nadeem Gul Dar
- Prevention and Control of Infection Administration, King Saud Medical City, Ministry of Health, Riyadh, Kingdom of Saudi Arabia
| | - Hassan Abdallah
- Prevention and Control of Infection Administration, King Saud Medical City, Ministry of Health, Riyadh, Kingdom of Saudi Arabia
| | - Deva Kumar
- Prevention and Control of Infection Administration, King Saud Medical City, Ministry of Health, Riyadh, Kingdom of Saudi Arabia
| | - Mona Alsalam
- Prevention and Control of Infection Administration, King Saud Medical City, Ministry of Health, Riyadh, Kingdom of Saudi Arabia
| | | | - Antisar Abdulrahman Alsunaid
- Prevention and Control of Infection Administration, King Saud Medical City, Ministry of Health, Riyadh, Kingdom of Saudi Arabia
| | - Rashed Abdulaziz Rashed Alhamed
- Prevention and Control of Infection Administration, King Saud Medical City, Ministry of Health, Riyadh, Kingdom of Saudi Arabia
| | - Prince Kochummen Cherian
- Prevention and Control of Infection Administration, King Saud Medical City, Ministry of Health, Riyadh, Kingdom of Saudi Arabia
| | - Ohoud Mohammed Alharbi
- Prevention and Control of Infection Administration, King Saud Medical City, Ministry of Health, Riyadh, Kingdom of Saudi Arabia
| | - Nada Yousef Alhemaid
- Prevention and Control of Infection Administration, King Saud Medical City, Ministry of Health, Riyadh, Kingdom of Saudi Arabia
| | - Mary Ann M Mamayabay
- Prevention and Control of Infection Administration, King Saud Medical City, Ministry of Health, Riyadh, Kingdom of Saudi Arabia
| | - Ziad A Memish
- Research and Innovation Center, King Saud Medical City, Ministry of Health & College of Medicine, Al Faisal University, Riyadh, Kingdom of Saudi Arabia
- Hubert Department of Global Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| |
Collapse
|
16
|
Arenas SP, Persad PJ, Patel S, Parekh DJ, Ferreira TB, Farinas M, Sexton DJ, Lyman M, Gershengorn HB, Shukla BS. Persistent colonization of Candida auris among inpatients rescreened as part of a weekly surveillance program. Infect Control Hosp Epidemiol 2024; 45:762-765. [PMID: 38087651 PMCID: PMC11302382 DOI: 10.1017/ice.2023.251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
We established a surveillance program to evaluate persistence of C. auris colonization among hospitalized patients. Overall, 17 patients (34%) had ≥1 negative result followed by a positive test, and 7 (41%) of these patients had ≥2 consecutive negative tests.
Collapse
Affiliation(s)
| | | | - Samira Patel
- University of Miami Health System, Miami, Florida
| | - Dipen J. Parekh
- University of Miami Health System, Miami, Florida
- Department of Urology, University of Miami Miller School of Medicine, Miami, Florida
| | - Tanira B.D. Ferreira
- University of Miami Health System, Miami, Florida
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, University of Miami Miller School of Medicine, Miami, Florida
| | | | - D. Joseph Sexton
- Mycotic Diseases Branch, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Meghan Lyman
- Mycotic Diseases Branch, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Hayley B. Gershengorn
- University of Miami Health System, Miami, Florida
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, University of Miami Miller School of Medicine, Miami, Florida
- Division of Critical Care, Department of Medicine, Albert Einstein College of Medicine, Bronx, New York
| | - Bhavarth S. Shukla
- University of Miami Health System, Miami, Florida
- Division of Infectious Diseases, Department of Internal Medicine, University of Miami Miller School of Medicine, Miami, Florida
| |
Collapse
|
17
|
Spruijtenburg B, Nobrega de Almeida Júnior J, Ribeiro FDC, Kemmerich KK, Baeta K, Meijer EFJ, de Groot T, Meis JF, Colombo AL. Multicenter Candida auris outbreak caused by azole-susceptible clade IV in Pernambuco, Brazil. Mycoses 2024; 67:e13752. [PMID: 38880933 DOI: 10.1111/myc.13752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/27/2024] [Accepted: 05/29/2024] [Indexed: 06/18/2024]
Abstract
BACKGROUND Candida auris is an emerging multidrug-resistant yeast, frequently causing outbreaks in health care facilities. The pathogen persistently colonises human skin and inanimate surfaces such as catheters, aiding to its spread. Moreover, colonisation is a risk factor to develop invasive infection. OBJECTIVES We investigated 61 C. auris strains isolated from non-sterile human body sites (n = 53) and the hospital environment (n = 8), originating from four different centres in a single Brazilian state. MATERIALS AND METHODS Antifungal susceptibility testing (AFST) against common antifungals was performed, and resistance-associated genes were evaluated. Genetic relatedness was investigated with short tandem repeat (STR) genotyping and validated with whole-genome sequencing (WGS) single nucleotide polymorphism (SNP) analysis. RESULTS Antifungal susceptibility testing demonstrated that all isolates were susceptible to azoles, echinocandins and amphotericin B. No mutations were detected in ERG11 and FKS1 genes. With STR typing, isolates were allocated to clade IV and appeared closely related. This was confirmed by WGS SNP analysis of 6 isolates, which demonstrated a maximal difference of only 41 SNPs between these strains. Furthermore, the Brazilian isolates formed a distinct autochthonous branch within clade IV, excluding recent introductions from outside the country. A molecular clock analysis of clade IV isolates from various countries suggests that early in the previous century there was a unique event causing environmental spread of a C. auris ancestor throughout the Latin-American continent, followed by human introduction during the last decades. CONCLUSION We report the emergence of C. auris patient colonisation in multiple centres by fluconazole-susceptible clade IV close-related strains in Pernambuco State, Brazil.
Collapse
Affiliation(s)
- Bram Spruijtenburg
- Radboudumc-CWZ Center of Expertise for Mycology, Nijmegen, The Netherlands
- Canisius-Wilhelmina Hospital (CWZ)/Dicoon, Nijmegen, The Netherlands
| | - João Nobrega de Almeida Júnior
- Disciplina de Infectologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
- Antimicrobial Resistance Institute of São Paulo-ARIES, São Paulo, Brazil
| | - Felipe de Camargo Ribeiro
- Disciplina de Infectologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
- Antimicrobial Resistance Institute of São Paulo-ARIES, São Paulo, Brazil
| | - Karoline Kristina Kemmerich
- Disciplina de Infectologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
- Antimicrobial Resistance Institute of São Paulo-ARIES, São Paulo, Brazil
| | - Karla Baeta
- Agência Pernambucana de Vigilância Sanitária, Recife, Brazil
| | - Eelco F J Meijer
- Radboudumc-CWZ Center of Expertise for Mycology, Nijmegen, The Netherlands
- Canisius-Wilhelmina Hospital (CWZ)/Dicoon, Nijmegen, The Netherlands
| | - Theun de Groot
- Radboudumc-CWZ Center of Expertise for Mycology, Nijmegen, The Netherlands
- Canisius-Wilhelmina Hospital (CWZ)/Dicoon, Nijmegen, The Netherlands
| | - Jacques F Meis
- Radboudumc-CWZ Center of Expertise for Mycology, Nijmegen, The Netherlands
- Institute of Translational Research, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD) and Excellence Center for Medical Mycology, University of Cologne, Cologne, Germany
| | - Arnaldo Lopes Colombo
- Disciplina de Infectologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
- Antimicrobial Resistance Institute of São Paulo-ARIES, São Paulo, Brazil
| |
Collapse
|
18
|
Mikulska M, Ullah N, Magnasco L, Codda G, Bartalucci C, Miletich F, Sepulcri C, Willison E, Vena A, Giacobbe DR, di Pilato V, Robba C, Ball L, Marchese A, Bassetti M. Lower (1,3)-beta-d-glucan sensitivity and in vitro levels in Candida auris and Candida parapsilosis strains. Clin Microbiol Infect 2024; 30:822-827. [PMID: 38431255 DOI: 10.1016/j.cmi.2024.02.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 01/24/2024] [Accepted: 02/15/2024] [Indexed: 03/05/2024]
Abstract
OBJECTIVES The serum (1,3)-beta-d-glucan (BDG) assay gives quicker results and has higher sensitivity than blood cultures, therefore it is advised for early diagnosis of invasive candidemia and/or discontinuation of empirical therapy. Its sensitivity may depend on different factors. The aim of our study was to analyse the in vitro and in vivo BDG levels in clinical isolates of three species of Candida responsible for candidemia. METHODS C. albicans, C. parapsilosis, and C. auris strains were collected from blood cultures of patients who had a concurrent (-1 to +3 days) serum BDG test (Fungitell assay). Supernatants of all strains were tested in quadruplicate for BDG levels. RESULTS Twenty-two C. auris, 14 C. albicans, and ten C. parapsilosis strains were included. The median BDG levels in supernatants were 463 pg/mL (interquartile range [IQR] 379-648) for C. auris, 1080 pg/mL (IQR 830-1276) for C. albicans, and 755 pg/mL (IQR 511-930) for C. parapsilosis, with the significant difference among the species (p < 0.0001). Median serum BDG levels (IQR) were significantly lower in case C. auris and C. parapsilosis vs. C. albicans (p < 0.0001), respectively, 50 pg/mL (IQR 15-161) and 57 pg/mL (IQR 18-332), vs. 372 pg/mL (IQR 102-520). Sensitivity of serum BDG was 39% (95% confidence interval [CI], 18-64) in case of C. auris, 30% (95% CI, 8-65) C. parapsilosis and 78% (95% CI, 49-94) C. albicans candidemia. DISCUSSION In our centre C. auris and C. parapsilosis strains have lower BDG content as compared with C. albicans, with a potential impact on serum BDG performance for the diagnosis of candidemia.
Collapse
Affiliation(s)
- Malgorzata Mikulska
- Division of Infectious Diseases, Department of Health Sciences (DISSAL), University of Genova, Genova, Italy; Division of Infectious Diseases, IRCCS Ospedale Policlinico San Martino, Genova, Italy.
| | - Nadir Ullah
- Division of Infectious Diseases, Department of Health Sciences (DISSAL), University of Genova, Genova, Italy
| | - Laura Magnasco
- Division of Infectious Diseases, Department of Health Sciences (DISSAL), University of Genova, Genova, Italy
| | - Giulia Codda
- Department of Surgical Sciences and Integrated Diagnostics (DISC), University of Genoa, Genoa, Italy
| | - Claudia Bartalucci
- Division of Infectious Diseases, Department of Health Sciences (DISSAL), University of Genova, Genova, Italy; Division of Infectious Diseases, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Franca Miletich
- Division of Infectious Diseases, Department of Health Sciences (DISSAL), University of Genova, Genova, Italy; Division of Infectious Diseases, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Chiara Sepulcri
- Division of Infectious Diseases, Department of Health Sciences (DISSAL), University of Genova, Genova, Italy; Division of Infectious Diseases, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Edward Willison
- Microbiology Unit, San Martino Policlinico Hospital - IRCCS for Oncology and Neurosciences, Genoa, Italy
| | - Antonio Vena
- Division of Infectious Diseases, Department of Health Sciences (DISSAL), University of Genova, Genova, Italy; Division of Infectious Diseases, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Daniele R Giacobbe
- Division of Infectious Diseases, Department of Health Sciences (DISSAL), University of Genova, Genova, Italy; Division of Infectious Diseases, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Vincenzo di Pilato
- Microbiology Unit, San Martino Policlinico Hospital - IRCCS for Oncology and Neurosciences, Genoa, Italy
| | - Chiara Robba
- Anesthesia and Intensive Care, Ospedale Policlinico San Martino, IRCCS per l'Oncologia e le Neuroscienze, Genoa, Italy
| | - Lorenzo Ball
- Anesthesia and Intensive Care, Ospedale Policlinico San Martino, IRCCS per l'Oncologia e le Neuroscienze, Genoa, Italy
| | - Anna Marchese
- Department of Surgical Sciences and Integrated Diagnostics (DISC), University of Genoa, Genoa, Italy; Microbiology Unit, San Martino Policlinico Hospital - IRCCS for Oncology and Neurosciences, Genoa, Italy
| | - Matteo Bassetti
- Division of Infectious Diseases, Department of Health Sciences (DISSAL), University of Genova, Genova, Italy; Division of Infectious Diseases, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| |
Collapse
|
19
|
Al Ajmi JA, B. Malik A, Nafady-Hego H, Hanana F, Abraham J, G. Garcell H, Hudaib G, Al-Wali W, Eltayeb F, Shams S, G. Thomas A, Saleem S, Abou-Samra AB, Butt AA. Spectrum of infection and outcomes in individuals with Candida auris infection in Qatar. PLoS One 2024; 19:e0302629. [PMID: 38781160 PMCID: PMC11115301 DOI: 10.1371/journal.pone.0302629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 04/05/2024] [Indexed: 05/25/2024] Open
Abstract
BACKGROUND We investigated the spectrum of infection and risk factors for invasive fungal disease due to Candida auris (CA) in Qatar. METHODS We performed structured chart reviews on individuals with any positive CA culture between May 2019 and December 2022 at three tertiary care hospitals in Qatar. Invasive CA disease (ICAD) was defined as a positive sterile site culture, or any positive culture for CA with appropriate antifungal prescription. Main outcomes included proportion of individuals who developed ICAD among those with positive cultures, and 30-day/in-hospital mortality. RESULTS Among 331 eligible individuals, median age was 56 years, 83.1% were male, 70.7% were non-Qataris, and 37.5% had ≥ 3 comorbidities at baseline. Overall, 86.4% were deemed to have colonization and 13.6% developed ICAD. Those with ICAD were more likely to have invasive central venous or urinary catheterization and mechanical ventilation. Individuals with ICAD had longer prior ICU stay (16 vs 26 days, P = 0.002), and longer hospital length of stay (63 vs. 43 days; P = 0.003), and higher 30-day mortality (38% vs. 14%; P<0.001). In multivariable regression analysis, only mechanical ventilation was associated with a higher risk of ICAD (OR 3.33, 95% CI 1.09-10.17). CONCLUSION Invasive Candida auris Disease is associated with longer hospital stay and higher mortality. Severely ill persons on mechanical ventilation should be especially monitored for development of ICAD.
Collapse
Affiliation(s)
- Jameela A. Al Ajmi
- Corporate Quality and Patient Safety Department, Hamad Medical Corporation, Doha, Qatar
| | - Aimon B. Malik
- Corporate Quality and Patient Safety Department, Hamad Medical Corporation, Doha, Qatar
| | - Hanaa Nafady-Hego
- Microbiology and Immunology, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Fathima Hanana
- Corporate Quality and Patient Safety Department, Hamad Medical Corporation, Doha, Qatar
| | - Joji Abraham
- Corporate Quality and Patient Safety Department, Hamad Medical Corporation, Doha, Qatar
| | - Humberto G. Garcell
- Infection Prevention and Control Department, The Cuban Hospital, Dukhan, Qatar
| | - Ghada Hudaib
- Corporate Quality and Patient Safety Department, Hamad Medical Corporation, Doha, Qatar
| | - Walid Al-Wali
- Department of Microbiology and Laboratory Medicine, Hamad Medical Corporation, Doha, Qatar
| | - Faiha Eltayeb
- Department of Microbiology and Laboratory Medicine, Hamad Medical Corporation, Doha, Qatar
| | - Sherin Shams
- Corporate Quality and Patient Safety Department, Hamad Medical Corporation, Doha, Qatar
| | - Anil G. Thomas
- Corporate Quality and Patient Safety Department, Hamad Medical Corporation, Doha, Qatar
| | - Samah Saleem
- Corporate Quality and Patient Safety Department, Hamad Medical Corporation, Doha, Qatar
| | - Abdul-Badi Abou-Samra
- Corporate Quality and Patient Safety Department, Hamad Medical Corporation, Doha, Qatar
| | - Adeel A. Butt
- Corporate Quality and Patient Safety Department, Hamad Medical Corporation, Doha, Qatar
- Department of Medicine and Population Health Sciences, Weill Cornell Medicine, New York, NY, United States of America
- Department of Medicine and Population Health Sciences, Weill Cornell Medicine, Education City, Qatar
| |
Collapse
|
20
|
Jones CR, Neill C, Borman AM, Budd EL, Cummins M, Fry C, Guy RL, Jeffery K, Johnson EM, Manuel R, Mirfenderesky M, Moore G, Patel B, Schelenz S, Staniforth K, Taori SK, Brown CS. The laboratory investigation, management, and infection prevention and control of Candida auris: a narrative review to inform the 2024 national guidance update in England. J Med Microbiol 2024; 73:001820. [PMID: 38771623 PMCID: PMC11165919 DOI: 10.1099/jmm.0.001820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 03/11/2024] [Indexed: 05/22/2024] Open
Abstract
The emergent fungal pathogen Candida auris is increasingly recognised as an important cause of healthcare-associated infections globally. It is highly transmissible, adaptable, and persistent, resulting in an organism with significant outbreak potential that risks devastating consequences. Progress in the ability to identify C. auris in clinical specimens is encouraging, but laboratory diagnostic capacity and surveillance systems are lacking in many countries. Intrinsic resistance to commonly used antifungals, combined with the ability to rapidly acquire resistance to therapy, substantially restricts treatment options and novel agents are desperately needed. Despite this, outbreaks can be interrupted, and mortality avoided or minimised, through the application of rigorous infection prevention and control measures with an increasing evidence base. This review provides an update on epidemiology, the impact of the COVID-19 pandemic, risk factors, identification and typing, resistance profiles, treatment, detection of colonisation, and infection prevention and control measures for C. auris. This review has informed a planned 2024 update to the United Kingdom Health Security Agency (UKHSA) guidance on the laboratory investigation, management, and infection prevention and control of Candida auris. A multidisciplinary response is needed to control C. auris transmission in a healthcare setting and should emphasise outbreak preparedness and response, rapid contact tracing and isolation or cohorting of patients and staff, strict hand hygiene and other infection prevention and control measures, dedicated or single-use equipment, appropriate disinfection, and effective communication concerning patient transfers and discharge.
Collapse
Affiliation(s)
- Christopher R. Jones
- HCAI, Fungal, AMR, AMU, and Sepsis Division, UK Health Security Agency, London, UK
| | - Claire Neill
- HCAI, Fungal, AMR, AMU, and Sepsis Division, UK Health Security Agency, London, UK
| | - Andrew M. Borman
- UKHSA Mycology Reference Laboratory, National Infection Services, UKHSA South West Laboratory, Science Quarter, Southmead Hospital, Bristol, UK
- MRC Centre for Medical Mycology, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter, UK
| | - Emma L. Budd
- HCAI, Fungal, AMR, AMU, and Sepsis Division, UK Health Security Agency, London, UK
| | - Martina Cummins
- Department of Microbiology and Infection Control, Barts Health NHS Trust, London, UK
| | - Carole Fry
- HCAI, Fungal, AMR, AMU, and Sepsis Division, UK Health Security Agency, London, UK
| | - Rebecca L. Guy
- HCAI, Fungal, AMR, AMU, and Sepsis Division, UK Health Security Agency, London, UK
| | - Katie Jeffery
- Oxford University Hospitals NHS Foundation Trust, Oxford, UK
- Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Elizabeth M. Johnson
- UKHSA Mycology Reference Laboratory, National Infection Services, UKHSA South West Laboratory, Science Quarter, Southmead Hospital, Bristol, UK
- MRC Centre for Medical Mycology, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter, UK
| | - Rohini Manuel
- Public Health Laboratory London, Science Group, UK Health Security Agency, London, UK
| | | | - Ginny Moore
- Research and Evaluation, UK Health Security Agency, Porton Down, Salisbury, UK
| | - Bharat Patel
- Public Health Laboratory London, Science Group, UK Health Security Agency, London, UK
| | - Silke Schelenz
- Department of Microbiology, King’s College Hospital NHS Foundation Trust, London, UK
| | - Karren Staniforth
- HCAI, Fungal, AMR, AMU, and Sepsis Division, UK Health Security Agency, London, UK
| | | | - Colin S. Brown
- HCAI, Fungal, AMR, AMU, and Sepsis Division, UK Health Security Agency, London, UK
- National Institute for Health Research Health Protection Research Unit (NIHR HPRU) in Healthcare Associated Infections and Antimicrobial Resistance, Imperial College London, London, UK
| |
Collapse
|
21
|
Shapiro LT, Valecillos AV, McDade R, Rosa RM, Abbo LM. Navigating the Challenges of Candida auris Colonization in Rehabilitation Settings. Rehabil Nurs 2024; 49:80-85. [PMID: 38386804 DOI: 10.1097/rnj.0000000000000455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2024]
Abstract
ABSTRACT Candida auris is a highly transmissible yeast that is capable of causing invasive and fatal infections, particularly among persons with underlying medical conditions. Its incidence is rising, especially among patients cared for in post-acute care facilities. Individuals colonized with the yeast may be cared for in inpatient rehabilitation settings, without heightened risk for invasive infection and/or transmission to others, as long as appropriate infection control measures are followed. This article reviews key information for rehabilitation nurses caring for persons with C. auris , including risk factors for infection, the need for contact precautions, appropriate disinfection practices for therapy and diagnostic equipment, and critical components of safe transitions in the care of these patients.
Collapse
Affiliation(s)
- Lauren T Shapiro
- Department of Physical Medicine & Rehabilitation, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Adriana Valbuena Valecillos
- Department of Physical Medicine & Rehabilitation, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Regina McDade
- Department of Infection Prevention, Jackson Memorial Hospital, Miami, FL, USA
| | - Rossana M Rosa
- Department of Infection Prevention, Jackson Memorial Hospital, Miami, FL, USA
| | | |
Collapse
|
22
|
Melinte V, Tudor AD, Bujoi AG, Radu MA, Văcăriou MC, Cismaru IM, Holban TS, Mîrzan CL, Popescu R, Ciupan RC, Baciu A, Moraru OE, Popa-Cherecheanu M, Gheorghiță V. Candida auris Outbreak in a Multidisciplinary Hospital in Romania during the Post-Pandemic Era: Potential Solutions and Challenges in Surveillance and Epidemiological Control. Antibiotics (Basel) 2024; 13:325. [PMID: 38667001 PMCID: PMC11047361 DOI: 10.3390/antibiotics13040325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 03/29/2024] [Accepted: 04/02/2024] [Indexed: 04/29/2024] Open
Abstract
Candida auris is a newly emerging yeast, which is raising public health concerns due to its outbreak potential, lack of protocols for decontamination and isolation of patients or contacts, increased resistance to common antifungals, and associated high mortality. This research aimed to describe the challenges related to identifying the outbreak, limiting further contamination, and treating affected individuals. We retrospectively analyzed all cases of C. auris detected between October 2022 and August 2023, but our investigation focused on a three-month-long outbreak in the department of cardio-vascular surgery and the related intensive care unit. Along with isolated cases in different wards, we identified 13 patients who became infected or colonized in the same area and time, even though the epidemiological link could only be traced in 10 patients, according to the epidemiologic investigation. In conclusion, our study emphasizes the substantial challenge encountered in clinical practice when attempting to diagnose and limit the spread of an outbreak. Therefore, it is crucial to promptly apply contact precaution measures and appropriate environmental cleaning, from the first positive case detected.
Collapse
Affiliation(s)
- Violeta Melinte
- Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (M.-A.R.); (O.E.M.); (M.P.-C.); (V.G.)
- “Agrippa Ionescu” Clinical Emergency Hospital, 011356 Bucharest, Romania; (A.D.T.); (A.G.B.); (M.C.V.); (I.M.C.); (T.S.H.); (C.L.M.); (R.P.); (R.C.C.); (A.B.)
| | - Alexandra Daniela Tudor
- “Agrippa Ionescu” Clinical Emergency Hospital, 011356 Bucharest, Romania; (A.D.T.); (A.G.B.); (M.C.V.); (I.M.C.); (T.S.H.); (C.L.M.); (R.P.); (R.C.C.); (A.B.)
| | - Adrian Georgian Bujoi
- “Agrippa Ionescu” Clinical Emergency Hospital, 011356 Bucharest, Romania; (A.D.T.); (A.G.B.); (M.C.V.); (I.M.C.); (T.S.H.); (C.L.M.); (R.P.); (R.C.C.); (A.B.)
| | - Maria-Adelina Radu
- Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (M.-A.R.); (O.E.M.); (M.P.-C.); (V.G.)
- “Agrippa Ionescu” Clinical Emergency Hospital, 011356 Bucharest, Romania; (A.D.T.); (A.G.B.); (M.C.V.); (I.M.C.); (T.S.H.); (C.L.M.); (R.P.); (R.C.C.); (A.B.)
| | - Maria Cristina Văcăriou
- “Agrippa Ionescu” Clinical Emergency Hospital, 011356 Bucharest, Romania; (A.D.T.); (A.G.B.); (M.C.V.); (I.M.C.); (T.S.H.); (C.L.M.); (R.P.); (R.C.C.); (A.B.)
| | - Ioana Miriana Cismaru
- “Agrippa Ionescu” Clinical Emergency Hospital, 011356 Bucharest, Romania; (A.D.T.); (A.G.B.); (M.C.V.); (I.M.C.); (T.S.H.); (C.L.M.); (R.P.); (R.C.C.); (A.B.)
| | - Tiberiu Sebastian Holban
- “Agrippa Ionescu” Clinical Emergency Hospital, 011356 Bucharest, Romania; (A.D.T.); (A.G.B.); (M.C.V.); (I.M.C.); (T.S.H.); (C.L.M.); (R.P.); (R.C.C.); (A.B.)
| | - Carmen Luminița Mîrzan
- “Agrippa Ionescu” Clinical Emergency Hospital, 011356 Bucharest, Romania; (A.D.T.); (A.G.B.); (M.C.V.); (I.M.C.); (T.S.H.); (C.L.M.); (R.P.); (R.C.C.); (A.B.)
| | - Ruxandra Popescu
- “Agrippa Ionescu” Clinical Emergency Hospital, 011356 Bucharest, Romania; (A.D.T.); (A.G.B.); (M.C.V.); (I.M.C.); (T.S.H.); (C.L.M.); (R.P.); (R.C.C.); (A.B.)
| | - Robert Cătălin Ciupan
- “Agrippa Ionescu” Clinical Emergency Hospital, 011356 Bucharest, Romania; (A.D.T.); (A.G.B.); (M.C.V.); (I.M.C.); (T.S.H.); (C.L.M.); (R.P.); (R.C.C.); (A.B.)
| | - Alin Baciu
- “Agrippa Ionescu” Clinical Emergency Hospital, 011356 Bucharest, Romania; (A.D.T.); (A.G.B.); (M.C.V.); (I.M.C.); (T.S.H.); (C.L.M.); (R.P.); (R.C.C.); (A.B.)
| | - Oriana Elena Moraru
- Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (M.-A.R.); (O.E.M.); (M.P.-C.); (V.G.)
- “Agrippa Ionescu” Clinical Emergency Hospital, 011356 Bucharest, Romania; (A.D.T.); (A.G.B.); (M.C.V.); (I.M.C.); (T.S.H.); (C.L.M.); (R.P.); (R.C.C.); (A.B.)
| | - Matei Popa-Cherecheanu
- Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (M.-A.R.); (O.E.M.); (M.P.-C.); (V.G.)
- “Agrippa Ionescu” Clinical Emergency Hospital, 011356 Bucharest, Romania; (A.D.T.); (A.G.B.); (M.C.V.); (I.M.C.); (T.S.H.); (C.L.M.); (R.P.); (R.C.C.); (A.B.)
| | - Valeriu Gheorghiță
- Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (M.-A.R.); (O.E.M.); (M.P.-C.); (V.G.)
- “Agrippa Ionescu” Clinical Emergency Hospital, 011356 Bucharest, Romania; (A.D.T.); (A.G.B.); (M.C.V.); (I.M.C.); (T.S.H.); (C.L.M.); (R.P.); (R.C.C.); (A.B.)
| |
Collapse
|
23
|
Jakab Á, Kovács F, Balla N, Nagy-Köteles C, Ragyák Á, Nagy F, Borman AM, Majoros L, Kovács R. Comparative transcriptional analysis of Candida auris biofilms following farnesol and tyrosol treatment. Microbiol Spectr 2024; 12:e0227823. [PMID: 38440972 PMCID: PMC10986546 DOI: 10.1128/spectrum.02278-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 02/11/2024] [Indexed: 03/06/2024] Open
Abstract
Candida auris is frequently associated with biofilm-related invasive infections. The resistant profile of these biofilms necessitates innovative therapeutic options, where quorum sensing may be a potential target. Farnesol and tyrosol are two fungal quorum-sensing molecules with antifungal effects at supraphysiological concentrations. Here, we performed genome-wide transcript profiling with C. auris biofilms following farnesol or tyrosol exposure using transcriptome sequencing (RNA-Seq). Since transition metals play a central role in fungal virulence and biofilm formation, levels of intracellular calcium, magnesium, and iron were determined following farnesol or tyrosol treatment using inductively coupled plasma optical emission spectrometry. Farnesol caused an 89.9% and 73.8% significant reduction in the calcium and magnesium content, respectively, whereas tyrosol resulted in 82.6%, 76.6%, and 81.2% decrease in the calcium, magnesium, and iron content, respectively, compared to the control. Genes involved in biofilm events, glycolysis, ergosterol biosynthesis, fatty acid oxidation, iron metabolism, and autophagy were primarily affected in treated cells. To prove ergosterol quorum-sensing molecule interactions, microdilution-based susceptibility testing was performed, where the complexation of farnesol, but not tyrosol, with ergosterol was impeded in the presence of exogenous ergosterol, resulting in a minimum inhibitory concentration increase in the quorum-sensing molecules. This study revealed several farnesol- and tyrosol-specific responses, which will contribute to the development of alternative therapies against C. auris biofilms. IMPORTANCE Candida auris is a multidrug-resistant fungal pathogen, which is frequently associated with biofilm-related infections. Candida-derived quorum-sensing molecules (farnesol and tyrosol) play a pivotal role in the regulation of fungal morphogenesis and biofilm development. Furthermore, they may have remarkable anti-biofilm effects, especially at supraphysiological concentrations. Innovative therapeutic approaches interfering with quorum sensing may be a promising future strategy against C. auris biofilms; however, limited data are currently available concerning farnesol-induced and tyrosol-related molecular effects in C. auris. Here, we detected several genes involved in biofilm events, glycolysis, ergosterol biosynthesis, fatty acid oxidation, iron metabolism, and autophagy, which were primarily influenced following farnesol or tyrosol exposure. Moreover, calcium, magnesium, and iron homeostasis were also significantly affected. These results reveal those molecular and physiological events, which may support the development of novel therapeutic approaches against C. auris biofilms.
Collapse
Affiliation(s)
- Ágnes Jakab
- Department of Medical Microbiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Fruzsina Kovács
- Department of Medical Microbiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- Doctoral School of Pharmaceutical Sciences, University of Debrecen, Debrecen, Hungary
| | - Noémi Balla
- Department of Medical Microbiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- Doctoral School of Pharmaceutical Sciences, University of Debrecen, Debrecen, Hungary
| | - Csaba Nagy-Köteles
- Department of Molecular Biotechnology and Microbiology, Institute of Biotechnology, Faculty of Science and Technology, University of Debrecen, Debrecen, Hungary
| | - Ágota Ragyák
- Department of Inorganic and Analytical Chemistry, Agilent Atomic Spectroscopy Partner Laboratory, University of Debrecen, Debrecen, Hungary
| | - Fruzsina Nagy
- Department of Medical Microbiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Andrew M. Borman
- UK National Mycology Reference Laboratory, UK Health Security Agency, Science Quarter, Southmead Hospital, Bristol, United Kingdom
- Medical Research Council Centre for Medical Mycology (MRCCMM), University of Exeter, Exeter, United Kingdom
| | - László Majoros
- Department of Medical Microbiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Renátó Kovács
- Department of Medical Microbiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
24
|
Zuniga-Moya JC, Papadopoulos B, Mansoor AER, Mazi PB, Rauseo AM, Spec A. Incidence and Mortality of COVID-19-Associated Invasive Fungal Infections Among Critically Ill Intubated Patients: A Multicenter Retrospective Cohort Analysis. Open Forum Infect Dis 2024; 11:ofae108. [PMID: 38567199 PMCID: PMC10986750 DOI: 10.1093/ofid/ofae108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 02/21/2024] [Indexed: 04/04/2024] Open
Abstract
Background An association between coronavirus disease 2019 (COVID-19)-associated invasive fungal infections (CAIFIs) and high mortality among intubated patients has been suggested in previous research. However, some of the current evidence was derived from small case series and multicenter studies conducted during different waves of the COVID-19 pandemic. We examined the incidence of CAIFIs and their associated mortality using a large, multicenter COVID-19 database built throughout the pandemic. Methods We conducted a retrospective analysis of the National COVID Cohort Collaborative (N3C) database collected from 76 medical centers in the United States between January 2020 and August 2022. Patients were 18 years or older and intubated after severe acute respiratory syndrome coronavirus 2 infection. The primary outcomes were incidence and all-cause mortality at 90 days. To assess all-cause mortality, we fitted Cox proportional hazard models after adjusting for confounders via inverse probability weighting. Results Out of the 4 916 229 patients with COVID-19 diagnosed during the study period, 68 383 (1.4%) met our cohort definition. The overall incidence of CAIFI was 2.80% (n = 1934/68 383). Aspergillus (48.2%; n = 933/1934) and Candida (41.0%; n = 793/1934) were the most common causative organisms. The incidence of CAIFIs associated with Aspergillus among patients who underwent BAL was 6.2% (n = 83/1328). Following inverse probability weighting, CAIFIs caused by Aspergillus (hazard ratio [HR], 2.0; 95% CI, 1.8-2.2) and Candida (HR, 1.7; 95% CI, 1.5-1.9) were associated with increased all-cause mortality. Systemic antifungals reduced mortality in 17% of patients with CAIFI with Aspergillus and 24% of patients with CAIFI with Candida. Conclusions The incidence of CAIFI was modest but associated with higher 90-day all-cause mortality among intubated patients. Systemic antifungals modified mortality.
Collapse
Affiliation(s)
| | | | | | - Patrick B Mazi
- St Louis School of Medicine, Washington University, St Louis, Missouri, USA
| | - Adriana M Rauseo
- St Louis School of Medicine, Washington University, St Louis, Missouri, USA
| | - Andrej Spec
- St Louis School of Medicine, Washington University, St Louis, Missouri, USA
| |
Collapse
|
25
|
Schutz K, Melie T, Smith SD, Quandt CA. Patterns recovered in phylogenomic analysis of Candida auris and close relatives implicate broad environmental flexibility in Candida/Clavispora clade yeasts. Microb Genom 2024; 10. [PMID: 38630608 DOI: 10.1099/mgen.0.001233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2024] Open
Abstract
Fungal pathogens commonly originate from benign or non-pathogenic strains living in the natural environment. The recently emerged human pathogen, Candida auris, is one example of a fungus believed to have originated in the environment and recently transitioned into a clinical setting. To date, however, there is limited evidence about the origins of this species in the natural environment and when it began associating with humans. One approach to overcome this gap is to reconstruct phylogenetic relationships between (1) strains isolated from clinical and non-clinical environments and (2) between species known to cause disease in humans and benign environmental saprobes. C. auris belongs to the Candida/Clavispora clade, a diverse group of 45 yeast species including human pathogens and environmental saprobes. We present a phylogenomic analysis of the Candida/Clavispora clade aimed at understanding the ecological breadth and evolutionary relationships between an expanded sample of environmentally and clinically isolated yeasts. To build a robust framework for investigating these relationships, we developed a whole-genome sequence dataset of 108 isolates representing 18 species, including four newly sequenced species and 18 environmentally isolated strains. Our phylogeny, based on 619 orthologous genes, shows environmentally isolated species and strains interspersed with clinically isolated counterparts, suggesting that there have been many transitions between humans and the natural environment in this clade. Our findings highlight the breadth of environments these yeasts inhabit and imply that many clinically isolated yeasts in this clade could just as easily live outside the human body in diverse natural environments and vice versa.
Collapse
Affiliation(s)
- Kyle Schutz
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, USA
| | - Tina Melie
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, USA
| | - Stacey D Smith
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, USA
| | - C Alisha Quandt
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, USA
| |
Collapse
|
26
|
Magnasco L, Mikulska M, Sepulcri C, Ullah N, Giacobbe DR, Vena A, Di Pilato V, Willison E, Orsi A, Icardi G, Marchese A, Bassetti M. Frequency of Detection of Candida auris Colonization Outside a Highly Endemic Setting: What Is the Optimal Strategy for Screening of Carriage? J Fungi (Basel) 2023; 10:26. [PMID: 38248936 PMCID: PMC10817263 DOI: 10.3390/jof10010026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/18/2023] [Accepted: 12/24/2023] [Indexed: 01/23/2024] Open
Abstract
Candida auris outbreaks are increasingly frequent worldwide. In our 1000-bed hospital, an endemic transmission of C. auris was established in two of five intensive care units (ICUs). Aims of our study were to describe the occurrence of new cases of C. auris colonization and infection outside the endemic ICUs, in order to add evidence for future policies on screening in patients discharged as negative from an endemic setting, as well as to propose a new algorithm for screening of such high-risk patients. From 26 March 2021 to 26 January 2023, among 392 patients who were diagnosed as colonized or infected with C. auris in our hospital, 84 (21.4%) received the first diagnosis of colonization or infection outside the endemic ICUs. A total of 68 patients out of 84 (81.0%) had a history of prior admission to the endemic ICUs. All were screened and tested negative during their ICU stay with a median time from last screening to discharge of 3 days. In 57/68 (83.8%) of patients, C. auris was detected through screening performed after ICU discharge, and 90% had C. auris colonization detected within 9 days from ICU discharge. In 13 cases (13/57 screened, 22.8%), the first post-ICU discharge screening was negative. In those not screened, candidemia was the most frequent event of the first C. auris detection (6/11 patients not screened). In settings where the transmission of C. auris is limited to certain wards, we suggest screening both at discharge from the endemic ward(s) even in case of a recent negative result, and at least twice after admission to nonendemic settings.
Collapse
Affiliation(s)
- Laura Magnasco
- Division of Infectious Diseases, IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy; (L.M.); (D.R.G.); (A.V.); (M.B.)
| | - Malgorzata Mikulska
- Division of Infectious Diseases, IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy; (L.M.); (D.R.G.); (A.V.); (M.B.)
- Division of Infectious Diseases, Department of Health Sciences (DISSAL), University of Genova, 16132 Genova, Italy; (C.S.); (N.U.); (A.O.); (G.I.)
| | - Chiara Sepulcri
- Division of Infectious Diseases, Department of Health Sciences (DISSAL), University of Genova, 16132 Genova, Italy; (C.S.); (N.U.); (A.O.); (G.I.)
| | - Nadir Ullah
- Division of Infectious Diseases, Department of Health Sciences (DISSAL), University of Genova, 16132 Genova, Italy; (C.S.); (N.U.); (A.O.); (G.I.)
| | - Daniele Roberto Giacobbe
- Division of Infectious Diseases, IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy; (L.M.); (D.R.G.); (A.V.); (M.B.)
- Division of Infectious Diseases, Department of Health Sciences (DISSAL), University of Genova, 16132 Genova, Italy; (C.S.); (N.U.); (A.O.); (G.I.)
| | - Antonio Vena
- Division of Infectious Diseases, IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy; (L.M.); (D.R.G.); (A.V.); (M.B.)
- Division of Infectious Diseases, Department of Health Sciences (DISSAL), University of Genova, 16132 Genova, Italy; (C.S.); (N.U.); (A.O.); (G.I.)
| | - Vincenzo Di Pilato
- Department of Surgical Sciences and Integrated Diagnostics (DISC), University of Genoa, 16132 Genoa, Italy; (V.D.P.); (A.M.)
- Microbiology Unit, San Martino Policlinico Hospital, IRCCS for Oncology and Neurosciences, 16132 Genoa, Italy
| | - Edward Willison
- Department of Surgical Sciences and Integrated Diagnostics (DISC), University of Genoa, 16132 Genoa, Italy; (V.D.P.); (A.M.)
- Microbiology Unit, San Martino Policlinico Hospital, IRCCS for Oncology and Neurosciences, 16132 Genoa, Italy
| | - Andrea Orsi
- Division of Infectious Diseases, Department of Health Sciences (DISSAL), University of Genova, 16132 Genova, Italy; (C.S.); (N.U.); (A.O.); (G.I.)
- Hygiene Unit, San Martino Policlinico Hospital, IRCCS for Oncology and Neurosciences, 16132 Genoa, Italy
| | - Giancarlo Icardi
- Division of Infectious Diseases, Department of Health Sciences (DISSAL), University of Genova, 16132 Genova, Italy; (C.S.); (N.U.); (A.O.); (G.I.)
- Hygiene Unit, San Martino Policlinico Hospital, IRCCS for Oncology and Neurosciences, 16132 Genoa, Italy
| | - Anna Marchese
- Department of Surgical Sciences and Integrated Diagnostics (DISC), University of Genoa, 16132 Genoa, Italy; (V.D.P.); (A.M.)
- Microbiology Unit, San Martino Policlinico Hospital, IRCCS for Oncology and Neurosciences, 16132 Genoa, Italy
| | - Matteo Bassetti
- Division of Infectious Diseases, IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy; (L.M.); (D.R.G.); (A.V.); (M.B.)
- Division of Infectious Diseases, Department of Health Sciences (DISSAL), University of Genova, 16132 Genova, Italy; (C.S.); (N.U.); (A.O.); (G.I.)
| |
Collapse
|
27
|
Rapti V, Iliopoulou K, Poulakou G. The Gordian Knot of C. auris: If You Cannot Cut It, Prevent It. Pathogens 2023; 12:1444. [PMID: 38133327 PMCID: PMC10747958 DOI: 10.3390/pathogens12121444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 11/30/2023] [Accepted: 12/11/2023] [Indexed: 12/23/2023] Open
Abstract
Since its first description in 2009, Candida auris has, so far, resulted in large hospital outbreaks worldwide and is considered an emerging global public health threat. Exceptionally for yeast, it is gifted with a profoundly worrying invasive potential and high inter-patient transmissibility. At the same time, it is capable of colonizing and persisting in both patients and hospital settings for prolonged periods of time, thus creating a vicious cycle of acquisition, spreading, and infection. It exhibits various virulence qualities and thermotolerance, osmotolerance, filamentation, biofilm formation and hydrolytic enzyme production, which are mainly implicated in its pathogenesis. Owing to its unfavorable profile of resistance to diverse antifungal agents and the lack of effective treatment options, the implementation of robust infection prevention and control (IPC) practices is crucial for controlling and minimizing intra-hospital transmission of C. auris. Rapid and accurate microbiological identification, adherence to hand hygiene, use of adequate personal protective equipment (PPE), proper handling of catheters and implantable devices, contact isolation, periodical environmental decontamination, targeted screening, implementation of antimicrobial stewardship (AMS) programs and communication between healthcare facilities about residents' C. auris colonization status are recognized as coherent strategies for preventing its spread. Current knowledge on C. auris epidemiology, clinical characteristics, and its mechanisms of pathogenicity are summarized in the present review and a comprehensive overview of IPC practices ensuring yeast prevention is also provided.
Collapse
Affiliation(s)
- Vasiliki Rapti
- Third Department of Internal Medicine, School of Medicine, National & Kapodistrian University of Athens, Sotiria General Hospital, 115 27 Athens, Greece;
| | | | - Garyfallia Poulakou
- Third Department of Internal Medicine, School of Medicine, National & Kapodistrian University of Athens, Sotiria General Hospital, 115 27 Athens, Greece;
| |
Collapse
|
28
|
Lass-Flörl C, Steixner S. The changing epidemiology of fungal infections. Mol Aspects Med 2023; 94:101215. [PMID: 37804792 DOI: 10.1016/j.mam.2023.101215] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 06/19/2023] [Accepted: 09/21/2023] [Indexed: 10/09/2023]
Abstract
Invasive fungal diseases are common complications in critically ill patients and in those with significant underlying imbalanced immune systems. Fungal co-, and/or super-infections are emerging and have become a rising concern within the last few years. In Europe, cases of candidiasis and aspergillosis dominate, followed by mucormycosis in India. Epidemiological studies show an increasing trend in the incidence of all three entities. Parallel to this, a shift within the underlying fungal pathogens is observed. More non-albicans Candida infections and aspergillosis with cryptic species are on the rise; cryptic species may cover intrinsic resistance to azoles and other antifungal drugs. The recent COVID-19 pandemic led to a significantly increasing incidence of invasive fungal diseases among hospitalized patients.
Collapse
Affiliation(s)
- Cornelia Lass-Flörl
- Institute of Hygiene and Medical Microbiology, Medical University of Innsbruck, A-6020, Innsbruck, Austria.
| | - Stephan Steixner
- Institute of Hygiene and Medical Microbiology, Medical University of Innsbruck, A-6020, Innsbruck, Austria
| |
Collapse
|
29
|
Horton MV, Holt AM, Nett JE. Mechanisms of pathogenicity for the emerging fungus Candida auris. PLoS Pathog 2023; 19:e1011843. [PMID: 38127686 PMCID: PMC10735027 DOI: 10.1371/journal.ppat.1011843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023] Open
Abstract
Candida auris recently emerged as an urgent public health threat, causing outbreaks of invasive infections in healthcare settings throughout the world. This fungal pathogen persists on the skin of patients and on abiotic surfaces despite antiseptic and decolonization attempts. The heightened capacity for skin colonization and environmental persistence promotes rapid nosocomial spread. Following skin colonization, C. auris can gain entrance to the bloodstream and deeper tissues, often through a wound or an inserted medical device, such as a catheter. C. auris possesses a variety of virulence traits, including the capacity for biofilm formation, production of adhesins and proteases, and evasion of innate immune responses. In this review, we highlight the interactions of C. auris with the host, emphasizing the intersection of laboratory studies and clinical observations.
Collapse
Affiliation(s)
- Mark V. Horton
- Department of Medicine, University of Wisconsin, Madison, Wisconsin, United States of America
- Department of Medical Microbiology & Immunology, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Ashley M. Holt
- Department of Medicine, University of Wisconsin, Madison, Wisconsin, United States of America
- Department of Medical Microbiology & Immunology, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Jeniel E. Nett
- Department of Medicine, University of Wisconsin, Madison, Wisconsin, United States of America
- Department of Medical Microbiology & Immunology, University of Wisconsin, Madison, Wisconsin, United States of America
| |
Collapse
|
30
|
Babler K, Sharkey M, Arenas S, Amirali A, Beaver C, Comerford S, Goodman K, Grills G, Holung M, Kobetz E, Laine J, Lamar W, Mason C, Pronty D, Reding B, Schürer S, Schaefer Solle N, Stevenson M, Vidović D, Solo-Gabriele H, Shukla B. Detection of the clinically persistent, pathogenic yeast spp. Candida auris from hospital and municipal wastewater in Miami-Dade County, Florida. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 898:165459. [PMID: 37442462 PMCID: PMC10543605 DOI: 10.1016/j.scitotenv.2023.165459] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 06/14/2023] [Accepted: 07/08/2023] [Indexed: 07/15/2023]
Abstract
The use of wastewater-based surveillance (WBS) for detecting pathogens within communities has been growing since the beginning of the COVID-19 pandemic with early efforts investigating severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) RNA in wastewater. Recent efforts have shed light on the utilization of WBS for alternative targets, such as fungal pathogens, like Candida auris, in efforts to expand the technology to assess non-viral targets. The objective of this study was to extend workflows developed for SARS-CoV-2 quantification to evaluate whether C. auris can be recovered from wastewater, inclusive of effluent from a wastewater treatment plant (WWTP) and from a hospital with known numbers of patients colonized with C. auris. Measurements of C. auris in wastewater focused on culture-based methods and quantitative PCR (qPCR). Results showed that C. auris can be cultured from wastewater and that levels detected by qPCR were higher in the hospital wastewater compared to the wastewater from the WWTP, suggesting either dilution or degradation of this pathogenic yeast at downstream collection points. The results from this study illustrate that WBS can extend beyond SARS-CoV-2 monitoring to evaluate additional non-viral pathogenic targets and demonstrates that C. auris isolated from wastewater is competent to replicate in vitro using fungal-specific culture media.
Collapse
Affiliation(s)
- Kristina Babler
- Department of Chemical, Environmental, and Materials Engineering, University of Miami, Coral Gables, FL 33146, USA
| | - Mark Sharkey
- Department of Medicine, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Sebastian Arenas
- Department of Medicine, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Ayaaz Amirali
- Department of Chemical, Environmental, and Materials Engineering, University of Miami, Coral Gables, FL 33146, USA
| | - Cynthia Beaver
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Samuel Comerford
- Department of Medicine, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Kenneth Goodman
- Department of Medicine, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Institute for Data Science & Computing, University of Miami, Coral Gables, FL, USA
| | - George Grills
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Michelle Holung
- Department of Medicine, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Erin Kobetz
- Department of Medicine, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Jennifer Laine
- Environmental Health and Safety, University of Miami, Miami, FL 33136, USA
| | - Walter Lamar
- Division of Occupational Health, Safety & Compliance, University of Miami Health System, Miami, FL 33136, USA
| | - Christopher Mason
- Department of Physiology and Biophysics, Weill Cornell Medical College, New York City, NY 10021, USA; The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY 10021, USA; The WorldQuant Initiative for Quantitative Prediction, Weill Cornell Medicine, New York, NY 10021, USA
| | - Darryl Pronty
- Department of Medicine, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Brian Reding
- Environmental Health and Safety, University of Miami, Miami, FL 33136, USA
| | - Stephan Schürer
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Department of Molecular & Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Institute for Data Science & Computing, University of Miami, Coral Gables, FL, USA
| | - Natasha Schaefer Solle
- Department of Medicine, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Mario Stevenson
- Department of Medicine, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Dusica Vidović
- Department of Molecular & Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Helena Solo-Gabriele
- Department of Chemical, Environmental, and Materials Engineering, University of Miami, Coral Gables, FL 33146, USA
| | - Bhavarth Shukla
- Department of Medicine, University of Miami Miller School of Medicine, Miami, FL 33136, USA.
| |
Collapse
|
31
|
Koulenti D, Karvouniaris M, Paramythiotou E, Koliakos N, Markou N, Paranos P, Meletiadis J, Blot S. Severe Candida infections in critically ill patients with COVID-19. JOURNAL OF INTENSIVE MEDICINE 2023; 3:291-297. [PMID: 38028641 PMCID: PMC10658040 DOI: 10.1016/j.jointm.2023.07.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 06/20/2023] [Accepted: 07/09/2023] [Indexed: 12/01/2023]
Abstract
The frequency of co-infections with bacterial or fungal pathogens has constantly increased among critically ill patients with coronavirus disease 2019 (COVID-19) during the pandemic. Candidemia was the most frequently reported invasive fungal co-infection. The onset of candidemia in COVID-19 patients was often delayed compared to non-COVID-19 patients. Additionally, Candida invasive infections in COVID-19 patients were more often linked to invasive procedures (e.g., invasive mechanical ventilation or renal replacement therapy) during the intensive care stay and the severity of illness rather than more "classic" risk factors present in patients without COVID-19 (e.g., underlying diseases and prior hospitalization). Moreover, apart from the increased incidence of candidemia during the pandemic, a worrying rise in fluconazole-resistant strains was reported, including a rise in the multidrug-resistant Candida auris. Regarding outcomes, the development of invasive Candida co-infection had a negative impact, increasing morbidity and mortality compared to non-co-infected COVID-19 patients. In this narrative review, we present and critically discuss information on the diagnosis and management of invasive fungal infections caused by Candida spp. in critically ill COVID-19 patients.
Collapse
Affiliation(s)
- Despoina Koulenti
- Second Critical Care Department, Attikon University Hospital, Athens, Greece
- UQ Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, Australia
| | | | | | - Nikolaos Koliakos
- Second Critical Care Department, Attikon University Hospital, Athens, Greece
| | - Nikolaos Markou
- ICU of Latseio Burns Centre, General Hospital of Elefsis ‘Thriasio’, Athens, Greece
| | - Paschalis Paranos
- Clinical Microbiology Laboratory, Medical School, National and Kapodistrian University of Athens, Attikon University Hospital, Athens, Greece
| | - Joseph Meletiadis
- Clinical Microbiology Laboratory, Medical School, National and Kapodistrian University of Athens, Attikon University Hospital, Athens, Greece
| | - Stijn Blot
- UQ Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, Australia
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| |
Collapse
|
32
|
Mulet Bayona JV, Tormo Palop N, Salvador García C, Guna Serrano MDR, Gimeno Cardona C. Candida auris from colonisation to candidemia: A four-year study. Mycoses 2023; 66:882-890. [PMID: 37401661 DOI: 10.1111/myc.13626] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 06/14/2023] [Accepted: 06/15/2023] [Indexed: 07/05/2023]
Abstract
BACKGROUND Candida auris has become a worrisome multi-drug resistant healthcare-associated pathogen due to its capacity to colonise patients and surfaces and to cause outbreaks of invasive infections in critically ill patients. OBJECTIVES This study evaluated the outbreak in our setting in a 4-year period, reporting the risk factors for developing candidemia in previously colonised patients, the therapeutic measures for candidemia and the outcome of candidemia and colonisation cases among all C. auris isolates and their susceptibility to antifungals. METHODS Data were retrospectively collected from patients admitted to Consorcio Hospital General Universitario de Valencia (Spain) from September 2017 to September 2021. A retrospective case-control study was designed to identify risk factors for developing C. auris candidemia in previously colonised patients. RESULTS C. auris affected 550 patients, of which 210 (38.2%) had some clinical sample positive. Isolates were uniformly resistant to fluconazole, 20 isolates were resistant to echinocandins (2.8%) and four isolates were resistant to ampfotericin B (0.6%). There were 86 candidemia cases. APACHE II, digestive disease and catheter isolate were proven to be independent risk factors for developing candidemia in previously colonised patients. Thirty-day mortality rate for C. auris candidemia cases was 32.6%, while for colonisation cases was 33.7%. CONCLUSIONS Candidemia was one of the most frequent and severe infections caused by C. auris. The risk factors identified in this study should help to detect patients who are at more risk of developing candidemia, as long as an adequate surveillance of C. auris colonisation is performed.
Collapse
Affiliation(s)
- Juan Vicente Mulet Bayona
- Department of Microbiology and Parasitology, Consorcio Hospital General Universitario de Valencia, Valencia, Spain
| | - Nuria Tormo Palop
- Department of Microbiology and Parasitology, Consorcio Hospital General Universitario de Valencia, Valencia, Spain
| | - Carme Salvador García
- Department of Microbiology and Parasitology, Consorcio Hospital General Universitario de Valencia, Valencia, Spain
| | | | - Concepción Gimeno Cardona
- Department of Microbiology and Parasitology, Consorcio Hospital General Universitario de Valencia, Valencia, Spain
- Department of Microbiology and Ecology, University of Valencia, Valencia, Spain
| |
Collapse
|
33
|
Abstract
PURPOSE OF REVIEW The increasing incidence of drug-resistant Candida brings a new challenge to the treatment of invasive candidiasis. Although cross-resistance among azoles and echinocandins was generally uncommon, reports of multidrug-resistant (MDR) Candida markedly increased in the last decade. The purpose of this review is to understand mechanisms and risk factors for resistance and how to tackle antifungal resistance. RECENT FINDINGS The paper describes the action of the three main classes of antifungals - azoles, echinocandins and polyenes - and Candida's mechanisms of resistance. The current evolution from cross-resistance to multiresistance among Candida explains the modern glossary - multidrug-resistant (MDR), extensively drug-resistant (XDR), and pandrug-resistant (PDR) - imported from bacteria. MDR Candida most commonly involves acquired resistance in species with intrinsic resistance, therefore it mostly involves C. glabrata, C. parapsilosis, C. krusei, C guilliermondii or C. auris , which is intrinsically multidrug resistant. Finally, strategies to tackle antifungal resistance became clearer, ideally implemented through antifungal stewardship. SUMMARY Avoiding antifungal's overuse and selecting the best drug, dose and duration, when they are needed, is fundamental. Knowledge of risk factors for resistance, microbiological diagnosis to the species, use of susceptibility test supported by antifungal stewardship programs help attaining effective therapy and sustaining the effectiveness of the current antifungal armamentarium.
Collapse
Affiliation(s)
- José-Artur Paiva
- Intensive Care Medicine Department, Centro Hospitalar Universitário S. João, Porto, Portugal
- Department of Medicine, Faculty of Medicine of University of Porto, Porto, Portugal
- Grupo de Infeção e Sepsis, Porto, Portugal
| | - José Manuel Pereira
- Intensive Care Medicine Department, Centro Hospitalar Universitário S. João, Porto, Portugal
- Department of Medicine, Faculty of Medicine of University of Porto, Porto, Portugal
- Grupo de Infeção e Sepsis, Porto, Portugal
| |
Collapse
|
34
|
Abstract
Candida auris is a multidrug-resistant fungal pathogen that presents a serious threat to global human health. Since the first reported case in 2009 in Japan, C. auris infections have been reported in more than 40 countries, with mortality rates between 30% and 60%. In addition, C. auris has the potential to cause outbreaks in health care settings, especially in nursing homes for elderly patients, owing to its efficient transmission via skin-to-skin contact. Most importantly, C. auris is the first fungal pathogen to show pronounced and sometimes untreatable clinical drug resistance to all known antifungal classes, including azoles, amphotericin B, and echinocandins. In this review, we explore the causes of the rapid spread of C. auris. We also highlight its genome organization and drug resistance mechanisms and propose future research directions that should be undertaken to curb the spread of this multidrug-resistant pathogen.
Collapse
Affiliation(s)
- Anuradha Chowdhary
- Medical Mycology Unit, Department of Microbiology, Vallabhbhai Patel Chest Institute, University of Delhi, Delhi, India;
- National Reference Laboratory for Antimicrobial Resistance in Fungal Pathogens, Vallabhbhai Patel Chest Institute, University of Delhi, Delhi, India
| | - Kusum Jain
- Medical Mycology Unit, Department of Microbiology, Vallabhbhai Patel Chest Institute, University of Delhi, Delhi, India;
| | - Neeraj Chauhan
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, New Jersey, USA
| |
Collapse
|
35
|
Bassetti M, Brucci G, Vena A, Giacobbe DR. Use of antibiotics in hospitalized patients with COVID-19: evolving concepts in a highly dynamic antimicrobial stewardship scenario. Expert Opin Pharmacother 2023; 24:1679-1684. [PMID: 37466425 DOI: 10.1080/14656566.2023.2239154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/23/2023] [Accepted: 07/18/2023] [Indexed: 07/20/2023]
Abstract
INTRODUCTION Excessive use of antibiotics has been frequently reported in hospitalized patients with COVID-19 worldwide, compared to the actual number of bacterial co-infections or super-infections. AREAS COVERED In this perspective, we discuss the current literature on the use of antibiotics and antimicrobial stewardship interventions in hospitalized patients with COVID-19. A search was conducted in PubMed up to March 2023. EXPERT OPINION The COVID-19 pandemic has witnessed an excessive use of antibiotics in hospitals worldwide, especially before the advent of COVID-19 vaccination, although according to the most recent data there is still an important disproportion between the prevalence of antibiotic use and that of proven bacterial coinfection or superinfections. An important reduction in the prevalence of antibiotic use in COVID-19 patients reported in the literature, from 70-100% to 50-60%, has been observed after successful vaccination campaigns, likely related to the reduced median disease severity of hospitalized COVID-19 patients and some successful interventions of antimicrobial and diagnostic stewardship. However, the disproportion between antibiotic use and the prevalence of bacterial infections (4-6%) is still uncomfortable from an antimicrobial stewardship perspective and requires further attention.
Collapse
Affiliation(s)
- Matteo Bassetti
- Infectious Diseases Unit, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
- Department of Health Sciences (DISSAL), University of Genoa, Genoa, Italy
| | - Giorgia Brucci
- Infectious Diseases Unit, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
- Department of Health Sciences (DISSAL), University of Genoa, Genoa, Italy
| | - Antonio Vena
- Infectious Diseases Unit, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
- Department of Health Sciences (DISSAL), University of Genoa, Genoa, Italy
| | - Daniele Roberto Giacobbe
- Infectious Diseases Unit, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
- Department of Health Sciences (DISSAL), University of Genoa, Genoa, Italy
| |
Collapse
|
36
|
Pallotta F, Viale P, Barchiesi F. Candida auris: the new fungal threat. LE INFEZIONI IN MEDICINA 2023; 31:323-328. [PMID: 37701386 PMCID: PMC10495051 DOI: 10.53854/liim-3103-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 07/25/2023] [Indexed: 09/14/2023]
Abstract
Candida auris is an emergent fungal pathogen of particular concern. Since its first identification in Japan in 2009, it rapidly spread all over the world, including Italy. The main concern related to the diffusion of this fungus is its antifungal resistance. It is speculated that about 90% of isolates are resistant to fluconazole, 30% to amphotericin B and 5% to echinocandins; furthermore, some cases of pan-antifungal resistance have been described. Critically ill patients are particularly at risk of being colonized by this yeast and person-to-person transmission may generate hospital outbreaks. In fact, C. auris can survive on inanimate surfaces for a long time and commonly used disinfectants are not effective. Additionally, devices such as central venous catheters (CVCs) or urinary catheters are particularly at risk of being colonized, representing a possible source for the development of bloodstream infections caused by C. auris, which carries a high mortality rate. Given its capability to spread in the hospital setting and the limited therapeutic options it is of outmost importance to promptly identify C. auris. However, commonly used biochemical tests frequently misidentify C. auris as other Candida species; currently the best identification techniques are MALDI-TOF and molecular methods, such as PCR of the ITS and D1/D2 regions of the 28s ribosomal DNA. Whole genome sequencing remains the gold standard for the phylogenetic investigation of outbreaks. The majority of cases of colonization by C. albicans will not cause bloodstream infections and contact precautions and surveillance of contacts will be sufficient. When invasive fungal infections occur, echinocandins still represent the first therapeutic choice. A combination therapy or the use of novel antifungals (such as ibrexafungerp or fosmanogepix) would be required for echinocandin resistant strains. In conclusion, C. auris represents a growing threat because of its antifungal resistance characteristics, its difficult identification and its easy spread from person to person. The aim of this mini-review is to summarize the main aspects concerning this pathogen.
Collapse
Affiliation(s)
- Francesco Pallotta
- Dipartimento di Scienze Biomediche e Sanità Pubblica, Università Politecnica delle Marche, Ancona, Italy
- Clinica di Malattie Infettive, Azienda Ospedaliero-Universitaria delle Marche, Ancona, Italy
| | - Pierluigi Viale
- Infectious Disease Unit, IRCCS Policlinico di Sant’Orsola, Bologna, Italy
- Department of Medical and Surgical Sciences, Alma Mater Studiorum – Università di Bologna, Bologna, Italy
| | - Francesco Barchiesi
- Dipartimento di Scienze Biomediche e Sanità Pubblica, Università Politecnica delle Marche, Ancona, Italy
- Malattie Infettive, Azienda Sanitaria Marche 1 Pesaro-Urbino, Pesaro, Italy
| |
Collapse
|
37
|
Koleri J, Petkar HM, Rahman S Al Soub HA, Rahman S AlMaslamani MA. Candida auris Blood stream infection- a descriptive study from Qatar. BMC Infect Dis 2023; 23:513. [PMID: 37544995 PMCID: PMC10405369 DOI: 10.1186/s12879-023-08477-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 07/21/2023] [Indexed: 08/08/2023] Open
Abstract
BACKGROUND Candida auris is an emerging yeast pathogen that can cause invasive infections, particularly candidemia, in healthcare settings. Candida auris is characterized by resistance to multiple classes of antifungal drugs and high mortality. OBJECTIVE To describe the risk factors, clinical characteristics, antifungal susceptibility pattern and outcomes of Candida auris blood stream infection. METHODS We conducted a retrospective review of electronic medical records of C. auris fungemia cases in the facilities under Hamad Medical corporation, Qatar from 1/11/2018 to 31/7/2021. Demographic data, risk factors, antibiogram and 30-day outcome are described. RESULTS We identified 36 patients with C. auris fungemia. Most of the patients were in intensive care unit following severe COVID-19 pneumonia and had received steroids and broad-spectrum antibiotics. Most cases were central line related. Over 90% of isolates were non-susceptible to fluconazole, while amphotericin B resistance reached 85%. Factors associated with high mortality included initial SOFA score of 9 or above and absence of source control. CONCLUSION Our study reveals a concerning 41.6% mortality rate within 30 days of C. auris candidemia. Furthermore, the prevalence of amphotericin B resistance in Qatar exceeds what has been reported in the literature necessitating further exploration. Echinocandins retains nearly 100% susceptibility and should be prioritized as the treatment of choice. These findings emphasize the need for vigilant monitoring and appropriate management strategies to combat C. auris infections and improve patient outcomes.
Collapse
Affiliation(s)
- Junais Koleri
- Division of Infectious Diseases, Hamad Medical Corporation, PO Box 3050, Doha, Qatar.
| | - Hawabibee Mahir Petkar
- Division of Infectious Diseases, Hamad Medical Corporation, PO Box 3050, Doha, Qatar
- Department of Microbiology, Hamad Medical Corporation, Doha, Qatar
| | | | | |
Collapse
|
38
|
Ture Z, Güner R, Alp E. Antimicrobial stewardship in the intensive care unit. JOURNAL OF INTENSIVE MEDICINE 2023; 3:244-253. [PMID: 37533805 PMCID: PMC10391567 DOI: 10.1016/j.jointm.2022.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 10/03/2022] [Accepted: 10/10/2022] [Indexed: 08/04/2023]
Abstract
High resistance rates to antimicrobials continue to be a global health threat. The incidence of multidrug-resistant (MDR) microorganisms in intensive care units (ICUs) is quite high compared to in the community and other units in the hospital because ICU patients are generally older, have higher numbers of co-morbidities and immune-suppressed; moreover, the typically high rates of invasive procedures performed in the ICU increase the risk of infection by MDR microorganisms. Antimicrobial stewardship (AMS) refers to the implementation of coordinated interventions to improve and track the appropriate use of antibiotics while offering the best possible antibiotic prescription (according to dose, duration, and route of administration). Broad-spectrum antibiotics are frequently preferred in ICUs because of greater infection severity and colonization and infection by MDR microorganisms. For this reason, a number of studies on AMS in ICUs have increased in recent years. Reducing the use of broad-spectrum antibiotics forms the basis of AMS. For this purpose, parameters such as establishing an AMS team, limiting the use of broad-spectrum antimicrobials, terminating treatments early, using early warning systems, pursuing infection control, and providing education and feedback are used. In this review, current AMS practices in ICUs are discussed.
Collapse
Affiliation(s)
- Zeynep Ture
- Department of Infectious Diseases and Clinical Microbiology, Faculty of Medicine, Erciyes University, Kayseri 38039,Turkey
| | - Rahmet Güner
- Department of Infectious Diseases and Clinical Microbiology, Yıldırım Beyazıt University, Ankara 06800, Turkey
| | - Emine Alp
- Department of Infectious Diseases and Clinical Microbiology, Yıldırım Beyazıt University, Ankara 06800, Turkey
| |
Collapse
|
39
|
Fayed B, Lazreg IK, AlHumaidi RB, Qasem MAAA, Alajmy BMGN, Bojbarah FMAM, Senok A, Husseiny MI, Soliman SSM. Intra-clade Heterogeneity in Candida auris: Risk of Management. Curr Microbiol 2023; 80:295. [PMID: 37486431 DOI: 10.1007/s00284-023-03416-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 07/12/2023] [Indexed: 07/25/2023]
Abstract
Candida auris has emerged as a significant nosocomial fungal pathogen with a high risk of pathogenicity. Since the initial detection of C. auris in 2009, it gained lots of attention with a recent alert by the Centers for Disease Control and Prevention (CDC) due to its high infectivity and drug resistance. Several studies showed the capability of C. auris to secrete lytic enzymes, germinate, and form a biofilm that eventually results in interactions with the host cells, leading to serious infections. Other studies demonstrated a decrease in susceptibility of C. auris strains to available antifungals, which may be caused by mutations within the target genes, or the drug efflux pumps. However, the contribution of C. auris heterogeneity in pathogenicity and drug resistance is not well studied. Here, we shed light on the factors contributing to the development of heterogeneity in C. auris. These include phenotypic changes, biofilm formation, mechanisms of drug resistance, host invasion, mode of transmission, and expression of virulence factors. C. auris exhibits different phenotypes, particularly aggregative, and non-aggregative forms that play an important role in fungal heterogeneity, which significantly affects drug resistance and pathogenicity. Collectively, heterogeneity in C. auris significantly contributes to ineffective treatment, which in turn affects the fungal pathogenicity and drug resistance. Therefore, understanding the underlying reasons for C. auris heterogeneity and applying effective antifungal stewardship could play a major role in controlling this pathogen.
Collapse
Affiliation(s)
- Bahgat Fayed
- Research Institute for Medical and Health Sciences, University of Sharjah, P.O. Box 27272, Sharjah, UAE
- Chemistry of Natural and Microbial Products, National Research Centre, Cairo, Egypt
| | - Imene K Lazreg
- Research Institute for Medical and Health Sciences, University of Sharjah, P.O. Box 27272, Sharjah, UAE
| | - Razan B AlHumaidi
- Research Institute for Medical and Health Sciences, University of Sharjah, P.O. Box 27272, Sharjah, UAE
- Department of Medicinal Chemistry, College of Pharmacy, University of Sharjah, P.O. Box 27272, Sharjah, UAE
| | - Maryam A A A Qasem
- Department of Medicinal Chemistry, College of Pharmacy, University of Sharjah, P.O. Box 27272, Sharjah, UAE
| | - Bashayir M Gh N Alajmy
- Department of Medicinal Chemistry, College of Pharmacy, University of Sharjah, P.O. Box 27272, Sharjah, UAE
| | - Fatemh M A M Bojbarah
- Department of Medicinal Chemistry, College of Pharmacy, University of Sharjah, P.O. Box 27272, Sharjah, UAE
| | - Abiola Senok
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Building 14 Dubai Healthcare City, P.O.Box 505055, Dubai, UAE
| | - Mohamed I Husseiny
- Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
- Department of Translational Research & Cellular Therapeutics, Arthur Riggs Diabetes & Metabolism Research Institute, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA, USA
| | - Sameh S M Soliman
- Research Institute for Medical and Health Sciences, University of Sharjah, P.O. Box 27272, Sharjah, UAE.
- Department of Medicinal Chemistry, College of Pharmacy, University of Sharjah, P.O. Box 27272, Sharjah, UAE.
| |
Collapse
|
40
|
Gatica S, Fuentes B, Rivera-Asín E, Ramírez-Céspedes P, Sepúlveda-Alfaro J, Catalán EA, Bueno SM, Kalergis AM, Simon F, Riedel CA, Melo-Gonzalez F. Novel evidence on sepsis-inducing pathogens: from laboratory to bedside. Front Microbiol 2023; 14:1198200. [PMID: 37426029 PMCID: PMC10327444 DOI: 10.3389/fmicb.2023.1198200] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 06/05/2023] [Indexed: 07/11/2023] Open
Abstract
Sepsis is a life-threatening condition and a significant cause of preventable morbidity and mortality globally. Among the leading causative agents of sepsis are bacterial pathogens Escherichia coli, Klebsiella pneumoniae, Staphylococcus aureus, Pseudomonas aeruginosa, and Streptococcus pyogenes, along with fungal pathogens of the Candida species. Here, we focus on evidence from human studies but also include in vitro and in vivo cellular and molecular evidence, exploring how bacterial and fungal pathogens are associated with bloodstream infection and sepsis. This review presents a narrative update on pathogen epidemiology, virulence factors, host factors of susceptibility, mechanisms of immunomodulation, current therapies, antibiotic resistance, and opportunities for diagnosis, prognosis, and therapeutics, through the perspective of bloodstream infection and sepsis. A list of curated novel host and pathogen factors, diagnostic and prognostic markers, and potential therapeutical targets to tackle sepsis from the research laboratory is presented. Further, we discuss the complex nature of sepsis depending on the sepsis-inducing pathogen and host susceptibility, the more common strains associated with severe pathology and how these aspects may impact in the management of the clinical presentation of sepsis.
Collapse
Affiliation(s)
- Sebastian Gatica
- Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
| | - Brandon Fuentes
- Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
| | - Elizabeth Rivera-Asín
- Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
| | - Paula Ramírez-Céspedes
- Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
| | - Javiera Sepúlveda-Alfaro
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Millennium Institute on Immunology and Immunotherapy, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Eduardo A. Catalán
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Millennium Institute on Immunology and Immunotherapy, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Susan M. Bueno
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Millennium Institute on Immunology and Immunotherapy, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Alexis M. Kalergis
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Millennium Institute on Immunology and Immunotherapy, Pontificia Universidad Católica de Chile, Santiago, Chile
- Departamento de Endocrinología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Felipe Simon
- Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
| | - Claudia A. Riedel
- Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
| | - Felipe Melo-Gonzalez
- Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
| |
Collapse
|
41
|
Adnan A, Borman AM, Tóth Z, Forgács L, Kovács R, Balázsi D, Balázs B, Udvarhelyi G, Kardos G, Majoros L. In Vitro Killing Activities of Anidulafungin and Micafungin with and without Nikkomycin Z against Four Candida auris Clades. Pharmaceutics 2023; 15:pharmaceutics15051365. [PMID: 37242607 DOI: 10.3390/pharmaceutics15051365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/05/2023] [Accepted: 04/26/2023] [Indexed: 05/28/2023] Open
Abstract
Candida auris is a multidrug-resistant pathogen against which echinocandins are the drug of choice. However, information on how the chitin synthase inhibitor nikkomycin Z influences the killing activities of echinocandins against C. auris is currently lacking. We determined the killing activities of anidulafungin and micafungin (0.25, 1, 8, 16 and 32 mg/L each) with and without nikkomycin Z (8 mg/L) against 15 isolates representing four C. auris clades (South Asian n = 5; East Asian n = 3; South African n = 3; South American n = 4, two of which were of environmental origin). Two and one isolates from the South Asian clade harbored mutations in the hot-spot 1 (S639Y and S639P) and 2 (R1354H) regions of the FKS1 gene, respectively. The anidulafungin, micafungin and nikkomycin Z MIC ranges were 0.015-4, 0.03-4 and 2->16 mg/L, respectively. Anidulafungin and micafungin alone exerted weak fungistatic activity against wild-type isolates and the isolate with a mutation in the hot-spot 2 region of FKS1 but was ineffective against the isolates with a mutation in the hot-spot 1 region. The nikkomycin Z killing curves were always similar to their respective controls. Twenty-two of sixty (36.7%) anidulafungin plus nikkomycin Z and twenty-four of sixty (40%) micafungin plus nikkomycin Z combinations produced at least 100-fold decreases in the CFUs (synergy), with a 41.7% and 20% fungicidal effect, respectively, against wild-type isolates. Antagonism was never observed. Similar results were found with the isolate with a mutation in hot-spot 2 of FKS1, but the combinations were ineffective against the two isolates with prominent mutations in hot-spot 1 of FKS1. The simultaneous inhibition of β-1,3 glucan and chitin synthases in wild-type C. auris isolates produced significantly greater killing rates than either drug alone. Further studies are warranted to verify the clinical efficacy of echinocandin plus nikkomycin Z combinations against echinocandin susceptible C. auris isolates.
Collapse
Affiliation(s)
- Awid Adnan
- Department of Medical Microbiology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
- Doctoral School of Pharmaceutical Sciences, University of Debrecen, 4032 Debrecen, Hungary
| | - Andrew M Borman
- UK National Mycology Reference Laboratory, UK Health Security Agency, Science Quarter, Southmead Hospital, Bristol BS10 5NB, UK
- Medical Research Council Centre for Medical Mycology (MRC CMM), University of Exeter, Exeter EX4 4QD, UK
| | - Zoltán Tóth
- Department of Medical Microbiology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - Lajos Forgács
- Department of Medical Microbiology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
- Doctoral School of Pharmaceutical Sciences, University of Debrecen, 4032 Debrecen, Hungary
| | - Renátó Kovács
- Department of Medical Microbiology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - Dávid Balázsi
- Department of Medical Microbiology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
- Doctoral School of Pharmaceutical Sciences, University of Debrecen, 4032 Debrecen, Hungary
| | - Bence Balázs
- Department of Medical Microbiology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - Gergely Udvarhelyi
- Department of Medical Microbiology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
- Doctoral School of Pharmaceutical Sciences, University of Debrecen, 4032 Debrecen, Hungary
| | - Gábor Kardos
- Department of Metagenomics, University of Debrecen, 4032 Debrecen, Hungary
| | - László Majoros
- Department of Medical Microbiology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| |
Collapse
|
42
|
Nwachukwu KC, Nwarunma E, David Uchenna C, Chinyere Ugbogu O. Enablers of Candida auris persistence on medical devices and their mode of eradication. Curr Med Mycol 2023; 9:36-43. [PMID: 37867591 PMCID: PMC10590192 DOI: 10.18502/cmm.2023.150673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 03/17/2023] [Accepted: 05/21/2023] [Indexed: 10/24/2023] Open
Abstract
Candida auris is an emerging pathogen predominantly isolated from immunocompromised patients, hospitalized for a long time. It inhabits the skin surfaces of patients causing ear, wound, and systemic infections; if not treated properly, it could lead to severe mortality. Apart from being a skin pathogen, C. auris colonizes the surfaces of medical devices. Medical devices are hospital tools and components often utilized for the diagnosis and treatment of diseases associated with human skin. The mechanism of survival and persistence of C. auris on medical devices has remained unclear and is a serious concern for clinicians. The persistence of C. auris on medical devices has deterred its effective elimination, hindered the treatment of infections, and increased its antifungal resistance. Evidence has shown that a few surface molecules on the cell wall of C. auris and the extracellular matrix of the biofilm are responsible for its persistence and exist as enablers. Due to the increased cases of ear, skin, and systemic infections as well as death resulting from the spread of C. auris in hospitals, there is a need to study these enablers. This review focused on the identification of the enablers and aimed to evaluate them in relation to their ability to induce persistence in C. auris. In order to reduce the spread of or completely eliminate C. auris and its enablers in hospitals, the efficacy of disinfection and sterilization methods were compared.
Collapse
Affiliation(s)
| | - Ebubechukwu Nwarunma
- Department of Biological and Biomedical Science, School of Health and Life Sciences, Glasgow Caledonian University, Scotland, UK
| | - Chinaza David Uchenna
- Department of Microbiology, Faculty of Biological Sciences, Abia State University, Uturu, Nigeria
| | | |
Collapse
|
43
|
Sticchi C, Raso R, Ferrara L, Vecchi E, Ferrero L, Filippi D, Finotto G, Frassinelli E, Silvestre C, Zozzoli S, Ambretti S, Diegoli G, Gagliotti C, Moro ML, Ricchizzi E, Tumietto F, Russo F, Tonon M, Maraglino F, Rezza G, Sabbatucci M. Increasing Number of Cases Due to Candida auris in North Italy, July 2019-December 2022. J Clin Med 2023; 12:jcm12051912. [PMID: 36902700 PMCID: PMC10003924 DOI: 10.3390/jcm12051912] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/01/2023] [Accepted: 02/22/2023] [Indexed: 03/06/2023] Open
Abstract
Candida auris is an emerging fungus that represents a serious health threat globally. In Italy, the first case was detected in July 2019. Then, one case was reported to the Ministry of Health (MoH) on January 2020. Nine months later, a huge number of cases were reported in northern Italy. Overall, 361 cases were detected in 17 healthcare facilities between July 2019 and December 2022 in the Liguria, Piedmont, Emilia-Romagna, and Veneto regions, including 146 (40.4%) deaths. The majority of cases (91.8%) were considered as colonised. Only one had a history of travel abroad. Microbiological data on seven isolates showed that all but one strain (85.7%) were resistant to fluconazole. All the environmental samples tested negative. Weekly screening of contacts was performed by the healthcare facilities. Infection prevention and control (IPC) measures were applied locally. The MoH nominated a National Reference Laboratory to characterise C. auris isolates and store the strains. In 2021, Italy posted two messages through the Epidemic Intelligence Information System (EPIS) to inform on the cases. On February 2022, a rapid risk assessment indicated a high risk for further spread within Italy, but a low risk of spread to other countries.
Collapse
Affiliation(s)
- Camilla Sticchi
- A.Li.Sa. Azienda Ligure Sanitaria, Ligurian Health Authority, 16121 Genova, Italy
| | - Roberto Raso
- Regional Epidemiology Reference Service for the Surveillance, Prevention and Control of Infectious Diseases—Local Health Unit of Alessandria, 15121 Alessandria, Italy
| | - Lorenza Ferrara
- Regional Epidemiology Reference Service for the Surveillance, Prevention and Control of Infectious Diseases—Local Health Unit of Alessandria, 15121 Alessandria, Italy
| | - Elena Vecchi
- Collective Prevention and Public Health Section—Directorate General for Personal Care, Health and Welfare—Emilia Romagna Region, 40100 Bologna, Italy
| | - Loredana Ferrero
- S.C. Health Directorate—P.O. Molinette—A.O.U. Città della Salute e della Scienza, 10126 Turin, Italy
| | - Daniela Filippi
- S.C. Health Directorate—P.O. Molinette—A.O.U. Città della Salute e della Scienza, 10126 Turin, Italy
| | - Giuseppe Finotto
- S.C. Health Directorate—P.O. Molinette—A.O.U. Città della Salute e della Scienza, 10126 Turin, Italy
| | - Elena Frassinelli
- S.C. Health Directorate—P.O. Molinette—A.O.U. Città della Salute e della Scienza, 10126 Turin, Italy
| | - Carlo Silvestre
- S.C. Health Directorate—P.O. Molinette—A.O.U. Città della Salute e della Scienza, 10126 Turin, Italy
| | - Susanna Zozzoli
- S.C. Health Directorate—P.O. Molinette—A.O.U. Città della Salute e della Scienza, 10126 Turin, Italy
| | - Simone Ambretti
- Microbiology Unit, IRCCS Azienda Ospedaliero-Universitaria Bologna, 40138 Bologna, Italy
- Section of Microbiology, Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, 40126 Bologna, Italy
| | - Giuseppe Diegoli
- Collective Prevention and Public Health Section—Directorate General for Personal Care, Health and Welfare—Emilia Romagna Region, 40100 Bologna, Italy
| | - Carlo Gagliotti
- Regional Health and Social Agency—Emilia Romagna Region, 40127 Bologna, Italy
| | - Maria Luisa Moro
- Regional Health and Social Agency—Emilia Romagna Region, 40127 Bologna, Italy
| | - Enrico Ricchizzi
- Regional Health and Social Agency—Emilia Romagna Region, 40127 Bologna, Italy
| | - Fabio Tumietto
- UO Antimicrobial Stewardship—AUSL Bologna, 40124 Bologna, Italy
| | - Francesca Russo
- Veneto Region, Directorate for Prevention, Veterinary Food Safety, 30123 Venice, Italy
| | - Michele Tonon
- Veneto Region, Directorate for Prevention, Veterinary Food Safety, 30123 Venice, Italy
| | - Francesco Maraglino
- Ministry of Health, Directorate General Health Prevention, Communicable Diseases and International Prophylaxis, 00144 Rome, Italy
| | - Giovanni Rezza
- Ministry of Health, Directorate General Health Prevention, Communicable Diseases and International Prophylaxis, 00144 Rome, Italy
| | - Michela Sabbatucci
- Ministry of Health, Directorate General Health Prevention, Communicable Diseases and International Prophylaxis, 00144 Rome, Italy
- Department Infectious Diseases, Istituto Superiore di Sanità, 00161 Rome, Italy
- Correspondence:
| |
Collapse
|
44
|
Boattini M, Pinto MF, Christaki E, Fasciana T, Falces-Romero I, Tofarides A, Bianco G, Cendejas-Bueno E, Tricoli MR, Tsiolakkis G, García-Rodríguez J, Matzaras R, Comini S, Giammanco A, Kasapi D, Almeida A, Gartzonika K, Cavallo R, Costa C. Multicentre Surveillance of Candida Species from Blood Cultures during the SARS-CoV-2 Pandemic in Southern Europe (CANCoVEU Project). Microorganisms 2023; 11:microorganisms11030560. [PMID: 36985134 PMCID: PMC10058953 DOI: 10.3390/microorganisms11030560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 02/20/2023] [Accepted: 02/21/2023] [Indexed: 02/25/2023] Open
Abstract
Introduction: Surveillance of Candida species isolates from blood cultures (BCs) in Europe is considered fragmented, unable to allow the definition of targets of antifungal stewardship recommendations especially during the SARS-CoV-2 pandemic. Methods: We performed a multicentric retrospective study including all consecutive BC Candida isolates from six Southern European tertiary hospitals (1st January 2020 to 31st December 2021). Etiology, antifungal susceptibility patterns, and clinical setting were analyzed and compared. Results: C. albicans was the dominant species (45.1%), while C. auris was undetected. Candida species positive BC events increased significantly in COVID-19 ICUs in 2021 but decreased in other ICUs. Resistance to azole increased significantly and remained very high in C. albicans (fluconazole from 0.7% to 4.5%, p = 0.03) and C. parapsilosis complex (fluconazole up to 24.5% and voriconazole up to 8.9%), respectively. Resistance to caspofungin was remarkable in C. tropicalis (10%) and C. krusei (20%), while resistance to at least one echinocandin increased in 2021, especially in C. parapsilosis complex (from 0.8% to 5.1%, p = 0.05). Although no significant differences were observed over the study period, fluconazole and echinocandin resistance increased in COVID-19 ICUs by up to 14% and 5.8%, respectively, but remained undetected in non-intensive COVID-19 wards. Conclusions: Antifungal stewardship activities aimed at monitoring resistance to echinocandin in C. tropicalis and C. krusei, and against the spread of fluconazole resistant C. parapsilosis complex isolates are highly desirable. In COVID-19 patients, antifungal resistance was mostly present when the illness had a critical course.
Collapse
Affiliation(s)
- Matteo Boattini
- Microbiology and Virology Unit, University Hospital Città della Salute e della Scienza di Torino, 10126 Turin, Italy
- Department of Public Health and Paediatrics, University of Torino, 10124 Turin, Italy
- Correspondence:
| | - Margarida Feijó Pinto
- Serviço de Patologia Clínica, Laboratório de Microbiologia, Centro Hospitalar Universitário de Lisboa Central, 1169-45 Lisbon, Portugal
| | - Eirini Christaki
- Department of Internal Medicine and Infectious Diseases Unit, University Hospital of Ioannina, 455 00 Ioannina, Greece
| | - Teresa Fasciana
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, University of Palermo, 90127 Palermo, Italy
| | - Iker Falces-Romero
- Clinical Microbiology and Parasitology Department, Hospital Universitario La Paz, Paseo de la Castellana, 261, 28046 Madrid, Spain
- CIBERINFECT, Instituto de Salud Carlos III, 28046 Madrid, Spain
| | - Andreas Tofarides
- Department of Internal Medicine, Nicosia General Hospital, Nicosia 2029, Cyprus
| | - Gabriele Bianco
- Microbiology and Virology Unit, University Hospital Città della Salute e della Scienza di Torino, 10126 Turin, Italy
| | - Emilio Cendejas-Bueno
- Clinical Microbiology and Parasitology Department, Hospital Universitario La Paz, Paseo de la Castellana, 261, 28046 Madrid, Spain
| | - Maria Rita Tricoli
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, University of Palermo, 90127 Palermo, Italy
| | - Giorgos Tsiolakkis
- Department of Internal Medicine, Nicosia General Hospital, Nicosia 2029, Cyprus
| | - Julio García-Rodríguez
- Clinical Microbiology and Parasitology Department, Hospital Universitario La Paz, Paseo de la Castellana, 261, 28046 Madrid, Spain
| | - Rafail Matzaras
- Department of Internal Medicine and Infectious Diseases Unit, University Hospital of Ioannina, 455 00 Ioannina, Greece
| | - Sara Comini
- Microbiology and Virology Unit, University Hospital Città della Salute e della Scienza di Torino, 10126 Turin, Italy
- Department of Public Health and Paediatrics, University of Torino, 10124 Turin, Italy
| | - Anna Giammanco
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, University of Palermo, 90127 Palermo, Italy
| | - Diamanto Kasapi
- Department of Internal Medicine, Nicosia General Hospital, Nicosia 2029, Cyprus
| | - André Almeida
- Department of Internal Medicine 4, Hospital de Santa Marta, Central Lisbon Hospital Centre, 1169-050 Lisbon, Portugal
- NOVA Medical School, Universidade Nova de Lisboa, Campo dos Mártires da Pátria 130, 1169-056 Lisbon, Portugal
| | - Konstantina Gartzonika
- Department of Microbiology, Faculty of Medicine, University of Ioannina, 451 10 Ioannina, Greece
| | - Rossana Cavallo
- Microbiology and Virology Unit, University Hospital Città della Salute e della Scienza di Torino, 10126 Turin, Italy
- Department of Public Health and Paediatrics, University of Torino, 10124 Turin, Italy
| | - Cristina Costa
- Microbiology and Virology Unit, University Hospital Città della Salute e della Scienza di Torino, 10126 Turin, Italy
- Department of Public Health and Paediatrics, University of Torino, 10124 Turin, Italy
| |
Collapse
|
45
|
Simon SP, Li R, Silver M, Andrade J, Tharian B, Fu L, Villanueva D, Abascal DG, Mayer A, Truong J, Figueroa N, Ghitan M, Chapnick E, Lin YS. Comparative Outcomes of Candida auris Bloodstream Infections: A Multicenter Retrospective Case-Control Study. Clin Infect Dis 2023; 76:e1436-e1443. [PMID: 36062367 DOI: 10.1093/cid/ciac735] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/29/2022] [Accepted: 09/01/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND This study was performed to compare clinical characteristics and outcomes between patients with bloodstream infections (BSIs) caused by Candida auris and those with BSIs caused by other Candida spp. METHODS A multicenter retrospective case-control study was performed at 3 hospitals in Brooklyn, New York, between 2016 and 2020. The analysis included patients ≥18 years of age who had a positive blood culture for any Candida spp. and were treated empirically with an echinocandin. The primary outcome was the 30-day mortality rate. Secondary outcomes were 14-day clinical failure, 90-day mortality rate, 60-day microbiologic recurrence, and in-hospital mortality rate. RESULTS A total of 196 patients were included in the final analysis, including 83 patients with candidemia caused by C. auris. After inverse propensity adjustment, C. auris BSI was not associated with increased 30-day (adjusted odds ratio, 1.014 [95% confidence interval, .563-1.828]); P = .96) or 90-day (0.863 [.478-1.558]; P = .62) mortality rates. A higher risk for microbiologic recurrence within 60 days of completion of antifungal therapy was observed in patients with C. auris candidemia (adjusted odds ratio, 4.461 [95% confidence interval, 1.033-19.263]; P = .045). CONCLUSIONS C. auris BSIs are not associated with a higher mortality risk than BSIs caused by other Candida spp. The rate of microbiologic recurrence was higher in the C. auris group.
Collapse
Affiliation(s)
| | - Rosanna Li
- Maimonides Medical Center, Brooklyn, New York, USA
| | | | | | | | - Lung Fu
- Maimonides Medical Center, Brooklyn, New York, USA
| | | | | | - Ariel Mayer
- Maimonides Medical Center, Brooklyn, New York, USA
| | - James Truong
- The Brooklyn Hospital Center, Brooklyn, New York, USA
| | | | | | | | - Yu Shia Lin
- Maimonides Medical Center, Brooklyn, New York, USA
| |
Collapse
|
46
|
Synergistic Antifungal Interactions between Antibiotic Amphotericin B and Selected 1, 3, 4-thiadiazole Derivatives, Determined by Microbiological, Cytochemical, and Molecular Spectroscopic Studies. Int J Mol Sci 2023; 24:ijms24043430. [PMID: 36834848 PMCID: PMC9966784 DOI: 10.3390/ijms24043430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 02/03/2023] [Accepted: 02/03/2023] [Indexed: 02/11/2023] Open
Abstract
In recent years, drug-resistant and multidrug-resistant fungal strains have been more frequently isolated in clinical practice. This phenomenon is responsible for difficulties in the treatment of infections. Therefore, the development of new antifungal drugs is an extremely important challenge. Combinations of selected 1,3,4-thiadiazole derivatives with amphotericin B showing strong synergic antifungal interactions are promising candidates for such formulas. In the study, microbiological, cytochemical, and molecular spectroscopy methods were used to investigate the antifungal synergy mechanisms associated with the aforementioned combinations. The present results indicate that two derivatives, i.e., C1 and NTBD, demonstrate strong synergistic interactions with AmB against some Candida species. The ATR-FTIR analysis showed that yeasts treated with the C1 + AmB and NTBD + AmB compositions, compared with those treated with single compounds, exhibited more pronounced abnormalities in the biomolecular content, suggesting that the main mechanism of the synergistic antifungal activity of the compounds is related to a disturbance in cell wall integrity. The analysis of the electron absorption and fluorescence spectra revealed that the biophysical mechanism underlying the observed synergy is associated with disaggregation of AmB molecules induced by the 1,3,4-thiadiazole derivatives. Such observations suggest the possibility of the successful application of thiadiazole derivatives combined with AmB in the therapy of fungal infections.
Collapse
|
47
|
Rajni E, Jain A, Gupta S, Jangid Y, Vohra R. Risk Factors for Candidemia in Intensive Care Unit: A Matched Case Control Study from North-Western India. ACTA MEDICA (HRADEC KRALOVE) 2023; 65:83-88. [PMID: 36735885 DOI: 10.14712/18059694.2022.23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Candidemia is one of the significant causes of mortality amongst critically ill patients in Intensive Care Units (ICUs). This study aimed to assess the incidence, risk factors and antifungal susceptibility pattern in candidemia cases admitted in ICU in a tertiary care hospital in Jaipur, Rajasthan from June 2021 to November 2021. Candida species isolated from blood culture of clinically suspected patients of sepsis were defined as candidemia cases. Blood culture and antifungal susceptibility testing were performed as per standard laboratory protocol. Analyses of risk factors was done between candidemia cases and matched controls in a ratio of 1 : 3. Forty-six candidemic cases and 150 matched controls were included in the study. C. tropicalis was the most prevalent species (22/46; 48%) followed by C. auris (8/46; 17%) and C. albicans (7/46; 15%). Candida species showed good sensitivity to echinocandins (97%) followed by amphotericin B (87%) and voriconazole (80%). In multivariate analysis, longer stay in ICU, presence of an indwelling device, use of immunosuppressive drugs and positive SARS-CoV-2 infection were associated with increased risk of candidemia. The constant evaluation of risk factors is required as prediction of risks associated with candidemia may help to guide targeted preventive measures with reduced morbidity and mortality.
Collapse
Affiliation(s)
- Ekadashi Rajni
- Mahatma Gandhi Medical University and Science Technology, Riico Institutional Area, Sitapura, Tonk Road, Jaipur, Rajasthan, India
| | - Ashish Jain
- Mahatma Gandhi Medical University and Science Technology, Riico Institutional Area, Sitapura, Tonk Road, Jaipur, Rajasthan, India
| | - Shilpi Gupta
- Mahatma Gandhi Medical University and Science Technology, Riico Institutional Area, Sitapura, Tonk Road, Jaipur, Rajasthan, India.
| | - Yogita Jangid
- Mahatma Gandhi Medical University and Science Technology, Riico Institutional Area, Sitapura, Tonk Road, Jaipur, Rajasthan, India
| | - Rajat Vohra
- Mahatma Gandhi Medical University and Science Technology, Riico Institutional Area, Sitapura, Tonk Road, Jaipur, Rajasthan, India
| |
Collapse
|
48
|
Giacobbe DR, Mikulska M, Vena A, Di Pilato V, Magnasco L, Marchese A, Bassetti M. Challenges in the diagnosis and treatment of candidemia due to multidrug-resistant Candida auris. FRONTIERS IN FUNGAL BIOLOGY 2023; 4:1061150. [PMID: 37746122 PMCID: PMC10512377 DOI: 10.3389/ffunb.2023.1061150] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 01/16/2023] [Indexed: 09/26/2023]
Affiliation(s)
- Daniele Roberto Giacobbe
- Department of Health Sciences (DISSAL), University of Genoa, Genoa, Italy
- Clinica Malattie Infettive, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Malgorzata Mikulska
- Department of Health Sciences (DISSAL), University of Genoa, Genoa, Italy
- Clinica Malattie Infettive, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Antonio Vena
- Department of Health Sciences (DISSAL), University of Genoa, Genoa, Italy
- Clinica Malattie Infettive, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Vincenzo Di Pilato
- Department of Surgical Sciences and Integrated Diagnostics (DISC), University of Genoa, Genoa, Italy
| | - Laura Magnasco
- Clinica Malattie Infettive, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Anna Marchese
- Department of Surgical Sciences and Integrated Diagnostics (DISC), University of Genoa, Genoa, Italy
- Unità di Microbiologia, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Matteo Bassetti
- Department of Health Sciences (DISSAL), University of Genoa, Genoa, Italy
- Clinica Malattie Infettive, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| |
Collapse
|
49
|
Candida auris as an Emergent Public Health Problem: A Current Update on European Outbreaks and Cases. Healthcare (Basel) 2023; 11:healthcare11030425. [PMID: 36767000 PMCID: PMC9914380 DOI: 10.3390/healthcare11030425] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/26/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023] Open
Abstract
Candida auris is considered to be an emerging fungal pathogen and is related to high mortality rates, persistent candidemia, inconsistencies in susceptibility testing results and misidentification by available commercial identification systems. Multidrug-resistant (MDR) and pandrug-resistant (PDR) strains are increasingly detected. In Europe, hospital outbreaks caused by C. auris have been reported in the United Kingdom (UK), Italy and Spain; however, several cases have been sporadically detected in all European countries. C. auris is difficult to control despite enhanced control measures due to its ability to survive for a long time in environments and colonize patients for prolonged periods. An adequate laboratory diagnostic capacity and national surveillance are fundamental to rapidly detect new C. auris cases and to apply the correct measures to circumscribe them and prevent their spread. Our narrative review aims to highlight the primary C. auris outbreaks and case reports that have occurred in Europe.
Collapse
|
50
|
Ashkenazi-Hoffnung L, Rosenberg Danziger C. Navigating the New Reality: A Review of the Epidemiological, Clinical, and Microbiological Characteristics of Candida auris, with a Focus on Children. J Fungi (Basel) 2023; 9:176. [PMID: 36836291 PMCID: PMC9963988 DOI: 10.3390/jof9020176] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/22/2023] [Accepted: 01/26/2023] [Indexed: 02/03/2023] Open
Abstract
During the past decade, Candida auris emerged across the world, causing nosocomial outbreaks in both pediatric and adult populations, particularly in intensive care settings. We reviewed the epidemiological trends and the clinical and microbiological characteristics of C. auris infection, focusing on the pediatric population. The review is based on 22 studies, which included about 250 pediatric patients with C. auris infection, across multiple countries; neonates and premature babies were the predominant pediatric patient group affected. The most common type of infection reported was bloodstream infection, which was associated with exceptionally high mortality rates. Antifungal treatment varied widely between the patients; this signifies a serious knowledge gap that should be addressed in future research. Advances in molecular diagnostic methods for rapid and accurate identification and for detection of resistance may prove especially valuable in future outbreak situations, as well as the development of investigational antifungals. However, the new reality of a highly resistant and difficult-to-treat pathogen calls for preparedness of all aspects of patient care. This spans from laboratory readiness, to raising awareness among epidemiologists and clinicians for global collaborative efforts to improve patient care and limit the spread of C. auris.
Collapse
Affiliation(s)
- Liat Ashkenazi-Hoffnung
- Department of Day Hospitalization and Pediatric Infectious Diseases Unit, Schneider Children’s Medical Center, Petach Tikva 4920235, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Ramat Aviv, Tel Aviv 6997801, Israel
| | - Chen Rosenberg Danziger
- Department of Day Hospitalization, Schneider Children’s Medical Center, Petach Tikva 4920235, Israel
| |
Collapse
|