1
|
Zhang X, Ye M, Ge Y, Xiao C, Cui K, You Q, Jiang Z, Guo X. A Spatiotemporally Controlled and Mitochondria-Targeted Prodrug of Hydrogen Sulfide Enables Mild Mitochondrial Uncoupling for the Prevention of Lipid Deposition. J Med Chem 2024; 67:19188-19199. [PMID: 39441124 DOI: 10.1021/acs.jmedchem.4c01599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Mild mitochondrial uncoupling offers therapeutic benefits for various diseases like obesity by regulating cellular energy metabolism. However, effective chemical intervention tools for inducing mild mitochondria-targeted uncoupling are limited. Herein, we have developed a mitochondria-targeted H2S prodrug M1 with a unique property of on-demand photoactivated generation of H2S accompanied by self-reporting fluorescence for real-time tracking. Upon photoirradiation, M1 decomposes in mitochondria to generate H2S and a turn-on fluorescent coumarin derivative for the visualization and quantification of H2S. M1 is confirmed to induce reactive oxygen species (ROS)-dependent mild mitochondrial uncoupling, activating mitochondria-associated adenosine monophosphate-activated protein kinase (AMPK) to suppress palmitic acid (PA)-induced lipid deposition in hepatocytes. The uncoupling functions induced by M1 are strictly controlled in mitochondria, representing a fresh strategy to prevent lipid deposition and improve metabolic syndrome by increasing cellular energy expenditure.
Collapse
Affiliation(s)
- Xian Zhang
- Jiangsu Key Laboratory of Drug Design and Optimization, and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Mengjie Ye
- Jiangsu Key Laboratory of Drug Design and Optimization, and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Yuxin Ge
- Jiangsu Key Laboratory of Drug Design and Optimization, and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Can Xiao
- Jiangsu Key Laboratory of Drug Design and Optimization, and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Keni Cui
- Jiangsu Key Laboratory of Drug Design and Optimization, and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Qidong You
- Jiangsu Key Laboratory of Drug Design and Optimization, and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Zhengyu Jiang
- Jiangsu Key Laboratory of Drug Design and Optimization, and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Xiaoke Guo
- Jiangsu Key Laboratory of Drug Design and Optimization, and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
2
|
Eleraky NE, Hassan AS, Soliman GM, Al-Gayyar MMH, Safwat MA. Rosuvastatin Flexible Chitosomes: Development, In Vitro Evaluation and Enhancement of Anticancer Efficacy Against HepG2 and MCF7 Cell Lines. AAPS PharmSciTech 2024; 25:234. [PMID: 39375273 DOI: 10.1208/s12249-024-02957-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 09/23/2024] [Indexed: 10/09/2024] Open
Abstract
Rosuvastatin (ROS), a statin drug with promising anticancer properties has a low bioavailability of approximately 20% due to lipophilicity and first-pass metabolism. This study aimed to enhance ROS anticancer efficacy through loading into flexible chitosomes. The chitosomes were prepared starting from negatively charged liposomes through electrostatic interactions with chitosan. The conversion of zeta potential from negative to positive confirmed the successful formation of chitosomes. The chitosan coating increased the particle size and zeta potential, which ranged from 202.0 ± 1.7 nm to 504.7 ± 25.0 nm and from - 44.9 ± 3.0 mV to 50.1 ± 2.6 mV, respectively. Chitosan and drug concentrations had an important influence on the chitosome properties. The optimum chitosome formulation was used to prepare ROS-loaded flexible chitosomes using different concentrations of four edge activators. The type and concentration of edge activator influenced the particle size, drug entrapment efficiency, and drug release rate of the flexible chitosomes. Flexible chitosomes significantly increased drug permeation through rat abdominal skin compared to control transferosomes and drug solution. The optimal ROS flexible chitosomes containing sodium deoxycholate as an edge activator had a 2.23-fold increase in ROS cytotoxic efficacy against MCF7 cells and a 1.84-fold increase against HepG2 cells. These results underscore the potential of flexible chitosomes for enhancing ROS anticancer efficacy.
Collapse
Affiliation(s)
- Nermin E Eleraky
- Department of Pharmaceutics, Faculty of Pharmacy, Assiut University, Assiut, 71526, Egypt
| | - Abeer S Hassan
- Department of Pharmaceutics, Faculty of Pharmacy, South Valley University, Qena, 83523, Egypt
| | - Ghareb M Soliman
- Department of Pharmaceutics, Faculty of Pharmacy, University of Tabuk, Tabuk, 71491, Saudi Arabia.
| | - Mohammed M H Al-Gayyar
- Department of Biochemistry, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Tabuk, Tabuk, 71491, Saudi Arabia
| | - Mohamed A Safwat
- Department of Pharmaceutics, Faculty of Pharmacy, South Valley University, Qena, 83523, Egypt
| |
Collapse
|
3
|
Chen S, Xie JD, Xie MT, Yang LN, Lin YF, Chen JB, Chen TF, Zeng KF, Tan ZB, Lu SM, Wang HJ, Yang B, Jiang WH, Zhang SW, Deng B, Liu B, Zhang J. Przewaquinone A inhibits Angiotensin II-induced endothelial diastolic dysfunction activation of AMPK. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 133:155885. [PMID: 39096544 DOI: 10.1016/j.phymed.2024.155885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 06/02/2024] [Accepted: 07/14/2024] [Indexed: 08/05/2024]
Abstract
BACKGROUND Endothelial dysfunction (ED), characterized by markedly reduced nitric oxide (NO) bioavailability, vasoconstriction, and a shift toward a proinflammatory and prothrombotic state, is an important contributor to hypertension, atherosclerosis, and other cardiovascular diseases. Adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK) is widely involved in cardiovascular development. Przewaquinone A (PA), a lipophilic diterpene quinone extracted from Salvia przewalskii Maxim, inhibits vascular contraction. PURPOSE Herein, the goal was to explore the protective effect of PA on ED in vivo and in vitro, as well as the underlying mechanisms. METHODS A human umbilical vein endothelial cell (HUVEC) model of ED induced by angiotensin II (AngII) was used for in vitro observations. Levels of AMPK, endothelial nitric oxide synthase (eNOS), vascular cell adhesion molecule-1 (VCAM-1), nitric oxide (NO), and endothelin-1 (ET-1) were detected by western blotting and ELISA. A mouse model of hypertension was established by continuous infusion of AngII (1000 ng/kg/min) for 4 weeks using osmotic pumps. Following PA and/or valsartan administration, NO and ET-1 levels were measured. The levels of AMPK signaling-related proteins in the thoracic aorta were evaluated by immunohistochemistry. Systolic blood pressure (SBP), diastolic blood pressure (DBP), and mean arterial pressure (MAP) were measured using the tail cuff method. Isolated aortic vascular tone measurements were used to evaluate the vasodilatory function in mice. Molecular docking, molecular dynamics, and surface plasmon resonance imaging (SPRi) were used to confirm AMPK and PA interactions. RESULTS PA inhibited AngII-induced vasoconstriction and vascular adhesion as well as activated AMPK signaling in a dose-dependent manner. Moreover, PA markedly suppressed blood pressure, activated vasodilation in mice following AngII stimulation, and promoted the activation of AMPK signaling. Furthermore, molecular simulations and SPRi revealed that PA directly targeted AMPK. AMPK inhibition partly abolished the protective effects of PA against endothelial dysfunction. CONCLUSION PA activates AMPK and ameliorates endothelial dysfunction during hypertension.
Collapse
Affiliation(s)
- Si Chen
- Department of Traditional Chinese Medicine, Institute of Integration of Traditional and Western Medicine of Guangzhou Medical University, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou 510260, PR China; School of Chinese medicine, Hong Kong Baptist University (HKBU), Kowloon Tong, Kowloon, Hong Kong, PR China
| | - Jun-di Xie
- Department of Traditional Chinese Medicine, Institute of Integration of Traditional and Western Medicine of Guangzhou Medical University, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou 510260, PR China
| | - Meng-Ting Xie
- Department of Traditional Chinese Medicine, Institute of Integration of Traditional and Western Medicine of Guangzhou Medical University, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou 510260, PR China
| | - Li-Ning Yang
- Department of Traditional Chinese Medicine, Institute of Integration of Traditional and Western Medicine of Guangzhou Medical University, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou 510260, PR China
| | - Yu-Fang Lin
- The Second Clinical School of Guangzhou Medical University, Guangzhou Medical University, Guangzhou 510260, PR China
| | - Jun-Bang Chen
- Department of Traditional Chinese Medicine, Institute of Integration of Traditional and Western Medicine of Guangzhou Medical University, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou 510260, PR China
| | - Ting-Fang Chen
- Department of Traditional Chinese Medicine, Institute of Integration of Traditional and Western Medicine of Guangzhou Medical University, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou 510260, PR China
| | - Ke-Feng Zeng
- Department of Traditional Chinese Medicine, Institute of Integration of Traditional and Western Medicine of Guangzhou Medical University, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou 510260, PR China
| | - Zhang-Bin Tan
- Department of Traditional Chinese Medicine, Institute of Integration of Traditional and Western Medicine of Guangzhou Medical University, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou 510260, PR China
| | - Si-Min Lu
- Department of Traditional Chinese Medicine, Institute of Integration of Traditional and Western Medicine of Guangzhou Medical University, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou 510260, PR China
| | - Hui-Juan Wang
- Department of Traditional Chinese Medicine, Institute of Integration of Traditional and Western Medicine of Guangzhou Medical University, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou 510260, PR China
| | - Bo Yang
- Department of Traditional Chinese Medicine, Institute of Integration of Traditional and Western Medicine of Guangzhou Medical University, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou 510260, PR China
| | - Wei-Hao Jiang
- Department of Traditional Chinese Medicine, Institute of Integration of Traditional and Western Medicine of Guangzhou Medical University, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou 510260, PR China
| | - Shuang-Wei Zhang
- Department of Traditional Chinese Medicine, Institute of Integration of Traditional and Western Medicine of Guangzhou Medical University, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou 510260, PR China
| | - Bo Deng
- Department of Traditional Chinese Medicine, Institute of Integration of Traditional and Western Medicine of Guangzhou Medical University, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou 510260, PR China.
| | - Bin Liu
- Department of Traditional Chinese Medicine, Institute of Integration of Traditional and Western Medicine of Guangzhou Medical University, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou 510260, PR China.
| | - Jingzhi Zhang
- Department of Traditional Chinese Medicine, Institute of Integration of Traditional and Western Medicine of Guangzhou Medical University, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou 510260, PR China.
| |
Collapse
|
4
|
Lagunas-Rangel FA, Liepinsh E, Fredriksson R, Alsehli AM, Williams MJ, Dambrova M, Jönsson J, Schiöth HB. Off-target effects of statins: molecular mechanisms, side effects and the emerging role of kinases. Br J Pharmacol 2024; 181:3799-3818. [PMID: 39180421 DOI: 10.1111/bph.17309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/25/2024] [Accepted: 07/10/2024] [Indexed: 08/26/2024] Open
Abstract
Statins are one of the most important classes of drugs. In this analytical review, we elucidate the intricate molecular mechanisms and toxicological rationale regarding both the on- (targeting 3-hydroxy-3-methylglutaryl-coenzyme A reductase [HMGCR]) and off-target effects of statins. Statins interact with a number of membrane kinases, such as epidermal growth factor receptor (EGFR), erb-b2 receptor tyrosine kinase 2 (HER2) and MET proto-oncogene, receptor tyrosine kinase (MET), as well as cytosolic kinases, such as SRC proto-oncogene, non-receptor tyrosine kinase (Src) and show inhibitory activity at nanomolar concentrations. In addition, they interact with calcium ATPases and peroxisome proliferator-activated receptor α (PPARα/NR1C1) at higher concentrations. Statins interact with mitochondrial complexes III and IV, and their inhibition of coenzyme Q10 synthesis also impairs the functioning of complexes I and II. Statins act as inhibitors of kinases, calcium ATPases and mitochondrial complexes, while activating PPARα. These off-target effects likely contribute to the side effects observed in patients undergoing statin therapy, including musculoskeletal symptoms and hepatic effects. Interestingly, some off-target effects of statins could also be the cause of favourable outcomes, relating to repurposing statins in conditions such as inflammatory disorders and cancer.
Collapse
Affiliation(s)
- Francisco Alejandro Lagunas-Rangel
- Department of Surgical Sciences, Functional Pharmacology and Neuroscience, Uppsala University, Uppsala, Sweden
- Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, Riga, Latvia
| | - Edgars Liepinsh
- Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, Riga, Latvia
| | - Robert Fredriksson
- Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| | - Ahmed M Alsehli
- Department of Surgical Sciences, Functional Pharmacology and Neuroscience, Uppsala University, Uppsala, Sweden
- Department of Physiology, Faculty of Medicine, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia
| | - Michael J Williams
- Department of Surgical Sciences, Functional Pharmacology and Neuroscience, Uppsala University, Uppsala, Sweden
| | - Maija Dambrova
- Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, Riga, Latvia
- Department of Pharmaceutical Chemistry, Riga Stradiņš University, Riga, Latvia
| | - Jörgen Jönsson
- Department of Surgical Sciences, Functional Pharmacology and Neuroscience, Uppsala University, Uppsala, Sweden
| | - Helgi B Schiöth
- Department of Surgical Sciences, Functional Pharmacology and Neuroscience, Uppsala University, Uppsala, Sweden
| |
Collapse
|
5
|
Chen Z, Wang X, Teng Z, Huang J, Mo J, Qu C, Wu Y, Liu Z, Liu F, Xia K. A comprehensive assessment of the association between common drugs and psychiatric disorders using Mendelian randomization and real-world pharmacovigilance database. EBioMedicine 2024; 107:105314. [PMID: 39191171 PMCID: PMC11400609 DOI: 10.1016/j.ebiom.2024.105314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 08/09/2024] [Accepted: 08/14/2024] [Indexed: 08/29/2024] Open
Abstract
BACKGROUND Medications prescribed for chronic diseases can lead to short-term neuropsychiatric symptoms, but their long-term effects on brain structures and psychiatric conditions remain unclear. METHODS We comprehensively analyzed the FDA Adverse Event Reporting System database and conducted drug target Mendelian Randomization (MR) studies on six categories of common drugs, 477 brain imaging-derived phenotypes (IDPs) and eight psychiatric disorders. Genetic instruments were extracted from expression quantitative trait loci (eQTLs) in blood, brain, and other target tissues, protein quantitative trait loci (pQTLs) in blood, and genome-wide association studies (GWAS) of hemoglobin and cholesterol. Summary statistics for brain IDPs, psychiatric disorders, and gut microbiome were obtained from the BIG40, Psychiatric Genomics Consortium, and MiBioGen. A two-step MR and mediation analysis were employed to screen possible mediators of drug-IDP effects from 119 gut microbiota genera and identify their mediation proportions. FINDINGS Among 19 drug classes, six drugs were found to be associated with higher risks of psychiatric adverse events, while 11 drugs were associated with higher risks of gastrointestinal adverse events in the FAERS analysis. We identified ten drug-psychiatric disorder associations, 202 drug-IDP associations, 16 drug-microbiota associations, and four drug-microbiota-IDP causal links. For example, PPARG activation mediated HbA1c reduction caused a higher risk of bipolar disorder (BD) II. Genetically proxied GLP-1R agonists were significantly associated with an increase in the volume of the CA3-head of the right hippocampus and the area of the left precuneus cortex, both of which have been shown to correlate with cognition in previous studies. INTERPRETATION Common drugs may affect brain structure and risk of psychiatric disorder. Oral medications in particular may exert some of these effects by influencing gut microbiota. This study calls for greater attention to be paid to the neuropsychiatric adverse effects of drugs and encourages drug repurposing. FUNDING National Natural Science Foundation of China (grant No. 82330035, 82130043, 82172685, and 82001223), National Natural Science Foundation of Hunan Province (grant No. 2021SK1010), and the Science Foundation for Distinguished Young Scholars of Changsha (grant No. kq2209006).
Collapse
Affiliation(s)
- Zhuohui Chen
- MOE Key Laboratory of Pediatric Rare Diseases, Hengyang Medical School, University of South China, Hengyang, China; Department of Neurosurgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, China; Center for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, China; Hypothalamic Pituitary Research Centre, Xiangya Hospital, Central South University, Changsha, China
| | - Xiang Wang
- Department of Neurosurgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, China
| | - Ziwei Teng
- National Clinical Research Center for Mental Disorders, Department of Psychiatry, China National Technology Institute on Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China; Department of Psychiatry, Hunan Brain Hospital (Hunan Second People's Hospital), Changsha, China
| | - Jing Huang
- National Clinical Research Center for Mental Disorders, Department of Psychiatry, China National Technology Institute on Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Jianzhong Mo
- The Third Hospital of Changsha, Changsha, Hunan, China
| | - Chunrun Qu
- Department of Neurosurgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, China
| | - Yinghua Wu
- Department of Neurosurgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, China
| | - Zhixiong Liu
- Department of Neurosurgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, China; Hypothalamic Pituitary Research Centre, Xiangya Hospital, Central South University, Changsha, China.
| | - Fangkun Liu
- MOE Key Laboratory of Pediatric Rare Diseases, Hengyang Medical School, University of South China, Hengyang, China; Department of Neurosurgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, China; Hypothalamic Pituitary Research Centre, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.
| | - Kun Xia
- MOE Key Laboratory of Pediatric Rare Diseases, Hengyang Medical School, University of South China, Hengyang, China; Center for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, China.
| |
Collapse
|
6
|
Chávez-López LM, Carballo-López GI, Lugo-Ibarra KDC, Castro-Ceseña AB. A comprehensive framework for managing metabolic dysfunction-associated steatotic liver disease: analyzing novel risk factors and advances in nanotechnology-based treatments and diagnosis. RSC Med Chem 2024; 15:2622-2642. [PMID: 39149095 PMCID: PMC11324041 DOI: 10.1039/d4md00420e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 06/11/2024] [Indexed: 08/17/2024] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) presents a growing global health challenge requiring innovative approaches for effective management. This comprehensive review examines novel risk factors, including environmental pollutants like heavy metals, and underscores the complexity of personalized medicine tailored to individual patient profiles, influenced by gender and sex differences. Traditional treatments for MASLD, such as glucose- and lipid-lowering agents, show mixed results, highlighting the necessity for larger, long-term studies to establish safety and efficacy. Alternative therapies, including antioxidants, stem cells, and antiplatelets, although promising, demand extensive clinical trials for validation. This review highlights the importance of personalized medicine, considering individual variations and specific factors such as gender and sex, to optimize treatment responses. The shift from metabolic-associated fatty liver disease (MAFLD) to MASLD terminology underscores the metabolic components of the disease, aligning with the multiple-hit theory and highlighting the necessity for comprehensive risk factor management. Our vision advocates for an integrated approach to MASLD, encompassing extensive risk factor analysis and the development of safer, more effective treatments. Primary prevention and awareness initiatives are crucial in addressing the rising prevalence of MASLD. Future research must prioritize larger, long-term studies and personalized medicine principles to ensure the effective use of emerging therapies and technologies. The review underscores the need for continuous exploration and innovation, balancing the benefits and challenges of nanotechnology, to combat MASLD and improve patient outcomes comprehensively.
Collapse
Affiliation(s)
- Lucia M Chávez-López
- Facultad de Medicina, Centro de Estudios Universitarios Xochicalco Campus Ensenada San Francisco 1139, Fraccionamiento Misión C.P. 22830 Ensenada Baja California Mexico
- Departamento de Innovación Biomédica, Centro de Investigación Científica y de Educación Superior de Ensenada, Baja California (CICESE) Carretera Ensenada-Tijuana No. 3918, Zona Playitas C.P. 22860 Ensenada Baja California Mexico
| | - Gabriela I Carballo-López
- Departamento de Innovación Biomédica, Centro de Investigación Científica y de Educación Superior de Ensenada, Baja California (CICESE) Carretera Ensenada-Tijuana No. 3918, Zona Playitas C.P. 22860 Ensenada Baja California Mexico
| | | | - Ana B Castro-Ceseña
- Departamento de Innovación Biomédica, Centro de Investigación Científica y de Educación Superior de Ensenada, Baja California (CICESE) Carretera Ensenada-Tijuana No. 3918, Zona Playitas C.P. 22860 Ensenada Baja California Mexico
- CONAHCYT - Departamento de Innovación Biomédica, Centro de Investigación Científica y de Educación Superior de Ensenada, Baja California (CICESE) Carretera Ensenada-Tijuana No. 3918, Zona Playitas C.P. 22860 Ensenada Baja California Mexico
| |
Collapse
|
7
|
Liu J, Fu J, Fu P, Liu M, Liu Z, Song B. Pitavastatin sensitizes the EGFR-TKI associated resistance in lung cancer by inhibiting YAP/AKT/BAD-BCL-2 pathway. Cancer Cell Int 2024; 24:224. [PMID: 38943199 PMCID: PMC11214206 DOI: 10.1186/s12935-024-03416-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 06/22/2024] [Indexed: 07/01/2024] Open
Abstract
BACKGROUND Despite effective strategies, resistance in EGFR mutated lung cancer remains a challenge. Metabolic reprogramming is one of the main mechanisms of tumor drug resistance. A class of drugs known as "statins" inhibit lipid cholesterol metabolism and are widely used in patients with cardiovascular diseases. Previous studies have also documented its ability to improve the therapeutic impact in lung cancer patients who receive EGFR-TKI therapy. Therefore, the effect of statins on targeted drug resistance to lung cancer remains to be investigated. METHODS Prolonged exposure to gefitinib resulted in the emergence of a resistant lung cancer cell line (PC9GR) from the parental sensitive cell line (PC9), which exhibited a traditional EGFR mutation. The CCK-8 assay was employed to assess the impact of various concentrations of pitavastatin on cellular proliferation. RNA sequencing was conducted to detect differentially expressed genes and their correlated pathways. For the detection of protein expression, Western blot was performed. The antitumor activity of pitavastatin was evaluated in vivo via a xenograft mouse model. RESULTS PC9 gefitinib resistant strains were induced by low-dose maintenance. Cell culture and animal-related studies validated that the application of pitavastatin inhibited the proliferation of lung cancer cells, promoted cell apoptosis, and restrained the acquired resistance to EGFR-TKIs. KEGG pathway analysis showed that the hippo/YAP signaling pathway was activated in PC9GR cells relative to PC9 cells, and the YAP expression was inhibited by pitavastatin administration. With YAP RNA interference, pAKT, pBAD and BCL-2 expression was decreased, while BAX expression as increased. Accordingly, YAP down-regulated significantly increased apoptosis and decreased the survival rate of gefitinib-resistant lung cancer cells. After pAKT was increased by SC79, apoptosis of YAP down-regulated cells induced by gefitinib was decreased, and the cell survival rate was increased. Mechanistically, these effects of pitavastatin are associated with the YAP pathway, thereby inhibiting the downstream AKT/BAD-BCL-2 signaling pathway. CONCLUSION Our study provides a molecular basis for the clinical application of the lipid-lowering drug pitavastatin enhances the susceptibility of lung cancer to EGFR-TKI drugs and alleviates drug resistance.
Collapse
Affiliation(s)
- Jie Liu
- Cancer Center, Shandong Public Health Clinical Center, Shandong University, Jinan, China
| | - Jialei Fu
- Shandong Academy of Chinese Medicine, Jinan, China
| | - Ping Fu
- Department of Chemotherapy, Jinan Zhangqiu District People's Hospital, Jinan, China
| | - Menghan Liu
- Clinical Medical College, Shandong First Medical University, Jinan, China
| | - Zining Liu
- Department of Nuclear Medicine, Shandong First Medical University and Shandong Academy of Medical Sciences, The Third Affiliated Hospital of Shandong First Medical University, Jinan, China.
| | - Bao Song
- Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China.
| |
Collapse
|
8
|
Aldossary KM, Ali LS, Abdallah MS, Bahaa MM, Elmasry TA, Elberri EI, Kotkata FA, El Sabaa RM, Elmorsi YM, Kamel MM, Negm WA, Elberri AI, Hamouda AO, AlRasheed HA, Salahuddin MM, Yasser M, Hamouda MA. Effect of a high dose atorvastatin as added-on therapy on symptoms and serum AMPK/NLRP3 inflammasome and IL-6/STAT3 axes in patients with major depressive disorder: randomized controlled clinical study. Front Pharmacol 2024; 15:1381523. [PMID: 38855751 PMCID: PMC11157054 DOI: 10.3389/fphar.2024.1381523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 04/08/2024] [Indexed: 06/11/2024] Open
Abstract
Background Neuroinflammation pathways have been associated with the development of major depressive disorders (MDD). The anti-inflammatory characteristics of statins have been demonstrated to have significance in the pathophysiology of depression. Aim To investigate the mechanistic pathways of high dose atorvastatin in MDD. Patients and methods This trial included 60 patients with MDD who met the eligibility requirements. Two groups of patients (n = 30) were recruited by selecting patients from the Psychiatry Department. Group 1 received 20 mg of fluoxetine plus a placebo once daily. Group 2 received fluoxetine and atorvastatin (80 mg) once daily. All patients were assessed by a psychiatrist using the Hamilton Depression Rating Scale (HDRS). A HDRS score of ≤7 indicates remission or partial remission [HDRS<17 and>7]. Response was defined as ≥ 50% drop in the HDRS score. The serum concentrations of nucleotide-binding domain, leucine-rich-containing family, pyrin domain-containing-3 (NLRP-3), interleukin-6 (IL-6), adenosine monophosphate activated protein kinase (AMPK), and signal transducer and activator of transcription factor-3 (STAT-3) were measured. Results The atorvastatin group showed a significant reduction in the levels of all measured markers along with a statistical increase in the levels of AMPK when compared to the fluoxetine group. The atorvastatin group displayed a significant decrease in HDRS when compared to its baseline and the fluoxetine group. The response rate and partial remission were higher in the atorvastatin group than fluoxetine (p = 0.03, and p = 0.005), respectively. Conclusion These results imply that atorvastatin at high doses may be a promising adjuvant therapy for MDD patients by altering the signaling pathways for AMPK/NLRP3 and IL-6/STAT-3. Clinical Trial Registration clinicaltrials.gov, identifier NCT05792540.
Collapse
Affiliation(s)
- Khlood Mohammad Aldossary
- Department of Pharmacy Practice, College of Pharmacy, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Lashin Saad Ali
- Department of Basic Medical Science, Faculty of Dentistry, Al-Ahliyya Amman University, Amman, Jordan
- Physiology Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Mahmoud S. Abdallah
- Department of Clinical Pharmacy, Faculty of Pharmacy, University of Sadat City (USC), Sadat City, Menoufia, Egypt
- Department of PharmD, Faculty of Pharmacy, Jadara University, Irbid, Jordan
| | - Mostafa M. Bahaa
- Pharmacy Practice Department, Faculty of Pharmacy, Horus University, New Damietta, Egypt
| | - Thanaa A. Elmasry
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Tanta University, Tanta, Al-Gharbia, Egypt
| | - Eman I. Elberri
- Department of Clinical Pharmacy, Faculty of Pharmacy, Tanta University, Tanta, Al-Gharbia, Egypt
| | - Fedaa A. Kotkata
- Department of Clinical Pharmacy, Faculty of Pharmacy, Tanta University, Tanta, Al-Gharbia, Egypt
| | - Ramy M. El Sabaa
- Department of Clinical Pharmacy, Faculty of Pharmacy, Menoufia University, Shebin El-Kom, Menoufia, Egypt
| | - Yasmine M. Elmorsi
- Department of Clinical Pharmacy, Faculty of Pharmacy, Tanta University, Tanta, Al-Gharbia, Egypt
| | - Mostafa M. Kamel
- Psychiatry Department, Faculty of Medicine, Tanta University, Egypt
| | - Walaa A. Negm
- Pharmacognosy Department, Faculty of Pharmacy, Tanta University, Tanta, Al-Gharbia, Egypt
| | - Aya Ibrahim Elberri
- Genetic Engineering and Molecular Biology Division, Department of Zoology, Faculty of Science, Menoufia University, Shebin El-Kom, Menoufia, Egypt
| | - Amir O. Hamouda
- Department of Biochemistry and Pharmacology, Faculty of Pharmacy, Horus University, New Damietta, Egypt
| | - Hayam Ali AlRasheed
- Department of Pharmacy Practice, College of Pharmacy, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Muhammed M. Salahuddin
- Department of Biochemistry and Pharmacology, Faculty of Pharmacy, Horus University, New Damietta, Egypt
| | - Mohamed Yasser
- Department of Pharmaceutics, Faculty of Pharmacy, Port Said University, Port Said, Egypt
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Horus University, New Damietta, Egypt
| | - Manal A. Hamouda
- Department of Clinical Pharmacy, Faculty of Pharmacy, Menoufia University, Shebin El-Kom, Menoufia, Egypt
| |
Collapse
|
9
|
Capelli I, Lerario S, Ciurli F, Berti GM, Aiello V, Provenzano M, La Manna G. Investigational agents for autosomal dominant polycystic kidney disease: preclinical and early phase study insights. Expert Opin Investig Drugs 2024; 33:469-484. [PMID: 38618918 DOI: 10.1080/13543784.2024.2342327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 04/08/2024] [Indexed: 04/16/2024]
Abstract
INTRODUCTION Autosomal Dominant Polycystic Kidney Disease (ADPKD) is the most common inherited kidney condition caused by a single-gene mutation. It leads patients to kidney failure in more than 50% of cases by the age of 60, and, given the dominant inheritance, this disease is present in the family history in more than 90% of cases. AREAS COVERED This review aims to analyze the set of preclinical and early-phase studies to provide a general view of the current progress on ADPKD therapeutic options. Articles from PubMed and the current status of the trials listed in clinicaltrials.gov were examined for the review. EXPERT OPINION Many potential therapeutic targets are currently under study for the treatment of ADPKD. A few drugs have reached the clinical phase, while many are currently still in the preclinical phase. Organoids could be a novel approach to the study of drugs in this phase. Other than pharmacological options, very important developing approaches are represented by gene therapy and the use of MiRNA inhibitors.
Collapse
Affiliation(s)
- Irene Capelli
- Nephrology, Dialysis and Renal Transplant Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Alma Mater Studiorum, University of Bologna, Bologna, Italy
- Department of Medical and Surgical Sciences (DIMEC), Alma Mater Studiorum University of Bologna, Bologna, Italy
| | - Sarah Lerario
- Nephrology, Dialysis and Renal Transplant Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Alma Mater Studiorum, University of Bologna, Bologna, Italy
- Department of Medical and Surgical Sciences (DIMEC), Alma Mater Studiorum University of Bologna, Bologna, Italy
| | - Francesca Ciurli
- Nephrology, Dialysis and Renal Transplant Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Alma Mater Studiorum, University of Bologna, Bologna, Italy
| | - Gian Marco Berti
- Nephrology, Dialysis and Renal Transplant Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Alma Mater Studiorum, University of Bologna, Bologna, Italy
- Department of Medical and Surgical Sciences (DIMEC), Alma Mater Studiorum University of Bologna, Bologna, Italy
| | - Valeria Aiello
- Nephrology, Dialysis and Renal Transplant Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Alma Mater Studiorum, University of Bologna, Bologna, Italy
| | - Michele Provenzano
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy
| | - Gaetano La Manna
- Nephrology, Dialysis and Renal Transplant Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Alma Mater Studiorum, University of Bologna, Bologna, Italy
- Department of Medical and Surgical Sciences (DIMEC), Alma Mater Studiorum University of Bologna, Bologna, Italy
| |
Collapse
|
10
|
Zhang F, de Bock GH, Landman GW, Zhang Q, Sidorenkov G. Statin use as a moderator on the association between metformin and breast cancer risk in women with type 2 diabetes mellitus. Cancer Metab 2024; 12:12. [PMID: 38610045 PMCID: PMC11010330 DOI: 10.1186/s40170-024-00340-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 03/20/2024] [Indexed: 04/14/2024] Open
Abstract
INTRODUCTION Metformin and statins are considered as potential agents for prevention of breast cancer, however, existing evidence does not uniformly substantiate this claim, and the data is scarce concerning their interaction in relation to breast cancer risk. This study aims to investigate whether the effect of metformin on breast cancer incidence varied by statin use among women with type 2 diabetes mellitus (T2DM). METHODS This study included women with T2DM, without a history of cancers, and followed up for more than one year from the Zwolle Outpatient Diabetes project Integrating Available Care (ZODIAC) for the period 1998-2014. The dataset was structured using a person-time approach, where the cumulative medication usage was annually updated for each person. The extended Cox proportional hazards models were employed, reporting adjusted hazard ratios (HR) with 95% confidence intervals (CI). RESULTS During a median follow-up of 5 years, 515 of 29,498 women received a breast cancer diagnosis. Each additional year of metformin or statins use corresponded to a decrease in breast cancer incidence, while the magnitude attenuated over time. Noteworthily, statin use modified the effect of metformin on breast cancer incidence. For instance, after 5 years of follow-up, one-year increase of metformin use among women who used statins for 3 years was linked to a substantially reduced breast cancer risk (HR, 95% CI: 0.88, 0.84-0.93), however, there was no significant decrease in risk for those non-statins users (HR, 95% CI: 0.96, 0.89-1.04). CONCLUSIONS Extending metformin or statin usage by one year conferred breast cancer protection in women with T2DM. Enhanced protective effect of metformin was observed among those who also use statins. These results suggest the potential of combined metformin and statin therapy as promising breast cancer prevention strategies.
Collapse
Affiliation(s)
- Fan Zhang
- Department of Epidemiology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
- Oncology Research Laboratory, Cancer Hospital of Shantou University Medical College, Shantou, People's Republic of China
- Department of Preventive Medicine, Shantou University Medical College, Shantou, People's Republic of China
| | - Geertruida H de Bock
- Department of Epidemiology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Gijs W Landman
- Department of Internal Medicine, Gelre Hospital, Apeldoorn, The Netherlands
| | - Qingying Zhang
- Department of Preventive Medicine, Shantou University Medical College, Shantou, People's Republic of China
| | - Grigory Sidorenkov
- Department of Epidemiology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.
| |
Collapse
|
11
|
Fatemi N, Karimpour M, Bahrami H, Zali MR, Chaleshi V, Riccio A, Nazemalhosseini-Mojarad E, Totonchi M. Current trends and future prospects of drug repositioning in gastrointestinal oncology. Front Pharmacol 2024; 14:1329244. [PMID: 38239190 PMCID: PMC10794567 DOI: 10.3389/fphar.2023.1329244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 12/11/2023] [Indexed: 01/22/2024] Open
Abstract
Gastrointestinal (GI) cancers comprise a significant number of cancer cases worldwide and contribute to a high percentage of cancer-related deaths. To improve survival rates of GI cancer patients, it is important to find and implement more effective therapeutic strategies with better prognoses and fewer side effects. The development of new drugs can be a lengthy and expensive process, often involving clinical trials that may fail in the early stages. One strategy to address these challenges is drug repurposing (DR). Drug repurposing is a developmental strategy that involves using existing drugs approved for other diseases and leveraging their safety and pharmacological data to explore their potential use in treating different diseases. In this paper, we outline the existing therapeutic strategies and challenges associated with GI cancers and explore DR as a promising alternative approach. We have presented an extensive review of different DR methodologies, research efforts and examples of repurposed drugs within various GI cancer types, such as colorectal, pancreatic and liver cancers. Our aim is to provide a comprehensive overview of employing the DR approach in GI cancers to inform future research endeavors and clinical trials in this field.
Collapse
Affiliation(s)
- Nayeralsadat Fatemi
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mina Karimpour
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Hoda Bahrami
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mohammad Reza Zali
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Vahid Chaleshi
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Andrea Riccio
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies (DiSTABiF), Università degli Studi della Campania “Luigi Vanvitelli”, Caserta, Italy
- Institute of Genetics and Biophysics (IGB) “Adriano Buzzati-Traverso”, Consiglio Nazionale delle Ricerche (CNR), Naples, Italy
| | - Ehsan Nazemalhosseini-Mojarad
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehdi Totonchi
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies (DiSTABiF), Università degli Studi della Campania “Luigi Vanvitelli”, Caserta, Italy
- Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| |
Collapse
|
12
|
Mahjoubin-Tehran M, Sukhorukov VN, Jmaialahmadi T, Sahebkar A. Genomic Insights Into Statin Therapy: Differential Expression Analysis of Key Genes. Curr Probl Cardiol 2024; 49:102103. [PMID: 37741602 DOI: 10.1016/j.cpcardiol.2023.102103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 09/19/2023] [Indexed: 09/25/2023]
Abstract
In this study, we utilized microarray profiles, specifically GSE71220 and GSE11393 obtained from the GEO database, which provide gene expression data from blood samples. Through a comparison of differentially expressed genes in both datasets, we successfully identified 11 key genes that exhibited differential expression in groups A and B, respectively. To gain insights into their functional roles, we performed gene ontology (GO) enrichment analysis using the "BiNGO" plugin in Cytoscape. This analysis revealed that these genes are primarily associated with primary metabolic processes. Notably, 8 genes, namely EIF2S3, GZMK, PIK3R1, RORA, SART3, TGM2, WTAP, and ABCG1, were found to be involved in these processes. To further explore the interactions and relationships among these key genes, we conducted protein-protein interaction analysis using the STRING database and co-expression network analysis using the GeneMANIA plugin in Cytoscape. The PPI analysis highlighted RORA, NR1D2, PIK3R1, CKAP4, and GZMK as central players within the network. To validate our findings, we examined the expression profiles of the key genes using the GSE86216 dataset, which comprises blood samples from individuals using statins. The results from this validation set largely corroborated our previous findings, with the exception of 3 genes: LAMP3, NR1D2, and PIK3R1, which exhibited different expression patterns. In conclusion, our study utilized microarray datasets to identify key genes that are influenced by statin treatments. The differential expression and functional analysis of these genes provide valuable insights into the mechanisms underlying the effects of statins.
Collapse
Affiliation(s)
| | | | - Tannaz Jmaialahmadi
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Sahebkar
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
13
|
Bar-Tana J. TorS - Reframing a rational for type 2 diabetes treatment. Diabetes Metab Res Rev 2024; 40:e3712. [PMID: 37615286 DOI: 10.1002/dmrr.3712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 05/11/2023] [Accepted: 08/04/2023] [Indexed: 08/25/2023]
Abstract
The mammalian target of rapamycin complex 1 syndrome (Tors), paradigm implies an exhaustive cohesive disease entity driven by a hyperactive mTORC1, and which includes obesity, type 2 diabetic hyperglycemia, diabetic dyslipidemia, diabetic cardiomyopathy, diabetic nephropathy, diabetic peripheral neuropathy, hypertension, atherosclerotic cardiovascular disease, non-alcoholic fatty liver disease, some cancers, neurodegeneration, polycystic ovary syndrome, psoriasis and other. The TorS paradigm may account for the efficacy of standard-of-care treatments of type 2 diabetes (T2D) in alleviating the glycaemic and non-glycaemic diseases of TorS in T2D and non-T2D patients. The TorS paradigm may generate novel treatments for TorS diseases.
Collapse
|
14
|
Piekuś-Słomka N, Mocan LP, Shkreli R, Grapă C, Denkiewicz K, Wesolowska O, Kornek M, Spârchez Z, Słomka A, Crăciun R, Mocan T. Don't Judge a Book by Its Cover: The Role of Statins in Liver Cancer. Cancers (Basel) 2023; 15:5100. [PMID: 37894467 PMCID: PMC10605163 DOI: 10.3390/cancers15205100] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/16/2023] [Accepted: 10/20/2023] [Indexed: 10/29/2023] Open
Abstract
Statins, which are inhibitors of 3-hydroxy-3-methyl-glutaryl-coenzyme A (HMG-CoA) reductase, are an effective pharmacological tool for lowering blood cholesterol levels. This property makes statins one of the most popular drugs used primarily to prevent cardiovascular diseases, where hyperlipidemia is a significant risk factor that increases mortality. Nevertheless, studies conducted mainly in the last decade have shown that statins might prevent and treat liver cancer, one of the leading causes of cancer-related mortality worldwide. This narrative review summarizes the scientific achievements to date regarding the role of statins in liver tumors. Molecular biology tools have revealed that cell growth and proliferation can be inhibited by statins, which further inhibit angiogenesis. Clinical studies, supported by meta-analysis, confirm that statins are highly effective in preventing and treating hepatocellular carcinoma and cholangiocarcinoma. However, this effect may depend on the statin's type and dose, and more clinical trials are required to evaluate clinical effects. Moreover, their potential hepatotoxicity is a significant caveat for using statins in clinical practice. Nevertheless, this group of drugs, initially developed to prevent cardiovascular diseases, is now a key candidate in hepato-oncology patient management. The description of new drug-statin-like structures, e.g., with low toxicity to liver cells, may bring another clinically significant improvement to current cancer therapies.
Collapse
Affiliation(s)
- Natalia Piekuś-Słomka
- Department of Inorganic and Analytical Chemistry, Nicolaus Copernicus University in Toruń, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Jurasza 2, 85-089 Bydgoszcz, Poland;
| | - Lavinia Patricia Mocan
- Department of Histology, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania;
| | - Rezarta Shkreli
- Department of Pharmacy, Faculty of Medical Sciences, Aldent University, 1001-1028 Tirana, Albania;
| | - Cristiana Grapă
- Department of Physiology, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400006 Cluj-Napoca, Romania;
| | - Kinga Denkiewicz
- Department of Pathophysiology, Nicolaus Copernicus University in Toruń, Ludwik Rydygier Collegium Medicum in Bydgoszcz, 85-094 Bydgoszcz, Poland; (K.D.); (O.W.); (A.S.)
| | - Oliwia Wesolowska
- Department of Pathophysiology, Nicolaus Copernicus University in Toruń, Ludwik Rydygier Collegium Medicum in Bydgoszcz, 85-094 Bydgoszcz, Poland; (K.D.); (O.W.); (A.S.)
| | - Miroslaw Kornek
- Department of Internal Medicine I, University Hospital Bonn of the Rheinische Friedrich-Wilhelms-University, 53127 Bonn, Germany;
| | - Zeno Spârchez
- 3rd Medical Department, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400162 Cluj-Napoca, Romania;
| | - Artur Słomka
- Department of Pathophysiology, Nicolaus Copernicus University in Toruń, Ludwik Rydygier Collegium Medicum in Bydgoszcz, 85-094 Bydgoszcz, Poland; (K.D.); (O.W.); (A.S.)
| | - Rareș Crăciun
- 3rd Medical Department, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400162 Cluj-Napoca, Romania;
- Department of Gastroenterology, “Octavian Fodor” Institute for Gastroenterology and Hepatology, 400162 Cluj-Napoca, Romania
| | - Tudor Mocan
- Department of Gastroenterology, “Octavian Fodor” Institute for Gastroenterology and Hepatology, 400162 Cluj-Napoca, Romania
- UBBMed Department, Babeș-Bolyai University, 400349 Cluj-Napoca, Romania
| |
Collapse
|
15
|
Xing J, Zhang J, Wang J. The Immune Regulatory Role of Adenosine in the Tumor Microenvironment. Int J Mol Sci 2023; 24:14928. [PMID: 37834375 PMCID: PMC10573203 DOI: 10.3390/ijms241914928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 09/30/2023] [Accepted: 10/03/2023] [Indexed: 10/15/2023] Open
Abstract
Adenosine, an immunosuppressive metabolite, is produced by adenosine triphosphate (ATP) released from dying or stressed cells and is found at high levels in the tumor microenvironment of most solid tumors. It mediates pro-tumor activities by inducing tumor cell proliferation, migration or invasion, tumor tissue angiogenesis, and chemoresistance. In addition, adenosine plays an important role in regulating anti-tumor immune responses and facilitating tumor immune escape. Adenosine receptors are broadly expressed by tumor-infiltrated immune cells, including suppressive tumor-associated macrophages and CD4+ regulatory T cells, as well as effector CD4+ T cells and CD8+ cytotoxic T lymphocytes. Therefore, adenosine is indispensable in down-regulating anti-tumor immune responses in the tumor microenvironment and contributes to tumor progression. This review describes the current progress on the role of adenosine/adenosine receptor pathway in regulating the tumor-infiltrating immune cells that contribute to tumor immune evasion and aims to provide insights into adenosine-targeted tumor immunotherapy.
Collapse
Affiliation(s)
- Jianlei Xing
- Department of Immunology, School of Basic Medicine, China Medical University, Shenyang 100001, China
- College of Life Science and Bioengineering, Beijing Jiaotong University, Beijing 100044, China
| | - Jinhua Zhang
- College of Life Science and Bioengineering, Beijing Jiaotong University, Beijing 100044, China
| | - Jinyan Wang
- Department of Immunology, School of Basic Medicine, China Medical University, Shenyang 100001, China
| |
Collapse
|
16
|
Abate E, Mehdi M, Addisu S, Degef M, Tebeje S, Kelemu T. Emerging roles of cytosolic phosphoenolpyruvate kinase 1 (PCK1) in cancer. Biochem Biophys Rep 2023; 35:101528. [PMID: 37637941 PMCID: PMC10457690 DOI: 10.1016/j.bbrep.2023.101528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 07/20/2023] [Accepted: 08/09/2023] [Indexed: 08/29/2023] Open
Abstract
Although it was traditionally believed that gluconeogenesis enzymes were absent from cancers that did not originate in gluconeogenic organs, numerous investigations have shown that they are functionally expressed in a variety of tumors as mediators of shortened forms of Gluconeogenesis. One of the isomers of PEPCK, the first-rate limiting enzyme in gluconeogenesis, is PCK 1, which catalyzes the conversion of oxaloacetate (OAA) and GTP into PEP, CO2, and GDP. It is also known as PEPCK-C or PCK1, and it is cytosolic. Despite being paradoxical, it has been demonstrated that, in addition to its enzymatic role in normal metabolism, this enzyme also plays a role in tumors that arise in gluconeogenic and non-gluconeogenic organs. According to newly available research, it has metabolic and non-metabolic roles in tumor progression and development. Thus, this review will give insight into PCK1 relationship, function, and mechanism in or with different types of cancer using contemporary findings.
Collapse
Affiliation(s)
- Ebsitu Abate
- Department of Medical Biochemistry, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Mohammed Mehdi
- Department of Medical Biochemistry, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Sisay Addisu
- Department of Medical Biochemistry, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Maria Degef
- Department of Medical Biochemistry, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Solomon Tebeje
- Department of Medical Biochemistry, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Tsehayneh Kelemu
- Department of Medical Biochemistry, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| |
Collapse
|
17
|
Mafi A, Rismanchi H, Gholinezhad Y, Mohammadi MM, Mousavi V, Hosseini SA, Milasi YE, Reiter RJ, Ghezelbash B, Rezaee M, Sheida A, Zarepour F, Asemi Z, Mansournia MA, Mirzaei H. Melatonin as a regulator of apoptosis in leukaemia: molecular mechanism and therapeutic perspectives. Front Pharmacol 2023; 14:1224151. [PMID: 37645444 PMCID: PMC10461318 DOI: 10.3389/fphar.2023.1224151] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 07/19/2023] [Indexed: 08/31/2023] Open
Abstract
Leukaemia is a dangerous malignancy that causes thousands of deaths every year throughout the world. The rate of morbidity and mortality is significant despite many advancements in therapy strategies for affected individuals. Most antitumour medications used now in clinical oncology use apoptotic signalling pathways to induce cancer cell death. Accumulated data have shown a direct correlation between inducing apoptosis in cancer cells with higher tumour regression and survival. Until now, the efficacy of melatonin as a powerful antitumour agent has been firmly established. A change in melatonin concentrations has been reported in multiple tumours such as endometrial, hematopoietic, and breast cancers. Findings show that melatonin's anticancer properties, such as its prooxidation function and ability to promote apoptosis, indicate the possibility of utilizing this natural substance as a promising agent in innovative cancer therapy approaches. Melatonin stimulates cell apoptosis via the regulation of many apoptosis facilitators, including mitochondria, cytochrome c, Bcl-2, production of reactive oxygen species, and apoptosis receptors. This paper aimed to further assess the anticancer effects of melatonin through the apoptotic pathway, considering the role that cellular apoptosis plays in the pathogenesis of cancer. The effect of melatonin may mean that it is appropriate for use as an adjuvant, along with other therapeutic approaches such as radiotherapy and chemotherapy.
Collapse
Affiliation(s)
- Alireza Mafi
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
- Nutrition and Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Hamidreza Rismanchi
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Yasaman Gholinezhad
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Vahide Mousavi
- School of Medicine, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Seyed Ali Hosseini
- School of Medicine, Babol University of Medical Sciences, Babol, Mazandaran, Iran
| | - Yaser Eshaghi Milasi
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Russel J. Reiter
- Department of Cell Systems and Anatomy, UT Health Long School of Medicine, San Antonio, TX, United States
| | - Behrooz Ghezelbash
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Malihe Rezaee
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Tehran Heart Center, Cardiovascular Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Fatemeh Zarepour
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Mohammad Ali Mansournia
- Department of Epidemiology and Biostatistics, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
18
|
Ishikane S, Arioka M, Takahashi-Yanaga F. Promising small molecule anti-fibrotic agents: Newly developed or repositioned drugs targeting myofibroblast transdifferentiation. Biochem Pharmacol 2023; 214:115663. [PMID: 37336252 DOI: 10.1016/j.bcp.2023.115663] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/11/2023] [Accepted: 06/13/2023] [Indexed: 06/21/2023]
Abstract
Fibrosis occurs in all organs and tissues except the brain, and its progression leads to dysfunction of affected organs. Fibrosis-induced organ dysfunction results from the loss of elasticity, strength, and functionality of tissues due to the extracellular matrix secreted by myofibroblasts that express smooth muscle-type actin as a marker. Myofibroblasts, which play a major role in fibrosis, were once thought to originate exclusively from activated fibroblasts; however, it is now clear that myofibroblasts are diverse in origin, from epithelial cells, endothelial cells, adipocytes, macrophages, and other cells. Fibrosis of vital organs, such as the heart, lungs, kidneys, and liver, is a serious chronic disease that ultimately leads to death. Currently, anti-cancer drugs have made remarkable progress, as evidenced by the development of many molecular-targeted drugs, and are making a significant contribution to improving the prognosis of cancer treatment. However, the development of anti-fibrotic agents, which also play an important role in prognosis, has lagged. In this review, the current knowledge regarding myofibroblasts is summarized, with particular attention given to their origin and transdifferentiation signaling pathways (e.g., TGF-β, Wnt/β-catenin, YAP/TAZ and AMPK signaling pathways). The development of new small molecule anti-fibrotic agents and the repositioning of existing drugs targeting myofibroblast transdifferentiation are discussed.
Collapse
Affiliation(s)
- Shin Ishikane
- Department of Pharmacology, Faculty of Medicine, University of Occupational and Environmental Health, Kitakyushu, 807-8555, Japan
| | - Masaki Arioka
- Department of Pharmacology, Faculty of Medicine, University of Occupational and Environmental Health, Kitakyushu, 807-8555, Japan
| | - Fumi Takahashi-Yanaga
- Department of Pharmacology, Faculty of Medicine, University of Occupational and Environmental Health, Kitakyushu, 807-8555, Japan.
| |
Collapse
|
19
|
Liu C, Chen H, Hu B, Shi J, Chen Y, Huang K. New insights into the therapeutic potentials of statins in cancer. Front Pharmacol 2023; 14:1188926. [PMID: 37484027 PMCID: PMC10359995 DOI: 10.3389/fphar.2023.1188926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Accepted: 06/27/2023] [Indexed: 07/25/2023] Open
Abstract
The widespread clinical use of statins has contributed to significant reductions of cardiovascular morbidity and mortality. Increasing preclinical and epidemiological evidences have revealed that dyslipidemia is an important risk factor for carcinogenesis, invasion and metastasis, and that statins as powerful inhibitor of HMG-CoA reductase can exert prevention and intervention effects on cancers, and promote sensitivity to anti-cancer drugs. The anti-cancer mechanisms of statins include not only inhibition of cholesterol biosynthesis, but also their pleiotropic effects in modulating angiogenesis, apoptosis, autophagy, tumor metastasis, and tumor microenvironment. Moreover, recent clinical studies have provided growing insights into the therapeutic potentials of statins and the feasibility of combining statins with other anti-cancer agents. Here, we provide an updated review on the application potential of statins in cancer prevention and treatment and summarize the underneath mechanisms, with focuses on data from clinical studies.
Collapse
Affiliation(s)
- Chengyu Liu
- Department of Transfusion Medicine, Wuhan Hospital of Traditional Chinese and Western Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hong Chen
- Tongji School of Pharmacy, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, China
| | - Bicheng Hu
- Department of Transfusion Medicine, Wuhan Hospital of Traditional Chinese and Western Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiajian Shi
- Tongji School of Pharmacy, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, China
| | - Yuchen Chen
- Tongji School of Pharmacy, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, China
| | - Kun Huang
- Tongji School of Pharmacy, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, China
- Tongji-RongCheng Biomedical Center, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
20
|
Bar-Tana J. mTORC1 syndrome (TorS): unified paradigm for diabetes/metabolic syndrome. Trends Endocrinol Metab 2023; 34:135-145. [PMID: 36717300 DOI: 10.1016/j.tem.2023.01.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/23/2022] [Accepted: 01/02/2023] [Indexed: 01/30/2023]
Abstract
'Glucolipotoxicity' and 'insulin resistance' are claimed to drive type 2 diabetes (T2D) and the non-glycemic diseases of the metabolic syndrome (MetS) (obesity, dyslipidemia, hypertension). In line with that, glycemic and/or insulin control are considered to be primary goal in treating T2D/MetS. However, recent standard-of-care (SOC) treatments of T2D, initially designed to control T2D hyperglycemia, appear now to alleviate the cardio-renal and non-glycemic diseases of T2D/MetS independently of glucose lowering and insulin resistance, and in non-T2D patients altogether, calling for an alternative unifying pathophysiology/treatment paradigm for T2D/MetS. This opinion article proposes to replace the current 'glucolipotoxic/insulin-resistance' paradigm of T2D/MetS with an 'mammalian target of rapamycin complex 1 (mTORC1) syndrome' (TorS) paradigm, implying an exhaustive cohesive disease entity driven by an upstream hyperactive mTORC1, and which includes diabetic hyperglycemia, diabetic dyslipidemia, hypertension, diabetic macrovascular and microvascular disease, non-alcoholic fatty liver disease, some cancers, neurodegeneration, polycystic ovary syndrome (PCOS), psoriasis, and others. The TorS paradigm may account for the insulin-resistant glycemic context of TorS, combined with response to insulin of the non-glycemic diseases of TorS. The TorS paradigm may account for the efficacy of current antidiabetic SOC treatments in diabetic and nondiabetic patients. Most importantly, the TorS paradigm may generate novel treatments for TorS.
Collapse
Affiliation(s)
- Jacob Bar-Tana
- Hebrew University Medical School, Jerusalem 91120, Israel.
| |
Collapse
|
21
|
Sekhavati N, Noori E, Abbasifard M, Butler AE, Sahebkar A. How statin drugs affect exosomes? J Cell Biochem 2023; 124:171-180. [PMID: 36565475 DOI: 10.1002/jcb.30363] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 11/25/2022] [Accepted: 12/16/2022] [Indexed: 12/25/2022]
Abstract
Statins reduce serum cholesterol and isoprenoids by the inhibition of cholesterol synthesis in the mevalonate pathway. Exosomes are extracellular vesicles (30-200 nm) released by all cells that regulate cell-to-cell communication in health and disease by transferring functional proteins, metabolites and nucleic acids to recipient cells. There are many reports that show an effect of statins on exosomes, from their production and release to their content and performance. In this review, we have summarized existing data on the impact of statins on the biosynthesis, secretion, content, uptake and function of exosomes.
Collapse
Affiliation(s)
- Niloofar Sekhavati
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Elmira Noori
- Department of Immunology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mitra Abbasifard
- Immunology of Infectious Diseases Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Alexandra E Butler
- Research Department, Royal College of Surgeons in Ireland Bahrain, Adliya, Bahrain
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,School of Medicine, The University of Western Australia, Perth, Australia.,School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
22
|
Lashgari NA, Roudsari NM, Zadeh SST, Momtaz S, Abbasifard M, Reiner Ž, Abdolghaffari AH, Sahebkar A. Statins block mammalian target of rapamycin pathway: a possible novel therapeutic strategy for inflammatory, malignant and neurodegenerative diseases. Inflammopharmacology 2023; 31:57-75. [PMID: 36574095 PMCID: PMC9792946 DOI: 10.1007/s10787-022-01077-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 07/12/2022] [Indexed: 12/28/2022]
Abstract
Inflammation plays a critical role in several diseases such as cancer, gastric, heart and nervous system diseases. Data suggest that the activation of mammalian target of rapamycin (mTOR) pathway in epithelial cells leads to inflammation. Statins, the inhibitors of the 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA), seem to be able to inhibit the mTOR. Statins are considered to have favorable effects on inflammatory diseases by reducing the complications caused by inflammation and by regulating the inflammatory process and cytokines secretion. This critical review collected data on this topic from clinical, in vivo and in vitro studies published between 1998 and June 2022 in English from databases including PubMed, Google Scholar, Scopus, and Cochrane libraries.
Collapse
Affiliation(s)
- Naser-Aldin Lashgari
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Nazanin Momeni Roudsari
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | | | - Saeideh Momtaz
- Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Tehran, Iran
- Toxicology and Diseases Group (TDG), The Institute of Pharmaceutical Sciences (TIPS), and Faculty of Pharmacy, Pharmaceutical Sciences Research Center (PSRC), Tehran University of Medical Sciences, Tehran, Iran
- GI Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Mitra Abbasifard
- Immunology of Infectious Diseases Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
- Department of Internal Medicine, Ali-Ibn Abi-Talib Hospital, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Željko Reiner
- Department of Internal Medicine, School of Medicine, University Hospital Center Zagreb, University of Zagreb, Zagreb, Croatia
| | - Amir Hossein Abdolghaffari
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
- Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Tehran, Iran.
- Toxicology and Diseases Group (TDG), The Institute of Pharmaceutical Sciences (TIPS), and Faculty of Pharmacy, Pharmaceutical Sciences Research Center (PSRC), Tehran University of Medical Sciences, Tehran, Iran.
- GI Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
- School of Medicine, The University of Western Australia, Perth, Australia.
- Department of Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
23
|
Modulation of the miR-122/Sirt-6/ACE2 axis on experimentally-induced myocardial infarction. Chem Biol Interact 2023; 369:110276. [PMID: 36414029 DOI: 10.1016/j.cbi.2022.110276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 11/03/2022] [Accepted: 11/18/2022] [Indexed: 11/20/2022]
Abstract
Myocardial infarction (MI) is a progressive myocardial necrosis that can lead to a number of life-threatening complications. MiRNAs have a crucial role in the pathogenesis of many cardiovascular diseases. Remarkably, miR-122 targets the sirtuin-6 (Sirt-6) gene, which is an essential regulator of cardiovascular function and is considered a partial angiotensin converting enzyme 2 (ACE2) activator. Modulation of this axis is supposed to contribute to MI pathogenesis. The current study aims to investigate the cardioprotective effects of xanthenone through targeting the miR-122/Sirt-6/ACE2 axis on experimentally-induced MI in rats. Xanthenone was administered for 14 days and isoprenaline was injected in the last 2 days of the experiment. Xanthenone treatment resulted in a significant downregulation of miR-122, which further upregulated Sirt-6 and thus activated the adenosine monophosphate-activated protein kinase (AMPK). AMPK increases ACE2 levels and results in a decrease in the level of its substrate angiotensin II resulting in the normalization of the inflammatory cytokines and the cardiac biomarkers. Finally, by targeting the miR-122/Sirt-6/AMPK/ACE2 axis, xanthenone has the potential to be a promising cardioprotective agent against MI.
Collapse
|
24
|
Lashgari NA, Roudsari NM, Shamsnia H, Shayan M, Momtaz S, Abdolghaffari AH, Matbou Riahi M, Jamialahmadi T, Guest PC, Reiner Ž, Sahebkar A. Statins: Beneficial Effects in Treatment of COVID-19. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1412:457-476. [PMID: 37378783 DOI: 10.1007/978-3-031-28012-2_25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/29/2023]
Abstract
The recent viral disease COVID-19 has attracted much attention. The disease is caused by SARS-CoV-19 virus which has different variants and mutations. The mortality rate of SARS-CoV-19 is high and efforts to establish proper therapeutic solutions are still ongoing. Inflammation plays a substantial part in the pathogenesis of this disease causing mainly lung tissue destruction and eventually death. Therefore, anti-inflammatory drugs or treatments that can inhibit inflammation are important options. Various inflammatory pathways such as nuclear factor Kappa B (NF-κB), signal transducer of activators of transcription (STAT), nod-like receptor family protein 3 (NLRP), toll-like receptors (TLRs), mitogen-activated protein kinase (MAPK), and mammalian target of rapamycin (mTOR) pathways and mediators, such as interleukin (IL)-6, IL-1β, tumor necrosis factor-α (TNF-α), and interferon-γ (INF-γ), cause cell apoptosis, reduce respiratory capacity and oxygen supply, eventually inducing respiratory system failure and death. Statins are well known for controlling hypercholesterolemia and may serve to treat COVID-19 due to their pleiotropic effects among which are anti-inflammatory in nature. In this chapter, the anti-inflammatory effects of statins and their possible beneficial effects in COVID-19 treatment are discussed. Data were collected from experimental and clinical studies in English (1998-October 2022) from Google Scholar, PubMed, Scopus, and the Cochrane Library.
Collapse
Affiliation(s)
- Naser-Aldin Lashgari
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- GI Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Nazanin Momeni Roudsari
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- GI Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Hedieh Shamsnia
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- GI Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Maryam Shayan
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Saeideh Momtaz
- GI Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Karaj, Iran
- Toxicology and Diseases Group (TDG), Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), and Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Amir Hossein Abdolghaffari
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- GI Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Maryam Matbou Riahi
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Tannaz Jamialahmadi
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Paul C Guest
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
- Department of Psychiatry, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
- Laboratory of Translational Psychiatry, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| | | | - Amirhossein Sahebkar
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
25
|
Mostafa Arabi S, Sadat Bahrami L, MalekAhmadi M, Chambari M, Milkarizi N, Orekhov AN, Sahebkar A. The effect of combination therapy with statins and ezetimibe on proinflammatory cytokines: A systematic review and meta-analysis of randomized controlled trials. Int Immunopharmacol 2022; 113:109477. [DOI: 10.1016/j.intimp.2022.109477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 11/14/2022] [Accepted: 11/15/2022] [Indexed: 11/21/2022]
|
26
|
Kassaian SE, Gandhi B, Barac A. Cardio-oncology: Implications for Clinical Practice for Women. Curr Cardiol Rep 2022; 24:1685-1698. [PMID: 36112292 DOI: 10.1007/s11886-022-01779-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/21/2022] [Indexed: 01/11/2023]
Abstract
PURPOSE OF REVIEW Clinical cardio-oncology considerations specific to women span across many areas and are particularly relevant for management of patients with sex-specific cancers, such as breast cancer. RECENT FINDINGS Major improvement in breast cancer survivorship over the last decade and the recognition of CV disease as the second leading cause of death among survivors point to the relevance of long-term cardiovascular (CV) safety. This review summarizes the CV effects associated with multimodality breast cancer treatments and contemporary approach to CV risk stratification, prevention, early detection, monitoring, and management at the time of cancer diagnosis, during and after completion of treatment. We highlight the growing role of a multidisciplinary, team-based approach for comprehensive CV and oncology care through the entire cancer treatment continuum, from diagnosis through survivorship.
Collapse
Affiliation(s)
- Seyed Ebrahim Kassaian
- J.D. Murphy Jr. Cardio-Oncology Fellowship Program, MedStar Heart and Vascular Institute, MedStar Washington Hospital Center, Georgetown University, 110 Irving Street, NW, Suite 1A130, Washington, DC, 20010, USA
| | - Bhumika Gandhi
- Cancer Survivorship Program, MedStar Georgetown University Hospital, 3800 Reservoir Road, Washington, DC, 20007, USA
| | - Ana Barac
- MedStar Heart and Vascular Institute, MedStar Washington Hospital Center, Georgetown University, 110 Irving Street, NW, Suite 1A130, Washington, DC, 20010, USA.
| |
Collapse
|
27
|
Amyloid β, Lipid Metabolism, Basal Cholinergic System, and Therapeutics in Alzheimer’s Disease. Int J Mol Sci 2022; 23:ijms232012092. [PMID: 36292947 PMCID: PMC9603563 DOI: 10.3390/ijms232012092] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/04/2022] [Accepted: 10/06/2022] [Indexed: 12/05/2022] Open
Abstract
The presence of insoluble aggregates of amyloid β (Aβ) in the form of neuritic plaques (NPs) is one of the main features that define Alzheimer’s disease. Studies have suggested that the accumulation of these peptides in the brain significantly contributes to extensive neuronal loss. Furthermore, the content and distribution of cholesterol in the membrane have been shown to have an important effect on the production and subsequent accumulation of Aβ peptides in the plasma membrane, contributing to dysfunction and neuronal death. The monomeric forms of these membrane-bound peptides undergo several conformational changes, ranging from oligomeric forms to beta-sheet structures, each presenting different levels of toxicity. Aβ peptides can be internalized by particular receptors and trigger changes from Tau phosphorylation to alterations in cognitive function, through dysfunction of the cholinergic system. The goal of this review is to summarize the current knowledge on the role of lipids in Alzheimer’s disease and their relationship with the basal cholinergic system, as well as potential disease-modifying therapies.
Collapse
|
28
|
Greer YE, Hernandez L, Fennell EMJ, Kundu M, Voeller D, Chari R, Gilbert SF, Gilbert TSK, Ratnayake S, Tang B, Hafner M, Chen Q, Meerzaman D, Iwanowicz E, Annunziata CM, Graves LM, Lipkowitz S. Mitochondrial Matrix Protease ClpP Agonists Inhibit Cancer Stem Cell Function in Breast Cancer Cells by Disrupting Mitochondrial Homeostasis. CANCER RESEARCH COMMUNICATIONS 2022; 2:1144-1161. [PMID: 36388465 PMCID: PMC9645232 DOI: 10.1158/2767-9764.crc-22-0142] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Mitochondria are multifaceted organelles which are important for bioenergetics, biosynthesis and signaling in metazoans. Mitochondrial functions are frequently altered in cancer to promote both the energy and the necessary metabolic intermediates for biosynthesis required for tumor growth. Cancer stem cells (CSCs) contribute to chemotherapy resistance, relapse, and metastasis. Recent studies have shown that while non-stem, bulk cancer cells utilize glycolysis, breast CSCs are more dependent on oxidative phosphorylation (OxPhos) and therefore targeting mitochondria may inhibit CSC function. We previously reported that small molecule ONC201, which is an agonist for the mitochondrial caseinolytic protease (ClpP), induces mitochondrial dysfunction in breast cancer cells. In this study, we report that ClpP agonists inhibit breast cancer cell proliferation and CSC function in vitro and in vivo. Mechanistically, we found that OxPhos inhibition downregulates multiple pathways required for CSC function, such as the mevalonate pathway, YAP, Myc, and the HIF pathway. ClpP agonists showed significantly greater inhibitory effect on CSC functions compared with other mitochondria-targeting drugs. Further studies showed that ClpP agonists deplete NAD(P)+ and NAD(P)H, induce redox imbalance, dysregulate one-carbon metabolism and proline biosynthesis. Downregulation of these pathways by ClpP agonists further contribute to the inhibition of CSC function. In conclusion, ClpP agonists inhibit breast CSC functions by disrupting mitochondrial homeostasis in breast cancer cells and inhibiting multiple pathways critical to CSC function. Significance ClpP agonists disrupt mitochondrial homeostasis by activating mitochondrial matrix protease ClpP. We report that ClpP agonists inhibit cell growth and cancer stem cell functions in breast cancer models by modulating multiple metabolic pathways essential to cancer stem cell function.
Collapse
Affiliation(s)
| | | | - Emily M. J. Fennell
- Department of Pharmacology, University of North Carolina School of Medicine, Chapel Hill, NC
| | | | | | - Raj Chari
- Genome Modification Core, Frederick National Laboratory for Cancer Research, NCI, NIH, Frederick, MD
| | | | - Thomas S. K. Gilbert
- Department of Pharmacology, University of North Carolina School of Medicine, Chapel Hill, NC
| | - Shashikala Ratnayake
- Center for Biomedical Informatics and Information Technology, National Cancer Institute, Rockville, MD
| | - Binwu Tang
- Laboratory of Cancer Biology and Genetics, NCI, NIH
| | - Markus Hafner
- RNA Molecular Biology Group, Laboratory of Muscle Stem Cells and Gene Regulation, NIAMS, NIH, Bethesda, MD
| | - Qingrong Chen
- Center for Biomedical Informatics and Information Technology, National Cancer Institute, Rockville, MD
| | - Daoud Meerzaman
- Center for Biomedical Informatics and Information Technology, National Cancer Institute, Rockville, MD
| | | | | | - Lee M. Graves
- Department of Pharmacology, University of North Carolina School of Medicine, Chapel Hill, NC
| | | |
Collapse
|
29
|
Tu T, Alba MM, Datta AA, Hong H, Hua B, Jia Y, Khan J, Nguyen P, Niu X, Pammidimukkala P, Slarve I, Tang Q, Xu C, Zhou Y, Stiles BL. Hepatic macrophage mediated immune response in liver steatosis driven carcinogenesis. Front Oncol 2022; 12:958696. [PMID: 36276076 PMCID: PMC9581256 DOI: 10.3389/fonc.2022.958696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 08/17/2022] [Indexed: 12/02/2022] Open
Abstract
Obesity confers an independent risk for carcinogenesis. Classically viewed as a genetic disease, owing to the discovery of tumor suppressors and oncogenes, genetic events alone are not sufficient to explain the progression and development of cancers. Tumor development is often associated with metabolic and immunological changes. In particular, obesity is found to significantly increase the mortality rate of liver cancer. As its role is not defined, a fundamental question is whether and how metabolic changes drive the development of cancer. In this review, we will dissect the current literature demonstrating that liver lipid dysfunction is a critical component driving the progression of cancer. We will discuss the involvement of inflammation in lipid dysfunction driven liver cancer development with a focus on the involvement of liver macrophages. We will first discuss the association of steatosis with liver cancer. This will be followed with a literature summary demonstrating the importance of inflammation and particularly macrophages in the progression of liver steatosis and highlighting the evidence that macrophages and macrophage produced inflammatory mediators are critical for liver cancer development. We will then discuss the specific inflammatory mediators and their roles in steatosis driven liver cancer development. Finally, we will summarize the molecular pattern (PAMP and DAMP) as well as lipid particle signals that are involved in the activation, infiltration and reprogramming of liver macrophages. We will also discuss some of the therapies that may interfere with lipid metabolism and also affect liver cancer development.
Collapse
Affiliation(s)
- Taojian Tu
- Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, United States
| | - Mario M. Alba
- Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, United States
| | - Aditi A. Datta
- Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, United States
| | - Handan Hong
- Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, United States
| | - Brittney Hua
- Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, United States
| | - Yunyi Jia
- Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, United States
| | - Jared Khan
- Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, United States
| | - Phillip Nguyen
- Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, United States
| | - Xiatoeng Niu
- Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, United States
| | - Pranav Pammidimukkala
- Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, United States
| | - Ielyzaveta Slarve
- Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, United States
| | - Qi Tang
- Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, United States
| | - Chenxi Xu
- Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, United States
| | - Yiren Zhou
- Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, United States
| | - Bangyan L. Stiles
- Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, United States
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
- *Correspondence: Bangyan L. Stiles,
| |
Collapse
|
30
|
Zahedipour F, Butler AE, Eid AH, Sahebkar A. Pleiotropic properties of statins via angiogenesis modulation in cardiovascular disease. Drug Discov Today 2022; 27:103325. [PMID: 35872297 DOI: 10.1016/j.drudis.2022.07.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 06/30/2022] [Accepted: 07/19/2022] [Indexed: 12/15/2022]
Abstract
Inhibition of hydroxymethylglutaryl-coenzyme A (HMG-CoA) reductase by statins is affected by inhibiting the active site of the enzyme in a competitive manner. Statins reduce plasma cholesterol by inhibiting its de novo synthesis. In addition, statins impart 'pleiotropic' activities that do not directly relate to their ability to decrease cholesterol. The proangiogenic and antiangiogenic characteristics of statins are among these pleiotropic effects. These angiogenic-modifying properties could offer new therapeutic applications. Statins stimulate or suppress angiogenesis in a biphasic manner. Whereas low doses of statin stimulate angiogenesis, high doses reduce protein prenylation and limit cell development and angiogenesis. In this review, we discuss how statins impact angiogenesis, with a particular focus on angiogenesis in stroke and cardiovascular disease (CVD).
Collapse
Affiliation(s)
- Fatemeh Zahedipour
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Alexandra E Butler
- Research Department, Royal College of Surgeons in Ireland, Bahrain, Adliya, Bahrain
| | - Ali H Eid
- Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, Doha, Qatar
| | - Amirhossein Sahebkar
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; School of Medicine, The University of Western Australia, Perth, WA, Australia; Department of Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
31
|
Statins and angiogenesis in non-cardiovascular diseases. Drug Discov Today 2022; 27:103320. [PMID: 35850434 DOI: 10.1016/j.drudis.2022.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 06/06/2022] [Accepted: 07/12/2022] [Indexed: 12/15/2022]
Abstract
Statins inhibit HMG-CoA reductase by competitively inhibiting the active site of the enzyme, thus preventing cholesterol synthesis and reducing the risk of developing cardiovascular disease. Many pleiotropic effects of statins have been demonstrated that can be either related or unrelated to their cholesterol-lowering ability. Among these effects are their proangiogenic and antiangiogenic properties that could offer new therapeutic applications. In this regard, pro- and anti-angiogenic properties of statins have been shown to be dose dependent. Statins also appear to have a variety of non-cardiovascular angiogenic effects in many diseases, some examples being ocular disease, brain disease, cancer, preeclampsia, diabetes and bone disease, which are discussed in this review using reports from in vitro and in vivo investigations.
Collapse
|
32
|
Shen Y, Wang XQ, Dai Y, Wang YX, Zhang RY, Lu L, Ding FH, Shen WF. Diabetic dyslipidemia impairs coronary collateral formation: An update. Front Cardiovasc Med 2022; 9:956086. [PMID: 36072863 PMCID: PMC9441638 DOI: 10.3389/fcvm.2022.956086] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 08/01/2022] [Indexed: 11/13/2022] Open
Abstract
Coronary collateralization is substantially impaired in patients with type 2 diabetes and occlusive coronary artery disease, which leads to aggravated myocardial ischemia and a more dismal prognosis. In a diabetic setting, altered serum lipid profiles and profound glycoxidative modification of lipoprotein particles induce endothelial dysfunction, blunt endothelial progenitor cell response, and severely hamper growth and maturation of collateral vessels. The impact of dyslipidemia and lipid-lowering treatments on coronary collateral formation has become a topic of heightened interest. In this review, we summarized the association of triglyceride-based integrative indexes, hypercholesterolemia, increased Lp(a) with its glycoxidative modification, as well as quantity and quality abnormalities of high-density lipoprotein with impaired collateral formation. We also analyzed the influence of innovative lipid-modifying strategies on coronary collateral development. Therefore, clinical management of diabetic dyslipidemia should take into account of its effect on coronary collateralization in patients with occlusive coronary artery disease.
Collapse
Affiliation(s)
- Ying Shen
- Department of Cardiovascular Medicine, School of Medicine, Ruijin Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Xiao Qun Wang
- Department of Cardiovascular Medicine, School of Medicine, Ruijin Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Yang Dai
- Department of Cardiovascular Medicine, School of Medicine, Ruijin Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Yi Xuan Wang
- Department of Cardiovascular Medicine, School of Medicine, Ruijin Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Rui Yan Zhang
- Department of Cardiovascular Medicine, School of Medicine, Ruijin Hospital, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Clinical Research Center for Interventional Medicine, Shanghai, China
| | - Lin Lu
- Department of Cardiovascular Medicine, School of Medicine, Ruijin Hospital, Shanghai Jiao Tong University, Shanghai, China
- Institute of Cardiovascular Disease, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Feng Hua Ding
- Department of Cardiovascular Medicine, School of Medicine, Ruijin Hospital, Shanghai Jiao Tong University, Shanghai, China
- *Correspondence: Feng Hua Ding,
| | - Wei Feng Shen
- Department of Cardiovascular Medicine, School of Medicine, Ruijin Hospital, Shanghai Jiao Tong University, Shanghai, China
- Institute of Cardiovascular Disease, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Wei Feng Shen,
| |
Collapse
|
33
|
Ataei S, Kesharwani P, Sahebkar A. Berberine: Ins and outs of a nature-made PCSK9 inhibitor. EXCLI JOURNAL 2022; 21:1099-1110. [PMID: 36381647 PMCID: PMC9650693 DOI: 10.17179/excli2022-5234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 08/04/2022] [Indexed: 01/25/2023]
Abstract
Proprotein convertase subtilisin/kexin type 9 (PCSK9) is a secreted protein and a critical regulator of low-density lipoprotein-cholesterol (LDL-C) through inducing degradation of the LDL receptor (LDLR) within the hepatocyte lysosome. PCSK9 deficiency significantly improves the survival rate of cardiovascular disease (CVDs) patients. Up to now, various PCSK9 inhibition approaches have been tested. However, the currently available PCSK9 inhibitors' widespread use is limited due to their inconvenient method of administration and high cost. On the other hand, inhibiting PCSK9 with nutraceuticals is safe and affordable. The plant-derived compound berberine has shown anti-PCSK9 activity in several studies. Berberine is an isoquinoline quaternary alkaloid of phyto origin. Berberine treatment boosts the hepatic expression of LDLRs, while decreasing the expression and secretion of the LDLR modulator PCSK9. The current review presents a collection of in vitro and in vivo studies investigating berberine's effects on PCSK9 mRNA expression, protein level, and function.
Collapse
Affiliation(s)
- Sarina Ataei
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Amirhossein Sahebkar
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- School of Medicine, The University of Western Australia, Perth, Australia
- Department of Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
34
|
Ganjali S, Mansouri A, Abbasifard M, Moallem SA, Tayarani-Najaran Z, Sahebkar A. Association between Oxidative Burden and Restenosis: A Case-Control Study. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:3577761. [PMID: 35799893 PMCID: PMC9256427 DOI: 10.1155/2022/3577761] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 06/01/2022] [Accepted: 06/16/2022] [Indexed: 11/17/2022]
Abstract
Background In-stent restenosis (ISR) is an important clinical complication that occurs following stent implantation. The application of drug-eluting stents (DES) and even consumption of drugs such as antiplatelet agents and statins are not completely effective in reducing ISR risk. Since the number of these patients continues to rise, it is pivotal to detect patients who are at a higher risk of ISR. In addition, identification of biochemical markers of ISR could give the right perspective on choosing the proper strategy to treat these patients. Several pathophysiological pathways including oxidative stress (OS) are implicated in the progression of ISR. Hence, this study aimed to evaluate the association between oxidative/anti-oxidative markers and ISR. Methods This was a case-control study which comprised 21 ISR, 26 NISR (non-ISR), and 20 healthy subjects. The serum levels of OS markers including malondialdehyde (MDA), thiol groups (GSH), total antioxidant capacity (TAC), and the activity of serum antioxidant enzymes such as glutathione peroxidase (GPx) and superoxide dismutase (SOD) were assessed by colorimetric methods. The overall oxidative burden was assessed using a pro-oxidant-antioxidant balance (PAB) assay. Results MDA levels were considerably higher in the ISR group when compared to healthy subjects (P = 0.004). PAB also indicated significantly higher values in both ISR (P < 0.001) and NISR (P < 0.001) groups related to healthy subjects. No significant differences were observed between the studied groups regarding thiol levels, antioxidant enzyme activities, and TAC. Multinomial logistic regression analysis showed that elevated serum levels of MDA (OR: 1.028, 95% CI: 1.008-1.048; P = 0.006) and PAB (OR: 1.076, 95% CI: 1.017-1.139; P = 0.011) were significantly associated with higher ISR risk; however, increased values of TAC (OR: 0.990, 95% CI: 0.982-0.999; P = 0.030) were significantly associated with decreased ISR risk, while after adjustment for confounders, only SOD activity (OR: 0.0, 95% CI: 0.0-0.0; P < 0.001) and PAB value (OR: 1.866, 95% CI: 1.856-1.900; P < 0.001) showed association with ISR risk. Conclusion According to the present findings, some oxidative and antioxidative markers like PAB and SOD activity showed the potential in the prediction of ISR risk.
Collapse
Affiliation(s)
- Shiva Ganjali
- Department of Medical Biotechnology and Nanotechnology, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Atena Mansouri
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Cellular & Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Mitra Abbasifard
- Immunology of Infectious Diseases Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
- Department of Internal Medicine, Ali-Ibn Abi-Talib Hospital, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Seyed Adel Moallem
- Department of Pharmacology and Toxicology, College of Pharmacy, Al-Zahraa University for Women, Karbala, Iraq
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zahra Tayarani-Najaran
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Medical Toxicology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
35
|
Flores K, Siques P, Brito J, Arribas SM. AMPK and the Challenge of Treating Hypoxic Pulmonary Hypertension. Int J Mol Sci 2022; 23:ijms23116205. [PMID: 35682884 PMCID: PMC9181235 DOI: 10.3390/ijms23116205] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/29/2022] [Accepted: 04/30/2022] [Indexed: 02/01/2023] Open
Abstract
Hypoxic pulmonary hypertension (HPH) is characterized by sustained elevation of pulmonary artery pressure produced by vasoconstriction and hyperproliferative remodeling of the pulmonary artery and subsequent right ventricular hypertrophy (RVH). The search for therapeutic targets for cardiovascular pathophysiology has extended in many directions. However, studies focused on mitigating high-altitude pulmonary hypertension (HAPH) have been rare. Because AMP-activated protein kinase (AMPK) is involved in cardiovascular and metabolic pathology, AMPK is often studied as a potential therapeutic target. AMPK is best characterized as a sensor of cellular energy that can also restore cellular metabolic homeostasis. However, AMPK has been implicated in other pathways with vasculoprotective effects. Notably, cellular metabolic stress increases the intracellular ADP/ATP or AMP/ATP ratio, and AMPK activation restores ATP levels by activating energy-producing catabolic pathways and inhibiting energy-consuming anabolic pathways, such as cell growth and proliferation pathways, promoting cardiovascular protection. Thus, AMPK activation plays an important role in antiproliferative, antihypertrophic and antioxidant pathways in the pulmonary artery in HPH. However, AMPK plays contradictory roles in promoting HPH development. This review describes the main findings related to AMPK participation in HPH and its potential as a therapeutic target. It also extrapolates known AMPK functions to discuss the less-studied HAPH context.
Collapse
Affiliation(s)
- Karen Flores
- Institute of Health Studies, University Arturo Prat, Av. Arturo Prat 2120, Iquique 1110939, Chile; (P.S.); (J.B.)
- Institute DECIPHER, German-Chilean Institute for Research on Pulmonary Hypoxia and Its Health Sequelae, 20251 Hamburg, Germany and Iquique 1100000, Chile
- Correspondence: ; Tel.: +56-572526392
| | - Patricia Siques
- Institute of Health Studies, University Arturo Prat, Av. Arturo Prat 2120, Iquique 1110939, Chile; (P.S.); (J.B.)
- Institute DECIPHER, German-Chilean Institute for Research on Pulmonary Hypoxia and Its Health Sequelae, 20251 Hamburg, Germany and Iquique 1100000, Chile
| | - Julio Brito
- Institute of Health Studies, University Arturo Prat, Av. Arturo Prat 2120, Iquique 1110939, Chile; (P.S.); (J.B.)
- Institute DECIPHER, German-Chilean Institute for Research on Pulmonary Hypoxia and Its Health Sequelae, 20251 Hamburg, Germany and Iquique 1100000, Chile
| | - Silvia M. Arribas
- Department of Physiology, University Autonoma of Madrid, 28049 Madrid, Spain;
| |
Collapse
|
36
|
Regulatory Effects of Statins on SIRT1 and Other Sirtuins in Cardiovascular Diseases. Life (Basel) 2022; 12:life12050760. [PMID: 35629426 PMCID: PMC9146832 DOI: 10.3390/life12050760] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 05/17/2022] [Accepted: 05/18/2022] [Indexed: 12/22/2022] Open
Abstract
Adverse cardiovascular disease (CVD) outcomes, such as sudden cardiac death, acute myocardial infarction, and stroke, are often catastrophic. Statins are frequently used to attenuate the risk of CVD-associated morbidity and mortality through their impact on lipids and they may also have anti-inflammatory and other plaque-stabilization effects via different signaling pathways. Different statins, including atorvastatin, rosuvastatin, pravastatin, pitavastatin, and simvastatin, are administered to manage circulatory lipid levels. In addition, statins are potent inhibitors of 3-hydroxy-3-methylglutaryl coenzyme A (HMGCoA) reductase via modulating sirtuins (SIRTs). During the last two decades, SIRTs have been investigated in mammals and categorized as a family of nicotinamide adenine dinucleotide (NAD)-dependent histone deacetylases (HDACs) with significant oxidative stress regulatory function in cells—a key factor in extending cell lifespan. Recent work has demonstrated that statins upregulate SIRT1 and SIRT2 and downregulate SIRT6 in both in vitro and in vivo experiments and clinical trials. As statins show modulatory properties, especially in CVDs, future investigations are needed to delineate the role of SIRT family members in disease and to expand knowledge about the effects of statins on SIRTs. Here, we review what is currently known about the impact of statins on SIRTs and how these changes correlate with disease, particularly CVDs.
Collapse
|
37
|
Saka-Herrán C, Jané-Salas E, Mano-Azul A, Torrejón-Moya A, Estrugo-Devesa A, López-López J. Effects of the Prior Use of Statins on Head and Neck Cancer Risk: A Hospital-Based Case-Control Study. Pharmaceuticals (Basel) 2022; 15:579. [PMID: 35631405 PMCID: PMC9143475 DOI: 10.3390/ph15050579] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/02/2022] [Accepted: 05/04/2022] [Indexed: 02/05/2023] Open
Abstract
Mechanisms related to the potential beneficial effects of statins on cancer are mainly related to the inhibition of the mevalonate pathway. The purpose of this study was to assess the association between prior use of statins and the risk of head and neck cancer. A hospital-based case-control study was conducted at the Dentistry Hospital of the University of Barcelona, including 101 incident cases of head and neck cancer and 101 controls matched to cases by age and sex. Multivariate logistic regression models were used to assess the association between prior statin exposure and head and neck cancer risk. Of the 202 patients included in total, 28.2% had previously received prescriptions for statins. Prior use of statins was found in 25.7% of cases and 30.7% of controls. Exposure to statins was not associated with head and neck cancer risk (OR = 0.72; 95% CI 0.28-1.84; p = 0.49). There was also no time- or dose-dependent association. Similar trends were observed when analyzed by subsites of cancer and recurrence rate. Our findings do not support a beneficial effect of prior statin exposure on head and neck cancer risk. Future research relying on observational data should emulate randomized clinical trials before clinical implications for repurposing drugs can be drawn.
Collapse
Affiliation(s)
- Constanza Saka-Herrán
- Department of Odontostomatology, Faculty of Medicine and Health Sciences (Dentistry), University of Barcelona, 08970 Barcelona, Spain; (C.S.-H.); (E.J.-S.); (A.T.-M.); (A.E.-D.)
| | - Enric Jané-Salas
- Department of Odontostomatology, Faculty of Medicine and Health Sciences (Dentistry), University of Barcelona, 08970 Barcelona, Spain; (C.S.-H.); (E.J.-S.); (A.T.-M.); (A.E.-D.)
- Oral Health and Masticatory System Group (Bellvitge Biomedical Research Institute) IDIBELL, Faculty of Medicine and Health Sciences (Dentistry), University of Barcelona, 08970 Barcelona, Spain
| | - Antonio Mano-Azul
- Department of Oral Surgery, Oral Medicine, and Maxillofacial Surgery, Egas Moniz Higher Education School, Campus Universitario, Quinta da Granja, 2829-511 Caparica, Portugal;
| | - Aina Torrejón-Moya
- Department of Odontostomatology, Faculty of Medicine and Health Sciences (Dentistry), University of Barcelona, 08970 Barcelona, Spain; (C.S.-H.); (E.J.-S.); (A.T.-M.); (A.E.-D.)
| | - Albert Estrugo-Devesa
- Department of Odontostomatology, Faculty of Medicine and Health Sciences (Dentistry), University of Barcelona, 08970 Barcelona, Spain; (C.S.-H.); (E.J.-S.); (A.T.-M.); (A.E.-D.)
- Oral Health and Masticatory System Group (Bellvitge Biomedical Research Institute) IDIBELL, Faculty of Medicine and Health Sciences (Dentistry), University of Barcelona, 08970 Barcelona, Spain
| | - José López-López
- Department of Odontostomatology, Faculty of Medicine and Health Sciences (Dentistry), University of Barcelona, 08970 Barcelona, Spain; (C.S.-H.); (E.J.-S.); (A.T.-M.); (A.E.-D.)
- Oral Health and Masticatory System Group (Bellvitge Biomedical Research Institute) IDIBELL, Faculty of Medicine and Health Sciences (Dentistry), University of Barcelona, 08970 Barcelona, Spain
- Faculty Director & Head of Service of the Medical-Surgical Area of Dentistry Hospital, University of Barcelona, 08970 Barcelona, Spain
| |
Collapse
|
38
|
Li J, Bollati C, Bartolomei M, Mazzolari A, Arnoldi A, Vistoli G, Lammi C. Hempseed ( Cannabis sativa) Peptide H3 (IGFLIIWV) Exerts Cholesterol-Lowering Effects in Human Hepatic Cell Line. Nutrients 2022; 14:1804. [PMID: 35565772 PMCID: PMC9101684 DOI: 10.3390/nu14091804] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 04/22/2022] [Accepted: 04/24/2022] [Indexed: 02/04/2023] Open
Abstract
Hempseed (Cannabis sativa) protein is an important source of bioactive peptides. H3 (IGFLIIWV), a transepithelial transported intestinal peptide obtained from the hydrolysis of hempseed protein with pepsin, carries out antioxidant and anti-inflammatory activities in HepG2 cells. In this study, the main aim was to assess its hypocholesterolemic effects at a cellular level and the mechanisms behind this health-promoting activity. The results showed that peptide H3 inhibited the 3-hydroxy-3-methylglutaryl co-enzyme A reductase (HMGCoAR) activity in vitro in a dose-dependent manner with an IC50 value of 59 μM. Furthermore, the activation of the sterol regulatory element binding proteins (SREBP)-2 transcription factor, followed by the increase of low-density lipoprotein (LDL) receptor (LDLR) protein levels, was observed in human hepatic HepG2 cells treated with peptide H3 at 25 µM. Meanwhile, peptide H3 regulated the intracellular HMGCoAR activity through the increase of its phosphorylation by the activation of AMP-activated protein kinase (AMPK)-pathways. Consequently, the augmentation of the LDLR localized on the cellular membranes led to the improved ability of HepG2 cells to uptake extracellular LDL with a positive effect on cholesterol levels. Unlike the complete hempseed hydrolysate (HP), peptide H3 can reduce the proprotein convertase subtilisin/kexin 9 (PCSK9) protein levels and its secretion in the extracellular environment via the decrease of hepatic nuclear factor 1-α (HNF1-α). Considering all these evidences, H3 may represent a new bioactive peptide to be used for the development of dietary supplements and/or peptidomimetics for cardiovascular disease (CVD) prevention.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Carmen Lammi
- Department of Pharmaceutical Sciences, University of Milan, Via Mangiagalli 25, 20133 Milan, Italy; (J.L.); (C.B.); (M.B.); (A.M.); (A.A.); (G.V.)
| |
Collapse
|
39
|
Li H, Zhang P, Lin H, Gao H, Yin J. ETC-1002 Attenuates Porphyromonas gingivalis Lipopolysaccharide-Induced Inflammation in RAW264.7 Cells via the AMPK/NF- κB Pathway and Exerts Ameliorative Effects in Experimental Periodontitis in Mice. DISEASE MARKERS 2022; 2022:8583674. [PMID: 35340409 PMCID: PMC8942644 DOI: 10.1155/2022/8583674] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 03/01/2022] [Accepted: 03/05/2022] [Indexed: 12/11/2022]
Abstract
Background Clinically, the failure of periodontal therapy stems largely from an inability to control the inflammatory response. Resolution of inflammation is an active, energy-requiring repair process, not merely a passive termination of inflammation. AMP-activated protein kinase (AMPK), a key energy sensor, has been shown to negatively regulate inflammatory signaling pathways. Thus, there is a crucial need for new therapeutic strategies to modulate AMPK and to promote enhanced resolution of inflammation. This study is aimed at investigating the anti-inflammatory effects of ETC-1002 through modulating AMPK in periodontitis. Methods RAW264.7 cells were infected with Pg-LPS in the presence or absence of ETC-1002, following which the expression levels of proinflammatory cytokines and inflammation signaling-related proteins were evaluated by real-time reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and western blotting. ETC-1002 was applied in a murine model of periodontitis to determine its anti-inflammatory effect in vivo. Histological changes were investigated by hematoxylin and eosin (H&E) staining, the levels of proinflammatory cytokines were detected using immunohistochemistry, and alveolar bone height was measured using micro-CT imaging. Results ETC-1002 inhibited the production of proinflammatory cytokines, promoted AMPK phosphorylation, and decreased IκBα and NF-κB p65 phosphorylation levels in Pg-LPS-treated RAW264.7 macrophages. The inhibitory effects of ETC-1002 on the production of proinflammatory mediators were significantly abrogated by siRNA-mediated silencing of AMPKα in RAW264.7 cells. In vivo, ETC-1002 inhibited inflammatory cell infiltration, the expression of proinflammatory cytokines, and the inflammation-mediated destruction of alveolar bone in mice with experimental periodontitis. The anti-inflammatory effect of ETC-1002 in the periodontium could be reversed by the administration of Compound C, an AMPK inhibitor. Conclusions ETC-1002 exerts anti-inflammatory effects in Pg-LPS-treated RAW264.7 cells via the AMPK/NF-κB pathway in vitro and inhibits the progress of experimental periodontitis in mice in an AMPK signaling-dependent manner in vivo. These results provide evidence for the beneficial effects of ETC-1002 in the treatment of periodontitis.
Collapse
Affiliation(s)
- Hongyan Li
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China
- Hospital of Stomatology, Jilin University & Jilin Provincial Key Laboratory of Oral Biomedical Engineering, Changchun 130021, China
| | - Peipei Zhang
- Hospital of Stomatology, Jilin University & Jilin Provincial Key Laboratory of Oral Biomedical Engineering, Changchun 130021, China
| | - Hongbing Lin
- Hospital of Stomatology, Jilin University & Jilin Provincial Key Laboratory of Oral Biomedical Engineering, Changchun 130021, China
| | - Huan Gao
- Department of Pharmacy, The First Hospital of Jilin University, Changchun 130021, China
| | - Jianyuan Yin
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China
| |
Collapse
|
40
|
Zahedipour F, Guest PC, Majeed M, Al-Rasadi K, Jamialahmadi T, Sahebkar A. Multiplex Testing of the Effect of Statins on Disease Severity Risk in COVID-19 Cases. Methods Mol Biol 2022; 2511:273-284. [PMID: 35838967 DOI: 10.1007/978-1-0716-2395-4_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Statins have pleiotropic effects on inflammatory responses in addition to their lipid-lowering action, which contributes to their favorable effect on cardiovascular disorders. Statins affect adhesion, migration, antigen presentation, and cytokine generation of immune cells. Pre-clinical and clinical studies suggest that statin intervention targeted early in the infection might help COVID-19 patients to reduce the effects of acute respiratory distress syndrome (ARDS), the cytokine storm, and vascular collapse by modulating harmful pathogenic mechanisms. This chapter presents a protocol for measuring blood-based biomarkers predictive of these responses in COVID-19 patients using two specific multiplex immunoassays that target proteins that differ widely in concentration.
Collapse
Affiliation(s)
- Fatemeh Zahedipour
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Paul C Guest
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | | | | | - Tannaz Jamialahmadi
- Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Sahebkar
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
- School of Medicine, The University of Western Australia, Perth, Australia.
- School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
41
|
Vahedian-Azimi A, Mannarino MR, Shojaie S, Rahimibashar F, Galeh HEG, Banach M, Bianconi V, Pirro M, Sahebkar A. The effect of statins on the prevalence and mortality of influenza virus infection: a systematic review and meta-analysis. Arch Med Sci 2022; 18:1513-1524. [PMID: 36457966 PMCID: PMC9710257 DOI: 10.5114/aoms/149633] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 04/30/2022] [Indexed: 11/17/2022] Open
Abstract
INTRODUCTION Influenza virus infection is associated with high morbidity and mortality, and so additional therapeutic strategies to reduce the burden for healthcare systems are needed. Statins, by virtue of their anti-inflammatory and immunomodulatory effects, have been hypothesized as capable of influencing the host's response against the influenza virus. The aim of this meta-analysis was to assess the effect of ongoing statin treatment on susceptibility to influenza virus infection and on influenza-associated mortality. MATERIAL AND METHODS Studies investigating the impact of statin treatment on influenza prevalence and mortality were searched for in the PubMed-Medline, Scopus, ISI Web of Knowledge, Embase, Proquest, OVID, EBSCO, and CINAHL databases (up to 8 November 2021). Fixed- and random-effects models and the generic inverse variance method were used for quantitative data synthesis. RESULTS In the meta-analysis of 14 arms of 2 eligible studies, including 14,997 flu-vaccinated and unvaccinated patients, treatment with statins was associated with a reduction of influenza virus prevalence (odds ratio (OR) = 0.85, 95% confidence interval (CI): 0.73-0.99; p = 0.040). No significant effect of statins on the susceptibility to influenza infection was observed in the distinct communities of either vaccinated or unvaccinated subjects. Among 9 arms of 6 eligible studies, including 87,204 patients, the use of statins among patients with influenza was associated with a reduced mortality (OR = 0.68, 95% CI: 0.56, 0.82; p < 0.001). This result was confirmed for both 30-day mortality since influenza infection diagnosis (OR = 0.61, 95% CI: 0.47, 0.80; p <0.001) and for up to 90-day mortality (OR = 0.74, 95% CI: 0.55, 1.00; p = 0.042). CONCLUSIONS Reduced influenza prevalence and increased survival from influenza infection was observed in patients on ongoing statin treatment. Further research is needed to define the possible role of statins as adjunctive therapy in patients with influenza infection.
Collapse
Affiliation(s)
- Amir Vahedian-Azimi
- Trauma Research Centre, Nursing Faculty, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Massimo R. Mannarino
- Unit of Internal Medicine, Angiology and Arteriosclerosis Diseases, Department of Medicine, University of Perugia, Perugia, Italy
| | - Sajad Shojaie
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Centre, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Farshid Rahimibashar
- Department of Anaesthesiology and Critical Care, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | | | - Maciej Banach
- Department of Hypertension, Chair of Nephrology and Hypertension, Medical University of Lodz, Lodz, Poland
- Cardiovascular Research Centre, University of Zielona Gora, Zielona Gora, Poland
| | - Vanessa Bianconi
- Unit of Internal Medicine, Angiology and Arteriosclerosis Diseases, Department of Medicine, University of Perugia, Perugia, Italy
| | - Matteo Pirro
- Unit of Internal Medicine, Angiology and Arteriosclerosis Diseases, Department of Medicine, University of Perugia, Perugia, Italy
| | - Amirhossein Sahebkar
- Biotechnology Research Centre, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Centre, Mashhad University of Medical Sciences, Mashhad, Iran
- School of Medicine, The University of Western Australia, Perth, Australia
- Department of Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
42
|
Harnessing Therapeutic Potentials of Statins Using Nanofibrous Carriers. Bioinorg Chem Appl 2021; 2021:7265505. [PMID: 34764991 PMCID: PMC8577946 DOI: 10.1155/2021/7265505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 10/14/2021] [Accepted: 10/21/2021] [Indexed: 11/17/2022] Open
Abstract
Statins are a wide category of 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase inhibitor drugs extensively prescribed for hypercholesterolemia. In fact, many studies showed beneficial effects of these agents on a variety of related illnesses, which include increased atherosclerotic plaque stability, decreased proliferation of vascular smooth muscle, platelet aggregation, the dampening of vascular inflammation, and also anabolic effects on bone tissue. Therefore, these drugs are considered as pleiotropic agents having different clinical applications other than those for which they were initially developed. Controlled drug delivery is an efficient way of delivery in tissue engineering. Amongst different controlled release formulations, nanofibers are a novel, alternative, widely used agent because of their unique properties. These include their sustained release of drug, a high drug-loading capacity, flexible shapes with a high surface-to-volume ratio, and superior porosity. Electrospinning is an economic and a simple method employed to produce nanofibers. In this report, studies related to statin nanofiber applications have been reviewed and their results have been summarized. Four different applications of statin nanofibers have been reported, including bone generation, endothelial stenosis and thrombosis, peripheral nerve injury, and anti-inflammatory action. Studies carried out both in vitro and in vivo showed effectiveness of statins in bone healing, aneurysm, and the healing of sciatic nerve injury. In addition, statins showed apoptosis effects and anti-inflammatory effects, with dose-dependent reduction of IL-6 and dose-independent reduction of TNF-α. Despite these promising results, validation via clinical trials is yet to be performed. The scope of statins in their pleiotropic range of actions is still not completely explored, and studies are still needed to enlighten different useful aspects of such drugs.
Collapse
|
43
|
Farfan-Morales CN, Cordero-Rivera CD, Reyes-Ruiz JM, Hurtado-Monzón AM, Osuna-Ramos JF, González-González AM, De Jesús-González LA, Palacios-Rápalo SN, Del Ángel RM. Anti-flavivirus Properties of Lipid-Lowering Drugs. Front Physiol 2021; 12:749770. [PMID: 34690817 PMCID: PMC8529048 DOI: 10.3389/fphys.2021.749770] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 09/20/2021] [Indexed: 12/11/2022] Open
Abstract
Although Flaviviruses such as dengue (DENV) and zika (ZIKV) virus are important human pathogens, an effective vaccine or antiviral treatment against them is not available. Hence, the search for new strategies to control flavivirus infections is essential. Several studies have shown that the host lipid metabolism could be an antiviral target because cholesterol and other lipids are required during the replicative cycle of different Flaviviridae family members. FDA-approved drugs with hypolipidemic effects could be an alternative for treating flavivirus infections. However, a better understanding of the regulation between host lipid metabolism and signaling pathways triggered during these infections is required. The metabolic pathways related to lipid metabolism modified during DENV and ZIKV infection are analyzed in this review. Additionally, the role of lipid-lowering drugs as safe host-targeted antivirals is discussed.
Collapse
Affiliation(s)
- Carlos Noe Farfan-Morales
- Department of Infectomics and Molecular Pathogenesis, Center for Research and Advanced Studies (CINVESTAV-IPN), Mexico City, Mexico
| | - Carlos Daniel Cordero-Rivera
- Department of Infectomics and Molecular Pathogenesis, Center for Research and Advanced Studies (CINVESTAV-IPN), Mexico City, Mexico
| | - José Manuel Reyes-Ruiz
- Unidad Médica de Alta Especialidad, Hospital de Especialidades No. 14, Centro Médico Nacional "Adolfo Ruiz Cortines," Instituto Mexicano del Seguro Social, Heroica Veracruz, Mexico
| | - Arianna M Hurtado-Monzón
- Department of Infectomics and Molecular Pathogenesis, Center for Research and Advanced Studies (CINVESTAV-IPN), Mexico City, Mexico
| | - Juan Fidel Osuna-Ramos
- Department of Infectomics and Molecular Pathogenesis, Center for Research and Advanced Studies (CINVESTAV-IPN), Mexico City, Mexico
| | - Arely M González-González
- Laboratorio de Ingeniería Tisular y Medicina Traslacional, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
| | - Luis Adrián De Jesús-González
- Department of Infectomics and Molecular Pathogenesis, Center for Research and Advanced Studies (CINVESTAV-IPN), Mexico City, Mexico
| | - Selvin Noé Palacios-Rápalo
- Department of Infectomics and Molecular Pathogenesis, Center for Research and Advanced Studies (CINVESTAV-IPN), Mexico City, Mexico
| | - Rosa María Del Ángel
- Department of Infectomics and Molecular Pathogenesis, Center for Research and Advanced Studies (CINVESTAV-IPN), Mexico City, Mexico
| |
Collapse
|
44
|
Orlandi P, Solini A, Banchi M, Brunetto MR, Cioni D, Ghiadoni L, Bocci G. Antiangiogenic Drugs in NASH: Evidence of a Possible New Therapeutic Approach. Pharmaceuticals (Basel) 2021; 14:ph14100995. [PMID: 34681219 PMCID: PMC8539163 DOI: 10.3390/ph14100995] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/22/2021] [Accepted: 09/27/2021] [Indexed: 12/14/2022] Open
Abstract
Non-alcoholic fatty liver disease is the most common liver disorder worldwide, and its progressive form non-alcoholic steatohepatitis (NASH) is a growing cause of liver cirrhosis and hepatocellular carcinoma (HCC). Lifestyle changes, which are capable of improving the prognosis, are hard to achieve, whereas a pharmacologic therapy able to combine efficacy and safety is still lacking. Looking at the pathophysiology of various liver diseases, such as NASH, fibrosis, cirrhosis, and HCC, the process of angiogenesis is a key mechanism influencing the disease progression. The relationship between the worsening of chronic liver disease and angiogenesis may suggest a possible use of drugs with antiangiogenic activity as a tool to stop or slow the progression of the disorder. In this review, we highlight the available preclinical data supporting a role of known antiangiogenic drugs (e.g., sorafenib), or phytotherapeutic compounds with multiple mechanism of actions, including also antiangiogenic activities (e.g., berberine), in the treatment of NASH.
Collapse
Affiliation(s)
- Paola Orlandi
- Dipartimento di Medicina Clinica e Sperimentale, Università di Pisa, Via Roma 55, 56126 Pisa, Italy; (P.O.); (M.B.); (M.R.B.); (L.G.)
| | - Anna Solini
- Dipartimento di Patologia Chirurgica, Medica, Molecolare e dell’Area Critica, Università di Pisa, 56126 Pisa, Italy; (A.S.); (D.C.)
| | - Marta Banchi
- Dipartimento di Medicina Clinica e Sperimentale, Università di Pisa, Via Roma 55, 56126 Pisa, Italy; (P.O.); (M.B.); (M.R.B.); (L.G.)
| | - Maurizia Rossana Brunetto
- Dipartimento di Medicina Clinica e Sperimentale, Università di Pisa, Via Roma 55, 56126 Pisa, Italy; (P.O.); (M.B.); (M.R.B.); (L.G.)
| | - Dania Cioni
- Dipartimento di Patologia Chirurgica, Medica, Molecolare e dell’Area Critica, Università di Pisa, 56126 Pisa, Italy; (A.S.); (D.C.)
| | - Lorenzo Ghiadoni
- Dipartimento di Medicina Clinica e Sperimentale, Università di Pisa, Via Roma 55, 56126 Pisa, Italy; (P.O.); (M.B.); (M.R.B.); (L.G.)
| | - Guido Bocci
- Dipartimento di Medicina Clinica e Sperimentale, Università di Pisa, Via Roma 55, 56126 Pisa, Italy; (P.O.); (M.B.); (M.R.B.); (L.G.)
- Correspondence: ; Tel.: +39-0502218756
| |
Collapse
|
45
|
Li D, Yang S, Xing Y, Pan L, Zhao R, Zhao Y, Liu L, Wu M. Novel Insights and Current Evidence for Mechanisms of Atherosclerosis: Mitochondrial Dynamics as a Potential Therapeutic Target. Front Cell Dev Biol 2021; 9:673839. [PMID: 34307357 PMCID: PMC8293691 DOI: 10.3389/fcell.2021.673839] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 06/16/2021] [Indexed: 12/12/2022] Open
Abstract
Cardiovascular disease (CVD) is the main cause of death worldwide. Atherosclerosis is the underlying pathological basis of CVD. Mitochondrial homeostasis is maintained through the dynamic processes of fusion and fission. Mitochondria are involved in many cellular processes, such as steroid biosynthesis, calcium homeostasis, immune cell activation, redox signaling, apoptosis, and inflammation, among others. Under stress conditions, mitochondrial dynamics, mitochondrial cristae remodeling, and mitochondrial ROS (mitoROS) production increase, mitochondrial membrane potential (MMP) decreases, calcium homeostasis is imbalanced, and mitochondrial permeability transition pore open (mPTP) and release of mitochondrial DNA (mtDNA) are activated. mtDNA recognized by TLR9 can lead to NF-κB pathway activation and pro-inflammatory factor expression. At the same time, TLR9 can also activate NLRP3 inflammasomes and release interleukin, an event that eventually leads to tissue damage and inflammatory responses. In addition, mitochondrial dysfunction may amplify the activation of NLRP3 through the production of mitochondrial ROS, which together aggravate accumulating mitochondrial damage. In addition, mtDNA defects or gene mutation can lead to mitochondrial oxidative stress. Finally, obesity, diabetes, hypertension and aging are risk factors for the progression of CVD, which are closely related to mitochondrial dynamics. Mitochondrial dynamics may represent a new target in the treatment of atherosclerosis. Antioxidants, mitochondrial inhibitors, and various new therapies to correct mitochondrial dysfunction represent a few directions for future research on therapeutic intervention and amelioration of atherosclerosis.
Collapse
Affiliation(s)
- Dan Li
- Guang'an Men Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Shengjie Yang
- Guang'an Men Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yanwei Xing
- Guang'an Men Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Limin Pan
- Guang'an Men Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ran Zhao
- Guang'an Men Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yixi Zhao
- Guang'an Men Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Longtao Liu
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Min Wu
- Guang'an Men Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|