1
|
Reitmayer A, Koth SC, Kobas B, Johnstone KR, Cook MM, Madigan C, Auer T. Effects of dynamic thermal conditioning on cognitive load and performance in an office environment. APPLIED ERGONOMICS 2025; 122:104395. [PMID: 39326260 DOI: 10.1016/j.apergo.2024.104395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/17/2024] [Accepted: 09/20/2024] [Indexed: 09/28/2024]
Abstract
In the design of buildings with minimal environmental impact, the incorporation of higher energy flexibility is becoming increasingly relevant. This approach is associated with dynamic modulations in setpoint temperatures. Until now, a link between indoor temperatures and cognitive performance of workers has been assumed, leading to high energy consumption and overcooling of office environments in summer conditions. However, research focusing on the relationship between thermal indoor environments and cognitive performance has rarely considered the influence of dynamic temperatures or temporal effects. This is the first experimental study aiming to understand the impact of temperature in relation to time of day on the subjective perception of cognitive load and performance under various thermal conditions in real-world office environments. The results indicated no observable relationship between temperature setpoints (25-30 °C) and cognitive performance. Instead, the temporal dynamics of cooling rather than fixed and static temperature setpoints appeared to have an impact.
Collapse
Affiliation(s)
- Amelie Reitmayer
- School of the Environment, The University of Queensland, St Lucia, Queensland, 4072, Australia.
| | - Sebastian Clark Koth
- Chair of Building Technology and Climate Responsive Design, TUM School of Engineering and Design, Technical University of Munich, Arcisstraße 21, 80333, Munich, Germany
| | - Bilge Kobas
- Chair of Building Technology and Climate Responsive Design, TUM School of Engineering and Design, Technical University of Munich, Arcisstraße 21, 80333, Munich, Germany
| | - Kelly R Johnstone
- School of the Environment, The University of Queensland, St Lucia, Queensland, 4072, Australia
| | - Margaret M Cook
- School of the Environment, The University of Queensland, St Lucia, Queensland, 4072, Australia
| | - Cassandra Madigan
- School of the Environment, The University of Queensland, St Lucia, Queensland, 4072, Australia
| | - Thomas Auer
- Chair of Building Technology and Climate Responsive Design, TUM School of Engineering and Design, Technical University of Munich, Arcisstraße 21, 80333, Munich, Germany
| |
Collapse
|
2
|
Read DB, Evans DT, Breivik S, Elliott JD, Gibson OR, Birdsey LP. Implementation of a mixed-methods heat acclimation programme in a professional soccer referee before the 2022 FIFA world cup in Qatar: a case study. BMJ Open Sport Exerc Med 2024; 10:e002185. [PMID: 39411024 PMCID: PMC11474663 DOI: 10.1136/bmjsem-2024-002185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 09/27/2024] [Indexed: 10/19/2024] Open
Abstract
Objectives This case study reports the real-world practicalities of implementing a mixed-methods heat acclimation (HA) programme before the 2022 FIFA World Cup. Methods One male English soccer referee (age: 44 years; height: 1.82 m; body mass: 76.0 kg) who had officiated professionally for over 17 years and had over 10 years' experience officiating in European and international matches undertook an 11-session HA programme over 22 days. On days 1 and 22, a 30 min fixed-intensity heat tolerance test (9 km.h-1, 2% gradient, 40°C, 40% relative humidity) was performed, and physiological and perceptual responses were measured. A mixed-methods HA approach was used, including environmental chamber isothermic training, post-temperate training saunas and hot water immersion. Results Compared with the pre-test, peak core temperature reduced by 0.40°C (38.4 vs 38.0°C; minimal detectable change (MDC) = 0.34°C), peak skin temperature reduced by 0.5°C (36.7 vs 36.2°C; MDC=0.28°C) and peak heart rate reduced by 5 b·min-1 (167 vs. 162 b·min-1; MDC=4 b·min-1) in the post-test. In the post-test, the sweat rate increased by 17% (1.94 vs 2.27 L.h-1; MDC=0.42 L.h-1). Peak thermal sensation (7 = 'hot') and the rating of perceived exertion (3 = 'moderate') were unchanged between the tests. However, peak thermal comfort (3 = 'slightly uncomfortable' vs 2 = 'uncomfortable') was rated lower in the post-test. Conclusion The HA programme elicited positive physiological but indifferent perceptual responses, highlighting that mixed-methods HA can be implemented when a referee still has officiating, travel and training responsibilities during the HA window.
Collapse
Affiliation(s)
- Dale B Read
- Department of Sport and Exercise Sciences, Institute of Sport, Manchester Metropolitan University, Manchester, UK
- Carnegie Applied Rugby Research (CARR) Centre, Carnegie School of Sport, Leeds Beckett University, Leeds, UK
| | - Daniel T Evans
- Department of Sport and Exercise Sciences, Institute of Sport, Manchester Metropolitan University, Manchester, UK
| | - Simon Breivik
- Professional Game Match Officials Limited, London, UK
| | - Joshua D Elliott
- Research Institute for Sport and Exercise, University of Canberra, Canberra, Australian Capital Territory, Australia
| | - Oliver R Gibson
- Centre for Physical Activity in Health and Disease, Division of Sport, Health and Exercise Sciences, Brunel University London, Uxbridge, UK
| | - Laurence P Birdsey
- Department of Sport and Exercise Sciences, Institute of Sport, Manchester Metropolitan University, Manchester, UK
| |
Collapse
|
3
|
Lackner M, Grossmann F, Perret C, Flueck JL, Hertig-Godeschalk A. Chasing Gold: Heat Acclimation in Elite Handcyclists with Spinal Cord Injury. Int J Sports Med 2024; 45:733-738. [PMID: 38885662 DOI: 10.1055/a-2321-1832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
Thermoregulation is impaired in individuals with a spinal cord lesion (SCI), affecting sweat capacity, heat loss, and core temperature. This can be particularly problematic for athletes with SCI who exercise in hot and humid conditions, like those during the Tokyo 2020 Paralympic Games. Heat acclimation can support optimal preparation for exercise in such challenging environments, but evidence is limited in endurance athletes with SCI. We evaluated whether seven consecutive days of exercise in the heat would result in heat acclimation. Five elite para-cycling athletes with SCI participated (two females, three males, median (Q1-Q3) 35 (31-51) years, four with paraplegia and one with tetraplegia). All tests and training sessions were performed in a heat chamber (30°C and 75% relative humidity). A time-to-exhaustion test was performed on day 1 (pretest) and day 7 (posttest). On days 2-6, athletes trained daily for one hour at 50-60% of individual peak power (PPeak). Comparing pretest and posttest, all athletes increased their body mass loss (p=0.04), sweat rate (p=0.04), and time to exhaustion (p=0.04). Effects varied between athletes for core temperature and heart rate. All athletes appeared to benefit from our heat acclimation protocol, helping to optimize their preparation for the Tokyo 2020 Paralympic Games.
Collapse
Affiliation(s)
- Mike Lackner
- Sports Therapy, Swiss Paraplegic Centre, Nottwil, Switzerland
| | - Fabian Grossmann
- Institute of Sports Medicine, Swiss Paraplegic Centre, Nottwil, Switzerland
| | - Claudio Perret
- Neuro-Musculoskeletal Functioning and Mobility, Swiss Paraplegic Research, Nottwil, Switzerland
- Faculty of Health Sciences and Medicine, University of Lucerne, Luzern, Switzerland
| | - Joelle L Flueck
- Institute of Sports Medicine, Swiss Paraplegic Centre, Nottwil, Switzerland
| | | |
Collapse
|
4
|
Weitz CA. Coping with extreme heat: current exposure and implications for the future. Evol Med Public Health 2024; 12:eoae015. [PMID: 39359409 PMCID: PMC11445678 DOI: 10.1093/emph/eoae015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 07/02/2024] [Indexed: 10/04/2024] Open
Abstract
A preview of how effective behavioral, biological and technological responses might be in the future, when outdoor conditions will be at least 2°C hotter than current levels, is available today from studies of individuals already living in extreme heat. In areas where high temperatures are common-particularly those in the hot and humid tropics-several studies report that indoor temperatures in low-income housing can be significantly hotter than those outdoors. A case study indicates that daily indoor heat indexes in almost all the 123 slum dwellings monitored in Kolkata during the summer were above 41°C (106°F) for at least an hour. Economic constraints make it unlikely that technological fixes, such as air conditioners, will remedy conditions like these-now or in the future. People without access to air conditioning will have to rely on behavioral adjustments and/or biological/physiological acclimatization. One important unknown is whether individuals who have lived their entire lives in hot environments without air conditioning possess natural levels of acclimatization greater than those indicated by controlled laboratory studies. Answering questions about the future will require more studies of heat conditions experienced by individuals, more information on indoor versus outdoor heat conditions, and a greater understanding of the behavioral and biological adjustments made by people living today in extremely hot conditions.
Collapse
Affiliation(s)
- Charles A Weitz
- Department of Anthropology, Temple University, Philadelphia, PA 19122, USA
| |
Collapse
|
5
|
Tyler CJ, Notley SR. Myths and methodologies: Considerations for evaluating the time course of thermoregulatory adaptation during heat acclimation. Exp Physiol 2024; 109:1267-1273. [PMID: 38872315 PMCID: PMC11291862 DOI: 10.1113/ep091536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 05/08/2024] [Indexed: 06/15/2024]
Abstract
Since the early 1900s, repeated heat exposure has been used as a method to induce physiological adaptations that enhance our ability to tolerate heat stress during athletic and occupational pursuits. Much of this work has been dedicated to quantifying the time course of adaptation and identifying the minimum duration of acclimation required to optimise performance or enhance safety. To achieve this, investigators have typically applied classical (constant load) heat acclimation, whereby 60-90 min exercise is performed at the same absolute or relative intensity in a hot environment for 3-24 days, with adaptations evaluated using an identical forcing function test before and after. This approach has provided a foundation from which to develop our understanding of changes in thermoregulatory function, but it has several, frequently overlooked shortcomings, which have resulted in misconceptions concerning the time course of adaptation. It is frequently suggested that most of the thermoregulatory adaptations during heat acclimation occur within a week, but this is an oversimplification and a predictable artefact of the experimental designs used. Consequently, the time course of complete human adaptation to heat remains poorly understood and appears to vary considerably due to numerous individual factors. The purpose of this communication is to highlight the key methodological considerations required when interpreting the existing literature documenting adaptation over time. We also propose potential means by which to improve the way we induce and quantify the magnitude of adaptation to expedite discovery.
Collapse
Affiliation(s)
| | - Sean R. Notley
- Department of DefenceDefence Science and Technology GroupMelbourneAustralia
| |
Collapse
|
6
|
Mougin L, Bougault V, Racinais S, Mountjoy ML, Stephenson B, Carter S, James LJ, Mears SA, Taylor L. Environmental challenges facing athletes, stakeholders and spectators at Paris 2024 Olympic and Paralympic Games: an evidence-based review of mitigation strategies and recommendations. Br J Sports Med 2024; 58:870-881. [PMID: 38955507 DOI: 10.1136/bjsports-2024-108281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/11/2024] [Indexed: 07/04/2024]
Abstract
The upcoming Paris 2024 Olympic and Paralympic Games could face environmental challenges related to heat, air quality and water quality. These challenges will pose potential threats to athletes and impact thousands of stakeholders and millions of spectators. Recognising the multifaceted nature of these challenges, a range of strategies will be essential for mitigating adverse effects on participants, stakeholders and spectators alike. From personalised interventions for athletes and attendees to comprehensive measures implemented by organisers, a holistic approach is crucial to address these challenges and the possible interplay of heat, air and water quality factors during the event. This evidence-based review highlights various environmental challenges anticipated at Paris 2024, offering strategies applicable to athletes, stakeholders and spectators. Additionally, it provides recommendations for Local Organising Committees and the International Olympic Committee that may be applicable to future Games. In summary, the review offers solutions for consideration by the stakeholders responsible for and affected by the anticipated environmental challenges at Paris 2024.
Collapse
Affiliation(s)
- Loïs Mougin
- School of Sport, Exercise and Health Sciences, National Centre for Sport and Exercise Medicine, Loughborough University, Loughborough, UK
| | | | - Sébastien Racinais
- Environmental Stress Unit, CREPS Montpellier Font-Romeu, Montpellier, France
- DMEM, UMR 866 INRAE / University of Montpellier, Montpellier, France
| | - Margo L Mountjoy
- Department of Family Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Ben Stephenson
- School of Sport, Exercise and Health Sciences, National Centre for Sport and Exercise Medicine, Loughborough University, Loughborough, UK
- UK Sports Institute, Loughborough, UK
| | - Sarah Carter
- Faculty of Health, Exercise and Sports Science, Charles Darwin University, Darwin, Northern Territory, Australia
| | - Lewis J James
- School of Sport, Exercise and Health Sciences, National Centre for Sport and Exercise Medicine, Loughborough University, Loughborough, UK
| | - Stephen A Mears
- School of Sport, Exercise and Health Sciences, National Centre for Sport and Exercise Medicine, Loughborough University, Loughborough, UK
| | - Lee Taylor
- School of Sport, Exercise and Health Sciences, National Centre for Sport and Exercise Medicine, Loughborough University, Loughborough, UK
- University of Technology Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
7
|
Brown HA, Clark B, Périard JD. Reliability and validity of the MX3 portable sweat sodium analyser during exercise in warm conditions. Eur J Appl Physiol 2024; 124:2153-2160. [PMID: 38430262 PMCID: PMC11199257 DOI: 10.1007/s00421-024-05447-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 02/10/2024] [Indexed: 03/03/2024]
Abstract
PURPOSE Accurately measuring sweat sodium concentration ([Na+]) in the field is advantageous for coaches, scientists, and dieticians looking to tailor hydration strategies. The MX3 hydration testing system is a new portable analyser that uses pre-calibrated biosensors to measure sweat [Na+]. This study aimed to assess the validity and reliability of the MX3 hydration testing system. METHODS Thirty-one (11 females) recreationally active participants completed one experimental trial. During this trial, participants exercised at a self-selected pace for 45 min in a warm environment (31.5 ± 0.8 °C, 63.2 ± 1.3% relative humidity). Sweat samples were collected from three measurement sites using absorbent patches. The samples were then analysed for sweat [Na+] using both the MX3 hydration testing system and the Horiba LAQUAtwin-NA-11. The reliability of the MX3 hydration testing system was determined following two measurements of the same sweat sample. RESULTS The mean difference between measurements was 0.1 mmoL·L-1 (95% limits of agreement (LoA): - 9.2, 9.4). The analyser demonstrated a coefficient of variation (CV) of 5.6% and the standard error of measurement was 3.3 mmoL·L-1. When compared to the Horiba LAQUAtwin-NA-11, there was a mean difference of - 1.7 mmoL·L-1 (95% LoA: - 0.25 X ¯ , 0.25 X ¯ ) and the CV was 9.8%. CONCLUSION The MX3 hydration testing system demonstrated very good single-trial reliability, moderate agreement and a very good CV relative to the Horiba LAQUAtwin-Na-11. To further validate its performance, the MX3 hydration testing system should be compared with analytical techniques known for superior reliability and validity.
Collapse
Affiliation(s)
- Harry A Brown
- Research Institute for Sport and Exercise Science (UCRISE), University of Canberra, Bruce, Canberra, ACT, Australia
| | - Brad Clark
- Research Institute for Sport and Exercise Science (UCRISE), University of Canberra, Bruce, Canberra, ACT, Australia
| | - Julien D Périard
- Research Institute for Sport and Exercise Science (UCRISE), University of Canberra, Bruce, Canberra, ACT, Australia.
| |
Collapse
|
8
|
Zhou Z, Su Y, Wu Y, Qin F, Zheng X. The effects of cold water immersion and partial body cryotherapy on subsequent exercise performance and thermoregulatory responses in hot conditions. J Therm Biol 2024; 123:103926. [PMID: 39094403 DOI: 10.1016/j.jtherbio.2024.103926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 05/30/2024] [Accepted: 07/26/2024] [Indexed: 08/04/2024]
Abstract
This study investigated the effects of cold water immersion (CWI) and partial body cryotherapy (PBC) applied within a 15-min post-exercise recovery period on thermoregulatory responses, subjective perceptions, and exercise performance under hot conditions (39 °C). Twelve male soccer players participated in team-sports-specific assessments, including Agility T-test (T-test), 20-m sprint test (20M-ST), and Yo-Yo Intermittent Endurance Test Level 1 (YY-T), during two exercise bouts (1st bout and 2nd bout) with a 15-min post-exercise recovery period. Within the recovery period, a 3-min of PBC at -110 °C or CWI at 15 °C or a seated rest (CON) was performed. Mean skin temperature (Tskin) decreased by 4.3 ± 1.08°C (p < 0.001) immediately after PBC, while CWI induced a reduction of 2.5 ± 0.21°C (p < 0.01). Furthermore, PBC and CWI consistently reduced Tskin for 15 and 33 min, respectively (p < 0.05). During the 2nd bout, core temperature (Tcore) was significantly lower in PBC compared to CON (p < 0.05). Heart rate (HR) was significantly lower in CWI compared to CON and PBC during the intervention period. Thermal sensation (TS) was significantly greater in PBC compared to CON and CWI (p < 0.05). Compared to the 1st bout, PBC alleviated the declines in T-test (p < 0.05) and 20M-ST (p < 0.05), while CWI alleviated the decreases in T-test (p < 0.05) and YY-T (p < 0.05), concurrently significantly enhancing 20M-ST (p < 0.05). 20M-ST and YY-T was greater from PBC (p < 0.05) and CWI (p < 0.05) compared with CON in 2nd bout. Additionally, the T-test in CWI was significantly greater than CON (p < 0.05). These results indicate that both PBC and CWI, performed between two exercise bouts, have the potential to improve thermoregulatory strain, reduce thermal perceptual load, and thereby attenuate the subsequent decline in exercise performance.
Collapse
Affiliation(s)
- Zigui Zhou
- School of Exercise and Health, Shanghai University of Sport, Shanghai, 200438, China
| | - Yuchen Su
- School of Exercise and Health, Shanghai University of Sport, Shanghai, 200438, China
| | - Yuge Wu
- School of Exercise and Health, Shanghai University of Sport, Shanghai, 200438, China
| | - Fanjun Qin
- School of Exercise and Health, Shanghai University of Sport, Shanghai, 200438, China
| | - Xinyan Zheng
- School of Exercise and Health, Shanghai University of Sport, Shanghai, 200438, China.
| |
Collapse
|
9
|
Liu T. The roles of ACE I/D and ACTN3 R577X gene variants in heat acclimation. Heliyon 2024; 10:e33172. [PMID: 38984309 PMCID: PMC11231590 DOI: 10.1016/j.heliyon.2024.e33172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 05/28/2024] [Accepted: 06/14/2024] [Indexed: 07/11/2024] Open
Abstract
Roles of genes in heat acclimation (HA, repeated exercise-heat exposures) had not been explored. ACE I/D and ACTN3 R577X genetic polymorphisms are closely associated with outstanding exercise performances. This study investigated whether the two polymorphisms influenced the response to HA. Fifty young Han nationality male subjects were selected and conducted HA for 2 weeks. Exercise indicators (5-km run, push-up and 100-m run) were tested and rest aural thermometry (RTau) was measured before and after HA. ACE gene was grouped by I homozygote and D carrier, and ACTN3 gene was grouped by R homozygote and X carrier. Results showed that there were no differences between groups in age, body mass index, exercise indicators and RTau before HA. After HA, RTau of ACE I homozygote was lower than that of D carrier [F (1, 48) = 9.12, p = 0.004, η = 0.40]. Compared with RTau before HA, that of I homozygote decreased after HA (Δ = -0.26 °C, 95 % CI -0.34-0.18, p < 0.001), while that of D carrier did not change. There was a ACE gene × HA interaction in RTau [F (1, 48) = 14.26, p < 0.001, η = 0.48]. No effect of ACTN3 gene on RTau was observed. For exercise indicators, there were no differences between groups after HA, and no gene × HA interactions were observed. There may be a strong interaction of ACE gene and HA in the change of rest core temperature. I homozygote may have an advantage on improving heat tolerance.
Collapse
Affiliation(s)
- Tao Liu
- Special Operations Experiment Center, Chinese People's Liberation Army Special Warfare School, Guangzhou, Guangdong, China
| |
Collapse
|
10
|
Bennett S, Tiollier E, Owens DJ, Brocherie F, Louis JB. Implications of Heat Stress-induced Metabolic Alterations for Endurance Training. Int J Sports Med 2024; 45:422-435. [PMID: 38401534 DOI: 10.1055/a-2251-3170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2024]
Abstract
Inducing a heat-acclimated phenotype via repeated heat stress improves exercise capacity and reduces athletes̓ risk of hyperthermia and heat illness. Given the increased number of international sporting events hosted in countries with warmer climates, heat acclimation strategies are increasingly popular among endurance athletes to optimize performance in hot environments. At the tissue level, completing endurance exercise under heat stress may augment endurance training adaptation, including mitochondrial and cardiovascular remodeling due to increased perturbations to cellular homeostasis as a consequence of metabolic and cardiovascular load, and this may improve endurance training adaptation and subsequent performance. This review provides an up-to-date overview of the metabolic impact of heat stress during endurance exercise, including proposed underlying mechanisms of altered substrate utilization. Against this metabolic backdrop, the current literature highlighting the role of heat stress in augmenting training adaptation and subsequent endurance performance will be presented with practical implications and opportunities for future research.
Collapse
Affiliation(s)
- Samuel Bennett
- Center for Biological Clocks Research, Texas A&M University, College Station, United States
| | - Eve Tiollier
- Laboratory Sport, Expertise and Performance, Research Department, Institut National du Sport de l'Expertise et de la Performance, Paris, France
| | - Daniel J Owens
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, United Kingdom of Great Britain and Northern Ireland
| | - Franck Brocherie
- Laboratory Sport, Expertise and Performance, Research Department, Institut National du Sport de l'Expertise et de la Performance, Paris, France
| | - Julien B Louis
- Laboratory Sport, Expertise and Performance, Research Department, Institut National du Sport de l'Expertise et de la Performance, Paris, France
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, United Kingdom of Great Britain and Northern Ireland
| |
Collapse
|
11
|
Dunn RA, Luk HY, Appell CR, Jiwan NC, Keefe MS, Rolloque JJS, Sekiguchi Y. Eccentric muscle-damaging exercise in the heat lowers cellular stress prior to and immediately following future exertional heat exposure. Cell Stress Chaperones 2024; 29:472-482. [PMID: 38735625 PMCID: PMC11131061 DOI: 10.1016/j.cstres.2024.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 04/22/2024] [Accepted: 05/04/2024] [Indexed: 05/14/2024] Open
Abstract
Muscle-damaging exercise (e.g., downhill running [DHR]) or heat exposure bouts potentially reduce physiological and/or cellular stress during future exertional heat exposure; however, the true extent of their combined preconditioning effects is unknown. Therefore, this study investigated the effect of muscle-damaging exercise in the heat on reducing physiological and cellular stress during future exertional heat exposure. Ten healthy males (mean ± Standard Definition; age, 23 ± 3 years; body mass, 78.7 ± 11.5 kg; height, 176.9 ± 4.7 cm) completed this study. Participants were randomly assigned into two preconditioning groups: (a) DHR in the heat (ambient temperature [Tamb], 35 °C; relative humidity [RH], 40%) and (b) DHR in thermoneutral (Tamb, 20 °C; RH, 20%). Seven days following DHR, participants performed a 45-min flat run in the heat (FlatHEAT [Tamb, 35 °C; RH, 40%]). During exercise, heart rate and rectal temperature (Trec) were recorded at baseline and every 5-min. Peripheral blood mononuclear cells were isolated to assess heat shock protein 72 (Hsp72) concentration between conditions at baseline, immediately post-DHR, and immediately pre-FlatHEAT and post-FlatHEAT. Mean Trec during FlatHEAT between hot (38.23 ± 0.38 °C) and thermoneutral DHR (38.26 ± 0.38 °C) was not significantly different (P = 0.68), with no mean heart rate differences during FlatHEAT between hot (172 ± 15 beats min-1) and thermoneutral conditions (174 ± 8 beats min-1; P = 0.58). Hsp72 concentration change from baseline to immediately pre-FlatHEAT was significantly lower in hot (-51.4%) compared to thermoneutral (+24.2%; P = 0.025) DHR, with Hsp72 change from baseline to immediately post-FlatHEAT also lower in hot (-52.6%) compared to thermoneutral conditions (+26.3%; P = 0.047). A bout of muscle-damaging exercise in the heat reduces cellular stress levels prior to and immediately following future exertional heat exposure.
Collapse
Affiliation(s)
- Ryan A Dunn
- Sports Performance Laboratory, Department of Kinesiology and Sport Management, Texas Tech University, Lubbock, TX, USA
| | - Hui-Ying Luk
- Applied Physiology Laboratory, Department of Kinesiology and Sport Management, Texas Tech University, Lubbock, TX, USA
| | - Casey R Appell
- Applied Physiology Laboratory, Department of Kinesiology and Sport Management, Texas Tech University, Lubbock, TX, USA
| | - Nigel C Jiwan
- Applied Physiology Laboratory, Department of Kinesiology and Sport Management, Texas Tech University, Lubbock, TX, USA
| | - Marcos S Keefe
- Sports Performance Laboratory, Department of Kinesiology and Sport Management, Texas Tech University, Lubbock, TX, USA
| | - Jan-Joseph S Rolloque
- Sports Performance Laboratory, Department of Kinesiology and Sport Management, Texas Tech University, Lubbock, TX, USA
| | - Yasuki Sekiguchi
- Sports Performance Laboratory, Department of Kinesiology and Sport Management, Texas Tech University, Lubbock, TX, USA.
| |
Collapse
|
12
|
Dunn RA, Fry LA, Sekiguchi Y, Benjamin CL, Manning CN, Huggins RA, Stearns RL, Casa DJ. Effect of Heat Acclimatization, Heat Acclimation, and Intermittent Heat Training on Maximal Oxygen Uptake. Sports Health 2024:19417381241249470. [PMID: 38708678 DOI: 10.1177/19417381241249470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2024] Open
Abstract
BACKGROUND Maximal oxygen uptake (VO2max) is an important determinant of endurance performance. Heat acclimation/acclimatization (HA/HAz) elicits improvements in endurance performance. Upon heat exposure reduction, intermittent heat training (IHT) may alleviate HA/HAz adaptation decay; however, corresponding VO2max responses are unknown. HYPOTHESIS VO2max is maintained after HAz/HA; IHT mitigates decrements in aerobic power after HAz/HA. STUDY DESIGN Interventional study. LEVEL OF EVIDENCE Level 3. METHODS A total of 27 male endurance runners (mean ± SD; age, 36 ± 12 years; body mass, 73.03 ± 8.97 kg; height, 178.81 ± 6.39 cm) completed VO2max testing at 5 timepoints; baseline, post-HAz, post-HA, and weeks 4 and 8 of IHT (IHT4, IHT8). After baseline testing, participants completed HAz, preceded by 5 days of HA involving exercise to induce hyperthermia for 60 minutes in the heat (ambient temperature, 39.13 ± 1.37°C; relative humidity, 51.08 ± 8.42%). Participants were assigned randomly to 1 of 3 IHT groups: once-weekly, twice-weekly, or no IHT. Differences in VO2max, velocity at VO2max (vVO2), and maximal heart rate (HRmax) at all 5 timepoints were analyzed using repeated-measure analyses of variance with Bonferroni corrections post hoc. RESULTS No significant VO2max or vVO2 differences were observed between baseline, post-HAz, or post-HA (P = 0.36 and P = 0.09, respectively). No significant group or time effects were identified for VO2max or vVO2 at post-HA, IHT4, and IHT8 (P = 0.67 and P = 0.21, respectively). Significant HRmax differences were observed between baseline and post-HA tests (P < 0.01). No significant group or time HRmax differences shown for post-HA, IHT4, and IHT8 (P = 0.59). CONCLUSION VO2max was not reduced among endurance runners after HA/HAz and IHT potentially due to participants' similar aerobic training status and high aerobic fitness levels. CLINICAL RELEVANCE HAz/HA and IHT maintain aerobic power in endurance runners, with HAz/HA procuring reductions in HRmax.
Collapse
Affiliation(s)
- Ryan A Dunn
- Sports Performance Laboratory, Department of Kinesiology and Sport Management, Texas Tech University, Lubbock, Texas
| | - Lauren A Fry
- Korey Stringer Institute, Department of Kinesiology, University of Connecticut, Storrs, Connecticut
| | - Yasuki Sekiguchi
- Sports Performance Laboratory, Department of Kinesiology and Sport Management, Texas Tech University, Lubbock, Texas and Korey Stringer Institute, Department of Kinesiology, University of Connecticut, Storrs, Connecticut
| | - Courteney L Benjamin
- Korey Stringer Institute, Department of Kinesiology, University of Connecticut, Storrs, Connecticut and Department of Kinesiology, Samford University, Birmingham, Alabama
| | - Ciara N Manning
- Korey Stringer Institute, Department of Kinesiology, University of Connecticut, Storrs, Connecticut
| | - Robert A Huggins
- Korey Stringer Institute, Department of Kinesiology, University of Connecticut, Storrs, Connecticut
| | - Rebecca L Stearns
- Korey Stringer Institute, Department of Kinesiology, University of Connecticut, Storrs, Connecticut
| | - Douglas J Casa
- Korey Stringer Institute, Department of Kinesiology, University of Connecticut, Storrs, Connecticut
| |
Collapse
|
13
|
Ryan BJ, Spiering BA, Hoogkamer W, Looney DP. 'Super boots' for soldiers: theoretical ergogenic and thermoprotective benefits of energetically optimised military combat boots. BMJ Mil Health 2024:e002614. [PMID: 38658041 DOI: 10.1136/military-2023-002614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 03/13/2024] [Indexed: 04/26/2024]
Abstract
Soldiers typically perform physically demanding tasks while wearing military uniforms and tactical footwear. New research has revealed a substantial increase of ~10% in energetic cost of walking when wearing modern combat boots versus running shoes. One approach to mitigating these costs is to follow in the footsteps of recent innovations in athletic footwear that led to the development of 'super shoes', that is, running shoes designed to lower the energetic cost of locomotion and maximise performance. We modelled the theoretical effects of optimised combat boot construction on physical performance and heat strain with the intent of spurring similarly innovative research and development of 'super boots' for soldiers. We first assessed the theoretical benefits of super boots on 2-mile run performance in a typical US Army soldier using the model developed by Kipp and colleagues. We then used the Heat Strain Decision Aid thermoregulatory model to determine the metabolic savings required for a physiologically meaningful decrease in heat strain in various scenarios. Combat boots that impart a 10% improvement in running economy would result in 7.9%-15.1% improvement in 2-mile run time, for faster to slower runners, respectively. Our thermal modelling revealed that a 10% metabolic savings would more than suffice for a 0.25°C reduction in heat strain for the vast majority of work intensities and durations in both hot-dry and hot-humid environments. These findings highlight the impact that innovative military super boots would have on physical performance and heat strain in soldiers, which could potentially maximise the likelihood of mission success in real-world scenarios.
Collapse
Affiliation(s)
- Benjamin J Ryan
- US Army Research Institute of Environmental Medicine, Natick, Massachusetts, USA
| | - B A Spiering
- New Balance Sports Research Lab, Boston, Massachusetts, USA
| | - W Hoogkamer
- Department of Kinesiology, University of Massachusetts, Amherst, Massachusetts, USA
| | - D P Looney
- US Army Research Institute of Environmental Medicine, Natick, Massachusetts, USA
| |
Collapse
|
14
|
Muhamad SN, Lim FL, Md Akim A, Karuppiah K, Mohd Shabri NSA, How V. Association between physiological responses and heat shock protein 70 (HSP70) expressions in the vulnerable populations of Kuala Lumpur. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2024:1-11. [PMID: 38616509 DOI: 10.1080/09603123.2024.2340125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 04/02/2024] [Indexed: 04/16/2024]
Abstract
Continued heat exposure can cause physiological and cellular responses. This study investigated the association between physiological responses and heat shock protein 70 (HSP70) expressions in Kuala Lumpur's urban vulnerable population. We conducted a cross-sectional study involving 54 participants from four areas classified as experiencing moderate to strong heat stress. Physiological measurements included core body temperature, heart rate, and diastolic and systolic blood pressure. RT-qPCR and ELISA were also performed on blood samples to assess HSP70 gene and protein expressions. Despite indoor heat stress, participants maintained normal physiological parameters while there were significant indications of HSP70 expression at both the gene and protein levels. However, our study found no significant correlation (p > 0.05) between physiological responses and HSP70 expressions. This study shows no interaction between physiological responses and HSP70 expressions in the study population, revealing the complex mechanisms of indoor heat stress in vulnerable individuals.
Collapse
Affiliation(s)
- Siti Nurfahirah Muhamad
- Department of Environmental and Occupational Health, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Fang Lee Lim
- Department of Environmental Engineering, Universiti Tunku Abdul Rahman, Faculty of Engineering and Green Technology, Kampar, Perak, Malaysia
| | - Abdah Md Akim
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Karmegam Karuppiah
- Department of Environmental and Occupational Health, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Nur Shabrina Azreen Mohd Shabri
- Department of Environmental and Occupational Health, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Vivien How
- Department of Environmental and Occupational Health, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| |
Collapse
|
15
|
Bonell A, Part C, Okomo U, Cole R, Hajat S, Kovats S, Sferruzzi-Perri AN, Hirst JE. An expert review of environmental heat exposure and stillbirth in the face of climate change: Clinical implications and priority issues. BJOG 2024; 131:623-631. [PMID: 37501633 DOI: 10.1111/1471-0528.17622] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 07/11/2023] [Indexed: 07/29/2023]
Abstract
Exposure to extreme heat in pregnancy increases the risk of stillbirth. Progress in reducing stillbirth rates has stalled, and populations are increasingly exposed to high temperatures and climate events that may further undermine health strategies. This narrative review summarises the current clinical and epidemiological evidence of the impact of maternal heat exposure on stillbirth risk. Out of 20 studies, 19 found an association between heat and stillbirth risk. Recent studies based in low- to middle-income countries and tropical settings add to the existing literature to demonstrate that all populations are at risk. Additionally, both short-term heat exposure and whole-pregnancy heat exposure increase the risk of stillbirth. A definitive threshold of effect has not been identified, as most studies define exposure as above the 90th centile of the usual temperature for that population. Therefore, the association between heat and stillbirth has been found with exposures from as low as >12.64°C up to >46.4°C. The pathophysiological pathways by which maternal heat exposure may lead to stillbirth, based on human and animal studies, include both placental and embryonic or fetal impacts. Although evidence gaps remain and further research is needed to characterise these mechanistic pathways in more detail, preliminary evidence suggests epigenetic changes, alteration in imprinted genes, congenital abnormalities, reduction in placental blood flow, size and function all play a part. Finally, we explore this topic from a public health perspective; we discuss and evaluate the current public health guidance on minimising the risk of extreme heat in the community. There is limited pregnancy-specific guidance within heatwave planning, and no evidence-based interventions have been established to prevent poor pregnancy outcomes. We highlight priority research questions to move forward in the field and specifically note the urgent need for evidence-based interventions that are sustainable.
Collapse
Affiliation(s)
- Ana Bonell
- Medical Research Council Unit The Gambia at London School of Hygiene and Tropical Medicine, Fajara, The Gambia
- Centre on Climate Change and Planetary Health, London School of Hygiene and Tropical Medicine, London, UK
| | - Cherie Part
- Centre on Climate Change and Planetary Health, London School of Hygiene and Tropical Medicine, London, UK
| | - Uduak Okomo
- Medical Research Council Unit The Gambia at London School of Hygiene and Tropical Medicine, Fajara, The Gambia
| | - Rebecca Cole
- Centre on Climate Change and Planetary Health, London School of Hygiene and Tropical Medicine, London, UK
| | - Shakoor Hajat
- Centre on Climate Change and Planetary Health, London School of Hygiene and Tropical Medicine, London, UK
| | - Sari Kovats
- Centre on Climate Change and Planetary Health, London School of Hygiene and Tropical Medicine, London, UK
| | - Amanda N Sferruzzi-Perri
- Department of Physiology, Development and Neuroscience, Centre for Trophoblast Research, University of Cambridge, Cambridge, UK
| | - Jane E Hirst
- Nuffield Department of Women's and Reproductive Health, University of Oxford, Oxford, UK
- The George Institute for Global Health, Imperial College London, London, UK
| |
Collapse
|
16
|
Bernard TE, Wolf ST, Kenney WL. A Novel Conceptual Model for Human Heat Tolerance. Exerc Sport Sci Rev 2024; 52:39-46. [PMID: 38294236 PMCID: PMC10963138 DOI: 10.1249/jes.0000000000000332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Human "heat tolerance" has no accepted definition or physiological underpinnings; rather, it is almost always discussed in relative or comparative terms. We propose to use environmental limits to heat balance accounting for metabolic rate and clothing, that is, the environments for which heat stress becomes uncompensable for a specified metabolic rate and clothing, as a novel metric for quantifying heat tolerance.
Collapse
Affiliation(s)
- Thomas E. Bernard
- College of Public Health, University of South Florida, Tampa, FL 33612
| | - S. Tony Wolf
- Department of Kinesiology, University of Georgia, Athens, GA 30602
| | - W. Larry Kenney
- Department of Kinesiology and Integrative and Biomedical Physiology Program, The Pennsylvania State University, University Park, PA 16802
| |
Collapse
|
17
|
Brown HA, Topham TH, Clark B, Ioannou LG, Flouris AD, Smallcombe JW, Telford RD, Jay O, Périard JD. Quantifying Exercise Heat Acclimatisation in Athletes and Military Personnel: A Systematic Review and Meta-analysis. Sports Med 2024; 54:727-741. [PMID: 38051495 DOI: 10.1007/s40279-023-01972-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/10/2023] [Indexed: 12/07/2023]
Abstract
BACKGROUND Athletes and military personnel are often expected to compete and work in hot and/or humid environments, where decrements in performance and an increased risk of exertional heat illness are prevalent. A physiological strategy for reducing the adverse effects of heat stress is to acclimatise to the heat. OBJECTIVE The aim of this systematic review was to quantify the effects of relocating to a hotter climate to undergo heat acclimatisation in athletes and military personnel. ELIGIBILITY CRITERIA Studies investigating the effects of heat acclimatisation in non-acclimatised athletes and military personnel via relocation to a hot climate for < 6 weeks were included. DATA SOURCES MEDLINE, SPORTDiscus, CINAHL Plus with Full Text and Scopus were searched from inception to June 2022. RISK OF BIAS A modified version of the McMaster critical review form was utilised independently by two authors to assess the risk of bias. DATA SYNTHESIS A Bayesian multi-level meta-analysis was conducted on five outcome measures, including resting core temperature and heart rate, the change in core temperature and heart rate during a heat response test and sweat rate. Wet-bulb globe temperature (WBGT), daily training duration and protocol length were used as predictor variables. Along with posterior means and 90% credible intervals (CrI), the probability of direction (Pd) was calculated. RESULTS Eighteen articles from twelve independent studies were included. Fourteen articles (nine studies) provided data for the meta-analyses. Whilst accounting for WBGT, daily training duration and protocol length, population estimates indicated a reduction in resting core temperature and heart rate of - 0.19 °C [90% CrI: - 0.41 to 0.05, Pd = 91%] and - 6 beats·min-1 [90% CrI: - 16 to 5, Pd = 83%], respectively. Furthermore, the rise in core temperature and heart rate during a heat response test were attenuated by - 0.24 °C [90% CrI: - 0.67 to 0.20, Pd = 85%] and - 7 beats·min-1 [90% CrI: - 18 to 4, Pd = 87%]. Changes in sweat rate were conflicting (0.01 L·h-1 [90% CrI: - 0.38 to 0.40, Pd = 53%]), primarily due to two studies demonstrating a reduction in sweat rate following heat acclimatisation. CONCLUSIONS Data from athletes and military personnel relocating to a hotter climate were consistent with a reduction in resting core temperature and heart rate, in addition to an attenuated rise in core temperature and heart rate during an exercise-based heat response test. An increase in sweat rate is also attainable, with the extent of these adaptations dependent on WBGT, daily training duration and protocol length. PROSPERO REGISTRATION CRD42022337761.
Collapse
Affiliation(s)
- Harry A Brown
- Research Institute for Sport and Exercise (UCRISE), University of Canberra, Bruce, ACT, Australia
| | - Thomas H Topham
- Research Institute for Sport and Exercise (UCRISE), University of Canberra, Bruce, ACT, Australia
| | - Brad Clark
- Research Institute for Sport and Exercise (UCRISE), University of Canberra, Bruce, ACT, Australia
| | - Leonidas G Ioannou
- FAME Laboratory, Department of Physical Education and Sport Science, University of Thessaly, Trikala, Greece
| | - Andreas D Flouris
- FAME Laboratory, Department of Physical Education and Sport Science, University of Thessaly, Trikala, Greece
| | - James W Smallcombe
- Faculty of Medicine and Health, Heat and Health Research Incubator, The University of Sydney, Sydney, NSW, Australia
| | - Richard D Telford
- Research Institute for Sport and Exercise (UCRISE), University of Canberra, Bruce, ACT, Australia
| | - Ollie Jay
- Faculty of Medicine and Health, Heat and Health Research Incubator, The University of Sydney, Sydney, NSW, Australia
| | - Julien D Périard
- Research Institute for Sport and Exercise (UCRISE), University of Canberra, Bruce, ACT, Australia.
| |
Collapse
|
18
|
Deshayes TA, Sodabi DGA, Dubord M, Gagnon D. Shifting focus: Time to look beyond the classic physiological adaptations associated with human heat acclimation. Exp Physiol 2024; 109:335-349. [PMID: 37885125 PMCID: PMC10988689 DOI: 10.1113/ep091207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Accepted: 10/12/2023] [Indexed: 10/28/2023]
Abstract
Planet Earth is warming at an unprecedented rate and our future is now assured to be shaped by the consequences of more frequent hot days and extreme heat. Humans will need to adapt both behaviorally and physiologically to thrive in a hotter climate. From a physiological perspective, countless studies have shown that human heat acclimation increases thermoeffector output (i.e., sweating and skin blood flow) and lowers cardiovascular strain (i.e., heart rate) during heat stress. However, the mechanisms mediating these adaptations remain understudied. Furthermore, several possible benefits of heat acclimation for other systems and functions involved in maintaining health and performance during heat stress remain to be elucidated. This review summarizes recent advances in human heat acclimation, with emphasis on recent studies that (1) advanced our understanding of the mechanisms mediating improved thermoeffector output and (2) investigated adaptations that go beyond those classically associated with heat acclimation. We highlight that these studies have contributed to a better understanding of the integrated physiological responses underlying human heat acclimation while leaving key unanswered questions that will need to be addressed in the future.
Collapse
Affiliation(s)
- Thomas A. Deshayes
- Montreal Heart InstituteMontréalCanada
- School of Kinesiology and Exercise ScienceUniversité de MontréalMontréalCanada
| | - Dèwanou Gilles Arnaud Sodabi
- Montreal Heart InstituteMontréalCanada
- School of Kinesiology and Exercise ScienceUniversité de MontréalMontréalCanada
| | - Marianne Dubord
- Montreal Heart InstituteMontréalCanada
- School of Kinesiology and Exercise ScienceUniversité de MontréalMontréalCanada
| | - Daniel Gagnon
- Montreal Heart InstituteMontréalCanada
- School of Kinesiology and Exercise ScienceUniversité de MontréalMontréalCanada
| |
Collapse
|
19
|
Willmott AGB, Diment AG, Chung HC, James CA, Maxwell NS, Roberts JD, Gibson OR. Cross-adaptation from heat stress to hypoxia: A systematic review and exploratory meta-analysis. J Therm Biol 2024; 120:103793. [PMID: 38471285 DOI: 10.1016/j.jtherbio.2024.103793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 01/03/2024] [Accepted: 01/12/2024] [Indexed: 03/14/2024]
Abstract
Cross-adaptation (CA) refers to the successful induction of physiological adaptation under one environmental stressor (e.g., heat), to enable subsequent benefit in another (e.g., hypoxia). This systematic review and exploratory meta-analysis investigated the effect of heat acclimation (HA) on physiological, perceptual and physical performance outcome measures during rest, and submaximal and maximal intensity exercise in hypoxia. Database searches in Scopus and MEDLINE were performed. Studies were included when they met the Population, Intervention, Comparison, and Outcome criteria, were of English-language, peer-reviewed, full-text original articles, using human participants. Risk of bias and study quality were assessed using the COnsensus based Standards for the selection of health status Measurement INstruments checklist. Nine studies were included, totalling 79 participants (100 % recreationally trained males). The most common method of HA included fixed-intensity exercise comprising 9 ± 3 sessions, 89 ± 24-min in duration and occurred within 39 ± 2 °C and 32 ± 13 % relative humidity. CA induced a moderate, beneficial effect on physiological measures at rest (oxygen saturation: g = 0.60) and during submaximal exercise (heart rate: g = -0.65, core temperature: g = -0.68 and skin temperature: g = -0.72). A small effect was found for ventilation (g = 0.24) and performance measures (peak power: g = 0.32 and time trial time: g = -0.43) during maximal intensity exercise. No effect was observed for perceptual outcome measures. CA may be appropriate for individuals, such as occupational or military workers, whose access to altitude exposure prior to undertaking submaximal activity in hypoxic conditions is restricted. Methodological variances exist within the current literature, and females and well-trained individuals have yet to be investigated. Future research should focus on these cohorts and explore the mechanistic underpinnings of CA.
Collapse
Affiliation(s)
- Ashley G B Willmott
- The Cambridge Centre for Sport and Exercise Sciences (CCSES), Anglia Ruskin University, East Road, Cambridge, United Kingdom; Environmental Extremes Laboratory, University of Brighton, Eastbourne, East Sussex, United Kingdom; Para-Monte Altitude Awareness Charity, Eastbourne, East Sussex, United Kingdom.
| | - Alicia G Diment
- The Cambridge Centre for Sport and Exercise Sciences (CCSES), Anglia Ruskin University, East Road, Cambridge, United Kingdom; Pulmonary Function Laboratory, Norfolk and Norwich University Hospital, Colney Lane, Norwich, Norfolk, United Kingdom.
| | - Henry C Chung
- School of Sport, Rehabilitation and Exercise Sciences (SRES), University of Essex, Colchester, Essex, United Kingdom.
| | - Carl A James
- Hong Kong Sports Institute, Sha Tin, Hong Kong, China; Department of Sport, Physical Education and Health, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China.
| | - Neil S Maxwell
- Environmental Extremes Laboratory, University of Brighton, Eastbourne, East Sussex, United Kingdom; Para-Monte Altitude Awareness Charity, Eastbourne, East Sussex, United Kingdom.
| | - Justin D Roberts
- The Cambridge Centre for Sport and Exercise Sciences (CCSES), Anglia Ruskin University, East Road, Cambridge, United Kingdom.
| | - Oliver R Gibson
- Centre for Physical Activity in Health and Disease (CPAHD), Division of Sport, Health and Exercise Sciences, Brunel University London, Uxbridge, United Kingdom.
| |
Collapse
|
20
|
Nybo L, Rønnestad B, Lundby C. High or hot-Perspectives on altitude camps and heat-acclimation training as preparation for prolonged stage races. Scand J Med Sci Sports 2024; 34:e14268. [PMID: 36350277 DOI: 10.1111/sms.14268] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/19/2022] [Accepted: 10/19/2022] [Indexed: 11/11/2022]
Abstract
Adaptation to heat stress and hypoxia are relevant for athletes participating in Tour de France or similar cycling races taking place during the summertime in landscapes with varying altitude. Both to minimize detrimental performance effects associated with arterial desaturation occurring at moderate altitudes in elite athletes, respectively, reduce the risk of hyperthermia on hot days, but also as a pre-competition acclimatization strategy to boost blood volume in already highly adapted athletes. The hematological adaptations require weeks of exposure to manifest, but are attractive as an augmented hemoglobin mass may improve arterial oxygen delivery and hence benefit prolonged performances. Altitude training camps have in this context a long history in exercise physiology and are still common practice in elite cycling. However, heat-acclimation training provides an attractive alternative for some athletes either as a stand-alone approach or in combination with altitude. The present paper provides an update and practical perspectives on the potential to utilize hypoxia and heat exposure to optimize hematological adaptations. Furthermore, we will consider temporal aspects both in terms of onset and decay of the adaptations relevant for improved thermoregulatory capacity and respiratory adaptations to abate arterial desaturation during altitude exposure. From focus on involved physiological mechanisms, time course, and responsiveness in elite athletes, we will provide guidance based on our experience from practical implementation in cyclists preparing for prolonged stage races such as the Tour de France.
Collapse
Affiliation(s)
- Lars Nybo
- Department of Nutrition, Exercise and Sport, University of Copenhagen, Copenhagen, Denmark
| | - Bent Rønnestad
- Inland Norway University of Applied Sciences, Lillehammer, Norway
| | - Carsten Lundby
- Inland Norway University of Applied Sciences, Lillehammer, Norway
| |
Collapse
|
21
|
Willmott AGB, James CA, Hayes M, Maxwell NS, Roberts J, Gibson OR. The reliability of a portable steam sauna pod for the whole-body passive heating of humans. J Therm Biol 2023; 118:103743. [PMID: 37979477 DOI: 10.1016/j.jtherbio.2023.103743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 10/16/2023] [Accepted: 10/17/2023] [Indexed: 11/20/2023]
Abstract
INTRODUCTION Passive heating is receiving increasing attention within human performance and health contexts. A low-cost, portable steam sauna pod may offer an additional tool for those seeking to manipulate physiological (cardiovascular, thermoregulatory and sudomotor) and perceptual responses for improving sporting or health profiles. This study aimed to 1) report the different levels of heat stress and determine the pods' inter-unit reliability, and 2) quantify the reliability of physiological and perceptual responses to passive heating. METHOD In part 1, five pods were assessed for temperature and relative humidity (RH) every 5 min across 70 min of heating for each of the 9 settings. In part 2, twelve males (age: 24 ± 4 years) completed two 60 min trials of passive heating (3 × 20 min at 44 °C/99% RH, separated by 1 week). Heart rate (HR), rectal (Trectal) and tympanic temperature (Ttympanic) were recorded every 5 min, thermal comfort (Tcomfort) and sensation (Tsensation) every 10 min, mean arterial pressure (MAP) at each break period and sweat rate (SR) after exiting the pod. RESULTS In part 1, setting 9 provided the highest temperature (44.3 ± 0.2 °C) and longest time RH remained stable at 99% (51±7 min). Inter-unit reliability data demonstrated agreement between pods for settings 5-9 (intra-class correlation [ICC] >0.9), but not for settings 1-4 (ICC <0.9). In part 2, between-visits, high correlations, and low typical error of measurement (TEM) and coefficient of variation (CV) were found for Trectal, HR, MAP, SR, and Tcomfort, but not for Ttympanic or Tsensation. A peak Trectal of 38.09 ± 0.30 °C, HR of 124 ± 15 b min-1 and a sweat loss of 0.73 ± 0.33 L were reported. No between-visit differences (p > 0.05) were observed for Trectal, Ttympanic, Tsensation or Tcomfort, however HR (+3 b.min-1) and MAP (+4 mmHg) were greater in visit 1 vs. 2 (p < 0.05). CONCLUSION Portable steam sauna pods generate reliable heat stress between-units. The highest setting (44 °C/99% RH) also provides reliable but modest adjustments in physiological and perceptual responses.
Collapse
Affiliation(s)
- A G B Willmott
- Cambridge Centre for Sport and Exercise Sciences (CCSES), Anglia Ruskin University, Cambridge, UK; Environmental Extremes Laboratory, University of Brighton, Eastbourne, UK.
| | - C A James
- Hong Kong Sports Institute (HKSI), Hong Kong; Department of Sport, Physical Education and Health, Hong Kong Baptist University. Kowloon Tong, Hong Kong
| | - M Hayes
- Environmental Extremes Laboratory, University of Brighton, Eastbourne, UK
| | - N S Maxwell
- Environmental Extremes Laboratory, University of Brighton, Eastbourne, UK
| | - J Roberts
- Cambridge Centre for Sport and Exercise Sciences (CCSES), Anglia Ruskin University, Cambridge, UK
| | - O R Gibson
- Centre for Physical Activity in Health and Disease (CHPAD), Division of Sport, Health and Exercise Sciences, Brunel University London, Uxbridge, UK
| |
Collapse
|
22
|
Palejwala Z, Wallman KE, Landers GJ, Anbalagan P, Wood FM, Maloney SK. Living in Western Australia induces some physiological adaptations of seasonal acclimatisation in the surgical burns team. Temperature (Austin) 2023; 11:110-122. [PMID: 38846522 PMCID: PMC11152095 DOI: 10.1080/23328940.2023.2281210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 11/02/2023] [Indexed: 06/09/2024] Open
Abstract
Seasonal acclimatization is known to result in adaptations that can improve heat tolerance. Staff who operate on burn injuries are exposed to thermally stressful conditions and seasonal acclimatization may improve their thermoeffector responses during surgery. Therefore, the aim of this study was to assess the physiological and perceptual responses of staff who operate on burn injuries during summer and winter, to determine whether they become acclimatized to the heated operating theater. Eight staff members had physiological and perceptual responses compared during burn surgeries conducted in thermoneutral (CON: 24.1 ± 1.2°C, 45 ± 7% relative humidity [RH]) and heated (HOT: 31.3 ± 1.6°C, 44 ± 7% RH) operating theaters, in summer and winter. Physiological parameters that were assessed included core temperature, heart rate, total sweat loss, sweat rate, and urinary specific gravity. Perceptual responses included ratings of thermal sensation and comfort. In summer, CON compared to winter CON, baseline (85 ± 15 bpm VS 94 ± 18 bpm), mean (84 ± 16 bpm VS 93 ± 18 bpm), and peak HR (94 ± 17 bpm VS 105 ± 19 bpm) were lower (p < 0.05), whereas core temperature was not different between seasons in either condition (p > 0.05). In HOT, ratings of discomfort were higher in summer (15 ± 3) than winter (13 ± 3; p > 0.05), but ratings of thermal sensation and sweat rate were similar between seasons (p > 0.05). The surgical team in burns in Western Australia can obtain some of the physiological adaptations that result from seasonal acclimatization, but not all. That is most likely due to a lower than required amount of outdoor heat exposure in summer, to induce all physiological and perceptual adaptations.
Collapse
Affiliation(s)
- Zehra Palejwala
- School of Human Sciences (Sports Science Exercise and Health), The University of Western Australia, Crawley, WA, Australia
| | - Karen E. Wallman
- School of Human Sciences (Sports Science Exercise and Health), The University of Western Australia, Crawley, WA, Australia
| | - Grant J. Landers
- School of Human Sciences (Sports Science Exercise and Health), The University of Western Australia, Crawley, WA, Australia
| | - Prashan Anbalagan
- School of Human Sciences (Sports Science Exercise and Health), The University of Western Australia, Crawley, WA, Australia
| | - Fiona M. Wood
- Burn service of Western Australia, WA Department of Health, Nedlands, WA, Australia
- Burn Injury Research Unit, University of Western Australia, and Burn service of WA South Metropolitan Health Service, Perth, WA, Australia
| | - Shane K. Maloney
- School of Human Sciences (Sports Science Exercise and Health), The University of Western Australia, Crawley, WA, Australia
| |
Collapse
|
23
|
Henderson MJ, Grandou C, Chrismas BCR, Coutts AJ, Impellizzeri FM, Taylor L. Core Body Temperatures in Intermittent Sports: A Systematic Review. Sports Med 2023; 53:2147-2170. [PMID: 37526813 PMCID: PMC10587327 DOI: 10.1007/s40279-023-01892-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/11/2023] [Indexed: 08/02/2023]
Abstract
BACKGROUND Hyperthermia (and associated health and performance implications) can be a significant problem for athletes and teams involved in intermittent sports. Quantifying the highest thermal strain (i.e. peak core body temperature [peak Tc]) from a range of intermittent sports would enhance our understanding of the thermal requirements of sport and assist in making informed decisions about training or match-day interventions to reduce thermally induced harm and/or performance decline. OBJECTIVE The objective of this systematic review was to synthesise and characterise the available thermal strain data collected in competition from intermittent sport athletes. METHODS A systematic literature search was performed on Web of Science, MEDLINE, and SPORTDiscus to identify studies up to 17 April 2023. Electronic databases were searched using a text mining method to provide a partially automated and systematic search strategy retrieving terms related to core body temperature measurement and intermittent sport. Records were eligible if they included core body temperature measurement during competition, without experimental intervention that may influence thermal strain (e.g. cooling), in healthy, adult, intermittent sport athletes at any level. Due to the lack of an available tool that specifically includes potential sources of bias for physiological responses in descriptive studies, a methodological evaluation checklist was developed and used to document important methodological considerations. Data were not meta-analysed given the methodological heterogeneity between studies and therefore were presented descriptively in tabular and graphical format. RESULTS A total of 34 studies were selected for review; 27 were observational, 5 were experimental (2 parallel group and 3 repeated measures randomised controlled trials), and 2 were quasi-experimental (1 parallel group and 1 repeated measures non-randomised controlled trial). Across all included studies, 386 participants (plus participant numbers not reported in two studies) were recruited after accounting for shared data between studies. A total of 4 studies (~ 12%) found no evidence of hyperthermia, 24 (~ 71%) found evidence of 'modest' hyperthermia (peak Tc between 38.5 and 39.5 °C), and 6 (~ 18%) found evidence of 'marked' hyperthermia (peak Tc of 39.5 °C or greater) during intermittent sports competition. CONCLUSIONS Practitioners and coaches supporting intermittent sport athletes are justified to seek interventions aimed at mitigating the high heat strain observed in competition. More research is required to determine the most effective interventions for this population that are practically viable in intermittent sports settings (often constrained by many competing demands). Greater statistical power and homogeneity among studies are required to quantify the independent effects of wet bulb globe temperature, competition duration, sport and level of competition on peak Tc, all of which are likely to be key modulators of the thermal strain experienced by competing athletes. REGISTRATION This systematic review was registered on the Open Science Framework ( https://osf.io/vfb4s ; https://doi.org/10.17605/OSF.IO/EZYFA , 4 January 2021).
Collapse
Affiliation(s)
- Mitchell J Henderson
- School of Sport, Exercise and Rehabilitation, Faculty of Health, University of Technology Sydney (UTS), Sydney, Australia.
- Human Performance Research Centre, University of Technology Sydney (UTS), Sydney, Australia.
| | - Clementine Grandou
- School of Sport, Exercise and Rehabilitation, Faculty of Health, University of Technology Sydney (UTS), Sydney, Australia
- Human Performance Research Centre, University of Technology Sydney (UTS), Sydney, Australia
| | - Bryna C R Chrismas
- Department of Physical Education, College of Education, Qatar University, Doha, Qatar
| | - Aaron J Coutts
- School of Sport, Exercise and Rehabilitation, Faculty of Health, University of Technology Sydney (UTS), Sydney, Australia
- Human Performance Research Centre, University of Technology Sydney (UTS), Sydney, Australia
| | - Franco M Impellizzeri
- School of Sport, Exercise and Rehabilitation, Faculty of Health, University of Technology Sydney (UTS), Sydney, Australia
- Human Performance Research Centre, University of Technology Sydney (UTS), Sydney, Australia
| | - Lee Taylor
- School of Sport, Exercise and Rehabilitation, Faculty of Health, University of Technology Sydney (UTS), Sydney, Australia
- Human Performance Research Centre, University of Technology Sydney (UTS), Sydney, Australia
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK
| |
Collapse
|
24
|
Corbett J, Young JS, Tipton MJ, Costello JT, Williams TB, Walker EF, Lee BJ, Stevens CE. Molecular biomarkers for assessing the heat-adapted phenotype: a narrative scoping review. J Physiol Sci 2023; 73:26. [PMID: 37848829 DOI: 10.1186/s12576-023-00882-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 10/03/2023] [Indexed: 10/19/2023]
Abstract
Heat acclimation/acclimatisation (HA) mitigates heat-related decrements in physical capacity and heat-illness risk and is a widely advocated countermeasure for individuals operating in hot environments. The efficacy of HA is typically quantified by assessing the thermo-physiological responses to a standard heat acclimation state test (i.e. physiological biomarkers), but this can be logistically challenging, time consuming, and expensive. A valid molecular biomarker of HA would enable evaluation of the heat-adapted state through the sampling and assessment of a biological medium. This narrative review examines candidate molecular biomarkers of HA, highlighting the poor sensitivity and specificity of these candidates and identifying the current lack of a single 'standout' biomarker. It concludes by considering the potential of multivariable approaches that provide information about a range of physiological systems, identifying a number of challenges that must be overcome to develop a valid molecular biomarker of the heat-adapted state, and highlighting future research opportunities.
Collapse
Affiliation(s)
- J Corbett
- Extreme Environments Laboratory, School of Sport Health and Exercise Sciences, University of Portsmouth, Portsmouth, UK.
| | - J S Young
- National Horizons Centre, Teesside University, Darlington, UK
| | - M J Tipton
- Extreme Environments Laboratory, School of Sport Health and Exercise Sciences, University of Portsmouth, Portsmouth, UK
| | - J T Costello
- Extreme Environments Laboratory, School of Sport Health and Exercise Sciences, University of Portsmouth, Portsmouth, UK
| | - T B Williams
- Extreme Environments Laboratory, School of Sport Health and Exercise Sciences, University of Portsmouth, Portsmouth, UK
| | - E F Walker
- Defence Science and Technology Laboratory, Porton Down, Salisbury, UK
| | - B J Lee
- Occupational and Environmental Physiology Group, Centre for Sport, Exercise and Life Sciences, Faculty of Health and Life Sciences, Coventry University, Coventry, UK
| | - C E Stevens
- Extreme Environments Laboratory, School of Sport Health and Exercise Sciences, University of Portsmouth, Portsmouth, UK
| |
Collapse
|
25
|
Bernard TE, Ashley CD, Wolf ST, Odera AM, Lopez RM, Kenney WL. Distribution of upper limit of the prescriptive zone values for acclimatized and unacclimatized individuals. J Appl Physiol (1985) 2023; 135:601-608. [PMID: 37498291 PMCID: PMC10538976 DOI: 10.1152/japplphysiol.00724.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 06/27/2023] [Accepted: 07/18/2023] [Indexed: 07/28/2023] Open
Abstract
Heat stress has an adverse impact on worker health and well-being, and the effects will increase with more frequent and severe heat events associated with global warming. Acclimatization to heat stress is widely considered to be a critical mitigation strategy and wet bulb globe temperature- (WBGT-) based occupational standards and guidelines contain adjustments for acclimatization. The purpose here was to 1) compare the mean values for the upper limit of the prescriptive zone (ULPZ, below which the rise in core temperature is minimal) between unacclimatized and acclimatized men and women; 2) demonstrate that the change in the occupational exposure limit (ΔOEL) due to acclimatization is independent of metabolic rate; 3) examine the relation between ΔOEL and body surface area (BSA); and 4) compare the exposure-response curves between unacclimatized and acclimatized populations. Empirically derived ULPZ data for unacclimatized participants from Pennsylvania State University (PSU) and acclimatized participants from University of South Florida (USF) were used to explore the difference between unacclimatized and acclimatized heat exposure limits. The findings provide support for a constant 3°C WBGT OEL decrease to account for unacclimatized workers. Body surface area explained part of the difference in ULPZ values between men and women. In addition, the pooled PSU and USF data provide insight into the distribution of individual values for the ULPZ among young, healthy unacclimatized and acclimatized populations in support of occupational heat stress guidelines.NEW & NOTEWORTHY Occupational exposure limit guidelines using wet bulb globe temperature (WBGT) distinguish between acclimatized and unacclimatized workers with about a 3°C difference between them. For the first time, empirical data from two laboratories provide support for acclimatization state adjustments. Using a constant difference rather than increasing differences with metabolic rate better describes the limit for unacclimatized participants. Furthermore, the lower upper limit of the prescriptive zone (ULPZ) values set forth for women do not relate to fitness level but are partly explained by their smaller body surface area (BSA). An examination of individual ULPZ values suggests that many unacclimatized individuals should be able to sustain safe work at the exposure limit for acclimatized workers.
Collapse
Affiliation(s)
- Thomas E Bernard
- College of Public Health, University of South Florida, Tampa, Florida, United States
| | - Candi D Ashley
- Exercise Science Program, College of Education, University of South Florida, Tampa, Florida, United States
| | - S Tony Wolf
- Department of Kinesiology, The Pennsylvania State University, University Park, Pennsylvania, United States
| | - Ayub M Odera
- College of Public Health, University of South Florida, Tampa, Florida, United States
| | - Rebecca M Lopez
- School of Physical Therapy & Rehabilitation Sciences, Department of Orthopaedics & Sports Medicine, University of South Florida, Tampa, Florida, United States
| | - W Larry Kenney
- Department of Kinesiology, The Pennsylvania State University, University Park, Pennsylvania, United States
- Graduate Program in Physiology, The Pennsylvania State University, University Park, Pennsylvania, United States
| |
Collapse
|
26
|
Wheelock CE, Looney DP, Potter AW, Pryor RR, Pryor JL, Florian J, Hostler D. Diver Underwater Cycling Endurance After Short-Term Warm and Hot Water Acclimation. Mil Med 2023; 188:3071-3078. [PMID: 35822881 DOI: 10.1093/milmed/usac204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 04/11/2022] [Accepted: 06/23/2022] [Indexed: 11/13/2022] Open
Abstract
INTRODUCTION It is unclear whether immersion heat acclimation benefits exercise in warm water conditions. This study examined the effects of heat acclimation strategies on heart rate (HR), core temperature, and time to exhaustion (TTE) during cycling exercise in varying warm water conditions. METHODS Twenty male divers completed this study at the Navy Experimental Diving Unit. Subjects were randomly assigned to one of two 9-day heat acclimation groups. The first group (WARM; n = 10) cycled for 2 hours at 50 W in 34.4 °C water, while the second group (HOT; n = 10) cycled for 1 hour against minimal resistance in 36.7 °C water. Following acclimation, TTE was tested by underwater cycling (30 W) in 35.8 °C, 37.2 °C, and 38.6 °C water. RESULTS Throughout acclimation, the rate of core temperature rise in the first 30 minutes of exercise increased (P = .02), but the maximum core temperature reached was not different for either group. Time to exhaustion (TTE) was reduced, and the rate of core temperature rise during performance testing increased (both P < .001) with increasing water temperature but was not different between groups. Core temperature and HR increased throughout performance testing in each water condition and were lower in the HOT compared to the WARM acclimation group (all P < .05) with the exception of core temperature in the 37.2 °C condition. CONCLUSIONS Underwater exercise performance did not differ between the two acclimation strategies. This study suggests that passive acclimation to a higher water temperature may improve thermoregulatory and cardiovascular responses to exercise in warm water. Hot water immersion adaptations are dependent on exercise intensity and water temperature.
Collapse
Affiliation(s)
- Courtney E Wheelock
- Center for Research and Education in Special Environments (CRESE), Department of Exercise and Nutrition Sciences, University at Buffalo, Buffalo, NY 14214, USA
| | - David P Looney
- Military Performance Division, United States Army Research Institute of Environmental Medicine (USARIEM), Natick, MA 01760, USA
| | - Adam W Potter
- Thermal and Mountain Medicine Division, United States Army Research Institute of Environmental Medicine (USARIEM), Natick, MA 01760, USA
| | - Riana R Pryor
- Center for Research and Education in Special Environments (CRESE), Department of Exercise and Nutrition Sciences, University at Buffalo, Buffalo, NY 14214, USA
| | - J Luke Pryor
- Center for Research and Education in Special Environments (CRESE), Department of Exercise and Nutrition Sciences, University at Buffalo, Buffalo, NY 14214, USA
| | - John Florian
- Navy Experimental Diving Unit (NEDU), Panama City, FL 32407, USA
| | - David Hostler
- Center for Research and Education in Special Environments (CRESE), Department of Exercise and Nutrition Sciences, University at Buffalo, Buffalo, NY 14214, USA
| |
Collapse
|
27
|
Wang J, Jiang C, Yang G, Bai G, Yu S. Study on thermal health and its safety management mode for the working environment. Front Public Health 2023; 11:1227630. [PMID: 37670839 PMCID: PMC10475595 DOI: 10.3389/fpubh.2023.1227630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 07/31/2023] [Indexed: 09/07/2023] Open
Abstract
Thermal health concerns have gained significant attention due to the heightened health risks faced by workers who are exposed to extreme thermal environments for prolonged periods. To ensure the occupational health and safety of such workers, and to enhance work efficiency, it is imperative to examine the characteristics of thermal health in the working environment. This study proposes three key elements of thermal health in the working environment, namely thermal health states, absence of heat-related illnesses, and heat adaptability, which can be used to develop a safety management framework for thermal health. By exploring the interconnections between these elements, the study summarizes their features and outlines the necessary precautions to safeguard them. The PDCA (plan/do/check/action) cycle management mode is utilized as a framework, with the three components of thermal health forming the core, to establish a safety management mode for thermal health. To ensure that employees work in a safe, healthy, comfortable, and productive environment, the assessment and control objectives of the thermal environment are regularly revised through the use of labor protection technology and thermal environment control technology. This paper presents a PDCA cycle safety management mode based on the characteristics of thermal health, which offers novel insights and approaches for assessing and managing workers' thermal health.
Collapse
Affiliation(s)
- Jue Wang
- Key Laboratory of Mine Thermodynamic Disasters and Control of Ministry of Education, Liaoning Technical University, Fuxin, Liaoning, China
- School of Safety Science and Engineering, Liaoning Technical University, Fuxin, Liaoning, China
- School of Civil Engineering, Liaoning Technical University, Fuxin, Liaoning, China
| | - Cheng Jiang
- School of Civil Engineering, Liaoning Technical University, Fuxin, Liaoning, China
| | - Guang Yang
- School of Civil Engineering, Liaoning Technical University, Fuxin, Liaoning, China
| | - Gang Bai
- Key Laboratory of Mine Thermodynamic Disasters and Control of Ministry of Education, Liaoning Technical University, Fuxin, Liaoning, China
- School of Safety Science and Engineering, Liaoning Technical University, Fuxin, Liaoning, China
| | - Shixuan Yu
- School of Civil Engineering, Liaoning Technical University, Fuxin, Liaoning, China
| |
Collapse
|
28
|
Kelly MK, Bowe SJ, Jardine WT, Condo D, Guy JH, Snow RJ, Carr AJ. Heat Adaptation for Females: A Systematic Review and Meta-Analysis of Physiological Adaptations and Exercise Performance in the Heat. Sports Med 2023; 53:1395-1421. [PMID: 37222863 PMCID: PMC10289939 DOI: 10.1007/s40279-023-01831-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/26/2023] [Indexed: 05/25/2023]
Abstract
BACKGROUND Heat adaptation regimes are used to prepare athletes for exercise in hot conditions to limit a decrement in exercise performance. However, the heat adaptation literature mostly focuses on males, and consequently, current heat adaptation guidelines may not be optimal for females when accounting for the biological and phenotypical differences between sexes. OBJECTIVES We aimed to examine: (1) the effects of heat adaptation on physiological adaptations in females; (2) the impact of heat adaptation on performance test outcomes in the heat; and (3) the impact of various moderators, including duration (minutes and/or days), total heat dose (°C.min), exercise intensity (kcal.min-1), total energy expended (kcal), frequency of heat exposures and training status on the physiological adaptations in the heat. METHODS SPORTDiscus, MEDLINE Complete and Embase databases were searched to December 2022. Random-effects meta-analyses for resting and exercise core temperature, skin temperature, heart rate, sweat rate, plasma volume and performance tests in the heat were completed using Stata Statistical Software: Release 17. Sub-group meta-analyses were performed to explore the effect of duration, total heat dose, exercise intensity, total energy expended, frequency of heat exposure and training status on resting and exercise core temperature, skin temperature, heart rate and sweat rate. An explorative meta-regression was conducted to determine the effects of physiological adaptations on performance test outcomes in the heat following heat adaptation. RESULTS Thirty studies were included in the systematic review; 22 studies were meta-analysed. After heat adaptation, a reduction in resting core temperature (effect size [ES] = - 0.45; 95% confidence interval [CI] - 0.69, - 0.22; p < 0.001), exercise core temperature (ES = - 0.81; 95% CI - 1.01, - 0.60; p < 0.001), skin temperature (ES = - 0.64; 95% CI - 0.79, - 0.48; p < 0.001), heart rate (ES = - 0.60; 95% CI - 0.74, - 0.45; p < 0.001) and an increase in sweat rate (ES = 0.53; 95% CI 0.21, 0.85; p = 0.001) were identified in females. There was no change in plasma volume (ES = - 0.03; 95% CI - 0.31, 0.25; p = 0.835), whilst performance test outcomes were improved following heat adaptation (ES = 1.00; 95% CI 0.56, 1.45; p < 0.001). Across all moderators, physiological adaptations were more consistently observed following durations of 451-900 min and/or 8-14 days, exercise intensity ≥ 3.5 kcal.min-1, total energy expended ≥ 3038 kcal, consecutive (daily) frequency and total heat dose ≥ 23,000 °C.min. The magnitude of change in performance test outcomes in the heat was associated with a reduction in heart rate following heat adaptation (standardised mean difference = - 10 beats.min-1; 95% CI - 19, - 1; p = 0.031). CONCLUSIONS Heat adaptation regimes induce physiological adaptations beneficial to thermoregulation and performance test outcomes in the heat in females. Sport coaches and applied sport practitioners can utilise the framework developed in this review to design and implement heat adaptation strategies for females.
Collapse
Affiliation(s)
- Monica K Kelly
- Centre for Sport Research, Deakin University, 221 Burwood Highway, Burwood, VIC, 3125, Australia.
| | - Steven J Bowe
- Deakin Biostatistics Unit, Faculty of Health, Deakin University, Burwood, VIC, Australia
- Faculty and School of Health, Victoria University of Wellington, Kelburn, Wellington, New Zealand
| | - William T Jardine
- Centre for Sport Research, Deakin University, 221 Burwood Highway, Burwood, VIC, 3125, Australia
| | - Dominique Condo
- Centre for Sport Research, Deakin University, 221 Burwood Highway, Burwood, VIC, 3125, Australia
| | - Joshua H Guy
- School of Health, Medical and Applied Sciences, Central Queensland University, Cairns, QLD, Australia
| | - Rodney J Snow
- Institute for Physical Activity and Nutrition, Deakin University, Burwood, VIC, Australia
| | - Amelia J Carr
- Centre for Sport Research, Deakin University, 221 Burwood Highway, Burwood, VIC, 3125, Australia
| |
Collapse
|
29
|
Galan-Lopez N, Esh CJ, Leal DV, Gandini S, Lucas R, Garrandes F, Bermon S, Adami PE, Kajeniene A, Hosokawa Y, Chrismas BCR, Stevens CJ, Taylor L. Heat Preparation and Knowledge at the World Athletics Race Walking Team Championships Muscat 2022. Int J Sports Physiol Perform 2023:1-12. [PMID: 37279899 DOI: 10.1123/ijspp.2022-0446] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 03/28/2023] [Accepted: 04/10/2023] [Indexed: 06/08/2023]
Abstract
PURPOSE To assess elite racewalkers' preparation strategies, knowledge, and general practices for competition in the heat and their health status during the World Athletics Race Walking Teams Championships (WRW) Muscat 2022. METHODS Sixty-six elite racewalkers (male: n = 42; mean age = 25.8 y) completed an online survey prior to WRW Muscat 2022. Athletes were grouped by sex (males vs females) and climate (self-reported) they live/trained in (hot vs temperate/cold), with differences/relationships between groups assessed. Relationships between ranking (medalist/top 10 vs nonmedalist/nontop 10) and precompetition use of heat acclimation/acclimatization (HA) were assessed. RESULTS All surveyed medalists (n = 4) implemented, and top 10 finishers were more likely to report using (P = .049; OR = 0.25; 95% CI, 0.06%-1%), HA before the championships. Forty-three percent of athletes did not complete specific HA training. Females (8% [males 31%]) were less likely to have measured core temperature (P = .049; OR = 0.2; 95% CI, 0.041-0.99) and more likely to not know expected conditions in Muscat (42% vs 14%; P = .016; OR = 4.3; 95% CI, 1%-14%) or what wet bulb globe temperature is (83% vs 55%; P = .024; OR = 4.1; 95% CI, 1%-14%). CONCLUSIONS Athletes who implemented HA before the championships tended to place better than those who did not. Forty-three percent of athletes did not prepare for the expected hot conditions at the WRW Muscat 2022, primarily attributed to challenges in accessing and/or cost of equipment/facilities for HA strategies. Further efforts to bridge the gap between research and practice in this elite sport are needed, particularly in female athletes.
Collapse
Affiliation(s)
- Natalia Galan-Lopez
- School of Sport, Exercise and Health Sciences, National Center for Sport and Exercise Medicine (NCSEM), Loughborough University, Loughborough,United Kingdom
| | - Chris J Esh
- School of Sport, Exercise and Health Sciences, National Center for Sport and Exercise Medicine (NCSEM), Loughborough University, Loughborough,United Kingdom
- Aspetar, Orthopedic and Sports Medicine Hospital, FIFA Medical Center of Excellence, Doha,Qatar
| | - Diogo Vaz Leal
- Research Center in Sports Sciences, Health Sciences and Human Development (CIDESD), University of Maia, Maia,Portugal
| | - Silvia Gandini
- Centro Studi-Federazione Italiana di Atletica Leggera, Rome,Italy
| | | | - Frederic Garrandes
- Health and Science Department, World Athletics, Monaco
- Laboratoire Motricité Humaine Expertise Sport Santé, Université Côte d'Azur, Nice,France
| | - Stephane Bermon
- Health and Science Department, World Athletics, Monaco
- Laboratoire Motricité Humaine Expertise Sport Santé, Université Côte d'Azur, Nice,France
| | - Paolo Emilio Adami
- Health and Science Department, World Athletics, Monaco
- Laboratoire Motricité Humaine Expertise Sport Santé, Université Côte d'Azur, Nice,France
| | - Alma Kajeniene
- Department of Sports Medicine, Lithuanian University of Health Sciences, Kaunas,Lithuania
| | - Yuri Hosokawa
- Faculty of Sport Sciences, Waseda University, Shinjuku-ku,Japan
| | | | - Christopher J Stevens
- Physical Activity, Sport and Exercise Research Theme, Faculty of Health, Southern Cross University, Coffs Harbour, NSW,Australia
| | - Lee Taylor
- School of Sport, Exercise and Health Sciences, National Center for Sport and Exercise Medicine (NCSEM), Loughborough University, Loughborough,United Kingdom
- Sport and Exercise Discipline Group, Faculty of Health, University of Technology Sydney, Moore Park, NSW,Australia
- Human Performance Research Center, University of Technology Sydney (UTS), Sydney, NSW,Australia
| |
Collapse
|
30
|
Short-term heat acclimation protocols for an aging population: Systematic review. PLoS One 2023; 18:e0282038. [PMID: 36862716 PMCID: PMC9980817 DOI: 10.1371/journal.pone.0282038] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 02/06/2023] [Indexed: 03/03/2023] Open
Abstract
INTRODUCTION Elderly and sedentary individuals are particularly vulnerable to heat related illness. Short-term heat acclimation (STHA) can decrease both the physical and mental stress imposed on individuals performing tasks in the heat. However, the feasibility and efficacy of STHA protocols in an older population remains unclear despite this population being particularly vulnerable to heat illness. The aim of this systematic review was to investigate the feasibility and efficacy of STHA protocols (≤twelve days, ≥four days) undertaken by participants over fifty years of age. METHODS Academic Search Premier, CINAHL Complete, MEDLINE, APA PsycInfo, and SPORTDiscus were searched for peer reviewed articles. The search terms were; (heat* or therm*) N3 (adapt* or acclimati*) AND old* or elder* or senior* or geriatric* or aging or ageing. Only studies using primary empirical data and which included participants ≥50 years of age were eligible. Extracted data includes participant demographics (sample size, gender, age, height, weight, BMI and [Formula: see text]), acclimation protocol details (acclimation activity, frequency, duration and outcome measures taken) and feasibility and efficacy outcomes. RESULTS Twelve eligible studies were included in the systematic review. A total of 179 participants took part in experimentation, 96 of which were over 50 years old. Age ranged from 50 to 76. All twelve of the studies involved exercise on a cycle ergometer. Ten out of twelve protocols used a percentage of [Formula: see text] or [Formula: see text] to determine the target workload, which ranged from 30% to 70%. One study-controlled workload at 6METs and one implemented an incremental cycling protocol until Tre was reached +0.9°C. Ten studies used an environmental chamber. One study compared hot water immersion (HWI) to an environmental chamber while the remaining study used a hot water perfused suit. Eight studies reported a decrease in core temperature following STHA. Five studies demonstrated post-exercise changes in sweat rates and four studies showed decreases in mean skin temperature. The differences reported in physiological markers suggest that STHA is viable in an older population. CONCLUSION There remains limited data on STHA in the elderly. However, the twelve studies examined suggest that STHA is feasible and efficacious in elderly individuals and may provide preventative protection to heat exposures. Current STHA protocols require specialised equipment and do not cater for individuals unable to exercise. Passive HWI may provide a pragmatic and affordable solution, however further information in this area is required.
Collapse
|
31
|
Heating Up to Keep Cool: Benefits and Persistence of a Practical Heat Acclimation Protocol in Elite Female Olympic Team-Sport Athletes. Int J Sports Physiol Perform 2023; 18:276-283. [PMID: 36720237 DOI: 10.1123/ijspp.2022-0071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 10/14/2022] [Accepted: 11/07/2022] [Indexed: 02/02/2023]
Abstract
PURPOSE Although recommendations for effective heat acclimation (HA) strategies for many circumstances exist, best-practice HA protocols specific to elite female team-sport athletes are yet to be established. Therefore, the authors aimed to investigate the effectiveness and retention of a passive HA protocol integrated in a female Olympic rugby sevens team training program. METHODS Twelve elite female rugby sevens athletes undertook 10 days of passive HA across 2 training weeks. Tympanic temperature (TTymp), sweat loss, heart rate, and repeated 6-second cycling sprint performance were assessed using a sport-specific heat stress test Pre-HA, after 3 days (Mid-HA), after 10 days (Post-HA), and 15 days post-HA (Decay). RESULTS Compared with Pre-HA, submaximal TTymp was lower Mid-HA and Post-HA (both by -0.2 [0.7] °C; d ≥ 0.71), while resting TTymp was lower Post-HA (by -0.3 [0.2] °C; d = 0.81). There were no differences in TTymp at Decay compared with Pre-HA, nor were there any differences in heart rate or sweat loss at any time points. Mean peak 6-second power output improved Mid-HA and Post-HA (76 [36] W; 75 [34] W, respectively; d ≥ 0.45) compared with Pre-HA. The observed performance improvement persisted at Decay by 65 (45) W (d = 0.41). CONCLUSIONS Ten days of passive HA can elicit some thermoregulatory and performance benefits when integrated into a training program in elite female team-sport athletes. However, such a protocol does not provide a sufficient thermal impulse for thermoregulatory adaptations to be retained after 15 days with no further heat stimulus.
Collapse
|
32
|
Liu S, Wen D, Feng C, Yu C, Gu Z, Wang L, Zhang Z, Li W, Wu S, Liu Y, Duan C, Zhuang R, Xue L. Alteration of gut microbiota after heat acclimation may reduce organ damage by regulating immune factors during heat stress. Front Microbiol 2023; 14:1114233. [PMID: 36910226 PMCID: PMC9995595 DOI: 10.3389/fmicb.2023.1114233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 02/06/2023] [Indexed: 02/25/2023] Open
Abstract
Introduction Heat-related illnesses can lead to morbidity, which are anticipated to increase frequency with predictions of increased global surface temperatures and extreme weather events. Although heat acclimation training (HAT) could prevent heat-related diseases, the mechanisms underlying HAT-promoting beneficial changes in organ function, immunity, and gut microbes remain unclear. Methods In the current study, we recruited 32 healthy young soldiers and randomly divided them into 4 teams to conduct HATs for 10 days: the equipment-assisted training team at high temperature (HE); the equipment-assisted training team under normal hot weather (NE); the high-intensity interval training team at high temperature (HIIT), and the control team without training. A standard heat tolerance test (HTT) was conducted before (HTT-1st) and after (HTT-2nd) the training to judge whether the participants met the heat acclimation (HA) criteria. Results We found that the participants in both HE and NE teams had significantly higher acclimation rates (HA/total population) than whom in the HIIT team. The effects of HAT on the participants of the HE team outperformed that of the NE team. In the HA group, the differences of physiological indicators and plasma organ damage biomarkers (ALT, ALP, creatinine, LDH, α-HBDH and cholinesterase) before and after HTT-2nd were significantly reduced to those during HTT-1st, but the differences of immune factors (IL-10, IL-6, CXCL2, CCL4, CCL5, and CCL11) elevated. The composition, metabolism, and pathogenicity of gut microbes changed significantly, with a decreased proportion of potentially pathogenic bacteria (Escherichia-Shigella and Lactococcus) and increased probiotics (Dorea, Blautia, and Lactobacillus) in the HA group. Training for a longer time in a high temperature and humidity showed beneficial effects for intestinal probiotics. Conclusion These findings revealed that pathogenic gut bacteria decrease while probiotics increase following HA, with elevated immune factors and reduced organ damage during heat stress, thereby improving the body's heat adaption.
Collapse
Affiliation(s)
- Shanshou Liu
- Department of Immunology, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Dongqing Wen
- Air Force Medical Center, Fourth Military Medical University, Beijing, China
| | - Chongyang Feng
- Department of Immunology, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Chaoping Yu
- Department of Immunology, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Zhao Gu
- Air Force Medical Center, Fourth Military Medical University, Beijing, China
| | - Liping Wang
- Air Force Medical Center, Fourth Military Medical University, Beijing, China
| | - Zhixiang Zhang
- Department of Immunology, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Wenpeng Li
- Department of Immunology, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Shuwen Wu
- Department of Immunology, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Yitian Liu
- Department of Immunology, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Chujun Duan
- Department of Immunology, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Ran Zhuang
- Department of Immunology, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Lihao Xue
- Air Force Medical Center, Fourth Military Medical University, Beijing, China
| |
Collapse
|
33
|
Manning CN, Benjamin CL, Sekiguchi Y, Butler CR, Szymanski MR, Stearns RL, Armstrong LE, Lee EC, Casa DJ. Environmental Stress Symptoms during Heat Acclimatization, Heat Acclimation, and Intermittent Heat Training. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:3219. [PMID: 36833912 PMCID: PMC9962616 DOI: 10.3390/ijerph20043219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/09/2023] [Accepted: 02/10/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Athletes training in heat experience physiological and perceptual symptoms that risk their safety and performance without adaptation. PURPOSE We examined the changes in environmental symptoms, assessed with the Environmental Symptoms Questionnaire (ESQ), during heat acclimatization (HAz), heat acclimation (HA), and intermittent heat training (HT). METHODS Twenty-seven participants (mean ± standard deviation [M ± SD], age of 35 ± 12 y, VO2max of 57.7 ± 6.8 mL·kg-1·min-1) completed five trials involving 60 mins of running (60% vVO2max) followed by a 4 km time trial in heat (M ± SD, temperature of 35.5 ± 0.7 °C, humidity of 46.4 ± 1.5%). The trials occurred at baseline, post-HAz, post-HA, at week 4 of HT (post-HT4), and at week 8 of HT (post-HT8). The participants completed HT once/week (HTMIN), completed HT twice/week (HTMAX), or did not complete HT (HTCON). ESQ symptoms, thermal sensation (TS), and heart rate (HR) were measured pre- and post-trial. RESULTS Post-ESQ symptoms improved post-HA (3[0.40, 4.72], p = 0.02) and post-HAz (3[0.35, 5.05], p = 0.03) from baseline. During HT, symptoms improved in the HTMAX group and worsened in the HTMIN and HTCON groups. Symptoms improved in the HTMAX group versus the HTCON group at post-HT8 (4[1.02, 7.23], p = 0.012). Higher TS and HR values were weakly associated with ESQ symptoms during HT (r = 0.20, p = 0.04), only explaining 20% of variance. CONCLUSIONS ESQ symptoms improved during HAz, HA, and HT 2x/week. ESQ symptoms were not statistically correlated with HR during exercise heat stress. TS was not sensitive to detecting adaptation and did not subjectively change. The ESQ may be valuable in monitoring adaptation and may contribute to performance post-acclimation.
Collapse
Affiliation(s)
- Ciara N. Manning
- Korey Stringer Institute, Department of Kinesiology, University of Connecticut, Storrs, CT 06269, USA
| | - Courteney L. Benjamin
- Korey Stringer Institute, Department of Kinesiology, University of Connecticut, Storrs, CT 06269, USA
- Department of Kinesiology, Samford University, Birmingham, AL 35226, USA
| | - Yasuki Sekiguchi
- Korey Stringer Institute, Department of Kinesiology, University of Connecticut, Storrs, CT 06269, USA
- Sports Performance Lab, Department of Kinesiology and Sport Management, Texas Tech University, Lubbock, TX 79430, USA
| | - Cody R. Butler
- Korey Stringer Institute, Department of Kinesiology, University of Connecticut, Storrs, CT 06269, USA
- Special Warfare Human Performance Squadron, Lackland Air Force Base, San Antonio, TX 78236, USA
| | - Michael R. Szymanski
- Korey Stringer Institute, Department of Kinesiology, University of Connecticut, Storrs, CT 06269, USA
| | - Rebecca L. Stearns
- Korey Stringer Institute, Department of Kinesiology, University of Connecticut, Storrs, CT 06269, USA
| | - Lawrence E. Armstrong
- Korey Stringer Institute, Department of Kinesiology, University of Connecticut, Storrs, CT 06269, USA
| | - Elaine C. Lee
- Human Performance Lab, Department of Kinesiology, University of Connecticut, Storrs, CT 06269, USA
| | - Douglas J. Casa
- Korey Stringer Institute, Department of Kinesiology, University of Connecticut, Storrs, CT 06269, USA
| |
Collapse
|
34
|
Gordon RJFH, Moss JN, Castelli F, Reeve T, Diss CE, Tyler CJ, Tillin NA. Heat acclimation reduces the effects of whole-body hyperthermia on knee-extensor relaxation rate, but does not affect voluntary torque production. Eur J Appl Physiol 2023; 123:1067-1080. [PMID: 36637508 PMCID: PMC10119217 DOI: 10.1007/s00421-022-05127-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 12/23/2022] [Indexed: 01/14/2023]
Abstract
PURPOSE This study investigated the effects of acute hyperthermia and heat acclimation (HA) on maximal and rapid voluntary torque production, and their neuromuscular determinants. METHODS Ten participants completed 10 days of isothermic HA (50 °C, 50% rh) and had their knee-extensor neuromuscular function assessed in normothermic and hyperthermic conditions, pre-, after 5 and after 10 days of HA. Electrically evoked twitch and octet (300 Hz) contractions were delivered at rest. Maximum voluntary torque (MVT), surface electromyography (EMG) normalised to maximal M-wave, and voluntary activation (VA) were assessed during brief maximal isometric voluntary contractions. Rate of torque development (RTD) and normalised EMG were measured during rapid voluntary contractions. RESULTS Acute hyperthermia reduced neural drive (EMG at MVT and during rapid voluntary contractions; P < 0.05), increased evoked torques (P < 0.05), and shortened contraction and relaxation rates (P < 0.05). HA lowered resting rectal temperature and heart rate after 10 days (P < 0.05), and increased sweating rate after 5 and 10 days (P < 0.05), no differences were observed between 5 and 10 days. The hyperthermia-induced reduction in twitch half-relaxation was attenuated after 5 and 10 days of HA, but there were no other effects on neuromuscular function either in normothermic or hyperthermic conditions. CONCLUSION HA-induced favourable adaptations to the heat after 5 and 10 days of exposure, but there was no measurable benefit on voluntary neuromuscular function in normothermic or hyperthermic conditions. HA did reduce the hyperthermic-induced reduction in twitch half-relaxation time, which may benefit twitch force summation and thus help preserve voluntary torque in hot environmental conditions.
Collapse
Affiliation(s)
- Ralph Joseph Frederick Hills Gordon
- School of Life and Health Life Sciences, University of Roehampton, Holybourne Avenue, London, SW15 4JD, England, UK. .,Faculty of Science and Engineering, School of Psychology & Sport Science, Anglia Ruskin University, East Road, Cambridge, CB1 1PT, UK.
| | - Jodie Natasha Moss
- School of Life and Health Life Sciences, University of Roehampton, Holybourne Avenue, London, SW15 4JD, England, UK
| | - Federico Castelli
- School of Life and Health Life Sciences, University of Roehampton, Holybourne Avenue, London, SW15 4JD, England, UK
| | - Thomas Reeve
- School of Life and Health Life Sciences, University of Roehampton, Holybourne Avenue, London, SW15 4JD, England, UK
| | - Ceri Elen Diss
- School of Life and Health Life Sciences, University of Roehampton, Holybourne Avenue, London, SW15 4JD, England, UK
| | - Christopher James Tyler
- School of Life and Health Life Sciences, University of Roehampton, Holybourne Avenue, London, SW15 4JD, England, UK
| | - Neale Anthony Tillin
- School of Life and Health Life Sciences, University of Roehampton, Holybourne Avenue, London, SW15 4JD, England, UK
| |
Collapse
|
35
|
Leslie E, Ducharme JB, Coffey P, Van Horn ML. Pacing and heat stress independently and differentially effect elite marathon performance. SPORT SCIENCES FOR HEALTH 2023. [DOI: 10.1007/s11332-022-01034-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
36
|
Peel J, John K, Page J, Scott G, Jeffries O, Heffernan S, Tallent J, Waldron M. Factors contributing to the change in thermoneutral maximal oxygen consumption after iso-intensity heat acclimation programmes. Eur J Sport Sci 2023:1-10. [PMID: 36533403 DOI: 10.1080/17461391.2022.2160278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The factors explaining variance in thermoneutral maximal oxygen uptake (V˙O2max) adaptation to heat acclimation (HA) were evaluated, with consideration of HA programme parameters, biophysical variables and thermo-physiological responses. Seventy-one participants consented to perform iso-intensity training (range: 45%-55% V˙O2max) in the heat (range: 30°C-38°C; 20%-60% relative humidity) on consecutive days (range: 5-days-14-days) for between 50-min and-90 min. The participants were evaluated for their thermoneutral V˙O2max change pre-to-post HA. Participants' whole-body sweat rate, heart rate, core temperature, perceived exertion and thermal sensation and plasma volume were measured, and changes in these responses across the programme determined. Partial least squares regression was used to explain variance in the change in V˙O2max across the programme using 24 variables. Sixty-three percent of the participants increased V˙O2max more than the test error, with a mean ± SD improvement of 2.6 ± 7.9%. A two-component model minimised the root mean squared error and explained the greatest variance (R2; 65%) in V˙O2max change. Eight variables positively contributed (P < 0.05) to the model: exercise intensity (%V˙O2max), ambient temperature, HA training days, total exposure time, baseline body mass, thermal sensation, whole-body mass losses and the number of days between the final day of HA and the post-testing day. Within the ranges evaluated, iso-intensity HA improved V˙O2max 63% of the time, with intensity - and volume-based parameters, alongside sufficient delays in post-testing being important considerations for V˙O2max maximisation. Monitoring of thermal sensation and body mass losses during the programme offers an accessible way to gauge the degree of potential adaptation.
Collapse
Affiliation(s)
- Jenny Peel
- A-STEM Centre, Faculty of Science & Engineering, Swansea University, Swansea, UK
| | - Kevin John
- A-STEM Centre, Faculty of Science & Engineering, Swansea University, Swansea, UK
| | - Joe Page
- A-STEM Centre, Faculty of Science & Engineering, Swansea University, Swansea, UK
| | - Georgia Scott
- A-STEM Centre, Faculty of Science & Engineering, Swansea University, Swansea, UK
| | - Owen Jeffries
- School of Biomedical, Nutritional and Sport Sciences, Newcastle University, Newcastle Upon Tyne, UK
| | - Shane Heffernan
- A-STEM Centre, Faculty of Science & Engineering, Swansea University, Swansea, UK
| | - Jamie Tallent
- School of Sport, Rehabilitation, and Exercise Sciences, University of Essex, Colchester, UK.,Department of Physiotherapy, Faculty of Medicine, Nursing and Health Sciences, School of Primary and Allied Health Care, Monash University, Melbourne, Australia
| | - Mark Waldron
- A-STEM Centre, Faculty of Science & Engineering, Swansea University, Swansea, UK.,Welsh Institute of Performance Science, Swansea University, Swansea, UK.,School of Health and Behavioural Sciences, University of the Sunshine Coast, Queensland, Australia
| |
Collapse
|
37
|
Donnan KJ, Williams EL, Bargh MJ. The effectiveness of heat preparation and alleviation strategies for cognitive performance: A systematic review. Temperature (Austin) 2023; 10:404-433. [PMID: 38130656 PMCID: PMC10732620 DOI: 10.1080/23328940.2022.2157645] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 12/01/2022] [Indexed: 12/15/2022] Open
Abstract
A range of occupational and performance contexts (e.g. military personnel operations, emergency services, sport) require the critical maintenance of cognitive performance in environmentally challenging environments. Several reviews exist which evaluate the effectiveness of heat preparation strategies to facilitate physical performance. To date, no review has explored the usefulness of heat preparation strategies for cognitive performance. Therefore, this systematic review aimed to evaluate a range of interventions for the maintenance of cognitive performance, during or following active or passive heat exposure. Studies to be included were assessed by two authors reviewing title, abstract, and full-text. Forty articles were identified which met the inclusion criteria. Interventions were categorised into chronic (i.e. acclimation/acclimatisation) and acute strategies (i.e. hydration, cooling, supplementation, psychological). The results indicate that medium-term consecutive heat acclimation may mitigate some cognitive deficits under heat stress, although heat acclimation effectiveness could be influenced by age. Further, pre-cooling appears the most effective cooling method for maintaining cognitive performance under heat stress, although results were somewhat ambiguous. The hydration literature showed that the most effective hydration strategies were those which individualised electrolyte fortified fluid volumes to match for sweat loss. Limited research exploring psychological interventions indicates that motivational self-talk could be facilitative for maintaining cognitive skills following exercise in hot conditions. These findings can be used to help inform strategies for maintaining critical cognitive and decision-making skills in hot environments.
Collapse
Affiliation(s)
- Kate J. Donnan
- Department of Sport, Exercise, and Rehabilitation Sciences, University of Hull, Hull, HU6 7RX, UK
| | - Emily L. Williams
- Centre for Human Performance, Carnegie School of Sport, Leeds Beckett University, Leeds, LS6 3QS, UK
| | - Melissa J. Bargh
- School of Sport and Exercise Science, College of Social Science of University of Lincoln, Lincoln, LN6 7TS, UK
| |
Collapse
|
38
|
Ashworth E, Cotter J, Kilding A. Post-exercise, passive heat acclimation with sauna or hot-water immersion provide comparable adaptations to performance in the heat in a military context. ERGONOMICS 2023; 66:49-60. [PMID: 35332846 DOI: 10.1080/00140139.2022.2058096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 03/17/2022] [Indexed: 06/14/2023]
Abstract
To mitigate the effects of heat during operations in hot environments, military personnel will likely benefit from heat acclimation (HA) conducted prior to deployment. Using post-exercise, passive heating, 25 participants completed a 5 d HA regime in sauna (70 °C, 18% RH) or hot-water immersion (HWI) (40 °C) for ≤40 min, preceded and followed by a heat stress test (1-h walking at 5 km.h-1 in 33 °C, 77% RH in military uniform (20 kg) before an incremental ramp to exhaustion). Fifteen completed both regimes in a randomised, cross-over manner. While performance did not significantly improve (+14%, [-1, 29], p = .079), beneficial adaptations were observed for mean exercising core temperature (-0.2 °C, [-0.2, -0.2], p <.001), skin temperature (-0.2 °C, [-0.2, -0.2], p = 035) and heart rate (-8 bpm, [-6, -10], p<.001) in both conditions. Post-exercise, passive HA of either modality may benefit military units operating in the heat.Practitioner summary: Strategies are required to prevent health and performance impairments during military operations upon arrival in hot environments. Using a randomised, cross-over design, participants completed five-day passive, post-exercise heat acclimation using sauna or hot-water immersion. Both regimes elicited beneficial albeit modest heat adaptations.Abbreviations: HA: heat acclimation; HST: heat stress test; HWI: hot-water immersion; RH: relative humidity.
Collapse
Affiliation(s)
- Edward Ashworth
- Sports Performance Research Institute New Zealand (SPRINZ), Auckland University of Technology, Auckland, New Zealand
| | - James Cotter
- School of Physical Education, Sport and Exercise Sciences, University of Otago, Dunedin, New Zealand
| | - Andrew Kilding
- Sports Performance Research Institute New Zealand (SPRINZ), Auckland University of Technology, Auckland, New Zealand
| |
Collapse
|
39
|
Racinais S, Hosokawa Y, Akama T, Bermon S, Bigard X, Casa DJ, Grundstein A, Jay O, Massey A, Migliorini S, Mountjoy M, Nikolic N, Pitsiladis YP, Schobersberger W, Steinacker JM, Yamasawa F, Zideman DA, Engebretsen L, Budgett R. IOC consensus statement on recommendations and regulations for sport events in the heat. Br J Sports Med 2023; 57:8-25. [PMID: 36150754 PMCID: PMC9811094 DOI: 10.1136/bjsports-2022-105942] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/04/2022] [Indexed: 01/07/2023]
Abstract
This document presents the recommendations developed by the IOC Medical and Scientific Commission and several international federations (IF) on the protection of athletes competing in the heat. It is based on a working group, meetings, field experience and a Delphi process. The first section presents recommendations for event organisers to monitor environmental conditions before and during an event; to provide sufficient ice, shading and cooling; and to work with the IF to remove regulatory and logistical limitations. The second section summarises recommendations that are directly associated with athletes' behaviours, which include the role and methods for heat acclimation; the management of hydration; and adaptation to the warm-up and clothing. The third section explains the specific medical management of exertional heat stroke (EHS) from the field of play triage to the prehospital management in a dedicated heat deck, complementing the usual medical services. The fourth section provides an example for developing an environmental heat risk analysis for sport competitions across all IFs. In summary, while EHS is one of the leading life-threatening conditions for athletes, it is preventable and treatable with the proper risk mitigation and medical response. The protection of athletes competing in the heat involves the close cooperation of the local organising committee, the national and international federations, the athletes and their entourages and the medical team.
Collapse
Affiliation(s)
- Sebastien Racinais
- Research and Scientific Support Department, Aspetar Orthopaedic and Sports Medicine Hospital, Doha, Ad Dawhah, Qatar
| | - Yuri Hosokawa
- Faculty of Sport Sciences, Waseda University, Tokorozawa, Saitama, Japan
| | - Takao Akama
- Faculty of Sport Sciences, Waseda University, Tokorozawa, Saitama, Japan
| | | | - Xavier Bigard
- Union Cycliste Internationale (UCI), Aigle, Switzerland
| | - Douglas J Casa
- Korey Stringer Institiute, Department of Kinesiology, University of Connecticut, Storrs, Connecticut, USA
| | - Andrew Grundstein
- Department of Geography, University of Georgia, Athens, Georgia, USA
| | - Ollie Jay
- Heat and Health Research Incubator, Faculty of Medicine and Health, The University of Sydney, Camperdown, New South Wales, Australia
| | - Andrew Massey
- Medical Department, Federation Internationale de Football Association, Zurich, Switzerland
| | | | | | | | | | - Wolfgang Schobersberger
- Institute for Sports Medicine, Alpine Medicine & Health Tourism (ISAG), UMIT Tirol – Private University for Health Sciences and technology, Hall, Austria,University Hospital/Tirol Kliniken, Innsbruck, Austria
| | | | | | - David Anthony Zideman
- International Olympic Committee Medical and Scientific Games Group, Pinner, Middlesex, UK
| | - Lars Engebretsen
- Medical and Scientific Department, International Olympic Committee, Lausanne, Switzerland
| | | |
Collapse
|
40
|
Luan G, Liu S, Zhang W, Zhai L, Zhang Y, Sun L, Yao H. Estimating the influence of high temperature on hand, foot, and mouth disease incidence in China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:1477-1484. [PMID: 35915310 DOI: 10.1007/s11356-022-22038-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 07/11/2022] [Indexed: 06/15/2023]
Abstract
The burden of disease caused by ambient high temperature has become a public health concern, but the associations between high temperature and hand, foot, and mouth disease (HFMD) remain indistinct. We used distributed lag non-linear model (DLNM) to estimate the burden of disease attribute to high temperature, adjusting for long-term trend and weather confounders. Total 18,167,455 cases were reported in 31 Chinese provinces, the incidence of HFMD showed a gradually increasing trend from 2008 to 2017 in China. Minimum morbidity temperature (MMT) was mainly concentrated at 17 to 23 °C in ≤ 5 years old group, 18 to 25 °C in 6 ~ 10 years old group and 19 to 27 °C in > 10 years old group. The greatest relative risk (RR) in age group ≤ 5 years old was 2.06 (95% CI: 1.85 ~ 2.30) in Heilongjiang, and the lowest RR was 1.02 (95% CI: 1.00 ~ 1.05) in Guangdong; the greatest RR in age group 6 ~ 10 years old was 2.24 (95% CI: 1.72 ~ 2.91) in Guizhou, and the lowest RR was 1.01 (95% CI: 0.97 ~ 1.12) in Tianjin; the greatest RR in the age group > 10 years old was 2.53 (95% CI: 1.66 ~ 3.87) in Heilongjiang, and the lowest RR was 1.02 (95% CI: 0.71 ~ 1.46) in Henan. We found the positive association between high temperature and HFMD in China.
Collapse
Affiliation(s)
- Guijie Luan
- Office of Epidemiology, Chinese Center for Disease Control and Prevention, No.155 Changbai Road, Changping District, Beijing, 102206, China
- Shandong Center for Disease Control and Prevention, Jinan, 250014, China
| | - Shaonan Liu
- Shandong Center for Disease Control and Prevention, Jinan, 250014, China
| | - Weiyan Zhang
- Shandong Center for Disease Control and Prevention, Jinan, 250014, China
| | - Long Zhai
- Qingdao Center for Disease Control and Prevention, Qingdao, 266033, China
| | - Yingjie Zhang
- Shandong Center for Disease Control and Prevention, Jinan, 250014, China
| | - Liang Sun
- Shandong Center for Disease Control and Prevention, Jinan, 250014, China
| | - Hongyan Yao
- Office of Epidemiology, Chinese Center for Disease Control and Prevention, No.155 Changbai Road, Changping District, Beijing, 102206, China.
| |
Collapse
|
41
|
The Impact of Heat Acclimation on Gastrointestinal Function following Endurance Exercise in a Hot Environment. Nutrients 2023; 15:nu15010216. [PMID: 36615873 PMCID: PMC9823684 DOI: 10.3390/nu15010216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 12/22/2022] [Accepted: 12/27/2022] [Indexed: 01/04/2023] Open
Abstract
To determine the effects of heat acclimation on gastrointestinal (GI) damage and the gastric emptying (GE) rate following endurance exercise in a hot environment. Fifteen healthy men were divided into two groups: endurance training in hot (HOT, 35 °C, n = 8) or cool (COOL, 18 °C, n = 7) environment. All subjects completed 10 days of endurance training (eight sessions of 60 min continuous exercise at 50% of the maximal oxygen uptake (V·O2max). Subjects completed a heat stress exercise tests (HST, 60 min exercise at 60% V·O2max) to evaluate the plasma intestinal fatty acid-binding protein (I-FABP) level and the GE rate following endurance exercise in a hot environment (35 °C) before (pre-HST) and after (post-HST) the training period. We assessed the GE rate using the 13C-sodium acetate breath test. The core temperature during post-HST exercise decreased significantly in the HOT group compared to the pre-HST (p = 0.004) but not in the COOL group. Both the HOT and COOL groups showed exercise-induced plasma I-FABP elevations in the pre-HST (p = 0.002). Both groups had significantly attenuated exercise-induced I-FABP elevation in the post-HST. However, the reduction of exercise-induced I-FABP elevation was not different significantly between both groups. GE rate following HST did not change between pre- and post-HST in both groups, with no significant difference between two groups in the post-HST. Ten days of endurance training in a hot environment improved thermoregulation, whereas exercise-induced GI damage and delay of GE rate were not further attenuated compared with training in a cool environment.
Collapse
|
42
|
Konefał M, Chmura J, Charmas M, Kotowska J, Błażejczyk K, Chmura P. Lactate Threshold and Psychomotor Fatigue Threshold in Hot Conditions: Suggestions for Soccer Players Participating in the Qatar World Cup 2022. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:17028. [PMID: 36554914 PMCID: PMC9779190 DOI: 10.3390/ijerph192417028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 12/08/2022] [Accepted: 12/16/2022] [Indexed: 06/17/2023]
Abstract
The study aimed at finding relationships between lactate threshold and psychomotor fatigue threshold during incremental exercise in thermo-neutral climate conditions and conditions for the 2022 FIFA World Cup in Qatar simulated in an environmental test chamber. The study included 24 soccer players aged 21.02 ± 3.22 years old. The following procedures were performed: The incremental exercise test to mark lactate concentration-LA (mmol·l-1); Psychomotor test to determine choice reaction time; Designation of the lactate threshold (TLA) and psychomotor fatigue threshold (TPF). Climate conditions: The procedure was performed twice in the climatic chamber: (1) in thermo-neutral conditions-TNC (ambient temperature 20.5 °C and relative air humidity 58.7%), (2) after 7 days-in Qatar conditions-QC (28.5 ± 1.92 °C) and (58.7 ± 8.64%). It was confirmed that the TPF, which reflects the highest efficiency of CNS functioning, occurs at a higher running speed than the TLA. The temperature of 28.5 °C with 58.7% humidity, which is the lower limit of heat stress, causes the psychomotor fatigue threshold to appear at a lower running speed than in thermoneutral conditions. The data recorded in this work may help to understand the specificity of physiological and psychomotor reactions to various climatic conditions.
Collapse
Affiliation(s)
- Marek Konefał
- Department of Human Motor Skills, Wrocław University of Health and Sport Sciences, I.J. Paderewskiego 35, 51-612 Wrocław, Poland
| | - Jan Chmura
- Department of Human Motor Skills, Wrocław University of Health and Sport Sciences, I.J. Paderewskiego 35, 51-612 Wrocław, Poland
| | - Małgorzata Charmas
- Department of Physiology and Biochemistry, Faulty of Physical Eucation and Health in Biala Podlaska, Józef Piłsudski University of Physical Education in Warszawa, Akademicka 2, 21-500 Biała Podlaska, Poland
| | - Jadwiga Kotowska
- Department of Physiology and Biochemistry, Faulty of Physical Eucation and Health in Biala Podlaska, Józef Piłsudski University of Physical Education in Warszawa, Akademicka 2, 21-500 Biała Podlaska, Poland
| | - Krzysztof Błażejczyk
- Institute of Geography and Spatial Organization, Polish Academy of Sciences, Twarda 51/55, 00-818 Waszawa, Poland
| | - Paweł Chmura
- Department of Team Games, Wrocław University of Health and Sport Sciences, I.J. Paderewskiego 35, 51-612 Wrocław, Poland
| |
Collapse
|
43
|
Li W, Chen J, Lan F, Xie H. Human thermal sensation and its algorithmic modelization under dynamic environmental thermal characteristics of vehicle cabin. INDOOR AIR 2022; 32:e13168. [PMID: 36567522 DOI: 10.1111/ina.13168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 10/22/2022] [Accepted: 10/25/2022] [Indexed: 06/17/2023]
Abstract
Thermal conditions are strongly changeable in a vehicle cabin, where passengers could suffer consecutive self-thermoregulation to such dynamic changing thermal stresses, though its HVAC system works well. To observe human overall and local thermal sensations in dynamic thermal conditions, a series of experiments under various conditions were carried out in a cabin-like climate chamber. The results showed that the head, chest, back, and hands during hot exposure are warmer leading to the overall thermal sensation being hot. The thermal sensation of the head was warmer than the overall thermal sensation. During cold exposure, arms, hands, legs, and feet were the main areas causing coldness. In a dynamic thermal environment, the previous skin temperature state and thermal sensation form a thermal sensation overshoot, causing a shift in the body's neutral temperature point. This study proposes a thermal sensation model for the prediction of human thermal sensation local and overall based on skin temperature changes in a dynamic environment. Considering the airflow characteristics in the cabin, the human body is set into seven local parts in the local thermal sensation model. To compensate for sensation overshoot from this, defining recovery points rp for local parts differentiate temperature setpoints according to the experienced thermal state so that the effect resulting from the dynamic condition is integrated into the model algorithm. The model provides a scientific basis for guiding design optimization and intelligent regulation in the dynamic environment of the vehicle cabin, so as to achieve efficient energy utilization.
Collapse
Affiliation(s)
- Weijian Li
- School of Mechanical & Automotive Engineering, South China University of Technology, Guangzhou, China
- Guangdong Key Laboratory of Automotive Engineering, South China University of Technology, Guangzhou, China
| | - Jiqing Chen
- School of Mechanical & Automotive Engineering, South China University of Technology, Guangzhou, China
- Guangdong Key Laboratory of Automotive Engineering, South China University of Technology, Guangzhou, China
| | - Fengchong Lan
- School of Mechanical & Automotive Engineering, South China University of Technology, Guangzhou, China
- Guangdong Key Laboratory of Automotive Engineering, South China University of Technology, Guangzhou, China
| | - Hailiang Xie
- School of Mechanical & Automotive Engineering, South China University of Technology, Guangzhou, China
- Guangdong Key Laboratory of Automotive Engineering, South China University of Technology, Guangzhou, China
| |
Collapse
|
44
|
Navas-Martín MÁ, López-Bueno JA, Ascaso-Sánchez MS, Sarmiento-Suárez R, Follos F, Vellón JM, Mirón IJ, Luna MY, Sánchez-Martínez G, Culqui D, Linares C, Díaz J. Gender differences in adaptation to heat in Spain (1983-2018). ENVIRONMENTAL RESEARCH 2022; 215:113986. [PMID: 36058271 DOI: 10.1016/j.envres.2022.113986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 06/03/2022] [Accepted: 07/22/2022] [Indexed: 05/16/2023]
Abstract
In Spain the average temperature has increased by 1.7 °C since pre-industrial times. There has been an increase in heat waves both in terms of frequency and intensity, with a clear impact in terms of population health. The effect of heat waves on daily mortality presents important territorial differences. Gender also affects these impacts, as a determinant that conditions social inequalities in health. There is evidence that women may be more susceptible to extreme heat than men, although there are relatively few studies that analyze differences in the vulnerability and adaptation to heat by sex. This could be related to physiological causes. On the other hand, one of the indicators used to measure vulnerability to heat in a population and its adaptation is the minimum mortality temperature (MMT) and its temporal evolution. The aim of this study was to analyze the values of MMT in men and women and its temporal evolution during the 1983-2018 period in Spain's provinces. An ecological, longitudinal retrospective study was carried out of time series data, based on maximum daily temperature and daily mortality data corresponding to the study period. Using cubic and quadratic fits between daily mortality rates and the temperature, the minimum values of these functions were determined, which allowed for determining MMT values. Furthermore, we used an improved methodology that provided for the estimation of missing MMT values when polynomial fits were inexistent. This analysis was carried out for each year. Later, based on the annual values of MMT, a linear fit was carried out to determine the rate of evolution of MMT for men and for women at the province level. Average MMT for all of Spain's provinces was 29.4 °C in the case of men and 28.7 °C in the case of women. The MMT for men was greater than that of women in 86 percent of the total provinces analyzed, which indicates greater vulnerability among women. In terms of the rate of variation in MMT during the period analyzed, that of men was 0.39 °C/decade, compared to 0.53 °C/decade for women, indicating greater adaptation to heat among women, compared to men. The differences found between men and women were statistically significant. At the province level, the results show great heterogeneity. Studies carried out at the local level are needed to provide knowledge about those factors that can explain these differences at the province level, and to allow for incorporating a gender perspective in the implementation of measures for adaptation to high temperatures.
Collapse
Affiliation(s)
- M Á Navas-Martín
- National School of Public Health, Carlos III Institute of Health, Madrid, Spain; Doctorate Program in Biomedical Sciences and Public Health, National University of Distance Education, Madrid, Spain.
| | - J A López-Bueno
- National School of Public Health, Carlos III Institute of Health, Madrid, Spain
| | - M S Ascaso-Sánchez
- National School of Public Health, Carlos III Institute of Health, Madrid, Spain
| | - R Sarmiento-Suárez
- Medicine School, University of Applied and Environmental Sciences. Bogotá, Colombia
| | - F Follos
- Tdot Soluciones Sostenibles, SL. Ferrol. A Coruña, Spain
| | - J M Vellón
- Tdot Soluciones Sostenibles, SL. Ferrol. A Coruña, Spain
| | - I J Mirón
- Regional Health Authority of Castile La Mancha, Toledo, Spain
| | - M Y Luna
- State Meteorological Agency, Madrid, Spain
| | | | - D Culqui
- National School of Public Health, Carlos III Institute of Health, Madrid, Spain
| | - C Linares
- National School of Public Health, Carlos III Institute of Health, Madrid, Spain
| | - J Díaz
- National School of Public Health, Carlos III Institute of Health, Madrid, Spain
| |
Collapse
|
45
|
Individual variability in achievement of short-term heat acclimation during a fixed intensity protocol. J Therm Biol 2022; 110:103373. [DOI: 10.1016/j.jtherbio.2022.103373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 10/04/2022] [Accepted: 10/12/2022] [Indexed: 12/05/2022]
|
46
|
Fisher JT, Ciuha U, Ioannou LG, Simpson LL, Possnig C, Lawley J, Mekjavic IB. Cardiovascular responses to orthostasis during a simulated 3-day heatwave. Sci Rep 2022; 12:19998. [PMID: 36411293 PMCID: PMC9678862 DOI: 10.1038/s41598-022-24216-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 11/11/2022] [Indexed: 11/22/2022] Open
Abstract
Global warming has caused an increase in the frequency, duration, and intensity of summer heatwaves (HWs). Prolonged exposure to hot environments and orthostasis may cause conflicting demands of thermoregulation and blood pressure regulation on the vasomotor system, potentially contributing to cardiovascular complications and occupational heat strain. This study assessed cardiovascular and skin blood flow (SkBF) responses to orthostasis before, during and after a 3-day simulated HW. Seven male participants maintained a standard work/rest schedule for nine consecutive days split into three 3-day parts; thermoneutral pre-HW (25.4 °C), simulated HW (35.4 °C), thermoneutral post-HW. Gastrointestinal (Tgi) and skin (Tsk) temperatures, cardiovascular responses, and SkBF were monitored during 10-min supine and 10-min 60° head-up tilt (HUT). SkBF, indexed using proximal-distal skin temperature gradient (∆TskP-D), was validated using Laser-Doppler Flowmetry (LDF). The HW significantly increased heart rate, cardiac output and SkBF of the leg in supine; HUT increased SkBF of the arm and leg, and significantly affected all cardiovascular variables besides cardiac output. Significant regional differences in SkBF presented between the arm and leg in all conditions; the arm displaying vasodilation throughout, while the leg vasoconstricted in non-HW before shifting to vasodilation in the HW. Additionally, ∆TskP-D strongly correlated with LDF (r = -.78, p < 0.001). Prolonged HW exposure and orthostasis, individually, elicited significant changes in cardiovascular and SkBF variables. Additionally, varying regional blood flow responses were observed, suggesting the upper and lower vasculature receives differing vasomotor control. Combined cardiovascular alterations and shifts towards vasodilation indicate an increased challenge to industrial workers during HWs.
Collapse
Affiliation(s)
- Jason T. Fisher
- grid.445211.7Jozef Stefan International Postgraduate School, Ljubljana, Slovenia ,grid.11375.310000 0001 0706 0012Department of Automation, Biocybernetics and Robotics, Jozef Stefan Institute, Jamova Cesta 39, SI-1000 Ljubljana, Slovenia
| | - Urša Ciuha
- grid.11375.310000 0001 0706 0012Department of Automation, Biocybernetics and Robotics, Jozef Stefan Institute, Jamova Cesta 39, SI-1000 Ljubljana, Slovenia
| | - Leonidas G. Ioannou
- grid.11375.310000 0001 0706 0012Department of Automation, Biocybernetics and Robotics, Jozef Stefan Institute, Jamova Cesta 39, SI-1000 Ljubljana, Slovenia
| | - Lydia L. Simpson
- grid.5771.40000 0001 2151 8122Division of Performance Physiology and Prevention, Department of Sports Science, University of Innsbruck, Innsbruck, Austria
| | - Carmen Possnig
- grid.5771.40000 0001 2151 8122Division of Performance Physiology and Prevention, Department of Sports Science, University of Innsbruck, Innsbruck, Austria
| | - Justin Lawley
- grid.5771.40000 0001 2151 8122Division of Performance Physiology and Prevention, Department of Sports Science, University of Innsbruck, Innsbruck, Austria ,grid.488915.9Institute of Mountain Emergency Medicine, Eurac Research, Bolzano, Italy
| | - Igor B. Mekjavic
- grid.11375.310000 0001 0706 0012Department of Automation, Biocybernetics and Robotics, Jozef Stefan Institute, Jamova Cesta 39, SI-1000 Ljubljana, Slovenia
| |
Collapse
|
47
|
Effectiveness of short-term isothermic-heat acclimation (4 days) on physical performance in moderately trained males. PLoS One 2022; 17:e0270093. [DOI: 10.1371/journal.pone.0270093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 06/04/2022] [Indexed: 11/18/2022] Open
Abstract
Introduction
A typical heat acclimation (HA) protocol takes 5–7 d of 60–90 minutes of heat exposure. Identifying the minimum dose of HA required to elicit a heat adapted phenotype could reduce financial constraints on participants and aid in the tapering phase for competition in hot countries. Therefore, the aim of this study was to investigate a 4 d HA regimen on physical performance
Methods
Twelve moderately trained males were heat acclimated using controlled hyperthermia (Tre>38.5°C), with no fluid intake for 90 min on 4 consecutive days, with a heat stress test (HST) being completed one week prior to (HST2), and within one-week post (HST3) HA. Eleven completed the control study of HST1 versus HST2, one week apart with no intervention. Heat stress tests comprised of cycling for 90 min @ 40% Peak Power Output (PPO); 35°C; 60%RH followed by 10 minutes of passive recovery before an incremental test to exhaustion. Physical performance outcomes time to exhaustion (TTE), PPO, end rectal temperature (Tre END), and heart rate (HREND) was measured during the incremental test to exhaustion.
Results
Physiological markers indicated no significant changes in the heat; however descriptive statistics indicated mean resting Tre lowered 0.24°C (-0.54 to 0.07°C; d = 2.35: very large) and end-exercise lowered by 0.32°C (-0.81 to 0.16; d = 2.39: very large). There were significant improvements across multiple timepoints following HA in perceptual measures; Rate of perceived exertion (RPE), Thermal Sensation (TS), and Thermal Comfort (TC) (P<0.05). Mean TTE in the HST increased by 142 s (323±333 to 465±235s; P = 0.04) and mean PPO by 76W (137±128 to 213±77 W; P = 0.03).
Conclusion
Short-term isothermic HA (4 d) was effective in enhancing performance capacity in hot and humid conditions. Regardless of the level of physiological adaptations, behavioural adaptations were sufficient to elicit improved performance and thermotolerance in hot conditions. Additional exposures may be requisite to ensure physiological adaptation.
Collapse
|
48
|
TAN SHAWNCHEECHONG, ANG WEEHON, LIM LOUISASIXIAN, LOW IVANCHERHCHIET, LEE JASONKAIWEI. Efficacy of Isothermic Conditioning over Military-Based Heat Acclimatization and Interval Training in Tropical Native Males. Med Sci Sports Exerc 2022; 54:1925-1935. [PMID: 35787594 PMCID: PMC9632943 DOI: 10.1249/mss.0000000000002991] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
PURPOSE We compared the effectiveness of three field-based training programs, namely military-based heat acclimatization (MHA), isothermic conditioning (IC) and interval training (IT), in inducing physiological adaptations in tropical natives. METHODS Fifty-one untrained tropical native males (mean ± standard deviation: age, 25 ± 2 yr; body mass index, 23.6 ± 3.2 kg·m -2 ; body fat, 19% ± 5%; 2.4-km run time, 13.2 ± 0.9 min) donned the Full Battle Order attire (22 kg) and performed a treadmill route march heat stress test in an environmental chamber (dry bulb temperature, 29.9°C ± 0.5°C; relative humidity, 70% ± 3%). Heat stress tests were conducted before (PRE) and after (POST) a 2-wk training intervention consisting of either a MHA ( n = 17, 10 sessions of military-based heat acclimatization), IC ( n = 17, 10 sessions with target gastrointestinal temperature ( Tgi ) ≥ 38.5°C) or IT ( n = 17, six sessions of high-intensity interval training) program. Tgi , HR, mean weighted skin temperature ( Tsk ), physiological strain index (PSI) and thigh-predicted sweat sodium concentration ([Na + ]) were measured and analyzed by one-factor and two-factor mixed design ANOVA with a 0.05 level of significance. RESULTS Field-based IC induced a greater thermal stimulus than MHA ( P = 0.029) and IT ( P < 0.001) during training. Reductions in mean exercise Tgi (-0.2°C [-0.3°C, 0.0°C]; P = 0.009) , PSI (-0.4 [-0.7, -0.1]; P = 0.015) and thigh-predicted sweat [Na + ] (-9 [-13, -5 mmol·L -1 ]; P < 0.001) were observed in IC but not MHA and IT (all P > 0.05). Resting HR (MHA, -4 bpm [-7, 0 bpm]; P = 0.025; IC, -7 bpm [-10, -4 bpm]; P < 0.001; IT, -4 bpm [-8, -1 bpm]; P = 0.008) and mean exercise HR (MHA, -4 [-8, 0 bpm]; P = 0.034; IC, -11 bpm [-15, -8 bpm]; P < 0.001, IT = -5 bpm [-9, -1 bpm]; P = 0.012) were lowered in all groups after training. Isothermic conditioning elicited a greater attenuation in mean exercise HR and thigh-predicted sweat [Na + ] relative to MHA (both P < 0.05). No between-group differences were observed when comparing MHA and IT (all P > 0.05). CONCLUSIONS Isothermic conditioning induced a more complete heat-adapted phenotype relative to MHA and IT. Interval training may serve as a time efficient alternative to MHA.
Collapse
Affiliation(s)
- SHAWN CHEE CHONG TAN
- Human Potential Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, SINGAPORE
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, SINGAPORE
| | - WEE HON ANG
- Combat Protection and Performance Program, Defence Medical and Environmental Research Institute, DSO National Laboratories, SINGAPORE
| | - LOUISA SI XIAN LIM
- Human Potential Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, SINGAPORE
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, SINGAPORE
| | - IVAN CHERH CHIET LOW
- Human Potential Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, SINGAPORE
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, SINGAPORE
| | - JASON KAI WEI LEE
- Human Potential Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, SINGAPORE
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, SINGAPORE
- Global Asia Institute, National University of Singapore, SINGAPORE
- N.1 Institute for Health, National University of Singapore, SINGAPORE
- Institute for Digital Medicine, Yong Loo Lin School of Medicine, National University of Singapore, SINGAPORE
- Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research (A*STAR), SINGAPORE
| |
Collapse
|
49
|
Sekiguchi Y, Benjamin CL, Manning CN, Butler CR, Szymanski MR, Filep EM, Stearns RL, Distefano LJ, Lee EC, Casa DJ. Using Predictive Modeling Technique to Assess Core Temperature Adaptations from Heart Rate, Sweat Rate, and Thermal Sensation in Heat Acclimatization and Heat Acclimation. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:13009. [PMID: 36293588 PMCID: PMC9602154 DOI: 10.3390/ijerph192013009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/29/2022] [Accepted: 10/06/2022] [Indexed: 06/16/2023]
Abstract
Assessing the adaptation of rectal temperature (Trec) is critical following heat acclimatization (HAz) and heat acclimation (HA) because it is associated with exercise performance and safety; however, more feasible and valid methods need to be identified. The purpose of this study was to predict adaptations in Trec from heart rate (HR), sweat rate (SR), and thermal sensation (TS) using predictive modeling techniques. Twenty-five male endurance athletes (age, 36 ± 12 y; VO2max, 57.5 ± 7.0 mL⋅kg-1⋅min-1) completed three trials consisting of 60 min running at 59.3 ± 1.7% vVO2max in a hot environment. During trials, the highest HR and TS, SR, and Trec at the end of trials were recorded. Following a baseline trial, participants performed HAz followed by a post-HAz trial and then completed five days HA, followed by a post-HA trial. A decision tree indicated cut-points of HR (<-13 bpm), SR (>0.3 L·h-1), and TS (≤-0.5) to predict lower Trec. When two or three variables met cut-points, the probability of accuracy of showing lower Trec was 95.7%. Greater adaptations in Trec were observed when two or three variables met cut-points (-0.71 ± 0.50 °C) compared to one (-0.13 ± 0.36 °C, p < 0.001) or zero (0.0 3 ± 0.38 °C, p < 0.001). Specificity was 0.96 when two or three variables met cut-points to predict lower Trec. These results suggest using heart rate, sweat rate, and thermal sensation adaptations to indicate that the adaptations in Trec is beneficial following heat adaptations, especially in field settings, as a practical and noninvasive method.
Collapse
Affiliation(s)
- Yasuki Sekiguchi
- Korey Stringer Institute, Department of Kinesiology, University of Connecticut, Storrs, CT 06269, USA
- Sports Performance Laboratory, Department of Kinesiology and Sport Management, Texas Tech University, 3204 Main Street, Lubbock, TX 79409, USA
| | - Courteney L. Benjamin
- Korey Stringer Institute, Department of Kinesiology, University of Connecticut, Storrs, CT 06269, USA
- Department of Kinesiology, Samford University, Birmingham, AL 35229, USA
| | - Ciara N. Manning
- Korey Stringer Institute, Department of Kinesiology, University of Connecticut, Storrs, CT 06269, USA
| | - Cody R. Butler
- Korey Stringer Institute, Department of Kinesiology, University of Connecticut, Storrs, CT 06269, USA
| | - Michael R. Szymanski
- Korey Stringer Institute, Department of Kinesiology, University of Connecticut, Storrs, CT 06269, USA
| | - Erica M. Filep
- Korey Stringer Institute, Department of Kinesiology, University of Connecticut, Storrs, CT 06269, USA
- Department of Kinesiology and Military Science, Texas A&M University-Corpus Christi, Corpus Christi, TX 78412, USA
| | - Rebecca L. Stearns
- Korey Stringer Institute, Department of Kinesiology, University of Connecticut, Storrs, CT 06269, USA
| | - Lindsay J. Distefano
- Human Performance Laboratory, Department of Kinesiology, University of Connecticut, Storrs, CT 06269, USA
| | - Elaine C. Lee
- Human Performance Laboratory, Department of Kinesiology, University of Connecticut, Storrs, CT 06269, USA
| | - Douglas J. Casa
- Korey Stringer Institute, Department of Kinesiology, University of Connecticut, Storrs, CT 06269, USA
| |
Collapse
|
50
|
Fenemor S, Mills B, Sella F, Gill N, Driller M, Black K, Casadio J, Beaven C. Evaluation of an off-feet heat response test for elite rugby sevens athletes. Sci Sports 2022. [DOI: 10.1016/j.scispo.2021.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|