1
|
Bu F, Cho YS, He Q, Wang X, Howlader S, Kim DH, Zhu M, Shin JG, Xiang X. Prediction of Pharmacokinetic Drug-Drug Interactions Involving Anlotinib as a Victim by Using Physiologically Based Pharmacokinetic Modeling. Drug Des Devel Ther 2024; 18:4585-4600. [PMID: 39429896 PMCID: PMC11490238 DOI: 10.2147/dddt.s480402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 10/08/2024] [Indexed: 10/22/2024] Open
Abstract
Background Anlotinib was approved as a third line therapy for advanced non-small cell lung cancer in China. However, the impact of concurrent administration of various clinical drugs on the drug-drug interaction (DDI) potential of anlotinib remains undetermined. As such, this study aims to evaluate the DDI of anlotinib as a victim by establishing a physiologically based pharmacokinetic (PBPK) model. Methods The PBPK model of anlotinib as a victim drug was constructed and validated in the Simcyp® incorporating parameters derived from in vitro studies, pre-clinical investigations, and clinical research encompassing patients with cancer. Subsequently, plasma exposure of anlotinib in cancer patients was predicted for single- and multi-dose co-administration with typical perpetrators mentioned in Food and Drug Administration (FDA) industrial guidance. Results Based on predictions, the CYP3A potent inhibitor ketoconazole demonstrated the most significant DDI with anlotinib, regardless of whether anlotinib is administered as a single dose or multiple doses. Ketoconazole increased the area under the concentration-time curve (AUC) and maximum concentration (Cmax) of single-dose anlotinib to 1.41-fold and 1.08-fold, respectively. In contrast, rifampicin, a potent inducer of CYP3A enzymes, exhibited a relatively higher level of DDI, with AUCR and CmaxR values of 0.44 and 0.79, respectively. Conclusion Based on the PBPK modeling, there is a low risk of DDI between anlotinib and potent CYP3A/1A2 inhibitors, but caution and enhanced monitoring for adverse reactions are advised. To mitigate the risk of anti-tumor treatment failure, it is recommended to avoid concurrent use of strong CYP3A inducers. In conclusion, our study enhances understanding of anlotinib's interaction with medications, aiding scientists, prescribers, and drug labels in gauging the expected impact of CYP3A/1A2 modulators on anlotinib's pharmacokinetics.
Collapse
Affiliation(s)
- Fengjiao Bu
- Department of Clinical Pharmacy and Pharmacy Administration, School of Pharmacy, Fudan University, Shanghai, People’s Republic of China
- Department of Pharmacy, Eye and ENT Hospital, Fudan University, Shanghai, People’s Republic of China
| | - Yong-Soon Cho
- Department of Pharmacology and Pharmacogenomics Research Center, Inje University College of Medicine, Busan, Republic of Korea
- Center for Personalized Precision Medicine of Tuberculosis, Inje University College of Medicine, Busan, Republic of Korea
| | - Qingfeng He
- Department of Clinical Pharmacy and Pharmacy Administration, School of Pharmacy, Fudan University, Shanghai, People’s Republic of China
| | - Xiaowen Wang
- Department of Clinical Pharmacy and Pharmacy Administration, School of Pharmacy, Fudan University, Shanghai, People’s Republic of China
| | - Saurav Howlader
- Department of Pharmacology and Pharmacogenomics Research Center, Inje University College of Medicine, Busan, Republic of Korea
- Center for Personalized Precision Medicine of Tuberculosis, Inje University College of Medicine, Busan, Republic of Korea
| | - Dong-Hyun Kim
- Department of Pharmacology and Pharmacogenomics Research Center, Inje University College of Medicine, Busan, Republic of Korea
- Center for Personalized Precision Medicine of Tuberculosis, Inje University College of Medicine, Busan, Republic of Korea
| | - Mingshe Zhu
- Department of DMPK, MassDefect Technologies, Princeton, NJ, USA
| | - Jae Gook Shin
- Department of Pharmacology and Pharmacogenomics Research Center, Inje University College of Medicine, Busan, Republic of Korea
- Center for Personalized Precision Medicine of Tuberculosis, Inje University College of Medicine, Busan, Republic of Korea
| | - Xiaoqiang Xiang
- Department of Clinical Pharmacy and Pharmacy Administration, School of Pharmacy, Fudan University, Shanghai, People’s Republic of China
- Department of Preclinical Evaluation, Quzhou Fudan Institute, Quzhou, Zhejiang Province, 324002, People’s Republic of China
| |
Collapse
|
2
|
Attwa MW, Abdelhameed AS, Kadi AA. An Ultra-Fast Green UHPLC-MS/MS Method for Assessing the In Vitro Metabolic Stability of Dovitinib: In Silico Study for Absorption, Distribution, Metabolism, Excretion, Metabolic Lability, and DEREK Alerts. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:1626. [PMID: 39459413 PMCID: PMC11509458 DOI: 10.3390/medicina60101626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 09/18/2024] [Accepted: 10/03/2024] [Indexed: 10/28/2024]
Abstract
Background and Objectives: Dovitinib (DVB) is a pan-tyrosine kinase inhibitor (TKI) that can be administered orally. In September 2023, the FDA granted Oncoheroes approval to proceed with an Investigational New Drug (IND) application for dovitinib. This application is intended for the treatment of relapsed or advanced juvenile solid tumors, namely, osteosarcoma. Materials and Methods: The target of the present study was to develop a rapid, green, accurate, and sensitive UHPLC-MS/MS method for measuring DVB levels in human liver microsomes (HLMs). The validations of the HLMs were performed via the established UHPLC-MS/MS approach, as stated in the US FDA reported guidelines for the standards of bioanalytical method validation protocol. The StarDrop in silico software package (version 6.6), which involves the DEREK and WhichP450 in silico modules, was used to check the DVB structure for hazardous alerts and metabolic instability. The DVB and encorafenib (EFB), internal standard, and chromatographic peaks were successfully separated using a reversed phase column (an Eclipse Plus Agilent C8 column) and an isocratic mobile phase. The production of DVB parent ions was accomplished by utilizing the positive ionization mode of an ESI source. The identification and measurement of DVB daughter ions were conducted using the MRM mode. Results: The inter-day accuracy and precision exhibited a spectrum of values in the range of -0.56% to 9.33%, while the intra-day accuracy and precision showcased a range of scores between 0.28% and 7.28%. The DVB calibration curve showed a linear relationship that ranged from 1 to 3000 ng/mL. The usefulness of the currently validated UHPLC-MS/MS method was approved by the lower limit of quantification (LLOQ) of 1 ng/mL. The AGREE findings demonstrate that the UHPLC-MS/MS method had a noteworthy degree of ecological greenness. The in vitro half-life (t1/2) and intrinsic clearance (Clint) of DVB were calculated to be 15.48 min and 52.39 mL/min/kg, respectively, which aligned with the findings from the WhichP450 software (version 6.6). Conclusions: Via the usage of in silico software, it has been observed that making small changes to the structure of the aryl piperazine ring and quinolinone moieties, or replacing these groups in the drug design process, shows potential for enhancing the metabolic safety and stability of newly developed derivatives compared to DVB.
Collapse
Affiliation(s)
- Mohamed W. Attwa
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia; (A.S.A.); (A.A.K.)
| | | | | |
Collapse
|
3
|
Keiser PT, Zhang W, Ricca M, Wacquiez A, Grimins A, Cencic R, Patten JJ, Shah P, Padilha E, Connor JH, Pelletier J, Lyons SM, Saeed M, Brown LE, Porco JA, Davey RA. Amidino-rocaglates (ADRs), a class of synthetic rocaglates, are potent inhibitors of SARS-CoV-2 replication through inhibition of viral protein synthesis. Antiviral Res 2024; 230:105976. [PMID: 39117283 PMCID: PMC11434215 DOI: 10.1016/j.antiviral.2024.105976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 07/12/2024] [Accepted: 07/29/2024] [Indexed: 08/10/2024]
Abstract
Coronaviruses are highly transmissible respiratory viruses that cause symptoms ranging from mild congestion to severe respiratory distress. The recent outbreak of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has underscored the need for new antivirals with broad-acting mechanisms to combat increasing emergence of new variants. Currently, there are only a few antivirals approved for treatment of SARS-CoV-2. Previously, the rocaglate natural product silvestrol and synthetic rocaglates such as CR-1-31b were shown to have antiviral effects by inhibiting eukaryotic translation initiation factor 4A1 (eIF4A) function and virus protein synthesis. In this study, we evaluated amidino-rocaglates (ADRs), a class of synthetic rocaglates with the most potent eIF4A-inhibitory activity to-date, for inhibition of SARS-CoV-2 infection. This class of compounds showed low nanomolar potency against multiple SARS-CoV-2 variants and in multiple cell types, including human lung-derived cells, with strong inhibition of virus over host protein synthesis and low cytotoxicity. The most potent ADRs were also shown to be active against two highly pathogenic and distantly related coronaviruses, SARS-CoV and MERS-CoV. Mechanistically, cells with mutations of eIF4A1, which are known to reduce rocaglate interaction displayed reduced ADR-associated loss of cellular function, consistent with targeting of protein synthesis. Overall, ADRs and derivatives may offer new potential treatments for SARS-CoV-2 with the goal of developing a broad-acting anti-coronavirus agent.
Collapse
Affiliation(s)
- Patrick T Keiser
- Department of Virology, Immunology, and Microbiology, Boston University Medical School, Boston, MA, 02118, USA; National Emerging Infectious Diseases Laboratories, Boston University, MA, 02118, USA
| | - Wenhan Zhang
- Boston University Center for Molecular Discovery (BU-CMD), Department of Chemistry, Boston University, Boston, MA, 02215, USA
| | - Michael Ricca
- Boston University Center for Molecular Discovery (BU-CMD), Department of Chemistry, Boston University, Boston, MA, 02215, USA
| | - Alan Wacquiez
- National Emerging Infectious Diseases Laboratories, Boston University, MA, 02118, USA; Department of Biochemistry and Cell Biology, Chobanian and Avedisian School of Medicine, Boston University, Boston, MA, 02118, USA
| | - Autumn Grimins
- Department of Biochemistry and Cell Biology, Chobanian and Avedisian School of Medicine, Boston University, Boston, MA, 02118, USA
| | - Regina Cencic
- Department of Biochemistry, Department of Oncology and Rosalind & Morris Goodman Cancer Research Centre, McGill University, Montreal, Quebec, Canada, H3G 1Y6
| | - J J Patten
- Department of Virology, Immunology, and Microbiology, Boston University Medical School, Boston, MA, 02118, USA; National Emerging Infectious Diseases Laboratories, Boston University, MA, 02118, USA
| | - Pranav Shah
- National Institutes of Health, National Center for Advancing Translational Sciences, Bethesda, MD, 20892, USA
| | - Elias Padilha
- National Institutes of Health, National Center for Advancing Translational Sciences, Bethesda, MD, 20892, USA
| | - John H Connor
- Department of Virology, Immunology, and Microbiology, Boston University Medical School, Boston, MA, 02118, USA; National Emerging Infectious Diseases Laboratories, Boston University, MA, 02118, USA
| | - Jerry Pelletier
- Department of Biochemistry, Department of Oncology and Rosalind & Morris Goodman Cancer Research Centre, McGill University, Montreal, Quebec, Canada, H3G 1Y6
| | - Shawn M Lyons
- Department of Biochemistry and Cell Biology, Chobanian and Avedisian School of Medicine, Boston University, Boston, MA, 02118, USA
| | - Mohsan Saeed
- National Emerging Infectious Diseases Laboratories, Boston University, MA, 02118, USA; Department of Biochemistry and Cell Biology, Chobanian and Avedisian School of Medicine, Boston University, Boston, MA, 02118, USA
| | - Lauren E Brown
- Boston University Center for Molecular Discovery (BU-CMD), Department of Chemistry, Boston University, Boston, MA, 02215, USA
| | - John A Porco
- Boston University Center for Molecular Discovery (BU-CMD), Department of Chemistry, Boston University, Boston, MA, 02215, USA
| | - Robert A Davey
- Department of Virology, Immunology, and Microbiology, Boston University Medical School, Boston, MA, 02118, USA; National Emerging Infectious Diseases Laboratories, Boston University, MA, 02118, USA.
| |
Collapse
|
4
|
Zhang G, Liang J, Wen G, Yao M, Jia Y, Feng B, Li J, Han Z, Liu Q, Li T, Zhang W, Jin H, Xia J, Peng L, Wu S. Discovery of novel 1,4-dicarbonylthiosemicarbazides as DNA gyrase inhibitors for the treatment of MRSA infection. Eur J Med Chem 2024; 280:116905. [PMID: 39368263 DOI: 10.1016/j.ejmech.2024.116905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 09/20/2024] [Accepted: 09/22/2024] [Indexed: 10/07/2024]
Abstract
Antibiotic resistance has become a serious threat to public health, thus novel antibiotics are urgently needed to combat drug-resistant bacteria including methicillin-resistant Staphylococcus aureus (MRSA). The 1,4-dicarbonylthiosemicarbazide is an interesting chemotype that could exhibit antibacterial activity. However, the currently available compounds are not as potent as clinical antibiotics. Herein, we adopted the computer-aided drug design strategy, substructure search, to retrieve antibacterial 1,4-dicarbonylthiosemicarbazide derivatives, and identified compound B5 (Specs ID: AG-690/15432331) from the Specs chemical library that exhibited moderate activity (minimum inhibitory concentration (MIC): 6.25 μg/mL) against Staphylococcus aureus ATCC 29213. Based on that compound, we further designed and synthesized 45 derivatives, and evaluated their antibacterial activity. Eight derivatives were more potent than or equivalent to vancomycin (MIC: 1.56 μg/mL). We compared the three most potent ones for their cytotoxicity to HepG2 and HUVEC cells and selected compound 1b as our lead compound for comprehensive biological evaluation. As a result, compound 1b exhibited a bacteriostatic mode, and was active against a panel of Gram-positive bacteria strains, metabolically stable, and effective to protect the mice from MRSA infection. More importantly, we applied 2D similarity calculation and reverse docking to predict potential targets of compound 1b. Through experimental validation and molecular dynamics simulation, we were able to confirm that compound 1b inhibited Staphylococcus aureus DNA gyrase (IC50: 1.81 μM) and DNA supercoiling, potentially by binding to the ATPase domain, where ASP81, GLU58 and GLN91 formed key hydrogen bonds. Taken together, we have discovered a new class of DNA gyrase inhibitors represented by compound 1b for the treatment of MRSA infection, through the design, synthesis, and biological evaluation of novel 1,4-dicarbonylthiosemicarbazides.
Collapse
Affiliation(s)
- Gao Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jiaxin Liang
- Department of Clinical Laboratory, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China; KingMed School of Laboratory Medicine, Guangzhou Medical University, Guangzhou, China
| | - Gang Wen
- State Key Laboratory of Bioactive Substance and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Mingli Yao
- State Key Laboratory of Bioactive Substance and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yuqing Jia
- State Key Laboratory of Bioactive Substance and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Bo Feng
- State Key Laboratory of Bioactive Substance and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jishun Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zunsheng Han
- State Key Laboratory of Bioactive Substance and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Qingxin Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Tianlei Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wenxuan Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hongwei Jin
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Jie Xia
- State Key Laboratory of Bioactive Substance and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Liang Peng
- Department of Clinical Laboratory, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China; KingMed School of Laboratory Medicine, Guangzhou Medical University, Guangzhou, China.
| | - Song Wu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| |
Collapse
|
5
|
Attwa MW, AlRabiah H, Abdelhameed AS, Kadi AA. Assessment of the in vitro metabolic stability of CEP-37440, a selective FAK/ALK inhibitor, in HLMs using fast UPLC-MS/MS method: in silico metabolic lability and DEREK alerts screening. Front Chem 2024; 12:1323738. [PMID: 39391832 PMCID: PMC11464430 DOI: 10.3389/fchem.2024.1323738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 09/13/2024] [Indexed: 10/12/2024] Open
Abstract
Introduction CEP-37440 was synthesized and supplied by the research and development division of Teva Branded Pharmaceutical Products (West Chester, PA, United States). CEP-37440 represents a newly developed compound that exhibits selectivity inhibition of Focal Adhesion Kinase and Anaplastic Lymphoma Kinase FAK/ALK receptors, demonstrating novel characteristics as an orally active inhibitor. The simultaneous inhibition of ALK and FAK can effectively address resistance and enhance the therapeutic efficacy against tumors through a synergistic mechanism. Methods The objective of this research was to create an LC-MS/MS method that is precise, efficient, environmentally friendly, and possesses a high level of sensitivity for the quantification of CEP-37440 in human liver microsomes (HLMs). The aforementioned approach was subsequently employed to evaluate the metabolic stability of CEP-37440 in HLMs in an in vitro setting. The validation procedures for the LC-MS/MS analytical method in the HLMs were performed following the bio-analytical method validation guidelines set out by the US-FDA. The AGREE program was utilized to assess the ecological impacts of the current LC-MS/MS methodology. Results and Discussion The calibration curve linearity was seen in the range of 1-3000 ng/mL. The inter-day accuracy (% RE) exhibited a range of -2.33% to 3.22%, whilst the intra-day accuracy demonstrated a range of -4.33% to 1.39%. The inter-day precision (% RSD) exhibited a range of 0.38% to 3.60%, whilst the intra-day precision demonstrated a range of 0.16% to 6.28%. The determination of the in vitro half-life (t1/2) and moderate intrinsic clearance (Clint) of CEP-37440 yielded values of 23.24 min and 34.74 mL/min/kg, respectively. The current manuscript is considered the first analytical study for CEP-37440 quantification with the application to metabolic stability assessment. These results suggest that CEP-37440 can be categorized as a pharmaceutical agent with a moderate extraction ratio. Consequently, it is postulated that the administration of CEP-37440 to patients may not lead to the accrual of dosages within the human organs. According to in silico P450 metabolic and DEREK software, minor structural alterations to the ethanolamine moiety or substitution of the group in drug design have the potential to enhance the metabolic stability and safety profile of novel derivatives in comparison to CEP-37440.
Collapse
Affiliation(s)
- Mohamed W. Attwa
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | | | | | | |
Collapse
|
6
|
Ueyama-Toba Y, Tong Y, Yokota J, Murai K, Hikita H, Eguchi H, Takehara T, Mizuguchi H. Development of a hepatic differentiation method in 2D culture from primary human hepatocyte-derived organoids for pharmaceutical research. iScience 2024; 27:110778. [PMID: 39280628 PMCID: PMC11401167 DOI: 10.1016/j.isci.2024.110778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 06/28/2024] [Accepted: 08/16/2024] [Indexed: 09/18/2024] Open
Abstract
Human liver organoids derived from primary human hepatocytes (PHHs) are expected to be a hepatocyte source for preclinical in vitro studies of drug metabolism and disposition. Because hepatic functions of these organoids remain low, it is necessary to enhance the hepatic functions. Here, we develop a novel method for two dimensional (2D)-cultured hepatic differentiation from PHH-derived organoids by screening several compounds, cytokines, and growth factors. Hepatic gene expressions in the hepatocyte-like cells differentiated from PHH-derived organoids (Org-HEPs) were greatly increased, compared to those in PHH-derived organoids. The metabolic activities of cytochrome P450 (CYP) 1A2, CYP2C8, CYP2C19, CYP2E1, and CYP3A4 were at levels comparable to those in PHHs. The cell viability of Org-HEPs treated with hepatotoxic drugs was almost the same as that of PHHs. Thus, PHH-derived organoids could be differentiated into highly functional hepatocytes in 2D culture. Thus, Org-HEPs will be useful for pharmaceutical research, including hepatotoxicity tests.
Collapse
Affiliation(s)
- Yukiko Ueyama-Toba
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka 565-0871, Japan
- Laboratory of Functional Organoid for Drug Discovery, National Institute of Biomedical Innovation, Health and Nutrition, Osaka 567-0085, Japan
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita, Osaka 565-0871, Japan
| | - Yanran Tong
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka 565-0871, Japan
- Laboratory of Functional Organoid for Drug Discovery, National Institute of Biomedical Innovation, Health and Nutrition, Osaka 567-0085, Japan
| | - Jumpei Yokota
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka 565-0871, Japan
- Laboratory of Functional Organoid for Drug Discovery, National Institute of Biomedical Innovation, Health and Nutrition, Osaka 567-0085, Japan
| | - Kazuhiro Murai
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Osaka University, Osaka 567-0085, Japan
| | - Hayato Hikita
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita, Osaka 565-0871, Japan
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Osaka University, Osaka 567-0085, Japan
| | - Hidetoshi Eguchi
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka 567-0085, Japan
| | - Tetsuo Takehara
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Osaka University, Osaka 567-0085, Japan
| | - Hiroyuki Mizuguchi
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka 565-0871, Japan
- Laboratory of Functional Organoid for Drug Discovery, National Institute of Biomedical Innovation, Health and Nutrition, Osaka 567-0085, Japan
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita, Osaka 565-0871, Japan
- Global Center for Medical Engineering and Informatics, Osaka University, Osaka 565-0871, Japan
- Center for Infectious Disease Education and Research, Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|
7
|
Zaman SU, Pagare PP, Ma H, Hoyle RG, Zhang Y, Li J. Novel PROTAC probes targeting KDM3 degradation to eliminate colorectal cancer stem cells through inhibition of Wnt/β-catenin signaling. RSC Med Chem 2024:d4md00122b. [PMID: 39281802 PMCID: PMC11393732 DOI: 10.1039/d4md00122b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 08/20/2024] [Indexed: 09/18/2024] Open
Abstract
It has been demonstrated that the KDM3 family of histone demethylases (KDM3A and KDM3B) epigenetically control the functional properties of colorectal cancer stem cells (CSCs) through Wnt/β-catenin signaling. Meanwhile, a broad-spectrum histone demethylase inhibitor, IOX1, suppresses Wnt-induced colorectal tumorigenesis predominantly through inhibiting the enzymatic activity of KDM3. In this work, several cereblon (CRBN)-recruiting PROTACs with various linker lengths were designed and synthesized using IOX1 as a warhead to target KDM3 proteins for degradation. Two of the synthesized PROTACs demonstrated favorable degradation profile and selectivity towards KDM3A and KDM3B. Compound 4 demonstrated favorable in vitro metabolic profile in liver enzymes as well as no hERG-associated cardiotoxicity. Compound 4 also showed dramatic ability in suppressing oncogenic Wnt signaling to eliminate colorectal CSCs and inhibit tumor growth, with around 10- to 35-fold increased potency over IOX1. In summary, this study suggests that PROTACs provide a unique molecular tool for the development of novel small molecules from the IOX1 skeleton for selective degradation of KDM3 to eliminate colorectal CSCs via suppressing oncogenic Wnt signaling.
Collapse
Affiliation(s)
- Shadid U Zaman
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University Richmond Virginia 23298-0540 USA
| | - Piyusha P Pagare
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University Richmond Virginia 23298-0540 USA
| | - Hongguang Ma
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University Richmond Virginia 23298-0540 USA
| | - Rosalie G Hoyle
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University Richmond Virginia 23298-0540 USA
| | - Yan Zhang
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University Richmond Virginia 23298-0540 USA
| | - Jiong Li
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University Richmond Virginia 23298-0540 USA
- Department of Oral and Craniofacial Molecular Biology, Virginia Commonwealth University Richmond Virginia 23298-0540 USA
- Massey Cancer Center, Virginia Commonwealth University Richmond Virginia 23298-0540 USA
| |
Collapse
|
8
|
Puxeddu M, Donalisio M, Bugert JJ, Corona A, Cocomazzi P, Milani M, Hucke F, Arduino I, Esposito F, Moretti P, Ortore MG, Nalli M, Manetto S, Mazzoccanti G, Bigogno C, Dondio G, Sciò P, Coluccia A, Fracella M, Antonelli G, Lembo D, Tramontano E, Silvestri R, Mastrangelo E, La Regina G. 4-(3-Phenylsulfonylindol-2-yl)-1-(pyridin-2-yl)piperazinyl-methanones as Potent Inhibitors of both SARS-CoV-2 and HCoV-OC43 Viruses. ACS Infect Dis 2024; 10:3158-3175. [PMID: 39096289 DOI: 10.1021/acsinfecdis.4c00108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/05/2024]
Abstract
SARS-CoV-2 and HCoV-OC43 belong to the same β genus of the Coronaviridae family. SARS-CoV-2 was responsible for the recent COVID-19 pandemic, and HCoV-OC43 is the etiological agent of mild upper respiratory tract infections. SARS-COV-2 and HCoV-OC43 co-infections were found in children with respiratory symptoms during the COVID-19 pandemic. The two β-coronaviruses share a high degree of homology between the 3CLpro active sites, so much so that the safer HCoV-OC43 has been suggested as a tool for the identification of new anti-SARS-COV-2 agents. Compounds 5 and 24 inhibited effectively both Wuhan and British SARS-CoV-2 patient isolates in Vero E6 cells and the HCoV-OC43 in MRC-5 cells at low micromolar concentrations. The inhibition was apparently exerted via targeting the 3CLpro active sites of both viruses. Compounds 5 and 24 at 100 μM inhibited the SARS-CoV-2 3CLpro activity of 61.78 and 67.30%, respectively. These findings highlight 5 and 24 as lead compounds of a novel class of antiviral agents with the potential to treat SARS-COV-2 and HCoV-OC43 infections.
Collapse
Affiliation(s)
- Michela Puxeddu
- Laboratory Affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Department of Drug Chemistry and Technologies, Sapienza University of Rome, Piazzale Aldo Moro 5, I-00185 Rome, Italy
| | - Manuela Donalisio
- Department of Clinical and Biological Sciences, University of Turin, Regione Gonzole 10, I-10043 Orbassano, Turin, Italy
| | - Joachim Jakob Bugert
- Institut für Mikrobiologie der Bundeswehr, Neuherbergstrasse 11, D-80937 München, Germany
| | - Angela Corona
- Department of Life and Environmental Sciences, University of Cagliari, S.P. 8 Monserrato, Sestu Km 0.700, I-09042 Monserrato, Italy
| | - Paolo Cocomazzi
- Biophysics Institute, CNR-IBF, Via Corti 12, I-20133 Milan, Italy
| | - Mario Milani
- Biophysics Institute, CNR-IBF, Via Corti 12, I-20133 Milan, Italy
| | - Friederike Hucke
- Institut für Mikrobiologie der Bundeswehr, Neuherbergstrasse 11, D-80937 München, Germany
| | - Irene Arduino
- Department of Clinical and Biological Sciences, University of Turin, Regione Gonzole 10, I-10043 Orbassano, Turin, Italy
| | - Francesca Esposito
- Department of Life and Environmental Sciences, University of Cagliari, S.P. 8 Monserrato, Sestu Km 0.700, I-09042 Monserrato, Italy
| | - Paolo Moretti
- DISVA, Department of Life Sciences and Environment, Università Politecnica delle Marche, Via Brecce Bianche, I-60131 Ancona, Italy
| | - Maria Grazia Ortore
- DISVA, Department of Life Sciences and Environment, Università Politecnica delle Marche, Via Brecce Bianche, I-60131 Ancona, Italy
| | - Marianna Nalli
- Laboratory Affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Department of Drug Chemistry and Technologies, Sapienza University of Rome, Piazzale Aldo Moro 5, I-00185 Rome, Italy
| | - Simone Manetto
- Laboratory Affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Department of Drug Chemistry and Technologies, Sapienza University of Rome, Piazzale Aldo Moro 5, I-00185 Rome, Italy
| | - Giulia Mazzoccanti
- Laboratory Affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Department of Drug Chemistry and Technologies, Sapienza University of Rome, Piazzale Aldo Moro 5, I-00185 Rome, Italy
| | - Chiara Bigogno
- Aphad SrL, Via della Resistenza 65, 20090 Buccinasco, Italy
| | - Giulio Dondio
- Aphad SrL, Via della Resistenza 65, 20090 Buccinasco, Italy
| | - Pietro Sciò
- Laboratory Affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Department of Drug Chemistry and Technologies, Sapienza University of Rome, Piazzale Aldo Moro 5, I-00185 Rome, Italy
| | - Antonio Coluccia
- Laboratory Affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Department of Drug Chemistry and Technologies, Sapienza University of Rome, Piazzale Aldo Moro 5, I-00185 Rome, Italy
| | - Matteo Fracella
- Laboratory of Virology, Department of Molecular Medicine, Sapienza University of Rome, 00185 Rome, Italy
| | - Guido Antonelli
- Laboratory of Virology, Department of Molecular Medicine, Sapienza University of Rome, 00185 Rome, Italy
| | - David Lembo
- Department of Clinical and Biological Sciences, University of Turin, Regione Gonzole 10, I-10043 Orbassano, Turin, Italy
| | - Enzo Tramontano
- Department of Life and Environmental Sciences, University of Cagliari, S.P. 8 Monserrato, Sestu Km 0.700, I-09042 Monserrato, Italy
| | - Romano Silvestri
- Laboratory Affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Department of Drug Chemistry and Technologies, Sapienza University of Rome, Piazzale Aldo Moro 5, I-00185 Rome, Italy
| | | | - Giuseppe La Regina
- Laboratory Affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Department of Drug Chemistry and Technologies, Sapienza University of Rome, Piazzale Aldo Moro 5, I-00185 Rome, Italy
| |
Collapse
|
9
|
Attwa MW, Abdelhameed AS, Kadi AA. An ultra-fast ultra-high-performance liquid chromatography-tandem mass spectrometry method for estimating the in vitro metabolic stability of palbociclib in human liver microsomes: In silico study for metabolic lability, absorption, distribution, metabolism, and excretion features, and DEREK alerts screening. J Sep Sci 2024; 47:e2400346. [PMID: 39087624 DOI: 10.1002/jssc.202400346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 07/10/2024] [Accepted: 07/18/2024] [Indexed: 08/02/2024]
Abstract
Palbociclib (Ibrance; Pfizer) was approved for the management of metastatic breast cancer characterized by hormone receptor-positive/human epidermal growth factor receptor 2 negative status. The objective of this study was to create a fast, precise, environmentally friendly, and highly sensitive ultra-high-performance liquid chromatography-tandem mass spectrometry approach for quantifying palbociclib (PAB) in human liver microsomes with the application for assessing metabolic stability. The validation features were performed in agreement with the bioanalytical method validation standards outlined by the US Food and Drug Administration. The StarDrop software (WhichP450 and DEREK modules) was used in screening the metabolic lability and structural alerts of PAB. The separation of PAB and encorafenib (as an internal standard) was achieved on a C8 column, employing an isocratic mobile phase. The inter-day and intra-day accuracy and precision ranged from -6.00% to 4.64% and from -2.33% to 3.13%, respectively. The constructed calibration curve displayed a linearity in the range of 1-3000 ng/mL. The sensitivity of the established approach was proven by the lower limit of quantification of 0.73 ng/mL. The Analytical GREEness calculator results revealed the high level of greenness of the developed method. The PAB's metabolic stability (t1/2 of 18.5 min and a moderate clearance (Clint) of 44.8 mL/min/kg) suggests a high extraction ratio medication that matched the WhichP450 software results.
Collapse
Affiliation(s)
- Mohamed W Attwa
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Ali S Abdelhameed
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Adnan A Kadi
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
10
|
Ren Q, Chen J, Wesseling S, Bouwmeester H, Rietjens IMCM. Physiologically based Kinetic Modeling-Facilitated Quantitative In Vitro to In Vivo Extrapolation to Predict the Effects of Aloe-Emodin in Rats and Humans. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:16163-16176. [PMID: 38980703 PMCID: PMC11273626 DOI: 10.1021/acs.jafc.4c00969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 06/12/2024] [Accepted: 06/20/2024] [Indexed: 07/10/2024]
Abstract
Aloe-emodin, a natural hydroxyanthraquinone, exerts both adverse and protective effects. This study aimed at investigating these potential effects of aloe-emodin in humans upon the use of food supplements and herbal medicines using a physiologically based kinetic (PBK) modeling-facilitated quantitative in vitro to in vivo extrapolation (QIVIVE) approach. For this, PBK models in rats and humans were established for aloe-emodin including its active metabolite rhein and used to convert in vitro data on hepatotoxicity, nephrotoxicity, reactive oxidative species (ROS) generation, and Nrf2 induction to corresponding in vivo dose-response curves, from which points of departure (PODs) were derived by BMD analysis. The derived PODs were subsequently compared to the estimated daily intakes (EDIs) resulting from the use of food supplements or herbal medicines. It is concluded that the dose levels of aloe-emodin from food supplements or herbal medicines are unlikely to induce toxicity, ROS generation, or Nrf2 activation in liver and kidney.
Collapse
Affiliation(s)
- Qiuhui Ren
- Division of Toxicology, Wageningen
University and Research, Stippeneng 4, Wageningen 6708 WE, The Netherlands
| | - Jiaqi Chen
- Division of Toxicology, Wageningen
University and Research, Stippeneng 4, Wageningen 6708 WE, The Netherlands
| | - Sebastiaan Wesseling
- Division of Toxicology, Wageningen
University and Research, Stippeneng 4, Wageningen 6708 WE, The Netherlands
| | - Hans Bouwmeester
- Division of Toxicology, Wageningen
University and Research, Stippeneng 4, Wageningen 6708 WE, The Netherlands
| | - Ivonne M. C. M. Rietjens
- Division of Toxicology, Wageningen
University and Research, Stippeneng 4, Wageningen 6708 WE, The Netherlands
| |
Collapse
|
11
|
Gamba D, van Eijk N, Lányi K, Monostory K, Steinmetzer T, Marosi A, Rácz A, Bajusz D, Kruhl D, Böttcher-Friebertshäuser E, Pászti-Gere E. PK/PD investigation of antiviral host matriptase/TMPRSS2 inhibitors in cell models. Sci Rep 2024; 14:16621. [PMID: 39025978 PMCID: PMC11258351 DOI: 10.1038/s41598-024-67633-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 07/15/2024] [Indexed: 07/20/2024] Open
Abstract
Certain corona- and influenza viruses utilize type II transmembrane serine proteases for cell entry, making these enzymes potential drug targets for the treatment of viral respiratory infections. In this study, the cytotoxicity and inhibitory effects of seven matriptase/TMPRSS2 inhibitors (MI-21, MI-463, MI-472, MI-485, MI-1900, MI-1903, and MI-1904) on cytochrome P450 enzymes were evaluated using fluorometric assays. Additionally, their antiviral activity against influenza A virus subtypes H1N1 and H9N2 was assessed. The metabolic depletion rates of these inhibitors in human primary hepatocytes were determined over a 120-min period by LC-MS/MS, and PK parameters were calculated. The tested compounds, with the exception of MI-21, displayed potent inhibition of CYP3A4, while all compounds lacked inhibitory effects on CYP1A2, CYP2C9, CYP2C19, and CYP2D6. The differences between the CYP3A4 activity within the series were rationalized by ligand docking. Elucidation of PK parameters showed that inhibitors MI-463, MI-472, MI-485, MI-1900 and MI-1904 were more stable compounds than MI-21 and MI-1903. Anti-H1N1 properties of inhibitors MI-463 and MI-1900 and anti-H9N2 effects of MI-463 were shown at 20 and 50 µM after 24 h incubation with the inhibitors, suggesting that these inhibitors can be applied to block entry of these viruses by suppressing host matriptase/TMPRSS2-mediated cleavage.
Collapse
Affiliation(s)
- Dávid Gamba
- Department of Pharmacology and Toxicology, University of Veterinary Medicine, István Utca 2, 1078, Budapest, Hungary
| | - Nicholas van Eijk
- Department of Pharmacology and Toxicology, University of Veterinary Medicine, István Utca 2, 1078, Budapest, Hungary
| | - Katalin Lányi
- Department of Food Hygiene, University of Veterinary Medicine, István Utca 2, 1078, Budapest, Hungary
| | - Katalin Monostory
- Institute of Enzymology, Research Centre for Natural Sciences, Magyar Tudósok 2, 1117, Budapest, Hungary
| | - Torsten Steinmetzer
- Faculty of Pharmacy, Institute of Pharmaceutical Chemistry, Philipps University Marburg, Marbacher Weg 6, 35032, Marburg, Germany
| | - András Marosi
- Virology Research Group, Department of Microbiology and Infectious Diseases, University of Veterinary Medicine, Hungária krt 23, 1143, Budapest, Hungary
| | - Anita Rácz
- Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Magyar Tudósok 2, 1117, Budapest, Hungary
| | - Dávid Bajusz
- Institute of Organic Chemistry, Research Centre for Natural Sciences, Magyar Tudósok 2, 1117, Budapest, Hungary
| | - Diana Kruhl
- Institute of Virology, Philipps-University Marburg, Hans-Meerwein-Str. 2, 35043, Marburg, Germany
| | | | - Erzsébet Pászti-Gere
- Department of Pharmacology and Toxicology, University of Veterinary Medicine, István Utca 2, 1078, Budapest, Hungary.
| |
Collapse
|
12
|
Yu W, Fang S, Xie X, Liu W, Liu X, Du Y, Zheng P, Liu G. Deuterium Editing of Small Molecules: A Case Study on Antitumor Activity of 1,4-Benzodiazepine-2,5-dione Derivatives. J Med Chem 2024. [PMID: 39026395 DOI: 10.1021/acs.jmedchem.4c00796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Substituting hydrogen with deuterium in drug molecules is an appealing bioisosteric strategy for the generation of novel chemical entities in drug development. Optimizing lead compounds through deuteration has proven to be challenging and unpredictable, particularly for compounds with multiple metabolic sites. This study presents the pioneering achievement of substituting up to 19 hydrogen atoms with deuterium on 1,4-benzodiazepine-2,5-dione derivatives, shedding light on the structure-metabolism relationship and the impact of multiple deuterations on drug-like properties. Notably, the deuterated compound 3f exhibited remarkable antitumor activity in vivo and demonstrated favorable drug-like properties as a drug candidate.
Collapse
Affiliation(s)
- Wenjun Yu
- Ningbo Combireg Pharmaceutical Technology Co., Ltd., Ningbo 315336, P. R. China
| | - Shiping Fang
- School of Pharmaceutical Sciences, Tsinghua University, Haidian Dist, Beijing 100084, P. R. China
| | - Xilei Xie
- School of Pharmaceutical Sciences, Tsinghua University, Haidian Dist, Beijing 100084, P. R. China
| | - Wenwu Liu
- School of Pharmaceutical Sciences, Tsinghua University, Haidian Dist, Beijing 100084, P. R. China
| | - Xinhua Liu
- School of Pharmaceutical Sciences, Tsinghua University, Haidian Dist, Beijing 100084, P. R. China
| | - Yanan Du
- School of Biomedical Engineering, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Haidian Dist, Beijing 100084, P. R. China
| | - Purong Zheng
- Ningbo Combireg Pharmaceutical Technology Co., Ltd., Ningbo 315336, P. R. China
| | - Gang Liu
- School of Pharmaceutical Sciences, Tsinghua University, Haidian Dist, Beijing 100084, P. R. China
| |
Collapse
|
13
|
Stringer R, Kaster T. Predicting the Intravenous Pharmacokinetics of Covalent Drugs in Animals and Humans. J Med Chem 2024. [PMID: 39018425 DOI: 10.1021/acs.jmedchem.4c00776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/19/2024]
Abstract
30 covalent drugs were used to assess clearance (CL) prediction reliability in animals and humans. In animals, marked CL underprediction was observed using cryopreserved hepatocytes or liver microsomes (LMs) supplemented for cytochrome P450 activity. Improved quantitative performance was observed by combining metabolic stability data from LMs and liver S9 fractions, the latter supplemented with reduced glutathione for glutathione transferase activity. While human LMs provided reliable human CL predictions, prediction statistics were improved further by incorporating S9 stability data. CL predictions with allometric scaling were less robust compared to in vitro drug metabolism methods; the best results were obtained using the fu-corrected intercept model. Human volume of distribution (Vd) was well predicted using allometric scaling of animal pharmacokinetic data; the most reliable results were achieved using simple allometric scaling of unbound Vd values. These results provide a quantitative framework to guide appropriate method selection for human PK prediction with covalent drugs.
Collapse
Affiliation(s)
- Rowan Stringer
- Novartis Biomedical Research, Basel CH-4002, Switzerland
| | - Tobias Kaster
- Novartis Biomedical Research, Basel CH-4002, Switzerland
| |
Collapse
|
14
|
Pang KS, Lu WI, Mulder GJ. After 50 Years of Hepatic Clearance Models, Where Should We Go from Here? Improvements and Implications for Physiologically Based Pharmacokinetic Modeling. Drug Metab Dispos 2024; 52:919-931. [PMID: 39013583 DOI: 10.1124/dmd.124.001649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 04/25/2024] [Indexed: 07/18/2024] Open
Abstract
There is overwhelming preference for application of the unphysiologic, well-stirred model (WSM) over the parallel tube model (PTM) and dispersion model (DM) to predict hepatic drug clearance, CLH , despite that liver blood flow is dispersive and closer to the DM in nature. The reasoning is the ease in computation relating the hepatic intrinsic clearance ( CLint ), hepatic blood flow ( QH ), unbound fraction in blood ( fub ) and the transmembrane clearances ( CLin and CLef ) to CLH for the WSM. However, the WSM, being the least efficient liver model, predicts a lower EH that is associated with the in vitro CLint ( Vmax / Km ), therefore requiring scale-up to predict CLH in vivo. By contrast, the miniPTM, a three-subcompartment tank-in-series model of uniform enzymes, closely mimics the DM and yielded similar patterns for CLint versus EH , substrate concentration [S] , and KL / B , the tissue to outflow blood concentration ratio. We placed these liver models nested within physiologically based pharmacokinetic models to describe the kinetics of the flow-limited, phenolic substrate, harmol, using the WSM (single compartment) and the miniPTM and zonal liver models (ZLMs) of evenly and unevenly distributed glucuronidation and sulfation activities, respectively, to predict CLH For the same, given CLint ( Vmax and Km ), the WSM again furnished the lowest extraction ratio ( EH,WSM = 0.5) compared with the miniPTM and ZLM (>0.68). Values of EH,WSM were elevated to those for EH, PTM and EH, ZLM when the Vmax s for sulfation and glucuronidation were raised 5.7- to 1.15-fold. The miniPTM is easily manageable mathematically and should be the new normal for liver/physiologic modeling. SIGNIFICANCE STATEMENT: Selection of the proper liver clearance model impacts strongly on CLH predictions. The authors recommend use of the tank-in-series miniPTM (3 compartments mini-parallel tube model), which displays similar properties as the dispersion model (DM) in relating CLint and [ S ] to CLH as a stand-in for the DM, which best describes the liver microcirculation. The miniPTM is readily modified to accommodate enzyme and transporter zonation.
Collapse
Affiliation(s)
- K Sandy Pang
- Leslie Dan Faculty of Pharmacy, University of Toronto, Ontario, Canada (K.S.P., W.I.L.) and Department of Toxicology, Leiden Academic Centre for Drug Research, Leiden University, The Netherlands (G.J.M.)
| | - Weijia Ivy Lu
- Leslie Dan Faculty of Pharmacy, University of Toronto, Ontario, Canada (K.S.P., W.I.L.) and Department of Toxicology, Leiden Academic Centre for Drug Research, Leiden University, The Netherlands (G.J.M.)
| | - Gerard J Mulder
- Leslie Dan Faculty of Pharmacy, University of Toronto, Ontario, Canada (K.S.P., W.I.L.) and Department of Toxicology, Leiden Academic Centre for Drug Research, Leiden University, The Netherlands (G.J.M.)
| |
Collapse
|
15
|
Attwa MW, Abdelhameed AS, Kadi AA. Characterization of the in vitro metabolic profile of nazartinib in HLMs using UPLC-MS/MS method: In silico metabolic lability and DEREK structural alerts screening using StarDrop software. Heliyon 2024; 10:e34109. [PMID: 39091946 PMCID: PMC11292529 DOI: 10.1016/j.heliyon.2024.e34109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 06/30/2024] [Accepted: 07/03/2024] [Indexed: 08/04/2024] Open
Abstract
The orally given, irreversible, third-generation inhibitor of the epidermal growth factor receptor (EGFR), known as Nazartinib (EGF816), is now undergoing investigation in Phase II clinical trials conducted by Novartis for Non-Small Cell Lung Cancer. The primary aim of the current research was to establish a rapid, specific, environmentally friendly, and highly versatile UPLC-MS/MS methodology for the determination of nazartinib (NZT) levels in human liver microsomes (HLMs). Subsequently, same approach was used to examine the metabolic stability of NZT. The UPLC-MS/MS method employed in HLMs was validated as stated in the bioanalytical method validation criteria outlined by the US- FDA. The evaluation of the metabolic stability of NZT and the identification of potentially structural alarms were performed using the StarDrop software package that includes the P450 and DEREK software. The calibration curve for NZT showed a linearity in the range from 1 to 3000 ng/mL. The inter-day accuracy and precision exhibited a range of values between -4.33 % and 4.43 %, whereas the intra-day accuracy and precision shown a range of values between -2.78 % and 7.10 %. The sensitivity of the developed approach was verified through the determination of a LLOQ of 0.39 ng/mL. The intrinsic clearance and in vitro half-life of NZT were assessed to be 46.48 mL/min/kg and 17.44 min, respectively. In our preceding inquiry, we have effectively discerned the bioactivation center, denoted by the carbon atom between the unsaturated conjugated system and aliphatic linear tertiary amine. In the context of computational software, making minor adjustments or substituting the dimethylamino-butenoyl moiety throughout the drug design process may increase the metabolic stability and safety properties of new synthesized derivatives. The efficiency of utilizing different in silico software approaches to conserve resources and reduce effort was proved by the outcomes attained from in vitro incubation experiments and the use of NZT in silico software.
Collapse
Affiliation(s)
- Mohamed W. Attwa
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Ali S. Abdelhameed
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Adnan A. Kadi
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
16
|
Attwa MW, Abdelhameed AS, Kadi AA. Ultra-fast UPLC-MS/MS approach for estimating X-376 in human liver microsomes: Evaluation of metabolic stability via in silico software and in vitro analysis. J Pharmacol Toxicol Methods 2024; 128:107540. [PMID: 38996943 DOI: 10.1016/j.vascn.2024.107540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 07/06/2024] [Accepted: 07/09/2024] [Indexed: 07/14/2024]
Abstract
X-376 is a novel anaplastic lymphoma kinase (ALK) inhibitor that is capable of penetrating the blood brain barrier. This makes it suitable for use in patients with ALK-positive non-small cell lung cancer (NSCLC) who have metastases in the central nervous system. This study developed a highly sensitive, fast, eco-friendly, and reliable UPLC-MS/MS approach to quantify X-376 in human liver microsomes (HLMs). This approach was used to evaluate X-376's metabolic stability in HLMs in vitro. The UPLC-MS/MS analytical technique validation followed US-FDA bio-analytical method validation guidelines. StarDrop software, containing P450 metabolic and DEREK modules, was utilized to scan X-376's chemical structure for metabolic lability and hazardous warnings. X-376 and Encorafenib (ENF as internal standard) were resoluted on the Eclipse Plus C18 column utilizing an isocratic mobile phase method. The X-376 calibration curve was linear from 1 to 3000 ng/mL. The precision and accuracy of this study's UPLC-MS/MS approach were tested for intra- and inter-day measurements. Inter-day accuracy was -1.32% to 9.36% while intra-day accuracy was -1.5% to 10.00%. The intrinsic clearance (Clint) and in vitro half-life (t1/2) of X-376 were 59.77 mL/min/kg and 13.56 min. The high extraction ratio of X-376 supports the 50 mg twice-daily dose for ALK-positive NSCLC and CNS metastases patients. In silico software suggests that simple structural changes to the piperazine ring or group substitution in drug design may improve metabolic stability and safety compared to X-376.
Collapse
Affiliation(s)
- Mohamed W Attwa
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia..
| | - Ali S Abdelhameed
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Adnan A Kadi
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
17
|
Jiang S, Li X, Xue W, Xia S, Wang J, Sai Y, Dai G, Su W. Preclinical pharmacokinetic characterization of amdizalisib, a novel PI3Kδ inhibitor for the treatment of hematological malignancies. Front Pharmacol 2024; 15:1392209. [PMID: 38948472 PMCID: PMC11211886 DOI: 10.3389/fphar.2024.1392209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 05/21/2024] [Indexed: 07/02/2024] Open
Abstract
Amdizalisib, also named HMPL-689, a novel selective and potent PI3Kδ inhibitor, is currently under Phase II clinical development in China for treating hematological malignancies. The preclinical pharmacokinetics (PK) of amdizalisib were extensively characterized in vitro and in vivo to support the further development of amdizalisib. We characterized the plasma protein binding, blood-to-plasma partition ratio, cell permeability, hepatic microsomal metabolic stability, and drug-drug interaction potential of amdizalisib using in vitro experiments. In vivo PK assessment was undertaken in mice, rats, dogs, and monkeys following a single intravenous or oral administration of amdizalisib. The tissue distribution and excretion of amdizalisib were evaluated in rats. The PK parameters (CL and Vss) of amdizalisib in preclinical species (mice, rats, dogs, and monkeys) were utilized for the human PK projection using the allometric scaling (AS) approach. Amdizalisib was well absorbed and showed low-to-moderate clearance in mice, rats, dogs, and monkeys. It had high cell permeability without P-glycoprotein (P-gp) or breast cancer resistance protein (BCRP) substrate liability. Plasma protein binding of amdizalisib was high (approximately 90%). It was extensively distributed but with a low brain-to-plasma exposure ratio in rats. Amdizalisib was extensively metabolized in vivo, and the recovery rate of the prototype drug was low in the excreta. Amdizalisib and/or its metabolites were primarily excreted via the bile and urine in rats. Amdizalisib showed inhibition potential on P-gp but not on BCRP and was observed to inhibit CYP2C8 and CYP2C9 with IC50 values of 30.4 and 10.7 μM, respectively. It exhibited induction potential on CYP1A2, CYP2B6, CYP3A4, and CYP2C9. The preclinical data from these ADME studies demonstrate a favorable pharmacokinetic profile for amdizalisib, which is expected to support the future clinical development of amdizalisib as a promising anti-cancer agent.
Collapse
Affiliation(s)
| | | | | | | | - Jian Wang
- HUTCHMED Limited, Zhangjiang Hi-Tech Park, Shanghai, China
| | | | | | | |
Collapse
|
18
|
de Souza Gama FH, Dutra LA, Hawgood M, Dos Reis CV, Serafim RAM, Ferreira MA, Teodoro BVM, Takarada JE, Santiago AS, Balourdas DI, Nilsson AS, Urien B, Almeida VM, Gileadi C, Ramos PZ, Salmazo A, Vasconcelos SNS, Cunha MR, Mueller S, Knapp S, Massirer KB, Elkins JM, Gileadi O, Mascarello A, Lemmens BBLG, Guimarães CRW, Azevedo H, Couñago RM. Novel Dihydropteridinone Derivatives As Potent Inhibitors of the Understudied Human Kinases Vaccinia-Related Kinase 1 and Casein Kinase 1δ/ε. J Med Chem 2024; 67:8609-8629. [PMID: 38780468 DOI: 10.1021/acs.jmedchem.3c02250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
Vaccinia-related kinase 1 (VRK1) and the δ and ε isoforms of casein kinase 1 (CK1) are linked to various disease-relevant pathways. However, the lack of tool compounds for these kinases has significantly hampered our understanding of their cellular functions and therapeutic potential. Here, we describe the structure-based development of potent inhibitors of VRK1, a kinase highly expressed in various tumor types and crucial for cell proliferation and genome integrity. Kinome-wide profiling revealed that our compounds also inhibit CK1δ and CK1ε. We demonstrate that dihydropteridinones 35 and 36 mimic the cellular outcomes of VRK1 depletion. Complementary studies with existing CK1δ and CK1ε inhibitors suggest that these kinases may play overlapping roles in cell proliferation and genome instability. Together, our findings highlight the potential of VRK1 inhibition in treating p53-deficient tumors and possibly enhancing the efficacy of existing cancer therapies that target DNA stability or cell division.
Collapse
Affiliation(s)
| | - Luiz A Dutra
- Centro de Química Medicinal, Centro de Biologia Molecular e Engenharia Genética, Universidade Estadual de Campinas, Av. Dr. André Tosello 550, 13083-886 Campinas, São Paulo Brazil
| | - Michael Hawgood
- Science for Life Laboratory, Sweden, Tomtebodavägen 23A, 17165 Solna, Sweden
- Division of Genome Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-17177 Stockholm, Sweden
| | - Caio Vinícius Dos Reis
- Centro de Química Medicinal, Centro de Biologia Molecular e Engenharia Genética, Universidade Estadual de Campinas, Av. Dr. André Tosello 550, 13083-886 Campinas, São Paulo Brazil
| | - Ricardo A M Serafim
- Centro de Química Medicinal, Centro de Biologia Molecular e Engenharia Genética, Universidade Estadual de Campinas, Av. Dr. André Tosello 550, 13083-886 Campinas, São Paulo Brazil
| | - Marcos A Ferreira
- Aché Laboratórios Farmacêuticos S.A., Guarulhos, São Paulo 07034-904, Brazil
| | - Bruno V M Teodoro
- Aché Laboratórios Farmacêuticos S.A., Guarulhos, São Paulo 07034-904, Brazil
| | - Jéssica Emi Takarada
- Centro de Química Medicinal, Centro de Biologia Molecular e Engenharia Genética, Universidade Estadual de Campinas, Av. Dr. André Tosello 550, 13083-886 Campinas, São Paulo Brazil
| | - André S Santiago
- Centro de Química Medicinal, Centro de Biologia Molecular e Engenharia Genética, Universidade Estadual de Campinas, Av. Dr. André Tosello 550, 13083-886 Campinas, São Paulo Brazil
| | - Dimitrios-Ilias Balourdas
- Institute of Pharmaceutical Chemistry, Johann Wolfgang Goethe University, Max-von-Laue-Str. 9, Frankfurt am Main 60438, Germany
- Structural Genomics Consortium (SGC), Buchmann Institute for Life Sciences, Johann Wolfgang Goethe University, Max-von-Laue-Str. 15, Frankfurt am Main 60438, Germany
| | - Ann-Sofie Nilsson
- Science for Life Laboratory, Sweden, Tomtebodavägen 23A, 17165 Solna, Sweden
- Division of Genome Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-17177 Stockholm, Sweden
| | - Bruno Urien
- Science for Life Laboratory, Sweden, Tomtebodavägen 23A, 17165 Solna, Sweden
- Division of Genome Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-17177 Stockholm, Sweden
| | - Vitor M Almeida
- Centro de Química Medicinal, Centro de Biologia Molecular e Engenharia Genética, Universidade Estadual de Campinas, Av. Dr. André Tosello 550, 13083-886 Campinas, São Paulo Brazil
| | - Carina Gileadi
- Centro de Química Medicinal, Centro de Biologia Molecular e Engenharia Genética, Universidade Estadual de Campinas, Av. Dr. André Tosello 550, 13083-886 Campinas, São Paulo Brazil
| | - Priscila Z Ramos
- Centro de Química Medicinal, Centro de Biologia Molecular e Engenharia Genética, Universidade Estadual de Campinas, Av. Dr. André Tosello 550, 13083-886 Campinas, São Paulo Brazil
| | - Anita Salmazo
- Centro de Química Medicinal, Centro de Biologia Molecular e Engenharia Genética, Universidade Estadual de Campinas, Av. Dr. André Tosello 550, 13083-886 Campinas, São Paulo Brazil
| | - Stanley N S Vasconcelos
- Centro de Química Medicinal, Centro de Biologia Molecular e Engenharia Genética, Universidade Estadual de Campinas, Av. Dr. André Tosello 550, 13083-886 Campinas, São Paulo Brazil
| | - Micael R Cunha
- Centro de Química Medicinal, Centro de Biologia Molecular e Engenharia Genética, Universidade Estadual de Campinas, Av. Dr. André Tosello 550, 13083-886 Campinas, São Paulo Brazil
| | - Susanne Mueller
- Institute of Pharmaceutical Chemistry, Johann Wolfgang Goethe University, Max-von-Laue-Str. 9, Frankfurt am Main 60438, Germany
- Structural Genomics Consortium (SGC), Buchmann Institute for Life Sciences, Johann Wolfgang Goethe University, Max-von-Laue-Str. 15, Frankfurt am Main 60438, Germany
| | - Stefan Knapp
- Institute of Pharmaceutical Chemistry, Johann Wolfgang Goethe University, Max-von-Laue-Str. 9, Frankfurt am Main 60438, Germany
- Structural Genomics Consortium (SGC), Buchmann Institute for Life Sciences, Johann Wolfgang Goethe University, Max-von-Laue-Str. 15, Frankfurt am Main 60438, Germany
| | - Katlin B Massirer
- Centro de Química Medicinal, Centro de Biologia Molecular e Engenharia Genética, Universidade Estadual de Campinas, Av. Dr. André Tosello 550, 13083-886 Campinas, São Paulo Brazil
| | - Jonathan M Elkins
- Centro de Química Medicinal, Centro de Biologia Molecular e Engenharia Genética, Universidade Estadual de Campinas, Av. Dr. André Tosello 550, 13083-886 Campinas, São Paulo Brazil
| | - Opher Gileadi
- Centro de Química Medicinal, Centro de Biologia Molecular e Engenharia Genética, Universidade Estadual de Campinas, Av. Dr. André Tosello 550, 13083-886 Campinas, São Paulo Brazil
| | | | - Bennie B L G Lemmens
- Science for Life Laboratory, Sweden, Tomtebodavägen 23A, 17165 Solna, Sweden
- Division of Genome Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-17177 Stockholm, Sweden
| | | | - Hatylas Azevedo
- Aché Laboratórios Farmacêuticos S.A., Guarulhos, São Paulo 07034-904, Brazil
| | - Rafael M Couñago
- Centro de Química Medicinal, Centro de Biologia Molecular e Engenharia Genética, Universidade Estadual de Campinas, Av. Dr. André Tosello 550, 13083-886 Campinas, São Paulo Brazil
| |
Collapse
|
19
|
Yan Z, Ma L, Hwang N, Huang J, Kenny JR, Hop CECA. Using the Dynamic Well-Stirred Model to Extrapolate Hepatic Clearance of Organic Anion-Transporting Polypeptide Transporter Substrates without Assuming Albumin-Mediated Hepatic Drug Uptake. Drug Metab Dispos 2024; 52:548-554. [PMID: 38604729 DOI: 10.1124/dmd.124.001645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 03/13/2024] [Accepted: 03/27/2024] [Indexed: 04/13/2024] Open
Abstract
Extrapolating in vivo hepatic clearance from in vitro uptake data is a known challenge, especially for organic anion-transporting polypeptide transporter (OATP) substrates, and the well-stirred model (WSM) commonly yields systematic underpredictions for those anionic drugs, hypothetically due to "albumin-mediated hepatic drug uptake". In the present study, we demonstrate that the WSM incorporating the dynamic free fraction (f D), a measure of drug protein binding affinity, performs reasonably well in predicting hepatic clearance of OATP substrates. For a selection of anionic drugs, including atorvastatin, fluvastatin, pravastatin, rosuvastatin, pitavastatin, cerivastatin, and repaglinide, this dynamic well-stirred model (dWSM) correctly predicts hepatic plasma clearance within 2-fold error for six out of seven OATP substrates examined. The geometric mean of clearance ratios between the predicted and the observed values falls in the range of 1.21-1.38. As expected, the WSM with unbound fraction (f u) systematically underpredicts hepatic clearance with greater than 2-fold error for five out of seven drugs, and the geometric mean of clearance ratios between the predicted and the observed values is in the range of 0.20-0.29. The results suggest that, despite its simplicity, the dWSM operates well for transporter-mediated uptake clearance, and that clearance under-prediction of OATP substrates may not necessarily be associated with the chemical class of the anionic drugs, nor is it a result of albumin-mediated hepatic drug uptake as currently hypothesized. Instead, the superior prediction power of the dWSM confirms the utility of the dynamic free fraction in clearance prediction and the importance of drug plasma binding kinetics in hepatic uptake clearance. SIGNIFICANCE STATEMENT: The traditional well-stirred model (WSM) consistently underpredicts organin anion-transporting polypeptide transporter (OATP)-mediated hepatic uptake clearance, hypothetically due to the albumin-mediated hepatic drug uptake. In this manuscript, we apply the dynamic WSM to extrapolate hepatic clearance of the OATP substrates, and our results show significant improvements in clearance prediction without assuming albumin-mediated hepatic drug uptake.
Collapse
Affiliation(s)
- Zhengyin Yan
- Department of Drug Metabolism and Pharmacokinetics, Genentech, Inc., South San Francisco, California
| | - Li Ma
- Department of Drug Metabolism and Pharmacokinetics, Genentech, Inc., South San Francisco, California
| | - Nicky Hwang
- Department of Drug Metabolism and Pharmacokinetics, Genentech, Inc., South San Francisco, California
| | - Julie Huang
- Department of Drug Metabolism and Pharmacokinetics, Genentech, Inc., South San Francisco, California
| | - Jane R Kenny
- Department of Drug Metabolism and Pharmacokinetics, Genentech, Inc., South San Francisco, California
| | - Cornelis E C A Hop
- Department of Drug Metabolism and Pharmacokinetics, Genentech, Inc., South San Francisco, California
| |
Collapse
|
20
|
Leung C, Liu J, Cunico K, Johnson K, Yan Z, Cai J. An Integrated Hepatocyte Stability Assay for Simultaneous Metabolic Stability Assessment and Metabolite Profiling. Drug Metab Dispos 2024; 52:377-389. [PMID: 38438166 DOI: 10.1124/dmd.123.001618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 02/28/2024] [Accepted: 02/29/2024] [Indexed: 03/06/2024] Open
Abstract
The determination of metabolic stability is critical for drug discovery programs, allowing for the optimization of chemical entities and compound prioritization. As such, it is common to perform high-volume in vitro metabolic stability experiments early in the lead optimization process to understand metabolic liabilities. Additional metabolite identification experiments are subsequently performed for a more comprehensive understanding of the metabolic clearance routes to aid medicinal chemists in the structural design of compounds. Collectively, these experiments require extensive sample preparation and a substantial amount of time and resources. To overcome the challenges, a high-throughput integrated assay for simultaneous hepatocyte metabolic stability assessment and metabolite profiling was developed. This assay platform consists of four parts: 1) an automated liquid-handling system for sample preparation and incubation, 2) a liquid chromatography and high-resolution mass spectrometry-based system to simultaneously monitor the parent compound depletion and metabolite formation, 3) an automated data analysis and report system for hepatic clearance assessment; and 4) streamlined autobatch processing for software-based metabolite profiling. The assay platform was evaluated using eight control compounds with various metabolic rates and biotransformation routes in hepatocytes across three species. Multiple sample preparation and data analysis steps were evaluated and validated for accuracy, repeatability, and metabolite coverage. The combined utility of an automated liquid-handling instrument, a high-resolution mass spectrometer, and multiple streamlined data processing software improves the process of these highly demanding screening assays and allows for simultaneous determination of metabolic stability and metabolite profiles for more efficient lead optimization during early drug discovery. SIGNIFICANCE STATEMENT: Metabolic stability assessment and metabolite profiling are pivotal in drug discovery to fully comprehend metabolic liabilities for chemical entity optimization and lead selection. Process of these assays can be repetitive and resource demanding. Here, we developed an integrated hepatocyte stability assay that combines automation, high-resolution mass spectrometers, and batch-processing software to improve and combine the workflow of these assays. The integrated approach allows simultaneous metabolic stability assessment and metabolite profiling, significantly accelerating screening and lead optimization in a resource-effective manner.
Collapse
Affiliation(s)
- Christian Leung
- Department of Drug Metabolism and Pharmacokinetics, Genentech, Inc., South San Francisco, California
| | - Joyce Liu
- Department of Drug Metabolism and Pharmacokinetics, Genentech, Inc., South San Francisco, California
| | - Katherine Cunico
- Department of Drug Metabolism and Pharmacokinetics, Genentech, Inc., South San Francisco, California
| | - Kevin Johnson
- Department of Drug Metabolism and Pharmacokinetics, Genentech, Inc., South San Francisco, California
| | - Zhengyin Yan
- Department of Drug Metabolism and Pharmacokinetics, Genentech, Inc., South San Francisco, California
| | - Jingwei Cai
- Department of Drug Metabolism and Pharmacokinetics, Genentech, Inc., South San Francisco, California
| |
Collapse
|
21
|
Yan Z, Ma L, Carione P, Huang J, Hwang N, Kenny JR, Hop CECA. Introducing the Dynamic Well-Stirred Model for Predicting Hepatic Clearance and Extraction Ratio. J Pharm Sci 2024; 113:1094-1112. [PMID: 38220087 DOI: 10.1016/j.xphs.2023.12.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 12/21/2023] [Accepted: 12/21/2023] [Indexed: 01/16/2024]
Abstract
The well-stirred model (WSM) incorporating the fraction of unbound drug (fu) to account for the effect of plasma binding on intrinsic clearance has been widely used for predicting hepatic clearance under the assumption that drug protein binding reaches equilibrium instantaneously. Our theoretical analysis reveals that the effect of protein binding on intrinsic clearance is better accounted for with the dynamic free fraction (fD), a measure of drug protein binding affinity, which leads to a putative dynamic well-stirred model (dWSM) without the instantaneous equilibrium assumption. Using recombinant CYP3A4 as the in vitro clearance system, we demonstrate that the binding effect of albumin on the intrinsic clearance of both highly bound midazolam and highly free verapamil is fully corrected by their corresponding fD values, respectively. On the other hand, fu only corrects the binding effect of albumin on the intrinsic clearance of verapamil, and yields severe over-correction of the intrinsic clearance of midazolam. The results suggest that the traditional WSM is suitable for highly free drugs like verapamil but not necessarily for highly bound drugs such as midazolam due to the violation of the instantaneous equilibrium assumption or under-estimating the true free drug concentration. In comparison, the dWSM incorporating fD holds true as long as drug elimination follows steady-state kinetics, and hence, it is more broadly applicable to drugs with different protein binding characteristics. Here we demonstrate with 36 diverse drugs, that the dWSM significantly improves the accuracy of predicting human hepatic clearance and liver extraction ratio from in vitro microsomal clearance data, highlighting the importance of drug plasma protein binding kinetics in addressing the under-prediction of hepatic clearance by the WSM.
Collapse
Affiliation(s)
- Zhengyin Yan
- Department of Drug Metabolism and Pharmacokinetics, Genentech Inc., South San Francisco, CA, 94080, USA.
| | - Li Ma
- Department of Drug Metabolism and Pharmacokinetics, Genentech Inc., South San Francisco, CA, 94080, USA
| | - Pasquale Carione
- Department of Drug Metabolism and Pharmacokinetics, Genentech Inc., South San Francisco, CA, 94080, USA
| | - Julie Huang
- Department of Drug Metabolism and Pharmacokinetics, Genentech Inc., South San Francisco, CA, 94080, USA
| | - Nicky Hwang
- Department of Drug Metabolism and Pharmacokinetics, Genentech Inc., South San Francisco, CA, 94080, USA
| | - Jane R Kenny
- Department of Drug Metabolism and Pharmacokinetics, Genentech Inc., South San Francisco, CA, 94080, USA
| | - Cornelis E C A Hop
- Department of Drug Metabolism and Pharmacokinetics, Genentech Inc., South San Francisco, CA, 94080, USA
| |
Collapse
|
22
|
Wannberg J, Gising J, Henriksson M, Vo DD, Sävmarker J, Sallander J, Gutiérrez-de-Terán H, Larsson J, Hamid S, Ablahad H, Spizzo I, Gaspari TA, Widdop RE, Grönbladh A, Petersen NN, Backlund M, Hallberg M, Larhed M. N-(Heteroaryl)thiophene sulfonamides as angiotensin AT2 receptor ligands. Eur J Med Chem 2024; 265:116122. [PMID: 38199164 DOI: 10.1016/j.ejmech.2024.116122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 12/22/2023] [Accepted: 01/02/2024] [Indexed: 01/12/2024]
Abstract
Two series of N-(heteroaryl)thiophene sulfonamides, encompassing either a methylene imidazole group or a tert-butylimidazolylacetyl group in the meta position of the benzene ring, have been synthesized. An AT2R selective ligand with a Ki of 42 nM was identified in the first series and in the second series, six AT2R selective ligands with significantly improved binding affinities and Ki values of <5 nM were discovered. The binding modes to AT2R were explored by docking calculations combined with molecular dynamics simulations. Although some of the high affinity ligands exhibited fair stability in human liver microsomes, comparable to that observed with C21 undergoing clinical trials, most ligands displayed a very low metabolic stability with t½ of less than 10 min in human liver microsomes. The most promising ligand, with an AT2R Ki value of 4.9 nM and with intermediate stability in human hepatocytes (t½ = 77 min) caused a concentration-dependent vasorelaxation of pre-contracted mouse aorta.
Collapse
Affiliation(s)
- Johan Wannberg
- Department of Medicinal Chemistry, Science for Life Laboratory, BMC, Uppsala University, Box 574, SE-751 23, Uppsala, Sweden
| | - Johan Gising
- The Beijer Laboratory, Department of Medicinal Chemistry, Science for Life Laboratory, BMC, Uppsala University, Box 591, 751 24, Uppsala, Sweden
| | - Martin Henriksson
- Drug Discovery and Development Platform, Science for Life Laboratory, Department of Organic Chemistry, Stockholm University, Solna, Sweden
| | - Duc Duy Vo
- Department of Medicinal Chemistry, Science for Life Laboratory, BMC, Uppsala University, Box 574, SE-751 23, Uppsala, Sweden
| | - Jonas Sävmarker
- The Beijer Laboratory, Department of Medicinal Chemistry, Science for Life Laboratory, BMC, Uppsala University, Box 591, 751 24, Uppsala, Sweden
| | - Jessica Sallander
- Department of Cell and Molecular Biology, BMC, Box 596, Uppsala University, SE-751 24, Uppsala, Sweden
| | - Hugo Gutiérrez-de-Terán
- Department of Cell and Molecular Biology, BMC, Box 596, Uppsala University, SE-751 24, Uppsala, Sweden
| | - Johanna Larsson
- Department of Medicinal Chemistry, Science for Life Laboratory, BMC, Uppsala University, Box 574, SE-751 23, Uppsala, Sweden
| | - Selin Hamid
- The Beijer Laboratory, Department of Pharmaceutical Biosciences, Neuropharmacology and Addiction Research, BMC, Uppsala University, Box 591, 751 24, Uppsala, Sweden; Department of Pharmacology and Biomedicine Discovery Institute, Monash University, Clayton, 3800, VIC, Australia
| | - Hanin Ablahad
- The Beijer Laboratory, Department of Pharmaceutical Biosciences, Neuropharmacology and Addiction Research, BMC, Uppsala University, Box 591, 751 24, Uppsala, Sweden; Department of Pharmacology and Biomedicine Discovery Institute, Monash University, Clayton, 3800, VIC, Australia
| | - Iresha Spizzo
- Department of Pharmacology and Biomedicine Discovery Institute, Monash University, Clayton, 3800, VIC, Australia
| | - Tracey A Gaspari
- Department of Pharmacology and Biomedicine Discovery Institute, Monash University, Clayton, 3800, VIC, Australia
| | - Robert E Widdop
- Department of Pharmacology and Biomedicine Discovery Institute, Monash University, Clayton, 3800, VIC, Australia
| | - Alfhild Grönbladh
- The Beijer Laboratory, Department of Pharmaceutical Biosciences, Neuropharmacology and Addiction Research, BMC, Uppsala University, Box 591, 751 24, Uppsala, Sweden
| | - Nadia N Petersen
- The Beijer Laboratory, Department of Medicinal Chemistry, Science for Life Laboratory, BMC, Uppsala University, Box 591, 751 24, Uppsala, Sweden
| | - Maria Backlund
- Department of Pharmacy, Uppsala University, Uppsala, Sweden and Uppsala University Drug Optimization and Pharmaceutical Profiling Platform (UDOPP), Science for Life Laboratory, Uppsala, Sweden
| | - Mathias Hallberg
- The Beijer Laboratory, Department of Pharmaceutical Biosciences, Neuropharmacology and Addiction Research, BMC, Uppsala University, Box 591, 751 24, Uppsala, Sweden
| | - Mats Larhed
- The Beijer Laboratory, Department of Medicinal Chemistry, Science for Life Laboratory, BMC, Uppsala University, Box 591, 751 24, Uppsala, Sweden.
| |
Collapse
|
23
|
Zhou Y, Dong H, Fan J, Zhu M, Liu L, Wang Y, Tang P, Chen X. Cytochrome P450 2B6 and UDP-Glucuronosyltransferase Enzyme-Mediated Clearance of Ciprofol (HSK3486) in Humans: The Role of Hepatic and Extrahepatic Metabolism. Drug Metab Dispos 2024; 52:106-117. [PMID: 38071562 DOI: 10.1124/dmd.123.001484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 11/01/2023] [Accepted: 12/06/2023] [Indexed: 12/22/2023] Open
Abstract
Ciprofol (HSK3486) is a novel intravenous agent for general anesthesia. In humans, HSK3486 mainly undergoes glucuronidation to form M4 [fraction of clearance (fCL): 62.6%], followed by the formation of monohydroxylated metabolites that further undergo glucuronidation and sulfation to produce M5-1, M5-2, M5-3, and M3 (summed fCL: 35.2%). However, the complete metabolic pathways of HSK3486 in humans remain unclear. In this study, by comparison with chemically synthesized reference standards, three monohydroxylated metabolites [M7-1, 4-hydroxylation with an unbound intrinsic clearance (CLint,u) of 2211 μl/min/mg; M7-2, ω-hydroxylation with a CLint,u of 600 μl/min/mg; and M7-3, (ω-1)-hydroxylation with a CLint,u of 78.4 μl/min/mg] were identified in human liver microsomes, and CYP2B6 primarily catalyzed their formation. In humans, M7-1 was shown to undergo glucuronidation at the 4-position and 1-position by multiple UDP-glucuronosyltransferases (UGTs) to produce M5-1 and M5-3, respectively, or was metabolized to M3 by cytosolic sulfotransferases. M7-2 was glucuronidated at the ω position by UGT1A9, 2B4, and 2B7 to form M5-2. UGT1A9 predominantly catalyzed the glucuronidation of HSK3486 (M4). The CLint,u values for M4 formation in human liver and kidney microsomes were 1028 and 3407 μl/min/mg, respectively. In vitro to in vivo extrapolation analysis suggested that renal glucuronidation contributed approximately 31.4% of the combined clearance. In addition to HSK3486 glucuronidation (M4), 4-hydroxylation (M7-1) was identified as another crucial oxidative metabolic pathway (fCL: 34.5%). Further attention should be paid to the impact of CYP2B6- and UGT1A9-mediated drug interactions and gene polymorphisms on the exposure and efficacy of HSK3486. SIGNIFICANCE STATEMENT: This research elucidates the major oxidative metabolic pathways of HSK3486 (the formation of three monohydroxylated metabolites: M7-1, M7-2, M7-3) as well as definitive structures and formation pathways of these monohydroxylated metabolites and their glucuronides or sulfate in humans. This research also identifies major metabolizing enzymes responsible for the glucuronidation (UGT1A9) and oxidation (CYP2B6) of HSK3486 and characterizes the mechanism of extrahepatic metabolism. The above information is helpful in guiding the safe use of HSK3486 in the clinic.
Collapse
Affiliation(s)
- Yufan Zhou
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China (Y.Z., L.L., Y.W., X.C.); University of Chinese Academy of Sciences, Beijing, China (Y.Z., X.C.); Haisco Pharmaceutical Group Co., Ltd., Chengdu, Sichuan Province, China (H.D., J.F., M.Z., P.T.); and MassDefect Technologies, Princeton, New Jersey (M.Z.)
| | - Hongjiao Dong
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China (Y.Z., L.L., Y.W., X.C.); University of Chinese Academy of Sciences, Beijing, China (Y.Z., X.C.); Haisco Pharmaceutical Group Co., Ltd., Chengdu, Sichuan Province, China (H.D., J.F., M.Z., P.T.); and MassDefect Technologies, Princeton, New Jersey (M.Z.)
| | - Jiang Fan
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China (Y.Z., L.L., Y.W., X.C.); University of Chinese Academy of Sciences, Beijing, China (Y.Z., X.C.); Haisco Pharmaceutical Group Co., Ltd., Chengdu, Sichuan Province, China (H.D., J.F., M.Z., P.T.); and MassDefect Technologies, Princeton, New Jersey (M.Z.)
| | - Mingshe Zhu
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China (Y.Z., L.L., Y.W., X.C.); University of Chinese Academy of Sciences, Beijing, China (Y.Z., X.C.); Haisco Pharmaceutical Group Co., Ltd., Chengdu, Sichuan Province, China (H.D., J.F., M.Z., P.T.); and MassDefect Technologies, Princeton, New Jersey (M.Z.)
| | - Lu Liu
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China (Y.Z., L.L., Y.W., X.C.); University of Chinese Academy of Sciences, Beijing, China (Y.Z., X.C.); Haisco Pharmaceutical Group Co., Ltd., Chengdu, Sichuan Province, China (H.D., J.F., M.Z., P.T.); and MassDefect Technologies, Princeton, New Jersey (M.Z.)
| | - Yongbin Wang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China (Y.Z., L.L., Y.W., X.C.); University of Chinese Academy of Sciences, Beijing, China (Y.Z., X.C.); Haisco Pharmaceutical Group Co., Ltd., Chengdu, Sichuan Province, China (H.D., J.F., M.Z., P.T.); and MassDefect Technologies, Princeton, New Jersey (M.Z.)
| | - Pingming Tang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China (Y.Z., L.L., Y.W., X.C.); University of Chinese Academy of Sciences, Beijing, China (Y.Z., X.C.); Haisco Pharmaceutical Group Co., Ltd., Chengdu, Sichuan Province, China (H.D., J.F., M.Z., P.T.); and MassDefect Technologies, Princeton, New Jersey (M.Z.)
| | - Xiaoyan Chen
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China (Y.Z., L.L., Y.W., X.C.); University of Chinese Academy of Sciences, Beijing, China (Y.Z., X.C.); Haisco Pharmaceutical Group Co., Ltd., Chengdu, Sichuan Province, China (H.D., J.F., M.Z., P.T.); and MassDefect Technologies, Princeton, New Jersey (M.Z.)
| |
Collapse
|
24
|
Artía Z, Ferraro F, Sánchez C, Cerecetto H, Gil J, Pareja L, Alonzo MN, Freire T, Cabrera M, Corvo I. In vitro and in vivo studies on a group of chalcones find promising results as potential drugs against fascioliasis. Exp Parasitol 2023; 255:108628. [PMID: 37776969 DOI: 10.1016/j.exppara.2023.108628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 07/27/2023] [Accepted: 09/27/2023] [Indexed: 10/02/2023]
Abstract
About a third of the world population is infected by helminth parasites implicated in foodborne trematodiasis. Fascioliasis is a worldwide disease caused by trematodes of the genus Fasciola spp. It generates huge economic losses to the agri-food industry and is currently considered an emerging zoonosis by the World Health Organization (WHO). The only available treatment relies on anthelmintic drugs, being triclabendazole (TCBZ) the drug of choice to control human infections. The emergence of TCBZ resistance in several countries and the lack of an effective vaccine to prevent infection highlights the need to develop new drugs to control this parasitosis. We have previously identified a group of benzochalcones as inhibitors of cathepsins, which have fasciolicidal activity in vitro and are potential new drugs for the control of fascioliasis. We selected the four most active compounds of this group to perform further preclinical studies. The compound's stability was determined against a liver microsomal enzyme fraction, obtaining half-lives of 34-169 min and low intrinsic clearance values (<13 μL/min/mg), as desirable for potential new drugs. None of the compounds were mutagenic or genotoxic and no in vitro cytotoxic effects were seen. Compounds C31 and C34 showed the highest selectivity index against liver fluke cathepsins when compared to human cathepsin L. They were selected for in vivo efficacy studies observing a protective effect, similar to TCBZ, in a mouse model of infection. Our findings strongly encourage us to continue the drug development pipeline for these molecules.
Collapse
Affiliation(s)
- Zoraima Artía
- Laboratorio de I+D de Moléculas Bioactivas, Departamento de Ciencias Biológicas, CENUR Litoral Norte, Universidad de la República, Paysandú, 60000, Uruguay
| | - Florencia Ferraro
- Laboratorio de I+D de Moléculas Bioactivas, Departamento de Ciencias Biológicas, CENUR Litoral Norte, Universidad de la República, Paysandú, 60000, Uruguay
| | - Carina Sánchez
- Grupo de Química Orgánica Medicinal, Instituto de Química Biológica & Área de Radiofarmacia, Centro de Investigaciones Nucleares, Facultad de Ciencias, Universidad de la República, Montevideo, 11400, Uruguay
| | - Hugo Cerecetto
- Grupo de Química Orgánica Medicinal, Instituto de Química Biológica & Área de Radiofarmacia, Centro de Investigaciones Nucleares, Facultad de Ciencias, Universidad de la República, Montevideo, 11400, Uruguay
| | - Jorge Gil
- Laboratorio de Reproducción Animal, Producción y Reproducción de Rumiantes, Departamento de Ciencias Biológicas, CENUR Litoral Norte-Facultad de Veterinaria, Universidad de la República, Paysandú, 60000, Uruguay
| | - Lucía Pareja
- Departamento de Química del Litoral, CENUR Litoral Norte, Sede Paysandú, Universidad de la República, Paysandú, 60000, Uruguay
| | - María Noel Alonzo
- Departamento de Química del Litoral, CENUR Litoral Norte, Sede Paysandú, Universidad de la República, Paysandú, 60000, Uruguay
| | - Teresa Freire
- Laboratorio de Inmunomodulación y Vacunas, Departamento de Inmunobiología, Facultad de Medicina, Universidad de la República, Montevideo, 11800, Uruguay
| | - Mauricio Cabrera
- Laboratorio de I+D de Moléculas Bioactivas, Departamento de Ciencias Biológicas, CENUR Litoral Norte, Universidad de la República, Paysandú, 60000, Uruguay.
| | - Ileana Corvo
- Laboratorio de I+D de Moléculas Bioactivas, Departamento de Ciencias Biológicas, CENUR Litoral Norte, Universidad de la República, Paysandú, 60000, Uruguay.
| |
Collapse
|
25
|
Gobas FAPC, Lee YS, Fremlin KM, Stelmachuk SC, Redman AD. Methods for assessing the bioaccumulation of hydrocarbons and related substances in terrestrial organisms: A critical review. INTEGRATED ENVIRONMENTAL ASSESSMENT AND MANAGEMENT 2023; 19:1433-1456. [PMID: 36880196 DOI: 10.1002/ieam.4756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 02/22/2023] [Accepted: 02/23/2023] [Indexed: 06/18/2023]
Abstract
This study investigates and reviews methods for the assessment of the terrestrial bioaccumulation potential of hydrocarbons and related organic substances. The study concludes that the unitless biomagnification factor (BMF) and/or the trophic magnification factor (TMF) are appropriate, practical, and thermodynamically meaningful metrics for identifying bioaccumulative substances in terrestrial food chains. The study shows that various methods, including physical-chemical properties like the KOA and KOW , in vitro biotransformation assays, quantitative structure-activity relationships, in vivo pharmacokinetic and dietary bioaccumulation tests, and field-based trophic magnification studies, can inform on whether a substance has the potential to biomagnify in a terrestrial food chain as defined by a unitless BMF exceeding 1. The study further illustrates how these methods can be arranged in a four-tier evaluation scheme for the purpose of screening assessments that aim to minimize effort and costs and expediate bioaccumulation assessment of the vast numbers of organic substances in commerce, identifies knowledge gaps, and provides recommendations for further research to improve bioaccumulation assessment. Integr Environ Assess Manag 2023;19:1433-1456. © 2023 The Authors. Integrated Environmental Assessment and Management published by Wiley Periodicals LLC on behalf of Society of Environmental Toxicology & Chemistry (SETAC).
Collapse
Affiliation(s)
- Frank A P C Gobas
- School of Resource and Environmental Management, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Yung-Shan Lee
- School of Resource and Environmental Management, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Katharine M Fremlin
- Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Stephanie C Stelmachuk
- School of Resource and Environmental Management, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Aaron D Redman
- ExxonMobil Biomedical Sciences, Annandale, New Jersey, USA
| |
Collapse
|
26
|
Attwa MW, Bakheit AH, Abdelhameed AS, Kadi AA. An Ultrafast UPLC-MS/MS Method for Characterizing the In Vitro Metabolic Stability of Acalabrutinib. Molecules 2023; 28:7220. [PMID: 37894699 PMCID: PMC10609012 DOI: 10.3390/molecules28207220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 10/17/2023] [Accepted: 10/20/2023] [Indexed: 10/29/2023] Open
Abstract
Acalabrutinib, commercially known as Calquence®, is a pharmacological molecule that has robust inhibitory activity against Bruton tyrosine kinase. The medicine in question was carefully developed by the esteemed pharmaceutical company AstraZeneca. The FDA granted authorization on 21 November 2019 for the utilization of acalabrutinib (ACB) in the treatment of small lymphocytic lymphoma (SLL) or chronic lymphocytic leukemia (CLL) in adult patients. The aim of this study was to develop a UPLC-MS/MS method that is effective, accurate, environmentally sustainable, and has a high degree of sensitivity. The methodology was specifically developed with the intention of quantifying ACB in human liver microsomes (HLMs). The methodology described above was subsequently utilized to assess the metabolic stability of ACB in HLMs in an in vitro environment. The validation procedures for the UPLC-MS/MS method in the HLMs were conducted in accordance with the bioanalytical method validation criteria established by the U.S.- DA. The utilization of the StarDrop software (version 6.6), which integrates the P450 metabolic module and DEREK software (KB 2018 1.1), was employed for the purpose of evaluating the metabolic stability and identifying potential hazardous alarms associated with the chemical structure of ACB. The calibration curve, as established by the ACB, demonstrated a linear correlation across the concentration range of 1 to 3000 ng/mL in the matrix of HLMs. The present study conducted an assessment of the accuracy and precision of the UPLC-MS/MS method in quantifying inter-day and intra-day fluctuations. The inter-day accuracy demonstrated a spectrum of values ranging from -1.00% to 8.36%, whilst the intra-day accuracy presented a range of values spanning from -2.87% to 4.11%. The t1/2 and intrinsic clearance (Clint) of ACB were determined through in vitro testing to be 20.45 min and 39.65 mL/min/kg, respectively. The analysis concluded that the extraction ratio of ACB demonstrated a moderate level, thus supporting the recommended dosage of ACB (100 mg) to be administered twice daily for the therapeutic treatment of persons suffering from B-cell malignancies. Several computational tools have suggested that introducing minor structural alterations to the butynoyl group, particularly the alpha, beta-unsaturated amide moiety, or substituting this group during the drug design procedure, could potentially enhance the metabolic stability and safety properties of novel derivatives in comparison to ACB.
Collapse
Affiliation(s)
- Mohamed W. Attwa
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia; (A.H.B.); (A.S.A.); (A.A.K.)
| | | | | | | |
Collapse
|
27
|
Attwa MW, AlRabiah H, Mostafa GAE, Kadi AA. Evaluation of Alectinib Metabolic Stability in HLMs Using Fast LC-MS/MS Method: In Silico ADME Profile, P450 Metabolic Lability, and Toxic Alerts Screening. Pharmaceutics 2023; 15:2449. [PMID: 37896209 PMCID: PMC10610548 DOI: 10.3390/pharmaceutics15102449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 09/29/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
Alectinib, also known as Alecensa®, is prescribed for the therapeutic treatment of individuals diagnosed with metastatic non-small cell lung cancer (NSCLC) who have a specific genetic mutation referred to as anaplastic lymphoma kinase (ALK) positivity. The Food and Drug Administration granted regular approval to alectinib, a drug developed by Hoffmann-La Roche, Inc. (Basel, Switzerland)/Genentech, Inc. (South San Francisco, CA, USA), on 6 November 2017. The screening of the metabolic stability and identification of hazardous alarms within the chemical structure of ALC was conducted using the StarDrop software package (version 6.6), which incorporates the P450 metabolic module and DEREK software (KB 2018 1.1). The primary aim of this investigation was to develop a high-throughput and accurate LC-MS/MS technique for the quantification of ALC in the metabolic matrix (human liver microsomes; HLMs). The aforementioned methodology was subsequently employed to assess the metabolic stability of ALC in HLMs through in vitro tests, with the obtained results further validated using in silico software. The calibration curve of the ALC showed a linear correlation that exists within the concentration range from 1 to 3000 ng/mL. The LC-MS/MS approach that was recommended exhibited accuracy and precision levels for both inter-day and intra-day measurements. Specifically, the accuracy values ranged from -2.56% to 3.45%, while the precision values ranged from -3.78% to 4.33%. The sensitivity of the established approach was proved by its ability to adhere to an LLOQ of 0.82 ng/mL. The half-life (t1/2) and intrinsic clearance (Clint) of ALC were estimated to be 22.28 min and 36.37 mL/min/kg, correspondingly, using in vitro experiments. The ALC exhibited a moderate extraction ratio. The metabolic stability and safety properties of newly created derivatives can be enhanced by making modest adjustments to the morpholine and piperidine rings or by substituting the substituent, as per computational software. In in silico ADME prediction, ALC was shown to have poor water solubility and high gastrointestinal absorption along with inhibition of some cytochrome P450s (CYP2C19 and CYP2C9) without inhibition of others (CYP1A2, CYP3A4, and CYP2D6) and P-glycoprotein substrate. The study design that involves using both laboratory experiments and different in silico software demonstrates a novel and groundbreaking approach in the establishment and uniformization of LC-MS/MS techniques for the estimation of ALC concentrations, identifying structural alerts and the assessment of its metabolic stability. The utilization of this study strategy has the potential to be employed in the screening and optimization of prospective compounds during the drug creation process. This strategy may also facilitate the development of novel derivatives of the medicine that maintain the same biological action by targeted structural modifications, based on an understanding of the structural alerts included within the chemical structure of ALC.
Collapse
Affiliation(s)
- Mohamed W. Attwa
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia; (H.A.); (G.A.E.M.); (A.A.K.)
| | | | | | | |
Collapse
|
28
|
Han Y, Wen T, Wang J, Shi J, Zhu Y. Preclinical Pharmacokinetics and in vitro Metabolism of FHND5071, a Novel Selective RET Kinase Inhibitor. Eur J Drug Metab Pharmacokinet 2023; 48:595-614. [PMID: 37528327 DOI: 10.1007/s13318-023-00844-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/29/2023] [Indexed: 08/03/2023]
Abstract
BACKGROUND AND OBJECTIVES Rearranged during transfection (RET) is a transmembrane receptor tyrosine kinase that plays a crucial role in tumorigenesis. FHND5071, a potent and selective RET kinase inhibitor, could exert antitumor effects by inhibiting RET autophosphorylation. The present work aims to profile the pharmacokinetics of FHND5071 in in vivo and in vitro experiments as a ground work for further clinical research. METHODS The absorption, distribution, metabolism, and excretion properties of FHND5071 were examined, along with metabolite production and cytochrome P450 (CYP) phenotyping assay. Additionally, plasma protein binding and pharmacokinetics in mice were investigated. RESULTS Microsomal stability assay corroborated moderate to high clearance of FHND5071, and the use of UPLC-Q-TOF-MS identified a total of six metabolites and suggested a possible metabolic pathway involving oxidation, demethylation, and N-dealkylation. Primary contributors to the CYP-mediated metabolism of FHND5071 were found to be CYP2C8 and CYP3A4, and FHND5071 displayed low permeability and acted as a substrate for the P-glycoprotein (P-gp). FHND5071 had a moderate to high binding in plasma and exhibited a moderate absorption degree (absolute bioavailability > 60%) The distribution of FHND5071 in mouse tissues was rapid (mostly peaking at 1-4 h) and wide (detectable in almost all tissues and organs), with the highest exposure in the spleen. A small fraction of FHND5071 was excreted via the urine and feces, and a presumed metabolic pathway involving 20 metabolites in mice is proposed. CONCLUSION Pharmacokinetic characteristics of FHND5071 were systemically profiled, which may lay the foundation for further clinical development as a drug candidate.
Collapse
Affiliation(s)
- Yiran Han
- School of Life Sciences, Fudan University, No. 2005 Songhu Road, Shanghai, 200438, China
| | - Tiantian Wen
- School of Life Science, Nanjing Normal University, No. 1 Wenyuan Road, Nanjing, 210046, China
| | - Jia Wang
- Jiangsu Chia Tai Fenghai Pharmaceutical Co. Ltd, No. 9 Weidi Road, Nanjing, 210046, China
| | - Jinmiao Shi
- Jiangsu Chia Tai Fenghai Pharmaceutical Co. Ltd, No. 9 Weidi Road, Nanjing, 210046, China
| | - Yongqiang Zhu
- School of Life Science, Nanjing Normal University, No. 1 Wenyuan Road, Nanjing, 210046, China.
| |
Collapse
|
29
|
Oda FB, Carvalho FA, Yamamoto PA, de Oliveira JA, Peccinini RG, Zocolo GJ, Ribeiro PRV, de Moraes NV, Dos Santos AG. Metabolism Characterization and Chemical and Plasma Stability of Casearin B and Caseargrewiin F. PLANTA MEDICA 2023; 89:1097-1105. [PMID: 37084791 DOI: 10.1055/a-2078-5920] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Oral preparations of Casearia sylvestris (guacatonga) are used as antacid, analgesic, anti-inflammatory, and antiulcerogenic medicines. The clerodane diterpenes casearin B and caseargrewiin F are major active compounds in vitro and in vivo. The oral bioavailability and metabolism of casearin B and caseargrewiin F were not previously investigated. We aimed to assess the stability of casearin B and caseargrewiin F in physiological conditions and their metabolism in human liver microsomes. The compounds were identified by UHPLC-QTOF-MS/MS and quantified by validated LC-MS methods. The stability of casearin B and caseargrewiin F in physiological conditions was assessed in vitro. Both diterpenes showed a fast degradation (p < 0.05) in simulated gastric fluid. Their metabolism was not mediated by cytochrome P-450 enzymes, but the depletion was inhibited by the esterase inhibitor NaF. Both diterpenes and their dialdehydes showed a octanol/water partition coefficient in the range of 3.6 to 4.0, suggesting high permeability. Metabolism kinetic data were fitted to the Michaelis-Menten profile with KM values of 61.4 and 66.4 µM and Vmax values of 327 and 648 nmol/min/mg of protein for casearin B and caseargrewiin F, respectively. Metabolism parameters in human liver microsomes were extrapolated to predict human hepatic clearance, and suggest that caseargrewiin F and casearin B have a high hepatic extraction ratio. In conclusion, our data suggest that caseargrewiin F and casearin B present low oral bioavailability due to extensive gastric degradation and high hepatic extraction.
Collapse
Affiliation(s)
- Fernando Bombarda Oda
- Department of Drugs and Medicines, School of Pharmaceutical Sciences, São Paulo State University (Unesp), Araraquara, SP, Brazil
| | - Flávio Alexandre Carvalho
- Department of Drugs and Medicines, School of Pharmaceutical Sciences, São Paulo State University (Unesp), Araraquara, SP, Brazil
| | - Priscila Akemi Yamamoto
- Center of Pharmacometrics & Systems Pharmacology, Department of Pharmaceutics, College of Pharmacy, University of Florida, Orlando, FL, USA
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Palo (USP), Ribeirão Preto, SP, Brazil
| | - Jonata Augusto de Oliveira
- Department of Drugs and Medicines, School of Pharmaceutical Sciences, São Paulo State University (Unesp), Araraquara, SP, Brazil
| | - Rosângela Gonçalves Peccinini
- Department of Drugs and Medicines, School of Pharmaceutical Sciences, São Paulo State University (Unesp), Araraquara, SP, Brazil
| | - Guilherme Julião Zocolo
- Embrapa Agroindústria Tropical, Empresa Brasileira de Pesquisa Agropecuária (Embrapa), Fortaleza, CE, Brazil
| | | | - Natália Valadares de Moraes
- Center of Pharmacometrics & Systems Pharmacology, Department of Pharmaceutics, College of Pharmacy, University of Florida, Orlando, FL, USA
| | - André Gonzaga Dos Santos
- Department of Drugs and Medicines, School of Pharmaceutical Sciences, São Paulo State University (Unesp), Araraquara, SP, Brazil
| |
Collapse
|
30
|
Bufano M, Puxeddu M, Nalli M, La Regina G, Toto A, Liberati FR, Paone A, Cutruzzolà F, Masci D, Bigogno C, Dondio G, Silvestri R, Gianni S, Coluccia A. Targeting the Grb2 cSH3 domain: Design, synthesis and biological evaluation of the first series of modulators. Bioorg Chem 2023; 138:106607. [PMID: 37210829 DOI: 10.1016/j.bioorg.2023.106607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/05/2023] [Accepted: 05/08/2023] [Indexed: 05/23/2023]
Abstract
Growth factor receptor bound protein 2 (Grb2) is an adaptor protein featured by a nSH3-SH2-cSH3 domains. Grb2 finely regulates important cellular pathways such as growth, proliferation and metabolism and a minor lapse of this tight control may totally change the entire pathway to the oncogenic. Indeed, Grb2 is found overexpressed in many tumours type. Consequently, Grb2 is an attractive therapeutic target for the development of new anticancer drug. Herein, we reported the synthesis and the biological evaluation of a series of Grb2 inhibitors, developed starting from a hit-compound already reported by this research unit. The newly synthesized compounds were evaluated by kinetic binding experiments, and the most promising derivatives were assayed in a short panel of cancer cells. Five of the newly synthesized derivatives proved to be able to bind the targeted protein with valuable inhibitory concentration in one-digit micromolar concentration. The most active compound of this series, derivative 12, showed an inhibitory concentration of about 6 μM for glioblastoma and ovarian cancer cells, and an IC50 of 1.67 for lung cancer cell. For derivative 12, the metabolic stability and the ROS production was also evaluated. The biological data together with the docking studies led to rationalize an early structure activity relationship.
Collapse
Affiliation(s)
- Marianna Bufano
- Dipartimento di Chimica e Tecnologie del Farmaco, Sapienza Università di Roma, Laboratory affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Piazzale Aldo Moro 5, I-00185 Roma, Italy
| | - Michela Puxeddu
- Dipartimento di Chimica e Tecnologie del Farmaco, Sapienza Università di Roma, Laboratory affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Piazzale Aldo Moro 5, I-00185 Roma, Italy
| | - Marianna Nalli
- Dipartimento di Chimica e Tecnologie del Farmaco, Sapienza Università di Roma, Laboratory affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Piazzale Aldo Moro 5, I-00185 Roma, Italy
| | - Giuseppe La Regina
- Dipartimento di Chimica e Tecnologie del Farmaco, Sapienza Università di Roma, Laboratory affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Piazzale Aldo Moro 5, I-00185 Roma, Italy
| | - Angelo Toto
- Dipartimento di Scienze Biochimiche "A. Rossi Fanelli" and Istituto di Biologia e Patologia Molecolari del CNR, Sapienza Università di Roma, Laboratory affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti Piazzale Aldo Moro 5, I-00185 Roma, Italy
| | - Francesca Romana Liberati
- Dipartimento di Scienze Biochimiche "A. Rossi Fanelli" and Istituto di Biologia e Patologia Molecolari del CNR, Sapienza Università di Roma, Laboratory affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti Piazzale Aldo Moro 5, I-00185 Roma, Italy
| | - Alessio Paone
- Dipartimento di Scienze Biochimiche "A. Rossi Fanelli" and Istituto di Biologia e Patologia Molecolari del CNR, Sapienza Università di Roma, Laboratory affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti Piazzale Aldo Moro 5, I-00185 Roma, Italy
| | - Francesca Cutruzzolà
- Dipartimento di Scienze Biochimiche "A. Rossi Fanelli" and Istituto di Biologia e Patologia Molecolari del CNR, Sapienza Università di Roma, Laboratory affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti Piazzale Aldo Moro 5, I-00185 Roma, Italy
| | - Domiziana Masci
- Department of Basic Biotechnological Sciences, Intensivological and Perioperative Clinics, Catholic University of Sacred Heart, Largo Francesco Vito 1, 00168 Rome, Italy
| | - Chiara Bigogno
- Aphad SrL, Via della Resistenza 65, 20090 Buccinasco, Italy
| | - Giulio Dondio
- Aphad SrL, Via della Resistenza 65, 20090 Buccinasco, Italy
| | - Romano Silvestri
- Dipartimento di Chimica e Tecnologie del Farmaco, Sapienza Università di Roma, Laboratory affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Piazzale Aldo Moro 5, I-00185 Roma, Italy
| | - Stefano Gianni
- Dipartimento di Scienze Biochimiche "A. Rossi Fanelli" and Istituto di Biologia e Patologia Molecolari del CNR, Sapienza Università di Roma, Laboratory affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti Piazzale Aldo Moro 5, I-00185 Roma, Italy
| | - Antonio Coluccia
- Dipartimento di Chimica e Tecnologie del Farmaco, Sapienza Università di Roma, Laboratory affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Piazzale Aldo Moro 5, I-00185 Roma, Italy.
| |
Collapse
|
31
|
Schiffman SS, Scholl EH, Furey TS, Nagle HT. Toxicological and pharmacokinetic properties of sucralose-6-acetate and its parent sucralose: in vitro screening assays. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2023; 26:307-341. [PMID: 37246822 DOI: 10.1080/10937404.2023.2213903] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
The purpose of this study was to determine the toxicological and pharmacokinetic properties of sucralose-6-acetate, a structural analog of the artificial sweetener sucralose. Sucralose-6-acetate is an intermediate and impurity in the manufacture of sucralose, and recent commercial sucralose samples were found to contain up to 0.67% sucralose-6-acetate. Studies in a rodent model found that sucralose-6-acetate is also present in fecal samples with levels up to 10% relative to sucralose which suggest that sucralose is also acetylated in the intestines. A MultiFlow® assay, a high-throughput genotoxicity screening tool, and a micronucleus (MN) test that detects cytogenetic damage both indicated that sucralose-6-acetate is genotoxic. The mechanism of action was classified as clastogenic (produces DNA strand breaks) using the MultiFlow® assay. The amount of sucralose-6-acetate in a single daily sucralose-sweetened drink might far exceed the threshold of toxicological concern for genotoxicity (TTCgenotox) of 0.15 µg/person/day. The RepliGut® System was employed to expose human intestinal epithelium to sucralose-6-acetate and sucralose, and an RNA-seq analysis was performed to determine gene expression induced by these exposures. Sucralose-6-acetate significantly increased the expression of genes associated with inflammation, oxidative stress, and cancer with greatest expression for the metallothionein 1 G gene (MT1G). Measurements of transepithelial electrical resistance (TEER) and permeability in human transverse colon epithelium indicated that sucralose-6-acetate and sucralose both impaired intestinal barrier integrity. Sucralose-6-acetate also inhibited two members of the cytochrome P450 family (CYP1A2 and CYP2C19). Overall, the toxicological and pharmacokinetic findings for sucralose-6-acetate raise significant health concerns regarding the safety and regulatory status of sucralose itself.
Collapse
Affiliation(s)
- Susan S Schiffman
- Joint Department of Biomedical Engineering, University of North Carolina/North Carolina State University, Raleigh, NC, USA
| | | | - Terrence S Furey
- Departments of Genetics and Biology, University of North Carolina, Chapel Hill, NC, USA
| | - H Troy Nagle
- Joint Department of Biomedical Engineering, University of North Carolina/North Carolina State University, Raleigh, NC, USA
- Department of Electrical and Computer Engineering, North Carolina State University, Raleigh, NC, USA
| |
Collapse
|
32
|
Rossino G, Marra A, Listro R, Peviani M, Poggio E, Curti D, Pellavio G, Laforenza U, Dondio G, Schepmann D, Wünsch B, Bedeschi M, Marino N, Tesei A, Ha HJ, Kim YH, Ann J, Lee J, Linciano P, Di Giacomo M, Rossi D, Collina S. Discovery of RC-752, a Novel Sigma-1 Receptor Antagonist with Antinociceptive Activity: A Promising Tool for Fighting Neuropathic Pain. Pharmaceuticals (Basel) 2023; 16:962. [PMID: 37513874 PMCID: PMC10386076 DOI: 10.3390/ph16070962] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/30/2023] [Accepted: 07/02/2023] [Indexed: 07/30/2023] Open
Abstract
Neuropathic pain (NP) is a chronic condition resulting from damaged pain-signaling pathways. It is a debilitating disorder that affects up to 10% of the world's population. Although opioid analgesics are effective in reducing pain, they present severe risks; so, there is a pressing need for non-opioid pain-relieving drugs. One potential alternative is represented by sigma-1 receptor (S1R) antagonists due to their promising analgesic effects. Here, we report the synthesis and biological evaluation of a series of S1R antagonists based on a 2-aryl-4-aminobutanol scaffold. After assessing affinity toward the S1R and selectivity over the sigma-2 receptor (S2R), we evaluated the agonist/antagonist profile of the compounds by investigating their effects on nerve growth factor-induced neurite outgrowth and aquaporin-mediated water permeability in the presence and absence of oxidative stress. (R/S)-RC-752 emerged as the most interesting compound for S1R affinity (Ki S1R = 6.2 ± 0.9) and functional antagonist activity. Furthermore, it showed no cytotoxic effect in two normal human cell lines or in an in vivo zebrafish model and was stable after incubation in mouse plasma. (R/S)-RC-752 was then evaluated in two animal models of NP: the formalin test and the spinal nerve ligation model. The results clearly demonstrated that compound (R/S)-RC-752 effectively alleviated pain in both animal models, thus providing the proof of concept of its efficacy as an antinociceptive agent.
Collapse
Affiliation(s)
- Giacomo Rossino
- Department of Drug Sciences, University of Pavia, 27100 Pavia, Italy
| | - Annamaria Marra
- Department of Drug Sciences, University of Pavia, 27100 Pavia, Italy
| | - Roberta Listro
- Department of Drug Sciences, University of Pavia, 27100 Pavia, Italy
| | - Marco Peviani
- Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, 27100 Pavia, Italy
| | - Elena Poggio
- Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, 27100 Pavia, Italy
| | - Daniela Curti
- Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, 27100 Pavia, Italy
| | - Giorgia Pellavio
- Human Physiology Unit, Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy
| | - Umberto Laforenza
- Human Physiology Unit, Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy
| | - Giulio Dondio
- Aphad SrL, Via della Resistenza, 65, 20090 Buccinasco, Italy
| | - Dirk Schepmann
- Institut für Pharmazeutische und Medizinische Chemie, Westfälische Wilhelms-Universität Münster, Corrensstraße 48, D-48149 Münster, Germany
| | - Bernhard Wünsch
- Institut für Pharmazeutische und Medizinische Chemie, Westfälische Wilhelms-Universität Münster, Corrensstraße 48, D-48149 Münster, Germany
| | - Martina Bedeschi
- BioScience Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", 47014 Meldola, Italy
| | - Noemi Marino
- BioScience Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", 47014 Meldola, Italy
| | - Anna Tesei
- BioScience Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", 47014 Meldola, Italy
| | - Hee-Jin Ha
- Medifron DBT, Seoul 08502, Republic of Korea
| | | | - Jihyae Ann
- Laboratory of Medicinal Chemistry, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
- JMackem Co. Ltd., Seoul 08826, Republic of Korea
| | - Jeewoo Lee
- Laboratory of Medicinal Chemistry, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
- JMackem Co. Ltd., Seoul 08826, Republic of Korea
| | - Pasquale Linciano
- Department of Drug Sciences, University of Pavia, 27100 Pavia, Italy
| | | | - Daniela Rossi
- Department of Drug Sciences, University of Pavia, 27100 Pavia, Italy
| | - Simona Collina
- Department of Drug Sciences, University of Pavia, 27100 Pavia, Italy
| |
Collapse
|
33
|
Tran TMT, Addison RS, Davis RA, Rehm BHA. Bromotyrosine-Derived Metabolites from a Marine Sponge Inhibit Pseudomonas aeruginosa Biofilms. Int J Mol Sci 2023; 24:10204. [PMID: 37373352 DOI: 10.3390/ijms241210204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/06/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
Pseudomonas aeruginosa forms stable biofilms, providing a major barrier for multiple classes of antibiotics and severely impairing treatment of infected patients. The biofilm matrix of this Gram-negative bacterium is primarily composed of three major exopolysaccharides: alginate, Psl, and Pel. Here, we studied the antibiofilm properties of sponge-derived natural products ianthelliformisamines A-C and their combinations with clinically used antibiotics. Wild-type P. aeruginosa strain and its isogenic exopolysaccharide-deficient mutants were employed to determine the interference of the compounds with biofilm matrix components. We identified that ianthelliformisamines A and B worked synergistically with ciprofloxacin to kill planktonic and biofilm cells. Ianthelliformisamines A and B reduced the minimum inhibitory concentration (MIC) of ciprofloxacin to 1/3 and 1/4 MICs, respectively. In contrast, ianthelliformisamine C (MIC = 53.1 µg/mL) alone exhibited bactericidal effects dose-dependently on both free-living and biofilm populations of wild-type PAO1, PAO1ΔpslA (Psl deficient), PDO300 (alginate overproducing and mimicking clinical isolates), and PDO300Δalg8 (alginate deficient). Interestingly, the biofilm of the clinically relevant mucoid variant PDO300 was more susceptible to ianthelliformisamine C than strains with impaired polysaccharide synthesis. Ianthelliformisamines exhibited low cytotoxicity towards HEK293 cells in the resazurin viability assay. Mechanism of action studies showed that ianthelliformisamine C inhibited the efflux pump of P. aeruginosa. Metabolic stability analyses indicated that ianthelliformisamine C is stable and ianthelliformisamines A and B are rapidly degraded. Overall, these findings suggest that the ianthelliformisamine chemotype could be a promising candidate for the treatment of P. aeruginosa biofilms.
Collapse
Affiliation(s)
- Tam M T Tran
- Centre for Cell Factories and Biopolymers, Griffith Institute for Drug Discovery, Griffith University, Nathan, QLD 4111, Australia
| | - Russell S Addison
- Preclinical ADME/PK, Griffith Institute for Drug Discovery, Griffith University, Nathan, QLD 4111, Australia
| | - Rohan A Davis
- NatureBank, Griffith Institute for Drug Discovery, Griffith University, Nathan, QLD 4111, Australia
- School of Environment and Science, Griffith University, Nathan, QLD 4111, Australia
| | - Bernd H A Rehm
- Centre for Cell Factories and Biopolymers, Griffith Institute for Drug Discovery, Griffith University, Nathan, QLD 4111, Australia
- Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD 4222, Australia
| |
Collapse
|
34
|
Li X, Jusko WJ. Exploring the Pharmacokinetic Mysteries of the Liver: Application of Series Compartment Models of Hepatic Elimination. Drug Metab Dispos 2023; 51:618-628. [PMID: 36732075 PMCID: PMC10158499 DOI: 10.1124/dmd.122.001190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/23/2022] [Accepted: 01/24/2023] [Indexed: 02/04/2023] Open
Abstract
Among the basic hepatic clearance models, the dispersion model (DM) is the most physiologically sound compared with the well-stirred model and the parallel tube model. However, its application in physiologically-based pharmacokinetic (PBPK) modeling has been limited due to computational complexities. The series compartment models (SCM) of hepatic elimination that treats the liver as a cascade of well-stirred compartments connected by hepatic blood flow exhibits some mathematical similarities to the DM but is easier to operate. This work assesses the quantitative correlation between the SCM and DM and demonstrates the operation of the SCM in PBPK with the published single-dose blood and liver concentration-time data of six flow-limited compounds. The predicted liver concentrations and the estimated intrinsic clearance (CLint ) and PBPK-operative tissue-to-plasma partition coefficient (Kp ) values were shown to depend on the number of liver sub-compartments (n) and hepatic enzyme zonation in the SCM. The CLint and Kp decreased with increasing n, with more remarkable differences for drugs with higher hepatic extraction ratios. Given the same total CLint , the SCM yields a higher Kp when the liver perivenous region exhibits a lower CLint as compared with a high CLint at this region. Overall, the SCM nicely approximates the DM in characterizing hepatic elimination and offers an alternative flexible approach as well as providing some insights regarding sequential drug concentrations in the liver. SIGNIFICANCE STATEMENT: The SCM nicely approximates the DM when applied in PBPK for characterizing hepatic elimination. The number of liver sub-compartments and hepatic enzyme zonation are influencing factors for the SCM resulting in model-dependent predictions of total/internal liver concentrations and estimates of CLint and the PBPK-operative Kp . Such model-dependency may have an impact when the SCM is used for in vitro-to-in vivo extrapolation (IVIVE) and may also be relevant for PK/PD/toxicological effects when it is the driving force for such responses.
Collapse
Affiliation(s)
- Xiaonan Li
- Department of Pharmaceutical Sciences, State University of New York at Buffalo, Buffalo, New York
| | - William J Jusko
- Department of Pharmaceutical Sciences, State University of New York at Buffalo, Buffalo, New York
| |
Collapse
|
35
|
Assessment of In Silico and In Vitro Selpercatinib Metabolic Stability in Human Liver Microsomes Using a Validated LC-MS/MS Method. Molecules 2023; 28:molecules28062618. [PMID: 36985590 PMCID: PMC10054762 DOI: 10.3390/molecules28062618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/06/2023] [Accepted: 03/10/2023] [Indexed: 03/18/2023] Open
Abstract
Selpercatinib (SLP; brand name Retevmo®) is a selective and potent RE arranged during transfection (RET) inhibitor. On 21 September 2022, the FDA granted regular approval to SLP (Retevmo, Eli Lilly, and Company). It is considered the only and first RET inhibitor for adults with metastatic or locally advanced solid tumors with RET gene fusion. In the current experiment, a highly specific, sensitive, and fast liquid chromatography tandem mass spectrometry (LC-MS/MS) method for quantifying SLP in human liver microsomes (HLMs) was developed and applied to the metabolic stability evaluation of SLP. The LC-MS/MS method was validated following the bioanalytical methodology validation guidelines outlined by the FDA (linearity, selectivity, matrix effect, accuracy, precision, carryover, and extraction recovery). SLP was detected by a triple quadrupole detector (TQD) using a positive ESI source and multiple reaction monitoring (MRM) mode for mass spectrometric analysis and estimation of analytes ions. The IS-normalized matrix effect and extraction recovery were acceptable according to the FDA guidelines for the bioanalysis of SLP. The SLP calibration standards were linear from 1 to 3000 ng/mL HLMs matrix, with a regression equation (y = 1.7298x + 3.62941) and coefficient of variation (r2 = 0.9949). The intra-batch and inter-batch precision and accuracy of the developed LC-MS/MS method were −6.56–5.22% and 5.08–3.15%, respectively. SLP and filgotinib (FLG) (internal standard; IS) were chromatographically separated using a Luna 3 µm PFP (2) stationary phase (150 × 4.6 mm) with an isocratic mobile phase at 23 ± 1 °C. The limit of quantification (LOQ) was 0.78 ng/mL, revealing the LC-MS/MS method sensitivity. The intrinsic clearance and in vitro t1/2 (metabolic stability) of SLP in the HLMs matrix were 34 mL/min/kg and 23.82 min, respectively, which proposed an intermediate metabolic clearance rate of SLP, confirming the great value of this type of kinetic experiment for more accurate metabolic stability predictions. The literature review approved that the established LC-MS/MS method is the first developed and reported method for quantifying SLP metabolic stability.
Collapse
|
36
|
Development and Validation of a Rapid LC-MS/MS Method for Quantifying Alvocidib: In Silico and In Vitro Metabolic Stability Estimation in Human Liver Microsomes. Molecules 2023; 28:molecules28052368. [PMID: 36903615 PMCID: PMC10004750 DOI: 10.3390/molecules28052368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 02/24/2023] [Accepted: 03/02/2023] [Indexed: 03/08/2023] Open
Abstract
Alvocidib (AVC; flavopiridol) is a potent cyclin-dependent kinase inhibitor used in patients with acute myeloid leukemia (AML). The FDA has approved orphan drug designation to AVC for treating patients with AML. In the current work, the in silico calculation of AVC metabolic lability was done using the P450 metabolism module of the StarDrop software package, that is expressed as a composite site lability (CSL). This was followed by establishing an LC-MS/MS analytical method for AVC estimation in human liver microsomes (HLMs) to assess metabolic stability. AVC and glasdegib (GSB), used as internal standards (IS), were separated utilizing a C18 column (reversed chromatography) with an isocratic mobile phase. The lower limit of quantification (LLOQ) was 5.0 ng/mL, revealing the sensitivity of the established LC-MS/MS analytical method that exhibited a linearity in the range 5-500 ng/mL in the HLMs matrix with correlation coefficient (R2 = 0.9995). The interday and intraday accuracy and precision of the established LC-MS/MS analytical method were -1.4% to 6.7% and -0.8% to 6.4%, respectively, confirming the reproducibility of the LC-MS/MS analytical method. The calculated metabolic stability parameters were intrinsic clearance (CLint) and in vitro half-life (t1/2) of AVC at 26.9 µL/min/mg and 25.8 min, respectively. The in silico results from the P450 metabolism model matched the results generated from in vitro metabolic incubations; therefore, the in silico software can be used to predict the metabolic stability of the drugs, saving time and resources. AVC exhibits a moderate extraction ratio, indicating reasonable in vivo bioavailability. The established chromatographic methodology was the first LC-MS/MS method designed for AVC estimation in HLMs matrix that was applied for AVC metabolic stability estimation.
Collapse
|
37
|
Development of an LC-MS/MS Method for Quantification of Sapitinib in Human Liver Microsomes: In Silico and In Vitro Metabolic Stability Evaluation. Molecules 2023; 28:molecules28052322. [PMID: 36903565 PMCID: PMC10005647 DOI: 10.3390/molecules28052322] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 02/28/2023] [Accepted: 02/28/2023] [Indexed: 03/06/2023] Open
Abstract
Sapitinib (AZD8931, SPT) is a tyrosine kinase inhibitor of the epidermal growth factor receptor (EGFR) family (pan-erbB). In multiple tumor cell lines, STP has been shown to be a much more potent inhibitor of EGF-driven cellular proliferation than gefitinib. In the current study, a highly sensitive, rapid, and specific LC-MS/MS analytical method for the estimation of SPT in human liver microsomes (HLMs) was established with application to metabolic stability assessment. The LC-MS/MS analytical method was validated in terms of linearity, selectivity, precision, accuracy, matrix effect, extraction recovery, carryover, and stability following the FDA guidelines for bioanalytical method validation. SPT was detected using electrospray ionization (ESI) as an ionization source under multiple reaction monitoring (MRM) in the positive ion mode. The IS-normalized matrix factor and extraction recovery were acceptable for the bioanalysis of SPT. The SPT calibration curve was linear, from 1 ng/mL to 3000 ng/mL HLM matrix samples, with a linear regression equation of y = 1.7298x + 3.62941 (r2 = 0.9949). The intraday and interday accuracy and precision values of the LC-MS/MS method were -1.45-7.25% and 0.29-6.31%, respectively. SPT and filgotinib (FGT) (internal standard; IS) were separated through the use of an isocratic mobile phase system with a Luna 3 µm PFP(2) column (150 × 4.6 mm) stationary phase column. The limit of quantification (LOQ) was 0.88 ng/mL, confirming the LC-MS/MS method sensitivity. The intrinsic clearance and in vitro half-life of STP were 38.48 mL/min/kg and 21.07 min, respectively. STP exhibited a moderate extraction ratio that revealed good bioavailability. The literature review demonstrated that the current analytical method is the first developed LC-MS/MS method for the quantification of SPT in an HLM matrix with application to SPT metabolic stability evaluation.
Collapse
|
38
|
In Vitro Pharmacokinetic Behavior of Antiviral 3-Amidinophenylalanine Derivatives in Rat, Dog and Monkey Hepatocytes. Biomedicines 2023; 11:biomedicines11030682. [PMID: 36979660 PMCID: PMC10045298 DOI: 10.3390/biomedicines11030682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/17/2023] [Accepted: 02/21/2023] [Indexed: 03/03/2023] Open
Abstract
Type II transmembrane serine proteases represent pharmacological targets for blocking entry and spread of influenza or coronaviruses. In this study, the depletion rates of the 3-amidinophenylalanine (3-APhA)-derived matriptase/TMPRSS2 inhibitors MI-463, MI-472, MI-485 or MI-1900 were determined by LC-MS/MS measurements over a period of 300 min using suspensions of rat, dog and cynomolgus monkey primary hepatocytes. From these in vitro pharmacokinetic (PK) experiments, intrinsic clearance values (Clint) were evaluated, and in vivo pharmacokinetic parameters (hepatic clearance, hepatic extraction ratio and bioavailability) were predicted. It was found that rat hepatocytes were the most active in the metabolism of 3-APhA derivatives (Clint 31.9–37.8 mL/min/kg), whereas dog and monkey cells displayed somewhat lower clearance of these compounds (Clint 6.6–26.7 mL/min/kg). These data support elucidation of important PK properties of anti-TMPRSS2/anti-matriptase 3-APhAs using mammalian hepatocyte models and thus contribute to the optimization of lead compounds.
Collapse
|
39
|
Attwa MW, Alanazi MM. Rapid LC-MS/MS Bosutinib Quantification with Applications in Metabolic Stability Estimation. Molecules 2023; 28:molecules28041641. [PMID: 36838629 PMCID: PMC9965169 DOI: 10.3390/molecules28041641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/03/2023] [Accepted: 02/06/2023] [Indexed: 02/11/2023] Open
Abstract
Bosutinib (BOS) is FDA approved drug for the treatment of chronic phase (CP) Philadelphia chromosome-positive (Ph+) chronic myelogenous leukemia (CML). We report a fast, sensitive, and simple LC-MS/MS method, validated for the determination of BOS in human liver microsomes, utilizing tofacitinib (TOF) as the internal standard. The separation of BOS and TOF was done using a 1.8 μm C18 column (2.1 × 50 mm) at room temperature using the isocratic elution system of acetonitrile-water (30:70, v/v) containing 0.1 M formic acid at a flow rate of 0.15 mL/min, and a triple-quadrupole tandem mass spectrometer (TQD-MS) with an electrospray ionization (ESI) source that was operated in the positive ion mode. The method was validated according to the European Medicines Agency, and the rapid and specific quantification of BOS in human liver microsomes was achieved in the range of 5-200 ng/mL, with a determination coefficient of 0.999. Intra- and inter-day accuracy and precision values were <4% in all cases. The procedure is rapid, specific, reliable, and can be applied in metabolic stability evaluations since it is the first LC-MS/MS method specific to BOS quantification. The metabolic stability assessment of BOS showed high CLint (34.3 µL/min/mg) and short in vitro t1/2 values of 20.21 min, indicating that BOS may be rapidly eliminated from the blood by the liver.
Collapse
|
40
|
Sebastiani J, Puxeddu M, Nalli M, Bai R, Altieri L, Rovella P, Gaudio E, Trisciuoglio D, Spriano F, Lavia P, Fionda C, Masci D, Urbani A, Bigogno C, Dondio G, Hamel E, Bertoni F, Silvestri R, La Regina G. RS6077 induces mitotic arrest and selectively activates cell death in human cancer cell lines and in a lymphoma tumor in vivo. Eur J Med Chem 2023; 246:114997. [PMID: 36502578 DOI: 10.1016/j.ejmech.2022.114997] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 11/20/2022] [Accepted: 11/29/2022] [Indexed: 12/09/2022]
Abstract
We synthesized a new inhibitor of tubulin polymerization, the pyrrole (1-(7H-pyrrolo[2,3- d]pyrimidin-4-yl)-1H-pyrrol-3-yl)(3,4,5-trimethoxy-phenyl)methanone 6 (RS6077). Compound 6 inhibited the growth of multiple cancer cell lines, with IC50 values in the nM range, without affecting the growth of non-transformed cells. The novel agent arrested cells in the G2/M phase of the cell cycle in both transformed and non-transformed cell lines, but single cell analysis by time-lapse video recording revealed a remarkable selectivity in cell death induction by compound 6: in RPE-1 non-transformed cells mitotic arrest induced was not necessarily followed by cell death; in contrast, in HeLa transformed and in lymphoid-derived transformed AHH1 cell lines, cell death was effectively induced during mitotic arrest in cells that fail to complete mitosis. Importantly, the agent also inhibited the growth of the lymphoma TMD8 xenograft model. Together these findings suggest that derivative 6 has a selective efficacy in transformed vs non-transformed cells and indicate that the same compound has potential as novel therapeutic agent to treat lymphomas. Compound 6 showed good metabolic stability upon incubation with human liver microsomes.
Collapse
Affiliation(s)
- Jessica Sebastiani
- Laboratory Affiliated with the Institute Pasteur Italy - Cenci Bolognetti Foundation, Department of Drug Chemistry and Technologies, Sapienza University of Rome, Piazzale Aldo Moro 5, I-00185, Roma, Italy
| | - Michela Puxeddu
- Laboratory Affiliated with the Institute Pasteur Italy - Cenci Bolognetti Foundation, Department of Drug Chemistry and Technologies, Sapienza University of Rome, Piazzale Aldo Moro 5, I-00185, Roma, Italy
| | - Marianna Nalli
- Laboratory Affiliated with the Institute Pasteur Italy - Cenci Bolognetti Foundation, Department of Drug Chemistry and Technologies, Sapienza University of Rome, Piazzale Aldo Moro 5, I-00185, Roma, Italy
| | - Ruoli Bai
- Molecular Pharmacology Branch, Developmental Therapeutics Program, Division of Cancer Treatment and Diagnosis, Frederick National Laboratory for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, 21702, United States
| | - Ludovica Altieri
- Department of Biology and Biotechnology "Charles Darwin", Sapienza University of Rome, Rome, Italy; IBPM Institute of Molecular Biology and Pathology - Consiglio Nazionale Delle Ricerche, Rome, Italy
| | - Paola Rovella
- IBPM Institute of Molecular Biology and Pathology - Consiglio Nazionale Delle Ricerche, Rome, Italy
| | - Eugenio Gaudio
- Institute of Oncology Research, Faculty of Biomedical Sciences, USI, Via Francesco Chiesa 5, 6500, Bellinzona, Switzerland
| | - Daniela Trisciuoglio
- Department of Biology and Biotechnology "Charles Darwin", Sapienza University of Rome, Rome, Italy; IBPM Institute of Molecular Biology and Pathology - Consiglio Nazionale Delle Ricerche, Rome, Italy
| | - Filippo Spriano
- Institute of Oncology Research, Faculty of Biomedical Sciences, USI, Via Francesco Chiesa 5, 6500, Bellinzona, Switzerland
| | - Patrizia Lavia
- Department of Biology and Biotechnology "Charles Darwin", Sapienza University of Rome, Rome, Italy; IBPM Institute of Molecular Biology and Pathology - Consiglio Nazionale Delle Ricerche, Rome, Italy
| | - Cinzia Fionda
- Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 291, 00161, Rome, Italy
| | - Domiziana Masci
- Department of Basic Biotechnological Sciences, Intensivological and Perioperative Clinics, Catholic University of the Sacred Heart, Largo Francesco Vito 1, 00168, Rome, Italy
| | - Andrea Urbani
- Department of Basic Biotechnological Sciences, Intensivological and Perioperative Clinics, Catholic University of the Sacred Heart, Largo Francesco Vito 1, 00168, Rome, Italy
| | - Chiara Bigogno
- Aphad SrL, Via Della Resistenza 65, 20090, Buccinasco, Italy
| | - Giulio Dondio
- Aphad SrL, Via Della Resistenza 65, 20090, Buccinasco, Italy
| | - Ernest Hamel
- Molecular Pharmacology Branch, Developmental Therapeutics Program, Division of Cancer Treatment and Diagnosis, Frederick National Laboratory for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, 21702, United States
| | - Francesco Bertoni
- Institute of Oncology Research, Faculty of Biomedical Sciences, USI, Via Francesco Chiesa 5, 6500, Bellinzona, Switzerland; Oncology Institute of Southern Switzerland, Ente Ospedaliero Cantonale, 6500, Bellinzona, Switzerland
| | - Romano Silvestri
- Laboratory Affiliated with the Institute Pasteur Italy - Cenci Bolognetti Foundation, Department of Drug Chemistry and Technologies, Sapienza University of Rome, Piazzale Aldo Moro 5, I-00185, Roma, Italy.
| | - Giuseppe La Regina
- Laboratory Affiliated with the Institute Pasteur Italy - Cenci Bolognetti Foundation, Department of Drug Chemistry and Technologies, Sapienza University of Rome, Piazzale Aldo Moro 5, I-00185, Roma, Italy
| |
Collapse
|
41
|
Puxeddu M, Wu J, Bai R, D’Ambrosio M, Nalli M, Coluccia A, Manetto S, Ciogli A, Masci D, Urbani A, Fionda C, Coni S, Bordone R, Canettieri G, Bigogno C, Dondio G, Hamel E, Liu T, Silvestri R, La Regina G. Induction of Ferroptosis in Glioblastoma and Ovarian Cancers by a New Pyrrole Tubulin Assembly Inhibitor. J Med Chem 2022; 65:15805-15818. [PMID: 36395526 PMCID: PMC9743090 DOI: 10.1021/acs.jmedchem.2c01457] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
We synthesized new aroyl diheterocyclic pyrrole (ARDHEP) 15 that exhibited the hallmarks of ferroptosis. Compound 15 strongly inhibited U-87 MG, OVCAR-3, and MCF-7 cancer cells, induced an increase of cleaved PARP, but was not toxic for normal human primary T lymphocytes at 0.1 μM. Analysis of the levels of lactoperoxidase, malondialdehyde, lactic acid, total glutathione, and ATP suggested that the in vivo inhibition of cancer cell proliferation by 15 went through stimulation of oxidative stress injury and Fe2+ accumulation. Quantitative polymerase chain reaction analysis of the mRNA expression in U-87 MG and SKOV-3 tumor tissues from 15-treated mice showed the presence of Ptgs2/Nfe2l2/Sat1/Akr1c1/Gpx4 genes correlated with ferroptosis in both groups. Immunofluorescence staining revealed significantly lower expressions of proteins Ki67, CD31, and ferroptosis negative regulation proteins glutathione peroxidase 4 (GPX4) and FTH1. Compound 15 was found to be metabolically stable when incubated with human liver microsomes.
Collapse
Affiliation(s)
- Michela Puxeddu
- Laboratory
Affiliated with the Institute Pasteur Italy - Cenci Bolognetti Foundation,
Department of Drug Chemistry and Technologies, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185Rome, Italy
| | - Jianchao Wu
- Shanghai
Geriatric Institute of Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 365 South Xiangyang Road, 200031Shanghai, China
| | - Ruoli Bai
- Molecular
Pharmacology Branch, Developmental Therapeutics Program, Division
of Cancer Treatment and Diagnosis, Frederick National Laboratory for
Cancer Research, National Cancer Institute,
National Institutes of Health, Frederick, Maryland21702, United States
| | - Michele D’Ambrosio
- Laboratory
Affiliated with the Institute Pasteur Italy - Cenci Bolognetti Foundation,
Department of Drug Chemistry and Technologies, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185Rome, Italy
| | - Marianna Nalli
- Laboratory
Affiliated with the Institute Pasteur Italy - Cenci Bolognetti Foundation,
Department of Drug Chemistry and Technologies, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185Rome, Italy
| | - Antonio Coluccia
- Laboratory
Affiliated with the Institute Pasteur Italy - Cenci Bolognetti Foundation,
Department of Drug Chemistry and Technologies, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185Rome, Italy
| | - Simone Manetto
- Laboratory
Affiliated with the Institute Pasteur Italy - Cenci Bolognetti Foundation,
Department of Drug Chemistry and Technologies, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185Rome, Italy
| | - Alessia Ciogli
- Laboratory
Affiliated with the Institute Pasteur Italy - Cenci Bolognetti Foundation,
Department of Drug Chemistry and Technologies, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185Rome, Italy
| | - Domiziana Masci
- Department
of Basic Biotechnological Sciences, Intensivological and Perioperative
Clinics, Catholic University of the Sacred
Heart, Largo Francesco
Vito 1, 00168Rome, Italy
| | - Andrea Urbani
- Department
of Basic Biotechnological Sciences, Intensivological and Perioperative
Clinics, Catholic University of the Sacred
Heart, Largo Francesco
Vito 1, 00168Rome, Italy
| | - Cinzia Fionda
- Laboratory
Affiliated with the Institute Pasteur Italy - Cenci Bolognetti Foundation,
Department of Molecular Medicine, Sapienza
University of Rome, Viale Regina Elena 291, 00161Rome, Italy
| | - Sonia Coni
- Laboratory
Affiliated with the Institute Pasteur Italy - Cenci Bolognetti Foundation,
Department of Molecular Medicine, Sapienza
University of Rome, Viale Regina Elena 291, 00161Rome, Italy
| | - Rosa Bordone
- Laboratory
Affiliated with the Institute Pasteur Italy - Cenci Bolognetti Foundation,
Department of Molecular Medicine, Sapienza
University of Rome, Viale Regina Elena 291, 00161Rome, Italy
| | - Gianluca Canettieri
- Laboratory
Affiliated with the Institute Pasteur Italy - Cenci Bolognetti Foundation,
Department of Molecular Medicine, Sapienza
University of Rome, Viale Regina Elena 291, 00161Rome, Italy
| | - Chiara Bigogno
- Aphad
SrL, Via della Resistenza
65, 20090Buccinasco, Italy
| | - Giulio Dondio
- Aphad
SrL, Via della Resistenza
65, 20090Buccinasco, Italy
| | - Ernest Hamel
- Molecular
Pharmacology Branch, Developmental Therapeutics Program, Division
of Cancer Treatment and Diagnosis, Frederick National Laboratory for
Cancer Research, National Cancer Institute,
National Institutes of Health, Frederick, Maryland21702, United States
| | - Te Liu
- Shanghai
Geriatric Institute of Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 365 South Xiangyang Road, 200031Shanghai, China,
| | - Romano Silvestri
- Laboratory
Affiliated with the Institute Pasteur Italy - Cenci Bolognetti Foundation,
Department of Drug Chemistry and Technologies, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185Rome, Italy,
| | - Giuseppe La Regina
- Laboratory
Affiliated with the Institute Pasteur Italy - Cenci Bolognetti Foundation,
Department of Drug Chemistry and Technologies, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185Rome, Italy,
| |
Collapse
|
42
|
Zayed A, Jaber SA, Al Hroot J, Hawamdeh S, Ayoub NM, Qinna NA. HPLC with Fluorescence and Photodiode Array Detection for Quantifying Capmatinib in Biological Samples: Application to In Vivo and In Vitro Studies. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27238582. [PMID: 36500674 PMCID: PMC9738601 DOI: 10.3390/molecules27238582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 11/30/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022]
Abstract
Capmatinib, a recently approved tyrosine kinase inhibitor, is used for the treatment of non-small cell lung cancer. We describe two new HPLC methods for capmatinib quantification in vivo and in vitro. HPLC with a fluorescence detection method was used to quantify capmatinib in plasma for the first time. The method was successfully applied in a pharmacokinetic study following a 10 mg/kg oral dose of capmatinib given to rats. The chromatographic separation was performed using a Eurospher II 100-3 C18H (50 × 4 mm, 3 µm) column and a mobile phase containing 10 mM of ammonium acetate buffer (pH 5.5): acetonitrile (70:30, v/v), at a flow rate of 2.0 mL min-1. The study also describes the use of HPLC-PDA for the first time for the determination of capmatinib in human liver microsomes and describes its application to study its metabolic stability in vitro. Our results were in agreement with those reported using LC-MS/MS, demonstrating the reliability of the method. The study utilized a Gemini-NX C18 column and a mobile phase containing methanol: 20 mM ammonium formate buffer pH 3.5 (53:47, v/v), delivered at a flow rate of 1.1 mL min-1. These methods are suitable for supporting pharmacokinetic studies, particularly in bioanalytical labs lacking LC-MS/MS capabilities.
Collapse
Affiliation(s)
- Aref Zayed
- Department of Medicinal Chemistry and Pharmacognosy, Faculty of Pharmacy, Jordan University of Science and Technology (JUST), Irbid 22110, Jordan
- Correspondence: ; Tel.: +962-2-7201-000 (ext. 23240)
| | - Sana’a A. Jaber
- Department of Medicinal Chemistry and Pharmacognosy, Faculty of Pharmacy, Jordan University of Science and Technology (JUST), Irbid 22110, Jordan
| | - Jomana Al Hroot
- Department of Medicinal Chemistry and Pharmacognosy, Faculty of Pharmacy, Jordan University of Science and Technology (JUST), Irbid 22110, Jordan
| | - Sahar Hawamdeh
- Department of Medicinal Chemistry and Pharmacognosy, Faculty of Pharmacy, Jordan University of Science and Technology (JUST), Irbid 22110, Jordan
| | - Nehad M. Ayoub
- Department of Clinical Pharmacy, Faculty of Pharmacy, Jordan University of Science and Technology (JUST), Irbid 22110, Jordan
| | - Nidal A. Qinna
- University of Petra Pharmaceutical Center (UPPC), Faculty of Pharmacy and Medical Sciences, University of Petra, Amman 11196, Jordan
| |
Collapse
|
43
|
Pagare P, Obeng S, Huang B, Marcus MM, Nicholson KL, Townsend AE, Banks ML, Zhang Y. Preclinical Characterization and Development on NAQ as a Mu Opioid Receptor Partial Agonist for Opioid Use Disorder Treatment. ACS Pharmacol Transl Sci 2022; 5:1197-1209. [PMID: 36407950 PMCID: PMC9667545 DOI: 10.1021/acsptsci.2c00178] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Indexed: 11/06/2022]
Abstract
Mu opioid receptor (MOR) selective antagonists and partial agonists have clinical utility for the treatment of opioid use disorders (OUDs). However, the development of many has suffered due to their poor pharmacokinetic properties and/or rapid metabolism. Our recent efforts to identify MOR modulators have provided 17-cyclopropylmethyl-3,14β-dihydroxy-4,5α-epoxy-6α-(isoquinoline-3-carboxamido)morphinan (NAQ), a low-efficacy partial agonist, that showed sub-nanomolar binding affinity to the MOR (K i 0.6 nM) with selectivity over the delta opioid receptor (δ/μ 241) and the kappa opioid receptor (κ/μ 48). Its potent inhibition of the analgesic effect of morphine (AD50 0.46 mg/kg) and precipitation of significantly less withdrawal symptoms even at 100-fold greater dose than naloxone represents a promising molecule for further development as a novel OUD therapeutic agent. Therefore, further in vitro and in vivo characterization of its pharmacokinetics and pharmacodynamics properties was conducted to fully understand its pharmaceutical profile. NAQ showed favorable in vitro ADMET properties and no off-target binding to several classes of GPCRs, enzymes, and ion channels. Following intravenous administration, 1 mg/kg dose of NAQ showed a similar in vivo pharmacokinetic profile to naloxone; however, orally administered 10 mg/kg NAQ demonstrated significantly improved oral bioavailability over both naloxone and naltrexone. Abuse liability assessment of NAQ in rats demonstrated that NAQ functioned as a less potent reinforcer than heroin. Chronic 5 day NAQ pretreatment decreased heroin self-administration in a heroin-vs-food choice procedure similar to the clinically used MOR partial agonist buprenorphine. Taken together, these studies provide evidence supporting NAQ as a promising lead to develop novel OUD therapeutics.
Collapse
Affiliation(s)
- Piyusha
P. Pagare
- Department
of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, Virginia23298-0540, United States
| | - Samuel Obeng
- Department
of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, Virginia23298-0540, United States
| | - Boshi Huang
- Department
of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, Virginia23298-0540, United States
| | - Madison M. Marcus
- Department
of Pharmacology and Toxicology, Virginia
Commonwealth University School of Medicine, Richmond, Virginia23298-0613, United States
| | - Katherine L. Nicholson
- Department
of Pharmacology and Toxicology, Virginia
Commonwealth University School of Medicine, Richmond, Virginia23298-0613, United States
| | - Andrew E. Townsend
- Department
of Pharmacology and Toxicology, Virginia
Commonwealth University School of Medicine, Richmond, Virginia23298-0613, United States
| | - Matthew L. Banks
- Department
of Pharmacology and Toxicology, Virginia
Commonwealth University School of Medicine, Richmond, Virginia23298-0613, United States
| | - Yan Zhang
- Department
of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, Virginia23298-0540, United States
| |
Collapse
|
44
|
Bassanini I, Parapini S, Basilico N, Taramelli D, Romeo S. From DC18 to MR07: A Metabolically Stable 4,4'-Oxybisbenzoyl Amide as a Low-Nanomolar Growth Inhibitor of P. falciparum. ChemMedChem 2022; 17:e202200355. [PMID: 36089546 PMCID: PMC9827966 DOI: 10.1002/cmdc.202200355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 09/02/2022] [Indexed: 01/12/2023]
Abstract
To improve the metabolic stability of a 4,4'-oxybisbenzoyl-based novel and potent (nanomolar-range IC50 ) antiplasmodial agent previously described by us, in silico-guided structure-activity relationship (SAR) campaigns have been conducted to substitute its peptide decorations with more metabolically stable residues. The effects of the various structural modifications were then correlated with the antiplasmodial activity in vitro in phenotypic assays. Among the several derivatives synthetized and compared with the 3D-pharmacophoric map of the original lead, a novel compound, characterized by a western tert-butyl glycine residue and an eastern 1S,2S-aminoacyclohexanol, showed low-nanomolar-range antiplasmodial activity, no signs of cross-resistance and, most importantly, 47-fold improved Phase I metabolic stability when incubated with human liver microsomes. These results highlight the efficacy of in silico-guided SAR campaigns which will allow us to further optimize the structure of the new lead aiming at testing its efficacy in vivo using different routes of administration.
Collapse
Affiliation(s)
- Ivan Bassanini
- Istituto di Scienze e Tecnologie Chimiche “Giulio Natta”Consiglio Nazionale delle RicercheVia Mario Bianco 920131MilanoItaly
- Centro Interuniversitario di Ricerca sulla Malaria-Italian Malaria NetworkVia Festa del Perdono 720122MilanoItaly
| | - Silvia Parapini
- Dipartimento di Scienze Biomediche per la SaluteUniversità degli Studi di MilanoVia Pascal 3620133MilanoItaly
- Centro Interuniversitario di Ricerca sulla Malaria-Italian Malaria NetworkVia Festa del Perdono 720122MilanoItaly
| | - Nicoletta Basilico
- Dipartimento di Scienze Biomediche, Chirurgiche e OdontoiatricheUniversità degli Studi di MilanoVia Pascal 3620133MilanoItaly
- Centro Interuniversitario di Ricerca sulla Malaria-Italian Malaria NetworkVia Festa del Perdono 720122MilanoItaly
| | - Donatella Taramelli
- Dipartimento di Scienze Farmacologiche e BiomolecolariUniversità degli Studi di MilanoVia Pascal 3620133MilanoItaly
- Centro Interuniversitario di Ricerca sulla Malaria-Italian Malaria NetworkVia Festa del Perdono 720122MilanoItaly
| | - Sergio Romeo
- Dipartimento di Scienze FarmaceuticheUniversità degli Studi di MilanoVia Mangiagalli 2520133MilanoItaly
- Centro Interuniversitario di Ricerca sulla Malaria-Italian Malaria NetworkVia Festa del Perdono 720122MilanoItaly
| |
Collapse
|
45
|
Li X, Jusko WJ. Assessing Liver-to-Plasma Partition Coefficients and In Silico Calculation Methods: When Does the Hepatic Model Matter in PBPK?. Drug Metab Dispos 2022; 50:DMD-AR-2022-000994. [PMID: 36195337 DOI: 10.1124/dmd.122.000994] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 08/24/2022] [Accepted: 09/09/2022] [Indexed: 11/22/2022] Open
Abstract
The primary models used in pharmacokinetics (PK) to assess hepatic clearance (CLh ) are the well-stirred (WSM), parallel tube (PTM), and dispersion model (DM) that differ in their internal flow patterns and assumed unbound liver concentrations. Physiologically-Based Pharmacokinetic (PBPK) models require a hepatic intrinsic clearance (CLint ) and tissue-to-plasma partition coefficient (Kp ). Given measured systemic and liver concentration-time profiles, these hepatic models perform similarly but yield model-specific CLint and Kp estimates. This work provides mathematical relationships for the three basic hepatic models and assesses their corresponding PBPK-relevant Kp values with literature-reported single-dose blood and liver concentration-time data of 14 compounds. Model fittings were performed with an open-loop approach where the CLh and extraction ratio (ER) were first estimated from fitting the blood data yielding CLint values for the three hepatic models. The pre-fitted blood data served as forcing input functions to obtain PBPK-operative Kp estimates that were compared with those obtained by the tissue/plasma area ratio (AR), Chen & Gross (C&G) and published in silico methods. The CLint and Kp values for the hepatic models increased with the ER and both showed a rank order being WSM > DM > PTM. Drugs with low ER showed no differences as expected. With model-specific CLint and Kp values, all hepatic models predict the same steady-state Kp (Kp ss ) that is comparable to those from the AR and C&G methods and reported by direct measurement. All in silico methods performed poorly for most compounds. Hepatic model selection requires cautious application and interpretation in PBPK modeling. Significance Statement The three hepatic models generate different single-dose (non-steady-state) values of CLint and Kp in PBPK models especially for drugs with high ER; however, all Kp ss values expected from constant rate infusion studies were the same. These findings are relevant when using these models for IVIVE where a model-dependent CLint is used to correct measured tissue concentrations for depletion by metabolism. This model-dependency may also have an impact when assessing the PK/pharmacodynamic relationships when effects relate to assumed hepatic concentrations.
Collapse
Affiliation(s)
- Xiaonan Li
- Pharmaceutical Sciences, University at Buffalo, United States
| | - William J Jusko
- Pharmaceutical Sciences, University at Buffalo, United States
| |
Collapse
|
46
|
Schultz M, Krause S, Brinkmann M. Validation of Methods for in Vitro- in Vivo Extrapolation Using Hepatic Clearance Measurements in Isolated Perfused Fish Livers. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:12416-12423. [PMID: 35994365 DOI: 10.1021/acs.est.2c02656] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
In vitro biotransformation assays using hepatocytes or liver subcellular fractions, combined with in vitro-in vivo extrapolation (IVIVE) models, have been proposed as an alternative to live fish bioconcentration studies. The uncertainty associated with IVIVE approaches to date has been attributed to assay protocols, model assumptions, or variability of in vivo data. An isolated perfused trout liver model that measures hepatic clearance has been proposed for validating IVIVE predictions in the absence of other confounding factors. Here, we investigated the hepatic clearances of five chemicals (pyrene, phenanthrene, 4-n-nonlyphenol, deltamethrin, and methoxychlor) in this model and compared measured rates to values predicted from published in vitro intrinsic clearances for validation of IVIVE models. Additionally, we varied protein concentrations in perfusates to test binding assumptions of these models. We found that measured and predicted hepatic clearances were in very good agreement (root mean squared error 16.8 mL h-1 g-1) across three levels of protein binding and across a more diverse chemical space than previously studied within this system. Our results show that current IVIVE methods can reliably predict in vivo clearance rates and indicate that discrepancies from measured bioconcentration factors might be driven by other processes, such as extrahepatic biotransformation, etc., and help streamline optimization efforts to the processes that truly matter.
Collapse
Affiliation(s)
- Matthew Schultz
- Toxicology Center, University of Saskatchewan, 44 Campus Drive, Saskatoon, SK S7N 5B3, Canada
| | - Sophia Krause
- Department of Analytical Environmental Chemistry, Helmholtz Centre for Environmental Research UFZ, Permoserstr. 15, 04318 Leipzig, Germany
| | - Markus Brinkmann
- Toxicology Center, University of Saskatchewan, 44 Campus Drive, Saskatoon, SK S7N 5B3, Canada
- School of Environment and Sustainability, University of Saskatchewan, 117 Science Place, Saskatoon, SK S7N 5C8, Canada
- Global Institute for Water Security, University of Saskatchewan, 11 Innovation Boulevard, Saskatoon, SK S7N 3H5, Canada
- Centre for Hydrology, University of Saskatchewan, 121 Research Drive, Saskatoon, SK S7N 1K2, Canada
| |
Collapse
|
47
|
Langthaler K, Jones CR, Christensen RB, Eneberg E, Brodin B, Bundgaard C. Characterization of intravenous pharmacokinetics in Göttingen minipig and clearance prediction using established in vitro to in vivo extrapolation methodologies. Xenobiotica 2022; 52:591-607. [PMID: 36000364 DOI: 10.1080/00498254.2022.2115425] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Abstract
1. The use of the Göttingen minipig as an animal model for drug safety testing and prediction of human pharmacokinetics (PK) continues to gain momentum in pharmaceutical research and development. The aim of this study was to evaluate in vitro to in vivo extrapolation (IVIVE) methodologies for prediction of hepatic, metabolic clearance (CLhep,met) in Göttingen minipig, using a comprehensive set of compounds.2. In vivo clearance was determined in Göttingen minipig by intravenous cassette dosing and hepatocyte intrinsic clearance, plasma protein binding and non-specific incubation binding were determined in vitro. Prediction of CLhep,met was performed by IVIVE using conventional and adapted formats of the well-stirred liver model.3. The best prediction of in vivo CLhep,met from scaled in vitro kinetic data was achieved using an empirical correction factor based on a 'regression offset' of the IVIV relationship.4. In summary, these results expand the in vitro and in vivo PK knowledge in Göttingen minipig. We show regression corrected IVIVE provides superior prediction of in vivo CLhep,met in minipig offering a practical, unified scaling approach to address systematic under-predictions. Finally, we propose a reference set for researchers to establish their own 'lab-specific' regression correction for IVIVE in minipig.
Collapse
Affiliation(s)
- K Langthaler
- Translational DMPK, H. Lundbeck A/S, Copenhagen, Denmark.,CNS Drug Delivery and Barrier Modelling, University of Copenhagen, Copenhagen, Denmark
| | - C R Jones
- Translational DMPK, H. Lundbeck A/S, Copenhagen, Denmark
| | | | - E Eneberg
- Translational DMPK, H. Lundbeck A/S, Copenhagen, Denmark
| | - B Brodin
- CNS Drug Delivery and Barrier Modelling, University of Copenhagen, Copenhagen, Denmark
| | - C Bundgaard
- Translational DMPK, H. Lundbeck A/S, Copenhagen, Denmark
| |
Collapse
|
48
|
Gardner I, Xu M, Han C, Wang Y, Jiao X, Jamei M, Khalidi H, Kilford P, Neuhoff S, Southall R, Turner DB, Musther H, Jones B, Taylor S. Non-specific binding of compounds in in vitro metabolism assays: a comparison of microsomal and hepatocyte binding in different species and an assessment of the accuracy of prediction models. Xenobiotica 2022; 52:943-956. [PMID: 36222269 DOI: 10.1080/00498254.2022.2132426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Non-specific binding in in vitro metabolism systems leads to an underestimation of the true intrinsic metabolic clearance of compounds being studied. Therefore in vitro binding needs to be accounted for when extrapolating in vitro data to predict the in vivo metabolic clearance of a compound. While techniques exist for experimentally determining the fraction of a compound unbound in in vitro metabolism systems, early in drug discovery programmes computational approaches are often used to estimate the binding in the in vitro system.Experimental fraction unbound data (n = 60) were generated in liver microsomes (fumic) from five commonly used pre-clinical species (rat, mouse, dog, minipig, monkey) and humans. Unbound fraction in incubations with mouse, rat or human hepatocytes was determined for the same 60 compounds. These data were analysed to determine the relationship between experimentally determined binding in the different matrices and across different species. In hepatocytes there was a good correlation between fraction unbound in human and rat (r2=0.86) or mouse (r2=0.82) hepatocytes. Similar correlations were observed between binding in human liver microsomes and microsomes from rat, mouse, dog, Göttingen minipig or monkey liver microsomes (r2 of >0.89, n = 51 - 52 measurements in different species). Physicochemical parameters (logP, pKa and logD) were predicted for all evaluated compounds. In addition, logP and/or logD were measured for a subset of compounds.Binding to human hepatocytes predicted using 5 different methods was compared to the measured data for a set of 59 compounds. The best methods evaluated used measured microsomal binding in human liver microsomes to predict hepatocyte binding. The collated physicochemical data were used to predict the human fumic using four different in silico models for a set of 53-60 compounds. The correlation (r2) and root mean square error between predicted and observed microsomal binding was 0.69 & 0.20, 0.47 & 0.23, 0.56 & 0.21 and 0.54 & 0.26 for the Turner-Simcyp, Austin, Hallifax-Houston and Poulin models, respectively. These analyses were extended to include measured literature values for binding in human liver microsomes for a larger set of compounds (n=697). For the larger dataset of compounds, microsomal binding was well predicted for neutral compounds (r2=0.67 - 0.70) using the Poulin, Austin, or Turner-Simcyp methods but not for acidic or basic compounds (r2<0.5) using any of the models. While the lipophilicity-based models can be used, the in vitro binding should be measured for compounds where more certainty is needed, using appropriately calibrated assays and possibly established weak, moderate, and strong binders as reference compounds to allow comparison across databases.
Collapse
Affiliation(s)
| | - Mandy Xu
- Pharmaron Beijing Co. Ltd., Beijing, China
| | | | - Yi Wang
- Pharmaron Beijing Co. Ltd., Beijing, China
| | | | | | | | - Peter Kilford
- Certara UK Ltd., Sheffield, United Kingdom.,Labcorp Drug Development, Harrogate, United Kingdom
| | | | | | | | | | - Barry Jones
- Pharmaron UK, Hoddesdon, Hertfordshire, United Kingdom
| | - Simon Taylor
- Pharmaron UK, Hoddesdon, Hertfordshire, United Kingdom
| |
Collapse
|
49
|
Kamble SH, Berthold EC, Kanumuri SRR, King TI, Kuntz MA, León F, Mottinelli M, McMahon LR, McCurdy CR, Sharma A. Metabolism of Speciociliatine, an Overlooked Kratom Alkaloid for its Potential Pharmacological Effects. AAPS J 2022; 24:86. [PMID: 35854066 PMCID: PMC9932950 DOI: 10.1208/s12248-022-00736-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 07/05/2022] [Indexed: 01/21/2023] Open
Abstract
Speciociliatine, a diastereomer of mitragynine, is an indole-based alkaloid found in kratom (Mitragyna speciosa). Kratom has been widely used for the mitigation of pain and opioid dependence, as a mood enhancer, and/or as an energy booster. Speciociliatine is a partial µ-opioid agonist with a 3-fold higher binding affinity than mitragynine. Speciociliatine has been found to be a major circulating alkaloid in humans following oral administration of a kratom product. In this report, we have characterized the metabolism of speciociliatine in human and preclinical species (mouse, rat, dog, and cynomolgus monkey) liver microsomes and hepatocytes. Speciociliatine metabolized rapidly in monkey, rat, and mouse hepatocytes (in vitro half-life was 6.6 ± 0.2, 8.3 ± 1.1, 11.2 ± 0.7 min, respectively), while a slower metabolism was observed in human and dog hepatocytes (91.7 ± 12.8 and > 120 min, respectively). Speciociliatine underwent extensive metabolism, primarily through monooxidation and O-demethylation metabolic pathways in liver microsomes and hepatocytes across species. No human-specific or disproportionate metabolites of speciociliatine were found in human liver microsomes. The metabolism of speciociliatine was predominantly mediated by CYP3A4 with minor contributions by CYP2D6.
Collapse
Affiliation(s)
- Shyam H. Kamble
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, FL, USA,Translational Drug Development Core, Clinical and Translational Sciences Institute, University of Florida, Gainesville, FL, USA
| | - Erin C. Berthold
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, FL, USA
| | - Siva Rama Raju Kanumuri
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, FL, USA,Translational Drug Development Core, Clinical and Translational Sciences Institute, University of Florida, Gainesville, FL, USA
| | - Tamara I. King
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, FL, USA,Translational Drug Development Core, Clinical and Translational Sciences Institute, University of Florida, Gainesville, FL, USA
| | - Michelle A. Kuntz
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, FL, USA,Translational Drug Development Core, Clinical and Translational Sciences Institute, University of Florida, Gainesville, FL, USA
| | - Francisco León
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, FL, USA
| | - Marco Mottinelli
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, FL, USA
| | | | - Christopher R. McCurdy
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, FL, USA,Translational Drug Development Core, Clinical and Translational Sciences Institute, University of Florida, Gainesville, FL, USA,Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, FL, USA,Corresponding Author Abhisheak Sharma, M. Pharm., Ph.D., UF CTSI, Translational Drug Development Core, Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, FL 32610, USA. , Phone: 352-294-8690, Christopher R. McCurdy, Ph.D., FAAPS, UF CTSI, Translational Drug Development Core, Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, FL 32610, USA. , Phone: 352-294-8691
| | - Abhisheak Sharma
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, FL, 32610, USA. .,Translational Drug Development Core, Clinical and Translational Sciences Institute, University of Florida, Gainesville, FL, 32610, USA.
| |
Collapse
|
50
|
Roy T, Petersen NN, Gopalan G, Gising J, Hallberg M, Larhed M. 2-Alkyl substituted benzimidazoles as a new class of selective AT2 receptor ligands. Bioorg Med Chem 2022; 66:116804. [PMID: 35576659 DOI: 10.1016/j.bmc.2022.116804] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 04/25/2022] [Accepted: 05/03/2022] [Indexed: 11/26/2022]
Abstract
Ligands comprising a benzimidazole rather than the imidazole ring that is common in AT2R ligands e.g. in the AT2R agonist C21, can provide both high affinity and receptor selectivity. In particular, compounds encompassing benzimidazoles, substituted in the 2-position with small bulky groups such as an isopropyl (Ki = 4.0 nM) or a tert-butyl (Ki = 5.3 nM) or alternatively a thiazole heterocycle (Ki = 5.1 nM) demonstrate high affinity and AT2R selectivity. An n-butyl chain, as found in the AT1R selective sartans, makes the ligand less receptor selective. The isobutyl group on the biaryl scaffold present in most AT2R selective ligands reported so far was originally derived from the nonselective potent AT1R/AT2R ligand L-162,313. Notably, in all ligands discussed herein, the isobutyl group was substituted by an n-propyl group and ligands with high affinity to AT2R were provided and in addition the majority of them demonstrate a favorable AT2R/AT1R selectivity. The introduction of fluoro atoms in various positions had no pronounced effect on the affinity data. Ligands with a thiazole or a tert-butyl group attached to the 2-position and with a terminal trifluoromethyl butoxycarbonyl sidechain exhibited a similar stability as C21 in human liver microsomes, while other ligands examined were less stable in the microsome assay.
Collapse
Affiliation(s)
- Tamal Roy
- The Beijer Laboratory, Department of Medicinal Chemistry, Uppsala University, BMC Box 574, SE-751 23 Uppsala, Sweden
| | - Nadia N Petersen
- The Beijer Laboratory, Department of Medicinal Chemistry, Uppsala University, BMC Box 574, SE-751 23 Uppsala, Sweden
| | - Greeshma Gopalan
- The Beijer Laboratory, Department of Medicinal Chemistry, Uppsala University, BMC Box 574, SE-751 23 Uppsala, Sweden
| | - Johan Gising
- The Beijer Laboratory, Department of Medicinal Chemistry, Uppsala University, BMC Box 574, SE-751 23 Uppsala, Sweden
| | - Mathias Hallberg
- The Beijer Laboratory, Department of Pharmaceutical Biosciences, Division of Biological Research on Drug Dependence, BMC, Uppsala University, P.O. Box 591, SE-751 24 Uppsala, Sweden
| | - Mats Larhed
- The Beijer Laboratory, Science for Life Laboratory, Department of Medicinal Chemistry, Uppsala University, BMC Box 574, SE-751 23 Uppsala, Sweden.
| |
Collapse
|