1
|
Howes OD, Dawkins E, Lobo MC, Kaar SJ, Beck K. New Drug Treatments for Schizophrenia: A Review of Approaches to Target Circuit Dysfunction. Biol Psychiatry 2024; 96:638-650. [PMID: 38815885 DOI: 10.1016/j.biopsych.2024.05.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 04/23/2024] [Accepted: 05/14/2024] [Indexed: 06/01/2024]
Abstract
Schizophrenia is a leading cause of global disease burden. Current drug treatments are associated with significant side effects and have limited efficacy for many patients, highlighting the need to develop new approaches that target other aspects of the neurobiology of schizophrenia. Preclinical, in vivo imaging, postmortem, genetic, and pharmacological studies have highlighted the key role of cortical GABAergic (gamma-aminobutyric acidergic)-glutamatergic microcircuits and their projections to subcortical dopaminergic circuits in the pathoetiology of negative, cognitive, and psychotic symptoms. Antipsychotics primarily act downstream of the dopaminergic component of this circuit. However, multiple drugs are currently in development that could target other elements of this circuit to treat schizophrenia. These include drugs for GABAergic or glutamatergic targets, including glycine transporters, D-amino acid oxidase, sodium channels, or potassium channels. Other drugs in development are likely to primarily act on pathways that regulate the dopaminergic system, such as muscarinic or trace amine receptors or 5-HT2A receptors, while PDE10A inhibitors are being developed to modulate the downstream consequences of dopaminergic dysfunction. Our review considers where new drugs may act on this circuit and their latest clinical trial evidence in terms of indication, efficacy, and side effects. Limitations of the circuit model, including whether there are neurobiologically distinct subgroups of patients, and future directions are also considered. Several drugs based on the mechanisms reviewed have promising clinical data, with the muscarinic agonist KarXT most advanced. If these drugs are approved for clinical use, they have the potential to revolutionize understanding of the pathophysiology and treatment of schizophrenia.
Collapse
Affiliation(s)
- Oliver D Howes
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom; Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, United Kingdom; South London and Maudsley NHS Foundation Trust, Maudsley Hospital, London, United Kingdom.
| | - Eleanor Dawkins
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom; South London and Maudsley NHS Foundation Trust, Maudsley Hospital, London, United Kingdom
| | - Maria C Lobo
- South London and Maudsley NHS Foundation Trust, Maudsley Hospital, London, United Kingdom
| | - Stephen J Kaar
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom; Division of Psychology and Mental Health, School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom; Greater Manchester Mental Health National Health Service Foundation Trust, Manchester, United Kingdom
| | - Katherine Beck
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom; South London and Maudsley NHS Foundation Trust, Maudsley Hospital, London, United Kingdom
| |
Collapse
|
2
|
Weinstein JJ, Moeller SJ, Perlman G, Gil R, Van Snellenberg JX, Wengler K, Meng J, Slifstein M, Abi-Dargham A. Imaging the Vesicular Acetylcholine Transporter in Schizophrenia: A Positron Emission Tomography Study Using [ 18F]-VAT. Biol Psychiatry 2024; 96:352-364. [PMID: 38309322 DOI: 10.1016/j.biopsych.2024.01.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 01/10/2024] [Accepted: 01/23/2024] [Indexed: 02/05/2024]
Abstract
BACKGROUND Despite longstanding interest in the central cholinergic system in schizophrenia (SCZ), cholinergic imaging studies with patients have been limited to receptors. Here, we conducted a proof-of-concept positron emission tomography study using [18F]-VAT, a new radiotracer that targets the vesicular acetylcholine transporter as a proxy measure of acetylcholine transmission capacity, in patients with SCZ and explored relationships of vesicular acetylcholine transporter with clinical symptoms and cognition. METHODS A total of 18 adult patients with SCZ or schizoaffective disorder (the SCZ group) and 14 healthy control participants underwent a positron emission tomography scan with [18F]-VAT. Distribution volume (VT) for [18F]-VAT was derived for each region of interest, and group differences in VT were assessed with 2-sample t tests. Functional significance was explored through correlations between VT and scores on the Positive and Negative Syndrome Scale and a computerized neurocognitive battery (PennCNB). RESULTS No group differences in [18F]-VAT VT were observed. However, within the SCZ group, psychosis symptom severity was positively associated with VT in multiple regions of interest, with the strongest effects in the hippocampus, thalamus, midbrain, cerebellum, and cortex. In addition, in the SCZ group, working memory performance was negatively associated with VT in the substantia innominata and several cortical regions of interest including the dorsolateral prefrontal cortex. CONCLUSIONS In this initial study, the severity of 2 important features of SCZ-psychosis and working memory deficit-was strongly associated with [18F]-VAT VT in several cortical and subcortical regions. These correlations provide preliminary evidence of cholinergic activity involvement in SCZ and, if replicated in larger samples, could lead to a more complete mechanistic understanding of psychosis and cognitive deficits in SCZ and the development of therapeutic targets.
Collapse
Affiliation(s)
- Jodi J Weinstein
- Department of Psychiatry and Behavioral Health, Stony Brook University Renaissance School of Medicine, Stony Brook, New York; Department of Psychiatry, Columbia University Vagelos School of Medicine and New York State Psychiatric Institute, New York, New York.
| | - Scott J Moeller
- Department of Psychiatry and Behavioral Health, Stony Brook University Renaissance School of Medicine, Stony Brook, New York
| | - Greg Perlman
- Department of Psychiatry and Behavioral Health, Stony Brook University Renaissance School of Medicine, Stony Brook, New York
| | - Roberto Gil
- Department of Psychiatry and Behavioral Health, Stony Brook University Renaissance School of Medicine, Stony Brook, New York
| | - Jared X Van Snellenberg
- Department of Psychiatry and Behavioral Health, Stony Brook University Renaissance School of Medicine, Stony Brook, New York; Department of Biomedical Engineering, Stony Brook University, Stony Brook, New York; Department of Psychology, Stony Brook University, Stony Brook, New York
| | - Kenneth Wengler
- Department of Psychiatry, Columbia University Vagelos School of Medicine and New York State Psychiatric Institute, New York, New York; Department of Radiology, Stony Brook University Renaissance School of Medicine, Stony Brook, New York
| | - Jiayan Meng
- Department of Psychiatry and Behavioral Health, Stony Brook University Renaissance School of Medicine, Stony Brook, New York
| | - Mark Slifstein
- Department of Psychiatry and Behavioral Health, Stony Brook University Renaissance School of Medicine, Stony Brook, New York
| | - Anissa Abi-Dargham
- Department of Psychiatry and Behavioral Health, Stony Brook University Renaissance School of Medicine, Stony Brook, New York; Department of Psychiatry, Columbia University Vagelos School of Medicine and New York State Psychiatric Institute, New York, New York
| |
Collapse
|
3
|
Oliver D, Chesney E, Cullen AE, Davies C, Englund A, Gifford G, Kerins S, Lalousis PA, Logeswaran Y, Merritt K, Zahid U, Crossley NA, McCutcheon RA, McGuire P, Fusar-Poli P. Exploring causal mechanisms of psychosis risk. Neurosci Biobehav Rev 2024; 162:105699. [PMID: 38710421 PMCID: PMC11250118 DOI: 10.1016/j.neubiorev.2024.105699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 02/17/2024] [Accepted: 04/28/2024] [Indexed: 05/08/2024]
Abstract
Robust epidemiological evidence of risk and protective factors for psychosis is essential to inform preventive interventions. Previous evidence syntheses have classified these risk and protective factors according to their strength of association with psychosis. In this critical review we appraise the distinct and overlapping mechanisms of 25 key environmental risk factors for psychosis, and link these to mechanistic pathways that may contribute to neurochemical alterations hypothesised to underlie psychotic symptoms. We then discuss the implications of our findings for future research, specifically considering interactions between factors, exploring universal and subgroup-specific factors, improving understanding of temporality and risk dynamics, standardising operationalisation and measurement of risk and protective factors, and developing preventive interventions targeting risk and protective factors.
Collapse
Affiliation(s)
- Dominic Oliver
- Department of Psychiatry, University of Oxford, Oxford, UK; NIHR Oxford Health Biomedical Research Centre, Oxford, UK; OPEN Early Detection Service, Oxford Health NHS Foundation Trust, Oxford, UK; Early Psychosis: Interventions and Clinical-Detection (EPIC) Lab, Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK.
| | - Edward Chesney
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK; Addictions Department, Institute of Psychiatry, Psychology and Neuroscience, King's College London, 4 Windsor Walk, London SE5 8AF, UK
| | - Alexis E Cullen
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK; Department of Clinical Neuroscience, Karolinska Institutet, Sweden
| | - Cathy Davies
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK; Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Amir Englund
- Addictions Department, Institute of Psychiatry, Psychology and Neuroscience, King's College London, 4 Windsor Walk, London SE5 8AF, UK
| | - George Gifford
- Department of Psychiatry, University of Oxford, Oxford, UK
| | - Sarah Kerins
- Early Psychosis: Interventions and Clinical-Detection (EPIC) Lab, Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK; Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Paris Alexandros Lalousis
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK; Department of Psychiatry and Psychotherapy, Ludwig-Maximilian-University Munich, Munich, Germany
| | - Yanakan Logeswaran
- Early Psychosis: Interventions and Clinical-Detection (EPIC) Lab, Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK; Department of Biostatistics & Health Informatics, King's College London, London, UK
| | - Kate Merritt
- Division of Psychiatry, Institute of Mental Health, UCL, London, UK
| | - Uzma Zahid
- Department of Psychology, King's College London, London, UK
| | - Nicolas A Crossley
- Department of Psychiatry, University of Oxford, Oxford, UK; Department of Psychiatry, School of Medicine, Pontificia Universidad Católica de Chile, Chile
| | - Robert A McCutcheon
- Department of Psychiatry, University of Oxford, Oxford, UK; Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK; Oxford Health NHS Foundation Trust, Oxford, UK
| | - Philip McGuire
- Department of Psychiatry, University of Oxford, Oxford, UK; NIHR Oxford Health Biomedical Research Centre, Oxford, UK; OPEN Early Detection Service, Oxford Health NHS Foundation Trust, Oxford, UK
| | - Paolo Fusar-Poli
- Early Psychosis: Interventions and Clinical-Detection (EPIC) Lab, Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK; Department of Psychiatry and Psychotherapy, Ludwig-Maximilian-University Munich, Munich, Germany; Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy; OASIS Service, South London and Maudsley NHS Foundation Trust, London SE11 5DL, UK
| |
Collapse
|
4
|
Shiho M, Akashita G, Nakatani E, Tanaka S, Yamada S, Okura T. Predicting muscarinic receptor occupancy in human bladder mucosa from urinary concentrations of antimuscarinic agents for overactive bladder. Drug Metab Pharmacokinet 2024; 56:100998. [PMID: 38583388 DOI: 10.1016/j.dmpk.2024.100998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/28/2023] [Accepted: 01/06/2024] [Indexed: 04/09/2024]
Abstract
To assess the pharmacologically relevant and selective muscarinic receptor occupancy in the bladder mucosa, we considered not only plasma drug concentrations but also urinary drug concentrations. The purpose of this study was to predict muscarinic receptor occupancy in the human bladder mucosa based on urinary concentrations in response to clinical dosages of antimuscarinic agents used to treat overactive bladder. The calculated mean plasma or serum unbound steady state concentrations were 0.06-11 nM in clinical dosages of five antimuscarinic agents. Urinary concentrations calculated from the mean plasma or serum and renal clearance ranged between 19 nM and 2 μM, which were >10-fold higher than the Ki values for bladder muscarinic receptors excluding propiverine. Bladder mucosal muscarinic receptor occupancy estimated from the urinary concentrations and the Ki values was >90 % at a steady state in clinical dosages of five antimuscarinic agents. The bladder muscarinic receptor occupancy was higher than that in the parotid gland calculated based on the mean plasma or serum unbound concentrations and Ki values for muscarinic receptors in the parotid gland. These results suggest that sufficient and selective muscarinic receptor occupancy by antimuscarinic agents, to exert pharmacological effects, in the bladder mucosa can be predicted using urinary concentrations.
Collapse
Affiliation(s)
- Mizuki Shiho
- Faculty of Pharma-Science, Teikyo University, Japan
| | | | | | | | - Shizuo Yamada
- Center for Pharma-Food Research (CPFR), Graduate School of Pharmaceutical Sciences, University of Shizuoka, Japan
| | - Takashi Okura
- Faculty of Pharma-Science, Teikyo University, Japan.
| |
Collapse
|
5
|
Akashita G, Nakatani E, Tanaka S, Okura T. Development of simultaneous determination of dopamine 2, histamine 1, and muscarinic acetylcholine receptor occupancies by antipsychotics using liquid chromatography with tandem mass spectrometry. J Pharmacol Toxicol Methods 2024; 127:107518. [PMID: 38797366 DOI: 10.1016/j.vascn.2024.107518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 05/02/2024] [Accepted: 05/23/2024] [Indexed: 05/29/2024]
Abstract
Receptor occupancy is an indicator of antipsychotic efficacy and safety. It is desirable to simultaneously determine the occupancy of multiple brain receptors as an indicator of the efficacy and central side effects of antipsychotics because many of these drugs have binding affinities for various receptors, such as dopamine 2 (D2), histamine 1 (H1), and muscarinic acetylcholine (mACh) receptors. The purpose of this study was to develop a method for the simultaneous measurement of multiple receptor occupancies in the brain by the simultaneous quantification of unlabeled tracer levels using liquid chromatography-tandem mass spectrometry (LC-MS/MS). Rats were pre-administered with a vehicle, displacer, or olanzapine, and mixed solutions of raclopride, doxepin, and 3-quinuclidinyl benzilate (3-QNB) were administered (3, 10, and 30 μg/kg). The brain tissue and plasma tracer concentrations were quantified 45 min later using LC-MS/MS, and the binding potential was calculated. The highest binding potential was observed at 3 μg/kg raclopride, 10 μg/kg doxepin, and 30 μg/kg 3-QNB. Tracer-specific binding at these optimal tracer doses in the cerebral cortex was markedly reduced by pre-administration of displacers. D2, H1, and mACh receptor occupancy by olanzapine increased in a dose-dependent manner, reaching 70-95%, 19-43%, and 12-45%, respectively, at an olanzapine dose range of 3-10 mg/kg. These results suggest that simultaneous determination of in vivo D2, H1, and mACh receptor occupancy is possible using LC-MS/MS.
Collapse
Affiliation(s)
- Gaku Akashita
- Laboratory of Pharmaceutics, Faculty of Pharmaceutical Sciences, Teikyo University, Tokyo, Japan
| | - Eriko Nakatani
- Laboratory of Pharmaceutics, Faculty of Pharmaceutical Sciences, Teikyo University, Tokyo, Japan
| | - Shimako Tanaka
- Laboratory of Pharmaceutics, Faculty of Pharmaceutical Sciences, Teikyo University, Tokyo, Japan
| | - Takashi Okura
- Laboratory of Pharmaceutics, Faculty of Pharmaceutical Sciences, Teikyo University, Tokyo, Japan.
| |
Collapse
|
6
|
McCutcheon RA, Taylor D, Rubio J, Nour J, Pillinger T, Murray RM, Jauhar S. Does Slow and Steady Win the Race? Rates of Antipsychotic Discontinuation, Antipsychotic Dose, and Risk of Psychotic Relapse. Schizophr Bull 2024; 50:513-520. [PMID: 37797288 PMCID: PMC11059789 DOI: 10.1093/schbul/sbad139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/07/2023]
Abstract
BACKGROUND Antipsychotics are recommended for prevention of relapse in schizophrenia. It is unclear whether increased risk of relapse following antipsychotic discontinuation is predominantly associated with an absolute magnitude of dose reduction or rate of antipsychotic reduction. Establishing the responsible mechanism is important because prolonged withdrawal schedules have been suggested to reduce risk of relapse. STUDY DESIGN Individual patient data from antipsychotic discontinuation studies were obtained. We estimated the occupancy of receptors over time using half-lives and median effective dose ED50 values obtained from pharmacokinetic and receptor occupancy studies. Hazard ratios for relapse events were calculated using Cox proportional hazards models to assess the influence of formulation (oral, 1-monthly, and 3-monthly injections). The change in hazard ratio over time was estimated, and the effect of time-varying covariates was calculated, including rate of occupancy reduction and absolute receptor occupancy. STUDY RESULTS Five studies including 1388 participants with schizophrenia were identified (k = 2: oral, k = 2: 1-monthly injection, k = 1: 3-monthly injection). Withdrawal of long-acting injectable medication did not lead to a lower hazard ratio compared with withdrawal of oral medication, and this included the period immediately following randomization. Hazard ratios were not associated with the rate of decline of receptor occupancy; however, they were associated with reduced absolute occupancy in trials of long-acting injections (P = .038). CONCLUSIONS Antipsychotic discontinuation is associated with an increased risk of psychotic relapse, related to receptor occupancy. Although relapse does not appear to be related to the rate of discontinuation, gradual discontinuation strategies may allow for easier antipsychotic reinstatement in case of symptomatic worsening.
Collapse
Affiliation(s)
- Robert A McCutcheon
- Department of Psychiatry, University of Oxford, Oxford, UK
- Oxford Health NHS Foundation Trust, Oxford, UK
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, London, UK
| | - David Taylor
- South London and Maudsley NHS Foundation Trust, London, UK
| | - Jose Rubio
- Department of Psychiatry, Northwell Health, The Zucker Hillside Hospital, Glen Oaks, NY, USA
| | - Joseph Nour
- East London NHS Foundation Trust, London, UK
| | - Toby Pillinger
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, London, UK
- South London and Maudsley NHS Foundation Trust, London, UK
| | - Robin M Murray
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, London, UK
| | - Sameer Jauhar
- South London and Maudsley NHS Foundation Trust, London, UK
- Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, London, UK
| |
Collapse
|
7
|
Grosu ȘA, Dobre M, Milanesi E, Hinescu ME. Blood-Based MicroRNAs in Psychotic Disorders-A Systematic Review. Biomedicines 2023; 11:2536. [PMID: 37760977 PMCID: PMC10525934 DOI: 10.3390/biomedicines11092536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 09/01/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
Psychotic disorders are a heterogenous class of mental illness, with an intricate pathophysiology, involving genetics and environmental factors, and their interaction. The identification of accessible biomarkers in bodily systems such as blood may lead to more accurate diagnosis, and more effective treatments targeting dysfunctional pathways, and could assist in monitoring the disease evolution. This systematic review aims to highlight the dysregulated microRNAs (miRNAs) in the peripheral blood of patients with psychotic disorders. Using the PRISMA protocol, PubMed and Science Direct databases were investigated and 22 articles were included. Fifty-five different miRNAs were found differentially expressed in the blood of psychotic patients compared to controls. Seventeen miRNAs (miR-34a, miR-181b, miR-432, miR-30e, miR-21, miR-137, miR-134, miR-7, miR-92a, miR-1273d, miR-1303, miR-3064-5p, miR-3131, miR-3687, miR-4428, miR-4725-3p, and miR-5096) were dysregulated with the same trend (up- or down-regulation) in at least two studies. Of note, miR-34a and miR-181b were up-regulated in the blood of psychotic patients in seven and six studies, respectively. Moreover, the level of miR-181b in plasma was found to be positively correlated with the amelioration of negative symptoms. The panel of miRNAs identified in this review could be validated in future studies in large and well-characterized cohorts of psychotic patients.
Collapse
Affiliation(s)
- Ștefania-Alexandra Grosu
- Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (Ș.-A.G.); (M.E.H.)
| | - Maria Dobre
- Victor Babes National Institute of Pathology, 050096 Bucharest, Romania;
| | - Elena Milanesi
- Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (Ș.-A.G.); (M.E.H.)
- Victor Babes National Institute of Pathology, 050096 Bucharest, Romania;
| | - Mihail Eugen Hinescu
- Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (Ș.-A.G.); (M.E.H.)
- Victor Babes National Institute of Pathology, 050096 Bucharest, Romania;
| |
Collapse
|
8
|
Grace AA, Uliana DL. Insights into the Mechanism of Action of Antipsychotic Drugs Derived from Animal Models: Standard of Care versus Novel Targets. Int J Mol Sci 2023; 24:12374. [PMID: 37569748 PMCID: PMC10418544 DOI: 10.3390/ijms241512374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/01/2023] [Accepted: 08/01/2023] [Indexed: 08/13/2023] Open
Abstract
Therapeutic intervention for schizophrenia relies on blockade of dopamine D2 receptors in the associative striatum; however, there is little evidence for baseline overdrive of the dopamine system. Instead, the dopamine system is in a hyper-responsive state due to excessive drive by the hippocampus. This causes more dopamine neurons to be in a spontaneously active, hyper-responsive state. Antipsychotic drugs alleviate this by causing depolarization block, or excessive depolarization-induced dopamine neuron inactivation. Indeed, both first- and second-generation antipsychotic drugs cause depolarization block in the ventral tegmentum to relieve positive symptoms, whereas first-generation drugs also cause depolarization in the nigrostriatal dopamine system to lead to extrapyramidal side effects. However, by blocking dopamine receptors, these drugs are activating multiple synapses downstream from the proposed site of pathology: the loss of inhibitory influence over the hippocampus. An overactive hippocampus not only drives the dopamine-dependent positive symptoms, but via its projections to the amygdala and the neocortex can also drive negative and cognitive symptoms, respectively. On this basis, a novel class of drugs that can reverse schizophrenia at the site of pathology, i.e., the hippocampal overdrive, could be effective in alleviating all three classes of symptoms of schizophrenia while also being better tolerated.
Collapse
Affiliation(s)
- Anthony A. Grace
- Departments of Neuroscience, Psychiatry and Psychology, University of Pittsburgh, Pittsburgh, PA 15260, USA;
| | | |
Collapse
|
9
|
Gidal BE, Rehman R, Tran T, Karasov A. Patterns of psychotropic drug use in veterans with epilepsy: Do drug interactions matter? Epilepsy Behav 2023; 145:109335. [PMID: 37429123 DOI: 10.1016/j.yebeh.2023.109335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 06/07/2023] [Accepted: 06/15/2023] [Indexed: 07/12/2023]
Abstract
RATIONALE Patients with epilepsy are likely to suffer from psychiatric comorbidities, including depression and anxiety. They often require treatment with multiple psychotropic drugs (PDs). While it is clear that CYP-inducing ASMs (EIASMs) can increase the oral clearance of multiple medications (thus lowering systemic exposure), it is less clear that all PK interactions are clinically meaningful (e.g. lower efficacy). As a first step in addressing this issue, this study sought to quantify the potential impact of ASM choice, whether EIASM or non-inducer (NIASM), on surrogate markers of suggestive of clinical use, including resultant antidepressant (AD) or antipsychotic (AP) dose, frequency of combination use of AD & AP, and number of multiple drug switches of PDs. Our hypothesis is that because of PK interactions, EIAED treatment would be associated with higher psychotropic drug doses, more frequent Rx adjustments and poly psychotropic comedication, all in order to optimize therapeutic response. METHODS Using VA pharmacy and national encounter databases, veterans with epilepsy were identified based on having a seizure diagnosis and being prescribed concomitantly an ASM and a psychotropic drug for at least 365 days between 10/1/2010 and 9/30/2014. Patients for whom psychotropic drugs were prescribed any time between beginning and end prescriptions dates of ASMs were considered. Among those, patients receiving both an EIASM + NEIASM concomitantly were categorized with the EIASM group. Patients were evaluated for AD only, AP only and both (AD & AP). To compute average drug doses per day, averages for each patient were computed and averaged again. Multiple drug switches were defined to be for patients who had been prescribed more than three psychotropic drugs during the observation period. Pearson's Chi-Square test was used to compare relative proportions of AD, AP and AD + AP in both groups. RESULTS In all, 16,188 patients were identified (57.0% on EIASM, 43.0% on NIASM) with a mean age of 58.7 years (91.2% male). A larger proportion of patients on EIASM received mono treatment with any psychotropic drug, as compared to NIASM (42.0% vs 36.1%). Among all, 59.6% received AD only, 6.5% received AP only, and 33.8% received both concurrently. Of EIASM, 62.5% were on AD, 5.9% on AP, and 31.7% on both AP & AD. For NIASM, 55.9% received AD, 7.4% AP, and 36.7% on AD & AP.Chi-square showed that the distribution of PD was statistically different between EIASM and NIASM groups. Z tests showed that each difference (AD, AP and both) in proportions was statistically significant (p values (4 tests, one Chi-square, 3 Z tests <0.001) between EIASM vs NIASM. Interestingly, mean doses of AD or AP did not appear to differ between ASM groups. CONCLUSIONS Concurrent psychotropic drug use is quite common in the VA population with epilepsy, and a large number of patients still receive enzyme-inducing ASMs that may complicate other medical therapies. Interestingly, in seeming contradiction to our hypothesis, mean daily doses of either AD or AP did not appear to differ between inducers vs non-inducers. Similarly, use of polytherapy, and/or multiple trials of various psychotropic drugs did not appear increased in the CYP-induced group. In fact, combination therapy of AD + AP was higher in NIASM than EIASM. These data suggest that perhaps these types of PK interactions may not in fact result in meaningful clinical differences. Since the present analyses did not include clinical psychiatric measures, future analyses examining direct clinical outcomes are clearly warranted.
Collapse
Affiliation(s)
- Barry E Gidal
- University of Wisconsin Madison School of Pharmacy, Madison, WI, USA.
| | - Rizwana Rehman
- Durham VA Medical Center, Southeast Epilepsy Center of Excellence, Durham, NC, USA.
| | - Tung Tran
- Durham VA Medical Center, Southeast Epilepsy Center of Excellence, Durham, NC, USA.
| | - Ariela Karasov
- Wm.S Middleton Memorial VA, Department of Psychiatry, Madison, WI, USA.
| |
Collapse
|
10
|
English BA, Ereshefsky L. Experimental Medicine Approaches in Early-Phase CNS Drug Development. ADVANCES IN NEUROBIOLOGY 2023; 30:417-455. [PMID: 36928860 DOI: 10.1007/978-3-031-21054-9_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
Abstract
Traditionally, Phase 1 clinical trials were largely conducted in healthy normal volunteers and focused on collection of safety, tolerability, and pharmacokinetic data. However, in the CNS therapeutic area, with more drugs failing in later phase development, Phase 1 trials have undergone an evolution that includes incorporation of novel approaches involving novel study designs, inclusion of biomarkers, and early inclusion of patients to improve the pharmacologic understanding of novel CNS-active compounds early in clinical development with the hope of improving success in later phase pivotal trials. In this chapter, the authors will discuss the changing landscape of Phase 1 clinical trials in CNS, including novel trial methodology, inclusion of pharmacodynamic biomarkers, and experimental medicine approaches to inform early decision-making in clinical development.
Collapse
|
11
|
Juza R, Musilek K, Mezeiova E, Soukup O, Korabecny J. Recent advances in dopamine D 2 receptor ligands in the treatment of neuropsychiatric disorders. Med Res Rev 2023; 43:55-211. [PMID: 36111795 DOI: 10.1002/med.21923] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 07/29/2022] [Accepted: 08/09/2022] [Indexed: 02/04/2023]
Abstract
Dopamine is a biologically active amine synthesized in the central and peripheral nervous system. This biogenic monoamine acts by activating five types of dopamine receptors (D1-5 Rs), which belong to the G protein-coupled receptor family. Antagonists and partial agonists of D2 Rs are used to treat schizophrenia, Parkinson's disease, depression, and anxiety. The typical pharmacophore with high D2 R affinity comprises four main areas, namely aromatic moiety, cyclic amine, central linker and aromatic/heteroaromatic lipophilic fragment. From the literature reviewed herein, we can conclude that 4-(2,3-dichlorophenyl), 4-(2-methoxyphenyl)-, 4-(benzo[b]thiophen-4-yl)-1-substituted piperazine, and 4-(6-fluorobenzo[d]isoxazol-3-yl)piperidine moieties are critical for high D2 R affinity. Four to six atoms chains are optimal for D2 R affinity with 4-butoxyl as the most pronounced one. The bicyclic aromatic/heteroaromatic systems are most frequently occurring as lipophilic appendages to retain high D2 R affinity. In this review, we provide a thorough overview of the therapeutic potential of D2 R modulators in the treatment of the aforementioned disorders. In addition, this review summarizes current knowledge about these diseases, with a focus on the dopaminergic pathway underlying these pathologies. Major attention is paid to the structure, function, and pharmacology of novel D2 R ligands, which have been developed in the last decade (2010-2021), and belong to the 1,4-disubstituted aromatic cyclic amine group. Due to the abundance of data, allosteric D2 R ligands and D2 R modulators from patents are not discussed in this review.
Collapse
Affiliation(s)
- Radomir Juza
- Experimental Neurobiology, National Institute of Mental Health, Klecany, Czech Republic.,Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czech Republic
| | - Kamil Musilek
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czech Republic.,Biomedical Research Centre, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
| | - Eva Mezeiova
- Experimental Neurobiology, National Institute of Mental Health, Klecany, Czech Republic.,Biomedical Research Centre, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
| | - Ondrej Soukup
- Biomedical Research Centre, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
| | - Jan Korabecny
- Experimental Neurobiology, National Institute of Mental Health, Klecany, Czech Republic.,Biomedical Research Centre, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
| |
Collapse
|
12
|
Kayir H, Ruffolo J, McCunn P, Khokhar JY. The Relationship Between Cannabis, Cognition, and Schizophrenia: It's Complicated. Curr Top Behav Neurosci 2023; 63:437-461. [PMID: 36318403 DOI: 10.1007/7854_2022_396] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The consequences of cannabis use, especially in the context of schizophrenia, have gained increased importance with the legalization of cannabis in North America and across the globe. Cannabis use has multifaceted impacts on cognition in schizophrenia patients and healthy subjects. Healthy subjects, particularly those who initiated cannabis use at earlier ages and used high-potency cannabis for longer durations, exhibited poorer cognition mainly in working memory and attention. Cannabis use in schizophrenia has been associated with symptom exacerbation, longer and more frequent psychotic episodes, and poorer treatment outcomes. However, cannabis-using patients have better overall cognitive performance compared to patients who were not cannabis users. Interestingly, these effects were only apparent in lifetime cannabis users, but not in current (or within last 6 months) users. Moreover, higher frequency and earlier age of cannabis use initiation (i.e., before 17 years of age) were associated with better cognitive performance, although they had an earlier illness onset. Three possible hypotheses seem to come forward to explain this paradox. First, some components of cannabis may have antipsychotic or cognitive-enhancing properties. Secondly, chronic cannabis use may alter endocannabinoid signaling in the brain which could be a protective factor for developing psychosis or cognitive impairments. A third explanation could be their representation of a phenotypically distinct patient group with more intact cognitive functioning and less neurodevelopmental pathology. Multiple factors need to be considered to understand the complex relationship between cannabis, cognitive function, and schizophrenia. In short, age at initiation, duration and rate of cannabis use, abstinence duration, co-use of substances and alcohol, prescribed medications, relative cannabinoid composition and potency of cannabis, presence of genetic and environmental vulnerability factors are prominent contributors to the variability in outcomes. Animal studies support the disruptive effects of Δ9-tetrahydrocannabinol (THC) administration during adolescence on attention and memory performance. They provide insights about interaction of cannabinoid receptors with other neurotransmitter systems, such as GABA and glutamate, and other regulatory molecules, such as PSD95 and synaptophysin. Cannabidiol (CBD), on the other hand, can improve cognitive deficits seen in neurodevelopmental and chemically-induced animal models of schizophrenia. Future studies focusing on bridging the translational gaps between human and animal studies, through the use of translationally relevant methods of exposure (e.g., vaping), consistent behavioral assessments, and congruent circuit interrogations (e.g., imaging) will help to further clarify this complex picture.
Collapse
Affiliation(s)
- Hakan Kayir
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - Jessica Ruffolo
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Patrick McCunn
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada
| | - Jibran Y Khokhar
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada.
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada.
| |
Collapse
|
13
|
Weston-Green K. Antipsychotic Drug Development: From Historical Evidence to Fresh Perspectives. Front Psychiatry 2022; 13:903156. [PMID: 35782443 PMCID: PMC9243257 DOI: 10.3389/fpsyt.2022.903156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 05/10/2022] [Indexed: 11/13/2022] Open
Abstract
Schizophrenia is a complex disorder of varied etiology, manifesting symptoms that can differ between patients and change throughout an individual's lifespan. Antipsychotic drugs have evolved through first (e.g., haloperidol), second (olanzapine and clozapine) and a possible third (aripiprazole) generation of drugs in an attempt to improve efficacy and tolerability, with minimal side-effects. Despite robust scientific efforts over the past 70 years, there remains a need to develop drugs with greater efficacy, particularly in relation to the negative and cognitive symptoms of schizophrenia, addressing treatment resistance, with a lower side-effects profile compared to existing antipsychotic drugs. Identifying and investigating novel therapeutic targets remains an important component of future antipsychotic drug discovery; however, mounting evidence demonstrates neurobiological, neuroanatomical and functional heterogeneity in cohorts of individuals with schizophrenia. This presents an opportunity to refresh the approach to drug trials to a more targeted strategy. By increasing understanding of the basic science and pharmacological mechanisms underlying the potential antipsychotic efficacy of novel therapeutics prior to clinical trials, new drugs may be appropriately directed to a target population of schizophrenia subjects based on the drug mechanisms and correlating biological sub-groupings of patient characteristics. Improving the lives of sub-populations of people with schizophrenia that share common biological characteristics and are likely to be responsive to a particular compound may be more achievable than aiming to treat the complexities of schizophrenia as a homogenous disorder. This approach to clinical trials in antipsychotic research is discussed in the present review.
Collapse
Affiliation(s)
- Katrina Weston-Green
- Neurohorizons Laboratory, Molecular Horizons and School of Medical, Indigenous and Health Sciences, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, NSW, Australia
- Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia
- Australian Centre for Cannabinoid Clinical and Research Excellence, New Lambton Heights, NSW, Australia
| |
Collapse
|
14
|
Cervenka S, Frick A, Bodén R, Lubberink M. Application of positron emission tomography in psychiatry-methodological developments and future directions. Transl Psychiatry 2022; 12:248. [PMID: 35701411 PMCID: PMC9198063 DOI: 10.1038/s41398-022-01990-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 05/20/2022] [Accepted: 05/25/2022] [Indexed: 11/09/2022] Open
Abstract
Mental disorders represent an increasing source of disability and high costs for societies globally. Molecular imaging techniques such as positron emission tomography (PET) represent powerful tools with the potential to advance knowledge regarding disease mechanisms, allowing the development of new treatment approaches. Thus far, most PET research on pathophysiology in psychiatric disorders has focused on the monoaminergic neurotransmission systems, and although a series of discoveries have been made, the results have not led to any material changes in clinical practice. We outline areas of methodological development that can address some of the important obstacles to fruitful progress. First, we point towards new radioligands and targets that can lead to the identification of processes upstream, or parallel to disturbances in monoaminergic systems. Second, we describe the development of new methods of PET data quantification and PET systems that may facilitate research in psychiatric populations. Third, we review the application of multimodal imaging that can link molecular imaging data to other aspects of brain function, thus deepening our understanding of disease processes. Fourth, we highlight the need to develop imaging study protocols to include longitudinal and interventional paradigms, as well as frameworks to assess dimensional symptoms such that the field can move beyond cross-sectional studies within current diagnostic boundaries. Particular effort should be paid to include also the most severely ill patients. Finally, we discuss the importance of harmonizing data collection and promoting data sharing to reach the desired sample sizes needed to fully capture the phenotype of psychiatric conditions.
Collapse
Affiliation(s)
- Simon Cervenka
- Department of Medical Sciences, Psychiatry, Uppsala University, Uppsala, Sweden. .,Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet and Stockholm Health Care Services, Region Stockholm, Stockholm, Sweden.
| | - Andreas Frick
- grid.8993.b0000 0004 1936 9457Department of Medical Sciences, Psychiatry, Uppsala University, Uppsala, Sweden
| | - Robert Bodén
- grid.8993.b0000 0004 1936 9457Department of Medical Sciences, Psychiatry, Uppsala University, Uppsala, Sweden
| | - Mark Lubberink
- grid.8993.b0000 0004 1936 9457Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| |
Collapse
|
15
|
Perlstein I, Merenlender Wagner A, Gomeni R, Lamson M, Harary E, Spiegelstein O, Kalmanczhelyi A, Tiver R, Loupe P, Levi M, Elgart A. Population Pharmacokinetic Modeling and Simulation of TV-46000: A Long-Acting Injectable Formulation of Risperidone. Clin Pharmacol Drug Dev 2022; 11:865-877. [PMID: 35245409 PMCID: PMC9315033 DOI: 10.1002/cpdd.1078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 12/29/2021] [Indexed: 12/05/2022]
Abstract
TV‐46000 is a long‐acting subcutaneous antipsychotic that uses a novel copolymer drug delivery technology in combination with a well‐characterized molecule, risperidone, that is in clinical development as a treatment for schizophrenia. A population pharmacokinetic (PPK) modeling and simulation approach was implemented to identify TV‐46000 doses and dosing schedules for clinical development that would provide the best balance between clinical efficacy and safety. The PPK model was created by applying pharmacokinetic data from a phase 1 study of 97 patients with a diagnosis of schizophrenia or schizoaffective disorder who received either single or repeated doses of TV‐46000. The PPK model was used to characterize the complex release profile of the total active moiety (TAM; the sum of the risperidone and 9‐OH risperidone concentrations) concentration following subcutaneous injections of TV‐46000. The PK profile was best described by a double Weibull function of the in vivo release rate and by a 2‐compartment disposition and elimination model. Simulations were performed to determine TV‐46000 doses and dosing schedules that maintained a median profile of TAM concentrations similar to published TAM exposure following oral risperidone doses that have been correlated to a 40% to 80% dopamine‐D2 receptor occupancy therapeutic window. The simulations showed that therapeutic dose ranges for TV‐46000 are 50 to 125 mg for once‐monthly and 100 to 250 mg for the once every 2 months regimens. This PPK model provided a basis for prediction of patient‐specific exposure and dopamine‐D2 receptor occupancy estimates to support further clinical development and dose selection for the phase 3 studies.
Collapse
Affiliation(s)
- Itay Perlstein
- Magic Wand Research LLC, Philadelphia, Pennsylvania, USA
| | | | | | | | - Eran Harary
- Teva Branded Pharmaceutical Products Inc. Research and Development, Netanya, Israel
| | - Ofer Spiegelstein
- Teva Branded Pharmaceutical Products Inc. Research and Development, Netanya, Israel
| | | | - Ryan Tiver
- Teva Branded Pharmaceutical Products Inc., West Chester, Pennsylvania, USA
| | - Pippa Loupe
- Teva Branded Pharmaceutical Products Inc., West Chester, Pennsylvania, USA
| | - Micha Levi
- Formerly Teva Branded Pharmaceutical Products, currently Bill & Melinda Gates Medical Research Institute, Cambridge, MA, USA
| | - Anna Elgart
- Teva Branded Pharmaceutical Products Inc. Research and Development, Netanya, Israel
| |
Collapse
|
16
|
Juza R, Vojtechova I, Stefkova-Mazochova K, Dehaen W, Petrasek T, Prchal L, Kobrlova T, Janousek J, Vlcek P, Mezeiova E, Svozil D, Karasova JZ, Pejchal J, Stark H, Satala G, Bojarski AJ, Kubacka M, Mogilski S, Randakova A, Musilek K, Soukup O, Korabecny J. Novel D2/5-HT receptor modulators related to cariprazine with potential implication to schizophrenia treatment. Eur J Med Chem 2022; 232:114193. [DOI: 10.1016/j.ejmech.2022.114193] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 01/28/2022] [Accepted: 02/08/2022] [Indexed: 12/18/2022]
|
17
|
Caligiuri MP, Weiden PJ, Legedza A, Yagoda S, Claxton A. Handwriting Kinematics in Patients with Schizophrenia Treated with Long-Acting Injectable Atypical Antipsychotics: Results From the ALPINE Study. SCHIZOPHRENIA BULLETIN OPEN 2022; 3:sgac018. [PMID: 39144789 PMCID: PMC11205961 DOI: 10.1093/schizbullopen/sgac018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
Handwriting kinematics (HWKs) were assessed in the randomized controlled ALPINE study of 2 long-acting injectable antipsychotics started during an acute exacerbation of schizophrenia. This exploratory analysis examined the relationship between baseline HWKs and response to acute antipsychotic treatment. Adults with acute schizophrenia were assigned to aripiprazole lauroxil or paliperidone palmitate (groups combined for this analysis). Treatment response was defined as ≥20% reduction from baseline in Positive and Negative Syndrome Scale (PANSS) total score at week 4. Two HWK measures, peak velocity (decreases with greater dysfunction) and percentage of nonballistic movements (%NBM; increases with greater dysfunction), were captured in 4 handwriting tasks (complex loops, maximum speed circles, overlay circles, and left-right loops). Peak velocity and %NBM at baseline were compared between responders and nonresponders. The analysis included 143 patients (mean baseline PANSS total score, 94.5). PANSS responders (n = 67 [46.9%]) had a lower mean peak velocity (i.e., slower pen movements) on all HWK tasks at baseline compared with nonresponders (n = 76): complex loops, 8.8 versus 12.1 cm/s; maximum speed circles, 18.0 versus 23.7 cm/s; overlay circles, 12.6 versus 17.2 cm/s; and left-right loops, 11.2 versus 14.6 cm/s. PANSS responders had a greater %NBM on 3 tasks compared with nonresponders: complex loops, 57.1% versus 47.4%; overlay circles, 30.6% versus 24.3%; and left-right loops, 58.7% versus 47.0%. In this exploratory analysis, PANSS responders to aripiprazole lauroxil or paliperidone palmitate treatment at week 4 had lower baseline HWK movement velocities and greater baseline %NBM versus nonresponders, suggesting that baseline HWKs might predict response to these antipsychotic drugs.
Collapse
|
18
|
Kim JJ, Pae CU, Han C, Bahk WM, Lee SJ, Patkar AA, Masand PS. Exploring Hidden Issues in the Use of Antipsychotic Polypharmacy in the Treatment of Schizophrenia. CLINICAL PSYCHOPHARMACOLOGY AND NEUROSCIENCE 2021; 19:600-609. [PMID: 34690115 PMCID: PMC8553537 DOI: 10.9758/cpn.2021.19.4.600] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 01/13/2021] [Accepted: 02/02/2021] [Indexed: 12/23/2022]
Abstract
The mainstay of schizophrenia treatment is pharmacological therapy using various antipsychotics including first- and second-generation antipsychotics which have different pharmacokinetic and pharmacodynamic property leading to differential presentation of adverse events (AEs) and treatment effects such as negative symptoms, cognitive symptoms and cormorbid symptoms. Major treatment guidelines suggest the use of antipsychotic monotherapy (APM) as a gold standard in the treatment of schizophrenia. However, the effects of APM is inadequate and less potent to achieve symptom remission as well as functional recovery in real practice which has been consistently reported in numerous controlled clinical trials, large practical trials, independent small studies and systematic reviews till today. Therefore anti-psychotic polypharmacy (APP) regardless of the class of antipsychotics has been also commonly utilized for many reasons in real world practice. However, APP has also crucial pitfalls including increase of total psychotics including antipsychotics, high-doses of antipsychotics used, poor compliance, drug-drug interaction and risks for developing AEs, all of which are paradoxically related to poor clinical outcomes, whereas APP has also substantial advantages in reduction of re-hospitalization, severe psychopathology and targeted control of concurrent symptoms. Given currently limited therapeutic options, it is also important to properly utilize APP in order to maximize its clinical utility and minimize its risk for better treatment outcomes for patients with schizophrenia, based on risk/benefit with full understanding of pharmacological and clinical issues on APP. The present paper intends to address intriguing and important issues in the use of APP in real world practice.
Collapse
Affiliation(s)
- Jung-Jin Kim
- Department of Psychiatry, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Chi-Un Pae
- Department of Psychiatry, College of Medicine, The Catholic University of Korea, Seoul, Korea.,Cell Death Disease Research Center, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Changsu Han
- Department of Psychiatry, Korea University College of Medicine, Seoul, Korea
| | - Won-Myong Bahk
- Department of Psychiatry, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Soo-Jung Lee
- Department of Psychiatry, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Ashwin A Patkar
- Department of Psychiatry and Behavioral Sciences, Rush University Medical Center, Chicago, IL, USA
| | | |
Collapse
|
19
|
Ferraiolo M, Atik H, Ponthot R, Belo do Nascimento I, Beckers P, Stove C, Hermans E. Receptor density influences ligand-induced dopamine D 2L receptor homodimerization. Eur J Pharmacol 2021; 911:174557. [PMID: 34626593 DOI: 10.1016/j.ejphar.2021.174557] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 09/03/2021] [Accepted: 09/10/2021] [Indexed: 01/23/2023]
Abstract
Chronic treatments with dopamine D2 receptor ligands induce fluctuations in D2 receptor density. Since D2 receptors tend to assemble as homodimers, we hypothesized that receptor density might influence constitutive and ligand-induced homodimerization. Using a nanoluciferase-based complementation assay to monitor dopamine D2L receptor homodimerization in a cellular model enabling the tetracycline-controlled expression of dopamine D2L receptors, we observed that increasing receptor density promoted constitutive dopamine D2L receptor homodimerization. Receptor full agonists promoted homodimerization, while antagonists and partial agonists disrupted dopamine D2L receptor homodimers. High receptor densities enhanced this inhibitory effect only for receptor antagonists. Taken together, our findings indicate that both receptor density and receptor ligands influence dopamine D2L receptor homodimerization, albeit excluding any strict correlation with ligands' intrinsic activity and highlighting further complexity to dopaminergic pharmacology.
Collapse
Affiliation(s)
- Mattia Ferraiolo
- Neuropharmacology Laboratory, Institute of Neuroscience, UCLouvain, Brussels, Belgium
| | - Hicham Atik
- Neuropharmacology Laboratory, Institute of Neuroscience, UCLouvain, Brussels, Belgium
| | - Romane Ponthot
- Neuropharmacology Laboratory, Institute of Neuroscience, UCLouvain, Brussels, Belgium
| | | | - Pauline Beckers
- Neuropharmacology Laboratory, Institute of Neuroscience, UCLouvain, Brussels, Belgium
| | - Christophe Stove
- Laboratory of Toxicology, Department of Bioanalysis, Ghent University, Ghent, Belgium
| | - Emmanuel Hermans
- Neuropharmacology Laboratory, Institute of Neuroscience, UCLouvain, Brussels, Belgium.
| |
Collapse
|
20
|
Maini K, Hollier JW, Gould H, Bollich V, John LaForge J, Cornett EM, Edinoff AN, Kaye AM, Kaye AD. Lumateperone tosylate, A Selective and Concurrent Modulator of Serotonin, Dopamine, and Glutamate, in the Treatment of Schizophrenia. Health Psychol Res 2021; 9:24932. [PMID: 34746489 DOI: 10.52965/001c.24932] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 06/17/2021] [Indexed: 11/06/2022] Open
Abstract
Purpose of Review This is a comprehensive review of the literature regarding the use of Lumateperone tosylate for schizophrenia. This review presents the background, evidence, and indications for the use of lumateperone tosylate in the treatment of schizophrenia. Recent Findings Schizophrenia is a chronic mental health disorder that affects approximately 3.3 million people in the United States. Its symptoms, which must be present more than six months, are comprised of disorganized behavior and speech, a diminished capacity to comprehend reality, hearing voices unheard by others, seeing things unseen by others, delusions, decreased social commitment, and decreased motivation. The majority of these symptoms can be managed with antipsychotic medication. Lumateperone is a selective and concurrent modulator of serotonin, dopamine, and glutamate, which all mediate or modulate serious mental illness. Summary Schizophrenia is a complex, severe mental illness that affects how the brain processes information. There are many medications used to treat schizophrenia. One antipsychotic agent, lumateperone tosylate, is a newer agent that the FDA recently approved. The most common adverse effects are shown to be mild such as somnolence, constipation, sedation, and fatigue, with the 42 mg recommended dose. Lumateperone tosylate is an FDA-approved drug that can be given only at the 42mg dose once daily with no titration requirements.
Collapse
Affiliation(s)
| | | | - Haley Gould
- Louisiana State University Shreveport School of Medicine, Shreveport, LA
| | - Victoria Bollich
- Louisiana State University Shreveport School of Medicine, Shreveport, LA
| | - John John LaForge
- Louisiana State University Shreveport School of Medicine, Shreveport, LA
| | | | | | - Adam M Kaye
- Thomas J. Long School of Pharmacy and Health Sciences, University of the Pacific, Stockton, CA
| | | |
Collapse
|
21
|
No association between cortical dopamine D2 receptor availability and cognition in antipsychotic-naive first-episode psychosis. NPJ SCHIZOPHRENIA 2021; 7:46. [PMID: 34548499 PMCID: PMC8455597 DOI: 10.1038/s41537-021-00176-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 08/26/2021] [Indexed: 11/20/2022]
Abstract
Cognitive impairment is an important predictor of disability in schizophrenia. Dopamine neurotransmission in cortical brain regions has been suggested to be of importance for higher-order cognitive processes. The aim of this study was to examine the relationship between extrastriatal dopamine D2-R availability and cognitive function, using positron emission tomography and the high-affinity D2-R radioligand [11C]FLB 457, in an antipsychotic-naive sample of 18 first-episode psychosis patients and 16 control subjects. We observed no significant associations between D2-R binding in the dorsolateral prefrontal cortex or hippocampus (β = 0.013–0.074, partial r = −0.037–0.273, p = 0.131–0.841). Instead, using Bayesian statistics, we found moderate support for the null hypothesis of no relationship (BFH0:H1 = 3.3–8.2). Theoretically, our findings may suggest a lack of detrimental effects of D2-R antagonist drugs on cognition in schizophrenia patients, in line with clinical observations.
Collapse
|
22
|
Synthesis and In Vitro Evaluation of Novel Dopamine Receptor D 2 3,4-dihydroquinolin-2(1 H)-one Derivatives Related to Aripiprazole. Biomolecules 2021; 11:biom11091262. [PMID: 34572475 PMCID: PMC8464836 DOI: 10.3390/biom11091262] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/19/2021] [Accepted: 08/20/2021] [Indexed: 12/28/2022] Open
Abstract
In this pilot study, a series of new 3,4-dihydroquinolin-2(1H)-one derivatives as potential dopamine receptor D2 (D2R) modulators were synthesized and evaluated in vitro. The preliminary structure-activity relationship disclosed that compound 5e exhibited the highest D2R affinity among the newly synthesized compounds. In addition, 5e showed a very low cytotoxic profile and a high probability to cross the blood-brain barrier, which is important considering the observed affinity. However, molecular modelling simulation revealed completely different binding mode of 5e compared to USC-D301, which might be the culprit of the reduced affinity of 5e toward D2R in comparison with USC-D301.
Collapse
|
23
|
Ľupták M, Michaličková D, Fišar Z, Kitzlerová E, Hroudová J. Novel approaches in schizophrenia-from risk factors and hypotheses to novel drug targets. World J Psychiatry 2021; 11:277-296. [PMID: 34327122 PMCID: PMC8311514 DOI: 10.5498/wjp.v11.i7.277] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 04/06/2021] [Accepted: 06/18/2021] [Indexed: 02/06/2023] Open
Abstract
Schizophrenia is a severe psychiatric disorder characterized by emotional, behavioral and cognitive disturbances, and the treatment of schizophrenia is often complicated by noncompliance and pharmacoresistance. The search for the pathophysiological mechanisms underlying schizophrenia has resulted in the proposal of several hypotheses to explain the impacts of environmental, genetic, neurodevelopmental, immune and inflammatory factors on disease onset and progression. This review discusses the newest insights into the pathophysiology of and risk factors for schizophrenia and notes novel approaches in antipsychotic treatment and potential diagnostic and theranostic biomarkers. The current hypotheses focusing on neuromediators (dopamine, glutamate, and serotonin), neuroinflammation, the cannabinoid hypothesis, the gut-brain axis model, and oxidative stress are summarized. Key genetic features, including small nucleotide polymorphisms, copy number variations, microdeletions, mutations and epigenetic changes, are highlighted. Current pharmacotherapy of schizophrenia relies mostly on dopaminergic and serotonergic antagonists/partial agonists, but new findings in the pathophysiology of schizophrenia have allowed the expansion of novel approaches in pharmacotherapy and the establishment of more reliable biomarkers. Substances with promising results in preclinical and clinical studies include lumateperone, pimavanserin, xanomeline, roluperidone, agonists of trace amine-associated receptor 1, inhibitors of glycine transporters, AMPA allosteric modulators, mGLUR2-3 agonists, D-amino acid oxidase inhibitors and cannabidiol. The use of anti-inflammatory agents as an add-on therapy is mentioned.
Collapse
Affiliation(s)
- Matej Ľupták
- Institute of Pharmacology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague 12800, Czech Republic
| | - Danica Michaličková
- Institute of Pharmacology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague 12800, Czech Republic
| | - Zdeněk Fišar
- Department of Psychiatry, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague 12000, Czech Republic
| | - Eva Kitzlerová
- Department of Psychiatry, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague 12000, Czech Republic
| | - Jana Hroudová
- Institute of Pharmacology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague 12800, Czech Republic
- Department of Psychiatry, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague 12000, Czech Republic
| |
Collapse
|
24
|
Seeman MV. History of the dopamine hypothesis of antipsychotic action. World J Psychiatry 2021; 11:355-364. [PMID: 34327128 PMCID: PMC8311512 DOI: 10.5498/wjp.v11.i7.355] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 04/22/2021] [Accepted: 06/22/2021] [Indexed: 02/06/2023] Open
Abstract
The dopamine hypothesis of how antipsychotic drugs exert their beneficial effect in psychotic illness has an interesting history that dates back to 1950. This hypothesis is not to be confused with the dopamine hypothesis of schizophrenia; the aim of the latter is to explain the etiology of schizophrenia. The present review does not deal with schizophrenia but, rather, with the historical development of our current understanding of the dopamine-associated actions of the drugs that reduce the symptoms of psychosis. This historical review begins with the serendipitous discovery of chlorpromazine, a drug synthesized around a chemical core that initially served to produce man-made dyes. This molecular core subsequently contributed to the chemistry of antihistamines. It was with the aim of producing a superior antihistamine that chlorpromazine was synthesized; instead, it revolutionized the treatment of psychosis. The first hypothesis of how this drug worked was that it induced hypothermia, a cooling of the body that led to a tranquilization of the mind. The new, at the time, discoveries of the presence of chemical transmitters in the brain soon steered investigations away from a temperature-related hypothesis toward questioning how this drug, and other drugs with similar properties and effects, modulated endogenous neurotransmission. As a result, over the years, researchers from around the world have begun to progressively learn what antipsychotic drugs do in the brain.
Collapse
Affiliation(s)
- Mary V Seeman
- Department of Psychiatry, University of Toronto, Toronto M5P 3L6, Ontario, Canada
| |
Collapse
|
25
|
Kraguljac NV, McDonald WM, Widge AS, Rodriguez CI, Tohen M, Nemeroff CB. Neuroimaging Biomarkers in Schizophrenia. Am J Psychiatry 2021; 178:509-521. [PMID: 33397140 PMCID: PMC8222104 DOI: 10.1176/appi.ajp.2020.20030340] [Citation(s) in RCA: 128] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Schizophrenia is a complex neuropsychiatric syndrome with a heterogeneous genetic, neurobiological, and phenotypic profile. Currently, no objective biological measures-that is, biomarkers-are available to inform diagnostic or treatment decisions. Neuroimaging is well positioned for biomarker development in schizophrenia, as it may capture phenotypic variations in molecular and cellular disease targets, or in brain circuits. These mechanistically based biomarkers may represent a direct measure of the pathophysiological underpinnings of the disease process and thus could serve as true intermediate or surrogate endpoints. Effective biomarkers could validate new treatment targets or pathways, predict response, aid in selection of patients for therapy, determine treatment regimens, and provide a rationale for personalized treatments. In this review, the authors discuss a range of mechanistically plausible neuroimaging biomarker candidates, including dopamine hyperactivity, N-methyl-d-aspartate receptor hypofunction, hippocampal hyperactivity, immune dysregulation, dysconnectivity, and cortical gray matter volume loss. They then focus on the putative neuroimaging biomarkers for disease risk, diagnosis, target engagement, and treatment response in schizophrenia. Finally, they highlight areas of unmet need and discuss strategies to advance biomarker development.
Collapse
Affiliation(s)
- Nina V. Kraguljac
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL,Corresponding Author: Nina Vanessa Kraguljac, MD, Department of Psychiatry and Behavioral Neurobiology, The University of Alabama at Birmingham, SC 501, 1720 7th Ave S, Birmingham, AL 35294-0017, 205-996-7171,
| | - William M. McDonald
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine
| | - Alik S. Widge
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis, MN
| | - Carolyn I. Rodriguez
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA,Veterans Affairs Palo Alto Health Care System, Palo Alto, CA
| | - Mauricio Tohen
- Department of Psychiatry and Behavioral Sciences, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Charles B. Nemeroff
- Department of Psychiatry, University of Texas Dell Medical School, Austin, TX
| |
Collapse
|
26
|
Smart K, Naganawa M, Baldassarri SR, Nabulsi N, Ropchan J, Najafzadeh S, Gao H, Navarro A, Barth V, Esterlis I, Cosgrove KP, Huang Y, Carson RE, Hillmer AT. PET Imaging Estimates of Regional Acetylcholine Concentration Variation in Living Human Brain. Cereb Cortex 2021; 31:2787-2798. [PMID: 33442731 PMCID: PMC8355478 DOI: 10.1093/cercor/bhaa387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 11/06/2020] [Accepted: 12/01/2020] [Indexed: 11/13/2022] Open
Abstract
Acetylcholine (ACh) has distinct functional roles in striatum compared with cortex, and imbalance between these systems may contribute to neuropsychiatric disease. Preclinical studies indicate markedly higher ACh concentrations in the striatum. The goal of this work was to leverage positron emission tomography (PET) imaging estimates of drug occupancy at cholinergic receptors to explore ACh variation across the human brain, because these measures can be influenced by competition with endogenous neurotransmitter. PET scans were analyzed from healthy human volunteers (n = 4) and nonhuman primates (n = 2) scanned with the M1-selective radiotracer [11C]LSN3172176 in the presence of muscarinic antagonist scopolamine, and human volunteers (n = 10) scanned with the α4β2* nicotinic ligand (-)-[18F]flubatine during nicotine challenge. In all cases, occupancy estimates within striatal regions were consistently lower (M1/scopolamine human scans, 31 ± 3.4% occupancy in striatum, 43 ± 2.9% in extrastriatal regions, p = 0.0094; nonhuman primate scans, 42 ± 26% vs. 69 ± 28%, p < 0.0001; α4β2*/nicotine scans, 67 ± 15% vs. 74 ± 16%, p = 0.0065), indicating higher striatal ACh concentration. Subject-level measures of these concentration differences were estimated, and whole-brain images of regional ACh concentration gradients were generated. These results constitute the first in vivo estimates of regional variation in ACh concentration in the living brain and offer a novel experimental method to assess potential ACh imbalances in clinical populations.
Collapse
Affiliation(s)
- Kelly Smart
- Yale PET Center, Yale School of Medicine, New Haven, CT 06510, USA
- Department of Radiology & Biomedical Imaging, Yale School of Medicine, New Haven, CT 06520, USA
| | - Mika Naganawa
- Yale PET Center, Yale School of Medicine, New Haven, CT 06510, USA
- Department of Radiology & Biomedical Imaging, Yale School of Medicine, New Haven, CT 06520, USA
| | - Stephen R Baldassarri
- Department of Internal Medicine, Section of Pulmonary, Critical Care, and Sleep Medicine, Yale School of Medicine, New Haven, CT 06510, USA
| | - Nabeel Nabulsi
- Yale PET Center, Yale School of Medicine, New Haven, CT 06510, USA
- Department of Radiology & Biomedical Imaging, Yale School of Medicine, New Haven, CT 06520, USA
| | - Jim Ropchan
- Yale PET Center, Yale School of Medicine, New Haven, CT 06510, USA
- Department of Radiology & Biomedical Imaging, Yale School of Medicine, New Haven, CT 06520, USA
| | | | - Hong Gao
- Yale PET Center, Yale School of Medicine, New Haven, CT 06510, USA
| | | | | | - Irina Esterlis
- Department of Psychiatry, Yale School of Medicine, New Haven, CT 06511, USA
| | - Kelly P Cosgrove
- Department of Radiology & Biomedical Imaging, Yale School of Medicine, New Haven, CT 06520, USA
- Department of Psychiatry, Yale School of Medicine, New Haven, CT 06511, USA
| | - Yiyun Huang
- Yale PET Center, Yale School of Medicine, New Haven, CT 06510, USA
- Department of Radiology & Biomedical Imaging, Yale School of Medicine, New Haven, CT 06520, USA
| | - Richard E Carson
- Yale PET Center, Yale School of Medicine, New Haven, CT 06510, USA
- Department of Radiology & Biomedical Imaging, Yale School of Medicine, New Haven, CT 06520, USA
- Department of Biomedical Engineering, Yale University, New Haven, CT 06511, USA
| | - Ansel T Hillmer
- Yale PET Center, Yale School of Medicine, New Haven, CT 06510, USA
- Department of Radiology & Biomedical Imaging, Yale School of Medicine, New Haven, CT 06520, USA
- Department of Psychiatry, Yale School of Medicine, New Haven, CT 06511, USA
- Department of Biomedical Engineering, Yale University, New Haven, CT 06511, USA
| |
Collapse
|
27
|
Takamura Y, Kakuta H. In Vivo Receptor Visualization and Evaluation of Receptor Occupancy with Positron Emission Tomography. J Med Chem 2021; 64:5226-5251. [PMID: 33905258 DOI: 10.1021/acs.jmedchem.0c01714] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Positron emission tomography (PET) is useful for noninvasive in vivo visualization of disease-related receptors, for evaluation of receptor occupancy to determine an appropriate drug dosage, and for proof-of-concept of drug candidates in translational research. For these purposes, the specificity of the PET tracer for the target receptor is critical. Here, we review work in this area, focusing on the chemical structures of reported PET tracers, their Ki/Kd values, and the physical properties relevant to target receptor selectivity. Among these physical properties, such as cLogP, cLogD, molecular weight, topological polar surface area, number of hydrogen bond donors, and pKa, we focus especially on LogD and LogP as important physical properties that can be easily compared across a range of studies. We discuss the success of PET tracers in evaluating receptor occupancy and consider likely future developments in the field.
Collapse
Affiliation(s)
- Yuta Takamura
- Division of Pharmaceutical Sciences, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 1-1-1, Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
| | - Hiroki Kakuta
- Division of Pharmaceutical Sciences, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 1-1-1, Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
| |
Collapse
|
28
|
Seeman MV. The Pharmacodynamics of Antipsychotic Drugs in Women and Men. Front Psychiatry 2021; 12:650904. [PMID: 33897500 PMCID: PMC8062799 DOI: 10.3389/fpsyt.2021.650904] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 03/16/2021] [Indexed: 12/31/2022] Open
Abstract
Background: Animal and human experiments have confirmed sex differences in the expression of hepatic enzymes that metabolize antipsychotic drugs and that may, in this way, be partly responsible for the clinical sex/gender differences observed in the efficacy and tolerability of antipsychotic treatment. Aim: The aim of this mini review is to synthesize the literature on the pharmacodynamics of male/female differential response to antipsychotic drugs. Method: Relevant search terms were used to search for pre-clinical and human trials and analysis of antipsychotic differential drug response and occurrence/severity of adverse effects in women and men. Results: The search found that sex influences drug response via the amount of a given drug that enters the brain and the number of neurotransmitter receptors to which it can bind. Consequently, sex partly determines the efficacy of a specific drug and its liability to induce unwanted effects. There are other factors that can overshadow or enhance the dimorphic effect of sex, for instance, the host's age, hormonal status, diet and life style as well as the molecular structure of the drug and its dose, and the method of its administration. Most of all, the host's individual genetics affects each step of a drug's pharmacodynamics. Conclusion: On average, women's psychotic symptoms respond to antipsychotic drugs at doses lower than men's. This means that many women may be de facto overdosed and, thus, experience unnecessary adverse effects. That being said, factors such as genetics and age probably determine drug response and tolerability to a greater degree than do biological sex or gender social roles.
Collapse
Affiliation(s)
- Mary V Seeman
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
29
|
Wong DF, Raoufinia A, Bricmont P, Brašić JR, McQuade RD, Forbes RA, Kikuchi T, Kuwabara H. An open-label, positron emission tomography study of the striatal D 2/D 3 receptor occupancy and pharmacokinetics of single-dose oral brexpiprazole in healthy participants. Eur J Clin Pharmacol 2020; 77:717-725. [PMID: 33196868 PMCID: PMC8032567 DOI: 10.1007/s00228-020-03021-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 10/14/2020] [Indexed: 11/07/2022]
Abstract
Purpose The aim of this Phase 1, open-label, positron emission tomography (PET) study was to determine the degree of striatal D2/D3 receptor occupancy induced by the serotonin–dopamine activity modulator, brexpiprazole, at different single dose levels in the range 0.25–6 mg. Methods Occupancy was measured at 4 and 23.5 h post-dose using the D2/D3 receptor antagonist [11C]raclopride. The pharmacokinetics, safety and tolerability of brexpiprazole were assessed in parallel. Results Fifteen healthy participants were enrolled (mean age 33.9 years; 93.3% male). Mean D2/D3 receptor occupancy in the putamen and caudate nucleus increased with brexpiprazole dose, leveled out at 77–88% with brexpiprazole 5 mg and 6 mg at 4 h post-dose, and remained at a similar level at 23.5 h post-dose (74–83%). Estimates of maximum obtainable receptor occupancy (Omax) were 89.2% for the putamen and 95.4% for the caudate nucleus; plasma concentrations predicted to provide 50% of Omax (EC50) were 8.13 ng/mL and 7.75 ng/mL, respectively. Brexpiprazole area under the concentration–time curve (AUC∞) and maximum plasma concentration (Cmax) increased approximately proportional to dose. No notable subjective or objective adverse effects were observed in this cohort. Conclusion By extrapolating the observed single-dose D2/D3 receptor occupancy data in healthy participants, multiple doses of brexpiprazole 2 mg/day and above are expected to result in an efficacious brexpiprazole concentration, consistent with clinically active doses in schizophrenia and major depressive disorder. Trial registration ClinicalTrials.gov NCT00805454 December 9, 2008. Electronic supplementary material The online version of this article (10.1007/s00228-020-03021-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Dean F Wong
- Lab of CNS Neuropsychopharmacology And Multimodal Imaging (CNAMI), Mallinckrodt Institute of Radiology, Washington University in St. Louis, 4525 Scott Avenue Suite 3114, St. Louis, MO, 63110, USA. .,Section of High Resolution Brain PET, Division of Nuclear Medicine and Molecular Imaging, The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Arash Raoufinia
- Otsuka Pharmaceutical Development & Commercialization Inc, Princeton, NJ, USA
| | - Patricia Bricmont
- Otsuka Pharmaceutical Development & Commercialization Inc, Princeton, NJ, USA
| | - James R Brašić
- Section of High Resolution Brain PET, Division of Nuclear Medicine and Molecular Imaging, The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Robert D McQuade
- Otsuka Pharmaceutical Development & Commercialization Inc, Princeton, NJ, USA
| | - Robert A Forbes
- Otsuka Pharmaceutical Development & Commercialization Inc, Princeton, NJ, USA
| | | | - Hiroto Kuwabara
- Section of High Resolution Brain PET, Division of Nuclear Medicine and Molecular Imaging, The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
30
|
Freiburghaus T, Svensson JE, Matheson GJ, Plavén-Sigray P, Lundberg J, Farde L, Cervenka S. Low convergent validity of [ 11C]raclopride binding in extrastriatal brain regions: A PET study of within-subject correlations with [ 11C]FLB 457. Neuroimage 2020; 226:117523. [PMID: 33144221 DOI: 10.1016/j.neuroimage.2020.117523] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 10/24/2020] [Accepted: 10/26/2020] [Indexed: 11/16/2022] Open
Abstract
Dopamine D2 receptors (D2-R) in extrastriatal brain regions are of high interest for research in a wide range of psychiatric and neurologic disorders. Pharmacological competition studies and test-retest experiments have shown high validity and reliability of the positron emission tomography (PET) radioligand [11C]FLB 457 for D2-R quantification in extrastriatal brain regions. However, this radioligand is not available at most research centers. Instead, the medium affinity radioligand [11C]raclopride, which has been extensively validated for quantification of D2-R in the high-density region striatum, has been applied also in studies on extrastriatal D2-R. Recently, the validity of this approach has been questioned by observations of low occupancy of [11C]raclopride in extrastriatal regions in a pharmacological competition study with quetiapine. Here, we utilise a data set of 16 healthy control subjects examined with both [11C]raclopride and [11C]FLB 457 to assess the correlation in binding potential (BPND) in extrastriatal brain regions. BPND was quantified using the simplified reference tissue model with cerebellum as reference region. The rank order of mean regional BPND values were similar for both radioligands, and corresponded to previously reported data, both post-mortem and using PET. Nevertheless, weak to moderate within-subject correlations were observed between [11C]raclopride and [11C]FLB 457 BPND extrastriatally (Pearson's R: 0.30-0.56), in contrast to very strong correlations between repeated [11C]FLB 457 measurements (Pearson's R: 0.82-0.98). In comparison, correlations between repeated [11C]raclopride measurements were low to moderate (Pearson's R: 0.28-0.75). These results are likely related to low signal to noise ratio of [11C]raclopride in extrastriatal brain regions, and further strengthen the recommendation that extrastriatal D2-R measures obtained with [11C]raclopride should be interpreted with caution.
Collapse
Affiliation(s)
- Tove Freiburghaus
- Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet and Stockholm Health Care Services, Region Stockholm, Stockholm SE -171 76, Sweden.
| | - Jonas E Svensson
- Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet and Stockholm Health Care Services, Region Stockholm, Stockholm SE -171 76, Sweden
| | - Granville J Matheson
- Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet and Stockholm Health Care Services, Region Stockholm, Stockholm SE -171 76, Sweden
| | - Pontus Plavén-Sigray
- Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet and Stockholm Health Care Services, Region Stockholm, Stockholm SE -171 76, Sweden; Neurobiology Research Unit, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Johan Lundberg
- Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet and Stockholm Health Care Services, Region Stockholm, Stockholm SE -171 76, Sweden
| | - Lars Farde
- Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet and Stockholm Health Care Services, Region Stockholm, Stockholm SE -171 76, Sweden
| | - Simon Cervenka
- Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet and Stockholm Health Care Services, Region Stockholm, Stockholm SE -171 76, Sweden
| |
Collapse
|
31
|
Nishibe H, Tateno A, Sakayori T, Yamamoto M, Kim W, Kakuyama H, Okubo Y. Striatal Dopamine D2 Receptor Occupancy Induced by Daily Application of Blonanserin Transdermal Patches: Phase II Study in Japanese Patients With Schizophrenia. Int J Neuropsychopharmacol 2020; 24:108-117. [PMID: 32936897 PMCID: PMC7883894 DOI: 10.1093/ijnp/pyaa071] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 08/30/2020] [Accepted: 09/15/2020] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Transdermal antipsychotic patch formulations offer potential benefits, including improved adherence. This study investigated the striatal dopamine D2 receptor occupancy with daily blonanserin transdermal patch application. METHODS This open-label, phase II study enrolled 18 Japanese outpatients (20 to <65 years) with schizophrenia (DSM-IV-TR criteria; total Positive and Negative Syndrome Scale score <120 at screening) treated with blonanserin 8-mg or 16-mg tablets. Patients continued tablets for 2-4 weeks at their current dose and were then assigned to once-daily blonanserin patches (10/20/40/60/80 mg daily) for 2-4 weeks based on the oral dose. [11C]raclopride positron emission tomography scanning determined blonanserin striatal dopamine D2 receptor occupancy (primary endpoint). Secondary endpoints included assessment of receptor occupancy by dose, changes in Positive and Negative Syndrome Scale and Clinical Global Impressions-Severity of Illness-Severity scores, patient attitudes towards adherence, and patch adhesiveness. RESULTS Of 18 patients who started the blonanserin tablet treatment period, 14 patients completed treatment. Mean D2 receptor occupancy for blonanserin tablets 8 mg/d (59.2%, n = 5) and 16 mg/d (66.3%, n = 9) was within the values for blonanserin patches: 10 mg/d (33.3%, n = 3), 20 mg/d (29.9%, n = 2), 40 mg/d (61.2%, n = 3), 60 mg/d (59.0%, n = 3), and 80 mg/d (69.9%, n = 3). Occupancy generally increased with increasing blonanserin dose for both formulations with the half maximal receptor occupancy for tablets and patches associated with doses of 6.9 mg/d and 31.9 mg/d, respectively. Diurnal variability in occupancy was lower during transdermal patch treatment than during tablet treatment. Blonanserin transdermal patches were well tolerated with no major safety concerns. CONCLUSIONS Blonanserin patches (40/80 mg/d) have lower diurnal variability in occupancy than blonanserin tablets (8/16 mg/d), and patches at doses of 40 mg/d and 80 mg/d appear to be a suitable alternative for blonanserin tablets at doses of 8 mg/d and 16 mg/d, respectively. Blonanserin patches represent a potential new treatment option for patients with schizophrenia. TRIAL REGISTRY JAPIC Clinical Trials Information registry (www.clinicaltrials.jp; JapicCTI-No: JapicCTI-121914).
Collapse
Affiliation(s)
- Hironori Nishibe
- Clinical Pharmacology Group, Clinical Research, Drug Development Division, Sumitomo Dainippon Pharma Co., Ltd., Tokyo, Japan,Correspondence: Hironori Nishibe, MS, Sumitomo Dainippon Pharma Co., Ltd., 13-1, Kyobashi 1-chome, Chuo-ku, Tokyo 104–8356, Japan ()
| | - Amane Tateno
- Department of Neuropsychiatry, Nippon Medical School, Tokyo, Japan
| | - Takeshi Sakayori
- Department of Neuropsychiatry, Nippon Medical School, Tokyo, Japan
| | | | - WooChan Kim
- Department of Neuropsychiatry, Nippon Medical School, Tokyo, Japan
| | - Hiroyoshi Kakuyama
- Clinical Pharmacology Group, Clinical Research, Drug Development Division, Sumitomo Dainippon Pharma Co., Ltd., Tokyo, Japan
| | - Yoshiro Okubo
- Department of Neuropsychiatry, Nippon Medical School, Tokyo, Japan
| |
Collapse
|
32
|
Egerton A, Grace AA, Stone J, Bossong MG, Sand M, McGuire P. Glutamate in schizophrenia: Neurodevelopmental perspectives and drug development. Schizophr Res 2020; 223:59-70. [PMID: 33071070 DOI: 10.1016/j.schres.2020.09.013] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 08/12/2020] [Accepted: 09/20/2020] [Indexed: 12/14/2022]
Abstract
Research into the neurobiological processes that may lead to the onset of schizophrenia places growing emphasis on the glutamatergic system and brain development. Preclinical studies have shown that neurodevelopmental, genetic, and environmental factors contribute to glutamatergic dysfunction and schizophrenia-related phenotypes. Clinical research has suggested that altered brain glutamate levels may be present before the onset of psychosis and relate to outcome in those at clinical high risk. After psychosis onset, glutamate dysfunction may also relate to the degree of antipsychotic response and clinical outcome. These findings support ongoing efforts to develop pharmacological interventions that target the glutamate system and could suggest that glutamatergic compounds may be more effective in specific patient subgroups or illness stages. In this review, we consider the updated glutamate hypothesis of schizophrenia, from a neurodevelopmental perspective, by reviewing recent preclinical and clinical evidence, and discuss the potential implications for novel therapeutics.
Collapse
Affiliation(s)
- Alice Egerton
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK.
| | - Anthony A Grace
- Departments of Neuroscience, Psychiatry and Psychology, University of Pittsburgh, Pittsburgh, PA, USA
| | - James Stone
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Matthijs G Bossong
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK; Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Michael Sand
- Boehringer Ingelheim Pharmaceuticals Inc., Ridgefield, CT, USA
| | - Philip McGuire
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| |
Collapse
|
33
|
Matheson GJ, Plavén-Sigray P, Louzolo A, Borg J, Farde L, Petrovic P, Cervenka S. Dopamine D1 receptor availability is not associated with delusional ideation measures of psychosis proneness. Schizophr Res 2020; 222:175-184. [PMID: 32616361 DOI: 10.1016/j.schres.2020.06.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 05/25/2020] [Accepted: 06/01/2020] [Indexed: 10/24/2022]
Abstract
The dopamine D1 receptor (D1R) is thought to play a role in psychosis and schizophrenia, however positron emission tomography studies comparing patients and controls have been inconsistent. To circumvent some of the limitations of clinical studies, such as antipsychotic exposure, an alternative approach is to examine subclinical psychotic symptoms within the general population, i.e. psychosis proneness traits. In this study, we investigated whether D1R availability is associated with delusional ideation in healthy controls, in four experiments, using [11C]SCH23390 PET (n = 76) and psychometric questionnaires (n = 217). We performed exploratory analyses, direct self-replication, and confirmatory analyses using Bayesian statistical modelling. Collectively, we found strong evidence that there is little to no linear association between delusional ideation and D1R. If hypothesised changes in D1R in drug-naive psychosis patients can be confirmed, our results suggest that they may either occur at disease onset, or that they are associated with specific aspects of psychosis other than delusional ideation.
Collapse
Affiliation(s)
- Granville J Matheson
- Department of Clinical Neuroscience, Center for Psychiatry Research, Karolinska Institutet and Stockholm County Council, SE-171 76 Stockholm, Sweden.
| | - Pontus Plavén-Sigray
- Department of Clinical Neuroscience, Center for Psychiatry Research, Karolinska Institutet and Stockholm County Council, SE-171 76 Stockholm, Sweden
| | - Anaïs Louzolo
- Department of Clinical Neuroscience, Karolinska Institutet, SE-171 76 Stockholm, Sweden
| | - Jacqueline Borg
- Department of Clinical Neuroscience, Center for Psychiatry Research, Karolinska Institutet and Stockholm County Council, SE-171 76 Stockholm, Sweden
| | - Lars Farde
- Department of Clinical Neuroscience, Center for Psychiatry Research, Karolinska Institutet and Stockholm County Council, SE-171 76 Stockholm, Sweden; PET Science Centre, Precision Medicine and Genomics, IMED Biotech Unit, AstraZeneca, Karolinska Institutet, Sweden
| | - Predrag Petrovic
- Department of Clinical Neuroscience, Karolinska Institutet, SE-171 76 Stockholm, Sweden
| | - Simon Cervenka
- Department of Clinical Neuroscience, Center for Psychiatry Research, Karolinska Institutet and Stockholm County Council, SE-171 76 Stockholm, Sweden
| |
Collapse
|
34
|
Zou H, Banerjee P, Leung SSY, Yan X. Application of Pharmacokinetic-Pharmacodynamic Modeling in Drug Delivery: Development and Challenges. Front Pharmacol 2020; 11:997. [PMID: 32719604 PMCID: PMC7348046 DOI: 10.3389/fphar.2020.00997] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Accepted: 06/19/2020] [Indexed: 12/19/2022] Open
Abstract
With the advancement of technology, drug delivery systems and molecules with more complex architecture are developed. As a result, the drug absorption and disposition processes after administration of these drug delivery systems and engineered molecules become exceedingly complex. As the pharmacokinetic and pharmacodynamic (PK-PD) modeling allows for the separation of the drug-, carrier- and pharmacological system-specific parameters, it has been widely used to improve understanding of the in vivo behavior of these complex delivery systems and help their development. In this review, we summarized the basic PK-PD modeling theory in drug delivery and demonstrated how it had been applied to help the development of new delivery systems and modified large molecules. The linkage between PK and PD was highlighted. In particular, we exemplified the application of PK-PD modeling in the development of extended-release formulations, liposomal drugs, modified proteins, and antibody-drug conjugates. Furthermore, the model-based simulation using primary PD models for direct and indirect PD responses was conducted to explain the assertion of hypothetical minimal effective concentration or threshold in the exposure-response relationship of many drugs and its misconception. The limitations and challenges of the mechanism-based PK-PD model were also discussed.
Collapse
Affiliation(s)
- Huixi Zou
- School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, Hong Kong
| | - Parikshit Banerjee
- School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, Hong Kong
| | - Sharon Shui Yee Leung
- School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, Hong Kong
| | - Xiaoyu Yan
- School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, Hong Kong
| |
Collapse
|
35
|
Fountoulakis KN, Moeller HJ, Kasper S, Tamminga C, Yamawaki S, Kahn R, Tandon R, Correll CU, Javed A. The report of the joint WPA/CINP workgroup on the use and usefulness of antipsychotic medication in the treatment of schizophrenia. CNS Spectr 2020; 26:1-25. [PMID: 32594935 DOI: 10.1017/s1092852920001546] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
This is a report of a joint World Psychiatric Association/International College of Neuropsychopharmacology (WPA/CINP) workgroup concerning the risk/benefit ratio of antipsychotics in the treatment of schizophrenia. It utilized a selective but, within topic, comprehensive review of the literature, taking into consideration all the recently discussed arguments on the matter and avoiding taking sides when the results in the literature were equivocal. The workgroup's conclusions suggested that antipsychotics are efficacious both during the acute and the maintenance phase, and that the current data do not support the existence of a supersensitivity rebound psychosis. Long-term treated patients have better overall outcome and lower mortality than those not taking antipsychotics. Longer duration of untreated psychosis and relapses are modestly related to worse outcome. Loss of brain volume is evident already at first episode and concerns loss of neuropil volume rather than cell loss. Progression of volume loss probably happens in a subgroup of patients with worse prognosis. In humans, antipsychotic treatment neither causes nor worsens volume loss, while there are some data in favor for a protective effect. Schizophrenia manifests 2 to 3 times higher mortality vs the general population, and treatment with antipsychotics includes a number of dangers, including tardive dyskinesia and metabolic syndrome; however, antipsychotic treatment is related to lower mortality, including cardiovascular mortality. In conclusion, the literature strongly supports the use of antipsychotics both during the acute and the maintenance phase without suggesting that it is wise to discontinue antipsychotics after a certain period of time. Antipsychotic treatment improves long-term outcomes and lowers overall and specific-cause mortality.
Collapse
Affiliation(s)
- Konstantinos N Fountoulakis
- 3rd Department of Psychiatry, Faculty of Medicine, School of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Hans-Jurgen Moeller
- Department of Psychiatry, Ludwig Maximilian University of Munich, Munich, Germany
| | - Siegfried Kasper
- Universitätsklinik für Psychiatrie und Psychotherapie, Medizinische Universität Wien, Vienna, Austria
| | - Carol Tamminga
- Department of Psychiatry, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Shigeto Yamawaki
- Center for Brain, Mind and KANSEI Sciences Research, Hiroshima University, Hiroshima, Japan
| | - Rene Kahn
- Department of Psychiatry and Behavioral Health System, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Rajiv Tandon
- Department of Psychiatry, Western Michigan University Homer Stryker M.D. School of Medicine, Kalamazoo, Michigan, USA
| | - Christoph U Correll
- Department of Psychiatry, Northwell Health, The Zucker Hillside Hospital, Glen Oaks, New York, USA
- Department of Psychiatry and Molecular Medicine, Zucker School of Medicine at Hofstra/Northwell, Hempstead, New York, USA
- Department of Child and Adolescent Psychiatry, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Afzal Javed
- Warwick Medical School, University of Warwick, Coventry, United Kingdom
- Pakistan Psychiatric Research Centre, Fountain House, Lahore, Pakistan
| |
Collapse
|
36
|
Arakawa R, Takano A, Halldin C. PET technology for drug development in psychiatry. Neuropsychopharmacol Rep 2020; 40:114-121. [PMID: 32463584 PMCID: PMC7722687 DOI: 10.1002/npr2.12084] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 10/05/2019] [Accepted: 10/18/2019] [Indexed: 12/14/2022] Open
Abstract
Positron emission tomography (PET) is a non‐invasive imaging method to measure the molecule in vivo. PET imaging can evaluate the central nervous system drugs as target engagement in the human brain. For antipsychotic drugs, adequate dopamine D2 receptor occupancy (“therapeutic window”) is reported to be from 65%‐70% to 80% to achieve the antipsychotic effect without extrapyramidal symptoms. For antidepressants, the clinical threshold of serotonin transporter (5‐HTT) occupancy is reported to be 70%‐80% although the relation between the side effect and 5‐HTT occupancy has not yet been established. Evaluation of norepinephrine transporter (NET) occupancy for antidepressant is ongoing as adequate PET radioligands for NET were developed recently. Measurement of the target occupancy has been a key element to evaluate the in vivo target engagement of the drugs. In order to evaluate new drug targets for disease conditions such as negative symptoms/cognitive impairment of schizophrenia and treatment‐resistant depression, new PET radioligands need to be developed concurrently with the drug development. PET imaging can evaluate the central nervous system drugs as target engagement in the human brain. The uptake of [11C]raclopride for dopamine D2 receptors decreased from (A) baseline to (B) antipsychotic administration conditions.![]()
Collapse
Affiliation(s)
- Ryosuke Arakawa
- Center for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet and Stockholm County Council, Stockholm, Sweden
| | - Akihiro Takano
- Center for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet and Stockholm County Council, Stockholm, Sweden.,Takeda Development Center Japan, Takeda Pharmaceutical Company Limited, Osaka, Japan
| | - Christer Halldin
- Center for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet and Stockholm County Council, Stockholm, Sweden
| |
Collapse
|
37
|
Girgis RR, Forbes A, Abi-Dargham A, Slifstein M. A positron emission tomography occupancy study of brexpiprazole at dopamine D 2 and D 3 and serotonin 5-HT 1A and 5-HT 2A receptors, and serotonin reuptake transporters in subjects with schizophrenia. Neuropsychopharmacology 2020; 45:786-792. [PMID: 31847007 PMCID: PMC7075883 DOI: 10.1038/s41386-019-0590-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 11/20/2019] [Accepted: 12/05/2019] [Indexed: 11/09/2022]
Abstract
The objective of this study (NCT01854944) was to assess D2/D3, 5-HT1A, 5-HT2A and serotonin transporter (SERT) occupancies of brexpiprazole in adult subjects with schizophrenia in order to identify the in vivo pharmacologic profile that may be relevant to the antipsychotic, antidepressant, and side effect profiles of the drug. Subjects were grouped into three independent cohorts of four subjects each. All subjects underwent positron emission tomography (PET) scans with two different radiotracers at baseline prior to brexpiprazole administration, and again on Day 10 after daily doses of either 4 mg (Cohorts 1 and 2), or 1 mg (Cohort 3). Cohort 1 received scans with [11C]-(+)-PHNO to measure D2 and D3 receptor occupancy and [11C]CUMI101 to measure 5-HT1A occupancy; Cohort 2 received [11C]MDL100907 for 5-HT2A occupancy and [11C]DASB for SERT occupancy; Cohort 3 underwent scanning with [11C]-(+)-PHNO and [11C]MDL100907. Five female and seven male subjects, aged 42 ± 8 years (range, 28-55 years), participated in this study. Dose dependency was observed at D2 receptors, with occupancies reaching 64 ± 8% (mean +/- SD) following 1 mg/day and 80 ± 12% following 4 mg/day. D3 receptor availability increased following 1 mg brexpiprazole treatment and did not change with 4 mg. Robust and dose-related occupancy was also observed at 5-HT2A receptors. Negligible occupancy (<5%) was observed at 5-HT1A and SERT at 4 mg/day. In summary, brexpiprazole demonstrated in vivo binding to D2 receptors and 5-HT2A receptors at steady state after 10 days of daily administration in a dose dependent manner, while binding to D3, 5-HT1A receptors and SERT was not detectable with the radiotracers used for these targets. This pharmacologic profile is consistent with the observed antipsychotic and antidepressant effects.
Collapse
Affiliation(s)
- Ragy R Girgis
- New York State Psychiatric Institute, Columbia University Irving Medical Center, New York, NY, USA.
| | - Andy Forbes
- Otsuka Pharmaceutical Development & Commercialization Inc., Princeton, NJ, USA
| | - Anissa Abi-Dargham
- Department of Psychiatry, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, USA
| | - Mark Slifstein
- Department of Psychiatry, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, USA
| |
Collapse
|
38
|
Musco S, McAllister V, Caudle I. Dopamine-receptor blocking agent-associated akathisia: a summary of current understanding and proposal for a rational approach to treatment. Ther Adv Psychopharmacol 2020; 10:2045125320937575. [PMID: 32922732 PMCID: PMC7457694 DOI: 10.1177/2045125320937575] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 06/02/2020] [Indexed: 12/17/2022] Open
Abstract
Dopamine-receptor blocking agent-associated akathisia (DRBA-A) is an adverse effect that can significantly limit the use of these important medications for the treatment of a variety of psychiatric diseases, yet there is no unifying theory regarding its pathophysiology. This knowledge gap limits clinicians' ability to effectively manage DRBA-A and mitigate negative outcomes in an already vulnerable patient population. Based on a review of the current literature on the subject, it is hypothesized that dopaminergic and noradrenergic signaling is perturbed in DRBA-A. Accordingly, it is proposed that the optimal agent to manage this extrapyramidal symptom should increase dopamine signaling in the affected areas of the brain and counteract compensatory noradrenergic signaling via antagonism of adrenergic or serotonergic receptors.
Collapse
Affiliation(s)
- Shaina Musco
- Department of Clinical Sciences, High Point University Fred Wilson School of Pharmacy, One University Parkway, High Point, NC 27262, USA
| | - Vivian McAllister
- High Point University David R. Hayworth College of Arts and Sciences, One University Parkway, High Point, NC, USA
| | - Ian Caudle
- High Point University Fred Wilson School of Pharmacy, One University Parkway, High Point, NC, USA
| |
Collapse
|
39
|
Effect of single dose N-acetylcysteine administration on resting state functional connectivity in schizophrenia. Psychopharmacology (Berl) 2020; 237:443-451. [PMID: 31786651 PMCID: PMC7018675 DOI: 10.1007/s00213-019-05382-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 10/16/2019] [Indexed: 02/08/2023]
Abstract
RATIONALE There is interest in employing N-acetylcysteine (NAC) in the treatment of schizophrenia, but investigations of the functional signatures of its pharmacological action are scarce. OBJECTIVES The aim of this study was to identify the changes in resting-state functional connectivity (rs-FC) that occur following administration of a single dose of NAC in patients with schizophrenia. A secondary aim was to examine whether differences in rs-FC between conditions were mediated by glutamate metabolites in the anterior cingulate cortex (ACC). METHODS In a double-blind, placebo-controlled crossover design, 20 patients with schizophrenia had two MRI scans administered 7 days apart, following oral administration of either 2400 mg NAC or placebo. Resting state functional fMRI (rsfMRI) assessed the effect of NAC on rs-FC within the default mode network (DMN) and the salience network (SN). Proton magnetic resonance spectroscopy was used to measure Glx/Cr (glutamate plus glutamine, in ratio to creatine) levels in the ACC during the same scanning sessions. RESULTS Compared to the placebo condition, the NAC condition was associated with reduced within the DMN and SN, specifically between the medial pre-frontal cortex to mid frontal gyrus, and ACC to frontal pole (all p < 0.04). There were no significant correlations between ACC Glx/Cr and rs-FC in either condition (p > 0.6). CONCLUSIONS These findings provide preliminary evidence that NAC can reduce medial frontal rs-FC in schizophrenia. Future studies assessing the effects of NAC on rs-FC in early psychosis and on repeated administration in relation to efficacy would be of interest.
Collapse
|
40
|
Kaar SJ, Natesan S, McCutcheon R, Howes OD. Antipsychotics: Mechanisms underlying clinical response and side-effects and novel treatment approaches based on pathophysiology. Neuropharmacology 2019; 172:107704. [PMID: 31299229 DOI: 10.1016/j.neuropharm.2019.107704] [Citation(s) in RCA: 190] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 06/13/2019] [Accepted: 07/08/2019] [Indexed: 12/17/2022]
Abstract
Antipsychotic drugs are central to the treatment of schizophrenia and other psychotic disorders but are ineffective for some patients and associated with side-effects and nonadherence in others. We review the in vitro, pre-clinical, clinical and molecular imaging evidence on the mode of action of antipsychotics and their side-effects. This identifies the key role of striatal dopamine D2 receptor blockade for clinical response, but also for endocrine and motor side-effects, indicating a therapeutic window for D2 blockade. We consider how partial D2/3 receptor agonists fit within this framework, and the role of off-target effects of antipsychotics, particularly at serotonergic, histaminergic, cholinergic, and adrenergic receptors for efficacy and side-effects such as weight gain, sedation and dysphoria. We review the neurobiology of schizophrenia relevant to the mode of action of antipsychotics, and for the identification of new treatment targets. This shows elevated striatal dopamine synthesis and release capacity in dorsal regions of the striatum underlies the positive symptoms of psychosis and suggests reduced dopamine release in cortical regions contributes to cognitive and negative symptoms. Current drugs act downstream of the major dopamine abnormalities in schizophrenia, and potentially worsen cortical dopamine function. We consider new approaches including targeting dopamine synthesis and storage, autoreceptors, and trace amine receptors, and the cannabinoid, muscarinic, GABAergic and glutamatergic regulation of dopamine neurons, as well as post-synaptic modulation through phosphodiesterase inhibitors. Finally, we consider treatments for cognitive and negative symptoms such dopamine agonists, nicotinic agents and AMPA modulators before discussing immunological approaches which may be disease modifying. This article is part of the issue entitled 'Special Issue on Antipsychotics'.
Collapse
Affiliation(s)
- Stephen J Kaar
- Department of Psychosis Studies, 5th Floor, Institute of Psychiatry, Psychology & Neuroscience (IoPPN), King's College London, PO63 De Crespigny Park, London, SE5 8AF, United Kingdom.
| | - Sridhar Natesan
- Department of Psychosis Studies, 5th Floor, Institute of Psychiatry, Psychology & Neuroscience (IoPPN), King's College London, PO63 De Crespigny Park, London, SE5 8AF, United Kingdom
| | - Robert McCutcheon
- Department of Psychosis Studies, 5th Floor, Institute of Psychiatry, Psychology & Neuroscience (IoPPN), King's College London, PO63 De Crespigny Park, London, SE5 8AF, United Kingdom
| | - Oliver D Howes
- Department of Psychosis Studies, 5th Floor, Institute of Psychiatry, Psychology & Neuroscience (IoPPN), King's College London, PO63 De Crespigny Park, London, SE5 8AF, United Kingdom.
| |
Collapse
|
41
|
Noel C. A review of a recently published guidelines' "strong recommendation" for therapeutic drug monitoring of olanzapine, haloperidol, perphenazine, and fluphenazine. Ment Health Clin 2019; 9:287-293. [PMID: 31293849 PMCID: PMC6607953 DOI: 10.9740/mhc.2019.07.287] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Introduction In addition to clozapine, there is a growing body of evidence that supports therapeutic drug monitoring (TDM) for additional antipsychotics commonly used in the United States. Methods The Arbeitsgemeinschaft für Neuropsychopharmakologie und Pharmakopsychiatrie (AGNP) published TDM guidelines for several psychiatric medications. Sources were identified that the authors used to establish therapeutic reference ranges for haloperidol, fluphenazine, perphenazine, and olanzapine-4 antipsychotics commonly used in the United States with a "strong recommendation" for TDM. The sources were then reviewed for content and appropriateness for utilization in establishing the reference ranges. Results Olanzapine had 15 citations, haloperidol had 9, perphenazine had 4, and fluphenazine had 2. The studies' methods were reviewed along with the proposed therapeutic reference ranges. Discussion Several limitations of the guidelines were identified. Reference ranges were suggested based on studies of patients with various diagnoses; some patients had an acute exacerbation, and others were in a maintenance phase. An additional publication was identified that reviewed similar (and additional) TDM studies; those conclusions were in slight contrast with those of the AGNP guidelines. In the future, guidance should be given to those looking to conduct TDM studies to standardize methods and make meta-analysis of this data more feasible.
Collapse
|
42
|
Manvich DF, Petko AK, Branco RC, Foster SL, Porter-Stransky KA, Stout KA, Newman AH, Miller GW, Paladini CA, Weinshenker D. Selective D 2 and D 3 receptor antagonists oppositely modulate cocaine responses in mice via distinct postsynaptic mechanisms in nucleus accumbens. Neuropsychopharmacology 2019; 44:1445-1455. [PMID: 30879021 PMCID: PMC6785094 DOI: 10.1038/s41386-019-0371-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Revised: 03/01/2019] [Accepted: 03/07/2019] [Indexed: 12/21/2022]
Abstract
The dopamine D3 receptor (D3R) has emerged as a promising pharmacotherapeutic target for the treatment of several diseases including schizophrenia, Parkinson's disease, and substance use disorders. However, studies investigating the D3R's precise role in dopamine neurotransmission or how it may be exploited to modulate responses to drugs of abuse have produced contrasting results, in part because most D3R-targeted compounds often also interact with D2 receptors (D2R). To resolve this issue, we set out to systematically characterize and compare the consequences of selective D2R or D3R antagonists on the behavioral-stimulant properties of cocaine in mice, and to identify putative neurobiological mechanisms underlying their behavior-modifying effects. Pretreatment with the selective D2R antagonist L-741,626 attenuated, while pretreatment with the selective D3R antagonist PG01037 enhanced, the locomotor-activating effects of both acute cocaine administration as well as sensitization following repeated cocaine dosing. While both antagonists potentiated cocaine-induced increases in presynaptic dopamine release, we report for the first time that D3R blockade uniquely facilitated dopamine-mediated excitation of D1-expressing medium spiny neurons in the nucleus accumbens. Collectively, our results demonstrate that selective D3R antagonism potentiates the behavioral-stimulant effects of cocaine in mice, an effect that is in direct opposition to that produced by selective D2R antagonism or nonselective D2-like receptor antagonists, and is likely mediated by facilitating D1-mediated excitation in the nucleus accumbens. These findings provide novel insights into the neuropharmacological actions of D3R antagonists on mesolimbic dopamine neurotransmission and their potential utility as pharmacotherapeutics.
Collapse
Affiliation(s)
- Daniel F Manvich
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, 30322, USA
- Department of Cell Biology and Neuroscience, Rowan University School of Osteopathic Medicine, Stratford, NJ, 08084, USA
| | - Alyssa K Petko
- Department of Biology, University of Texas at San Antonio Neuroscience Institute, University of Texas at San Antonio, San Antonio, TX, 78249, USA
| | - Rachel C Branco
- Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, 30322, USA
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Stephanie L Foster
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Kirsten A Porter-Stransky
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, 30322, USA
- Department of Biomedical Sciences, Western Michigan University Homer Stryker M.D. School of Medicine, Kalamazoo, MI, 49008, USA
| | - Kristen A Stout
- Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, 30322, USA
- Department of Physiology, Northwestern University, Chicago, IL, 60611, USA
| | - Amy H Newman
- Medicinal Chemistry Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse-Intramural Research Program, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Gary W Miller
- Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, 30322, USA
- Department of Pharmacology, Department of Neurology, Center for Neurodegenerative Diseases, Emory University, Atlanta, GA, 30322, USA
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, 10032, USA
| | - Carlos A Paladini
- Department of Biology, University of Texas at San Antonio Neuroscience Institute, University of Texas at San Antonio, San Antonio, TX, 78249, USA
| | - David Weinshenker
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, 30322, USA.
| |
Collapse
|
43
|
Stern S, Linker S, Vadodaria KC, Marchetto MC, Gage FH. Prediction of Response to Drug Therapy in Psychiatric Disorders. FOCUS (AMERICAN PSYCHIATRIC PUBLISHING) 2019; 17:294-307. [PMID: 32015721 PMCID: PMC6996058 DOI: 10.1176/appi.focus.17304] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Reprinted with permission from Open Biol. 8: 180031. The Royal Society.
Collapse
|
44
|
Macpherson T, Hikida T. Role of basal ganglia neurocircuitry in the pathology of psychiatric disorders. Psychiatry Clin Neurosci 2019; 73:289-301. [PMID: 30734985 DOI: 10.1111/pcn.12830] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 01/22/2019] [Accepted: 02/05/2019] [Indexed: 12/21/2022]
Abstract
Over the last few decades, advances in human and animal-based techniques have greatly enhanced our understanding of the neural mechanisms underlying psychiatric disorders. Many of these studies have indicated connectivity between and alterations within basal ganglia structures to be particularly pertinent to the development of symptoms associated with several of these disorders. Here we summarize the connectivity, molecular composition, and function of sites within basal ganglia neurocircuits. Then we review the current literature from both human and animal studies concerning altered basal ganglia function in five common psychiatric disorders: obsessive-compulsive disorder, substance-related and addiction disorders, major depressive disorder, generalized anxiety disorder, and schizophrenia. Finally, we present a model based upon the findings of these studies that highlights the striatum as a particularly attractive target for restoring normal function to basal ganglia neurocircuits altered within psychiatric disorder patients.
Collapse
Affiliation(s)
- Tom Macpherson
- Laboratory for Advanced Brain Functions, Institute for Protein Research, Osaka University, Osaka, Japan
| | - Takatoshi Hikida
- Laboratory for Advanced Brain Functions, Institute for Protein Research, Osaka University, Osaka, Japan
| |
Collapse
|
45
|
Psychotic like experiences as part of a continuum of psychosis: Associations with effort-based decision-making and reward responsivity. Schizophr Res 2019; 206:307-312. [PMID: 30442477 DOI: 10.1016/j.schres.2018.10.026] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 10/23/2018] [Indexed: 11/22/2022]
Abstract
Research examining psychotic disorders typically involves comparison between individuals with a clinical disorder and healthy controls. However, research suggests that psychotic symptoms, such as delusions and hallucinations, may exist on a continuum ranging from variation in healthy individuals to diagnosable psychotic disorders. On this continuum, some individuals endorse occasional psychotic like experiences (PLEs) that do not cause sufficient impairment or distress to warrant a clinical diagnosis. Given this continuum model, one might expect to observe impairments in those with PLEs in the same behavioral domains impaired in schizophrenia. Thus, we examined two domains typically impaired in schizophrenia, effort allocation and reward responsivity, in a large university sample (n = 126). Participants completed tasks assessing effort-based decision-making, reward responsivity, and questionnaires assessing PLEs. Greater PLEs were associated with greater effort expenditure regardless of probability of receiving a reward or reward value. Higher PLEs were related to greater positive feelings when receiving rewards. Importantly, these relationships remained the same when controlling for other symptoms such as depression, anhedonia, and anxiety. These findings suggest that PLEs may be associated with hypersensitivity to reward at the less severe end of the psychotic continuum, with effort to attain a reward expended in a potentially inefficient manner. This pattern is consistent with models of hyperdopaminergic states in psychotic individuals not taking antipsychotic medications, given the role of dopamine in modulating effort allocation and reward anticipation.
Collapse
|
46
|
Caravaggio F, Iwata Y, Kim J, Shah P, Gerretsen P, Remington G, Graff-Guerrero A. What proportion of striatal D2 receptors are occupied by endogenous dopamine at baseline? A meta-analysis with implications for understanding antipsychotic occupancy. Neuropharmacology 2019; 163:107591. [PMID: 30940535 DOI: 10.1016/j.neuropharm.2019.03.034] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 03/25/2019] [Accepted: 03/27/2019] [Indexed: 11/30/2022]
Abstract
Using molecular imaging techniques - positron emission tomography (PET) and single-photon emission computed tomography (SPECT) - in conjunction with an acute dopamine depletion challenge (alpha-methyl-para-tyrosine) it is possible to estimate endogenous dopamine levels occupying striatal dopamine D2 receptors (D2R) in humans in vivo. However, it is unclear what proportion of striatal D2R are occupied by endogenous dopamine under normal conditions. This is important since it has been suggested that in schizophrenia there may be a substantial proportion of striatal D2R which are occupied by endogenous dopamine and not accessible by therapeutic doses of antipsychotics. In order to clarify these issues, we conducted a meta-analysis of dopamine depletion studies using substituted benzamide radiotracers in healthy persons. This meta-analysis suggests that anywhere from 8 to 21% (weighted average 11%) of striatal D2R may be occupied by endogenous dopamine at baseline. Using these estimates, we propose an updated occupancy model and tentatively suggest that antipsychotics inhibit a smaller proportion of the total pool of striatal D2R in vivo than previously acknowledged. This article is part of the issue entitled 'Special Issue on Antipsychotics'.
Collapse
Affiliation(s)
- Fernando Caravaggio
- Research Imaging Centre, Centre for Addiction and Mental Health, 250 College Street, Toronto, Ontario, M5T 1R8, Canada; Department of Psychiatry, University of Toronto, 250 College Street, Toronto, Ontario, M5T 1R8, Canada.
| | - Yusuke Iwata
- Research Imaging Centre, Centre for Addiction and Mental Health, 250 College Street, Toronto, Ontario, M5T 1R8, Canada; Department of Psychiatry, University of Toronto, 250 College Street, Toronto, Ontario, M5T 1R8, Canada
| | - Julia Kim
- Research Imaging Centre, Centre for Addiction and Mental Health, 250 College Street, Toronto, Ontario, M5T 1R8, Canada; Institute of Medical Science, University of Toronto, 1 Kings College Circle, Toronto, Ontario, M5S 1A8, Canada
| | - Parita Shah
- Research Imaging Centre, Centre for Addiction and Mental Health, 250 College Street, Toronto, Ontario, M5T 1R8, Canada; Institute of Medical Science, University of Toronto, 1 Kings College Circle, Toronto, Ontario, M5S 1A8, Canada
| | - Philip Gerretsen
- Research Imaging Centre, Centre for Addiction and Mental Health, 250 College Street, Toronto, Ontario, M5T 1R8, Canada; Department of Psychiatry, University of Toronto, 250 College Street, Toronto, Ontario, M5T 1R8, Canada; Institute of Medical Science, University of Toronto, 1 Kings College Circle, Toronto, Ontario, M5S 1A8, Canada
| | - Gary Remington
- Research Imaging Centre, Centre for Addiction and Mental Health, 250 College Street, Toronto, Ontario, M5T 1R8, Canada; Department of Psychiatry, University of Toronto, 250 College Street, Toronto, Ontario, M5T 1R8, Canada; Institute of Medical Science, University of Toronto, 1 Kings College Circle, Toronto, Ontario, M5S 1A8, Canada
| | - Ariel Graff-Guerrero
- Research Imaging Centre, Centre for Addiction and Mental Health, 250 College Street, Toronto, Ontario, M5T 1R8, Canada; Department of Psychiatry, University of Toronto, 250 College Street, Toronto, Ontario, M5T 1R8, Canada; Institute of Medical Science, University of Toronto, 1 Kings College Circle, Toronto, Ontario, M5S 1A8, Canada
| |
Collapse
|
47
|
Stern S, Linker S, Vadodaria KC, Marchetto MC, Gage FH. Prediction of response to drug therapy in psychiatric disorders. Open Biol 2019; 8:rsob.180031. [PMID: 29794033 PMCID: PMC5990649 DOI: 10.1098/rsob.180031] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2018] [Accepted: 05/02/2018] [Indexed: 12/20/2022] Open
Abstract
Personalized medicine has become increasingly relevant to many medical fields, promising more efficient drug therapies and earlier intervention. The development of personalized medicine is coupled with the identification of biomarkers and classification algorithms that help predict the responses of different patients to different drugs. In the last 10 years, the Food and Drug Administration (FDA) has approved several genetically pre-screened drugs labelled as pharmacogenomics in the fields of oncology, pulmonary medicine, gastroenterology, haematology, neurology, rheumatology and even psychiatry. Clinicians have long cautioned that what may appear to be similar patient-reported symptoms may actually arise from different biological causes. With growing populations being diagnosed with different psychiatric conditions, it is critical for scientists and clinicians to develop precision medication tailored to individual conditions. Genome-wide association studies have highlighted the complicated nature of psychiatric disorders such as schizophrenia, bipolar disorder, major depression and autism spectrum disorder. Following these studies, association studies are needed to look for genomic markers of responsiveness to available drugs of individual patients within the population of a specific disorder. In addition to GWAS, the advent of new technologies such as brain imaging, cell reprogramming, sequencing and gene editing has given us the opportunity to look for more biomarkers that characterize a therapeutic response to a drug and to use all these biomarkers for determining treatment options. In this review, we discuss studies that were performed to find biomarkers of responsiveness to different available drugs for four brain disorders: bipolar disorder, schizophrenia, major depression and autism spectrum disorder. We provide recommendations for using an integrated method that will use available techniques for a better prediction of the most suitable drug.
Collapse
Affiliation(s)
- Shani Stern
- Laboratory of Genetics, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Sara Linker
- Laboratory of Genetics, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Krishna C Vadodaria
- Laboratory of Genetics, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Maria C Marchetto
- Laboratory of Genetics, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Fred H Gage
- Laboratory of Genetics, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| |
Collapse
|
48
|
Vanover KE, Davis RE, Zhou Y, Ye W, Brašić JR, Gapasin L, Saillard J, Weingart M, Litman RE, Mates S, Wong DF. Dopamine D 2 receptor occupancy of lumateperone (ITI-007): a Positron Emission Tomography Study in patients with schizophrenia. Neuropsychopharmacology 2019; 44:598-605. [PMID: 30449883 PMCID: PMC6333832 DOI: 10.1038/s41386-018-0251-1] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 10/05/2018] [Accepted: 10/19/2018] [Indexed: 12/20/2022]
Abstract
Dopamine D2 receptor occupancy (D2RO) is a key feature of all currently approved antipsychotic medications. However, antipsychotic efficacy associated with high D2RO is often limited by side effects such as motor disturbances and hyperprolactinemia. Lumateperone (ITI-007) is a first-in-class selective and simultaneous modulator of serotonin, dopamine and glutamate in development for the treatment of schizophrenia and other disorders. The primary objective of the present study was to determine D2RO at plasma steady state of 60 mg ITI-007, a dose that previously demonstrated antipsychotic efficacy in a controlled trial, administered orally open-label once daily in the morning for two weeks in patients with schizophrenia (N = 10) and after at least a two-week washout period from standard of care antipsychotics. D2RO was determined using positron emission tomography with 11C-raclopride as the radiotracer. Mean peak dorsal striatal D2RO was 39% at 60 mg ITI-007 occurring 1 h post-dose. Lumateperone was well-tolerated with a favorable safety profile in this study. There were no clinically significant changes in vital signs, ECGs, or clinical chemistry laboratory values, including prolactin levels. There were no adverse event reports of akathisia or other extrapyramidal motor side effects; mean scores on motor function scales indicated no motor disturbances with lumateperone treatment. This level of occupancy is lower than most other antipsychotic drugs at their efficacious doses and likely contributes to the favorable safety and tolerability profile of lumateperone with reduced risk for movement disorders and hyperprolactinemia. If approved, lumateperone may provide a new and safe treatment option for individuals living with schizophrenia.
Collapse
Affiliation(s)
| | - Robert E. Davis
- grid.429200.dIntra-Cellular Therapies, Inc., New York, NY USA
| | - Yun Zhou
- 0000 0001 2171 9311grid.21107.35Russell H. Morgan Department of Radiology and Radiological Sciences, Johns Hopkins University School of Medicine, Baltimore, MD USA
| | - Weiguo Ye
- 0000 0001 2171 9311grid.21107.35Russell H. Morgan Department of Radiology and Radiological Sciences, Johns Hopkins University School of Medicine, Baltimore, MD USA
| | - James R. Brašić
- 0000 0001 2171 9311grid.21107.35Russell H. Morgan Department of Radiology and Radiological Sciences, Johns Hopkins University School of Medicine, Baltimore, MD USA
| | - Lorena Gapasin
- 0000 0001 2171 9311grid.21107.35Russell H. Morgan Department of Radiology and Radiological Sciences, Johns Hopkins University School of Medicine, Baltimore, MD USA
| | - Jelena Saillard
- grid.429200.dIntra-Cellular Therapies, Inc., New York, NY USA
| | - Michal Weingart
- grid.429200.dIntra-Cellular Therapies, Inc., New York, NY USA
| | | | - Sharon Mates
- grid.429200.dIntra-Cellular Therapies, Inc., New York, NY USA
| | - Dean F. Wong
- 0000 0001 2171 9311grid.21107.35Russell H. Morgan Department of Radiology and Radiological Sciences, Johns Hopkins University School of Medicine, Baltimore, MD USA ,0000 0001 2171 9311grid.21107.35Departments of Psychiatry and Behavioral Sciences, Solomon H. Snyder Department of Neuroscience, Department of Neurology and Section of High Resolution Brain PET, JHU School of Medicine, Baltimore, MD USA ,0000 0001 2171 9311grid.21107.35Department of Environmental Health and Engineering, JHU Bloomberg School of Public Health, and Carey Business School, Johns Hopkins University, Baltimore, MD USA
| |
Collapse
|
49
|
Suzuki K, Harada A, Suzuki H, Capuani C, Ugolini A, Corsi M, Kimura H. Combined treatment with a selective PDE10A inhibitor TAK-063 and either haloperidol or olanzapine at subeffective doses produces potent antipsychotic-like effects without affecting plasma prolactin levels and cataleptic responses in rodents. Pharmacol Res Perspect 2018; 6. [PMID: 29417763 PMCID: PMC5817828 DOI: 10.1002/prp2.372] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Accepted: 10/22/2017] [Indexed: 01/23/2023] Open
Abstract
Activation of indirect pathway medium spiny neurons (MSNs) via promotion of cAMP production is the principal mechanism of action of current antipsychotics with dopamine D2 receptor antagonism. TAK‐063 [1‐[2‐fluoro‐4‐(1H‐pyrazol‐1‐yl)phenyl]‐5‐methoxy‐3‐(1‐phenyl‐1H‐pyrazol‐5‐yl)pyridazin‐4(1H)‐one] is a novel phosphodiesterase 10A inhibitor that activates both direct and indirect pathway MSNs through increasing both cAMP and cGMP levels by inhibition of their degradation. The activation of indirect pathway MSNs through the distinct mechanism of action of these drugs raises the possibility of augmented pharmacological effects by combination therapy. In this study, we evaluated the potential of combination therapy with TAK‐063 and current antipsychotics, such as haloperidol or olanzapine after oral administration. Combined treatment with TAK‐063 and either haloperidol or olanzapine produced a significant increase in phosphorylation of glutamate receptor subunit 1 in the rat striatum. An electrophysiological study using rat corticostriatal slices showed that TAK‐063 enhanced N‐methyl‐D‐aspartic acid receptor‐mediated synaptic responses in both direct and indirect pathway MSNs to a similar extent. Further evaluation using pathway‐specific markers revealed that coadministration of TAK‐063 with haloperidol or olanzapine additively activated the indirect pathway, but not the direct pathway. Combined treatment with TAK‐063 and either haloperidol or olanzapine at subeffective doses produced significant effects on methamphetamine‐ or MK‐801‐induced hyperactivity in rats and MK‐801‐induced deficits in prepulse inhibition in mice. TAK‐063 at 0.1 mg/kg did not affect plasma prolactin levels and cataleptic response from antipsychotics in rats. Thus, TAK‐063 may produce augmented antipsychotic‐like activities in combination with antipsychotics without effects on plasma prolactin levels and cataleptic responses in rodents.
Collapse
Affiliation(s)
- Kazunori Suzuki
- CNS Drug Discovery Unit, Research, Takeda Pharmaceutical Company Limited, Fujisawa, Kanagawa, Japan
| | - Akina Harada
- CNS Drug Discovery Unit, Research, Takeda Pharmaceutical Company Limited, Fujisawa, Kanagawa, Japan
| | - Hirobumi Suzuki
- CNS Drug Discovery Unit, Research, Takeda Pharmaceutical Company Limited, Fujisawa, Kanagawa, Japan
| | - Clizia Capuani
- Center for Drug Design & Discovery, Aptuit Inc., Verona, Italy
| | | | - Mauro Corsi
- Center for Drug Design & Discovery, Aptuit Inc., Verona, Italy
| | - Haruhide Kimura
- CNS Drug Discovery Unit, Research, Takeda Pharmaceutical Company Limited, Fujisawa, Kanagawa, Japan
| |
Collapse
|
50
|
Burk JA, Blumenthal SA, Maness EB. Neuropharmacology of attention. Eur J Pharmacol 2018; 835:162-168. [PMID: 30092180 PMCID: PMC6140347 DOI: 10.1016/j.ejphar.2018.08.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 07/19/2018] [Accepted: 08/03/2018] [Indexed: 11/21/2022]
Abstract
Early philosophers and psychologists defined and began to describe attention. Beginning in the 1950's, numerous models of attention were developed. This corresponded with an increased understanding of pharmacological approaches to manipulate neurotransmitter systems. The present review focuses on the knowledge that has been gained about these neurotransmitter systems with respect to attentional processing, with emphasis on the functions mediated within the medial prefrontal cortex. Additionally, the use of pharmacotherapies to treat psychiatric conditions characterized by attentional dysfunction are discussed. Future directions include developing a more comprehensive understanding of the neural mechanisms underlying attentional processing and novel pharmacotherapeutic targets for conditions characterized by aberrant attentional processing.
Collapse
Affiliation(s)
- Joshua A Burk
- Department of Psychological Sciences, College of William and Mary, Williamsburg, VA 23187, USA.
| | - Sarah A Blumenthal
- Department of Psychological Sciences, College of William and Mary, Williamsburg, VA 23187, USA
| | - Eden B Maness
- Department of Psychological Sciences, College of William and Mary, Williamsburg, VA 23187, USA
| |
Collapse
|