1
|
Roberto M, Spierling SR, Kirson D, Zorrilla EP. Corticotropin-Releasing Factor (CRF) and Addictive Behaviors. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2017; 136:5-51. [PMID: 29056155 PMCID: PMC6155477 DOI: 10.1016/bs.irn.2017.06.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Drug addiction is a complex disorder that is characterized by compulsivity to seek and take the drug, loss of control in limiting intake of the drug, and emergence of a withdrawal syndrome in the absence of the drug. The transition from casual drug use to dependence is mediated by changes in reward and brain stress functions and has been linked to a shift from positive reinforcement to negative reinforcement. The recruitment of brain stress systems mediates the negative emotional state produced by dependence that drives drug seeking through negative reinforcement mechanisms, defined as the "dark side" of addiction. In this chapter we focus on behavioral and cellular neuropharmacological studies that have implicated brain stress systems (i.e., corticotropin-releasing factor [CRF]) in the transition to addiction and the predominant brain regions involved. We also discuss the implication of CRF recruitment in compulsive eating disorders.
Collapse
Affiliation(s)
- Marisa Roberto
- The Scripps Research Institute, La Jolla, CA, United States.
| | | | - Dean Kirson
- The Scripps Research Institute, La Jolla, CA, United States
| | | |
Collapse
|
2
|
Barson JR, Leibowitz SF. Hypothalamic neuropeptide signaling in alcohol addiction. Prog Neuropsychopharmacol Biol Psychiatry 2016; 65:321-9. [PMID: 25689818 PMCID: PMC4537397 DOI: 10.1016/j.pnpbp.2015.02.006] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Revised: 01/30/2015] [Accepted: 02/09/2015] [Indexed: 11/27/2022]
Abstract
The hypothalamus is now known to regulate alcohol intake in addition to its established role in food intake, in part through neuromodulatory neurochemicals termed neuropeptides. Certain orexigenic neuropeptides act in the hypothalamus to promote alcohol drinking, although they affect different aspects of the drinking response. These neuropeptides, which include galanin, the endogenous opioid enkephalin, and orexin/hypocretin, appear to stimulate alcohol intake not only through mechanisms that promote food intake but also by enhancing reward and reinforcement from alcohol. Moreover, these neuropeptides participate in a positive feedback relationship with alcohol, whereby they are upregulated by alcohol intake to promote even further consumption. They contrast with other orexigenic neuropeptides, such as melanin-concentrating hormone and neuropeptide Y, which promote alcohol intake under limited circumstances, are not consistently stimulated by alcohol, and do not enhance reward. They also contrast with neuropeptides that can be anorexigenic, including the endogenous opioid dynorphin, corticotropin-releasing factor, and melanocortins, which act in the hypothalamus to inhibit alcohol drinking as well as reward and therefore counter the ingestive drive promoted by orexigenic neuropeptides. Thus, while multiple hypothalamic neuropeptides may work together to regulate different aspects of the alcohol drinking response, excessive signaling from orexigenic neuropeptides or inadequate signaling from anorexigenic neuropeptides can therefore allow alcohol drinking to become dysregulated.
Collapse
Affiliation(s)
- Jessica R. Barson
- Laboratory of Behavioral Neurobiology, The Rockefeller University, 1230 York Avenue, Box 278, New York, NY, 10065 USA
| | - Sarah F. Leibowitz
- Laboratory of Behavioral Neurobiology, The Rockefeller University, 1230 York Avenue, Box 278, New York, NY, 10065 USA
,Corresponding author at: Laboratory of Behavioral Neurobiology, The Rockefeller University, 1230 York Avenue, Box 278, New York, NY, 10065 USA. Tel.: +1 212 327 8378; fax: +1 212 327 8447
| |
Collapse
|
3
|
Shipp SL, Smith ML, Gilbert ER, Cline MA. Beta-cell-tropin is associated with short-term stimulation of food intake in chicks. Gen Comp Endocrinol 2015; 224:278-82. [PMID: 26248228 DOI: 10.1016/j.ygcen.2015.08.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Revised: 07/20/2015] [Accepted: 08/01/2015] [Indexed: 10/23/2022]
Abstract
Beta-cell-tropin, a peptide derived from adrenocorticotropic hormone, is an insulin secretagogue. When centrally injected, it increases food intake in rats, but its appetite-associated effects have not been reported in any other species. Thus, the present study was designed to evaluate the effects of central beta-cell-tropin on appetite-associated parameters in an alternative vertebrate model, the chick. Central injection of 2 or 4 nmol beta-cell-tropin increased food intake for 60 min. Whole hypothalamus was collected at 60 min post-injection, and real-time PCR performed to measure mRNA abundance of agouti-related peptide, corticotropin releasing factor, galanin, melanin concentrating hormone, neuropeptide Y, orexin, prohormone convertase 2, pro-opiomelanocortin, peroxisome proliferator-activated receptor γ, urotensin 2, and visfatin, not one of which were affected by beta-cell-tropin treatment. Results demonstrate that beta-cell-tropin is associated with short-term stimulation of food intake.
Collapse
Affiliation(s)
- Steven L Shipp
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Marissa L Smith
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Elizabeth R Gilbert
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Mark A Cline
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA.
| |
Collapse
|
4
|
Shipp SL, Yi J, Dridi S, Gilbert ER, Cline MA. The central anorexigenic mechanism of adrenocorticotropic hormone involves the caudal hypothalamus in chicks. Neuropeptides 2015; 53:29-35. [PMID: 26297349 DOI: 10.1016/j.npep.2015.07.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Revised: 07/03/2015] [Accepted: 07/31/2015] [Indexed: 10/23/2022]
Abstract
Adrenocorticotropic hormone (ACTH), consisting of 39 amino acids, is most well-known for its involvement in an organism's response to stress. It also participates in satiety, as exogenous ACTH causes decreased food intake in rats. However, its anorexigenic mechanism is not well understood in any species and its effect on appetite is not reported in the avian class. Thus, the present study was designed to evaluate central ACTH's effect on food intake and to elucidate the mechanism mediating this response using broiler chicks. Chicks that received intracerebroventricular (ICV) injection of 1, 2, or 4 nmol of ACTH reduced food intake, under both ad libitum and 180 min fasted conditions. Water intake was also reduced in ACTH-injected chicks under both feeding conditions, but when measured without access to feed it was not affected. Blood glucose was not affected in either feeding condition. Following ACTH injection, c-Fos immunoreactivity was quantified in key appetite-associated hypothalamic nuclei including the ventromedial hypothalamus (VMH), dorsomedial hypothalamus, lateral hypothalamus (LH), arcuate nucleus (ARC) and the parvo- and magno-cellular portions of the paraventricular nucleus. ACTH-injected chicks had increased c-Fos immunoreactivity in the VMH, LH, and ARC. Hypothalamus was collected at 1h post-injection, and real-time PCR performed to measure mRNA abundance of some appetite-associated factors. Neuropeptide Y, pro-opiomelanocortin, glutamate decarboxylase 1, melanocortin receptors 2-5, and urocortin 3 mRNA abundance was not affected by ACTH treatment. However, expression of corticotropin releasing factor (CRF), urotensin 2 (UT), agouti-related peptide (AgRP), and orexin (ORX), and melanocortin receptor 1 (MC1R) mRNA decreased in the hypothalamus of ACTH-injected chicks. In conclusion, ICV ACTH causes decreased food intake in chicks, and is associated with VMH, LH, and ARC activation, and a decrease in hypothalamic mRNA abundance of CRF, UT, AgRP, ORX and MC1R.
Collapse
Affiliation(s)
- Steven L Shipp
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Jiaqing Yi
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Sami Dridi
- Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR, USA
| | - Elizabeth R Gilbert
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Mark A Cline
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA.
| |
Collapse
|
5
|
Beckerman MA, Van Kempen TA, Justice NJ, Milner TA, Glass MJ. Corticotropin-releasing factor in the mouse central nucleus of the amygdala: ultrastructural distribution in NMDA-NR1 receptor subunit expressing neurons as well as projection neurons to the bed nucleus of the stria terminalis. Exp Neurol 2012; 239:120-32. [PMID: 23063907 DOI: 10.1016/j.expneurol.2012.10.009] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2012] [Revised: 09/21/2012] [Accepted: 10/05/2012] [Indexed: 12/16/2022]
Abstract
Corticotropin-releasing factor (CRF) and glutamate are critical signaling molecules in the central nucleus of the amygdala (CeA). Central amygdala CRF, acting via the CRF type 1 receptor (CRF-R1), plays an integral role in stress responses and emotional learning, processes that are generally known to involve functional NMDA-type glutamate receptors. There is also evidence that CRF expressing CeA projection neurons to the bed nucleus of the stria terminalis (BNST) play an important role in stress related behaviors. Despite the potentially significant interactions between CRF and NMDA receptors in the CeA, the synaptic organization of these systems is largely unknown. Using dual labeling high resolution immunocytochemical electron microscopy, it was found that individual somata and dendrites displayed immunoreactivity for CRF and the NMDA-NR1 (NR1) subunit in the mouse CeA. In addition, CRF-containing axon terminals contacted postsynaptic targets in the CeA, some of which also expressed NR1. Neuronal profiles expressing the CRF type 1 receptor (CRF-R1), identified by the expression of green fluorescent protein (GFP) in bacterial artificial chromosome (BAC) transgenic mice, also contained NR1, and GFP immunoreactive terminals formed synapses with NR1 containing dendrites. Although CRF and GFP were only occasionally co-expressed in individual somata and dendritic profiles, contacts between labeled axon terminals and dendrites were frequently observed. A combination of tract tracing and immunocytochemistry revealed that a population of CeA CRF neurons projected to the BNST. It was also found that CRF, or GFP expressing terminals directly contacted CeA-BNST projection neurons. These results indicate that the NMDA receptor is positioned for the postsynaptic regulation of CRF expressing CeA neurons and the modulation of signals conveyed by CRF inputs. Interactions between CRF and NMDA receptor mediated signaling in CeA neurons, including those projecting to the BNST, may provide the synaptic basis for integrating the experience of stress and relevant environmental stimuli with behaviors that may be of particular relevance to stress-related learning and the emergence of psychiatric disorders, including drug addiction.
Collapse
Affiliation(s)
- Marc A Beckerman
- Department of Neurology and Neuroscience, Weill Cornell Medical College, New York, NY 10065, USA
| | | | | | | | | |
Collapse
|
6
|
Logrip ML, Koob GF, Zorrilla EP. Role of corticotropin-releasing factor in drug addiction: potential for pharmacological intervention. CNS Drugs 2011; 25:271-87. [PMID: 21425881 PMCID: PMC3273042 DOI: 10.2165/11587790-000000000-00000] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Drug dependence is a chronically relapsing disorder that places an enormous strain on healthcare systems. For treatments to have long-term clinical value, they must address the causes of relapse. Corticotropin-releasing factor (CRF), a neuropeptide central to the stress response, may be one key to solving the relapse cycle. CRF is hypothesized to mediate the elevated anxiety and negative emotional states experienced during the development of dependence. This review summarizes existing data on changes in the CRF system produced by drugs of abuse and the function of CRF receptors in regulating behavioural responses to drugs of abuse, with an emphasis on drug dependence. Drug-induced changes in neuronal excitability throughout the limbic system, as well as the reversal of these neuroadaptations by CRF receptor antagonists, are also addressed. CRF receptor antagonists, by reducing the motivational effects of drug withdrawal and protracted abstinence, are proposed to be novel therapeutic targets for drug abuse and addiction.
Collapse
Affiliation(s)
- Marian L Logrip
- Committee on the Neurobiology of Addictive Disorders, The Scripps Research Institute, La Jolla, California 92037, USA.
| | | | | |
Collapse
|
7
|
Devidze N, Zhou Y, Ho A, Zhang Q, Pfaff DW, Kreek MJ. Steady-state methadone effect on generalized arousal in male and female mice. Behav Neurosci 2009; 122:1248-56. [PMID: 19045944 DOI: 10.1037/a0013276] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Methadone is widely used in treatment of short-acting opiate addiction. The on-off effects of opioids have been documented to have profound differences from steady-state opioids. The authors hypothesize that opioids play important roles in either generalized arousal (GA) or aversive state of arousal during opioid withdrawal. Both male and female C57BL6 mice received steady-state methadone (SSM) through osmotic pumps at 10 or 20 mg/kg/day, and GA was measured in voluntary motor activity, sensory responsivity, and contextual fear conditioning. SSM did not have any effect on those GA behaviors in either sex. Females had higher activity and less fear conditioning than males. The effects of SSM on stress-responsive orexin gene expression in the lateral hypothalamus (LH) and medial hypothalamus (MH, including perifornical and dorsomedial areas) were measured after the behavioral tests. Females showed significantly lower basal LH (but not MH) orexin mRNA levels than males. A panel of GA stressors increased LH orexin mRNA levels in females only; these increases were blunted by SSM at 20 mg/kg. In summary, SSM had no effect on GA behaviors. In females, SSM blunted the GA stress-induced LH orexin gene expression.
Collapse
Affiliation(s)
- N Devidze
- Laboratory of Neurobiology and Behavior, Rockefeller University, New York, NY 10065, USA
| | | | | | | | | | | |
Collapse
|
8
|
Brunson KL, Avishai-Eliner S, Baram TZ. ACTH treatment of infantile spasms: mechanisms of its effects in modulation of neuronal excitability. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2002; 49:185-97. [PMID: 12040892 PMCID: PMC3092432 DOI: 10.1016/s0074-7742(02)49013-7] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The efficacy of ACTH, particularly in high doses, for rapid and complete elimination of infantile spasms (IS) has been demonstrated in prospective controlled studies. However, the mechanisms for this efficacy remain unknown. ACTH promotes the release of adrenal steroids (glucocorticoids), and most ACTH effects on the central nervous system have been attributed to activation of glucocorticoid receptors. The manner in which activation of these receptors improves IS and the basis for the enhanced therapeutic effects of ACTH--compared with steroids--for this disorder are the focus of this chapter. First, a possible "common excitatory pathway," which is consistent with the many etiologies of IS and explains the confinement of this disorder to infancy, is proposed. This notion is based on the fact that all of the entities provoking IS activate the native "stress system" of the brain. This involves increased synthesis and release of the stress-activated neuropeptide, corticotropin-releasing hormone (CRH), in limbic, seizure-prone brain regions. CRH causes severe seizures in developing experimental animals, as well as limbic neuronal injury. Steroids, given as therapy or secreted from the adrenal gland upon treatment with ACTH, decrease the production and release of CRH in certain brain regions. Second, the hypothesis that ACTH directly influences limbic neurons via the recently characterized melanocortin receptors is considered, focusing on the effects of ACTH on the expression of CRH. Experimental data showing that ACTH potently reduces CRH expression in amygdala neurons is presented. This downregulation was not abolished by experimental elimination of steroids or by blocking their receptors and was reproduced by a centrally administered ACTH fragment that does not promote steroid release. Importantly, selective blocking of melanocortin receptors prevented ACTH-induced downregulation of CRH expression, providing direct evidence for the involvement of these receptors in the mechanisms by which ACTH exerts this effect. Thus, ACTH may reduce neuronal excitability in IS by two mechanisms of action: (1) by inducing steroid release and (2) by a direct, steroid-independent action on melanocortin receptors. These combined effects may explain the robust established clinical effects of ACTH in the therapy of IS.
Collapse
Affiliation(s)
- K L Brunson
- Departments of Pediatrics, Anatomy and Neurobiology, and Neurology, University of California, Irvine, Irvine, California 92697, USA
| | | | | |
Collapse
|
9
|
Brunson KL, Eghbal-Ahmadi M, Baram TZ. How do the many etiologies of West syndrome lead to excitability and seizures? The corticotropin releasing hormone excess hypothesis. Brain Dev 2001; 23:533-8. [PMID: 11701250 PMCID: PMC3107538 DOI: 10.1016/s0387-7604(01)00312-6] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
West syndrome (WS) is associated with diverse etiological factors. This fact has suggested that there must be a 'final common pathway' for these etiologies, which operates on the immature brain to result in WS only at the maturational state present during infancy. Any theory for the pathogenesis of WS has to account for the unique features of this disorder. For example, how can a single entity have so many etiologies? Why does WS arise only in infancy, even when a known insult had occurred prenatally, and why does it disappear? Why is WS associated with lasting cognitive dysfunction? And, importantly, why do these seizures--unlike most others--respond to treatment by a hormone, ACTH? The established hormonal role of ACTH in human physiology is to function in the neuroendocrine cascade of the responses to all stressful stimuli, including insults to the brain. As part of this function, ACTH is known to suppress the production of corticotropin releasing hormone (CRH), a peptide that is produced in response to diverse insults and stressors.The many etiologies of WS all lead to activation of the stress response, including increased production and secretion of the stress-neurohormone CRH. CRH has been shown, in infant animal models, to cause severe seizures and death of neurons in areas involved with learning and memory. These effects of CRH are restricted to the infancy period because the receptors for CRH, which mediate its action on neurons, are most abundant during this developmental period. ACTH administration is known to inhibit production and release of CRH via a negative feedback mechanism. Therefore, the efficacy of ACTH for WS may depend on its ability to decrease the levels of the seizure-promoting stress-neurohormone CRH.This CRH-excess theory for the pathophysiology of WS is consistent not only with the profile of ACTH effects, but also with the many different 'causes' of WS, with the abnormal ACTH levels in the cerebrospinal fluid of affected infants and with the spontaneous disappearance of the seizures. Furthermore, if CRH is responsible for the seizures, and CRH-mediated neuronal injury contributes to the worsened cognitive outcome of individuals with WS, then drugs which block the actions of CRH on its receptors may provide a better therapy for this disorder.
Collapse
Affiliation(s)
- Kristen L. Brunson
- Department of Pediatrics, University of California at Irvine, Irvine, CA, 92697-4475, USA
- Department of Anatomy and Neurobiology, University of California at Irvine, Irvine, CA, 92697-4475, USA
- Department of Neurology, University of California at Irvine, Irvine, CA, 92697-4475, USA
| | - Mariam Eghbal-Ahmadi
- Department of Pediatrics, University of California at Irvine, Irvine, CA, 92697-4475, USA
- Department of Anatomy and Neurobiology, University of California at Irvine, Irvine, CA, 92697-4475, USA
- Department of Neurology, University of California at Irvine, Irvine, CA, 92697-4475, USA
| | - Tallie Z. Baram
- Department of Pediatrics, University of California at Irvine, Irvine, CA, 92697-4475, USA
- Department of Anatomy and Neurobiology, University of California at Irvine, Irvine, CA, 92697-4475, USA
- Department of Neurology, University of California at Irvine, Irvine, CA, 92697-4475, USA
- Corresponding author. Tel.: +1-949-824-1063; fax: +1-949-824-1106. (T.Z. Baram)
| |
Collapse
|
10
|
Bellinger DL, Felten DL, Lorton D, Brouxhon S. Effects of interleukin-2 on the expression of corticotropin-releasing hormone in nerves and lymphoid cells in secondary lymphoid organs from the Fischer 344 rat. J Neuroimmunol 2001; 119:37-50. [PMID: 11525798 DOI: 10.1016/s0165-5728(01)00362-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
This study examined the influence of interleukin (IL)-2 on corticotropin releasing hormone (CRH) immunoreactivity in the Fischer 344 (F344) rat spleen. Rats were given either vehicle or 1, 10, 25, 50, 100, or 200 ng of human recombinant (hr)IL-2 by intraperitoneal (i.p.) injection, and were sacrificed 0.5, 1, 4, 12, or 24 h after treatment. Spleens and mesenteric lymph nodes were prepared for immunocytochemistry to localize CRH. In spleens from vehicle-treated animals, CRH immunoreactivity was present in several types of cells of the immune system, but CRH(+) nerves were not observed in either spleens or lymph nodes from vehicle-treated animals. Treatment with IL-2 induced CRH expression in nerves in the spleen in a dose- and time-dependent manner. CRH(+) nerves were not found in the mesenteric lymph nodes after IL-2 treatment, instead a dramatic time- and dose-dependent accumulation of CRH(+) cells (resembling small lymphocytes and large granular mononuclear cells) in the cortex and medulla. These findings indicate that IL-2 stimulates the synthesis of CRH in nerves that innervate the F344 rat spleen, and promote the appearance of CRH(+) immunocytes into draining mesenteric lymph nodes.
Collapse
Affiliation(s)
- D L Bellinger
- Center for Neuroimmunology, Department of Neurobiology and Anatomy, Loma Linda University School of Medicine, Box 603, 11021 Campus Street, Loma Linda, CA 92352, USA.
| | | | | | | |
Collapse
|
11
|
Bellinger DL, Brouxhon SM, Lubahn C, Tran L, Kang JI, Felten DL, Lorton D. Strain differences in the expression of corticotropin-releasing hormone immunoreactivity in nerves that supply the spleen and thymus. Neuroimmunomodulation 2001; 9:78-87. [PMID: 11549889 DOI: 10.1159/000049010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The existence of nerve fibers containing corticotropin-releasing hormone (CRH) immunoreactivity in primary and secondary lymphoid organs from three strains of young adult male rats was examined. Spleens and thymuses from Fischer 344 (F344), Sprague-Dawley (SD) and Lewis (LEW) rats were prepared for immunocytochemistry using antisera directed against CRH. In F344 and SD rats, we were unable to demonstrate CRH-immunoreactive nerves in either the thymus or the spleen. Despite the lack of CRH-containing nerves, CRH immunoreactivity was present in pleotropic cells in the septum, cortex and medulla of the thymus, and in the red and white pulp of spleens from F344 and SD rats. In contrast, CRH+ nerves were found in thymuses and spleens from LEW rats. CRH+ nerves coursed in the interlobular septa, capsule, cortex and medulla of the LEW rat thymus. Large CRH-immunoreactive nerve bundles were present in the hilar region of the LEW rat spleen, and individual CRH+ fibers coursed in the capsule, trabeculae, red pulp, venous sinuses and marginal zone of the white pulp of the spleen. These findings indicate strain differences in neurotransmitter-specific nerves that innervate the rat spleen and thymus under basal conditions.
Collapse
Affiliation(s)
- D L Bellinger
- Center for Neuroimmunology, Loma Linda University School of Medicine, Loma Linda, Calif., USA.
| | | | | | | | | | | | | |
Collapse
|
12
|
Brunson KL, Khan N, Eghbal-Ahmadi M, Baram TZ. Corticotropin (ACTH) acts directly on amygdala neurons to down-regulate corticotropin-releasing hormone gene expression. Ann Neurol 2001. [DOI: 10.1002/ana.66] [Citation(s) in RCA: 91] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
13
|
Brouxhon SM, Prasad AV, Joseph SA, Felten DL, Bellinger DL. Localization of corticotropin-releasing factor in primary and secondary lymphoid organs of the rat. Brain Behav Immun 1998; 12:107-22. [PMID: 9646936 DOI: 10.1006/brbi.1998.0520] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Cells of the immune system produce a variety of neuropeptides or peptide hormones, either constitutively or upon induction, and possess specific neuropeptide receptors that display ligand-receptor interactions similar to those described in the central nervous system (CNS). These findings suggest that specific subsets of lymphoid cells can produce and respond to peptides previously thought to be principally neural mediators. Recently, corticotropin releasing factor (CRF) mRNA was detected in the rat thymus and spleen, although the cells that synthesize CRF were not identified. We examined the localization of CRF and its mRNA in the rat spleen, thymus, and mesenteric lymph nodes using immunocytochemistry (ICC) and in situ hybridization (ISH), respectively. Immunoreactive CRF was present in cells in the marginal zone and red pulp of the spleen, in connective tissue septa and the subcapsular region of the thymus, and in the medullary cords and sinuses of the mesenteric lymph nodes. Dual ICC/ISH for CRF and its mRNA, respectively, demonstrated CRF mRNA over CRF-immunoreactive cells, suggesting CRF synthesis. Double-label ICC for CRF and markers for specific immunocyte subsets suggest that CRF+ cells in the spleen and thymus are macrophages. CRF+ cells in primary and secondary lymphoid organs reside in compartments that are innervated by sympathetic nerves, and some cells appears to be contacted by noradrenergic sympathetic nerve fibers, suggesting that CRF release may be influenced by the sympathetic nervous system, as it is in the hypothalamo-pituitary-adrenal axis. The presence of CRF in organs of the immune system suggests that this neuropeptide may modulate immune functions after paracrine release.
Collapse
Affiliation(s)
- S M Brouxhon
- Department of Neurobiology & Anatomy, University of Rochester School of Medicine, New York 14642, USA
| | | | | | | | | |
Collapse
|
14
|
Coveñas R, de León M, Narváez JA, Aguirre JA, Tramu G, González-Barón S. ACTH/CLIP immunoreactivity in the cat brain stem. Peptides 1997; 18:965-70. [PMID: 9357053 DOI: 10.1016/s0196-9781(97)00048-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The distribution of adrenocorticotropin hormone/corticotropin-like intermediate lobe peptide was studied in the cat brain stem, using an indirect immunoperoxidase technique. No immunoreactive cell bodies were observed. However, a high density of immunoreactive fibers was found in the periaqueductal gray, the dorsal nucleus of the raphe, the locus coeruleus, and the marginal nucleus of the brachium conjunctivum. A moderate density was found in the central linear nucleus, the central tegmental field, the Kolliker-Fuse nucleus, the inferior central nucleus, and the postpyramidal nucleus of the raphe. A low density was found in the superior and inferior colliculi, the interpeduncular nucleus, the nucleus sagulum, the superior central nucleus, the cuneiform nucleus, the accessory dorsal tegmental nucleus, the nucleus of the solitary tract, the dorsal motor nucleus of the vagus, and the paralemniscal, magnocellular, gigantocellular, and lateral tegmental fields. Moreover, single immunoreactive fibers were observed in numerous nuclei of the cat brain stem. In comparison with previous studies carried out in the same region of the cat, as well as the rat and the human, our results point to a more widespread distribution of adrenocorticotropin hormone/corticotropin-like intermediate lobe peptide immunoreactive structures in the cat brain stem. This widespread distribution indicates that the peptide might be involved in several physiological functions of the cat brain stem.
Collapse
Affiliation(s)
- R Coveñas
- Departamento de Fisiología y Farmacología, Universidad de Málaga, Facultad de Medicina, Spain.
| | | | | | | | | | | |
Collapse
|
15
|
Lan CT, Wen CY, Tan CK, Ling EA, Shieh JY. Ultrastructural study of phenylethanolamine-N-methyltransferase, corticotropin-releasing factor and neurotensin immunoreactive neurons in the external cuneate nucleus of the gerbil. Brain Res 1996; 711:211-22. [PMID: 8680865 DOI: 10.1016/0006-8993(95)01398-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The present study examined the existence of catecholamine-, corticotropin-releasing factor (CRF)- and neurotensin (NT)-containing neurons in the external cuneate nucleus (ECN) of the gerbil using single label pre-embedding immunocytochemistry in an attempt to shed light on the increasing evidence for autonomic involvement of the ECN. Peroxidase immunoreactivity of phenylethanolamine-N-methyl-transferase (PNMT), CRF or NT was identified in the heterogeneous population of the ECN neurons characterized by a deeply infolded nucleus. The label was localized in their somata, dendrites, myelinated axons and axon terminals. The immunolabelled dendrites were contacted by spherical (S) and flattened (F) types of presynaptic boutons containing spherical and flattened synaptic vesicles, respectively. The PNMT-labelled dendrites, however, were postsynaptic to an additional type of axon terminals containing pleomorphic (P) synaptic vesicles. Among the immunoreactive axon terminals, the PNMT-labelled boutons consisted of two types: S and F; in the CRF- and NT-labelled axon terminals, only the S type was observed. The catecholamine-containing ECN neurons differed from the CRF- and NT-immunoreactive neurons in their synaptic organization. The latter two were considered to be of the same cell population because of their similarities in ultrastructural features and synaptic relations. In view of a high frequency (48% for PNMT, 50% for CRF and 46% for NT) of the F-typed boutons associated with the three categories of immunolabelled neurons in the ECN, it is possible that they are under considerable inhibitory control. The presence of catecholamine, CRF and NT in the ECN suggests that the nucleus may be involved in the integration of proprioception-, exercise- or stress-evoked autonomic responses.
Collapse
Affiliation(s)
- C T Lan
- Department of Anatomy, College of Medicine, National Taiwan University, Taipei, Taiwan
| | | | | | | | | |
Collapse
|
16
|
Abstract
Efferent projections of the commissural nucleus tractus solitarius (cNTS0 in the region containing opiocortin-immunoreactive (-IR) neurons were identified using Phaseolus vulgaris leucoagglutinin (PHA-L). Efferents were identified in the bed nucleus of the stria terminalis, preoptic area, amygdala, hypothalamus, periaqueductal gray, parabrachial nucleus, locus coeruleus, medullary catecholaminergic groups, and NTS. The PHA-L-IR varicosities in lateral parabrachial nucleus were identified in close association with CRF-IR and enkephalin-IR cells. These data on cNTS projections are consistent with our previous immunocytochemical and lesion studies on opiocortin connectivity and provide anatomical evidence that neurons in the cNTS may influence cardiovascular and sympathetic nervous system function via connectivity with nuclei in the lateral brain stem.
Collapse
Affiliation(s)
- L J Sim
- Neuroendocrine Unit, University of Rochester School of Medicine and Dentistry, NY 14642
| | | |
Collapse
|
17
|
Ragsdale CW, Graybiel AM. Compartmental organization of the thalamostriatal connection in the cat. J Comp Neurol 1991; 311:134-67. [PMID: 1719043 DOI: 10.1002/cne.903110110] [Citation(s) in RCA: 89] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The compartmental organization of the thalamostriatal connection in the cat was studied by labelling thalamic fibers in anterograde axonal transport experiments and comparing their striatal distributions with the arrangement of striosomes and matrix tissue identified by histochemical staining methods. When analyzed according to their principal compartmental targets in dorsal striatum, the thalamic deposits indicated the existence of medial and lateral divisions within the thalamostriatal projection. Nuclei of the medial division, which includes parts of the thalamic midline, projected primarily to striosomes. The lateral division, which embraces the anterior and posterior intralaminar groups, the rostral ventral tier nuclei, and parts of the posterior lateral nuclear complex, predominantly innervated matrix tissue. In the dorsal division of the nucleus accumbens, the medial system preferentially terminated in zones that stain heavily in butyrylcholinesterase and substance P preparations, but fibers from both the medial and the lateral systems largely avoided the histochemically marked compartments such as the border islands of the nucleus accumbens that are seen elsewhere in the ventral striatum. Medial division: Thalamic deposits involving the paraventricular and rhomboid nuclei of the thalamic midline elicited labelling of striosomes and, invariably, ventral extrastriosomal matrix, the nucleus accumbens, and the amygdala. This projection was topographically organized: rostral thalamic deposits elicited labelling in the medial caudate nucleus and the medial nucleus accumbens. More caudal injections produced more lateral labelling. Lateral division: The lateral division is composed of at least three projection systems distinguished by their patterns of matrix innervation. Deposits involving the anterior intralaminar nuclei and the striatally projecting cells located lateral to the stria medullaris (anterior intralaminar complex) produced an even, diffuse labelling of the matrix tissue and weak labelling of the striosomes. Injections placed in the ventroanterior, ventrolateral, and ventromedial nuclei (rostral ventral complex) elicited fibrous labelling of matrix tissue that often showed nonstriosomal inhomogeneities. Deposits involving the centromedian and parafascicular nuclei (posterior intralaminar complex) produced a highly variable pattern of matrix labelling that included both homogeneous and decidedly patchy innervations of the extrastriosomal matrix. Each of these lateral thalamostriatal systems showed a similar spatial organization, whereby dorsoventral and mediolateral thalamic axes were roughly preserved in the projection to striatum.
Collapse
Affiliation(s)
- C W Ragsdale
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge 02139
| | | |
Collapse
|
18
|
L'Héreault S, Barden N. Biphasic regulation of proopiomelanocortin messenger RNA concentrations by corticotropin-releasing factor in primary cultures of rat hypothalamic neurons. Neurosci Lett 1991; 128:207-10. [PMID: 1945039 DOI: 10.1016/0304-3940(91)90262-r] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Primary cultures of rat hypothalamic neurons in which a 1.1-kb proopiomelanocortin (POMC) mRNA can be detected, were incubated with corticotropin-releasing factor (CRF) for periods of up to 84 h. A cyclic modulation of POMC mRNA concentrations by CRF was noted. A rapid acute inhibition of POMC mRNA levels after 1 h of exposure was followed by a transient stimulation and then by a more prolonged inhibition which reached a nadir after 48 h.
Collapse
Affiliation(s)
- S L'Héreault
- Molecular Psychogenetics Laboratory, CHUL Research Centre, Ste Foy, Qué., Canada
| | | |
Collapse
|
19
|
l'Héreault S, Barden N. Regulation of proopiomelanocortin messenger RNA concentrations by opioid peptides in primary cell cultures of rat hypothalamus. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 1991; 10:115-21. [PMID: 1649365 DOI: 10.1016/0169-328x(91)90101-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The effects of opioid peptides on a 1.1-kb long proopiomelanocortin messenger RNA (POMC mRNA) have been investigated in rat hypothalamic cells maintained in culture. Most opioid peptides exerted an inhibitory control on POMC mRNA steady-state concentrations. beta-Endorphin caused a 65% maximal inhibitory effect (IC50 = 6.1 x 10(-9) M) while slightly less inhibition was caused by Met- and Leu-enkephalin, dynorphin A and DADLE ([D-Ala2,D-Leu5] enkephalin). The effects of beta-endorphin and of Met-enkephalin were completely reversed by the delta opioid antagonist ICI 174,864 while the kappa-receptor specific antagonist binaltorphimine or the sigma-receptor specific antagonist DTG (1,3-di(2-tolyl) guanidine) respectively blocked the inhibitory actions of dynorphin A and of DADLE. The mu-receptor specific agonist DAGO ([D-Ala2,N-Me-Phe4,Gly5-OL]enkephalin) did not affect POMC mRNA levels. The failure of the dopaminergic D2 antagonist haloperidol to modify the inhibitory effects of opioid peptides argues for a direct inhibitory opioid peptide modulation of hypothalamic POMC mRNA levels mediated by the delta-, kappa- and sigma- (but not mu-) receptors in vivo.
Collapse
Affiliation(s)
- S l'Héreault
- Molecular Psychogenetics Laboratory, Laval University, Ste Foy, Que., Canada
| | | |
Collapse
|
20
|
L'Héreault S, Barden N. Monoaminergic regulation of proopiomelanocortin messenger RNA concentrations in primary cell cultures of rat hypothalamus. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 1991; 9:327-32. [PMID: 1710012 DOI: 10.1016/0169-328x(91)90080-h] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The effect of monoaminergic neurotransmitters on a 1.1-kb proopiomelanocortin messenger RNA (POMC mRNA) detected in rat hypothalamic cells maintained in culture has been evaluated. Serotonin caused a 15% increase in POMC mRNA levels, an effect which was blocked by the 5-HT2 receptor antagonist ketanserin. Dopamine markedly decreased POMC mRNA levels in a dose related manner. Haloperidol and the selective D2 antagonist (+)-butaclamol prevented the inhibitory effects of both dopamine and the selective D2 agonist, 2-bromo-alpha-ergocryptine. The selective dopamine D1 receptor agonist, SKF 38393, as well as norepinephrine and acetylcholine did not affect POMC mRNA levels. It is concluded that serotonin exerts a positive control and dopamine a negative control on POMC mRNA concentrations in primary cultures of rat hypothalamic neurons. The negative effect of dopamine appears to be exerted via D2 receptor-mediated mechanism.
Collapse
MESH Headings
- 2,3,4,5-Tetrahydro-7,8-dihydroxy-1-phenyl-1H-3-benzazepine/pharmacology
- Acetylcholine/pharmacology
- Animals
- Bromocriptine/pharmacology
- Butaclamol/pharmacology
- Cells, Cultured
- Dexamethasone/pharmacology
- Dopamine/pharmacology
- Embryo, Mammalian
- Haloperidol/pharmacology
- Hypothalamus/drug effects
- Hypothalamus/physiology
- Kinetics
- Norepinephrine/pharmacology
- Nucleic Acid Hybridization
- Pro-Opiomelanocortin/genetics
- RNA Probes
- RNA, Messenger/drug effects
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Rats
- Rats, Inbred Strains
Collapse
Affiliation(s)
- S L'Héreault
- Molecular Psychogenetics Laboratory, CHUL Research Centre, Ste Foy, Que. Canada
| | | |
Collapse
|
21
|
Chastrette N, Cespuglio R, Jouvet M. Proopiomelanocortin (POMC)-derived peptides and sleep in the rat. Part 1--Hypnogenic properties of ACTH derivatives. Neuropeptides 1990; 15:61-74. [PMID: 1981927 DOI: 10.1016/0143-4179(90)90042-w] [Citation(s) in RCA: 63] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The sleep-wake effects of the proopiomelanocortin (POMC)-derived peptides, i.c.v. injected, are reported. Adrenocorticotropic hormone (ACTH, 1 microgram) induces an awakening effect, while its two derivatives, desacetyl-alpha-MSH (des-alpha-MSH, 1ng) and corticotropin-like intermediate lobe peptide (CLIP, 10 ng), are respectively able to increase slow wave sleep (SWS) and paradoxical sleep (PS); the hypnogenic effect of CLIP is also observed in hypophysectomized rats. Furthermore, two hypothalamic factors known to be involved in the control of POMC derivatives were also injected; MSH inhibiting Factor (MIF) does not influence the vigilance states, while Corticotropin Releasing Factor (CRF, 1 microgram) increases the waking state. Finally, some preliminary results, obtained with a restraint stress and suggesting a possible interrelation between stress, sleep and POMC derivatives, are discussed.
Collapse
Affiliation(s)
- N Chastrette
- Department of Experimental Medicine, INSERM U52, CNRS UA1195 Claude-Bernard University, Lyon, France
| | | | | |
Collapse
|
22
|
Liposits Z. Ultrastructural immunocytochemistry of the hypothalamic corticotropin releasing hormone synthesizing system. Anatomical basis of neuronal and humoral regulatory mechanisms. PROGRESS IN HISTOCHEMISTRY AND CYTOCHEMISTRY 1990; 21:1-98. [PMID: 2377733 DOI: 10.1016/s0079-6336(11)80058-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Z Liposits
- Department of Anatomy, University Medical School, Pécs, Hungary
| |
Collapse
|
23
|
Abstract
Neural input to distinct and separate populations of CRF-immunoreactive (ir) neurons in rat forebrain was investigated. The relationship of opiocortin and/or catecholamine fibers to different groups of CRF-containing neurons was elucidated using single and dual labeling immunocytochemical procedures. Antibodies to CRF, ACTH(1-39) and the catecholamine synthesizing enzymes which are tyrosine hydroxylase (TH), dopamine beta-hydroxylase (DBH) and phenylethanolamine-N-methyltransferase (PNMT) were utilized. CRF-ir neuronal populations are localized predominantly in the following regions of rat forebrain: bed nucleus of stria terminalis, medial preoptic area, suprachiasmatic and paraventricular (PVN) nuclei of hypothalamus and central nucleus of amygdala. The present study demonstrates that CRF-ir neuronal groups in rat forebrain are not homogenous in that each population received a characteristic neural input. CRF-ir neurons in the PVN received a dense input of ACTH-, TH-, DBH-, and PNMT-ir fibers. In contrast, CRF-ir neurons in the central nucleus of amygdala are colocalized predominantly with TH-ir fiber/terminals. In the ventral portion of the bed nucleus of stria terminalis, TH-, ACTH- and DBH-ir fibers are demonstrated in close anatomical proximity to CRF-containing perikarya; in the dorsal portion of this nucleus, TH-ir fiber/terminals are colocalized with CRF-ir neurons. In the suprachiasmatic nucleus, neither opiocortin- nor catecholamine-immunostained fibers are observed in association with CRF-ir neurons. Our data suggest that there is a transmitter specificity of neural input to each CRF-ir neuronal population in rat forebrain.
Collapse
Affiliation(s)
- P J Hornby
- Neuroendocrine Unit, University of Rochester, NY 14642
| | | |
Collapse
|
24
|
Ju G, Han ZS. Coexistence of corticotropin releasing factor and neurotensin within oval nucleus neurons in the bed nuclei of the stria terminalis in the rat. Neurosci Lett 1989; 99:246-50. [PMID: 2657507 DOI: 10.1016/0304-3940(89)90454-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Within the oval nucleus of the bed nuclei of the stria terminalis of the rat, corticotropin releasing factor (CRF)- and neurotensin (NT)-immunoreactive (ir) neurons were densely and evenly distributed. A substantial number of these neurons showed both CRF and NT immunoreactivities.
Collapse
Affiliation(s)
- G Ju
- Department of Neurobiology, Fourth Military Medical University, Xian, People's Republic of China
| | | |
Collapse
|
25
|
Ju G, Swanson LW, Simerly RB. Studies on the cellular architecture of the bed nuclei of the stria terminalis in the rat: II. Chemoarchitecture. J Comp Neurol 1989; 280:603-21. [PMID: 2468695 DOI: 10.1002/cne.902800410] [Citation(s) in RCA: 179] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
In a companion paper (Ju and Swanson; J. Comp. Neurol. 280:587-602, '89) we described a parcellation scheme for the bed nuclei of the stria terminalis (BST) that was based on cytoarchitectonic criteria. In the work reported here, antisera to the neuropeptides corticotropin-releasing hormone, neurotensin, galanin, substance P, and cholecystokinin were used to determine the extent to which immunostained neuronal cell bodies and presumed terminal fields are correlated with this cytoarchitectonic scheme in the adult male rat. The results confirm the validity of the cytoarchitectonic parcellation and provide additional chemoarchitectonic criteria for determining the (as yet still somewhat arbitrarily defined) border between the BST and the ventrally adjacent preoptic region, for distinguishing between the anterior and posterior divisions of the BST, and for identifying and distinguishing between the particular cell groups or nuclei within each division. The projections of each neuropeptide-containing cell group in various parts of the BST remain to be determined, as do the precise origins of the localized immunoreactive terminal fields identified here.
Collapse
Affiliation(s)
- G Ju
- Howard Hughes Medical Institute, Salk Institute for Biological Studies, La Jolla, California 92037
| | | | | |
Collapse
|
26
|
Buma P, Veening J, Nieuwenhuys R. Ultrastructural Characterization of Adrenocorticotrope Hormone (ACTH) Immunoreactive Fibres in the Mesencephalic Central Grey Substance of the Rat. Eur J Neurosci 1989; 1:659-672. [PMID: 12106124 DOI: 10.1111/j.1460-9568.1989.tb00372.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The fine structural localization of fibres immunoreactive for the adrenocorticotrope hormone (ACTH) was studied in the mesencephalic central grey substance (MCG) of the male Wistar rat. Light microscopically, varicose ACTH-immunoreactive fibres were found throughout the MCG in a dorsal, lateral and ventral, periventricular position. Electron microscopically, the immunoreactivity was most prominent in the direct vicinity of electron-dense secretory granules in axonal varicosities, and, although to a lower degree, around other cytoplasmic organelles such as electron-lucent synaptic vesicles, mitochondria and microtubules. With serial section analysis two types of ACTH-immunoreactive varicosity were discerned. The first type is large, contains many, small electron-lucent synaptic vesicles, that are located in the vicinity of a morphologically well-defined synaptic contact. In this type of varicosity, large dense-core secretory granules are scarce. Immunoreactivity is low or absent, particularly near the active zone. The second type is strongly immunoreactive. It always contains many large, dense-core secretory granules; electron-lucent vesicles are rare. The smaller varicosities of this type never make synaptic contacts, but a few of the larger varicosities have synaptic contacts with dendrites of MCG cells.
Collapse
Affiliation(s)
- Pieter Buma
- Department of Anatomy and Embryology, Faculty of Medicine and Dentistry, University of Nijmegen, PO Box 9100, 6500 HB Nijmegen, The Netherlands
| | | | | |
Collapse
|
27
|
Knigge KM, Piekut DT, Abood LG, Joseph SA, Michael GJ, Xin L, Berlove DJ. Immunocytochemistry of receptors using anti-idiotypic antibodies. Methods Enzymol 1989; 178:212-21. [PMID: 2557524 DOI: 10.1016/0076-6879(89)78017-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
28
|
Fabbri A, Jannini EA, Gnessi L, Moretti C, Ulisse S, Franzese A, Lazzari R, Fraioli F, Frajese G, Isidori A. Endorphins in male impotence: evidence for naltrexone stimulation of erectile activity in patient therapy. Psychoneuroendocrinology 1989; 14:103-11. [PMID: 2543996 DOI: 10.1016/0306-4530(89)90059-0] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
In the present study we evaluated whether naltrexone administration could stimulate sexual function in 30 male patients, ages 25 to 50 years, with idiopathic impotence of at least one year's duration and not of organic etiology. The patients received naltrexone (50 mg/day) or placebo, on a random basis for two weeks. Sexual performance, expressed as the number of full coitus/week, was assessed before (time 0) and during (on days 7 and 15) each treatment. The naltrexone therapy significantly increased the number of successful coitus compared to placebo after 7 and 15 days of treatment: improvement of sexual performance was evident in 11 out of the 15 treated patients. All the patients experienced a significant increase in morning and spontaneous full penile erections/week. No significant side effects were reported. Endocrine studies revealed no significant modification of plasma LH, FSH or testosterone by naltrexone, suggesting that the positive effect of the drug on sexual behavior was exerted at a central level. A two-month follow-up, at which time patients were off treatment, erectile capacity had returned to baseline in 10 patients, while five reported complete recovery of their sexual ability. We hypothesize that an alteration in central opioid tone is present in idiopathic impotence and is involved in the impairment of sexual behavior.
Collapse
Affiliation(s)
- A Fabbri
- Institute of V Clinica Medica, University of Rome La Sapienza, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Liposits Z, Sievers L, Paull WK. Neuropeptide-Y and ACTH-immunoreactive innervation of corticotropin releasing factor (CRF)-synthesizing neurons in the hypothalamus of the rat. An immunocytochemical analysis at the light and electron microscopic levels. HISTOCHEMISTRY 1988; 88:227-34. [PMID: 2835333 DOI: 10.1007/bf00570278] [Citation(s) in RCA: 146] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Corticotropin releasing factor (CRF), synthesized in neurons of the hypothalamic paraventricular nucleus (PVN), is one of the main regulators of the pituitary-adrenal cortex endocrine axis. In order to elucidate the possible involvement of the central neuropeptide-Y (NPY)- and adrenocorticotroph hormone (ACTH)-immunoreactive (IR) systems in the innervation of hypophysiotrophic CRF-synthesizing neurons, immunocytochemical double labelling studies were conducted in the hypothalamus of the rat to localize CRF-synthesizing neurons, as well as neuronal fibers exhibiting NPY and ACTH-immunoreactivity, respectively. The parvocellular subnuclei of the PVN received an intense NPY- and ACTH-IR innervation. At the light microscopic level, these peptidergic axons were associated with the dendrites and perikarya of CRF-IR neurons. Ultrastructural analysis revealed that NPY- and ACTH-IR axons established synaptic specializations with parvocellular neurons expressing CRF-immunoreactivity. These findings indicate that both neuropeptide-Y and adrenocorticotroph hormone containing neuronal systems of the brain are capable of influencing adrenal function via synaptic interactions with hypophysiotrophic CRF-synthesizing neurons. The data also support the concept that NPY and ACTH might be utilized as neuromodulators within the PVN.
Collapse
Affiliation(s)
- Z Liposits
- Department of Anatomy, University of Missouri-Columbia 65212
| | | | | |
Collapse
|
30
|
Pilcher WH, Joseph SA, McDonald JV. Immunocytochemical localization of pro-opiomelanocortin neurons in human brain areas subserving stimulation analgesia. J Neurosurg 1988; 68:621-9. [PMID: 2832554 DOI: 10.3171/jns.1988.68.4.0621] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The distribution of pro-opiomelanocortin (beta-endorphin, adrenocorticotropic hormone, and 16-K) neurons and fiber projections was evaluated immunocytochemically in 50-mu thick cryostat sections of human diencephalon and midbrain. Specific attention was focused upon regions in which deep brain stimulation has been most effective in the relief of selected chronic pain syndromes. This study revealed a remarkable, nearly point-to-point correlation between clinically effective stimulation sites and the distribution of pro-opiomelanocortin fibers in the human brain. Of particular interest was the dense innervation of the periventricular stratum along the third ventricle, the parafascicular centromedian region of the thalamus, and the periaqueductal gray matter of the midbrain. This study provides anatomical support for the hypothesis that beta-endorphin-containing neuronal systems may contribute to stimulation analgesia in the human.
Collapse
Affiliation(s)
- W H Pilcher
- Division of Neurosurgery, University of Rochester School of Medicine and Dentistry, New York
| | | | | |
Collapse
|
31
|
Kitahama K, Luppi PH, Tramu G, Sastre JP, Buda C, Jouvet M. Localization of CRF-immunoreactive neurons in the cat medulla oblongata: their presence in the inferior olive. Cell Tissue Res 1988; 251:137-43. [PMID: 3277711 DOI: 10.1007/bf00215458] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Corticotropin releasing factor (CRF)-immunoreactive (IR) perikarya, visualized by the indirect immunoperoxidase method in colchicine-pretreated cats, were localized in many discrete regions of the medulla oblongata. They were found mainly in the dorsal aspect and midline of the medulla oblongata, and more rostrally in the ventrolateral portion. Our results also demonstrated CRF-IR neurons in the rostrocaudal extent of the inferior olive, probably projecting to the cerebellar cortex via thick axons visualized along the lateral edge of the medulla. CRF-IR olivary cells were also found in the pontine cat from which the forebrain was removed, but neither in hypophysectomized nor adrenalectomized cats.
Collapse
Affiliation(s)
- K Kitahama
- Département de Médecine Expérimentale, INSERM U52, CNRS UA1195, Faculté de Médecine, Lyon, France
| | | | | | | | | | | |
Collapse
|
32
|
Joseph SA, Michael GJ. Efferent ACTH-IR opiocortin projections from nucleus tractus solitarius: a hypothalamic deafferentation study. Peptides 1988; 9:193-201. [PMID: 2834701 DOI: 10.1016/0196-9781(88)90027-7] [Citation(s) in RCA: 57] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The distribution of opiocortin (OR-ir) immunoreactive fibers was examined immunocytochemically throughout the brain in rats following surgical isolation of the arcuate opiocortin-ir neuronal pool in the medial basal hypothalamus (MBH). Fibers which emanate from this pool were completely severed and thus eliminated from the rest of the brain, leaving intact those which can be identified immunocytochemically as opiocortin-ir projections from the medullary pool located in the nucleus tractus solitarius (NTS). These studies reveal a unique organizational pattern of proopiomelanocortin (POMC) peptidergic neuronal systems and demonstrate that several pontine and medullary regions receive projections from both the hypothalamic (arcuate) and medullary (NTS) opiocortin-ir perikarya. Comparative analyses of deafferented and control brains reveal that certain brainstem autonomic centers such as parabrachial (PB), locus coeruleus (LC), nucleus paragiganticellularis (PGi) are recipients of fibers which emanate from both arcuate and NTS opiocortin-ir perikarya. Areas which receive projections from arcuate opiocortin-ir neurons alone include forebrain and hypothalamic nuclei as well as the periaqueductal grey.
Collapse
Affiliation(s)
- S A Joseph
- Neuroendocrine Unit, University of Rochester, School of Medicine and Dentistry, NY 14642
| | | |
Collapse
|
33
|
Iyengar S, Kim HS, Wood PL. Mu-, delta-, kappa- and epsilon-opioid receptor modulation of the hypothalamic-pituitary-adrenocortical (HPA) axis: subchronic tolerance studies of endogenous opioid peptides. Brain Res 1987; 435:220-6. [PMID: 2892574 DOI: 10.1016/0006-8993(87)91604-0] [Citation(s) in RCA: 60] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
In opiate-naive rats, the endogenous opioid peptides, beta-endorphin, dynorphin(1-13) and Met-Enk-Arg-Phe (MEAP) and the synthetic enkephalin analogue D-Ala2-D-Leu5-Enk (DADLE) potently stimulated plasma corticosterone in a dose-dependent, naloxone reversible manner. To characterize their in vivo affinities, the effects of these peptides on plasma corticosterone release were tested in rats made tolerant to morphine, U50488H, DADLE/morphine or beta-endorphin. These cross-tolerance studies showed that dynorphin and MEAP exerted their action on plasma corticosterone release at kappa-opioid receptors. The action of DADLE occurred at delta-opioid receptors, while the action of beta-endorphin occurred principally at another receptor site. These results indicate that there is independent modulation of the hypothalamic-pituitary-adrenal axis by endogenous opioid peptides at mu-, delta- and kappa-opioid receptors. In addition there may be modulation by beta-endorphin at a separate site that we suggest could be a central epsilon-receptor site. This cross-tolerance paradigm, using a neuroendocrine model, provides in vivo evidence for the action of centrally active endogenous opioid peptides at multiple and independent opioid receptors.
Collapse
MESH Headings
- 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer
- Analgesics/pharmacology
- Animals
- Cerebral Ventricles/drug effects
- Cerebral Ventricles/physiology
- Drug Tolerance
- Dynorphins/pharmacology
- Enkephalin, Leucine/analogs & derivatives
- Enkephalin, Leucine/pharmacology
- Enkephalin, Leucine-2-Alanine
- Hypothalamo-Hypophyseal System/drug effects
- Hypothalamo-Hypophyseal System/physiology
- Male
- Morphine/pharmacology
- Naloxone/pharmacology
- Pituitary-Adrenal System/drug effects
- Pituitary-Adrenal System/physiology
- Pyrrolidines/pharmacology
- Rats
- Rats, Inbred Strains
- Receptors, Opioid/drug effects
- Receptors, Opioid/physiology
- Receptors, Opioid, delta
- Receptors, Opioid, kappa
- Receptors, Opioid, mu
- beta-Endorphin/pharmacology
Collapse
Affiliation(s)
- S Iyengar
- Research Department, CIBA-GEIGY Corporation, Summit, NJ 07901
| | | | | |
Collapse
|
34
|
Zhang R, Hisano S, Chikamori-Aoyama M, Daikoku S. Synaptic association between enkephalin-containing axon terminals and proopiomelanocortin-containing neurons in the arcuate nucleus of rat hypothalamus. Neurosci Lett 1987; 82:151-6. [PMID: 3696489 DOI: 10.1016/0304-3940(87)90120-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
By employing an electron microscopic dual immunolabeling technique, a synaptic association between neurons containing immunoreactive adrenocorticotropin (ACTH) and axonal terminals containing immunoreactive methionine-enkephalin octapeptide (Enk-8) was found in the arcuate nucleus of the rat hypothalamus. The axonal terminals contained many small clear vesicles and some large cored vesicles. At the synaptic portions, membrane specialization was asymmetric.
Collapse
Affiliation(s)
- R Zhang
- Institute of Integrated Traditional and Western Medicine, Hua Shan Hospital, Shanghai Medical University, People's Republic of China
| | | | | | | |
Collapse
|
35
|
Lammers JH, Meelis W, Kruk MR, van der Poel AM. Hypothalamic substrates for brain stimulation-induced grooming, digging and circling in the rat. Brain Res 1987; 418:1-19. [PMID: 3664265 DOI: 10.1016/0006-8993(87)90956-5] [Citation(s) in RCA: 56] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Despite a great number of studies concerned with the induction of specific behavioural responses from the rat hypothalamus by electrical brain stimulation, hypothalamic response areas and underlying neural substrates have never been determined accurately. In this study the boundaries of the hypothalamic response areas for grooming, digging and circling were delimited using moveable electrodes, an enriched environment containing a variety of goal objects, and an appropriate statistical technique. A total of 641 hypothalamic sites in 71 male CPB/WU Wistar rats were electrically stimulated. Results are plotted on a detailed stereotaxic brain atlas of the rat hypothalamus. Positive sites for any behavioural response cluster into restricted hypothalamic areas. Discriminant analysis of both positive and negative electrode localizations yields areas with high, intermediate or low probabilities of inducing the behavioural response concerned. Each response has its own response area where probabilities are high, although there may be overlap. Even within response areas a distinction can be made between areas in which the response can be induced at relatively high or low threshold current intensities. Lowest threshold sites within electrode tracks are often clustered. In search of neuroanatomical correlates, grooming is related to the distribution of ACTH-immunoreactive neural elements, digging is related to the distribution of efferent fibres from the bed nucleus of the stria terminalis, and circling is related to the distribution of dopaminergic fibres of the nigrostriatal pathway. The results clearly point to the stimulation site being the most important determinant of the evoked behavioural response. Evidently behavioural specificity does exist within the hypothalamus.
Collapse
Affiliation(s)
- J H Lammers
- Department of Pharmacology, University of Leiden, Sylvius Laboratories, The Netherlands
| | | | | | | |
Collapse
|
36
|
Simerly RB, Swanson LW. The distribution of neurotransmitter-specific cells and fibers in the anteroventral periventricular nucleus: implications for the control of gonadotropin secretion in the rat. Brain Res 1987; 400:11-34. [PMID: 2880634 DOI: 10.1016/0006-8993(87)90649-4] [Citation(s) in RCA: 104] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The anteroventral periventricular nucleus (AVPv), which lies in the periventricular zone of the preoptic region, is critical for normal phasic gonadotropin secretion since lesions of this nucleus abolish the progesterone-induced surge of luteinizing hormone secretion from the anterior pituitary, block ovulation, and induce persistent vaginal estrus in female rats. However, very little is known about the neurotransmitter-specific pathways associated with this nucleus. In the present study we evaluated the distribution of biochemically specific cells and fibers within the AVPv and adjacent regions by using an indirect immunohistochemical method with antisera to serotonin (5-HT), dopamine beta-hydroxylase (DBH), tyrosine hydroxylase (TH), neuropeptide Y (NPY), cholecystokinin-8 (CCK), vasoactive intestinal polypeptide (VIP), substance P (SP), neurotensin (NT), corticotropin-releasing factor (CRF), luteotropin-releasing hormone (LRH), somatostatin (SS), thyrotropin-releasing hormone (TRH), oxytocin (OXY), vasopressin (VAS), adrenocorticotropic hormone (ACTH1-24), alpha-melanocyte-stimulating hormone (alpha-MSH), leucine-enkephalin (L-ENK), and calcitonin gene-related peptide (CGRP). Our findings indicate that both cells and fibers containing these putative neurotransmitters are differentially distributed in and around the AVPv in accordance with the cytoarchitectonic organization of this part of the preoptic region. The AVPv itself appears to receive strong inputs from SP-, VAS-, CCK-, and SS-containing pathways, whereas the highest densities of L-ENK-, NT-, 5-HT-, NPY-, and DBH-immunoreactive fibers were found in the cell-sparse zone just lateral to the AVPv. The suprachiasmatic preoptic nucleus (PSCh), a small group of cells located ventral to the AVPv just dorsal to the optic chiasm, contained high densities of alpha-MSH- and ACTH-immunoreactive fibers, as well as substantial numbers of fibers containing catecholamines or NPY. In contrast, a dense plexus of VAS-stained fibers was distributed fairly evenly throughout the AVPv and PSCh. Numerous L-ENK-immunoreactive cell bodies, and moderate numbers of CCK-, NT-, and CRF-stained cell bodies were found in the AVPv. The PSCh contained many TH-stained cells (presumably dopaminergic), in addition to a moderate number of CCK-containing cell bodies, while a high density of NT- and CRF-stained cells were found in the cell-sparse zone lateral to the AVPv, in addition to several CCK-, SP-, VIP-, and TH-containing cells.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
|
37
|
Pilcher WH, Joseph SA. Differential sensitivity of hypothalamic and medullary opiocortin and tyrosine hydroxylase neurons to the neurotoxic effects of monosodium glutamate (MSG). Peptides 1986; 7:783-9. [PMID: 2879278 DOI: 10.1016/0196-9781(86)90096-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The distribution of opiocortin- (OP-ir) and tyrosine hydroxylase-immunoreactive (TH-ir) perikarya was examined immunocytochemically in rats treated neonatally with the neurotoxin monosodium glutamate (MSG). While OP-ir and TH-ir perikarya were eliminated in the arcuate nucleus in treated animals, the OP-ir and TH-ir cell groups of the nucleus tractus solitarius and contiguous medullary regions were unaffected. This selective elimination of arcuate neurons permitted us to examine specifically the fiber projections of the medullary OP-ir perikarya in treated animals. This revealed a preferential distribution of delicate fibers originating in NTS, to discrete medullary and pontine areas. In control animals, these same terminal fields appeared to be more densely populated with an additional population of thicker OP-ir fibers, suggesting the possibility of a shared innervation of these brainstem regions by both hypothalamic and medullary OP-ir neurons.
Collapse
|
38
|
Kitahama K, Sallanon M, Buda C, Janin M, Dubois MP, Jouvet M. ACTH-immunoreactive neurons and their projections in the cat forebrain. Peptides 1986; 7:801-7. [PMID: 3025823 DOI: 10.1016/0196-9781(86)90098-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The organization of adrenocorticotropin (ACTH)-immunoreactive (IR) cell bodies and fibers in the cat forebrain is described. ACTH-IR cell bodies are found only in and around the arcuate nucleus of the hypothalamus (ARH). They are not detected elsewhere even after pretreatment with colchicine. ACTH-IR fibers are present in discrete areas of the hypothalamus, the septo-limbic areas and in the paraventricular thalamic nucleus. Complete electrolytic lesions of the ARH destroy ACTH-IR cell bodies as well as fibers in all parts of the brain. These results suggest that, in the cat forebrain, the ARH is the only source of ACTH-IR fibers.
Collapse
|
39
|
Sirinathsinghji DJ. Regulation of lordosis behaviour in the female rat by corticotropin-releasing factor, beta-endorphin/corticotropin and luteinizing hormone-releasing hormone neuronal systems in the medial preoptic area. Brain Res 1986; 375:49-56. [PMID: 3013371 DOI: 10.1016/0006-8993(86)90957-1] [Citation(s) in RCA: 74] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The role of corticotropin-releasing factor (CRF) and opiocortin neuronal systems and a possible functional relationship between the two in the control of luteinizing hormone-releasing hormone (LH-RH) activity in the medial preoptic area (MPOA) for the regulation of lordosis behaviour were assessed in ovariectomised oestrogen-progesterone-treated female rats. Lordosis behaviour (assessed as the lordosis quotient) triggered by male mounting was significantly inhibited by either CRF or beta-endorphin infused into the MPOA in animals treated with normal doses of oestradiol benzoate (OEB) (5 micrograms) and progesterone (500 micrograms). Saline-treated animals exhibited high levels of lordosis. The inhibition of lordosis produced by either CRF or beta-endorphin could be reversed by LH-RH microinfusions into the MPOA. While naloxone pretreatment of the MPOA site prevented the inhibitory effects of beta-endorphin, neither the opiate antagonist nor anti-beta-endorphin-gamma-globulin (even in high concentrations) infused into the MPOA was effective in completely preventing the inhibition of lordosis produced by CRF. These findings suggest that the inhibition of LH-RH neuronal activity and lordosis behaviour by CRF may be due to a direct action and may not be the result of activation of beta-endorphin release. The possibility that the two peptidergic systems may act in a synergistic fashion is supported by the data showing that combined CRF-beta-endorphin treatment in the MPOA completely abolished lordosis. This is further supported by the finding that CRF totally abolished lordosis in animals pretreated with anti-corticotropin (ACTH-gamma-globulin although this result could suggest that CRF could preferentially stimulate the release of ACTH in the MPOA.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
|
40
|
Simerly RB, Gorski RA, Swanson LW. Neurotransmitter specificity of cells and fibers in the medial preoptic nucleus: an immunohistochemical study in the rat. J Comp Neurol 1986; 246:343-63. [PMID: 2422228 DOI: 10.1002/cne.902460305] [Citation(s) in RCA: 170] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The medial preoptic nucleus (MPN) is a sexually dimorphic complex with three major subdivisions. The cell-dense central (MPNc) and medial (MPNm) subdivisions are larger in male rats, while the cell-sparse lateral subdivision (MPNl) occupies a majority of the nucleus in females. In the present study we evaluated the distribution of possible monoaminergic and peptidergic cells and fibers within the MPN, as well as in adjacent regions of the medial preoptic area of the adult male rat. For this, we used an indirect immunohistochemical method with antisera to serotonin (5HT), dopamine beta-hydroxylase (DBH), tyrosine hydroxylase (TH), neuropeptide Y (NPY), cholecystokinin (CCK), vasoactive intestinal polypeptide (VIP), substance P (SP), neurotensin (NT), corticotropin-releasing factor (CRF), luteotropin-releasing hormone (LRH), somatostatin (SS), thyrotropin-releasing hormone (TRH), oxytocin (OXY), vasopressin (VAS), adrenocorticotropic hormone (1-24; ACTH), alpha-melanocyte-stimulating hormone (alpha-MSH), leucine-enkephalin (L-ENK), and calcitonin gene-related peptide (CGRP). The results suggest that cell bodies and/or fibers crossreacting with all of these putative neurotransmitters are differentially distributed within the MPN. Within the MPNm, the densest plexuses of fibers were stained with antisera to SP and NPY, while moderate densities of fibers were stained with anti-DBH, SS, CCK, CGRP, ACTH, and alpha-MSH, and only a few fibers were stained with anti-5HT, TH, NT, VAS, and L-ENK. Moderate numbers of SP- and L-ENK-immunoreactive cell bodies, and a few SS-, NT-, CRF-, and TRH-stained cell bodies were also found within the MPNm. The MPNc contained a dense plexus of CCK-immunoreactive fibers, as well as a few CRF-immunoreactive fibers. Both fiber types were localized almost exclusively to this subdivision, while most of the others studied here appeared to avoid it selectively. This suggests that there are relatively few inputs to the MPNc, and that they tend to avoid other parts of the nucleus, although moderate densities of DBH- and NPY-immunoreactive fibers were found in both the MPNm and MPNc. The MPNc contained several CCK-immunoreactive cell bodies as well as a moderate number of TRH-stained cell bodies. Both cell types were nearly completely localized to the MPNc. The major inputs to the MPNl studied here appear to be stained with antisera to 5HT and L-ENK, although moderate numbers of NT- and CRF- immunoreactive fibers were also found in this part of the nucleus.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
|
41
|
Corticotropin-releasing factor: immunohistochemical colocalization with adrenocorticotropin and beta-endorphin, but not with Met-enkephalin, in subpopulations of duodenal perikarya of rat. Biochem Biophys Res Commun 1985; 128:402-10. [PMID: 2985078 DOI: 10.1016/0006-291x(85)91693-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
By the use of two different double-staining techniques (simultaneous staining of adjacent serial sections and the double-staining elution method) it was possible to demonstrate that a corticotropin-releasing factor (CRF) immunofluorescence co-existed with an adrenocorticotropin (ACTH) and beta-endorphin (beta-END) immunoreactivity, but not with a Met-enkephalin (Met-ENK) immunostaining, within perikarya subpopulations of both the myenteric and submucousal plexus of the rat duodenum. Not a single Met-ENK-positive neuronal cell body was stained also for CRF, ACTH or beta-END. Even nerve fibres, localized in both the myenteric plexus and closely to submucousal blood vessels (probably arterioles), revealed a CRF immunofluorescence, which is also colocalized with an beta-END staining. These results are quite different to the recent observations in the mammalian hypothalamus, suggesting that some myenteric and submucousal plexus neurons may synthesize CRF as well as beta-END and ACTH, but not Met-ENK. The colocalized peptides might be concomitantly released into the synaptic cleft after terminal stimulation.
Collapse
|
42
|
Knigge KM, Piekut DT. Distribution of CRF- and tyrosine hydroxylase-immunoreactive neurons in the brainstem of the domestic fowl (Gallus domesticus). Peptides 1985; 6:97-101. [PMID: 2859575 DOI: 10.1016/0196-9781(85)90083-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The distribution of CRF and tyrosine hydroxylase (TH)-immunoreactive neurons was examined in the brainstem of the chicken. Very dense populations of both CRF and TH-immunoreactive (-ir) perikarya are co-extensive in separate neuronal systems throughout a large field of the rostral brainstem, encompassing locus ceruleus, the mesencephalic reticular formation, parabrachial nucleus, and the dorsal and ventral tegmental areas. They are present also in nucleus tractus solitarius, and sparsely in the ventral and lateral areas of the medulla. This co-distribution suggests that the effects of CRF upon central autonomic activity may be mediated via brainstem catecholamine systems. CRF-ir neurons alone are present also in midline nuclei, including n. centralis superior, n.annularis, n.linearis caudalis, and the raphe.
Collapse
|