1
|
Haverty R, McCormack J, Evans C, Purves K, O'Reilly S, Gautier V, Rochfort K, Fabre A, Fletcher NF. SARS-CoV-2 infects neurons, astrocytes, choroid plexus epithelial cells and pericytes of the human central nervous system in vitro. J Gen Virol 2024; 105:002009. [PMID: 38995681 PMCID: PMC11317966 DOI: 10.1099/jgv.0.002009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 06/20/2024] [Indexed: 07/13/2024] Open
Abstract
Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection is associated with neurological sequelae including haemorrhage, thrombosis and ischaemic necrosis and encephalitis. However, the mechanism by which this occurs is unclear. Neurological disease associated with COVID-19 has been proposed to occur following direct infection of the central nervous system and/or indirectly by local or systemic immune activation. We evaluated the expression of angiotensin-converting enzyme-2 and transmembrane protease, serine 2 (TMPRSS2) in brain tissue from five healthy human donors and observed low-level expression of these proteins in cells morphologically consistent with astrocytes, neurons and choroidal ependymal cells within the frontal cortex and medulla oblongata. Primary human astrocytes, neurons, choroid plexus epithelial cells and pericytes supported productive SARS-CoV-2 infection with ancestral, Alpha, Delta and Omicron variants. Infected cells supported the full viral life cycle, releasing infectious virus particles. In contrast, primary brain microvascular endothelial cells and microglia were refractory to SARS-CoV-2 infection. These data support a model whereby SARS-CoV-2 can infect human brain cells, and the mechanism of viral entry warrants further investigation.
Collapse
Affiliation(s)
- Ruth Haverty
- Veterinary Sciences Centre, University College Dublin, Belfield, Dublin 4, Ireland
| | - Janet McCormack
- Research Pathology Core Facility, Conway Institute of Biomedical and Biomolecular Research, University College Dublin, Belfield, Dublin 4, Ireland
| | - Christopher Evans
- Veterinary Sciences Centre, University College Dublin, Belfield, Dublin 4, Ireland
| | - Kevin Purves
- Veterinary Sciences Centre, University College Dublin, Belfield, Dublin 4, Ireland
| | - Sophie O'Reilly
- Centre for Experimental Pathogen Host Research, School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland
| | - Virginie Gautier
- Centre for Experimental Pathogen Host Research, School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland
- Conway Institute of Biomedical and Biomolecular Research, University College Dublin, Belfield, Dublin 4, Ireland
| | - Keith Rochfort
- School of Biotechnology, Dublin City University, Glasnevin, Dublin 9, Ireland
| | - Aurelie Fabre
- Research Pathology Core Facility, Conway Institute of Biomedical and Biomolecular Research, University College Dublin, Belfield, Dublin 4, Ireland
- Department of Histopathology, St. Vincent’s University Hospital, Dublin 4, Ireland
| | - Nicola F. Fletcher
- Veterinary Sciences Centre, University College Dublin, Belfield, Dublin 4, Ireland
- Conway Institute of Biomedical and Biomolecular Research, University College Dublin, Belfield, Dublin 4, Ireland
| |
Collapse
|
2
|
Specificity of synapse formation in Aplysia: paracrine and autocrine signaling regulates bidirectional molecular interactions between sensory and non-target motor neurons. Sci Rep 2020; 10:5222. [PMID: 32251363 PMCID: PMC7089980 DOI: 10.1038/s41598-020-62099-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 03/02/2020] [Indexed: 12/01/2022] Open
Abstract
The formation of appropriate neural connections during development is critical for the proper wiring and functioning of the brain. Although considerable research suggests that the specificity of synapse formation is supported by complex intercellular signaling between potential presynaptic and postsynaptic partners, the extracellular factors and the intracellular signal transduction pathways engaged in this process remain largely unknown. Using the sensory-motor neural circuit that contributes to learning in defensive withdrawal reflexes in Aplysia californica, we investigated the molecular processes governing the interactions between sensory neurons and both target and non-target motor neurons during synapse formation in culture. We found that evolutionarily-conserved intercellular and intracellular signaling mechanisms critical for learning-related plasticity are also engaged during synaptogenesis in this in vitro model system. Our results reveal a surprising bidirectional regulation of molecular signaling between sensory neurons and non-target motor neurons. This regulation is mediated by signaling via both paracrine and autocrine diffusible factors that induce differential effects on transcription and on protein expression/activation in sensory neurons and in target and non-target motor neurons. Collectively, our data reveal novel molecular mechanisms that could underlie the repression of inappropriate synapse formation, and suggest mechanistic similarities between developmental and learning-related plasticity.
Collapse
|
3
|
Miller KD, Rall GF. What Kaplan-Meier survival curves don't tell us about CNS disease. J Neuroimmunol 2017; 308:25-29. [PMID: 28187911 PMCID: PMC5474346 DOI: 10.1016/j.jneuroim.2017.01.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 01/27/2017] [Accepted: 01/27/2017] [Indexed: 11/21/2022]
Abstract
Central nervous system consequences of viral infections are rare, but when they do occur, they are often serious and clinically challenging to manage. Our awareness of the perils of neuroinvasion by viruses is growing: the recently appreciated impact of Ebola and Zika virus infections on CNS integrity, decreases in vaccination coverage for potentially neurotropic viruses such as measles, and increased neurovirulence of some influenza strains collectively highlight the need for a better understanding of the viral-neural interaction. Defining these interactions and how they result in neuropathogenesis is paramount for the development of better clinical strategies, especially given the limited treatment options that are available due to the unique physiology of the brain that limits migration of blood-borne molecules into the CNS parenchyma. In this perspective, we discuss some unique aspects of neuronal viral infections and immune-mediated control that impact the pathogenic outcomes of these infections. Further, we draw attention to an often overlooked aspect of neuropathogenesis research: that lack of overt disease, which is often equated with survival post-infection, likely only scratches the surface of the myriad ways by which neurotropic infections can impair CNS function.
Collapse
Affiliation(s)
- Katelyn D Miller
- Program in Cell and Molecular Biology, University of Pennsylvania, Philadelphia, PA, United States; Program in Blood Cell Development and Function, Fox Chase Cancer Center, Philadelphia, PA, United States
| | - Glenn F Rall
- Program in Cell and Molecular Biology, University of Pennsylvania, Philadelphia, PA, United States; Program in Blood Cell Development and Function, Fox Chase Cancer Center, Philadelphia, PA, United States.
| |
Collapse
|
4
|
Oldstone MBA. The Anatomy of a Career in Science. DNA Cell Biol 2016; 35:109-17. [PMID: 26836569 DOI: 10.1089/dna.2016.3232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Michael B A Oldstone
- Viral-Immunobiology Laboratory, The Scripps Research Institute , La Jolla, California
| |
Collapse
|
5
|
Lymphocytic choriomeningitis virus-induced mortality in mice is triggered by edema and brain herniation. J Virol 2010; 84:312-20. [PMID: 19828618 DOI: 10.1128/jvi.00727-09] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Although much is known about lymphocytic choriomeningitis virus (LCMV) infection and the subsequent immune response in its natural murine host, some crucial aspects of LCMV-mediated pathogenesis remain undefined, including the underlying basis of the characteristic central nervous system disease that occurs following intracerebral (i.c.) challenge. We show that the classic seizures and paresis that occur following i.c. infection of adult, immunocompetent mice with LCMV are accompanied by anatomical and histological changes that are consistent with brain herniation, likely of the uncal subtype, as a causative basis for disease and precipitous death. Both by water weight determinations and by magnetic resonance imaging of infected brain tissues, edema was detected only at the terminal stages of disease, likely caused by the leakage of cerebrospinal fluid from the ventricles into the parenchyma. Furthermore, death was accompanied by unilateral pupillary dilation, which is indicative of uncal herniation. While immunohistochemical analysis revealed periventricular inflammation and a loss of integrity of the blood-brain barrier (BBB), these events preceded seizures by 2 to 3 days. Moreover, surviving perforin knockout mice showed barrier permeability equivalent to that of moribund, immunocompetent mice; thus, BBB damage does not appear to be the basis of LCMV-induced neuropathogenesis. Importantly, brain herniation can occur in humans as a consequence of injuries that would be predicted to increase intracranial pressure, including inflammation, head trauma, and brain tumors. Thus, a mechanistic dissection of the basis of LCMV neuropathogenesis may be informative for the development of interventive therapies to prevent this typically fatal human condition.
Collapse
|
6
|
Affiliation(s)
- W Ian Lipkin
- Center for Infection and Immunity, Mailman School of Public Health of Columbia University, New York, New York, United States of America.
| |
Collapse
|
7
|
Kunz S, Rojek JM, Roberts AJ, McGavern DB, Oldstone MBA, de la Torre JC. Altered central nervous system gene expression caused by congenitally acquired persistent infection with lymphocytic choriomeningitis virus. J Virol 2006; 80:9082-92. [PMID: 16940520 PMCID: PMC1563940 DOI: 10.1128/jvi.00795-06] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Neonatal infection of most mouse strains with lymphocytic choriomeningitis virus (LCMV) leads to a life-long persistent infection characterized by high virus loads in the central nervous system (CNS) in the absence of inflammation and tissue destruction. These mice, however, exhibit impaired learning and memory. The occurrence of cognitive defects in the absence of overt CNS pathology led us to the hypothesis that chronic virus infection may contribute to neuronal dysfunction by altering the host's gene expression profile. To test this hypothesis, we examined the impact of LCMV persistence on host gene expression in the CNS. To model the natural route of human congenital CNS infection observed with a variety of viruses, we established a persistently infected mouse colony where the virus was maintained via vertical transmission from infected mothers to offspring (LCMV-cgPi). LCMV-cgPi mice exhibited a lifelong persistent infection involving the CNS; the infection was associated with impaired spatial-temporal learning. Despite high viral loads in neurons of the brains of adult LCMV-cgPi mice, we detected changes in the host's CNS gene expression for only 75 genes, 56 and 19 being significantly induced and reduced, respectively. The majority of the genes induced in the brain of LCMV-cgPi mice were interferon (IFN)-stimulated genes (ISGs) and included the transcription factors STAT1 and IRF9, the ISG15 protease UBP43, and the glucocorticoid attenuated-response genes GARG16 and GARG49. Based on their crucial role in antiviral defense, these ISGs may play an important role in limiting viral spread and replication. However, since IFNs have also been implicated in adverse effects on neuronal function, the chronic induction of some ISGs may also contribute to the observed cognitive impairment.
Collapse
Affiliation(s)
- Stefan Kunz
- Molecular and Integrative Neurosciences Department (MIND) IMM6, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA 92037, USA
| | | | | | | | | | | |
Collapse
|
8
|
Patterson CE, Daley JK, Rall GF. Neuronal survival strategies in the face of RNA viral infection. J Infect Dis 2002; 186 Suppl 2:S215-9. [PMID: 12424700 PMCID: PMC7110185 DOI: 10.1086/344265] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Neurons of the mammalian central nervous system (CNS) are an essential and largely nonrenewable cell population. Thus, viral infections that result in neuronal depletion, either by viral lysis or by induction of the cytolytic immune response, would likely lead to profound neurologic impairment. However, many viral infections that result in tissue destruction elsewhere in the host produce few overt symptoms in the CNS, despite readily detectable virus expression. This observation has lead to the speculation that neurons possess strategies to limit the replication and spread of otherwise cytopathic viruses. These strategies either favor the clearance of virus in the absence of appreciable neuronal loss or promote the establishment of noncytolytic persistent infections. This review discusses some of these strategies, with an emphasis on how such survival techniques lessen the potential for CNS neuropathology.
Collapse
Affiliation(s)
- Catherine E. Patterson
- Division of Basic Science, Fox Chase Cancer Center, Philadelphia, Pennsylvania
- Reprints or correspondence: Dr. Glenn F. Rall, Division of Basic Science, Fox Chase Cancer Center, 7701 Burholme Ave., Philadelphia, PA 19111 ()
| | - John K. Daley
- Division of Basic Science, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Glenn F. Rall
- Division of Basic Science, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| |
Collapse
|
9
|
Sharma A, Valadi N, Miller AH, Pearce BD. Neonatal viral infection decreases neuronal progenitors and impairs adult neurogenesis in the hippocampus. Neurobiol Dis 2002; 11:246-56. [PMID: 12505418 DOI: 10.1006/nbdi.2002.0531] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
While adult neurogenesis has been demonstrated in the hippocampal dentate gyrus of several mammalian species, including humans, the impact of viral infections has not been well studied. To examine this question we used a model in which neonatal rats are infected with lymphocytic choriomeningitis virus (LCMV) leading to a gradual loss of dentate granule cells (DGCs), which becomes fully evident in adulthood. Stereological cell counts performed 8 months after infection revealed that the loss of mature DGCs was accompanied by an 84.2% reduction in proliferation of DGCs as measured by BrdU uptake. Moreover, there was a severe loss of Mash1-labeled neuronal progenitor cells (87 and 83% decrease in the granule cell layer and hilus, respectively). Thus, neurogenesis is impaired in this model of chronic DGC loss, perhaps due to a virus-induced impoverishment of DGC neuronal progenitors. The LCMV model could be exploited to examine pathophysiological mechanisms of neurodegeneration and to test pharmacological strategies aimed at increasing neurogenesis or rescuing multipotent progenitors.
Collapse
Affiliation(s)
- Anup Sharma
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | | | | | | |
Collapse
|
10
|
Oldstone MBA. Biology and pathogenesis of lymphocytic choriomeningitis virus infection. Curr Top Microbiol Immunol 2002; 263:83-117. [PMID: 11987822 DOI: 10.1007/978-3-642-56055-2_6] [Citation(s) in RCA: 112] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- M B A Oldstone
- Division of Virology, Department of Neuropharmacology, Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA 92037, USA
| |
Collapse
|
11
|
Evans CF, Redwine JM, Patterson CE, Askovic S, Rall GF. LCMV and the central nervous system: uncovering basic principles of CNS physiology and virus-induced disease. Curr Top Microbiol Immunol 2002; 263:177-95. [PMID: 11987814 DOI: 10.1007/978-3-642-56055-2_9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- C F Evans
- Department of Neuropharmacology, Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA 92037, USA
| | | | | | | | | |
Collapse
|
12
|
Hornig M, Briese T, Lipkin WI. Bornavirus tropism and targeted pathogenesis: virus-host interactions in a neurodevelopmental model. Adv Virus Res 2002; 56:557-82. [PMID: 11450312 DOI: 10.1016/s0065-3527(01)56038-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Animal models provide unique opportunities to explore interactions between host and environment. Two models have been established based on Bornavirus infection that provide new insights into mechanisms by which neurotropic agents and/or immune factors may impact developing or mature CNS circuitry to effect complex disturbances in movement and behavior. Distinct losses in DA pathways in the adult infection model, and the associated dramatic movement disorder that accompanies it, make it an intriguing model for tardive dyskinesia and dystonic syndromes. The neuropathologic, physiologic, and neurobehavioral features of BDV infection of neonates indicate that it not only provides a useful model for exploring the mechanisms by which viral and immune factors may damage developing neurocircuitry, but also has significant links to the range of biologic, neurostructural, locomotor, cognitive, and social deficits observed in serious neuropsychiatric illnesses such as autism.
Collapse
Affiliation(s)
- M Hornig
- Emerging Diseases Laboratory, Gillespie Neuroscience Research Facility, University of California, Irvine, California 92697, USA
| | | | | |
Collapse
|
13
|
Hornig M, Lipkin WI. Infectious and immune factors in the pathogenesis of neurodevelopmental disorders: epidemiology, hypotheses, and animal models. MENTAL RETARDATION AND DEVELOPMENTAL DISABILITIES RESEARCH REVIEWS 2002; 7:200-10. [PMID: 11553936 DOI: 10.1002/mrdd.1028] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Both genetic and environmental factors contribute to the pathogenesis of a wide variety of neurodevelopmental disorders, including autism, mental retardation, and schizophrenia. Some heritable disorders approach 100% penetrance; nonetheless, even in these disorders, subtle aspects of clinical disease expression may be influenced by the environment. In other disorders with genetic influences, exogenous factors, and the timepoint(s) during nervous system development at which they are introduced, modulate expression of disease. Elucidation of the mechanisms guiding this intricate interplay between host response genes, environmental agents, and the neurodevelopmental context within which these interactions occur, is necessary to understand the continuum of clinical outcomes. This chapter will review the evidence that infectious and immune factors may contribute to the pathogenesis of neurodevelopmental disorders, describe an animal model of neurodevelopmental disorders based upon viral infection, identify processes by which neural circuitry may be compromised, and outline areas for future research.
Collapse
Affiliation(s)
- M Hornig
- Emerging Diseases Laboratory, Gillespie Neuroscience Research Facility, University of California, Irvine, California 92697-4292, USA.
| | | |
Collapse
|
14
|
Johnston C, Jiang W, Chu T, Levine B. Identification of genes involved in the host response to neurovirulent alphavirus infection. J Virol 2001; 75:10431-45. [PMID: 11581411 PMCID: PMC114617 DOI: 10.1128/jvi.75.21.10431-10445.2001] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Single-amino-acid mutations in Sindbis virus proteins can convert clinically silent encephalitis into uniformly lethal disease. However, little is known about the host gene response during avirulent and virulent central nervous system (CNS) infections. To identify candidate host genes that modulate alphavirus neurovirulence, we utilized GeneChip Expression analysis to compare CNS gene expression in mice infected with two strains of Sindbis virus that differ by one amino acid in the E2 envelope glycoprotein. Infection with Sindbis virus, dsTE12H (E2-55 HIS), resulted in 100% mortality in 10-day-old mice, whereas no disease was observed in mice infected with dsTE12Q (E2-55 GLN). dsTE12H, compared with dsTE12Q, replicated to higher titers in mouse brain and induced more CNS apoptosis. Infection with the neurovirulent dsTE12H strain was associated with both a greater number of host genes with increased expression and greater changes in levels of host gene expression than was infection with the nonvirulent dsTE12Q strain. In particular, dsTE12H infection resulted in greater increases in the levels of mRNAs encoding chemokines, proteins involved in antigen presentation and protein degradation, complement proteins, interferon-regulated proteins, and mitochondrial proteins. At least some of these increases may be beneficial for the host, as evidenced by the demonstration that enforced expression of the antiapoptotic mitochondrial protein peripheral benzodiazepine receptor (PBR) protects neonatal mice against lethal Sindbis virus infection. Thus, our findings identify specific host genes that may play a role in the host protective or pathologic response to neurovirulent Sindbis virus infection.
Collapse
Affiliation(s)
- C Johnston
- Department of Medicine, Columbia University College of Physicians & Surgeons, New York, New York 10032, USA
| | | | | | | |
Collapse
|
15
|
Allsopp TE, Fazakerley JK. Altruistic cell suicide and the specialized case of the virus-infected nervous system. Trends Neurosci 2000; 23:284-90. [PMID: 10856937 DOI: 10.1016/s0166-2236(00)01591-5] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Depending on their differentiation state, vertebrate neurones can commit suicide after neurotropic virus infection. Such suicide might be an evolved strategy in multicellular organisms for limiting virus expansion. Regulation of suicide in this context operates by a programme similar to that activated during embryogenesis or in response to nervous-system injury and disease. In contrast to immature neurones that can readily initiate apoptosis following infection, mature neurones are generally highly resistant and can survive for long periods if they remain functional. Mature, infected neurones might gain competence to die owing to the attuned activation of pathways that sensitize the cell to subsequent stress. The consequence of either perturbation of function as a result of viral persistence or a chronic but progressive loss of infected neurones might be a failure of key neural functions.
Collapse
Affiliation(s)
- T E Allsopp
- Fujisawa Institute of Neuroscience in Edinburgh, Dept of Neuroscience, University of Edinburgh, UK
| | | |
Collapse
|
16
|
|
17
|
Pearce BD, Po CL, Pisell TL, Miller AH. Lymphocytic responses and the gradual hippocampal neuron loss following infection with lymphocytic choriomeningitis virus (LCMV). J Neuroimmunol 1999; 101:137-47. [PMID: 10580797 DOI: 10.1016/s0165-5728(99)00128-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Infection of rats with LCMV is known to cause a bi-phasic neurodegeneration characterized by acute T lymphocyte-mediated cerebellar damage, followed by gradual hippocampal neuron loss that occurs by an undefined mechanism. We found infiltration of CD8 + T-cells (but not CD4 + or NK cells) in the hippocampus which correlated with the acute phase, but not the chronic hippocampal degenerative phase. While immunosuppression of T lymphocytes protected the cerebellum and revealed the infection of corticohippocampal glia, the degeneration in the hippocampus was unabated. These data suggest that T lymphocytes control glial infection and mediate degeneration in the cerebellum but not the hippocampus.
Collapse
Affiliation(s)
- B D Pearce
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA 30322, USA.
| | | | | | | |
Collapse
|
18
|
Bernard A, Cohen R, Khuth ST, Vedrine B, Verlaeten O, Akaoka H, Giraudon P, Belin MF. Alteration of the leptin network in late morbid obesity induced in mice by brain infection with canine distemper virus. J Virol 1999; 73:7317-27. [PMID: 10438820 PMCID: PMC104257 DOI: 10.1128/jvi.73.9.7317-7327.1999] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Viruses can induce progressive neurologic disorders associated with diverse pathological manifestations, and therefore, viral infection of the brain can impair differentiated neural functions, depending on the initial viral tropism. We have previously reported that canine distemper virus (CDV) targets certain mouse brain structures, including the hypothalamus, early and selectively. Infected mice exhibit acute encephalitis, with late disease, characterized by motor impairment or obesity syndrome, appearing in some of the surviving mice several months after the initial viral replication. In the present study, we show viral persistence in the hypothalami of obese mice, as demonstrated by low, but still significant, levels of CDV nucleoprotein transcripts, associated with a dramatic decrease in F gene mRNAs. Given the pivotal role of the hypothalamus in obesity (eating behavior, energy consumption, and neuroendocrine function) and that of leptin, the adipose tissue-derived satiety factor acting through hypothalamic receptors, we analyzed the leptin networks in both obese and nonobese mice. The discrepancy found between the chronic and dramatic increase in blood leptin levels and the occurrence of obesity may be due to leptin resistance in the brain. In fact, expression of the long leptin receptor isoform, representing the functional leptin receptor, was specifically downregulated in the hypothalami of obese mice, explaining their inability to generate an adequate response to leptin in the brain. Intriguingly, during the acute phase of infection, its expression was increased in CDV-targeted structures in all infected mice and remained high in obese mice in all CDV-targeted structures, except for the hypothalamus. The biphasic change in hypothalamic leptin receptor expression seen during the progression of CDV-induced obesity provides a new paradigm for understanding mechanisms of neuroendocrinological, virus-induced abnormalities.
Collapse
Affiliation(s)
- A Bernard
- INSERM U433, Neurobiologie Expérimentale et Physiopathologie, Faculté de Médecine RTH Laënnec, 69372 Lyon Cedex 08, France.
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Bencsik A, Malcus C, Akaoka H, Giraudon P, Belin MF, Bernard A. Selective induction of cytokines in mouse brain infected with canine distemper virus: structural, cellular and temporal expression. J Neuroimmunol 1996; 65:1-9. [PMID: 8642058 DOI: 10.1016/0165-5728(95)00173-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
We have previously shown that, in experimentally inoculated mice, canine distemper virus (CDV), a neurotropic virus, selectively infects certain brain structures (hypothalamus, hippocampus, monoaminergic nuclei, etc). Here we demonstrate that tumor necrosis factor (TNF)-alpha, interleukin (IL)-1 beta and IL-6 transcripts are selectively expressed in these CDV-targeted structures, except in the dentate gyrus, where cytokines are induced without prior CDV replication. The time-course of TNF-alpha expression vs. viral replication in the hypothalamus was different from that in hippocampus. In addition, we show that a substantial number of neurons express TNF-alpha and IL-6. These findings provide new insights into the possible participation of cytokines in the neurological disorders triggered by CDV infection.
Collapse
Affiliation(s)
- A Bencsik
- INSERM U433, Neurobiologie Expérimentale et Physiopathologie, Faculté de Médecine A. Carrel, Lyon, France
| | | | | | | | | | | |
Collapse
|
20
|
de la Torre JC, Oldstone MB. Anatomy of viral persistence: mechanisms of persistence and associated disease. Adv Virus Res 1996; 46:311-43. [PMID: 8824703 DOI: 10.1016/s0065-3527(08)60075-5] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- J C de la Torre
- Department of Neuropharmacology, Scripps Research Institute, La Jolla, California 92037, USA
| | | |
Collapse
|
21
|
Bechter K, Hodgkiss A. Research strategies in 'slow' infections in psychiatry. HISTORY OF PSYCHIATRY 1995; 6:503-511. [PMID: 11609007 DOI: 10.1177/0957154x9500602407] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The research processes in the elucidation of the causes of general paresis, the first slow infection in psychiatry, and of Kuru, the first slow virus infection in man, were considered. The errors and difficulties encountered may contribute to the formulation of research strategies for contemporary work on possible persistent infections with unknown viruses as a cause of psychiatric disorders. Clinical obsservation, bold hypotheses and methodological advances appear more valuable than diagnostic categorization in etiological research into psychiatric disorders. The low heuristic value of diagnosis is due to the lack of specificity of psychiatric symptoms and syndromes, especially in low grade organic disturbances.
Collapse
Affiliation(s)
- K Bechter
- University of Ulm, Department of Psychiatry II and Department of Psychiatry of the Bezirkskrankenhaus, Günzburg, Germany
| | | |
Collapse
|
22
|
Dietzschold B. The role of nitric oxide in the pathogenesis of virus-induced encephalopathies. Curr Top Microbiol Immunol 1995; 196:51-6. [PMID: 7543399 DOI: 10.1007/978-3-642-79130-7_6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- B Dietzschold
- Department of Microbiology & Immunology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| |
Collapse
|
23
|
Hatch WC, Pousada E, Losev L, Rashbaum WK, Lyman WD. Neural cell targets of human immunodeficiency virus type 1 in human fetal organotypic cultures. AIDS Res Hum Retroviruses 1994; 10:1597-607. [PMID: 7888218 DOI: 10.1089/aid.1994.10.1597] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Some children infected by HIV-1 demonstrate nervous system disease. Because a significant percentage of these children are believed to be infected during gestation and it is thought that HIV-1 may infect distinct glial populations, this work tested the hypothesis that different HIV-1 isolates can infect cells of the developing human fetal central nervous system (CNS). Central nervous system organotypic tissue cultures derived from human fetal brain enable the study of complex interactions between CNS cell types. Central nervous system organotypic cultures were exposed to lymphocytotropic (L-tropic) or monocytotropic (M-tropic) HIV-1 isolates and monitored for viral infection. HIV-1 gp41 and p24 antigens were detected by immunocytochemistry (ICC), HIV-1 RNA was localized in the cytoplasm of CNS cells by in situ hybridization (ISH), and viral DNA was detected by polymerase chain reaction (PCR) in HIV-1-exposed cultures. Double-label ICC identified HIV-1 antigens in both microglia and astrocytes. These results demonstrate that both L- and M-tropic isolates infect microglia and astrocytes in human fetal organotypic cultures. In addition, HIV-1 infection was detected in culture supernatants up to day 57 postinfection and at 90 days by coculture with susceptible CEM cells. HIV-1 infection of neural cells appears to be productive. This model may permit further examination of the interaction of HIV-1 with the developing human CNS and the mechanisms of AIDS-associated neuropathology.
Collapse
Affiliation(s)
- W C Hatch
- Department of Pathology, Albert Einstein College of Medicine, Bronx, New York 10461
| | | | | | | | | |
Collapse
|
24
|
Gold LH, Brot MD, Polis I, Schroeder R, Tishon A, de la Torre JC, Oldstone MB, Koob GF. Behavioral effects of persistent lymphocytic choriomeningitis virus infection in mice. BEHAVIORAL AND NEURAL BIOLOGY 1994; 62:100-9. [PMID: 7993301 DOI: 10.1016/s0163-1047(05)80031-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Lymphocytic choriomeningitis virus (LCMV) is a nonlytic murine virus that provides a valuable model system for studying the behavioral correlates of CNS viral infection. Newborn or immunosuppressed mice infected with LCMV develop a persistent tolerant infection characterized by continuous viral production. Virus can be found in various body organs including lung, liver, kidney, and brain. In brain, neurons are the predominant CNS cells infected and the greatest number of persistently infected neurons are found in the cerebral cortex, hippocampus, other limbic structures and parts of the hypothalamus. Despite continuous infection throughout the animal's life, neurons show no structural injury or dropout. Mice from the DBA/2J strain were infected with LCMV (1000 plaque-forming units) within 18 h of birth and tested for behavioral function as adults. Plaque assays indicated persistent infection in virus-injected mice. Mice were tested for their ability to learn a Y-maze spatial discrimination to avoid the onset of a mild footshock (0.43 mA). The number of correct avoidance responses made during training was taken as a measure of acquisition performance. The virus-infected mice showed a deficit in acquisition of the Y-maze discrimination compared to that seen in vehicle-injected and noninjected controls. Following additional training to reach control levels of performance, the infected mice and the controls were injected with the cholinergic antagonist scopolamine. Scopolamine (2.0 mg/kg) disrupted the performance of the infected mice significantly more than control performance, suggesting that a cholinergic dysfunction accounted for some of the learning deficit. A separate group of virus-infected mice exhibited hypoactivity during the first exposure to a locomotor testing apparatus.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- L H Gold
- Department of Neuropharmacology, Scripps Research Institute, La Jolla, California 92037
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Löhr M, Trautmann B, Göttler M, Peters S, Zauner I, Maillet B, Klöppel G. Human ductal adenocarcinomas of the pancreas express extracellular matrix proteins. Br J Cancer 1994; 69:144-51. [PMID: 8286197 PMCID: PMC1968784 DOI: 10.1038/bjc.1994.24] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Pancreatic ductal adenocarcinomas are characterised by a dense connective tissue reaction. To test the hypothesis that stroma components are synthesised and produced by the tumour cells themselves, eight cell lines as well as six xenografted tumours from human ductal adenocarcinomas of the pancreas were examined for the expression of extracellular matrix proteins (ECM), using cDNA probes and antibodies to collagen types I, III and IV, vitronectin, fibronectin, undulin and laminin. All tumour cell lines (CAPAN-1, CAPAN-2, AsPC-1, BxPC-3, PANC-1, PaCa-2, PaCa-3, PaCa-44) and xenografted human pancreatic tumours expressed at least one of the examined ECM at the RNA (collagen type IV > laminin = fibronectin = vitronectin > collagen type III > undulin > collagen type I) or protein level (collagen type IV = collagen type III > vitronectin > laminin > collagen type I = fibronectin > undulin). In nude mouse tumours expression of laminin and collagen I was most pronounced in well-differentiated carcinomas. In a few tumours, collagen type III, vitronectin and undulin were expressed on the luminal side of the neoplastic glands, suggesting loss of normal polar differentiation. Incubation with fetal calf serum modulated ECM RNA levels to a varying extent in all but one cell line (AsPC-1). The results suggest that human pancreatic ductal adenocarcinomas cells are capable of synthesising and producing extracellular matrix proteins in vitro and in vivo, but that the extent and pattern of ECM expression differs between the various tumours and conditions tested.
Collapse
MESH Headings
- Animals
- Carcinoma, Ductal, Breast/genetics
- Carcinoma, Ductal, Breast/metabolism
- Carcinoma, Ductal, Breast/pathology
- Cell Differentiation/physiology
- Culture Media
- Extracellular Matrix Proteins/biosynthesis
- Extracellular Matrix Proteins/genetics
- Extracellular Matrix Proteins/physiology
- Humans
- Mice
- Mice, Inbred Strains
- Mice, Nude
- Neoplasm Transplantation
- Pancreatic Neoplasms/genetics
- Pancreatic Neoplasms/metabolism
- Pancreatic Neoplasms/pathology
- RNA, Neoplasm/genetics
- RNA, Neoplasm/metabolism
- Transplantation, Heterologous
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- M Löhr
- Department of Medicine I, University of Erlangen-Nuremberg, Germany
| | | | | | | | | | | | | |
Collapse
|
26
|
de la Torre JC, Rall G, Oldstone C, Sanna PP, Borrow P, Oldstone MB. Replication of lymphocytic choriomeningitis virus is restricted in terminally differentiated neurons. J Virol 1993; 67:7350-9. [PMID: 8230458 PMCID: PMC238199 DOI: 10.1128/jvi.67.12.7350-7359.1993] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
We have investigated the replication of lymphocytic choriomeningitis virus (LCMV) before and after the nerve growth factor (NGF)-induced transdifferentiation of PC12 cells from the chromaffin to the neuron-like phenotype. Untreated and NGF-treated cells were equally susceptible to LCMV infection; however, the viral yield was found to be 1,000-fold lower in NGF-differentiated PC12 cells. The reduced viral yield correlated with restricted LCMV replication and transcription within the infected cell, which was not caused by the lack of cell proliferation in the NGF-treated cells but rather was related to the induction or changes in expression levels of specific gene product(s) associated with the cell commitment to a neuronal phenotype. The return to the chromaffin phenotype after withdrawal of NGF restored normal LCMV yields as well as levels of viral replication and transcription. The finding of reduced viral replication in terminally differentiated neuronal cells has important implications for understanding the mechanism by which neurotropic viruses, such as LCMV, are able to establish a long-term persistent infection in the central nervous system in the absence of severe pathological changes.
Collapse
Affiliation(s)
- J C de la Torre
- Department of Neuropharmacology, Scripps Research Institute, La Jolla, California 92037
| | | | | | | | | | | |
Collapse
|
27
|
Fu ZF, Weihe E, Zheng YM, Schäfer MK, Sheng H, Corisdeo S, Rauscher FJ, Koprowski H, Dietzschold B. Differential effects of rabies and borna disease viruses on immediate-early- and late-response gene expression in brain tissues. J Virol 1993; 67:6674-81. [PMID: 8411369 PMCID: PMC238106 DOI: 10.1128/jvi.67.11.6674-6681.1993] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
In situ hybridization and Northern blot analysis were used to examine expression of the immediate-early-response genes (IEGs) egr-1, junB, and c-fos, and the late response gene encoding enkephalin in the brains of rats infected intranasally with Borna disease virus (BDV) or rabies virus. In both Borna disease and rabies virus infections, a dramatic and specific induction of IEGs was detected in particular regions of the hippocampus and the cortex. Increased IEG mRNA expression overlapped with the characteristic expression patterns of BDV RNA and rabies virus RNA, although relative expression levels of viral RNA and IEG mRNA differed, particularly in the hippocampal formation. Furthermore, the temporal relationship between viral RNA synthesis and activation of IEG mRNA expression in BDV infection differed markedly from that in rabies virus infection, suggesting that IEG expression is upregulated by different mechanisms. Expression of proenkephalin (pENK) mRNA was also significantly increased in BDV infection, whereas in rabies virus infection, pENK mRNA levels and also the levels of glyceraldehyde-3-phosphate dehydrogenase mRNA were reduced at terminal stages of the disease, probably reflecting a generalized suppression of cellular protein synthesis due to massive production of rabies virus mRNA. The correlation between activated IEG mRNA expression and the strong increase in viral RNA raises the possibility that IEG products induce some phenotypic changes in neurons that render them more susceptible to viral replication.
Collapse
Affiliation(s)
- Z F Fu
- Department of Microbiology and Immunology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107-6799
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Kelić S, Norrby E, Kristensson K. Mumps virus alters aggregation of acetylcholine receptors in cultured rat skeletal muscle cells. Neuropathol Appl Neurobiol 1993; 19:420-8. [PMID: 8278025 DOI: 10.1111/j.1365-2990.1993.tb00464.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Cultured myoblasts, but not myotubes, from rat skeletal muscles were infected with the RW strain of mumps virus. Such myoblasts then fused to form myotubes containing viral antigen. The infected myotubes showed a significant decrease in the number of dorsal, linear acetylcholine receptor (AChR) aggregates as determined by FITC-conjugated alfa-bungarotoxin. Infected myotubes co-cultivated with spinal cord cells showed no increase in the number of dorsal, linear AChR aggregates, compared to normal, uninfected myotubes. In addition, an increased proliferation of the myoblasts, which remained uninfected in the infected cultures, was noted. This may indicate a release of a growth stimulating factor from the virus containing cells. This study shows that mumps virus infection can lead to an altered receptor organization in a morphologically preserved cell.
Collapse
Affiliation(s)
- S Kelić
- Department of Neuroscience, Karolinska Institute, SBL, Stockholm, Sweden
| | | | | |
Collapse
|
29
|
Löhr M, Bergstrome B, Maekawa R, Oldstone MB, Klöppel G. Human cytomegalovirus in the pancreas of patients with type 2 diabetes: is there a relation to clinical features, mRNA and protein expression of insulin, somatostatin, and MHC class II? ACTA ACUST UNITED AC 1993; 421:371-8. [PMID: 1360719 PMCID: PMC7087593 DOI: 10.1007/bf01606908] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2022]
Abstract
Human cytomegalovirus (HCMV) was recently demonstrated in the pancreas of about half the patients with type 2 diabetes mellitus in the absence of mumps, rubella or Coxsackie B virus. The present study addresses the question as to whether type 2 diabetes with an HCMV-positive pancreas differs from those with HCMV-negative pancreases with respect to age, sex, treatment, duration of disease, volume densities of B-cells and D-cells, mRNA levels of insulin and somatostatin, islet amyloid peptide deposits and major histocompatibility complex (MHC) class I and class II gene transcription, and protein expression. HCMV-positive type 2 diabetic patients showed a tendency towards a shorter duration of disease and significantly increased levels of MHC class II on RNA. In addition, expression of MHC class II product (HLA-DR) was identified in duct epithelial cells and/or islet cells in 9 diabetic pancreases and in 2 non-diabetic glands. No MHC class I expression could be detected. No other clinical differences between HCMV-positive and HCMV-negative glands were found. All 10 HCMV-positive diabetics showed a strong expression of MHC class II mRNA in the pancreas. By immunocytochemistry, 4 of 10 demonstrated expression on the islets; three of ten also expressed MHC DR beta on ductal cells. This finding might be related to the viral infection, as only 2 of the 9 HCMV-negative patients were HLA-DR beta positive and none of the non-diabetic controls showed increased levels of MHC class II mRNA. These data suggest that HCMV infection in the pancreas is associated with type 2 diabetes. However, no conclusions as to a role of this virus in the aetiopathology of type 2 diabetes can be drawn at present.
Collapse
Affiliation(s)
- M Löhr
- Department of Medicine, University of Erlangen-Nünberg, Federal Republic of Germany
| | | | | | | | | |
Collapse
|
30
|
Abstract
Demyelination is a component of several viral diseases of humans. The best known of these are subacute sclerosing panencephalitis (SSPE) and progressive multifocal leukoencephalopathy (PML). There are a number of naturally occurring virus infections of animals that involve demyelination and many of these serve as instructive models for human demyelinating diseases. In addition to the naturally occurring diseases, many viruses have been shown to be capable of producing demyelination in experimental situations. In discussing virus-associated demyelinating disease, the chapter reviews the architecture and functional organization of the CNS and considers what is known of the interaction of viruses with CNS cells. It also discusses the immunology of the CNS that differs in several important aspects from that of the rest of the body. Experimental models of viral-induced demyelination have also been considered. Viruses capable of producing demyelinating disease have no common taxonomic features; they include both DNA and RNA viruses, enveloped and nonenveloped viruses. The chapter attempts to summarize the important factors influencing viral demyelination, their common features, and possible mechanisms.
Collapse
Affiliation(s)
- J K Fazakerley
- Department of Pathology, University of Cambridge, England
| | | |
Collapse
|
31
|
Levine B, Griffin DE. Persistence of viral RNA in mouse brains after recovery from acute alphavirus encephalitis. J Virol 1992; 66:6429-35. [PMID: 1383564 PMCID: PMC240135 DOI: 10.1128/jvi.66.11.6429-6435.1992] [Citation(s) in RCA: 88] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Little is known about the relationship between recovery from acute viral encephalitis and the clearance of viral genetic material from the central nervous system. In a mouse model of Sindbis virus encephalitis, we have previously shown that clearance of infectious virus is mediated by antibody-induced restriction of viral gene expression rather than by cytotoxic destruction of virally infected cells. To explore whether Sindbis virus genomes persist in mouse brain after the clearance of infectious virus, we used reverse transcriptase-polymerase chain reaction amplification methods to detect Sindbis virus RNA in brain samples from immunocompetent BALB/c and antibody-treated immunodeficient scid/CB17 mice. RNA sequences from both the nonstructural region (NSP1 gene) and structural regions (E2 gene) of Sindbis virus were detected in the brains of all BALB/c and antibody-treated scid mice examined at 1, 2, and 3 months after infection. Additional BALB/c mouse brains were also positive at 8, 12, and 17 months after infection. To determine whether persistent RNA was capable of resuming unrestricted replication in the absence of the continuous presence of antiviral antibodies, viral titers were measured in the brains of scid mice at 1, 2, 3, and 6 months after antibody treatment. Viral reactivation was seen in scid mice treated with hyperimmune serum or a low dose of monoclonal antibody to the E2 envelope glycoprotein, but not in mice treated with a high dose of monoclonal antibody to E2. Replication of infectious virus isolated from scid mouse brain could be restricted by repeat treatment with immune serum, indicating that viral reactivation is not due to antibody-escape mutations. These results demonstrate that Sindbis virus can persist long term in a nonproductive form in mouse brain and suggest that the humoral immune response plays an important role in preventing viral reactivation.
Collapse
Affiliation(s)
- B Levine
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | | |
Collapse
|
32
|
Tajima Y, Salvaterra PM. Positive and negative feedback regulation of choline acetyltransferase mRNA levels in Drosophila: a study using temperature-sensitive mutants and embryo cell cultures. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 1992; 13:213-21. [PMID: 1317495 DOI: 10.1016/0169-328x(92)90029-b] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Steady state levels of the mRNA coding for the neurotransmitter biosynthetic enzyme, acetylCoA-choline-O-acetyltransferase (ChAT, EC 2.3.1.6), were measured in wild type Drosophila and two temperature-sensitive mutants (Chats1 and Chats2) using the RNase protection method. At a permissive temperature the relative amounts of ChAT mRNA were: wild type: Chats1:Chats2 = 1:2.09 (+/- 0.39):3.37 (+/- 0.57) (mean +/- S.E.M.) indicating that mutant flies may compensate, for making a thermolabile form of enzyme, by producing and/or maintaining higher levels of ChAT mRNA. At a restrictive temperature the ChAT mRNA levels decreased in both mutants and increased in wild type flies. The regulatory mechanism(s) responsible for increasing ChAT mRNA in wild type flies appears to have failed in the mutants at high temperature. Steady state mRNA levels were also measured in embryonic cell cultures prepared from wild type embryos. Cultures grown in the presence of two pharmacologic agents (carbamylcholine and d-tubocurarine) which should interfere with cholinergic neurotransmission, showed less mRNA resulting from a decrease in levels of ChAT gene transcription. Our results imply that neurotransmission and the rate of neurotransmitter biosynthetic enzyme gene transcription are coupled for the cholinergic system in Drosophila.
Collapse
Affiliation(s)
- Y Tajima
- Division of Neurosciences, Beckman Research Institute of the City of Hope, Duarte, CA 91010
| | | |
Collapse
|
33
|
Joly E, Mucke L, Oldstone MB. Viral persistence in neurons explained by lack of major histocompatibility class I expression. Science 1991; 253:1283-5. [PMID: 1891717 DOI: 10.1126/science.1891717] [Citation(s) in RCA: 248] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Viruses frequently persist in neurons, suggesting that these cells can evade immune surveillance. In a mouse model, 5 x 10(6) cytotoxic T lymphocytes (CTLs), specific for lymphocytic choriomeningitis virus (LCMV), did not lyse infected neurons or cause immunopathologic injury. In contrast, intracerebral injection of less than 10(3) CTL caused disease and death when viral antigens were expressed on leptomeningeal and choroid plexus cells of the nervous system. The neuronal cell line OBL21 expresses little or no major histocompatibility (MHC) class I surface glycoproteins and when infected with LCMV, resisted lysis by virus-specific CTLs. Expression of MHC heavy chain messenger RNA was limited, but beta 2-microglobulin messenger RNA and protein was made normally. OBL21 cells were made sensitive to CTL lysis by transfection with a fusion gene encoding another MHC class I molecule. Hence, neuronal cells probably evade immune surveillance by failing to express MHC class I molecules.
Collapse
Affiliation(s)
- E Joly
- Department of Neuropharmacology, Scripps Clinic and Research Foundation, La Jolla, CA 92037
| | | | | |
Collapse
|
34
|
Gourmelon P, Briet D, Clarençon D, Court L, Tsiang H. Sleep alterations in experimental street rabies virus infection occur in the absence of major EEG abnormalities. Brain Res 1991; 554:159-65. [PMID: 1933298 DOI: 10.1016/0006-8993(91)90184-w] [Citation(s) in RCA: 31] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Brain electrical activity and sleep organization were investigated in chronically implanted mice during street rabies virus infection. Continuous EEG recordings showed no gross electrical abnormalities until a few hours before the fatal issue. In contrast, alterations of sleep stages were observed at an early stage during the course of rabies virus infection, at a time when clinical signs were absent. Quantification by spectral analysis showed that the main feature was the early decrease of REM-sleep stages and the increase of the duration of waking stages. Neuromuscular disorders which could occur early were also observed during the disease. Comparison of these data with those obtained from fixed rabies virus infection shows that in the latter the EEG recordings demonstrated early alterations and a progressive deterioration with disappearance of both sleep and waking stages, which were replaced by a pathological sleep stage. In order to evaluate the potential role of the host-specific immune response in promoting brain electrophysiological alterations, EEG recordings and spectral analysis were also performed in cyclophosphamide-treated mice. Street rabies virus-infected and immunosuppressed mice showed identical physiopathological changes as those observed in immunocompetent mice. The implication of these viral-induced electrophysiological alterations in the context of the pathogenic mechanisms of rabies virus is discussed.
Collapse
|
35
|
Piccoli DA, Witzleben CL, Guico CJ, Morrison A, Rubin DH. Synergism between hepatic injuries and a nonhepatotropic reovirus in mice. Enhanced hepatic infection and death. J Clin Invest 1990; 86:1038-45. [PMID: 2170443 PMCID: PMC296830 DOI: 10.1172/jci114806] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Reovirus type 1, after intravenous inoculation in the adult mouse, is secreted via bile into the intestine in an infectious form. Although reovirus type 1 is rapidly removed from systemic circulation by the liver and the lung, very few hepatocytes express reovirus antigen during infection. In intestinal cells, reovirus replicates selectively in the crypts. This site preference may be due to active cell proliferation in the crypts. We hypothesized that the state of the cell may affect virus replication and tested this hypothesis by using chemical and surgical means to increase hepatic mitotic activity. Adult mice were treated with carbon tetrachloride or surgical trauma, inoculated with reovirus type 1 intravenously, and subsequently killed. Virus antigen was identified using a highly specific immunohistochemical technique. Liver sections were stained using immunoperoxidase with specific rabbit antireovirus antibody. Hepatotoxin and surgical trauma increase reovirus antigen detection in both Kupffer cells and hepatocytes. Only the sequential administration of CCl4 and virus caused mortality at doses sublethal for each alone. These data demonstrate a synergism between hepatic injury and reovirus which results in a significant increase in the magnitude of viral infection and contributes to mortality. Such synergism may be important in idiopathic liver disease.
Collapse
Affiliation(s)
- D A Piccoli
- Division of Gastroenterology and Nutrition, Children's Hospital of Philadelphia, Pennsylvania
| | | | | | | | | |
Collapse
|
36
|
Lascano EF, Berría MI, Avila MM, Weissenbacher MC. Astrocytic reaction predominance in chronic encephalitis of Junin virus-infected rats. J Med Virol 1989; 29:327-33. [PMID: 2559956 PMCID: PMC7166657 DOI: 10.1002/jmv.1890290420] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Junin virus antigen distribution and astrocytic reaction to prolonged infection were characterized in rat brain by the PAP technique. During the acute stage of neurologic disease following intracerebral inoculation, Junin antigen was detected in 100% of animals, strongly in most neurons but also to a much lesser degree in scattered astrocytes, dropping to 20% of rats at 540 days postinfection. Initially labeled in all brain areas, viral antigen gradually disappeared from hippocampus but persisted irregularly in cerebral cortex, basal ganglia, Purkinje cells, pons, and medulla oblongata. Such a pattern suggests that specific neuronal subpopulations, in spite of apparently unaltered cell morphology, may persistently harbor the virus, leading on occasion to a delayed neurologic syndrome. During both the acute and chronic stages of disease, a mild inflammatory exudate was observed, characterized by the presence of T and B lymphocytes, as well as macrophages and unidentified round cells. GFAP immunostaining showed increased astrocytic reaction as infection lapsed into chronicity. Corpus callosum, hippocampus, and cerebellum exhibited the sharpest reactive astrocytosis, followed by basal ganglia, pons, and medulla oblongata, whereas in cerebral cortex it was considerably less. Astrocyte activation, which failed to correlate with viral antigen presence in neurons, seems to result from a generalized condition, possibly including diffusible brain factors triggered by viral infection. Such widespread astroglial reaction may thus contribute to the outcome of the late neurologic syndrome.
Collapse
Affiliation(s)
- E F Lascano
- Departamento de Microbiología, Facultad de Medicina, Universidad de Buenos Aires, Argentina
| | | | | | | |
Collapse
|
37
|
Lipkin WI, Carbone KM, Wilson MC, Duchala CS, Narayan O, Oldstone MB. Neurotransmitter abnormalities in Borna disease. Brain Res 1988; 475:366-70. [PMID: 2905625 DOI: 10.1016/0006-8993(88)90627-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Borna disease (BD) agent is an infectious pathogen that causes progressive central nervous system (CNS) dysfunction in a wide range of vertebrate hosts. The course of BD in adult rats is biphasic. The acute phase is characterized by aggressive behavior and inflammatory cell infiltrates in brain. With chronic infection animals become listless and inflammation resolves. BD antigens are similarly distributed in neurons in hippocampus, neocortex, cerebellum and brainstem in acutely and chronically infected animals. We have recently examined brain levels of neuronal transcripts in rats with acute and chronic BD. Levels for 3 of these mRNAs, cholecystokinin, glutamic acid decarboxylase and somatostatin, were decreased in acutely infected rats and increased toward control values in chronically infected rats. A fourth transcript, MuBr8, correlated in distribution with BD antigen, was persistently decreased throughout the course of infection. These data may have implications for understanding the pathogenesis of neurologic disturbances in BD and other inflammatory CNS diseases.
Collapse
Affiliation(s)
- W I Lipkin
- Research Institute of Scripps Clinic, La Jolla, CA 92037
| | | | | | | | | | | |
Collapse
|