1
|
Dunacka J, Świątek G, Wrona D. High Behavioral Reactivity to Novelty as a Susceptibility Factor for Memory and Anxiety Disorders in Streptozotocin-Induced Neuroinflammation as a Rat Model of Alzheimer's Disease. Int J Mol Sci 2024; 25:11562. [PMID: 39519114 PMCID: PMC11546707 DOI: 10.3390/ijms252111562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 10/18/2024] [Accepted: 10/25/2024] [Indexed: 11/16/2024] Open
Abstract
Individual differences in responsiveness to environmental factors, including stress reactivity and anxiety levels, which differ between high (HR) and low (LR) responders to novelty, might be risk factors for development of memory and anxiety disorders in sporadic Alzheimer's disease (sAD). In the present study, we investigated whether behavioral characteristics of the HR and LR rats, influence the progression of sAD (neuroinflammation, β-amyloid peptide, behavioral activity related to memory (Morris water maze) and anxiety (elevated plus maze, white and illuminated open field test) in streptozotocin (STZ)-induced neuroinflammation as a model of early pathophysiological alterations in sAD. Early (45 days) in disease progression, there was a more severe impairment of reference memory and higher levels of anxiety in HRs compared with LRs. Behavioral depression in HRs was associated with higher expression of β-amyloid deposits, particularly in the NAcS, and activation of microglia (CD68+ cells) in the hypothalamus, as opposed to less inflammation in the hippocampus, particularly in CA1, compared with LRs in late (90 days) sAD progression. Our findings suggest that rats with higher behavioral activity and increased responsivity to stressors show more rapid progression of disease and anxiety disorders compared with low responders to novelty in the STZ-induced sAD model.
Collapse
Affiliation(s)
| | | | - Danuta Wrona
- Department of Animal and Human Physiology, Faculty of Biology, University of Gdansk, 59 Wita Stwosza Str., 80-308 Gdansk, Poland; (J.D.); (G.Ś.)
| |
Collapse
|
2
|
Anderberg RH, Anefors C, Bergquist F, Nissbrandt H, Skibicka KP. Dopamine signaling in the amygdala, increased by food ingestion and GLP-1, regulates feeding behavior. Physiol Behav 2014; 136:135-44. [PMID: 24560840 DOI: 10.1016/j.physbeh.2014.02.026] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2013] [Revised: 02/07/2014] [Accepted: 02/08/2014] [Indexed: 12/11/2022]
Abstract
Mesolimbic dopamine plays a critical role in food-related reward processing and learning. The literature focuses primarily on the nucleus accumbens as the key dopaminergic target in which enhanced dopamine signaling is associated with reward. Here, we demonstrate a novel neurobiological mechanism by which dopamine transmission in the amygdala regulates food intake and reward. We show that food intake was associated with increased dopamine turnover in the amygdala. Next, we assess the impact of direct intra-amygdala D1 and D2 receptor activation on food intake and sucrose-driven progressive ratio operant conditioning in rats. Amygdala D2 receptor activation reduced food intake and operant behavior for sucrose, whereas D2 receptor blockade increased food intake but surprisingly reduced operant behavior. In contrast, D1 receptor stimulation or blockade did not alter feeding or operant conditioning for food. The glucagon-like peptide 1 (GLP-1) system, a target for type 2 diabetes treatment, in addition to regulating glucose homeostasis, also reduces food intake. We found that central GLP-1R receptor activation is associated with elevated dopamine turnover in the amygdala, and that part of the anorexic effect of GLP-1 is mediated by D2 receptor signaling in the amygdala. Our findings indicate that amygdala dopamine signaling is activated by both food intake and the anorexic brain-gut peptide GLP-1 and that amygdala D2 receptor activation is necessary and sufficient to change feeding behavior. Collectively these studies indicate a novel mechanism by which the dopamine system affects feeding-oriented behavior at the level of the amygdala.
Collapse
Affiliation(s)
- Rozita H Anderberg
- Department of Physiology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Sweden
| | - Christine Anefors
- Department of Physiology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Sweden
| | - Filip Bergquist
- Department of Pharmacology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Sweden
| | - Hans Nissbrandt
- Department of Pharmacology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Sweden
| | - Karolina P Skibicka
- Department of Physiology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Sweden.
| |
Collapse
|
3
|
Izumo N, Ishibashi Y, Ohba M, Morikawa T, Manabe T. Decreased voluntary activity and amygdala levels of serotonin and dopamine in ovariectomized rats. Behav Brain Res 2012; 227:1-6. [DOI: 10.1016/j.bbr.2011.10.031] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2011] [Revised: 10/14/2011] [Accepted: 10/21/2011] [Indexed: 01/04/2023]
|
4
|
|
5
|
|
6
|
How does the physiology change with symptom exacerbation and remission in schizophrenia? Behav Brain Sci 2011. [DOI: 10.1017/s0140525x00065122] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
7
|
|
8
|
|
9
|
|
10
|
|
11
|
A cardinal principle for neuropsychology, with implications for schizophrenia and mania. Behav Brain Sci 2011. [DOI: 10.1017/s0140525x00065195] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
12
|
|
13
|
|
14
|
|
15
|
|
16
|
|
17
|
|
18
|
|
19
|
|
20
|
Abstract
AbstractA model is proposed for integrating the neural and cognitive aspects of the positive symptoms of acute schizophrenia, using evidence from postmortem neuropathology and neurochemistry, clinical and preclinical studies of dopaminergic neurotransmission, anatomical connections between the limbic system and basal ganglia, attentional and other cognitive abnormalities underlying the positive symptoms of schizophrenia, specific animal models of some of these abnormalities, and previous attempts to model the cognitive functions of the septohippocampal system and the motor functions of the basal ganglia. Anatomically, the model emphasises the projections from the septohippocampal system, via the subiculum, and the amygdala to nucleus accumbens, and their interaction with the ascending dopaminergic projection to the accumbens. Psychologically, the model emphasises a failure in acute schizophrenia to integrate stored memories of past regularities of perceptual input with ongoing motor programs in the control of current perception. A number of recent experiments that offer support for the model are briefly described, including anatomical studies of limbic-striatal connections, studies in the rat of the effects of damage to these connections, and of the effects of amphetamine and neuroleptics, on the partial reinforcement extinction effect, latent inhibition and the Kamin blocking effect; and studies of the latter two phenomena in acute and chronic schizophrenics.
Collapse
|
21
|
|
22
|
|
23
|
|
24
|
|
25
|
A realistic model will be much more complex and will consider longitudinal neuropsychodevelopment. Behav Brain Sci 2011. [DOI: 10.1017/s0140525x00065286] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
26
|
|
27
|
|
28
|
|
29
|
Ernst M, Pine DS, Hardin M. Le modèle triadique des aspects neurobiologiques des comportements motivés à l’adolescence. ACTA ACUST UNITED AC 2009. [DOI: 10.1007/s11836-009-0094-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
30
|
Tomie A, Grimes KL, Pohorecky LA. Behavioral characteristics and neurobiological substrates shared by Pavlovian sign-tracking and drug abuse. BRAIN RESEARCH REVIEWS 2008; 58:121-35. [PMID: 18234349 PMCID: PMC2582385 DOI: 10.1016/j.brainresrev.2007.12.003] [Citation(s) in RCA: 134] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2007] [Revised: 11/07/2007] [Accepted: 12/08/2007] [Indexed: 11/18/2022]
Abstract
Drug abuse researchers have noted striking similarities between behaviors elicited by Pavlovian sign-tracking procedures and prominent symptoms of drug abuse. In Pavlovian sign-tracking procedures, repeated paired presentations of a small object (conditioned stimulus, CS) with a reward (unconditioned stimulus, US) elicits a conditioned response (CR) that typically consists of approaching the CS, contacting the CS, and expressing consummatory responses at the CS. Sign-tracking CR performance is poorly controlled and exhibits spontaneous recovery and long-term retention, effects that resemble relapse. Sign-tracking resembles psychomotor activation, a syndrome of behavioral responses evoked by addictive drugs, and the effects of sign-tracking on corticosterone levels and activation of dopamine pathways resemble the neurobiological effects of abused drugs. Finally, the neurobiological profile of individuals susceptible to sign-tracking resembles the pathophysiological profile of vulnerability to drug abuse, and vulnerability to sign-tracking predicts vulnerability to impulsive responding and alcohol self-administration. Implications of sign-tracking for models of drug addiction are considered.
Collapse
Affiliation(s)
- Arthur Tomie
- Department of Psychology, Rutgers University, New Brunswick, NJ 08903, USA.
| | | | | |
Collapse
|
31
|
Uehara T, Sumiyoshi T, Matsuoka T, Itoh H, Kurachi M. Effect of prefrontal cortex inactivation on behavioral and neurochemical abnormalities in rats with excitotoxic lesions of the entorhinal cortex. Synapse 2007; 61:391-400. [PMID: 17372984 DOI: 10.1002/syn.20383] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Morphological studies report reductions in the volume of medial temporal lobe structures and the prefrontal cortex in subjects with schizophrenia. The present study was performed to clarify the role of prefrontal-temporo-limbic system in the manifestation of psychosis, using entorhinal cortical lesion rats as a vulnerability animal model. Quinolinic acid (lesion group) or phosphate buffer (sham group) was infused into the left entorhinal cortex (EC) of male Wistar rats. On the 28th postoperative day, methamphetamine (MAP; 1 mg/kg, i.p.)-induced dopamine (DA) release in the nucleus accumbens (NAC) and the basolateral amygdala (BLA), as well as locomotor activity and prepulse inhibition (PPI), was measured following microinfusion of lidocaine or the cerebrospinal fluid (CSF) into the medial prefrontal cortex (mPFC). Lesions of the EC resulted in enhancement of MAP-induced DA release in the NAC and BLA. Further analysis revealed that the enhancement by EC lesions of MAP-induce DA release in the NAC was particularly evident in the lidocaine-infused rats. EC lesions also enhanced MAP-induced locomotor activity, especially in the lidocaine-treated animals. By contrast, infusion of lidocaine into mPFC attenuated MAP-induced DA release in the BLA, irrespective of the lesion status. Both EC lesions and lidocaine infusion disrupted PPI. These results indicate that inactivation of the mPFC, as well as structural abnormalities in the EC, leads to dysregulation of DAergic neurotransmissions in the limbic regions. The implications of these findings in relation to the neural basis for psychosis vulnerability are discussed.
Collapse
Affiliation(s)
- Takashi Uehara
- Department of Neuropsychiatry, University of Toyama Graduate School of Medicine and Pharmaceutical Science, Toyama, Japan.
| | | | | | | | | |
Collapse
|
32
|
Larrauri J, Schmajuk N. Prepulse inhibition mechanisms and cognitive processes: a review and model. EXS 2006; 98:245-78. [PMID: 17019891 DOI: 10.1007/978-3-7643-7772-4_12] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- José Larrauri
- Duke University, Department of Psychology and Neuroscience, Durham, NC 27708, USA
| | | |
Collapse
|
33
|
Abstract
BACKGROUND Risk-taking behavior is a major cause of morbidity and mortality in adolescence. In the context of decision theory and motivated (goal-directed) behavior, risk-taking reflects a pattern of decision-making that favors the selection of courses of action with uncertain and possibly harmful consequences. We present a triadic, neuroscience systems-based model of adolescent decision-making. METHOD We review the functional role and neurodevelopmental findings of three key structures in the control of motivated behavior, i.e. amygdala, nucleus accumbens, and medial/ventral prefrontal cortex. We adopt a cognitive neuroscience approach to motivated behavior that uses a temporal fragmentation of a generic motivated action. Predictions about the relative contributions of the triadic nodes to the three stages of a motivated action during adolescence are proposed. RESULTS The propensity during adolescence for reward/novelty seeking in the face of uncertainty or potential harm might be explained by a strong reward system (nucleus accumbens), a weak harm-avoidant system (amygdala), and/or an inefficient supervisory system (medial/ventral prefrontal cortex). Perturbations in these systems may contribute to the expression of psychopathology, illustrated here with depression and anxiety. CONCLUSIONS A triadic model, integrated in a temporally organized map of motivated behavior, can provide a helpful framework that suggests specific hypotheses of neural bases of typical and atypical adolescent behavior.
Collapse
Affiliation(s)
- Monique Ernst
- Section of Developmental and Affective Neuroscience, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | | |
Collapse
|
34
|
Abstract
Learning tasks are typically thought to be either hippocampal-dependent (impaired by hippocampal lesions) or hippocampal-independent (indifferent to hippocampal lesions). Here, we show that conditioned taste aversion (CTA) learning fits into neither of these categories. Rats were trained to avoid two taste stimuli, one novel and one familiar. Muscimol infused through surgically implanted intracranial cannulae temporarily inactivated the dorsal hippocampus during familiarization, subsequent CTA training, or both. As shown previously, hippocampal inactivation during familiarization enhanced the effect of that familiarization on learning (i.e., hippocampal inactivation enhanced latent inhibition of CTA); more novel and surprising, however, was the finding that hippocampal inactivation during training sessions strongly enhanced CTA learning itself. These phenomena were not caused by specific aspects of our infusion technique--muscimol infusions into the hippocampus during familiarization sessions did not cause CTAs, muscimol infusions into gustatory cortex caused the expected attenuation of CTA, and hippocampal inactivation caused the expected attenuation of spatial learning. Thus, we suggest that hippocampal memory processes interfere with the specific learning mechanisms underlying CTA, and more generally that multiple memory systems do not operate independently.
Collapse
Affiliation(s)
- Martha E Stone
- Psychology Department and Volen National Center for Complex Systems, Brandeis University, Waltham, Massachusetts 02454-9110, USA
| | | | | |
Collapse
|
35
|
Izzo E, Sanna PP, Koob GF. Impairment of dopaminergic system function after chronic treatment with corticotropin-releasing factor. Pharmacol Biochem Behav 2005; 81:701-8. [PMID: 16005056 DOI: 10.1016/j.pbb.2005.04.017] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2002] [Revised: 01/10/2003] [Accepted: 04/15/2005] [Indexed: 10/25/2022]
Abstract
Mounting evidence suggests that chronic stress may have a detrimental effect on dopaminergic function and, in certain individuals, could contribute to the pathophysiology of central nervous system disorders like depression, schizophrenia, and Parkinson's disease. Therefore, the effects of chronic elevated brain levels of corticotropin-releasing factor (CRF), a crucial mediator of the behavioral stress response, on dopaminergic function were investigated. Rats treated intracerebroventricularly (i.c.v.) with 1 microg of CRF per day for 13 days displayed a decreased stereotyped response to D-amphetamine 1 day after chronic CRF and 1 month post-CRF. These rats also displayed an increased cataleptic response to eticlopride at 2 days post-CRF, consistent with decreased functional activity in the dopaminergic systems. CRF treatment induced a transient decrease of dopamine tissue levels in the prefrontal cortex at 1 day and 1 week post-CRF, an increase in the nucleus accumbens 1 week post-CRF and no change in the striatum. An increase of the dihydroxyphenylacetic acid/dopamine (DOPAC/DA) ratio, an indicator of dopamine turnover, also was seen in the prefrontal cortex and striatum in CRF-treated animals at 1 week post-CRF. The dopaminergic system is very sensitive to oxidative insults. Levels of malondialdehyde, a membrane lipid peroxidation marker, also were measured in the same brain areas. In the prefrontal cortex, we observed a decrease of malondialdehyde at 1 week after chronic CRF treatment. This result may indicate an activation of the antioxidant system in response to chronic stress. These results show that chronic hyperactivity of the CRF system leads to a transient dysfunction of the dopaminergic systems, possibly through oxidative mechanisms, and suggest that stress could be a cofactor in the pathogenesis and/or progression of disorders of the dopaminergic systems.
Collapse
Affiliation(s)
- Emanuela Izzo
- Department of Neuropharmacology, CVN-12, The Scripps Research Institute, 10550 North Torrey Pines Rd, La Jolla, California, CA 92037, USA
| | | | | |
Collapse
|
36
|
Zahm DS. The evolving theory of basal forebrain functional-anatomical 'macrosystems'. Neurosci Biobehav Rev 2005; 30:148-72. [PMID: 16125239 DOI: 10.1016/j.neubiorev.2005.06.003] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2005] [Revised: 06/03/2005] [Accepted: 06/10/2005] [Indexed: 11/24/2022]
Abstract
The conceptual basis and continuing development of Alheid and Heimer's [Alheid, G.F., Heimer, L., 1988. New perspectives in basal forebrain organization of special relevance for neuropsychiatric disorders: the striatopallidal, amygdaloid and corticopetal components of substantia innominata. Neuroscience 27, 1-39] theory of basal forebrain organization based on the description of basal forebrain functional-anatomical 'macrosytems' is reviewed. It is posed that the macrosystem theory leads to a hypothesis that different macrosystems cooperate and compete to exert distinct influences on motor and cognitive function. Emergent corollaries include, e.g. that the organization of the outputs of different macrosystems should differ. Consistent with these considerations, extant literature and some unpublished data indicate that the input nuclei of macrosystems are not abundantly interconnected and macrosystems systems have distinct neuroanatomical relationships with basal forebrain and brainstem cholinergic and dopaminergic ascending modulatory systems. Furthermore, macrosystem outputs appear to be directed almost exclusively at the reticular formation or structures intimately associated with it. The relative merits of the theory of functional-anatomical macrosystems are discussed in relation to Swanson's model of cerebral hemisphere control of motivated behavior.
Collapse
Affiliation(s)
- Daniel S Zahm
- Department of Pharmacological and Physiological Science, St Louis University School of Medicine, 1402 S. Grand Boulevard, St Louis, MO 63104, USA.
| |
Collapse
|
37
|
Yasuno F, Suhara T, Okubo Y, Ichimiya T, Takano A, Sudo Y, Inoue M. Abnormal effective connectivity of dopamine D2 receptor binding in schizophrenia. Psychiatry Res 2005; 138:197-207. [PMID: 15854788 DOI: 10.1016/j.pscychresns.2004.04.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2003] [Accepted: 04/07/2004] [Indexed: 11/23/2022]
Abstract
Receptor binding has been examined region by region in both in vitro and in vivo studies, but less attention has been paid to the connectivity of regional receptor binding despite the fact that neurophysiological studies have indicated an extensive inter-regional connectivity. In this study, we investigated the connectivity of regional dopamine D2 receptor binding in positron emission tomography data from 10 drug-naive patients with schizophrenia and 19 healthy controls. We applied a structural equation method to regional receptor binding. The results indicated that the network models of the patients and normal subjects were significantly different. As to the individual path coefficients, (a) connectivity between cortical regions was different between groups; (b) connectivity from the prefrontal cortex, parietal cortex, and thalamus to the anterior cingulate differed from that in controls; and (c) connectivity from the prefrontal cortex to the anterior cingulate and thalamus via the hippocampus was observed in normal subjects but not in patients. These results suggest that a systems-level change reflected in the connectivity of D2 receptor binding is present in schizophrenia.
Collapse
Affiliation(s)
- Fumihiko Yasuno
- Brain Imaging Project, National Institute of Radiological Sciences, Inage-ku, Chiba 263-8555, Japan
| | | | | | | | | | | | | |
Collapse
|
38
|
Chang CK, Wang NL, Lin MT. Inhibition of the dopamine system in rat amygdala attenuates the picrotoxin-induced locomoter hyperactivity and hypertension. Clin Exp Pharmacol Physiol 2005; 31:284-8. [PMID: 15191399 DOI: 10.1111/j.1440-1681.2004.03994.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The aim of the present study was to investigate whether picrotoxin-induced locomotor hyperactivity and hypertension can be inhibited by dopaminergic inhibition in rat amygdala. Locomotor activity was detected using a modularized infrared light matrix system in freely moving rats. In anaesthetized rats, blood pressure was measured while dopamine release was detected using in vivo voltammetry with carbon fibre electrodes. Systemic administration of picrotoxin (1-4 mg/kg) increased both locomotor activity (including horizontal motion, vertical motion and total distance travelled) and the number of turnings (both clockwise and anticlockwise), but inhibited postural freezing. The locomotor hyperactivity induced by systemic administration of picrotoxin was mimicked by direct injection of a small dose (1-3 micro g in 1.0 micro L) of picrotoxin into the amygdala. In vivo voltammetry data revealed that systemic administration of picrotoxin increased the release of dopamine in the amygdala of rat brain accompanied by hypertension. Local injection of kainic acid into the paramedian reticular nucleus (PRN) of the medulla oblongata decreased both the spontaneous release of dopamine in the amygdala and spontaneous levels of locomotor activity in rats. Furthermore, the picrotoxin-induced locomotor hyperactivity, hypertension and increased amygdaloid dopamine release were all suppressed following chemical stimulation of the PRN with kainic acid. Blockade of dopamine receptors with systemic or intra-amygdaloid injection of haloperidol (a dopamine receptor antagonist) significantly attenuated the picrotoxin-induced locomotor hyperactivity and hypertension. These results demonstrate that picrotoxin-induced hyperactivity and hypertension involve an increase in amygdaloid dopamine transmission that can be modulated by ascending projections from the PRN in the medulla oblongata.
Collapse
Affiliation(s)
- C K Chang
- Department of Surgery, MacKay Memorial Hospital, Taipei, Taiwan
| | | | | |
Collapse
|
39
|
Stevenson CW, Gratton A. Role of basolateral amygdala dopamine in modulating prepulse inhibition and latent inhibition in the rat. Psychopharmacology (Berl) 2004; 176:139-45. [PMID: 15114433 DOI: 10.1007/s00213-004-1879-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2003] [Accepted: 03/12/2004] [Indexed: 10/26/2022]
Abstract
RATIONALE The dopamine (DA) projection to the basolateral amygdala (BLA) modulates nucleus accumbens (NAc) and medial prefrontal cortex (mPFC) DA transmission. Given the involvement of the BLA, and of NAc and mPFC DA, in select forms of information processing, we sought to determine the role of BLA DA in modulating prepulse inhibition (PPI) and latent inhibition (LI). OBJECTIVE The effects of BLA D1 (SCH 23390) and D2/D3 (raclopride) receptor blockade on PPI and LI were examined. METHODS Separate groups of male Long-Evans rats received bilateral intra-BLA infusions of SCH 23390 (3.2 or 6.4 microg/0.5 microl per side), raclopride (2.5 or 5.0 microg/0.5 microl per side) or saline prior to testing. In two experiments, the effects of BLA DA receptor antagonism on PPI of the acoustic startle response (ASR) and LI of conditioned taste aversion were determined. A control group received bilateral intra-striatal infusions of SCH 23390 or raclopride prior to PPI testing. RESULTS Intra-BLA SCH 23390 or raclopride had no effect on the ASR. Intra-BLA SCH 23390 enhanced and raclopride disrupted PPI, both in a dose-related manner. Intra-striatal SCH 23390 or raclopride had no effect on PPI or ASR magnitude. Finally, BLA DA receptor blockade had no effect on LI. CONCLUSIONS These results indicate that PPI is modulated by BLA DA and suggest that this modulation occurs independently of changes in NAc and/or mPFC DA transmission. They also suggest that BLA DA is not involved in modulating LI and add to evidence indicating that PPI and LI are mediated by different neural substrates.
Collapse
Affiliation(s)
- C W Stevenson
- Douglas Hospital Research Centre, McGill University, 6875 Boulevard LaSalle, H4H 1R3, Montreal (Verdun), QC, Canada
| | | |
Collapse
|
40
|
Todtenkopf MS, Stellar JR, Williams EA, Zahm DS. Differential distribution of parvalbumin immunoreactive neurons in the striatum of cocaine sensitized rats. Neuroscience 2004; 127:35-42. [PMID: 15219666 DOI: 10.1016/j.neuroscience.2004.04.054] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2004] [Revised: 04/26/2004] [Accepted: 04/27/2004] [Indexed: 10/26/2022]
Abstract
Intermittent administration of psychostimulants such as cocaine and amphetamine can result in behavioral sensitization, which is believed to model the onset of drug addiction, as well as possible neural adaptations that lead to addictive behaviors. The dorsal striatum and the nucleus accumbens (NAc) have been shown to play an integral role in this phenomenon. However, these structures comprise a complex neuroanatomical organization, and few studies have correlated anatomical differentiation within these brain regions with functional (i.e. behavioral) outcome, particularly after psychostimulant exposure. Parvalbumin (PV)-containing GABAergic interneurons are a key neuronal cell population that can significantly regulate input-output functions in these brain regions. The present study quantified parvalbumin-immunoreactive cells in subterritories of the striatum and NAc in animals behaviorally sensitized to cocaine. Rats received a sensitization-inducing regimen of cocaine (twice-daily injections of 15 mg/kg i.p. for 5 consecutive days). Two or 14 days following the last injection, rats were given a challenge injection of cocaine (15 mg/kg i.p.), and killed 2 h later. Sections through the striatum (including the NAc) were processed for parvalbumin immunoreactivity, and the number of immunoreactive neurons was quantified. Repeated cocaine administration resulted in robust sensitization that correlated with transient increases in the number of PV immunoreactive neurons in the ventrolateral, dorsolateral and dorsomedial striatum. After a 2-week withdrawal period, sensitized animals showed a significant decrease in the number of PV+ neurons in the ventrolateral shell of the NAc and dorsomedial striatum, and no significant difference in any other area examined. These data suggest a dichotomous role for PV interneurons in different subterritories of the striatum and NAc during the short-term (induction) vs. long-term (expression) phases of cocaine sensitization.
Collapse
Affiliation(s)
- M S Todtenkopf
- Behavioral Genetics Laboratory, Department of Psychiatry, Harvard Medical School, McLean Hospital, MRC 001, 115 Mill Street, Belmont, MA 02478, USA.
| | | | | | | |
Collapse
|
41
|
Zarrindast MR, Ahmadi S, Haeri-Rohani A, Rezayof A, Jafari MR, Jafari-Sabet M. GABA(A) receptors in the basolateral amygdala are involved in mediating morphine reward. Brain Res 2004; 1006:49-58. [PMID: 15047023 DOI: 10.1016/j.brainres.2003.12.048] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/23/2003] [Indexed: 11/24/2022]
Abstract
In the present study, the effects of intra-basolateral amygdala (BLA) injection of GABA(A) receptor agonist and antagonist on morphine-induced conditioned place preference (CPP) in male Wistar rats have been investigated. Subcutaneous (s.c.) administration of different doses of morphine sulfate (1-9 mg/kg) produced a dose-dependent CPP. Using a 3-day schedule of conditioning, it was found that the GABA(A) receptor agonist, muscimol (0.125, 0.25 and 0.5 microg/rat) or the GABA(A) receptor antagonist, bicuculline (0.125, 0.25 and 0.5 microg/rat), did not produce a significant place preference or place aversion. Intra-BLA administration of muscimol (0.25 and 0.5 microg/rat) decreased the acquisition of CPP induced by morphine (6 mg/kg). On the other hand, intra-BLA injection of bicuculline (0.25 and 0.5 microg/rat) in combination with an ineffective dose of morphine (1 mg/kg) elicited a significant CPP. The response of different doses of muscimol was attenuated by bicuculline (0.125 and 0.25 microg/rat). Furthermore, intra-BLA administration of bicuculline but not muscimol before testing significantly decreased the expression of morphine (6 mg/kg)-induced place preference. The administration of the higher doses of bicuculline (0.25 and 0.5 microg/rat) during acquisition and the higher dose of muscimol (2 microg/rat) on the test day decreased the locomotor activity of the animals on the testing phase. It can be concluded that GABA(A) receptors in the amygdala are involved in morphine reward.
Collapse
|
42
|
Wrona D, Jurkowski MK, Tokarski J. Blood and spleen natural killer cell cytotoxicity after exposure to open field stress in rats: the effect of spontaneous locomotor activity. J Neuroimmunol 2004; 150:88-97. [PMID: 15081252 DOI: 10.1016/j.jneuroim.2004.01.023] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2003] [Revised: 01/30/2004] [Accepted: 01/30/2004] [Indexed: 11/16/2022]
Abstract
In the present study we compared the effects of acute (30 min), white and illuminated open field (OF) stress on behavioral, immune and endocrine variables between rats divided into high (HR) and low (LR) responsive to novelty and in a non-divided group. It was found that OF-induced behavioral depression which was in parallel to suppression of both blood and spleen natural killer cell cytotoxicity (NKCC), large granular lymphocyte (LGL) and lymphocyte numbers occurred in stressed LR rats only. There was no significant difference in the plasma level of corticosterone (COR) and testosterone (TST) between HR and LR rats. In contrast, when the HR and LR groups were examined together (the non-divided group), no significant influence of OF stress on behavioral activity or NKCC was observed. These results emphasize that individual differences as measured by spontaneous locomotor activity play the important role for the study of the mechanisms involved in stress-induced immunomodulation and indicate that OF stress-induced behavioral depression in low reactivity animals may be accompanied by impaired defence against viral infections and neoplastic growth, which is functionally related to NKCC.
Collapse
Affiliation(s)
- D Wrona
- Department of Animal Physiology, University of Gdańsk, Gdańsk 80822, Poland.
| | | | | |
Collapse
|
43
|
SATO W, MURAI T. CHARACTERISTICS OF THE INVOLVEMENT OF THE AMYGDALA IN THE RECOGNITION OF EMOTIONAL EXPRESSIONS: A REVIEW OF NEUROPSYCHOLOGICAL RESEARCH. PSYCHOLOGIA 2004. [DOI: 10.2117/psysoc.2004.125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
44
|
Stevenson CW, Sullivan RM, Gratton A. Effects of basolateral amygdala dopamine depletion on the nucleus accumbens and medial prefrontal cortical dopamine responses to stress. Neuroscience 2003; 116:285-93. [PMID: 12535960 DOI: 10.1016/s0306-4522(02)00553-5] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
In vivo voltammetry was used to study the effects of basolateral amygdala dopamine depletion on stress-induced dopamine release in the nucleus accumbens and medial prefrontal cortex. Male Long-Evans rats received bilateral microinjections of 6-hydroxydopamine or vehicle into the basolateral amygdala. Changes in dopamine signal were monitored in the nucleus accumbens and in the right and left hemispheres of medial prefrontal cortex, in lesioned animals and shams. Animals were subjected to a physical stressor (tail pinch) and a species-typical threat (fox odour); each stressor was presented twice over four consecutive daily sessions. The results indicate that the nucleus accumbens dopamine responses to both stressors are significantly potentiated by dopamine-depleting lesions to basolateral amygdala. In contrast, while the dopamine stress response in the left medial prefrontal cortex did not differ between lesioned animals and shams, the right medial prefrontal cortical dopamine response to tail pinch, but not fox odour stress, was significantly attenuated in lesioned animals. Therefore, basolateral amygdala dopamine depletion had opposite effects on the nucleus accumbens and medial prefrontal cortical dopamine responses to stress, although the effect on the latter is lateralized to the right hemisphere in a stressor-specific manner. These data indicate that stress-induced activation of meso-amygdaloid dopamine exerts an inhibitory influence on the nucleus accumbens dopamine response to stress. They also suggest the possibility that meso-amygdaloid dopamine influences the nucleus accumbens dopamine response to stress indirectly by modulating stress-induced dopamine release in medial prefrontal cortex. These findings add to a growing body of evidence of a preferential involvement of right medial prefrontal cortical dopamine in a wide range of physiological responses to stress.
Collapse
Affiliation(s)
- C W Stevenson
- Douglas Hospital Research Centre, McGill University, 6875 Boulevard LaSalle, Montréal, Québec, Canada H4H 1R3
| | | | | |
Collapse
|
45
|
Stevenson CW, Gratton A. Basolateral amygdala modulation of the nucleus accumbens dopamine response to stress: role of the medial prefrontal cortex. Eur J Neurosci 2003; 17:1287-95. [PMID: 12670317 DOI: 10.1046/j.1460-9568.2003.02560.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The basolateral amygdala (BLA) is involved in modulating affective responses to stress and, along with the nucleus accumbens (NAc) and medial prefrontal cortex (mPFC), receives a stress-responsive dopamine (DA) projection from the ventral tegmental area. The present study was undertaken to characterize the role of BLA DA D1 and D2/D3 receptor subtypes in modulating the NAc and mPFC DA responses to stress. Voltammetry was used to monitor, in freely behaving rats, stress-induced DA release in NAc or mPFC after injection of D1 (SCH 23390) or D2/D3 (raclopride) receptor antagonist into BLA. Intra-BLA SCH 23390 injection potentiated stress-induced NAc DA release but attenuated the mPFC DA stress response; raclopride had no effect on either the NAc or mPFC DA responses to stress. Based on these results, we also examined the possibility that BLA can indirectly modulate the NAc DA stress response via its projection to mPFC. To do so we studied the effects of intra-mPFC co-administration of D1 (SKF 38393) and D2/D3 (quinpirole) receptor agonists on the potentiated NAc DA stress response resulting from intra-BLA SCH 23390 injection. Alone, mPFC D1 and D2/D3 receptor co-activation had no effect on stress-induced NAc DA release, but did prevent the potentiated NAc DA stress response produced by BLA D1 receptor blockade. These findings indicate that BLA DA modulates the NAc and mPFC DA stress responses via activation of the D1 receptor subtype. They also suggest that BLA DA modulates stress-induced NAc DA release indirectly by modulating the mPFC DA response to stress.
Collapse
Affiliation(s)
- C W Stevenson
- Douglas Hospital Research Centre, McGill University, Montréal, Québec, Canada, H4H 1R3
| | | |
Collapse
|
46
|
Cardinal RN, Parkinson JA, Lachenal G, Halkerston KM, Rudarakanchana N, Hall J, Morrison CH, Howes SR, Robbins TW, Everitt BJ. Effects of selective excitotoxic lesions of the nucleus accumbens core, anterior cingulate cortex, and central nucleus of the amygdala on autoshaping performance in rats. Behav Neurosci 2002; 116:553-67. [PMID: 12148923 DOI: 10.1037/0735-7044.116.4.553] [Citation(s) in RCA: 124] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The nucleus accumbens core (AcbC), anterior cingulate cortex (ACC), and central nucleus of the amygdala (CeA) are required for normal acquisition of tasks based on stimulus-reward associations. However, it is not known whether they are involved purely in the learning process or are required for behavioral expression of a learned response. Rats were trained preoperatively on a Pavlovian autoshaping task in which pairing a visual conditioned stimulus (CS+) with food causes subjects to approach the CS+ while not approaching an unpaired stimulus (CS-). Subjects then received lesions of the AcbC, ACC, or CeA before being retested. AcbC lesions severely impaired performance; lesioned subjects approached the CS+ significantly less often than controls, failing to discriminate between the CS+ and CS-. ACC lesions also impaired performance but did not abolish discrimination entirely. CeA lesions had no effect on performance. Thus, the CeA is required for learning, but not expression, of a conditioned approach response, implying that it makes a specific contribution to the learning of stimulus-reward associations.
Collapse
Affiliation(s)
- Rudolf N Cardinal
- Department of Experimental Psychology, University of Cambridge, United Kingdom
| | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Vezina P, Blanc G, Glowinski J, Tassin JP. Opposed Behavioural Outputs of Increased Dopamine Transmission in Prefrontocortical and Subcortical Areas: A Role for the Cortical D-1 Dopamine Receptor. Eur J Neurosci 2002; 3:1001-1007. [PMID: 12106258 DOI: 10.1111/j.1460-9568.1991.tb00036.x] [Citation(s) in RCA: 107] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The possibility that the dopaminergic neurons innervating the medial prefrontal cortex (mPFC) can inhibit locomotor behaviour has been suggested in several studies. The evidence remains indirect, however, because the manipulations tested aimed exclusively at permanently depleting mPFC dopamine. Here we demonstrate in rats that acute increases in dopamine transmission in this site by local injections of amphetamine inhibit the known locomotor-activating effects of amphetamine in the nucleus accumbens (N.Acc.). Further, intra-mPFC injections of the D-1 dopamine receptor antagonist SCH-23390, but not other dopamine antagonists with greater affinities for noradrenergic, serotonergic and D-2 dopamine receptors, enhanced the locomotion induced by intra-N.Acc. amphetamine. These findings provide direct evidence for the inhibition of locomotor activity by mPFC dopamine and suggest that it is acting at D-1 dopamine receptors in this site.
Collapse
Affiliation(s)
- P. Vezina
- Chaire de Neuropharmacologie, INSERM U. 114, Collège de France, 11, place Marcelin Berthelot, 75231 Paris Cedex 05, France
| | | | | | | |
Collapse
|
48
|
Bjijou Y, De Deurwaerdere P, Spampinato U, Stinus L, Cador M. D-amphetamine-induced behavioral sensitization: effect of lesioning dopaminergic terminals in the medial prefrontal cortex, the amygdala and the entorhinal cortex. Neuroscience 2002; 109:499-516. [PMID: 11823062 DOI: 10.1016/s0306-4522(01)00508-5] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The behavioral sensitization produced by the repeated administration of D-amphetamine is known to involve dopaminergic neurons in the mesoaccumbens pathway. Induction of this process is dependent on action of the drug in the ventral tegmental area while its expression involves action in the nucleus accumbens. We studied here the putative involvement of dopaminergic projections other than the mesoaccumbens in this phenomenon. We examined the influence of dopaminergic lesion of the medial prefrontal cortex, the amygdala and the entorhinal cortex in the behavioral sensitization produced by repeated injections of amphetamine either peripherally or directly into the ventral tegmental area of the brain. The repeated administration of amphetamine induced a behavioral sensitization, with the ventral tegmental area a critical site for induction of the process. This sensitization to amphetamine cross-reacted with morphine and was still observed 2 weeks after cessation of the treatment. Bilateral 6-hydroxydopamine lesion of dopaminergic terminals in either the medial prefrontal cortex or the amygdala, but not in the entorhinal cortex, prevented the development of behavioral sensitization to amphetamine and the cross-sensitization with morphine, whether the amphetamine pretreatment was administered peripherally or directly into the ventral tegmental area. In conclusion, these results indicated that behavioral sensitization to amphetamine, which involves dopaminergic neurons of the ventral tegmental area, is also dependent on dopaminergic neurotransmission of the medial prefrontal cortex and amygdala but not of the entorhinal cortex.
Collapse
Affiliation(s)
- Y Bjijou
- Laboratoire de Neuropsychobiologie des Désadaptations, CNRS-UMR5541, P.O. Box 31, Université Victor Segalen, Bordeaux II, 146 rue Léo Saignat, 33076 Cedex, Bordeaux, France
| | | | | | | | | |
Collapse
|
49
|
Todtenkopf MS, Carreiras T, Melloni RH, Stellar JR. The dorsomedial shell of the nucleus accumbens facilitates cocaine-induced locomotor activity during the induction of behavioral sensitization. Behav Brain Res 2002; 131:9-16. [PMID: 11844568 DOI: 10.1016/s0166-4328(01)00352-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The mesolimbic dopamine system has been intensely studied as the neural circuit mediating the locomotor response to psychostimulants and behavioral sensitization. In particular, the dopaminergic innervation of the nucleus accumbens has been implicated as a site responsible for the manifestations of behavioral sensitization. Previous studies have demonstrated an augmented release of dopamine in the nucleus accumbens upon a systemic injection of a psychostimulant. In addition, alterations in the dopaminergic innervation patterns in this brain region have been demonstrated in animals that received repeated injections of cocaine. Furthermore, lesions of projection sites that have terminations in the nucleus accumbens have demonstrated alterations in psychostimulant induced locomotion, both acutely, as well as in sensitization paradigms. Since dopamine in the nucleus accumbens is believed to regulate several excitatory amino acid inputs, the present study examined the effects of a localized electrolytic lesion in the dorsomedial shell of the nucleus accumbens in order to better understand the functional role this brain region has in behavioral sensitization. All animals received bi-daily injections of 15 mg/kg i.p. cocaine. Only those demonstrating behavioral sensitization after a subsequent challenge dose were included in the analysis. Following acute exposure to cocaine, lesioned animals did not show any difference in their locomotor response when compared with sham controls. However, after repeated exposure to cocaine, sensitized animals demonstrated a significant attenuation in locomotor behavior when compared with sensitized sham controls. This decrease in horizontal locomotion persisted 2 days into withdrawal, yet dissipated in the sensitized animals that were challenged 2 weeks following their last injection. The data presented here demonstrate that the dorsomedial shell of the nucleus accumbens plays an important role in the initial stages of behavioral sensitization to cocaine.
Collapse
Affiliation(s)
- M S Todtenkopf
- Department of Psychology, Northeastern University, 360 Huntington Ave (125 NI) Boston, MA 02115, USA.
| | | | | | | |
Collapse
|
50
|
Pezze MA, Feldon J, Murphy CA. Increased conditioned fear response and altered balance of dopamine in the shell and core of the nucleus accumbens during amphetamine withdrawal. Neuropharmacology 2002; 42:633-43. [PMID: 11985821 DOI: 10.1016/s0028-3908(02)00022-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
It has been suggested that neuroadaptations within the nucleus accumbens (NAC) dopaminergic (DA) projection contribute to the negative affect associated with psychostimulant withdrawal. The present study assessed the effects of amphetamine (AMPH) withdrawal on behavioral and NAC DA responses to conditioned fear stress. Animals injected with escalating-dose AMPH (1-5mg/kg, three injections/day, 6 days) or saline (SAL) acquired a tone-shock association on withdrawal day 3 and were tested for extinction of conditioned freezing to the tone on withdrawal day 4. Extracellular levels of NAC shell and core DA were monitored using in vivo microdialysis on both days. AMPH-withdrawn animals exhibited more conditioned freezing than SAL animals during both acquisition and extinction. During acquisition, DA increased more in the shell than the core of the NAC in both AMPH and SAL groups. During extinction to the tone, shell DA increased in SAL- but not AMPH-treated animals, whereas core DA activity was greater in AMPH than SAL animals. These data demonstrate that AMPH withdrawal alters the balance between shell and core DA transmission while increasing the behavioral expression of conditioned fear. Such drug-induced neuroadaptations in the NAC stress response may be involved in the exacerbation of negative emotions associated with drug withdrawal and stimulant-induced psychosis.
Collapse
Affiliation(s)
- M A Pezze
- Laboratory of Behavioral Neurobiology, Swiss Federal Institute of Technology Zurich (ETH), Schorenstrasse 16, CH-8603 Schwerzenbach, Switzerland
| | | | | |
Collapse
|