1
|
Martins AB, Brownlow ML, Araújo BB, Garnica-Siqueira MC, Zaia DAM, Leite CM, Zaia CTBV, Uchoa ET. Arcuate nucleus of the hypothalamus contributes to the hypophagic effect and plasma metabolic changes induced by vasoactive intestinal peptide and pituitary adenylate cyclase-activating polypeptide. Neurochem Int 2022; 155:105300. [DOI: 10.1016/j.neuint.2022.105300] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 01/20/2022] [Accepted: 01/31/2022] [Indexed: 11/30/2022]
|
2
|
Gopalakrishnan S, Kannan NN. Only time will tell: the interplay between circadian clock and metabolism. Chronobiol Int 2020; 38:149-167. [PMID: 33345624 DOI: 10.1080/07420528.2020.1842436] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In most organisms ranging from cyanobacteria to humans, the endogenous timekeeping system temporally coordinates the behavioral, physiological, and metabolic processes with a periodicity close to 24 h. The timing of these daily rhythms is orchestrated by the synchronized oscillations of both the central pacemaker in the brain and the peripheral clocks located across multiple organs and tissues. A growing body of evidence suggests that the central circadian clock and peripheral clocks residing in the metabolically active tissues are incredibly well coordinated to confer coherent metabolic homeostasis. The interplay between nutrient metabolism and circadian rhythms can occur at various levels supported by the molecular clock network, multiple systemic mechanisms, and the neuroendocrine signaling pathways. While studies suggest the reciprocal regulation between circadian clock and metabolism, it is important to understand the precise mechanisms and the underlying pathways involved in the cross-talk among circadian oscillators and diverse metabolic networks. In addition to the internal synchronization of the metabolic rhythms, feeding time is considered as a potential external synchronization cue that fine tunes the timing of the circadian rhythms in metabolic peripheral clocks. A deeper understanding of how the timing of food intake and the diet composition drive the tissue-specific metabolic rhythms across the body is concomitantly important to develop novel therapeutic strategies for the metabolic disorders arising from circadian misalignment. This review summarizes the recent advancements in the circadian clock regulation of nutrient metabolism and discusses the current understanding of the metabolic feedback signals that link energy metabolism with the circadian clock.
Collapse
Affiliation(s)
- Swetha Gopalakrishnan
- Chronobiology Laboratory, School of Biology, Indian Institute of Science Education and Research (IISER) , Thiruvananthapuram, India
| | - Nisha N Kannan
- Chronobiology Laboratory, School of Biology, Indian Institute of Science Education and Research (IISER) , Thiruvananthapuram, India
| |
Collapse
|
3
|
Maroni MJ, Capri KM, Cushman AV, Deane HV, Concepcion H, DeCourcey H, Seggio JA. The timing of fasting leads to different levels of food consumption and PYY 3-36 in nocturnal mice. Hormones (Athens) 2020; 19:549-558. [PMID: 32572709 DOI: 10.1007/s42000-020-00221-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 06/09/2020] [Indexed: 12/21/2022]
Abstract
PURPOSE The daily circadian cycle is known to modulate both feeding behavior and metabolism. As such, the timing of food consumption can play a role in regulating overall health. The purpose of this study is to determine whether fasting at different times of the day alters subsequent food consumption and levels of PYY3-36, a hormone secreted after a meal which inhibits appetite. METHODS Separate groups of mice were fasted at different times of the day: (1) start of the day, (2) middle of the day, (3) start of the night, and (4) middle of the night, and either injected with vehicle or PYY3-36 to assess their subsequent food consumption patterns, PYY3-36 levels, and glucose and insulin levels. We also investigated whether light exposure during the night would alter food consumption and PYY3-36 levels after fasting. RESULTS Mice fasted during the start of the daytime exhibited increased food consumption post-fast compared to mice fasted during the night. Injections of PYY3-36 during the night were more effective in reducing food consumption compared to PYY3-36 administration during the day. Constant light exposure suppressed food consumption after fasting and increased fasting PYY3-36 levels. CONCLUSIONS These results indicate that mice exhibit distinct food consumption patterns after being presented with a fast at different times of the day. Light exposure also modulates both food consumption after a fast and levels of PYY3-36.
Collapse
Affiliation(s)
- Marissa J Maroni
- Department of Biological Sciences, Bridgewater State University, 24 Park Ave., Bridgewater State University, Bridgewater, MA, 02325, USA
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Kimberly M Capri
- Department of Biological Sciences, Bridgewater State University, 24 Park Ave., Bridgewater State University, Bridgewater, MA, 02325, USA
- Boston University, Boston, MA, 02215, USA
| | - Alexis V Cushman
- Department of Biological Sciences, Bridgewater State University, 24 Park Ave., Bridgewater State University, Bridgewater, MA, 02325, USA
| | - Hannah V Deane
- Department of Biological Sciences, Bridgewater State University, 24 Park Ave., Bridgewater State University, Bridgewater, MA, 02325, USA
| | - Holly Concepcion
- Department of Biological Sciences, Bridgewater State University, 24 Park Ave., Bridgewater State University, Bridgewater, MA, 02325, USA
| | - Holly DeCourcey
- Department of Biological Sciences, Bridgewater State University, 24 Park Ave., Bridgewater State University, Bridgewater, MA, 02325, USA
| | - Joseph A Seggio
- Department of Biological Sciences, Bridgewater State University, 24 Park Ave., Bridgewater State University, Bridgewater, MA, 02325, USA.
| |
Collapse
|
4
|
Méndez-Hernández R, Escobar C, Buijs RM. Suprachiasmatic Nucleus-Arcuate Nucleus Axis: Interaction Between Time and Metabolism Essential for Health. Obesity (Silver Spring) 2020; 28 Suppl 1:S10-S17. [PMID: 32538539 DOI: 10.1002/oby.22774] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 01/15/2020] [Indexed: 02/06/2023]
Abstract
In mammals, time and metabolism are tightly coupled variables; this relationship can be illustrated by numerous examples, such as the circadian variation in food intake or the circadian response to a glucose bolus. We review evidence that the interaction between the suprachiasmatic nucleus and the arcuate nucleus plays a key role in the execution of these functions. The nuclei are reciprocally connected via different projections, and this interaction provides an ideal anatomical framework to modify the temporal output of the hypothalamus to metabolic organs as a consequence of the feedback from the periphery. The suprachiasmatic nucleus-arcuate nucleus relationship is essential to integrate metabolic information into the circadian system and thus adapt circadian rhythms in core body temperature, locomotor activity, food intake, and circulating molecules such as glucose and corticosterone. With the rise in obesity-associated diseases in the world population, gaining knowledge about this relationship, and the consequences of disturbing this liaison, is essential to understand the pathogenesis of obesity.
Collapse
Affiliation(s)
- Rebeca Méndez-Hernández
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, Mexico City, Mexico
| | - Carolina Escobar
- Departamento de Anatomía, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad Universitaria, Mexico City, Mexico
| | - Ruud M Buijs
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, Mexico City, Mexico
| |
Collapse
|
5
|
Gumbs MCR, Eggels L, Kool T, Unmehopa UA, van den Heuvel JK, Lamuadni K, Mul JD, la Fleur SE. Neuropeptide Y Signaling in the Lateral Hypothalamus Modulates Diet Component Selection and is Dysregulated in a Model of Diet-Induced Obesity. Neuroscience 2019; 447:28-40. [PMID: 31887359 DOI: 10.1016/j.neuroscience.2019.12.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 12/06/2019] [Accepted: 12/09/2019] [Indexed: 01/16/2023]
Abstract
The preclinical multicomponent free-choice high-fat high-sucrose (fcHFHS) diet has strong validity to model diet-induced obesity (DIO) and associated maladaptive molecular changes in the central nervous system. fcHFHS-induced obese rats demonstrate increased sensitivity to intracerebroventricular infusion of the orexigenic Neuropeptide Y (NPY). The brain region-specific effects of NPY signaling on fcHFHS diet component selection are not completely understood. For example, fcHFHS-fed rats have increased intake of chow and fat following intracerebroventricular NPY infusion, whereas NPY administration in the nucleus accumbens, a key hub of the reward circuitry, specifically increases fat intake. Here, we investigated whether NPY infusion in the lateral hypothalamic area (LHA), which is crucially involved in the regulation of intake, regulates fcHFHS component selection, and if LHA NPY receptor subtypes 1 or 5 (NPYR1/5) are involved. Male Wistar rats were fed a chow or fcHFHS diet for at least seven days, and received intra-LHA vehicle or NPY infusions in a cross-over design. Diet component intake was measured two hours later. Separate experimental designs were used to test the efficacy of NPY1R- or NPY5R antagonism to prevent the orexigenic effects of intra-LHA NPY. Intra-LHA NPY increased caloric intake in chow- and fcHFHS-fed rats. This effect was mediated specifically by chow intake in fcHFHS-fed rats. The orexigenic effects of intra-LHA NPY were prevented by NPY1R and NPY5R antagonism in chow-fed rats, but only by NPY5R antagonism in fcHFHS-fed rats. Thus, NPY signaling has brain region-specific effects on fcHFHS component selection and LHA NPYR sensitivity is dysregulated during consumption of a fcHFHS diet.
Collapse
Affiliation(s)
- M C R Gumbs
- Amsterdam UMC, University of Amsterdam, Department of Endocrinology and Metabolism and Laboratory of Endocrinology, Department of Clinical Chemistry, Amsterdam Neuroscience, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands; Metabolism and Reward Group, Netherlands Institute for Neuroscience, An Institute of the Royal Netherlands Academy of Arts and Sciences (KNAW), Meibergdreef 47, 1105 BA Amsterdam, The Netherlands
| | - L Eggels
- Amsterdam UMC, University of Amsterdam, Department of Endocrinology and Metabolism and Laboratory of Endocrinology, Department of Clinical Chemistry, Amsterdam Neuroscience, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands; Metabolism and Reward Group, Netherlands Institute for Neuroscience, An Institute of the Royal Netherlands Academy of Arts and Sciences (KNAW), Meibergdreef 47, 1105 BA Amsterdam, The Netherlands
| | - T Kool
- Amsterdam UMC, University of Amsterdam, Department of Endocrinology and Metabolism and Laboratory of Endocrinology, Department of Clinical Chemistry, Amsterdam Neuroscience, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - U A Unmehopa
- Amsterdam UMC, University of Amsterdam, Department of Endocrinology and Metabolism and Laboratory of Endocrinology, Department of Clinical Chemistry, Amsterdam Neuroscience, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - J K van den Heuvel
- Amsterdam UMC, University of Amsterdam, Department of Endocrinology and Metabolism and Laboratory of Endocrinology, Department of Clinical Chemistry, Amsterdam Neuroscience, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - K Lamuadni
- Amsterdam UMC, University of Amsterdam, Department of Endocrinology and Metabolism and Laboratory of Endocrinology, Department of Clinical Chemistry, Amsterdam Neuroscience, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands; Metabolism and Reward Group, Netherlands Institute for Neuroscience, An Institute of the Royal Netherlands Academy of Arts and Sciences (KNAW), Meibergdreef 47, 1105 BA Amsterdam, The Netherlands
| | - J D Mul
- Amsterdam UMC, University of Amsterdam, Department of Endocrinology and Metabolism and Laboratory of Endocrinology, Department of Clinical Chemistry, Amsterdam Neuroscience, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands; Metabolism and Reward Group, Netherlands Institute for Neuroscience, An Institute of the Royal Netherlands Academy of Arts and Sciences (KNAW), Meibergdreef 47, 1105 BA Amsterdam, The Netherlands; Brain Plasticity Group, Center for Neuroscience, Swammerdam Institute for Life Sciences, University of Amsterdam, Sciencepark 904, 1098 XH Amsterdam, The Netherlands
| | - S E la Fleur
- Amsterdam UMC, University of Amsterdam, Department of Endocrinology and Metabolism and Laboratory of Endocrinology, Department of Clinical Chemistry, Amsterdam Neuroscience, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands; Metabolism and Reward Group, Netherlands Institute for Neuroscience, An Institute of the Royal Netherlands Academy of Arts and Sciences (KNAW), Meibergdreef 47, 1105 BA Amsterdam, The Netherlands.
| |
Collapse
|
6
|
Abstract
Feeding, which is essential for all animals, is regulated by homeostatic mechanisms. In addition, food consumption is temporally coordinated by the brain over the circadian (~24 h) cycle. A network of circadian clocks set daily windows during which food consumption can occur. These daily windows mostly overlap with the active phase. Brain clocks that ensure the circadian control of food intake include a master light-entrainable clock in the suprachiasmatic nuclei of the hypothalamus and secondary clocks in hypothalamic and brainstem regions. Metabolic hormones, circulating nutrients and visceral neural inputs transmit rhythmic cues that permit (via close and reciprocal molecular interactions that link metabolic processes and circadian clockwork) brain and peripheral organs to be synchronized to feeding time. As a consequence of these complex interactions, growing evidence shows that chronodisruption and mistimed eating have deleterious effects on metabolic health. Conversely, eating, even eating an unbalanced diet, during the normal active phase reduces metabolic disturbances. Therefore, in addition to energy intake and dietary composition, appropriately timed meal patterns are critical to prevent circadian desynchronization and limit metabolic risks. This Review provides insight into the dual modulation of food intake by homeostatic and circadian processes, describes the mechanisms regulating feeding time and highlights the beneficial effects of correctly timed eating, as opposed to the negative metabolic consequences of mistimed eating.
Collapse
Affiliation(s)
- Etienne Challet
- Circadian clocks and metabolism team, Institute of Cellular and Integrative Neurosciences, Centre National de la Recherche Scientifique (CNRS), University of Strasbourg, Strasbourg, France.
| |
Collapse
|
7
|
Wang D, Opperhuizen AL, Reznick J, Turner N, Su Y, Cooney GJ, Kalsbeek A. Effects of feeding time on daily rhythms of neuropeptide and clock gene expression in the rat hypothalamus. Brain Res 2017; 1671:93-101. [DOI: 10.1016/j.brainres.2017.07.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2017] [Revised: 06/09/2017] [Accepted: 07/10/2017] [Indexed: 01/18/2023]
|
8
|
Stricker-Krongrad A, Burlet A, Nicolas JP, Burlet C, Beck B. Neuropeptide Y in the Ventromedial and Suprachiasmatic Nuclei: Role in the Feeding Pattern of Monosodium Glutamate-Treated Rats. Nutr Neurosci 2016; 1:183-9. [DOI: 10.1080/1028415x.1998.11747228] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
9
|
Cohen S, Vainer E, Matar MA, Kozlovsky N, Kaplan Z, Zohar J, Mathé AA, Cohen H. Diurnal fluctuations in HPA and neuropeptide Y-ergic systems underlie differences in vulnerability to traumatic stress responses at different zeitgeber times. Neuropsychopharmacology 2015; 40:774-90. [PMID: 25241802 PMCID: PMC4289967 DOI: 10.1038/npp.2014.257] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Accepted: 09/15/2014] [Indexed: 11/09/2022]
Abstract
The hypothalamic-pituitary-adrenal (HPA) axis displays a characteristic circadian pattern of corticosterone release, with higher levels at the onset of the active phase and lower levels at the onset of the inactive phase. As corticosterone levels modify the response to stress and influence the susceptibility to and/or severity of stress-related sequelae, we examined the effects of an acute psychological trauma applied at different zeitgeber times (ZTs) on behavioral stress responses. Rats were exposed to stress either at the onset of the inactive-(light) phase (ZT=0) or at the onset of the active-(dark) phase (ZT=12). Their behavior in the elevated plus-maze and acoustic startle response paradigms were assessed 7 days post exposure for retrospective classification into behavioral response groups. Serum corticosterone levels and the dexamethasone suppression test were used to assess the stress response and feedback inhibition of the HPA axis. Immunoreactivity for neuropeptide Y (NPY) and NPY-Y1 receptor (Y1R) in the paraventricular (PVN) and arcuate (ARC) hypothalamic nuclei, hippocampus, and basolateral amygdala were measured. The behavioral effects of NPY/Y1R antagonist microinfused into the PVN 30 min before stress exposure during the inactive or active phase, respectively, were evaluated. PVN immunoreactivity for NPY and Y1R was measured 1 day after the behavioral tests. The time of day of the traumatic exposure markedly affected the pattern of the behavioral stress response and the prevalence of rats showing an extreme behavioral response. Rats exposed to the stressor at the onset of their inactive phase displayed a more traumatic behavioral response, faster post-exposure corticosterone decay, and a more pronounced stress-induced decline in NPY and Y1R expression in the PVN and arcuate hypothalamic nuclei. Blocking PVN Y1R before stress applied in the active phase, or administering NPY to the PVN before stress applied in the inactive phase, had a resounding behavioral effect. The time at which stress occurred significantly affected the behavioral stress response. Diurnal variations in HPA and NPY/Y1R significantly affect the behavioral response, conferring more resilience at the onset of the active phase and more vulnerability at the onset of the inactive phase, implying that NPY has a significant role in conferring resilience to stress-related psychopathology.
Collapse
Affiliation(s)
- Shlomi Cohen
- Faculty of Health Sciences, Anxiety and Stress Research Unit, Beer-Sheva Mental Health Center, Ministry of Health, Ben-Gurion University of the Negev, Beer-Sheva, Israel
- Department of Psychology, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Ella Vainer
- Faculty of Health Sciences, Anxiety and Stress Research Unit, Beer-Sheva Mental Health Center, Ministry of Health, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Michael A Matar
- Faculty of Health Sciences, Anxiety and Stress Research Unit, Beer-Sheva Mental Health Center, Ministry of Health, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Nitsan Kozlovsky
- Faculty of Health Sciences, Anxiety and Stress Research Unit, Beer-Sheva Mental Health Center, Ministry of Health, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Zeev Kaplan
- Faculty of Health Sciences, Anxiety and Stress Research Unit, Beer-Sheva Mental Health Center, Ministry of Health, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Joseph Zohar
- Division of Psychiatry, State of Israel Ministry of Health, Chaim Sheba Medical Center, Sackler Medical School, Tel-Aviv University, Ramat-Gan, Israel
| | - Aleksander A Mathé
- Department of Neuroscience, Karolinska Institutet—Clinical Neuroscience, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Hagit Cohen
- Faculty of Health Sciences, Anxiety and Stress Research Unit, Beer-Sheva Mental Health Center, Ministry of Health, Ben-Gurion University of the Negev, Beer-Sheva, Israel
- Department of Psychology, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| |
Collapse
|
10
|
Park S, Fujishita C, Komatsu T, Kim SE, Chiba T, Mori R, Shimokawa I. NPY antagonism reduces adiposity and attenuates age-related imbalance of adipose tissue metabolism. FASEB J 2014; 28:5337-48. [PMID: 25205743 DOI: 10.1096/fj.14-258384] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
An orexigenic hormone, neuropeptide Y (NPY), plays a role not only in the hypothalamic regulation of appetite, but also in the peripheral regulation of lipid metabolism. However, the intracellular mechanisms triggered by NPY to regulate lipid metabolism are poorly understood. Here we report that NPY deficiency reduces white adipose tissue (WAT) mass and ameliorates the age-related imbalance of adipose tissue metabolism in mice. Gene expression involved in adipogenesis/lipogenesis was found to decrease, whereas proteins involved in lipolysis increased in gonadal WAT (gWAT) of NPY-knockout mice. These changes were associated with an activated SIRT1- and PPARγ-mediated pathway. Moreover, the age-related decrease of de novo lipogenesis in gWAT and thermogenesis in inguinal WAT was inhibited by NPY deficiency. Further analysis using 3T3-L1 cells showed that NPY inhibited lipolysis through the Y1 receptor and enhanced lipogenesis following a reduction in cAMP response element-binding protein (CREB) and SIRT1 protein expression. Therefore, NPY appears to act as a key regulator of adipose tissue metabolism via the CREB-SIRT1 signaling pathway. Taken together, NPY deficiency reduces adiposity and ameliorates the age-related imbalance of adipose tissue metabolism, suggesting that antagonism of NPY may be a promising target for drug development to prevent age-related metabolic diseases.
Collapse
Affiliation(s)
- Seongjoon Park
- Department of Pathology, Graduate School of Biomedical Sciences, Nagasaki University School of Medicine, Nagasaki City, Japan
| | - Chika Fujishita
- Department of Pathology, Graduate School of Biomedical Sciences, Nagasaki University School of Medicine, Nagasaki City, Japan
| | - Toshimitsu Komatsu
- Department of Pathology, Graduate School of Biomedical Sciences, Nagasaki University School of Medicine, Nagasaki City, Japan
| | - Sang Eun Kim
- Department of Pathology, Graduate School of Biomedical Sciences, Nagasaki University School of Medicine, Nagasaki City, Japan
| | - Takuya Chiba
- Department of Pathology, Graduate School of Biomedical Sciences, Nagasaki University School of Medicine, Nagasaki City, Japan
| | - Ryoichi Mori
- Department of Pathology, Graduate School of Biomedical Sciences, Nagasaki University School of Medicine, Nagasaki City, Japan
| | - Isao Shimokawa
- Department of Pathology, Graduate School of Biomedical Sciences, Nagasaki University School of Medicine, Nagasaki City, Japan
| |
Collapse
|
11
|
Abstract
Most organisms display endogenously produced ∼ 24-hour fluctuations in physiology and behavior, termed circadian rhythms. Circadian rhythms are driven by a transcriptional-translational feedback loop that is hierarchically expressed throughout the brain and body, with the suprachiasmatic nucleus of the hypothalamus serving as the master circadian oscillator at the top of the hierarchy. Appropriate circadian regulation is important for many homeostatic functions including energy regulation. Multiple genes involved in nutrient metabolism display rhythmic oscillations, and metabolically related hormones such as glucagon, insulin, ghrelin, leptin, and corticosterone are released in a circadian fashion. Mice harboring mutations in circadian clock genes alter feeding behavior, endocrine signaling, and dietary fat absorption. Moreover, misalignment between behavioral and molecular circadian clocks can result in obesity in both rodents and humans. Importantly, circadian rhythms are most potently synchronized to the external environment by light information and exposure to light at night potentially disrupts circadian system function. Since the advent of electric lights around the turn of the 20th century, exposure to artificial and irregular light schedules has become commonplace. The increase in exposure to light at night parallels the global increase in the prevalence of obesity and metabolic disorders. In this review, we propose that exposure to light at night alters metabolic function through disruption of the circadian system. We first provide an introduction to the circadian system, with a specific emphasis on the effects of light on circadian rhythms. Next we address interactions between the circadian system and metabolism. Finally, we review current experimental and epidemiological work directly associating exposure to light at night and metabolism.
Collapse
Affiliation(s)
- Laura K Fonken
- Department of Neuroscience, Wexner Medical Center, The Ohio State University, Columbus, Ohio 43210
| | | |
Collapse
|
12
|
Abstract
When administered into the brain, NPY acts at Y1 and Y5 receptors to increase food intake. The response occurs with a short latency and is quite robust, such that exogenous NPY is generally considered to be the most potent of a growing list of orexigenic compounds that act in the brain. The role of endogenous NPY is not so straightforward, however. Evidence from diverse types of experiments suggests that rather than initiating behavioral eating per se, endogenous NPY elicits autonomic responses that prepare the individual to better cope with consuming a calorically large meal.
Collapse
Affiliation(s)
- Adam P Chambers
- Departments of Medicine, University of Cincinnati, OH 45237, USA
| | | |
Collapse
|
13
|
Taksande BG, Kotagale NR, Nakhate KT, Mali PD, Kokare DM, Hirani K, Subhedar NK, Chopde CT, Ugale RR. Agmatine in the hypothalamic paraventricular nucleus stimulates feeding in rats: involvement of neuropeptide Y. Br J Pharmacol 2011; 164:704-18. [PMID: 21564088 PMCID: PMC3188911 DOI: 10.1111/j.1476-5381.2011.01484.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2010] [Revised: 04/02/2011] [Accepted: 05/02/2011] [Indexed: 12/01/2022] Open
Abstract
BACKGROUND AND PURPOSE Agmatine, a multifaceted neurotransmitter, is abundantly expressed in the hypothalamic paraventricular nucleus (PVN). Our aim was to assess (i) the effect of agmatine on feeding behaviour and (ii) its association, if any, with neuropeptide Y (NPY). EXPERIMENTAL APPROACH Satiated rats fitted with intra-PVN cannulae were administered agmatine, alone or jointly with (i) α₂-adrenoceptor agonist, clonidine, or antagonist, yohimbine; (ii) NPY, NPY Y₁ receptor agonist, [Leu³¹, Pro³⁴]-NPY, or antagonist, BIBP3226; or (iii) yohimbine and NPY. Cumulative food intake was monitored at different post-injection time points. Furthermore, the expression of hypothalamic NPY following i.p. treatment with agmatine, alone or in combination with yohimbine (i.p.), was evaluated by immunocytochemistry. KEY RESULTS Agmatine robustly increased feeding in a dose-dependent manner. While pretreatment with clonidine augmented, yohimbine attenuated the orexigenic response to agmatine. Similarly, NPY and [Leu³¹, Pro³⁴]-NPY potentiated the agmatine-induced hyperphagia, whereas BIBP3226 inhibited it. Moreover, yohimbine attenuated the synergistic orexigenic effect induced by the combination of NPY and agmatine. Agmatine increased NPY immunoreactivity in the PVN fibres and in the cells of the hypothalamic arcuate nucleus (ARC) and this effect was prevented by pretreatment with yohimbine. NPY immunoreactivity in the fibres of the ARC, dorsomedial, ventromedial and lateral nuclei of the hypothalamus was not affected by any of the above treatments. CONCLUSIONS AND IMPLICATIONS The orexigenic effect of agmatine is coupled to increased NPY activity mediated by stimulation of α₂-adrenoceptors within the PVN. This signifies the importance of agmatine or α₂-adrenoceptor modulators in the development of novel therapeutic agents to treat feeding-related disorders.
Collapse
Affiliation(s)
- BG Taksande
- Division of Neuroscience, Department of Pharmacology, Shrimati Kishoritai Bhoyar College of PharmacyNew Kamptee, Nagpur, Maharashtra, India
| | - NR Kotagale
- Division of Neuroscience, Department of Pharmacology, Shrimati Kishoritai Bhoyar College of PharmacyNew Kamptee, Nagpur, Maharashtra, India
| | - KT Nakhate
- Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj Nagpur University CampusNagpur, Maharashtra, India
| | - PD Mali
- Division of Neuroscience, Department of Pharmacology, Shrimati Kishoritai Bhoyar College of PharmacyNew Kamptee, Nagpur, Maharashtra, India
| | - DM Kokare
- Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj Nagpur University CampusNagpur, Maharashtra, India
| | - K Hirani
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of MedicineMiami, FL, USA
| | - NK Subhedar
- Indian Institute of Science Education and Research (IISER)Sutarwadi, Pashan, Pune, India
| | - CT Chopde
- Division of Neuroscience, Department of Pharmacology, Shrimati Kishoritai Bhoyar College of PharmacyNew Kamptee, Nagpur, Maharashtra, India
| | - RR Ugale
- Division of Neuroscience, Department of Pharmacology, Shrimati Kishoritai Bhoyar College of PharmacyNew Kamptee, Nagpur, Maharashtra, India
| |
Collapse
|
14
|
Glass JD, Guinn J, Kaur G, Francl JM. On the intrinsic regulation of neuropeptide Y release in the mammalian suprachiasmatic nucleus circadian clock. Eur J Neurosci 2010; 31:1117-26. [PMID: 20377624 DOI: 10.1111/j.1460-9568.2010.07139.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Timing of the circadian clock of the suprachiasmatic nucleus (SCN) is regulated by photic and non-photic inputs. Of these, neuropeptide Y (NPY) signaling from the intergeniculate leaflet (IGL) to the SCN plays a prominent role. Although NPY is critical to clock regulation, neither the mechanisms modulating IGL NPY neuronal activity nor the nature of regulatory NPY signaling in the SCN clock are understood, as NPY release in the SCN has never been measured. Here, microdialysis procedures for in vivo measurement of NPY were used in complementary experiments to address these questions. First, neuronal release of NPY in the hamster SCN was rhythmic under a 14L : 10D photocycle, with the acrophase soon after lights-on and the nadir at midday. No rhythmic fluctuation in NPY occurred under constant darkness. Second, a behavioral phase-resetting stimulus (wheel-running at midday that induces IGL serotonin release) acutely stimulated SCN NPY release. Third, bilateral IGL microinjection of the serotonin agonist, (+/-)-2-dipropyl-amino-8-hydroxyl-1,2,3,4-tetrahydronapthalene (8-OH-DPAT) (another non-photic phase-resetting stimulant), at midday enhanced SCN NPY release. Conversely, similar application of the serotonin antagonist, metergoline, abolished wheel-running-induced SCN NPY release. IGL microinjection of the GABA agonist, muscimol, suppressed SCN NPY release. These results support an intra-IGL mechanism whereby behavior-induced serotonergic activity suppresses inhibitory GABAergic transmission, promoting NPY activity and subsequent phase resetting. Collectively, these results confirm IGL-mediated NPY release in the SCN and verify that its daily rhythm of release is dependent upon the 14L : 10D photocycle, and that it is modulated by appropriately-timed phase-resetting behavior, probably mediated by serotonergic activation of NPY units in the IGL.
Collapse
Affiliation(s)
- J David Glass
- Department of Biological Sciences, Kent State University, Kent, OH 44242-0001, USA.
| | | | | | | |
Collapse
|
15
|
Sainsbury A, Zhang L. Role of the arcuate nucleus of the hypothalamus in regulation of body weight during energy deficit. Mol Cell Endocrinol 2010; 316:109-19. [PMID: 19822185 DOI: 10.1016/j.mce.2009.09.025] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2008] [Revised: 09/21/2009] [Accepted: 09/28/2009] [Indexed: 12/14/2022]
Abstract
Acute or long-term energy deficit in lean or obese rodents or humans stimulates food intake or appetite and reduces metabolic rate or energy expenditure. These changes contribute to weight regain in post-obese animals and humans. Some studies show that the reduction in metabolic rate with energy deficit in overweight people is transient. Energy restriction has been shown in some but not all studies to reduce physical activity, and this may represent an additional energy-conserving adaptation. Energy restriction up-regulates expression of the orexigenic neuropeptide Y, agouti related peptide and opioids and down-regulates that of the anorexigenic alpha-melanocyte stimulating hormone or its precursor pro-opioomelanocortin and the co-expressed cocaine and amphetamine-regulated transcript in the arcuate nucleus of the hypothalamus. Recapitulating these hypothalamic changes in sated animals mimics the effects of energy deficit, namely increased food intake, reduced physical activity and reduced metabolic rate, suggesting that these energy-conserving adaptations are at least partially mediated by the hypothalamus.
Collapse
Affiliation(s)
- A Sainsbury
- Neuroscience Research Program, Garvan Institute of Medical Research, Darlinghurst, Sydney, NSW 2010, Australia.
| | | |
Collapse
|
16
|
Effects of intracerebroventricular administration of the NPY-Y1 receptor antagonist, 1229U91, on hyperphagic and glycemic responses to acute and chronic intermediate insulin-induced hypoglycemia in female rats. ACTA ACUST UNITED AC 2010; 159:14-8. [DOI: 10.1016/j.regpep.2009.07.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2008] [Revised: 06/10/2009] [Accepted: 07/06/2009] [Indexed: 11/17/2022]
|
17
|
|
18
|
De Giorgio MR, Yoshioka M, St-Amand J. Feeding induced changes in the hypothalamic transcriptome. Clin Chim Acta 2009; 406:103-7. [PMID: 19523461 DOI: 10.1016/j.cca.2009.06.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2009] [Revised: 05/14/2009] [Accepted: 06/01/2009] [Indexed: 10/20/2022]
Abstract
BACKGROUND Obesity is a complex multifactorial disorder which needs a comprehensive approach for prevention and treatment. We investigated the modifications in the hypothalamic gene expression induced by high-fat (HF) and low-fat (LF) meal ingestion in mice, in order to identify the signals rapidly mediating the hypothalamic control on energy intake. METHODS After fasting, 1 group of mice was sacrificed and the others were fed ad libitum with HF or LF diet, and sacrificed 3 h after the beginning of the meal. The hypothalamus was sampled and the serial analysis of gene expression method was performed. RESULTS Approximately 254,588 tags, which correspond to 65,548 tag species were isolated from the 3 groups. The data showed twelve transcripts regulated by food intake. Among these, 2 transcripts have mitochondrial functions (MtCo1, Ppid), 3 are involved in protein transport and regulation (Ube2q2, Mup1, Sec13), 1 in cellular pH control (Slc4a3) and another 1 has a role in the epigenetic control of gene expression (Setd3). In addition, 5 potentially novel transcripts were differentially modulated. CONCLUSION We identified genes that may regulate hypothalamic circuits governing the early response to food intake. 3 genes were specifically modulated by high-fat intake.
Collapse
Affiliation(s)
- Maria Rita De Giorgio
- Functional Genomics Laboratory, Molecular Endocrinology and Oncology Research Center, Laval University Medical Center and Department of Anatomy and Physiology, Laval University, Québec, Canada
| | | | | |
Collapse
|
19
|
Minor RK, Chang JW, de Cabo R. Hungry for life: How the arcuate nucleus and neuropeptide Y may play a critical role in mediating the benefits of calorie restriction. Mol Cell Endocrinol 2009; 299:79-88. [PMID: 19041366 PMCID: PMC2668104 DOI: 10.1016/j.mce.2008.10.044] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2008] [Accepted: 10/14/2008] [Indexed: 11/27/2022]
Abstract
Laboratory studies consistently demonstrate extended lifespan in animals on calorie restriction (CR), where total caloric intake is reduced by 10-40% but adequate nutrition is otherwise maintained. CR has been further shown to delay the onset and severity of chronic diseases associated with aging such as cancer, and to extend the functional health span of important faculties like cognition. Less understood are the underlying mechanisms through which CR might act to induce such alterations. One theory postulates that CR's beneficial effects are intimately tied to the neuroendocrine response to low energy availability, of which the arcuate nucleus in the hypothalamus plays a pivotal role. Neuropeptide Y (NPY), a neurotransmitter in the front line of the arcuate response to low energy availability, is the primary hunger signal affected by CR and therefore may be a critical mechanism for lifespan extension.
Collapse
Affiliation(s)
- Robin K. Minor
- Laboratory of Experimental Gerontology, Intramural Research Program, National Institute on Aging, National Institutes of Health, 5600 Nathan Shock Drive, Baltimore, MD 21224, USA
| | - Joy W. Chang
- Laboratory of Experimental Gerontology, Intramural Research Program, National Institute on Aging, National Institutes of Health, 5600 Nathan Shock Drive, Baltimore, MD 21224, USA
| | - Rafael de Cabo
- Laboratory of Experimental Gerontology, Intramural Research Program, National Institute on Aging, National Institutes of Health, 5600 Nathan Shock Drive, Baltimore, MD 21224, USA
| |
Collapse
|
20
|
Beck B. Neuropeptide Y in normal eating and in genetic and dietary-induced obesity. Philos Trans R Soc Lond B Biol Sci 2007; 361:1159-85. [PMID: 16874931 PMCID: PMC1642692 DOI: 10.1098/rstb.2006.1855] [Citation(s) in RCA: 166] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Neuropeptide Y (NPY) is one the most potent orexigenic peptides found in the brain. It stimulates food intake with a preferential effect on carbohydrate intake. It decreases latency to eat, increases motivation to eat and delays satiety by augmenting meal size. The effects on feeding are mediated through at least two receptors, the Y1 and Y5 receptors. The NPY system for feeding regulation is mostly located in the hypothalamus. It is formed of the arcuate nucleus (ARC), where the peptide is synthesized, and the paraventricular (PVN), dorsomedial (DMN) and ventromedial (VMN) nuclei and perifornical area where it is active. This activity is modulated by the hindbrain and limbic structures. It is dependent on energy availability, e.g. upregulation with food deprivation or restriction, and return to baseline with refeeding. It is also sensitive to diet composition with variable effects of carbohydrates and fats. Leptin signalling and glucose sensing which are directly linked to diet type are the most important factors involved in its regulation. Absence of leptin signalling in obesity models due to gene mutation either at the receptor level, as in the Zucker rat, the Koletsky rat or the db/db mouse, or at the peptide level, as in ob/ob mouse, is associated with increased mRNA abundance, peptide content and/or release in the ARC or PVN. Other genetic obesity models, such as the Otsuka-Long-Evans-Tokushima Fatty rat, the agouti mouse or the tubby mouse, are characterized by a diminution in NPY expression in the ARC nucleus and by a significant increase in the DMN. Further studies are necessary to determine the exact role of NPY in these latter models. Long-term exposure to high-fat or high-energy palatable diets leads to the development of adiposity and is associated with a decrease in hypothalamic NPY content or expression, consistent with the existence of a counter-regulatory mechanism to diminish energy intake and limit obesity development. On the other hand, an overactive NPY system (increased mRNA expression in the ARC associated with an upregulation of the receptors) is characteristic of rats or rodent strains sensitive to dietary-induced obesity. Finally, NPY appears to play an important role in body weight and feeding regulation, and while it does not constitute the only target for drug treatment of obesity, it may nevertheless provide a useful target in conjunction with others.
Collapse
Affiliation(s)
- B Beck
- Université Henri Poincaré, Neurocal, Nancy, France.
| |
Collapse
|
21
|
Vidal L, Lugo N. Changes in neuropeptide Y immunoreactivity and transcript levels in circadian system structures of the diurnal rodent, the thirteen-lined ground squirrel. Brain Res 2006; 1125:77-84. [PMID: 17109825 PMCID: PMC1783931 DOI: 10.1016/j.brainres.2006.10.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2006] [Revised: 07/25/2006] [Accepted: 10/03/2006] [Indexed: 10/23/2022]
Abstract
The intergeniculate leaflet (IGL) and its neuropeptide Y (NPY) projection to the main circadian clock, the suprachiasmatic nucleus (SCN), have been the focus of extensive research conducted, for the most part, on nocturnal rodent species. However, a variety of anatomical and physiological differences between the circadian system of diurnal and nocturnal species have been reported. These differences led us to question whether the role of NPY in the circadian system of the diurnal ground squirrel differs from that in nocturnal rodents. We used semi-quantitative immunohistochemistry to analyze NPY content in SCN terminals of squirrels sacrificed at specific times of the day and compared the data to previous published results from the rat. Additionally, IGL NPY mRNA was quantified using real-time PCR to determine if varying NPY immunoreactivity (-ir) levels could be the result of changes in peptide transcription. Our results demonstrate that NPY-ir levels in the ground squirrel SCN peak during the middle of the night unlike what is observed in the rat. Cell counts of NPY-ir neurons in the IGL revealed a pattern of variation 6 h out of phase compared to what was observed in the SCN. NPY mRNA levels showed only one sharp increase in the middle of the night, coinciding with increases in NPY-ir levels observed in the SCN. Differences in the pattern of fluctuation of NPY in the SCN between the rat and squirrel suggest that this peptide may serve distinct roles in the circadian system of diurnal and nocturnal species. Our data provide the first evidence of the relationship between transcript and peptide levels in the circadian system of a diurnal species.
Collapse
Affiliation(s)
| | - Nidza Lugo
- Corresponding Author: Nidza Lugo, Ph.D, Institute of Neurobiology,
201 Blvd. Del Valle, San Juan, PR 00901; Tel. 787-721-4527; e-mail =
| |
Collapse
|
22
|
Blasiak T, Siejka S, Raison S, Pevet P, Lewandowski MH. The serotonergic inhibition of slowly bursting cells in the intergeniculate leaflet of the rat. Eur J Neurosci 2006; 24:2769-80. [PMID: 17156203 DOI: 10.1111/j.1460-9568.2006.05162.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Electrophysiological studies combined with local neurotoxic lesions were conducted on anaesthetized rats in order to determine whether the dorsal raphe nucleus (DRN) inhibits the intergeniculate leaflet (IGL) of the lateral geniculate nucleus by means of innervation by serotonin-containing fibres. In the control animals, electrical stimulation of the DRN induced the long-latency and long-lasting inhibition of the neuronal firing of the IGL cells that are characterized by rhythmic, slow-bursting activity in light conditions. The electrical destruction of the DRN resulted in an increase in the firing rate of the recorded IGL cells, whilst at the same time not affecting the rhythmic, bursting pattern of the activity. In the second group of animals, local neurotoxic lesion of serotonergic fibres was performed by injection of the toxin 5,7-dihydroxytryptamine into the IGL. After 10 days of postoperative recovery, electrophysiological experiments were performed on the toxin-treated rats. In these animals, electrical stimulation as well as electrical lesion of the DRN did not induce any change in the firing of the slowly bursting cells in the 5,7-dihydroxytryptamine-injected IGL. The results obtained provide evidence that inhibition of the IGL slowly bursting cells, by innervation from the dorsal raphe, is mediated by the release of serotonin. Furthermore, the observed serotonergic inhibition of the light-dependent activity of slowly bursting cells can contribute to the neuronal mechanism gating the information that flows through this nucleus to the vestibular, visuomotor, circadian and sleep/arousal systems, with which the IGL is strongly interconnected.
Collapse
Affiliation(s)
- T Blasiak
- Department of Animal Physiology, Laboratory of Neurophysiology and Chronobiology, Institute of Zoology, Jagiellonian University, Ingardena 6, 30-060 Krakow, Poland
| | | | | | | | | |
Collapse
|
23
|
Hozumi H, Yamanouchi K, Nishihara M. Involvement of neuropeptide Y in hyperphagia in human growth hormone transgenic rats. J Vet Med Sci 2006; 68:959-65. [PMID: 17019066 DOI: 10.1292/jvms.68.959] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We have previously produced human growth hormone (hGH) transgenic (TG) rats that show low circulating levels of both hGH and endogenous rat GH. Although body length of the TG rats is normal, they develop hyperphagia and severe obesity. The present study was undertaken to elucidate the causes of hyperphagia in the TG rats by focusing on temporal changes in plasma ghrelin levels and hypothalamic neuropeptide Y (NPY) contents. In both wild-type (WT) and TG rats, the highest value of plasma ghrelin levels was observed just before the dark phase, and thereafter plasma ghrelin levels were maintained higher in the TG than WT rats. Although NPY contents also showed the peak level just before the dark phase in both the arcuate (ARC) and paraventricular nuclei (PVN) of the hypothalamus, the values in the ARC, but not the PVN, of the TG rats was always lower than those of the WT rats, suggesting increased transport of NPY from the ARC to PVN in the TG rats. In addition, treatment with antagonists for Y1 and Y5 receptors for NPY reduced food intake much more effectively in the TG than WT rats. Intermittent treatment with recombinant hGH for a week significantly decreased food consumption, adipose tissue weight and plasma triglyceride concentrations in the TG rats. These results suggest that, in the TG rats, insufficiency in circulating GH stimulates the ghrelin-NPY system with a resultant increase in food intake.
Collapse
Affiliation(s)
- Hiroyuki Hozumi
- Department of Veterinary Physiology, Veterinary Medical Science, The University of Tokyo, Tokyo, Japan
| | | | | |
Collapse
|
24
|
Szentirmai E, Krueger JM. Central administration of neuropeptide Y induces wakefulness in rats. Am J Physiol Regul Integr Comp Physiol 2006; 291:R473-80. [PMID: 16914434 DOI: 10.1152/ajpregu.00919.2005] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Neuropeptide Y (NPY) is a well-characterized neuromodulator in the central nervous system, primarily implicated in the regulation of feeding. NPY, orexins, and ghrelin form a hypothalamic food intake regulatory circuit. Orexin and ghrelin are also implicated in sleep-wake regulation. In the present experiments, we studied the sleep-modulating effects of central administration of NPY in rats. Rats received intracerebroventricular injection of physiological saline or three different doses of NPY (0.4, 2, and 10 μg in a volume of 4 μl) at light onset. Another group of rats received bilateral microinjection of saline or 2 μg NPY in the lateral hypothalamus in a volume of 0.2 μl. Sleep-wake activity and motor activity were recorded for 23 h. Food intake after the control and treatment injections was also measured on separate days. Intracerebroventricular and lateral hypothalamic administration of NPY suppressed non-rapid-eye-movement sleep and rapid-eye-movement sleep in rats during the first hour after the injection and also induced changes in electroencephalogram delta power spectra. NPY stimulated food intake in the first hour after both routes of administration. Data are consistent with the hypothesis that NPY has a role in the integration of feeding, metabolism, and sleep regulation.
Collapse
Affiliation(s)
- E Szentirmai
- Department of Physiology, University of Szeged, Hungary
| | | |
Collapse
|
25
|
Sindelar DK, Palmiter RD, Woods SC, Schwartz MW. Attenuated feeding responses to circadian and palatability cues in mice lacking neuropeptide Y. Peptides 2005; 26:2597-602. [PMID: 15923061 DOI: 10.1016/j.peptides.2005.04.018] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2005] [Revised: 04/27/2005] [Accepted: 04/28/2005] [Indexed: 11/15/2022]
Abstract
Neuropeptide Y (NPY) is a potent orexigenic peptide that is implicated in the feeding response to a variety of stimuli. The current studies employed mice lacking NPY (Npy-/-) and their wild-type (Npy+/+) littermates to investigate the role of this peptide in the feeding response to circadian and palatability cues. To investigate the response to a circadian stimulus, we assessed food intake during the 4-h period following dark onset, a time of day characterized by maximal rates of food consumption. Compared to Npy+/+ controls, intake of Npy-/- mice was reduced by 33% during this period (0.6+/-0.1g versus 0.9+/-0.1g; p<or=0.05). In contrast, intake did not differ between genotypes when measured over a 24-h period (3.7+/-0.2g versus 3.5+/-0.3g; p=ns). Furthermore, reduced dark cycle 4h food intake in Npy-/- mice was not evident after a 24-h fast (1.4+/-0.1g for both genotypes; p=ns), despite a pronounced delay in the initiation of feeding (636+/-133 s versus 162+/-29 s; p<or=0.05). To investigate the role of NPY in the feeding response to palatability cues, mice were presented with a highly palatable diet (HP) for 1h each day (in addition to having ad libitum access to chow) for 18 days. Npy+/+ mice rapidly increased daily HP intake such that by the end of the first week, they derived a substantial fraction of daily energy from this source (41+/-3%). By comparison, HP intake was markedly reduced in Npy-/- mice during the first week (24+/-7% of daily energy intake, p<or=0.05 versus Npy+/+), although it eventually increased (by Day 9) to values comparable to those of Npy+/+ controls. These experiments suggest that NPY contributes to the mechanism whereby food intake increases in response to circadian and palatability cues and that mechanisms driving food intake in response to these stimuli differ from those activated by energy restriction.
Collapse
Affiliation(s)
- Dana K Sindelar
- Department of Medicine, University of Washington, Harborview Hospital, Division of Endocrinology, Box 359757, 325 9th Avenue, Seattle, WA 98104, USA
| | | | | | | |
Collapse
|
26
|
Wetzler S, Jean-Joseph G, Even P, Tomé D, Larue-Achagiotis C. Acute third ventricular administration of leptin decreases protein and fat in self-selecting rats. Behav Brain Res 2005; 159:119-25. [PMID: 15795005 DOI: 10.1016/j.bbr.2004.10.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2004] [Revised: 10/15/2004] [Accepted: 10/18/2004] [Indexed: 12/24/2022]
Abstract
The peripheral administration of leptin reduces food intake (FI) body weight gain (BWG) and modifies food choice. The aim of this study was to examine the effect of acute cerebral injections of leptin on food selection in rats. Male rats were first adapted to the food choice paradigm (protein, carbohydrate, fat) for 3 weeks. They were then implanted with a cannula in the third ventricle. Leptin (leptin group=L) or saline (control group=C) injections were performed at either the beginning or the end of the night at 4-day intervals. FI was recorded continuously, 3 days before, during and then after injections. Rats were sacrificed 86 h after the second injection. After both injections, BWG and FI were reduced. The reduction in FI concerned only nocturnal intake, whatever the timing of the injection. When the injection was given at the beginning of the night, the reductions after a 1-h latency period were -45% and -27.5% during the first and second days, respectively. Following the second injection, the same effects were observed immediately (-16% and -41%, respectively). Only the fat and protein intakes were significantly reduced. This lower FI was due to a reduction in meal size and duration. The reduction resulted in a lower BWG and total white adipose tissue mass. At the time of sacrifice, 6 h after food deprivation, leptinemia and insulinemia were reduced in leptin-treated rats. Glycemia values were identical. It was thus demonstrated that central leptin was a satiation factor rather than a satiety factor.
Collapse
Affiliation(s)
- Sandrine Wetzler
- UMR INRA/INAPG 914 Physiologie de la Nutrition et du Comportement Alimentaire Institut National Agronomique de Paris-Grignon, 16, rue Claude Bernard, 75231 Paris Cedex 05, France
| | | | | | | | | |
Collapse
|
27
|
Della-Zuana O, Revereault L, Beck-Sickinger A, Monge A, Caignard DH, Fauchère JL, Henlin JM, Audinot V, Boutin JA, Chamorro S, Félétou M, Levens N. A potent and selective NPY Y5 antagonist reduces food intake but not through blockade of the NPY Y5 receptor. Int J Obes (Lond) 2004; 28:628-39. [PMID: 14758341 DOI: 10.1038/sj.ijo.0802435] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
AIM These studies were performed to test the hypothesis that endogenous neuropeptide Y (NPY) acting on the NPY Y(5) receptor subtype contributes to the control of food intake. The hypothesis was tested using S 25585-a newly synthesized NPY Y(5) receptor antagonist. METHODS AND RESULTS S 25585 was shown to be a high-affinity antagonist of the NPY Y(5) receptor subtype (IC(50) 5 nM) with no significant affinity toward other NPY receptor subtypes and over 40 other receptors, channels or uptake systems. S 25585 (7.5 mg/kg, i.p.) did not induce a conditioned taste aversion, significantly alter need-induced sodium appetite or induce pica, suggesting that at this dose the compound did not induce illness or malaise. In satiated rats, S 25585 (5.0 and 7.5 mg/kg, i.p.) significantly decreased the overfeeding induced by i.c.v. injection of NPY (1 microg) and the highly selective NPY Y(5) receptor agonist [hPP(1-17), Ala(31), Aib(32)]NPY (0.7 microg). In rats fasted for 4 h immediately before the dark phase, analysis of the microstructure of feeding behavior revealed that S 25585 significantly increased latency to eat and significantly decreased the duration and size of the meals without altering the meal number or eating rate. Analysis of the behavioral satiety sequence at this time revealed that the animals passed through the normal pattern of feeding, grooming and resting. Although S 25585 appeared to be influencing a physiological system controlling appetite, this does not involve the NPY Y(5) receptor since the antagonist also markedly reduced food intake in the NPY Y(5) knockout mouse. CONCLUSIONS The results presented do not support a role for the NPY Y(5) receptor in the control of food intake. The results further illustrate that it is imperative that the activity of any new NPY Y(5) antagonist be assessed in the NPY Y(5) knockout mouse before assuming that its effect on food intake is due to blockade of this receptor.
Collapse
Affiliation(s)
- O Della-Zuana
- Metabolic Diseases, Servier Research Institute, Suresnes, France.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Oukouchoud R, Vivien-Roels B, Pévet P, Lakhdar-Ghazal N. Testosterone-dependent and -independent mechanisms involved in the photoperiodic control of neuropeptide levels in the brain of the jerboa (Jaculus orientalis). Brain Res 2003; 967:63-72. [PMID: 12650966 DOI: 10.1016/s0006-8993(02)04213-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Vasoactive intestinal peptide (VIP) and neuropeptide Y (NPY) content in the suprachiasmatic nucleus have been shown to exhibit seasonal changes with an increase in late summer, the period of sexual quiescence in the jerboa (Jaculus orientalis). In this study, VIP content in the SCN and NPY and enkephaline (ENK) content in the geniculo-suprachiasmatic system have been assayed in wild-caught male jerboas (Jaculus orientalis) in order to determine whether these neuropeptides are controlled directly by photoperiod changes or indirectly by short photoperiod induced changes in circulating sex hormones levels. In agreement with previous studies seasonal variations occur in the VIP and NPY content in the SCN. Variations also occur in NPY content in the IGL with an increase in the period of sexual quiescence. In contrast, no seasonal changes are observed in Enk content in the IGL or the SCN. In short photoperiod conditions increases are observed in both VIP and NPY content in the SCN as well as NPY content in the IGL. Castration during the period of sexual activity (spring) or under long photoperiod which drastically reduces testosterone, also induced an increase in the levels of these neuropeptides. Testosterone implants which reproduce the sex hormonal status of the sexual activity period failed to prevent the short photoperiod-induced increase of VIP and NPY in the SCN and of NPY in the IGL. These results clearly show that the photoperiod modulates VIP and NPY in the geniculo-suprachiasmatic system both by testosterone-linked and testosterone-independent mechanisms.
Collapse
Affiliation(s)
- Rahma Oukouchoud
- Groupe de Recherche sur les Rythmes Biologiques, Unité de Neurosciences, Département de Biologie, Faculté des Sciences, Université Mohammed V, B.P. 1014, Avenue Ibn Battouta, 10000 Rabat, Morocco
| | | | | | | |
Collapse
|
29
|
Clegg DJ, Air EL, Benoit SC, Sakai RS, Seeley RJ, Woods SC. Intraventricular melanin-concentrating hormone stimulates water intake independent of food intake. Am J Physiol Regul Integr Comp Physiol 2003; 284:R494-9. [PMID: 12557891 DOI: 10.1152/ajpregu.00399.2002] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The lateral hypothalamus (LH) has a critical role in the control of feeding and drinking. Melanin-concentrating hormone (MCH) is an orexigenic peptidergic neurotransmitter produced primarily in the LH, and agouti-related protein (AgRP) is an orexigenic peptidergic neurotransmitter produced exclusively in the arcuate (ARC), an area that innervates the LH. We assessed drinking and eating after third ventricular (i3vt) administration of MCH and AgRP. MCH (2.5, 5, and 10 micro g i3vt) significantly increased food as well as water intake over 4 h when administered during either the light or the dark portion of the day-night cycle. When MCH (5 micro g) was administered to rats with access to water but no food, they drank significantly more water than when given the vehicle. AgRP (7 micro g i3vt), on the other hand, increased water intake but only in proportion to food intake during the dark and the light, and water intake was not increased after i3vt AgRP in the absence of food. Hence, in contrast to AgRP, MCH elicits increased water intake independent of food intake. These results are consistent with historical data linking activity of the LH with water as well as food intake.
Collapse
Affiliation(s)
- Deborah J Clegg
- Department of Psychiatry, University of Cincinnati, Ohio 45267, USA.
| | | | | | | | | | | |
Collapse
|
30
|
Beck B, Stricker-Krongrad A, Burlet A, Cumin F, Burlet C. Plasma leptin and hypothalamic neuropeptide Y and galanin levels in Long-Evans rats with marked dietary preferences. Nutr Neurosci 2002; 4:39-50. [PMID: 11842875 DOI: 10.1080/1028415x.2001.11747349] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Neuropeptides present in the hypothalamus and new messengers in the periphery such as leptin modulate food intake in mammals. Neuropeptide Y (NPY) and galanin in microdissected brain areas and plasma leptin levels were measured by specific radioimmunoassays during the resting period in rats selected for their strong preference either for carbohydrate or fat, but with identical energy intake. NPY concentrations were 23% lower (p <.02) in carbohydrate-preferring (CP) than in fat-preferring (FP) rats in the parvocellular part of the paraventricular nucleus (PVN), which is one of the main areas involved in the regulation of feeding behavior. On the other hand, galanin was significantly (+25%, p = .03) higher in CP rats than in FP rats in the magnocellular part of the PVN. Plasma leptin was more than 50% higher in FP rats than in CP rats (p < .01) and highly correlated with the fat preference (r = 0.57; p = .003) and body weight gain. We conclude that the rats with a spontaneous and marked dietary preference have a characteristic peptidergic profile. Due to their anatomical relationships, neuropeptide Y could act in conjunction with galanin in a peptidergic balance located in the paraventricular nucleus. This model integrates information provided by the energy stores and translated by peripheral messengers such as leptin which could act in a counterregulatory manner in order to limit the overweight induced by the ingestion of unbalanced diets.
Collapse
Affiliation(s)
- B Beck
- INSERM U.308 Unité de Recherches sur les Mécanismes de Regulation du Comportement Alimentaire 38, Nancy, France.
| | | | | | | | | |
Collapse
|
31
|
Chamorro S, Della-Zuana O, Fauchère JL, Félétou M, Galizzi JP, Levens N. Appetite suppression based on selective inhibition of NPY receptors. Int J Obes (Lond) 2002; 26:281-98. [PMID: 11896483 DOI: 10.1038/sj.ijo.0801948] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/01/2001] [Revised: 07/01/2001] [Accepted: 11/07/2001] [Indexed: 11/08/2022]
Abstract
AIM The aim of this review is to critically assess available evidence that blockade of the actions of NPY at one of the five NPY receptor subtypes represents an attractive new drug discovery target for the development of an appetite suppressant drug. RESULTS Blockade of the central actions of NPY using anti-NPY antibodies, antisense oligodeoxynucleotides against NPY and NPY receptor antagonists results in a decrease in food intake in energy-deprived animals. These results appear to show that endogenous NPY plays a role in the control of appetite. The fact that NPY receptors exist as at least five different subtypes raises the possibility that the actions of endogenous NPY on food intake can be adequately dissociated from other effects of the peptide. Current drug discovery has produced a number of highly selective NPY receptor antagonists which have been used to establish the NPY Y(1) receptor subtype as the most critical in regulating short-term food intake. However, additional studies are now needed to more clearly define the relative contribution of NPY acting through the NPY Y2 and NPY Y5 receptors in the complex sequence of physiological and behavioral events that underlie the long-term control of appetite. CONCLUSIONS Blockade of the NPY receptor may produce appetite-suppressing drugs. However, it is too early to state with certainty whether a single subtype selective drug used alone or a combination of NPY receptor selective antagonists used in combination will be necessary to adequately influence appetite regulation.
Collapse
Affiliation(s)
- S Chamorro
- Division of Metabolic Diseases, Institut de Recherches Servier, Suresnes, France
| | | | | | | | | | | |
Collapse
|
32
|
Huntington CE, Shay NF, Grouzmann E, Arseneau LM, Beverly JL. Zinc status affects neurotransmitter activity in the paraventricular nucleus of rats. J Nutr 2002; 132:270-5. [PMID: 11823589 DOI: 10.1093/jn/132.2.270] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Alterations in neurochemical activity in the paraventricular nucleus (PVN) of the hypothalamus may account for decreased intake of zinc-deficient diets. Male Sprague-Dawley rats were fed zinc-deficient (ZD) or zinc-adequate (ZA) diet for 14 d before samples of extracellular fluid in the PVN were collected by microdialysis or push-pull perfusion. A third set of rats was pair-fed (PF) an amount of ZA diet equal to the intake of ZD rats. Samples were collected over a 2-h period spanning the transition from light to dark. All rats then consumed the zinc adequate diet ad libitum for 3 d before a second set of samples was collected. The increase in extracellular norepineprhrine (NE) during h 1 of the dark period to 147 +/- 13% of baseline (P < 0.05) was apparent only in ZA rats at d 14. After the 3-d repletion period, the increase in NE at dark onset occurred in all three groups. An increase in extracellular neuropeptide Y (NPY) at dark onset to 174 +/- 32% of baseline in rats fed ZA (P < 0.01) was measured in all three groups at both d 14 and 17. Basal NPY concentrations were significantly elevated in PF rats on d 14 (7.45 +/- 2.01 vs. 0.58 +/- 0.23 pmol/L, P = 0.01) and returned to ZA levels by d 17. The activities of the NE and NPY systems in the PVN were altered in rats fed a zinc-deficient diet; however, it is unclear whether the disruption in the NE and NPY neural systems in the PVN results in the altered feeding behavior accompanying zinc deficiency.
Collapse
Affiliation(s)
- Carolyn E Huntington
- Division of Nutritional Sciences, University of Illinois, Urbana-Champaign, Urbana, IL 61801, USA
| | | | | | | | | |
Collapse
|
33
|
Pronchuk N, Beck-Sickinger AG, Colmers WF. Multiple NPY receptors Inhibit GABA(A) synaptic responses of rat medial parvocellular effector neurons in the hypothalamic paraventricular nucleus. Endocrinology 2002; 143:535-43. [PMID: 11796508 DOI: 10.1210/endo.143.2.8655] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
We have recently shown that NPY and alpha-melanocyte-stimulating hormone, which potently induce or inhibit feeding, respectively, have opposing modulatory actions on GABAergic synapses in the medial parvocellular region of the paraventricular hypothalamic nucleus (mpPVN). Because this action might underlie the effects of NPY on feeding, we have examined the pharmacology of NPY responses using electrophysiological recordings. Focal electrical stimulation within the PVN elicited a GABA(A) synaptic response in some mpPVN neurons, which was reversibly inhibited by NPY in a concentration-dependent manner (EC(50) = 28 nM). NPY did not alter the response to the GABA(A) agonist, muscimol. Agonist responses to NPY analogs were not consistent with a single NPY receptor subtype; the most subtype selective agonists were less effective than the more broadly selective ones. Antagonist blockade of individual receptor subtypes partly inhibited NPY action, while fully blocking effects of selective agonists. Combining Y1 and Y5 antagonists blocked actions of NPY entirely, but the Y2 antagonist also completely blocked actions of NPY in some neurons. NPY inhibits GABA(A) synaptic transmission onto mpPVN neurons, but this can be mediated by three different NPY receptors. Controversy regarding the receptor or receptor subtypes involved in NPY-mediated feeding may arise from the multiple NPY receptors present.
Collapse
Affiliation(s)
- Nina Pronchuk
- Department of Pharmacology, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | | | | |
Collapse
|
34
|
Odorizzi M, Fernette B, Angel E, Burlet C, Tankosic P, Burlet A. Galanin receptor antagonists decrease fat preference in Brattleboro rat. Neuropharmacology 2002; 42:134-41. [PMID: 11750923 DOI: 10.1016/s0028-3908(01)00115-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The Brattleboro rat eats spontaneously 46% of its diet per day in fat when given a choice of carbohydrate, protein and fat. An overexpression of galanin (GAL) has been also observed in the hypothalamic paraventricular nuclei (PVN). This associative correlation has led to a hypothesis of a functional relation between central galanin expression and the preference for a lipid diet. In the present experiments, the effects of two GAL receptor antagonists, C7 and galantide, on fat consumption and central overexpression of GAL were investigated. Both antagonists were injected into either the cerebral ventricles or directly above the PVN, and the diet consumption followed for the subsequent 24h. C7 decreased significantly fat consumption when injected into the ventricles or directly above the PVN. In contrast, galantide must be injected above the PVN to show the same effect. However, the two antagonists did not modify GAL mRNA expression in the PVN when they were injected 2h before sacrifice. These experiments confirm a functional link between the preferential consumption of fat and hypothalamic Galanin; different subtypes of the GAL receptor are probably involved, since both Galanin antagonists were differently efficient in decreasing spontaneous fat selection of the Brattleboro rat.
Collapse
|
35
|
Nicholson JR, Akil H, Watson SJ. Orphanin FQ-induced hyperphagia is mediated by corticosterone and central glucocorticoid receptors. Neuroscience 2002; 115:637-43. [PMID: 12421628 DOI: 10.1016/s0306-4522(02)00290-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Orphanin FQ (Nociceptin) has been reported to stimulate food intake in satiated rats and to stimulate corticosterone release. A large body of evidence exists to link central feeding systems with the regulation of corticosterone. In this study, we sought to determine whether or not circulating corticosterone is necessary for the induction of food intake by Orphanin FQ. We found that intracerebroventricular injection of Orphanin FQ (0.64-5 nmoles) dose dependently stimulated food intake and plasma corticosterone within 30 min of injection. Removal of corticosterone, by adrenalectomy, abolished the hyperphagic effect of Orphanin FQ. The stimulatory effect of Orphanin FQ on food intake was still negated following a low dose of corticosterone replacement (corresponding to a plasma corticosterone concentration of 1.86+/-0.99 microg/dl). However, following a larger dose of corticosterone replacement (corresponding to a plasma corticosterone concentration of 8.92+/-0.55 microg/dl) the feeding effect was fully restored. We concluded this study by testing the glucocorticoid receptor antagonist, RU486 (Mifepristone, 80 microg/2 microl) on Orphanin FQ-induced feeding. Central injection of RU486, 30 min prior to injection of Orphanin FQ, significantly reduced Orphanin FQ-induced food intake in comparison to vehicle-treated controls. Overall, these data demonstrate the necessity for circulating corticosterone in the mediation of Orphanin-FQ-induced feeding and suggest that the mechanism through which the hyperphagic effect is obtained involves activation of central glucocorticoid receptors.
Collapse
Affiliation(s)
- J R Nicholson
- Mental Health Research Institute, University of Michigan School of Medicine, 205 Zina Pitcher Place, Ann Arbor 48109-0720, USA.
| | | | | |
Collapse
|
36
|
Abstract
Input to and regulation of activity in the hypothalamic-pituitary-adrenal (HPA) axis is diverse and complex. Glucocorticoid feedback is a major component that determines activity in this classic neuroendocrine axis and, while feedback occurs through the brain, the pathways that mediate glucocorticoid feedback remain unknown. In this review, I discuss findings that have led us to view glucocorticoid feedback in the HPA axis in a new light. Much of what has precipitated this view comes from a very surprising finding in our laboratory; sucrose ingestion normalizes feeding, energy balance and central corticotropin releasing factor expression in adrenalectomized (ADX) rats. Since this discovery, a diverse set of literature that supports this view of glucocorticoid feedback has been found. Taken together, recent findings of the well-known importance of glucocorticoids to feeding and energy balance, and the modulatory actions of carbohydrate ingestion on both basal and stress-induced activity in the HPA axis, strongly suggest that many metabolic (e.g. obesity) and psychological (e.g. depression) pathologies, which often present together and have been associated with stress and HPA dysregulation, might, in part, be understood in light of our new view of glucocorticoid feedback.
Collapse
Affiliation(s)
- K D Laugero
- Department of Physiology, School of Medicine, University of California San Francisco, San Francisco, CA 94143-0444, USA.
| |
Collapse
|
37
|
Wakamatsu H, Yoshinobu Y, Aida R, Moriya T, Akiyama M, Shibata S. Restricted-feeding-induced anticipatory activity rhythm is associated with a phase-shift of the expression of mPer1 and mPer2 mRNA in the cerebral cortex and hippocampus but not in the suprachiasmatic nucleus of mice. Eur J Neurosci 2001; 13:1190-6. [PMID: 11285016 DOI: 10.1046/j.0953-816x.2001.01483.x] [Citation(s) in RCA: 261] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Daily restricted feeding (RF) can produce food-entrainable oscillations in both intact and suprachiasmatic nucleus (SCN)-lesioned animals. Thus, there are two circadian rhythms, one of which is SCN-dependent and the other SCN-independent. Recently, it has been established that several mouse clock genes, such as mPer1, mPer2 and mPer3 are expressed in the SCN and other brain tissues. Although the role of mPer genes expressed in the SCN has recently been evaluated in the SCN-dependent rhythm, their function in the SCN-independent rhythm is still poorly understood. In order to understand the role of these genes in SCN-independent rhythm, we examined the expression pattern of mPer1 and mPer2 mRNA in each brain area of mice under RF. Mice were allowed access to food for 4 h during either the daytime under a light-dark cycle or the subjective daytime under constant dark. After 6 days of scheduled RF, the night-time or subjective night-time peak of mPer mRNA changed to a daytime peak in the cerebral cortex and hippocampus, with moderate expression in the striatum, pyriform cortex and paraventricular nucleus, and no expression in the SCN. The daytime peak in the cerebral cortex returned to a night-time peak after the release of RF to a free-feeding schedule. Although the basal rhythm of mPer expression disappeared in SCN-lesioned mice, RF produced mPer mRNA rhythm in the cerebral cortex of these mice. The present results provide evidence of an association between food-entrainable oscillations and the expression of mPer1 and mPer2 in the cerebral cortex and hippocampus.
Collapse
Affiliation(s)
- H Wakamatsu
- Department of Pharmacology and Brain Science, School of Human Sciences, Waseda University, 2-579-15 Mikajima, Tokorozawa, Saitama 359-1192, Japan
| | | | | | | | | | | |
Collapse
|
38
|
Abstract
This review focuses on the expression, content, and release of neuropeptides and on their role in the development of obesity in animal models with single-gene mutations. The balance between neuropeptides that contribute to the control of feeding behavior is profoundly and variously altered in these models, supporting the concept of the existence of several types of obesity. The hypothalamic neuropeptide Y (NPY) and the pro-opiomelanocortin (POMC) systems are the networks most studied in relation to energy intake. Both receive information about the nutritional status and the level of energy storage through insulin and leptin signaling mediated by specific receptors located on POMC and NPY neurons present predominantly in the arcuate nucleus (ARC). When leptin signaling is defective, through a defect in either the receptor (Zucker fa/fa rat, cp/cp rat, and db/db mouse) or in the peptide itself (ob/ob mouse), the NPY system is upregulated as shown by mRNA overexpression and increased peptide release, whereas the content and/or release of some inhibitory peptides (neurotensin, cholecystokinin) are diminished. For the POMC system, there is a complex interaction between the tonic inhibition of food intake exerted by alpha-melanocyte-stimulating hormone (alpha-MSH) and the Agouti-related protein at the level of the type 4 melanocortin receptor. The latter peptide is coexpressed with NPY in the ARC. Corticotropin-releasing factor (CRF) is the link between food intake and environmental factors. It not only inhibits food intake and prevents weight gain, likely through hypothalamic effects, but also activates the hypothalamo-pituitary axis and therefore contributes to energy storage in adipose tissue. The factors that prod the CRF system toward the hypothalamic or hypothalamo-pituitary axis system remain to be more clearly defined (comodulators, connections between limbic system and ARC, cellular location, and type of receptors, etc. ). The pathways used by all of these neuromodulators include numerous brain areas, but some interest has returned to the classic ones such as the ventromedial and lateral hypothalamic areas because of the recent discovery of some peptides (orexins and melanin-concentrating hormone for the lateral hypothalamus) and receptors (CRF type 2 in the ventromedial hypothalamus). All of these pathways are redundant and function in a coordinated manner and sometimes by the novel expression of a peptide in an unusual area. The importance of such a phenomenon in obesity remains to be determined. Even if single-gene mutations are exceptions in human obesity, the study of genetic animal models of obesity has greatly contributed to the understanding of the regulation of feeding behavior and will allow researchers to develop new drug treatments for obesity that have to be associated with drastic changes in lifestyle (feeding, work habits, and physical activity) for a complete efficiency.
Collapse
Affiliation(s)
- B Beck
- INSERM U.308 Mécanismes de Régulation du Comportement Alimentaire, Nancy, France.
| |
Collapse
|
39
|
Pevet P, Jacob N, Vuillez P. Suprachiasmatic nuclei, intergeniculate leaflet, and photoperiod. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2000; 460:233-45. [PMID: 10810519 DOI: 10.1007/0-306-46814-x_26] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Affiliation(s)
- P Pevet
- UMR-CNRS 7518, Université L. Pasteur, Strasbourg, France.
| | | | | |
Collapse
|
40
|
White BD, Porter MH, Martin RJ. Effects of age on the feeding response to moderately low dietary protein in rats. Physiol Behav 2000; 68:673-81. [PMID: 10764897 DOI: 10.1016/s0031-9384(99)00229-2] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Moderately low levels of dietary protein are associated with increased food intake and body fat. We propose that the generation of this feeding signal is dependent on the level of dietary protein relative to the protein requirement of the animal, that is, that protein-dependent feeding is maximized when the level of dietary protein is around the animal's protein requirement. One of the factors that affects an animal's protein requirement is age. We predict that young, growing animals are more responsive to a moderately low level of dietary protein than are mature animals. The feeding response to moderately low dietary protein (10% casein) was determined in young ( approximately 190 g) and more mature ( approximately 340 g) Sprague-Dawley rats for 12 days. As an index of amino acid deamination, serum urea nitrogen concentrations were determined, as was the in vitro release of neuropeptide Y (NPY) from hypothalamic tissue containing the paraventricular nucleus. Young rats were more responsive to the feeding effects of moderately low dietary protein than mature animals. In young rats, cumulative food intake was inversely correlated with serum urea nitrogen concentration. No correlation was found in mature animals. Although the amount of NPY remaining in hypothalamic tissue after incubation was significantly greater (p = 0.04) in young rats fed 10% casein as compared with rats fed the standard 20% casein diet, no dietary difference in K(+)-stimulated NPY release was observed. We hypothesize that the signal for low-protein-induced hyperphagia is a reduction in a compound whose production is coupled to the level of amino acid deamination in the brain.
Collapse
Affiliation(s)
- B D White
- Department of Foods and Nutrition University of Georgia, Athens, GA, USA.
| | | | | |
Collapse
|
41
|
Schuster C, Gauer F, Guerrero H, Lakhdar-Ghazal N, Pevet P, Masson-Pevet M. Photic regulation of mt1 melatonin receptors in the Siberian hamster pars tuberalis and suprachiasmatic nuclei: involvement of the circadian clock and intergeniculate leaflet. J Neuroendocrinol 2000; 12:207-16. [PMID: 10718916 DOI: 10.1046/j.1365-2826.2000.00039.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
In the Siberian hamster suprachiasmatic nuclei and pars tuberalis of the pituitary, high affinity mt1 melatonin receptors are present. We have previously shown that night applied light pulse induced an increase in mt1 mRNA expression in the suprachiasmatic nuclei of this species, independently of the endogenous melatonin. Here, we report the photic regulation of melatonin receptor density and mRNA expression in the suprachiasmatic nuclei and pars tuberalis of pinealectomized Siberian hamsters and the implication in this control of either the circadian clock or the intergeniculate leaflet. The results show that: (1) A 1-h light pulse, delivered during the night, induces a transitory increase in mt1 mRNA expression in the suprachiasmatic nuclei and pars tuberalis. After 3 h this increase has totally disappeared (suprachiasmatic nuclei) or is greatly reduced (pars tuberalis). (2) The melatonin receptor density, in the suprachiasmatic nuclei, is not affected by 1 or 3 h of light, while it is strongly increased in the pars tuberalis. (3) In hamsters kept in constant darkness, the mt1 mRNA rise is gated to the subjective night in the suprachiasmatic nuclei and pars tuberalis. In contrast, the light-induced increase in melatonin binding is also observed in the subjective day in the pars tuberalis. (4) intergeniculate leaflet lesion totally inhibits the mt1 mRNA expression rise in the suprachiasmatic nuclei, while it has no effect on the light-induced increase in mt1 mRNA in the pars tuberalis. However, the light-induced increase in melatonin receptor density is totally prevented by the intergeniculate leaflet lesion in the pars tuberalis. These results show that: (1) the photic regulations of mt1 mRNA expression and receptor density are independent of each other in both the suprachiasmatic nuclei and pars tuberalis; and (2) the circadian clock and the intergeniculate leaflet are implicated in the photic regulation of melatonin receptors but their level of action differs totally between the suprachiasmatic nuclei and pars tuberalis.
Collapse
Affiliation(s)
- C Schuster
- Neurobiologie des Fonctions Rythmiques et Saisonnières, CNRS-UMR 7518, Université Louis Pasteur, Strasbourg, France.
| | | | | | | | | | | |
Collapse
|
42
|
Wang J, Dourmashkin JT, Yun R, Leibowitz SF. Rapid changes in hypothalamic neuropeptide Y produced by carbohydrate-rich meals that enhance corticosterone and glucose levels. Brain Res 1999; 848:124-36. [PMID: 10612704 DOI: 10.1016/s0006-8993(99)02040-5] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Prior studies have demonstrated that chronic consumption over several weeks of a high-carbohydrate (65%) diet, compared to a moderate-carbohydrate (45%) or low-carbohydrate (15%) diet, potentiates the expression, synthesis and release of hypothalamic NPY. This effect occurs specifically in neurons of the arcuate nucleus (ARC) which project to the paraventricular nucleus (PVN). In the present experiments, tests involving acute manipulations were conducted to determine whether such diet-induced changes in NPY can occur rapidly, perhaps within 1-2 h, and whether these effects can be linked to specific changes in circulating glucoregulatory hormones or glucose itself., In adult, albino rats maintained on lab chow, the acute manipulations included the presentation of either a high-carbohydrate, moderate-carbohydrate or high-fat diet for 90 min at the onset of the natural feeding cycle. They also involved manipulations of glucose itself, either through the ingestion of a glucose (20%) solution in a drinking tube or intraperitoneal injection of a glucose solution (10%). After a high-carbohydrate meal compared to a moderate-carbohydrate or high-fat meal, NPY gene expression examined via in situ hybridization is found to be significantly enhanced in the ARC. The high-carbohydrate meal also potentiates NPY immunoreactivity in the ARC and PVN but has little effect on NPY in other hypothalamic areas examined and actually causes a reduction in the feeding-stimulatory peptide, galanin, specifically in the PVN. The meal-induced increase in NPY is associated with specific endocrine patterns, as revealed by measurements in serum collected from trunk blood or from rats implanted with a chronic jugular catheter. After a high-carbohydrate meal, levels of glucose, together with corticosterone and insulin, are significantly elevated, while non-esterified fatty acids are reduced. A possible effect of circulating glucose on hypothalamic NPY is further suggested by the finding that the consumption or a single injection of a glucose solution at the onset of the feeding cycle similarly elevates NPY mRNA and peptide immunoreactivity in the ARC and PVN. These results demonstrate that hypothalamic NPY can change rapidly in response to dietary carbohydrate. They also suggest that this effect may be related to changes in circulating CORT as well as to the availability or utilization of glucose.
Collapse
Affiliation(s)
- J Wang
- The Rockefeller University, 1230 York Avenue, New York, NY 10021, USA
| | | | | | | |
Collapse
|
43
|
Mistlberger RE, Antle MC. Neonatal monosodium glutamate alters circadian organization of feeding, food anticipatory activity and photic masking in the rat. Brain Res 1999; 842:73-83. [PMID: 10526097 DOI: 10.1016/s0006-8993(99)01836-3] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
In rodents, parenteral administration of monosodium glutamate (MSG) induces marked degeneration of the retina and arcuate nucleus (AN) and disrupts daily rhythms of food intake. We quantified the effects of neonatal MSG (2 mg/g SC, postnatal days 1, 3, 5, 7, 9) on the expression of feeding and activity rhythms in adult rats under schedules of light-dark (LD), constant dark (DD), restricted daily feeding and total food deprivation. AN lesions were confirmed by neuropeptide Y (NPY) immunocytochemistry and Nissl stain. Compared to age-matched control rats, the amplitude (quantified as LD ratios) of daily food intake and food-bin activity rhythms was significantly attenuated in MSG rats in LD 12:12 and on the first day of DD. Control rats, but not MSG rats, showed lower amplitude rhythms in DD compared to LD. The phase angle of feeding and activity rhythms did not differ between groups in either condition. In a short LD cycle (2:2), control rats, but not MSG rats, showed significant inhibition (masking) of activity during the 2 h light periods. When food access was restricted to a 4 h daily meal, MSG rats showed enhanced expression and persistence of food-entrained anticipatory activity rhythms by comparison with control rats. These results indicate that attenuation of daily feeding rhythms in MSG rats is due in part to loss of direct inhibitory effects of light on behavior, and that the AN likely modulates, but does not mediate entrainment of feeding-related rhythms to daily cycles of LD or food access.
Collapse
Affiliation(s)
- R E Mistlberger
- Department of Psychology, Simon Fraser University, 888 University Drive, Burnaby, BC, Canada.
| | | |
Collapse
|
44
|
Kalra SP, Dube MG, Pu S, Xu B, Horvath TL, Kalra PS. Interacting appetite-regulating pathways in the hypothalamic regulation of body weight. Endocr Rev 1999; 20:68-100. [PMID: 10047974 DOI: 10.1210/edrv.20.1.0357] [Citation(s) in RCA: 245] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Various aspects of the complex spatio-temporal patterning of hypothalamic signaling that leads to the development of synchronized nocturnal feeding in the rat are critically examined. Undoubtedly, as depicted in Fig. 7, a distinct ARN in the hypothalamus is involved in the control of nocturnal appetite. At least four basic elements operate within this ARN. These are: 1) A discrete appetite-driving or orexigenic network of NPY, NE, GABA, GAL, EOP, and orexin transduces and releases appetite-stimulating signals. 2) Similarly, anorexigenic signal-producing pathways (e.g., CRH, GLP-1, alpha MSH, and CART) orchestrate neural events for dissipation of appetite and to terminate feeding, possibly by interrupting NPY efflux and action at a postsynaptic level within the hypothalamus. It is possible that some of these may represent the physiologically relevant "off" switches under the influence of GABA alone, or AgrP alone, or in combination with NPY released from the NPY-, GABA-, and AgrP-coproducing neurons. 3) Recent evidence shows that neural elements in the VMN-DMN complex tonically restrain the orexigenic signals during the intermeal interval; the restraint is greatly aided by leptin's action via diminution of orexigenic (NPY) and augmentation of anorexigenic (GLP-1, alpha MSH, and CART) signals. Since interruption of neurotransmission in the VMN resulted in hyperphagia and development of leptin resistance, it seems likely that the VMN is an effector site for the restraint exercised by leptin. The daily rhythms in leptin synthesis and release are temporally dissociable because the onset of daily rise in leptin gene expression in adipocytes precedes that in leptin secretion. Nevertheless, these rhythms are in phase with daily ingestive behavior because the peak in circulating leptin levels occurs during the middle of the feeding period. These observations, coupled with the fact that circulating levels of leptin are directly related to adiposity, pose a new challenge for elucidating the precise role of leptin in daily patterning of feeding in the rat. 4) A neural timing mechanism also operates upstream from the ARN in the daily management of energy homeostasis. Although the precise anatomical boundaries are not clearly defined, this device is likely to be composed of a group of neurons that integrate incoming internal and external information for the timely onset of the drive to eat. Evidently, this network operates independently in primates, but it is entrained to the circadian time keeper in the SCN of rodents. Apart from its role in the onset of drive to eat, the circadian patterns of gene expression of NPY, GAL, and POMC denote independent control of the timing device on the synthesis and availability for release of orexigenic signals. The VMN-DMN-PVN complex is apparently an integrated constituent of the timing mechanism in this context, because lesions in each of these sites result in loss of regulated feeding. The accumulated evidence points to the PVN and surrounding neural sites within this framework as the primary sites of release and action of various orexigenic and anorexigenic signals. A novel finding is the identification of the interconnected wiring of the DMN-mPVN axis that may mediate leptin restraint on NPY-induced feeding. The chemical phenotypes of leptin and NPY target neurons in this axis remain to be identified. These multiple orexigenic and anorexigenic pathways in the hypothalamic ARN appear to represent redundancy, a characteristic of regulated biological systems to provide a "fail-safe" neural mechanism to meet an organism's constant energy needs for growth and maintenance. Within this formulation, the coexisting orexigenic signals (NPY, NE, GAL, GABA, and AgrP) represent either another level of redundancy or it is possible that these signals operate within the ARN as reinforcing agents to varying degrees under different circumstances. (ABSTRACT TRUNCATED)
Collapse
Affiliation(s)
- S P Kalra
- Department of Neuroscience, University of Florida Brain Institute, University of Florida College of Medicine, Gainesville 32610, USA.
| | | | | | | | | | | |
Collapse
|
45
|
Abstract
The effects of injecting or infusing neuropeptide Y (NPY) into the suprachiasmatic nucleus of rats on patterns of individual macronutrient and water intake were examined during the following 2 h and also across 12 and 24 h light/dark cycles. Increased total energy intake (218 and 170%) and energy intake from the dextrin/sucrose diet (499 and 247%) were observed in the 2 h following injection of 100 pmol NPY at early light and early dark, respectively, and in the following 24 h (total energy: 67%, dextrin/sucrose: 73%). Nocturnal casein energy intake was also increased (258%) following NPY injection. Continuous infusion of 10 pmol/h of NPY suppressed nocturnal total energy (36%) and dextrin/sucrose intake (36%) as well as 24 h energy intake from casein (43%). These results demonstrate divergent effects of NPY subsequent to different mode of administration.
Collapse
Affiliation(s)
- L Thibault
- School of Dietetics and Human Nutrition, McGill University, Quebec, Canada.
| | | |
Collapse
|
46
|
Leibowitz SF. Differential functions of hypothalamic galanin cell grows in the regulation of eating and body weight. Ann N Y Acad Sci 1998; 863:206-20. [PMID: 9928172 DOI: 10.1111/j.1749-6632.1998.tb10696.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Evidence suggests that hypothalamic galanin (GAL) has a variety of functions related to energy and nutrient balance, reproduction, water balance, and neuroendocrine regulation. The focus of this chapter is the role of GAL in eating and body weight regulation. Findings described herein demonstrate that GAL, in a cell group of the anterior region of the paraventricular nucleus (aPVN) that projects to the median eminence, has a role in the control of fat intake, fat metabolism, and body fat. This function of aPVN GAL neurons is carried out in close relation to circulating insulin and glucose. Galanin-expressing perikarya in the medial preoptic area (MPOA) have a similar function, although GAL here operates in association with the female steroids estrogen and progesterone. These GAL cell groups of the aPVN and MPOA contrast with those in the arcuate nucleus as well as the magnocellular vasopressin-containing neurons of the PVN and supraoptic nucleus, which show no relation to fat balance. This evidence reveals differential functions for the distinct GAL neuronal cell groups of the hypothalamus.
Collapse
Affiliation(s)
- S F Leibowitz
- Rockefeller University, New York, New York 10021, USA
| |
Collapse
|
47
|
Criscione L, Rigollier P, Batzl-Hartmann C, Rüeger H, Stricker-Krongrad A, Wyss P, Brunner L, Whitebread S, Yamaguchi Y, Gerald C, Heurich RO, Walker MW, Chiesi M, Schilling W, Hofbauer KG, Levens N. Food intake in free-feeding and energy-deprived lean rats is mediated by the neuropeptide Y5 receptor. J Clin Invest 1998; 102:2136-45. [PMID: 9854049 PMCID: PMC509168 DOI: 10.1172/jci4188] [Citation(s) in RCA: 200] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The new neuropeptide Y (NPY) Y5 receptor antagonist CGP 71683A displayed high affinity for the cloned rat NPY Y5 subtype, but > 1, 000-fold lower affinity for the cloned rat NPY Y1, Y2, and Y4 subtypes. In LMTK cells transfected with the human NPY Y5 receptor, CGP 71683A was without intrinsic activity and antagonized NPY-induced Ca2+ transients. CGP 71683A was given intraperitoneally (dose range 1-100 mg/kg) to a series of animal models of high hypothalamic NPY levels. In lean satiated rats CGP 71683A significantly antagonized the increase in food intake induced by intracerebroventricular injection of NPY. In 24-h fasted and streptozotocin diabetic rats CGP 71683A dose-dependently inhibited food intake. During the dark phase, CGP 71683A dose-dependently inhibited food intake in free-feeding lean rats without affecting the normal pattern of food intake or inducing taste aversion. In free-feeding lean rats, intraperitoneal administration of CGP 71683A for 28 d inhibited food intake dose-dependently with a maximum reduction observed on days 3 and 4. Despite the return of food intake to control levels, body weight and the peripheral fat mass remained significantly reduced. The data demonstrate that the NPY Y5 receptor subtype plays a role in NPY-induced food intake, but also suggest that, with chronic blockade, counterregulatory mechanisms are induced to restore appetite.
Collapse
Affiliation(s)
- L Criscione
- Metabolic and Cardiovascular Diseases Research, Novartis Pharma AG, CH-4002 Basel, Switzerland. Leoluca.criscione@pharma,novartis.com
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Jacob N, Vuillez P, Moller M, Pévet P. Photoperiodic dependent changes in the number of neurons containing mRNA encoding neuropeptide Y in the intergeniculate leaflet of the Syrian hamster. Brain Res 1998; 813:160-6. [PMID: 9824690 DOI: 10.1016/s0006-8993(98)01032-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The intergeniculate leaflet (IGL) is a distinct division of the lateral geniculate complex that participates in the regulation of the circadian rhythm through its projections to the circadian pacemaker located in the suprachiasmatic nuclei of the hypothalamus. A high number of neuropeptide Y (NPY) cell bodies has been described in the IGL by immunohistochemistry and in situ hybridization. The present study investigated whether NPY in the IGL is influenced by the length of the daily photoperiod. By using in situ hybridization we show a significant increase of the number of NPY mRNA containing neurons in the mid-part of the IGL of Syrian hamsters maintained in a short photoperiod compared to those kept in a long photoperiod. On the other hand, NPY mRNA expression per cell in the IGL is similar in both photoperiods tested.
Collapse
Affiliation(s)
- N Jacob
- UMR-CNRS 7518, Neurobiologie des fonctions rythmiques et saisonnières, Université Louis Pasteur, 12 rue de l'Université, 67000, Strasbourg, France.
| | | | | | | |
Collapse
|
49
|
Stricker-Krongrad A, Burlet C, Beck B. Behavioral deficits in monosodium glutamate rats: specific changes in the structure of feeding behavior. Life Sci 1998; 62:2127-32. [PMID: 9627091 DOI: 10.1016/s0024-3205(98)00187-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
We studied the feeding rhythms and feeding patterns of adult Long-Evans rats treated with monosodium glutamate (MSG) in their early post-natal period. This treatment is known to induce neuronal degeneration in the arcuate nucleus (ARC), a major hypothalamic site implicated in the regulation of feeding. Neonatal rats were treated intraperitoneally with MSG or saline (controls) alone on the first days of life. At age of 6 months, male control and male MSG rats were placed in our automatic feeding system, and the structure of feeding behavior and diurnal feeding rhythms were analysed. On a 24 hours basis, MSG rats ate less than control rats (-24%). This hypophagia resulted from a mild diurnal hyperphagia (+6%) and a pronounced nocturnal hypophagia (-34%). This hypophagia was the main consequence of a decrease of meal size in MSG rats (-37%) and was associated with an increase in meal duration (+52%). It was also associated with a total disappearance of the two feeding peaks that normally occur at light and dark onset in the rat (-90% 2 h after dark onset and -49% 2 h before light onset). These results indicate that neonatal treatment with MSG induces important changes in feeding patterns and feeding rhythms in the adulthood. These changes might be related to the disappearance of neurotransmitters located in the arcuate nucleus.
Collapse
Affiliation(s)
- A Stricker-Krongrad
- INSERM U-308. MRCA, Equipe de Neurobiologie et Physiologie Expérimentales, Nancy, France
| | | | | |
Collapse
|
50
|
Katona C, Rose S, Smale L. The expression of Fos within the suprachiasmatic nucleus of the diurnal rodent Arvicanthis niloticus. Brain Res 1998; 791:27-34. [PMID: 9593811 DOI: 10.1016/s0006-8993(97)01092-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Rhythms in the expression of the nuclear phosphoprotein Fos, have been demonstrated in the suprachiasmatic nucleus (SCN) of nocturnal rodents. When rats are housed in a 12:12-h light/dark (LD) cycle the number of Fos-immunoreactive (-IR) cells within the SCN is higher during the day than at night [9,23]. In the two experiments reported here, Fos-IR was examined in the SCN of a diurnal murid rodent, Arvicanthis niloticus. First, thirty-six adult male A. niloticus housed in a 12:12-h LD cycle were perfused at six equally spaced time points beginning 1 h after lights on (n=6 per time point). Brains were sectioned and treated with immunohistochemical procedures for the identification of Fos. The number of Fos-IR cells in the SCN varied significantly as a function of time, and was highest 1 h after lights on and decreased thereafter. The distribution of Fos-IR within the SCN overlapped with that of arginine-vasopressin-IR (AVP-IR) and vasoactive intestinal peptide-IR (VIP-IR), but not with that of gastrin-releasing peptide-IR (GRP-IR). In the second study, double-labeling techniques revealed extensive Fos expression within SCN neurons containing AVP-IR, but not neurons containing GRP-IR. In conclusion, although the overall rhythm of Fos-IR in the SCN is similar in diurnal and nocturnal rodents, differences may exist with respect to the relative distribution of Fos-immunoreacte cells within different SCN cell populations.
Collapse
Affiliation(s)
- C Katona
- Department of Psychology and Neuroscience Program, Michigan State University, East Lansing, MI 48824-1117, USA
| | | | | |
Collapse
|