1
|
Kwon KM, Lee MJ, Chung HS, Pak JH, Jeon CJ. The Organization of Somatostatin-Immunoreactive Cells in the Visual Cortex of the Gerbil. Biomedicines 2022; 10:biomedicines10010092. [PMID: 35052772 PMCID: PMC8773527 DOI: 10.3390/biomedicines10010092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 12/29/2021] [Accepted: 12/31/2021] [Indexed: 11/16/2022] Open
Abstract
Somatostatin (SST) is widely expressed in the brain and plays various, vital roles involved in neuromodulation. The purpose of this study is to characterize the organization of SST neurons in the Mongolian gerbil visual cortex (VC) using immunocytochemistry, quantitative analysis, and confocal microscopy. As a diurnal animal, the Mongolian gerbil provides us with a different perspective to other commonly used nocturnal rodent models. In this study, SST neurons were located in all layers of the VC except in layer I; they were most common in layer V. Most SST neurons were multipolar round/oval or stellate cells. No pyramidal neurons were found. Moreover, 2-color immunofluorescence revealed that only 33.50%, 24.05%, 16.73%, 0%, and 64.57% of SST neurons contained gamma-aminobutyric acid, calbindin-D28K, calretinin, parvalbumin, and calcium/calmodulin-dependent protein kinase II, respectively. In contrast, neuropeptide Y and nitric oxide synthase were abundantly expressed, with 80.07% and 75.41% in SST neurons, respectively. Our immunocytochemical analyses of SST with D1 and D2 dopamine receptors and choline acetyltransferase, α7 and β2 nicotinic acetylcholine receptors suggest that dopaminergic and cholinergic fibers contact some SST neurons. The results showed some distinguishable features of SST neurons and provided some insight into their afferent circuitry in the gerbil VC. These findings may support future studies investigating the role of SST neurons in visual processing.
Collapse
Affiliation(s)
- Kyung-Min Kwon
- Department of Biology, School of Life Sciences, BK21 FOUR KNU Creative Bio-Research Group, College of Natural Sciences, Brain Science and Engineering Institute, Kyungpook National University, Daegu 41566, Korea; (K.-M.K.); (M.-J.L.)
- Research Institute for Dok-do and Ulleung-do Island, Department of Biology, School of Life Sciences, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Korea;
| | - Myung-Jun Lee
- Department of Biology, School of Life Sciences, BK21 FOUR KNU Creative Bio-Research Group, College of Natural Sciences, Brain Science and Engineering Institute, Kyungpook National University, Daegu 41566, Korea; (K.-M.K.); (M.-J.L.)
| | - Han-Saem Chung
- Department of Biology, School of Life Sciences, College of Natural Sciences, Kyungpook National University, Daegu 41566, Korea;
| | - Jae-Hong Pak
- Research Institute for Dok-do and Ulleung-do Island, Department of Biology, School of Life Sciences, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Korea;
- Department of Biology, School of Life Sciences, College of Natural Sciences, Kyungpook National University, Daegu 41566, Korea;
| | - Chang-Jin Jeon
- Department of Biology, School of Life Sciences, BK21 FOUR KNU Creative Bio-Research Group, College of Natural Sciences, Brain Science and Engineering Institute, Kyungpook National University, Daegu 41566, Korea; (K.-M.K.); (M.-J.L.)
- Research Institute for Dok-do and Ulleung-do Island, Department of Biology, School of Life Sciences, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Korea;
- Correspondence:
| |
Collapse
|
2
|
Estave PM, Spodnick MB, Karkhanis AN. KOR Control over Addiction Processing: An Exploration of the Mesolimbic Dopamine Pathway. Handb Exp Pharmacol 2022; 271:351-377. [PMID: 33301050 PMCID: PMC8192597 DOI: 10.1007/164_2020_421] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Drug addiction is a complex, persistent, and chronically relapsing neurological disorder exacerbated by acute and chronic stress. It is well known that the dynorphin/kappa opioid receptor (KOR) system regulates stress perception and responsivity, while the mesolimbic dopamine system plays a role in reward and reinforcement associated with alcohol and substance use disorders. Interestingly, the dopamine and dynorphin/KOR systems are highly integrated in mesolimbic areas, with KOR activation leading to inhibition of dopamine release, further altering the perception of reinforcing and aversive stimuli. Chronic or repeated exposure to stress or drugs potentiates KOR function ultimately contributing to a hypodopaminergic state. This hypodopaminergic state is one of the hallmarks of hyperkatifeia, defined as the hypersensitivity to emotional distress that is exacerbated during drug withdrawal and abstinence. The relationship between stress and drug addiction is bidirectional; repeated/chronic stress promotes pro-addictive behaviors, and repeated cycles of drug exposure and withdrawal, across various drug classes, produces stress. Neuroadaptations driven by this bidirectional relationship ultimately influence the perception of the reinforcing value of rewarding stimuli. In this chapter, we address the involvement of the dopamine and dynorphin/KOR systems and their interactions in shaping reinforcement value processing after drug and stress exposure, as well as a combinatorial impact of both drugs and stress.
Collapse
Affiliation(s)
- Paige M Estave
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Mary B Spodnick
- Department of Psychology, Developmental Exposure Alcohol Research Center, Center for Developmental and Behavioral Neuroscience, Binghamton University - SUNY, Binghamton, NY, USA
| | - Anushree N Karkhanis
- Department of Psychology, Developmental Exposure Alcohol Research Center, Center for Developmental and Behavioral Neuroscience, Binghamton University - SUNY, Binghamton, NY, USA.
| |
Collapse
|
3
|
Mortimer N, Ganster T, O'Leary A, Popp S, Freudenberg F, Reif A, Soler Artigas M, Ribasés M, Ramos-Quiroga JA, Lesch KP, Rivero O. Dissociation of impulsivity and aggression in mice deficient for the ADHD risk gene Adgrl3: Evidence for dopamine transporter dysregulation. Neuropharmacology 2019; 156:107557. [PMID: 30849401 DOI: 10.1016/j.neuropharm.2019.02.039] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 02/26/2019] [Accepted: 02/28/2019] [Indexed: 01/05/2023]
Abstract
Adhesion G protein-coupled receptor L3 (ADGRL3, LPHN3) has putative roles in neuronal migration and synapse function. Various polymorphisms in ADGRL3 have been linked with an increased risk of attention deficit/hyperactivity disorder (ADHD). In this study, we examined the characteristics of Adgrl3-deficient mice in multiple behavioural domains related to ADHD: locomotive activity, impulsivity, gait, visuospatial and recognition memory, sociability, anxiety-like behaviour and aggression. Additionally, we investigated the effect of Adgrl3-depletion at the transcriptomic level by RNA-sequencing three ADHD-relevant brain regions: prefrontal cortex (PFC), hippocampus and striatum. Adgrl3-/- mice show increased locomotive activity across all tests and subtle gait abnormalities. These mice also show impairments across spatial memory and learning domains, alongside increased levels of impulsivity and sociability with decreased aggression. However, these alterations were absent in Adgrl3+/- mice. Across all brain regions tested, the numbers of genes found to exhibit differential expression was relatively small, indicating a specific pathway of action, rather than a broad neurobiological perturbation. Gene-set analysis of differential expression in the PFC detected a number of ADHD-relevant pathways including dopaminergic synapses as well as cocaine and amphetamine addiction. The Slc6a3 gene coding for the dopamine transporter was the most dysregulated gene in the PFC. Unexpectedly, several neurohormone/peptides which are typically only expressed in the hypothamalus were found to be dysregulated in the striatum. Our study further validates Adgrl3 constitutive knockout mice as an experimental model of ADHD while providing neuroanatomical targets for future studies involving ADGRL3 modified models. This article is part of the Special Issue entitled 'Current status of the neurobiology of aggression and impulsivity'.
Collapse
Affiliation(s)
- Niall Mortimer
- Division of Molecular Psychiatry, Center of Mental Health, University of Würzburg, Germany; Psychiatric Genetics Unit, Group of Psychiatry, Mental Health and Addiction, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain; Department of Psychiatry, Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | - Tatjana Ganster
- Division of Molecular Psychiatry, Center of Mental Health, University of Würzburg, Germany
| | - Aet O'Leary
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital Frankfurt, Frankfurt am Main, Germany; Department of Psychoneuropharmacology, Institute of Psychology, University of Tartu, Tartu, Estonia
| | - Sandy Popp
- Division of Molecular Psychiatry, Center of Mental Health, University of Würzburg, Germany
| | - Florian Freudenberg
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital Frankfurt, Frankfurt am Main, Germany
| | - Andreas Reif
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital Frankfurt, Frankfurt am Main, Germany
| | - María Soler Artigas
- Psychiatric Genetics Unit, Group of Psychiatry, Mental Health and Addiction, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain; Department of Psychiatry, Hospital Universitari Vall d'Hebron, Barcelona, Spain; Biomedical Network Research Centre on Mental Health (CIBERSAM), Instituto de Salud Carlos III, Barcelona, Spain
| | - Marta Ribasés
- Psychiatric Genetics Unit, Group of Psychiatry, Mental Health and Addiction, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain; Department of Psychiatry, Hospital Universitari Vall d'Hebron, Barcelona, Spain; Biomedical Network Research Centre on Mental Health (CIBERSAM), Instituto de Salud Carlos III, Barcelona, Spain
| | - Josep Antoni Ramos-Quiroga
- Psychiatric Genetics Unit, Group of Psychiatry, Mental Health and Addiction, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain; Department of Psychiatry, Hospital Universitari Vall d'Hebron, Barcelona, Spain; Biomedical Network Research Centre on Mental Health (CIBERSAM), Instituto de Salud Carlos III, Barcelona, Spain; Department of Psychiatry and Legal Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Klaus-Peter Lesch
- Division of Molecular Psychiatry, Center of Mental Health, University of Würzburg, Germany; Laboratory of Psychiatric Neurobiology, Institute of Molecular Medicine, I.M. Sechenov First Moscow State Medical University, Moscow, Russia; Department of Translational Neuroscience, School of Mental Health and Neuroscience, Maastricht University, Maastricht, the Netherlands
| | - Olga Rivero
- Division of Molecular Psychiatry, Center of Mental Health, University of Würzburg, Germany.
| |
Collapse
|
4
|
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative disorder that compromises multiple neurochemical substrates including dopamine, norepinephrine, serotonin, acetylcholine, and glutamate systems. Loss of these transmitter systems initiates a cascade of neurological deficits beginning with motor function and ending with dementia. Current therapies primarily address the motor symptoms of the disease via dopamine replacement therapy. Exogenous dopamine replacement brings about additional challenges since after years of treatment it almost invariably gives rise to dyskinesia as a side effect. Therefore there is a clear unmet clinical need for improved PD therapeutics. Opioid receptors and their respective peptides are expressed throughout the basal ganglia and cortex where monoaminergic denervation strongly contributes to PD pathology. Delta opioid receptors are of particular interest because of their dense localization in basal ganglia and because activating this system is known to enhance locomotor activity under a variety of conditions. This chapter will outline much of the work that has demonstrated the effectiveness of delta opioid receptor activation in models of PD and its neuroprotective properties. It also discusses some of the challenges that must be addressed before moving delta opioid receptor agonists into a clinical setting.
Collapse
Affiliation(s)
- Omar S Mabrouk
- Department of Chemistry, University of Michigan, 930 North University, Ann Arbor, MI, 48109, USA.
- Department of Pharmacology, University of Michigan, 930 North University, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
5
|
Escobar AP, González MP, Meza RC, Noches V, Henny P, Gysling K, España RA, Fuentealba JA, Andrés ME. Mechanisms of Kappa Opioid Receptor Potentiation of Dopamine D2 Receptor Function in Quinpirole-Induced Locomotor Sensitization in Rats. Int J Neuropsychopharmacol 2017; 20:660-669. [PMID: 28531297 PMCID: PMC5569963 DOI: 10.1093/ijnp/pyx042] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Revised: 05/15/2017] [Accepted: 05/19/2017] [Indexed: 12/11/2022] Open
Abstract
Background Increased locomotor activity in response to the same stimulus is an index of behavioral sensitization observed in preclinical models of drug addiction and compulsive behaviors. Repeated administration of quinpirole, a D2/D3 dopamine agonist, induces locomotor sensitization. This effect is potentiated and accelerated by co-administration of U69593, a kappa opioid receptor agonist. The mechanism underlying kappa opioid receptor potentiation of quinpirole-induced locomotor sensitization remains to be elucidated. Methods Immunofluorescence anatomical studies were undertaken in mice brain slices and rat presynaptic synaptosomes to reveal kappa opioid receptor and D2R pre- and postsynaptic colocalization in the nucleus accumbens. Tonic and phasic dopamine release in the nucleus accumbens of rats repeatedly treated with U69593 and quinpirole was assessed by microdialysis and fast scan cyclic voltammetry. Results Anatomical data show that kappa opioid receptor and D2R colocalize postsynaptically in medium spiny neurons of the nucleus accumbens and the highest presynaptic colocalization occurs on the same dopamine terminals. Significantly reduced dopamine levels were observed in quinpirole, and U69593-quinpirole treated rats, explaining sensitization of D2R. Presynaptic inhibition induced by kappa opioid receptor and D2R of electrically evoked dopamine release was faster in U69593-quinpirole compared with quinpirole-repeatedly treated rats. Conclusions Pre- and postsynaptic colocalization of kappa opioid receptor and D2R supports a role for kappa opioid receptor potentiating both the D2R inhibitory autoreceptor function and the inhibitory action of D2R on efferent medium spiny neurons. Kappa opioid receptor co-activation accelerates D2R sensitization by contributing to decrease dopamine release in the nucleus accumbens.
Collapse
Affiliation(s)
- Angélica P Escobar
- Department of Cellular and Molecular Biology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile (Dr Escobar, Ms González, and Drs Noches, Gysling, and Andrés); Laboratory of Neuroanatomy, Department of Anatomy and Interdisciplinary Center of Neuroscience, NeuroUC, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile (Mr Meza and Dr Henny); Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, Pennsylvania (Dr España); Department of Pharmacy, Faculty of Chemistry, Pontificia Universidad Católica de Chile, Santiago, Chile (Dr Fuentealba)
| | - Marcela P González
- Department of Cellular and Molecular Biology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile (Dr Escobar, Ms González, and Drs Noches, Gysling, and Andrés); Laboratory of Neuroanatomy, Department of Anatomy and Interdisciplinary Center of Neuroscience, NeuroUC, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile (Mr Meza and Dr Henny); Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, Pennsylvania (Dr España); Department of Pharmacy, Faculty of Chemistry, Pontificia Universidad Católica de Chile, Santiago, Chile (Dr Fuentealba)
| | - Rodrigo C Meza
- Department of Cellular and Molecular Biology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile (Dr Escobar, Ms González, and Drs Noches, Gysling, and Andrés); Laboratory of Neuroanatomy, Department of Anatomy and Interdisciplinary Center of Neuroscience, NeuroUC, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile (Mr Meza and Dr Henny); Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, Pennsylvania (Dr España); Department of Pharmacy, Faculty of Chemistry, Pontificia Universidad Católica de Chile, Santiago, Chile (Dr Fuentealba)
| | - Verónica Noches
- Department of Cellular and Molecular Biology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile (Dr Escobar, Ms González, and Drs Noches, Gysling, and Andrés); Laboratory of Neuroanatomy, Department of Anatomy and Interdisciplinary Center of Neuroscience, NeuroUC, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile (Mr Meza and Dr Henny); Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, Pennsylvania (Dr España); Department of Pharmacy, Faculty of Chemistry, Pontificia Universidad Católica de Chile, Santiago, Chile (Dr Fuentealba)
| | - Pablo Henny
- Department of Cellular and Molecular Biology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile (Dr Escobar, Ms González, and Drs Noches, Gysling, and Andrés); Laboratory of Neuroanatomy, Department of Anatomy and Interdisciplinary Center of Neuroscience, NeuroUC, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile (Mr Meza and Dr Henny); Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, Pennsylvania (Dr España); Department of Pharmacy, Faculty of Chemistry, Pontificia Universidad Católica de Chile, Santiago, Chile (Dr Fuentealba)
| | - Katia Gysling
- Department of Cellular and Molecular Biology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile (Dr Escobar, Ms González, and Drs Noches, Gysling, and Andrés); Laboratory of Neuroanatomy, Department of Anatomy and Interdisciplinary Center of Neuroscience, NeuroUC, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile (Mr Meza and Dr Henny); Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, Pennsylvania (Dr España); Department of Pharmacy, Faculty of Chemistry, Pontificia Universidad Católica de Chile, Santiago, Chile (Dr Fuentealba)
| | - Rodrigo A España
- Department of Cellular and Molecular Biology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile (Dr Escobar, Ms González, and Drs Noches, Gysling, and Andrés); Laboratory of Neuroanatomy, Department of Anatomy and Interdisciplinary Center of Neuroscience, NeuroUC, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile (Mr Meza and Dr Henny); Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, Pennsylvania (Dr España); Department of Pharmacy, Faculty of Chemistry, Pontificia Universidad Católica de Chile, Santiago, Chile (Dr Fuentealba)
| | - José A Fuentealba
- Department of Cellular and Molecular Biology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile (Dr Escobar, Ms González, and Drs Noches, Gysling, and Andrés); Laboratory of Neuroanatomy, Department of Anatomy and Interdisciplinary Center of Neuroscience, NeuroUC, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile (Mr Meza and Dr Henny); Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, Pennsylvania (Dr España); Department of Pharmacy, Faculty of Chemistry, Pontificia Universidad Católica de Chile, Santiago, Chile (Dr Fuentealba)
| | - María E Andrés
- Department of Cellular and Molecular Biology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile (Dr Escobar, Ms González, and Drs Noches, Gysling, and Andrés); Laboratory of Neuroanatomy, Department of Anatomy and Interdisciplinary Center of Neuroscience, NeuroUC, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile (Mr Meza and Dr Henny); Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, Pennsylvania (Dr España); Department of Pharmacy, Faculty of Chemistry, Pontificia Universidad Católica de Chile, Santiago, Chile (Dr Fuentealba)
| |
Collapse
|
6
|
Neuropeptide Y (NPY) as a therapeutic target for neurodegenerative diseases. Neurobiol Dis 2016; 95:210-24. [PMID: 27461050 DOI: 10.1016/j.nbd.2016.07.022] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 06/29/2016] [Accepted: 07/20/2016] [Indexed: 12/16/2022] Open
Abstract
Neuropeptide Y (NPY) and NPY receptors are widely expressed in the mammalian central nervous system. Studies in both humans and rodent models revealed that brain NPY levels are altered in some neurodegenerative disorders, such as Alzheimer's disease, Parkinson's disease, Huntington's disease and Machado-Joseph disease. In this review, we will focus on the roles of NPY in the pathological mechanisms of these disorders, highlighting NPY as a neuroprotective agent, as a neural stem cell proliferative agent, as an agent that increases trophic support, as a stimulator of autophagy and as an inhibitor of excitotoxicity and neuroinflammation. Moreover, the effect of NPY in some clinical manifestations commonly observed in Alzheimer's disease, Parkinson's disease, Huntington's disease and Machado-Joseph disease, such as depressive symptoms and body weight loss, are also discussed. In conclusion, this review highlights NPY system as a potential therapeutic target in neurodegenerative diseases.
Collapse
|
7
|
Resendez SL, Keyes PC, Day JJ, Hambro C, Austin CJ, Maina FK, Eidson LN, Porter-Stransky KA, Nevárez N, McLean JW, Kuhnmuench MA, Murphy AZ, Mathews TA, Aragona BJ. Dopamine and opioid systems interact within the nucleus accumbens to maintain monogamous pair bonds. eLife 2016; 5:e15325. [PMID: 27371827 PMCID: PMC4972541 DOI: 10.7554/elife.15325] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 07/01/2016] [Indexed: 01/23/2023] Open
Abstract
Prairie vole breeder pairs form monogamous pair bonds, which are maintained through the expression of selective aggression toward novel conspecifics. Here, we utilize behavioral and anatomical techniques to extend the current understanding of neural mechanisms that mediate pair bond maintenance. For both sexes, we show that pair bonding up-regulates mRNA expression for genes encoding D1-like dopamine (DA) receptors and dynorphin as well as enhances stimulated DA release within the nucleus accumbens (NAc). We next show that D1-like receptor regulation of selective aggression is mediated through downstream activation of kappa-opioid receptors (KORs) and that activation of these receptors mediates social avoidance. Finally, we also identified sex-specific alterations in KOR binding density within the NAc shell of paired males and demonstrate that this alteration contributes to the neuroprotective effect of pair bonding against drug reward. Together, these findings suggest motivational and valence processing systems interact to mediate the maintenance of social bonds.
Collapse
Affiliation(s)
- Shanna L Resendez
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, United States
- University of North Carolina, Chapel Hill, United States
| | - Piper C Keyes
- Department of Psychology, University of Michigan-Ann Arbor, Ann Arbor, United States
| | - Jeremy J Day
- Department of Neurobiology, University of Alabama at Birmingham, Birmangham, United States
| | - Caely Hambro
- Department of Psychology, University of Michigan-Ann Arbor, Ann Arbor, United States
| | - Curtis J Austin
- Department of Psychology, University of Michigan-Ann Arbor, Ann Arbor, United States
| | - Francis K Maina
- Department of Chemistry, Wayne State University, Detroit, United States
| | - Lori N Eidson
- Neuroscience Institute, Georgia State University, Atlanta, United States
| | - Kirsten A Porter-Stransky
- Department of Psychology, University of Michigan-Ann Arbor, Ann Arbor, United States
- Department of Human Genetics, Emory University, Atlanta, United States
| | - Natalie Nevárez
- Department of Psychology, University of Michigan-Ann Arbor, Ann Arbor, United States
| | - J William McLean
- Department of Neurobiology, University of Alabama at Birmingham, Birmangham, United States
| | - Morgan A Kuhnmuench
- Department of Psychology, University of Michigan-Ann Arbor, Ann Arbor, United States
| | - Anne Z Murphy
- Neuroscience Institute, Georgia State University, Atlanta, United States
| | - Tiffany A Mathews
- Department of Chemistry, Wayne State University, Detroit, United States
| | - Brandon J Aragona
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, United States
- Department of Psychology, University of Michigan-Ann Arbor, Ann Arbor, United States
| |
Collapse
|
8
|
Enkephalin and dynorphin neuropeptides are differently correlated with locomotor hypersensitivity and levodopa-induced dyskinesia in parkinsonian rats. Exp Neurol 2016; 280:80-8. [DOI: 10.1016/j.expneurol.2016.03.024] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 02/29/2016] [Accepted: 03/23/2016] [Indexed: 12/11/2022]
|
9
|
Saha S, Kumar S, Singh U, Singh O, Singru PS. Interaction between dopamine and neuropeptide Y in the telencephalon of the Indian major carp, Cirrhinus cirrhosus. Gen Comp Endocrinol 2015; 220:78-87. [PMID: 24967949 DOI: 10.1016/j.ygcen.2014.06.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Revised: 06/06/2014] [Accepted: 06/14/2014] [Indexed: 12/28/2022]
Abstract
In teleosts, while neuropeptide Y (NPY) has emerged as one of the potent regulators of GnRH-LH axis, entopeduncular nucleus (EN) in the ventral telencephalon serves as major site for NPY synthesis/storage. Neurons of the EN innervate preoptic area and pituitary, respond to gonadal steroids, undergo reproduction phase-related changes, and are believed to convey sex steroid-borne information to GnRH neurons. In spite of the importance of EN, the neural circuitry associated with the nucleus has not been defined. Aim of the present study is to examine the possibility of the dopaminergic regulation of EN. NPY-immunoreactive cells and fibers were extensively distributed in the forebrain and pituitary of Cirrhinus cirrhosus. NPY immunoreactivity was observed in the olfactory receptor neurons, ganglion cells of terminal nerve, and in neurons of area ventralis telencephali/pars lateralis, EN, nucleus preopticus periventricularis (NPP), and nucleus lateralis tuberis. NPY-fibers were observed in the dorsal telencephalon, tuberal area and pituitary. While the area ventralis telencephali/pars intermedialis (Vi) located just above the EN contained a distinct population of tyrosine hydroxylase neurons, their axons seem to innervate NPY neurons in EN. Superfused brain slices containing EN were treated with DA D1- and D2-like receptor agonists. NPY-immunoreactivity in the EN showed significant increase (P<0.001) following DA D1-like receptor agonist, SKF-38393 treatment, but DA D2-like receptor agonist, quinpirole was ineffective. DA may regulate NPY neurons in EN via D1-like receptors. DA-NPY interaction in the EN might be important in the central regulation of reproduction in teleosts.
Collapse
Affiliation(s)
- Soham Saha
- School of Biological Sciences, National Institute of Science Education and Research (NISER), Institute of Physics Campus, Sachivalaya Marg, Bhubaneswar 751005, Odisha, India
| | - Santosh Kumar
- School of Biological Sciences, National Institute of Science Education and Research (NISER), Institute of Physics Campus, Sachivalaya Marg, Bhubaneswar 751005, Odisha, India
| | - Uday Singh
- School of Biological Sciences, National Institute of Science Education and Research (NISER), Institute of Physics Campus, Sachivalaya Marg, Bhubaneswar 751005, Odisha, India
| | - Omprakash Singh
- School of Biological Sciences, National Institute of Science Education and Research (NISER), Institute of Physics Campus, Sachivalaya Marg, Bhubaneswar 751005, Odisha, India
| | - Praful S Singru
- School of Biological Sciences, National Institute of Science Education and Research (NISER), Institute of Physics Campus, Sachivalaya Marg, Bhubaneswar 751005, Odisha, India.
| |
Collapse
|
10
|
Ruegsegger GN, Toedebusch RG, Will MJ, Booth FW. Mu opioid receptor modulation in the nucleus accumbens lowers voluntary wheel running in rats bred for high running motivation. Neuropharmacology 2015; 97:171-81. [PMID: 26044640 DOI: 10.1016/j.neuropharm.2015.05.022] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Revised: 04/24/2015] [Accepted: 05/19/2015] [Indexed: 01/03/2023]
Abstract
The exact role of opioid receptor signaling in mediating voluntary wheel running is unclear. To provide additional understanding, female rats selectively bred for motivation of low (LVR) versus high voluntary running (HVR) behaviors were used. Aims of this study were 1) to identify intrinsic differences in nucleus accumbens (NAc) mRNA expression of opioid-related transcripts and 2) to determine if nightly wheel running is differently influenced by bilateral NAc injections of either the mu-opioid receptor agonist D-Ala2, NMe-Phe4, Glyo5-enkephalin (DAMGO) (0.25, 2.5 μg/side), or its antagonist, naltrexone (5, 10, 20 μg/side). In Experiment 1, intrinsic expression of Oprm1 and Pdyn mRNAs were higher in HVR compared to LVR. Thus, the data imply that line differences in opioidergic mRNA in the NAc could partially contribute to differences in wheel running behavior. In Experiment 2, a significant decrease in running distance was present in HVR rats treated with 2.5 μg DAMGO, or with 10 μg and 20 μg naltrexone between hours 0-1 of the dark cycle. Neither DAMGO nor naltrexone had a significant effect on running distance in LVR rats. Taken together, the data suggest that the high nightly voluntary running distance expressed by HVR rats is mediated by increased endogenous mu-opioid receptor signaling in the NAc, that is disturbed by either agonism or antagonism. In summary, our findings on NAc opioidergic mRNA expression and mu-opioid receptor modulations suggest HVR rats, compared to LVR rats, express higher running levels mediated by an increase in motivation driven, in part, by elevated NAc opioidergic signaling.
Collapse
Affiliation(s)
- Gregory N Ruegsegger
- Department of Biomedical Sciences, University of Missouri, Columbia, MO, United States.
| | - Ryan G Toedebusch
- Department of Biomedical Sciences, University of Missouri, Columbia, MO, United States
| | - Matthew J Will
- Department of Psychological Sciences, University of Missouri, Columbia, MO, United States; Christopher Bond Life Sciences Center, University of Missouri, Columbia MO, United States
| | - Frank W Booth
- Department of Biomedical Sciences, University of Missouri, Columbia, MO, United States; Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO, United States; Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, MO, United States; Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, United States
| |
Collapse
|
11
|
Ferraro L, O'Connor WT, Beggiato S, Tomasini MC, Fuxe K, Tanganelli S, Antonelli T. Striatal NTS1 , dopamine D2 and NMDA receptor regulation of pallidal GABA and glutamate release--a dual-probe microdialysis study in the intranigral 6-hydroxydopamine unilaterally lesioned rat. Eur J Neurosci 2011; 35:207-20. [PMID: 22211865 DOI: 10.1111/j.1460-9568.2011.07949.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The current microdialysis study elucidates a functional interaction between the striatal neurotensin NTS(1) receptor and the striatal dopamine D(2) and N-methyl-d-aspartic acid (NMDA) receptors in the regulation of striatopallidal gamma-aminobutyric acid (GABA) and glutamate levels after an ipsilateral intranigral 6-hydroxydopamine-induced lesion of the ascending dopamine pathways to the striatum. Lateral globus pallidus GABA levels were higher in the lesioned group while no change was observed in striatal GABA and glutamate levels. The 6-hydroxydopamine-induced lesion did not alter the ability of intrastriatal NT (10 nm) to counteract the decrease in pallidal GABA and glutamate levels induced by the dopamine D(2) -like receptor agonist quinpirole (10 μm). A more pronounced increase in the intrastriatal NMDA- (10 μm) induced increase in pallidal GABA levels was observed in the lesioned group while it attenuated the increase in striatal glutamate levels and amplified the increase in pallidal glutamate levels compared with that observed in the controls. NT enhanced the NMDA-induced increase in pallidal GABA and glutamate and striatal glutamate levels; these effects were counteracted by the NTS(1) antagonist SR48692 (100 nm) in both groups. These findings demonstrate an inhibitory striatal dopamine D(2) and an excitatory striatal NMDA receptor regulation of striatopallidal GABA transmission in both groups. These actions are modulated by NT via antagonistic NTS(1) /D(2) and facilitatory NTS(1) /NMDA receptor-receptor interactions, leading to enhanced glutamate drive of the striatopallidal GABA neurons associated with motor inhibition, effects which all are counteracted by SR48692. Thus, NTS(1) antagonists in combination with conventional treatments may provide a novel therapeutic strategy in Parkinson's disease.
Collapse
Affiliation(s)
- Luca Ferraro
- Department of Clinical and Experimental Medicine, Pharmacology Section and LTTA Centre, University of Ferrara, Via Fossato di Mortara 17-19, 44100 Ferrara, Italy.
| | | | | | | | | | | | | |
Collapse
|
12
|
Barroso-Chinea P, Bezard E. Basal Ganglia circuits underlying the pathophysiology of levodopa-induced dyskinesia. Front Neuroanat 2010; 4. [PMID: 20890450 PMCID: PMC2947938 DOI: 10.3389/fnana.2010.00131] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2010] [Accepted: 08/24/2010] [Indexed: 11/13/2022] Open
Abstract
Involuntary movements or dyskinesia, represent a debilitating complication of levodopa therapy for Parkinson's disease. Dyskinesia is, ultimately, experienced by the vast majority of the patients. Despite the importance of this problem, little was known about the cause of dyskinesia, a situation that has dramatically evolved in the last few years with a focus upon the molecular and signaling changes induced by chronic levodopa treatment. Departing from this, we here review the progress made in functional anatomy and neuroimaging that have had a tremendous impact on our understanding of the anatomo-functional organization of the basal ganglia in Parkinsonism and dyskinetic states, notably the demonstration that dyskinesia are linked to a pathological processing of limbic and cognitive information.
Collapse
Affiliation(s)
- Pedro Barroso-Chinea
- Centre National de la Recherche Scientifique UMR 5227, Bordeaux Institute of Neuroscience, Université Victor-Segalen Bordeaux 2 Bordeaux, France
| | | |
Collapse
|
13
|
Pani AK. Influence of intrastriatal infusion of dynorphin fragments on overflow of acetylcholine and dopamine in the rat brain. Int J Neurosci 2010; 119:1362-83. [PMID: 19922362 DOI: 10.1080/00207450902955770] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Dynorphin (DYN) fragments are the members of the endogenous opioid system and postulated ligands for the opioid receptors. Infusion of DYN(1-17) fragment into the rat dorsal striatum caused a significant increase in acetylcholine and decrease in dopamine overflow. Contrary to this, infusions of DYN(2-17) fragment into the rat dorsal striatum caused a significant increase in dopamine and decrease in acetylcholine overflow. Intrastriatal infusions of different doses of the acetylcholinesterase blocker, neostigmine, augmented acetylcholine and inhibited dopamine overflow in a dose-dependent manner. The opposing responses of the DYN fragments suggest that the N-terminal residue plays a key role in presynaptic neuromodulation.
Collapse
Affiliation(s)
- Amar K Pani
- Department of Pharmacology and Neuroscience, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, Texas, USA.
| |
Collapse
|
14
|
van Albada SJ, Robinson PA. Mean-field modeling of the basal ganglia-thalamocortical system. I Firing rates in healthy and parkinsonian states. J Theor Biol 2008; 257:642-63. [PMID: 19168074 DOI: 10.1016/j.jtbi.2008.12.018] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2008] [Revised: 12/08/2008] [Accepted: 12/08/2008] [Indexed: 01/02/2023]
Abstract
Parkinsonism leads to various electrophysiological changes in the basal ganglia-thalamocortical system (BGTCS), often including elevated discharge rates of the subthalamic nucleus (STN) and the output nuclei, and reduced activity of the globus pallidus external (GPe) segment. These rate changes have been explained qualitatively in terms of the direct/indirect pathway model, involving projections of distinct striatal populations to the output nuclei and GPe. Although these populations partly overlap, evidence suggests dopamine depletion differentially affects cortico-striato-pallidal connection strengths to the two pallidal segments. Dopamine loss may also decrease the striatal signal-to-noise ratio, reducing both corticostriatal coupling and striatal firing thresholds. Additionally, nigrostriatal degeneration may cause secondary changes including weakened lateral inhibition in the GPe, and mesocortical dopamine loss may decrease intracortical excitation and especially inhibition. Here a mean-field model of the BGTCS is presented with structure and parameter estimates closely based on physiology and anatomy. Changes in model rates due to the possible effects of dopamine loss listed above are compared with experiment. Our results suggest that a stronger indirect pathway, possibly combined with a weakened direct pathway, is compatible with empirical evidence. However, altered corticostriatal connection strengths are probably not solely responsible for substantially increased STN activity often found. A lower STN firing threshold, weaker intracortical inhibition, and stronger striato-GPe inhibition help explain the relatively large increase in STN rate. Reduced GPe-GPe inhibition and a lower GPe firing threshold can account for the comparatively small decrease in GPe rate frequently observed. Changes in cortex, GPe, and STN help normalize the cortical rate, also in accord with experiments. The model integrates the basal ganglia into a unified framework along with an existing thalamocortical model that already accounts for a wide range of electrophysiological phenomena. A companion paper discusses the dynamics and oscillations of this combined system.
Collapse
Affiliation(s)
- S J van Albada
- School of Physics, The University of Sydney, New South Wales 2006, Australia.
| | | |
Collapse
|
15
|
Lee WY, Yoon WT, Shin HY, Jeon SH, Rhee PL. Helicobacter pyloriinfection and motor fluctuations in patients with Parkinson's disease. Mov Disord 2008; 23:1696-700. [DOI: 10.1002/mds.22190] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|
16
|
Perreault ML, Graham D, Scattolon S, Wang Y, Szechtman H, Foster JA. Cotreatment with the kappa opioid agonist U69593 enhances locomotor sensitization to the D2/D3 dopamine agonist quinpirole and alters dopamine D2 receptor and prodynorphin mRNA expression in rats. Psychopharmacology (Berl) 2007; 194:485-96. [PMID: 17619861 DOI: 10.1007/s00213-007-0855-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2007] [Accepted: 06/08/2007] [Indexed: 11/30/2022]
Abstract
RATIONALE The repeated coadministration of the kappa opioid receptor agonist U69593 with the D2/D3 dopamine (DA) agonist quinpirole (QNP) potentiates locomotor sensitization induced by QNP. Behavioral evidence has implicated both pre- and postsynaptic changes as being involved in this augmentation. OBJECTIVES The objectives of this study were to obtain supporting molecular evidence of pre- and/or postsynaptic alterations in the DA system with U69593/QNP cotreatment and to examine the relationship of such changes to locomotor sensitization. MATERIALS AND METHODS Gene expression of D1 and D2 receptors (D1R and D2R), the DA transporter, as well as the endogenous opioid prodynorphin (DYN), in the basal ganglia was examined by in situ hybridization in rats after one or ten drug injections. RESULTS After one injection, changes that were specific to U69593/QNP cotreatment were decreased D1R and D2R messenger RNA (mRNA) in the nucleus accumbens (Acb) shell and increased DYN mRNA in the dorsal striatum (STR). After ten injections, U69593/QNP-specific changes were decreased D2R mRNA in substantia nigra (SN) and increased DYN mRNA in STR and Acb core. Only in U69593/QNP rats was the sensitized locomotor performance on injection ten positively correlated with DYN mRNA levels in Acb and STR. CONCLUSIONS Distinct alterations of D2R and DYN mRNA levels in SN and Acb/STR, respectively, strengthen the evidence implicating pre- and postsynaptic changes in augmented locomotor sensitization to U69593/QNP cotreatment. It is suggested that repeated U69593/QNP cotreatment may augment locomotor sensitization to QNP by activating D1R-expressing DYN neurons and attenuating presynaptic D2R function.
Collapse
Affiliation(s)
- Melissa L Perreault
- Department of Psychiatry and Behavioural Neurosciences, Health Science Centre, Room 4N7, McMaster University, Hamilton, ON, Canada.
| | | | | | | | | | | |
Collapse
|
17
|
Jeon MY, Lee WY, Kang HY, Chung EJ. The effects of L-3,4-dihydroxyphenylalanine and dopamine agonists on dopamine neurons in the progressive hemiparkinsonian rat models. Neurol Res 2007; 29:289-95. [PMID: 17509229 DOI: 10.1179/174313206x153996] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
OBJECTIVES Dopamine replacement with the precursor L-3,4-dihydroxyphenylalanine (L-DOPA) and dopamine receptor agonists is the standard therapy for the symptomatic treatment of Parkinson's disease (PD). Whether L-DOPA and dopamine agonists may either accelerate or slow the degeneration of dopamine neurons is still controversial with conflicting data from both in vitro and in vivo experiments. We aimed to verify the influence of L-DOPA and receptor-selective dopamine agonists on dopamine neurons in the progressive hemiparkinsonian rat models. METHODS We administered different doses of L-DOPA, D1 selective agonist SKF38393, D2 selective agonist quinpirole and D2/D3 agonist pramipexole intraperitoneally for 9 weeks to the rats with progressive nigrostriatal lesions produced by injecting 6-hydroxydopamine (6-OHDA) into the striatum. After 3, 6 and 9 weeks of administration of dopaminergic agents, we performed the behavioral test using the forepaw adjusting step (FAS) test and anatomical analysis using tyrosine hydroxylase (TH) immunohistochemical staining and TH western blots. RESULTS Only in the high dose (100 mg/kg/d) L-DOPA treated rats, TH immunoreactive (TH-IR) cells were significantly decreased compared with other groups (p<0.01). We could not detect any influence of dopamine agonists on the behavior or the degeneration of dopaminergic neurons, regardless of their receptor selectivity. DISCUSSION In conclusion, we demonstrated the potential toxicity of high dose of L-DOPA, but did not observe any protective effect of dopamine agonists in the progressive hemiparkinsonian rat models.
Collapse
Affiliation(s)
- Mi Young Jeon
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | | | | | | |
Collapse
|
18
|
Aubert I, Guigoni C, Li Q, Dovero S, Bioulac BH, Gross CE, Crossman AR, Bloch B, Bezard E. Enhanced preproenkephalin-B-derived opioid transmission in striatum and subthalamic nucleus converges upon globus pallidus internalis in L-3,4-dihydroxyphenylalanine-induced dyskinesia. Biol Psychiatry 2007; 61:836-44. [PMID: 16950226 DOI: 10.1016/j.biopsych.2006.06.038] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2005] [Revised: 05/24/2006] [Accepted: 06/28/2006] [Indexed: 11/22/2022]
Abstract
BACKGROUND A role for enhanced opioid peptide transmission has been suggested in the genesis of levodopa-induced dyskinesia. However, basal ganglia nuclei other than the striatum have not been regarded as potential sources, and the opioid precursors have never been quantified simultaneously with the levels of opioid receptors at the peak of dyskinesia severity. METHODS The levels of messenger RNA (mRNA) encoding the opioid precursors preproenkephalin-A and preproenkephalin-B in the striatum and the subthalamic nucleus and the levels of mu, delta, and kappa opioid receptors were measured within the basal ganglia of four groups of nonhuman primates killed at the peak of effect: normal, parkinsonian, parkinsonian chronically-treated with levodopa without exhibiting dyskinesia, and parkinsonian chronically-treated with levodopa showing overt dyskinesia. RESULTS Dyskinesia are associated with reduction in opioid receptor binding and specifically of kappa and mu receptor binding in the globus pallidus internalis (GPi), the main output structure of the basal ganglia. This decrease was correlated with enhancement of the expression of preproenkephalin-B mRNA but not that of preproenkephalin-A in the striatum and the subthalamic nucleus. CONCLUSIONS Abnormal transmission of preproenkephalin-B-derived opioid coming from the striatum and the subthalamic nucleus converges upon GPi at the peak of dose to induce levodopa-induced dyskinesia.
Collapse
Affiliation(s)
- Incarnation Aubert
- Centre National de la Recherche Scientifique (CNRS) Unité Mixte de Recherche (UMR) 5541, Bordeaux Cedex, France
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Fragioudaki K, Kouvelas ED, Cristiani R, Giompres P, Bagnoli P, Mitsacos A. Expression of amino acid receptors and neural peptides in the weaver mouse brain. Brain Res 2007; 1140:132-52. [PMID: 16626633 DOI: 10.1016/j.brainres.2006.03.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2005] [Revised: 03/01/2006] [Accepted: 03/07/2006] [Indexed: 12/29/2022]
Abstract
In the present study, we conducted: (i) in situ hybridization in order to investigate the expression of kainate and GABA(A) receptor subunits and the pre-proenkephalin and prodynorphin peptides in the brain of weaver mouse (a genetic model of dopamine deficiency) and (ii) immunocytochemistry in order to study the somatostatin-positive cells in weaver striatum. Our results indicated: (i) increases in mRNA levels of KA2 and GluR6 kainate receptor subunits, of alpha(4) and beta(3) GABA(A) receptor subunits and of pre-proenkephalin and prodynorphin in 6-month-old weaver striatum; (ii) a decrease in alpha(1) and beta(2) GABA(A) subunit mRNAs in 6-month-old weaver globus pallidus; (iii) increases in KA2, alpha(4) and beta(3) and decreases in alpha(2) and beta(2) mRNAs in the 6-month-old weaver somatosensory cortex; and (iv) an increase in somatostatin-immunopositive cells in 3-month-old weaver striatum. We suggest that: (i) in striatum, the alterations are induced by the induction of the transcription factor DeltafosB (for GluR6, pre-proenkephalin and prodynorphin mRNAs) and the suppression of transcription factors like NGF-IB (nerve growth factor inducible B; for the KA2 mRNA), in response to dopamine depletion; (ii) in striatum and cortex, the alterations in the expression of the GABA(A) subunits indicate an increase of extrasynaptic versus a decrease of synaptic GABA(A) receptors; and (iii) in globus pallidus, the increased striatopallidal GABAergic transmission leads to a decrease in the number of GABA(A) receptors. Our results further clarify the regulatory role of dopamine in the expression of amino acid receptors and striatal neuropeptides.
Collapse
Affiliation(s)
- Kleopatra Fragioudaki
- Department of Physiology, Faculty of Medicine, University of Patras, 26504 Patras, Greece
| | | | | | | | | | | |
Collapse
|
20
|
Konieczny J, Wardas J, Kuter K, Pilc A, Ossowska K. The influence of group III metabotropic glutamate receptor stimulation by (1S,3R,4S)-1-aminocyclo-pentane-1,3,4-tricarboxylic acid on the parkinsonian-like akinesia and striatal proenkephalin and prodynorphin mRNA expression in rats. Neuroscience 2007; 145:611-20. [PMID: 17224239 DOI: 10.1016/j.neuroscience.2006.12.006] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2006] [Revised: 12/01/2006] [Accepted: 12/01/2006] [Indexed: 10/23/2022]
Abstract
Group III metabotropic glutamate receptors (mGluRs) are widely distributed in the basal ganglia, especially on the terminals of pathways which seem to be overactive in Parkinson's disease. The aim of the present study was to determine whether (1S,3R,4S)-1-aminocyclo-pentane-1,3,4-tricarboxylic acid (ACPT-1), an agonist of group III mGluRs, injected bilaterally into the globus pallidus (GP), striatum or substantia nigra pars reticulata (SNr), can attenuate the haloperidol-induced catalepsy in rats, and whether that effect was related to modulation of proenkephalin (PENK) or prodynorphin (PDYN) mRNA expression in the striatum. Administration of ACPT-1 (0.05-1.6 microg/0.5 microl/side) caused a dose-and-structure-dependent decrease in the haloperidol (0.5 mg/kg i.p. or 1.5 mg/kg s.c.)-induced catalepsy whose order was as follows: GP>striatum>SNr. ACPT-1, given alone to any of those structures, induced no catalepsy in rats. Haloperidol (3 x 1.5 mg/kg s.c.) significantly increased PENK mRNA expression in the striatum, while PDYN mRNA levels were not affected by that treatment. ACPT-1 (3 x 1.6 microg/0.5 microl/side) injected into the striatum significantly attenuated the haloperidol-increased PENK mRNA expression, whereas administration of that compound into the GP or SNr did not influence the haloperidol-increased striatal PENK mRNA levels. Our results demonstrate that stimulation of group III mGluRs in the striatum, GP or SNr exerts antiparkinsonian-like effects in rats. The anticataleptic effect of intrastriatally injected ACPT-1 seems to correlate with diminished striatal PENK mRNA expression. However, since the anticataleptic effect produced by intrapallidal and intranigral injection of ACPT-1 is not related to a simultaneous decrease in striatal PENK mRNA levels, it is likely that a decrease in enkephalin biosynthesis is not a necessary condition to obtain an antiparkinsonian effect.
Collapse
Affiliation(s)
- J Konieczny
- Department of Neuropsychopharmacology, Institute of Pharmacology, Polish Academy of Sciences, 12 Smetna Street, 31-343, Kraków, Poland.
| | | | | | | | | |
Collapse
|
21
|
Samadi P, Rouillard C, Bédard PJ, Di Paolo T. Functional neurochemistry of the basal ganglia. HANDBOOK OF CLINICAL NEUROLOGY 2007; 83:19-66. [DOI: 10.1016/s0072-9752(07)83002-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
22
|
Sivam SP, Cox J. Postnatal administration of D1 dopamine agonist reverses neonatal dopaminergic lesion-induced changes in striatal enkephalin and substance P systems. Brain Res 2006; 1073-1074:159-63. [PMID: 16455064 DOI: 10.1016/j.brainres.2005.12.076] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2005] [Revised: 12/11/2005] [Accepted: 12/15/2005] [Indexed: 10/25/2022]
Abstract
The present study examined the effects of postnatal dopamine (DA) receptor stimulation on enkephalin (Met5-enkephalin; ME) and tachykinin (substance P; SP) systems of basal ganglia of rats, lesioned as neonates with 6-hydroxydopamine (6-OHDA, intracisternally) on the third postnatal day. D1 agonist, SKF-38393 or D2 agonist, LY-171555 (also known as quinpirole) was administered s.c. twice daily for 14 days, beginning 24 h after 6-OHDA administration. The animals were sacrificed at 60 days of age, and the concentrations of striatal DA, SP, and ME were determined by HPLC or radioimmunoassay. As expected, 6-OHDA induced a severe loss of DA, an increase in ME, and a decrease in SP. SKF-38393, but not, quinpirole significantly reversed the lesion-induced changes in ME and SP levels. The results indicate an important role for D1 receptors in the postnatal development of ME and SP systems in the striatum. These studies are relevant to our further understanding of potential early interventions in the progression and expression of DA deficiency states such as Parkinsonism and Lesch-Nyhan disease.
Collapse
Affiliation(s)
- Subbiah P Sivam
- Department of Pharmacology and Toxicology, Indiana University School of Medicine-Northwest, 3400 Broadway, Gary, IN 46408, USA.
| | | |
Collapse
|
23
|
Lee WY, Lee EA, Jeon MY, Kang HY, Park YG. Vesicular monoamine transporter-2 and aromatic L-amino acid decarboxylase gene therapy prevents development of motor complications in parkinsonian rats after chronic intermittent L-3,4-dihydroxyphenylalanine administration. Exp Neurol 2005; 197:215-24. [PMID: 16269145 DOI: 10.1016/j.expneurol.2005.09.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2005] [Revised: 09/06/2005] [Accepted: 09/20/2005] [Indexed: 10/25/2022]
Abstract
Motor complications after chronic L-3,4-dihydroxyphenylalanine (L-DOPA) therapy occur partly because of the sensitization to dopaminergic agents resulting from pulsatile dopaminergic stimulation. The loss of presynaptic storage contributes to short duration of action by dopamine. Vesicular monoamine transporter-2 (VMAT-2) controls intraneuronal dopamine storage by packaging dopamine into synaptic vesicles, thereby allowing exocytotic release of dopamine. Using primary fibroblast doubly transduced with VMAT-2 and aromatic L-amino acid decarboxylase (AADC) genes, we previously demonstrated the beneficial effects of such double gene transduction in the production, storage, and gradual release of dopamine in vitro and in vivo. In this study, we further evaluate the effect of achieving sustained level of dopamine within the striata by VMAT-2 gene on behavioral response of parkinsonian rats after chronic intermittent L-DOPA administration. Primary fibroblast (PF) cells were genetically modified with AADC and VMAT-2 genes. We grafted primary fibroblast cells, PF with AADC (PFAADC), or doubly transduced PF with AADC and VMAT-2 (PFVMAA) (n = 6 for each group) into parkinsonian rat striata and administered L-DOPA (25 mg/kg/day) intermittently for 4 weeks. For behavioral study, we employed a model of akinesia using forepaw adjusting steps (FAS) that have been well characterized to reflect the effect of the lesion and the antiparkinsonian effect of dopaminergic drugs and transplants. The duration of FAS response to L-DOPA was sustained for a longer duration in rats grafted with PFVMAA cells than in those grafted with either control cells or cells with AADC alone. In PFVMAA-grafted animals, prolonged duration of FAS responses to L-DOPA was sustained even 6 weeks after discontinuation of 4-week intermittent L-DOPA treatment. These findings suggest that the restoration of dopamine storage capacity could enhance the efficacy of L-DOPA therapy and attenuate the motor fluctuations that result from chronic intermittent L-DOPA administration. The gene therapy expressing AADC and VMAT-2 along with systemic L-DOPA therapy could provide a novel treatment strategy to prevent motor fluctuations.
Collapse
Affiliation(s)
- Won Yong Lee
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, 50 Irwon-Dong, Gangnam-Ku, Seoul 135-710, South Korea.
| | | | | | | | | |
Collapse
|
24
|
Obuchowicz E, Krysiak R, Wieronska JM, Smialowska M, Herman ZS. Alterations in striatal neuropeptide Y system activity of rats with haloperidol-induced behavioral supersensitivity. Neuropeptides 2005; 39:515-23. [PMID: 16154634 DOI: 10.1016/j.npep.2005.04.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2004] [Revised: 03/31/2005] [Accepted: 04/12/2005] [Indexed: 10/25/2022]
Abstract
The study was conducted to determine whether the expression of behavioral supersensitivity induced by haloperidol (HAL) administered once daily (2 mg/kg i.p.) for 14 days is associated with the alterations in activity of neuropeptide Y (NPY) system in the striatum (caudate-putamen) and nucleus accumbens. Dopamine supersensitivity was tested by measurement of locomotor activity and stereotyped behavior after administration of the dopamine D2/D3 receptor agonist quinpirole (1 mg/kg i.p.) on day 1, 3 and 7 after HAL withdrawal. Neuropeptide Y-like immunoreactivity (NPY-LI) was determined in the striatum and nucleus accumbens isolated 6 h after quinpirole injection on day 1, 3 and 7 after the end of HAL treatment. NPY mRNA was quantified in these structures on day 7 after HAL withdrawal. HAL increased spontaneous locomotor activity and prevalence of rearing, grooming and head-down sniffing. At the same time, striatal NPY-LI increased progressively from the reduced level found on day 1 of haloperidol withdrawal. NPY mRNA remained unchanged. In saline-treated rats, quinpirole enhanced locomotion, rearing, and induced intense head-down sniffing and oral activity. These behavioral effects were accompanied by a decrease in striatal NPY-LI. NPY mRNA was slightly increased. HAL treatment altered response to quinpirole, namely it increased locomotion, intensified oral activity and reduced rearing and head-down sniffing. The second and the third quinpirole injection decreased NPY-LI levels. NPY mRNA was unchanged. In the nucleus accumbens, apart from a decrease in NPY-LI on day 1 after the last haloperidol dose, the level of NPY-LI and NPY mRNA in any experimental group did not differ from the control value. The presented results suggest that the alterations in the activity of the striatal but not nucleus accumbens NPY system contribute to adaptive changes induced by long-term haloperidol treatment and may be of significance to the motor hyperactivity induced by intermittent stimulation of postsynaptic dopamine D2 receptors.
Collapse
Affiliation(s)
- E Obuchowicz
- Department of Clinical Pharmacology, Silesian University School of Medicine, Medykow 18 Street, 40-752 Katowice, Poland.
| | | | | | | | | |
Collapse
|
25
|
Marin C, Bové J, Serrats J, Cortés R, Mengod G, Tolosa E. The kappa opioid agonist U50,488 potentiates 6-hydroxydopamine-induced neurotoxicity on dopaminergic neurons. Exp Neurol 2005; 191:41-52. [PMID: 15589511 DOI: 10.1016/j.expneurol.2004.08.033] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2003] [Revised: 08/16/2004] [Accepted: 08/19/2004] [Indexed: 11/26/2022]
Abstract
Several observations support the hypothesis that kappa opioid (kappa-opioid) receptor agonism may contribute to neurotoxicity, but other reports have suggested that certain kappa-agonists can attenuate neurological dysfunction. Degeneration of dopaminergic neurons in the substantia nigra is the pathological hallmark of Parkinson's disease. Therefore, it is of particular interest to study whether kappa-opioid receptor agonism has an influence on the progressive degeneration of dopaminergic neurons. We have investigated the effect exerted by the selective kappa-agonist U50,488 on the neurotoxicity induced by intrastriatal 6-hydroxydopamine (6-OHDA) administration on dopaminergic neurons. Male Sprague-Dawley rats received an acute (0.5 mg/kg) or subacute (0.5 mg/kg, twice at day, for 7 days) administration of U50,488, receiving the last dose 30 min before intrastriatal 6-OHDA administration. Acute or subacute U50,488 pretreatment potentiated the 6-OHDA-induced decrease in the number of nigral tyrosine hydroxylase immunoreactive neurons (P < 0.05). Acute U50,488 pretreated animals showed a tendency, although not statistically significant to increase striatal mRNA encoding for enkephalin (PPE mRNA). Subacute U50,488 significantly potentiated the increase in PPE mRNA induced by 6-OHDA (P < 0.05). The present results show a neurotoxic effect of the kappa agonist U50,488 on dopaminergic neurons in rats with a striatal lesion induced by 6-OHDA. This neurotoxic effect is associated to an increase in striatal PPE mRNA levels, suggesting that an increase in the indirect pathway activity and consequently an increase in the activity of the subthalamo-nigral pathway might be involved in this phenomenon.
Collapse
Affiliation(s)
- C Marin
- Laboratori de Neurologia Experimental, Area de Neurociències, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clínic, Barcelona, Spain.
| | | | | | | | | | | |
Collapse
|
26
|
Sancesario G, Giorgi M, D'Angelo V, Modica A, Martorana A, Morello M, Bengtson CP, Bernardi G. Down-regulation of nitrergic transmission in the rat striatum after chronic nigrostriatal deafferentation. Eur J Neurosci 2004; 20:989-1000. [PMID: 15305867 DOI: 10.1111/j.1460-9568.2004.03566.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Dopamine and NO are physiological stimulators of synthesis of cAMP and cGMP, respectively, and NO synthase-containing interneurons in the striatum are physiologically activated by dopamine-containing neurons in the substantia nigra. This study investigated whether lesioning dopamine neurons has multiple consequences in the striatum consistent with the reported sensitization of cAMP synthesis, including alteration of the NO-cGMP pathway and phosphodiesterase-dependent metabolism of cyclic nucleotides. The substantia nigra of adult Sprague-Dawley rats was unilaterally lesioned with 6-hydroxydopamine. Two months later, we determined expression of NO synthase and evaluated cGMP and cAMP levels of intact and deafferented striatum. Moreover, we evaluated cAMP- and cGMP-phosphodiesterase activities in basal conditions and after Ca2+-calmodulin stimulation and determined the expression of the phosphodiesterase-1B isoform and the levels of phosphodiesterase-1B mRNA. Using immunocytochemistry we characterized the distribution of NO synthase and phosphodiesterase-1B within striatal neurons. In the dopamine-deafferented striatum, NO synthase levels were decreased by 42% while NO synthase-immunopositive intrastriatal fibres but not NO synthase neuronal bodies were reduced in number. In the deafferented striatum basal cGMP levels were reduced, and cAMP levels were increased, but cGMP-phosphodiesterase and cAMP-phosphodiesterase activities were both increased in basal and Ca2+-calmodulin-stimulated conditions. Accordingly, phosphodiesterase-1B expression and phosphodiesterase-1B mRNA were upregulated while a large population of medium-sized striatal neurons showed increased phosphodiesterase-1B immunoreactivity. Dopamine deafferentation led to a complex down-regulation of the NO-cGMP pathway in the striatum and to an up-regulation of phosphodiesterase-1B-dependent cyclic nucleotide metabolism, showing new aspects of neuronal plasticity in experimental hemiparkinsonism.
Collapse
Affiliation(s)
- Giuseppe Sancesario
- Department of Neuroscience, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Nielsen KM, Soghomonian JJ. Dual effects of intermittent or continuous L-DOPA administration on gene expression in the globus pallidus and subthalamic nucleus of adult rats with a unilateral 6-OHDA lesion. Synapse 2003; 49:246-60. [PMID: 12827644 DOI: 10.1002/syn.10234] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Intermittent oral doses of levodopa (L-DOPA) are routinely used to treat Parkinson's disease, but with prolonged use can result in adverse motor complications, such as dyskinesia. Continuous administration of L-DOPA achieves therapeutic efficacy without producing this effect, yet the molecular mechanisms are unclear. This study examined, by in situ hybridization histochemistry, the effects of continuous or intermittent L-DOPA administration on gene expression in the globus pallidus and subthalamic nucleus of adult rats with a unilateral 6-hydroxydopamine (6-OHDA) lesion of the nigrostriatal pathway. Results were compared to 6-OHDA-treated rats receiving vehicle. Our results provide original evidence that continuous L-DOPA normalizes the 6-OHDA-lesion-induced increase in mRNA levels encoding for the 67 kDa isoform of glutamate decarboxylase in neurons of the globus pallidus and cytochrome oxidase subunit I mRNA levels in the subthalamic nucleus. The extent of normalization did not differ between the continuous and intermittent groups. In addition, intermittent L-DOPA induced an increase in the mRNA levels encoding for the 65 kDa isoform of glutamate decarboxylase in globus pallidus neurons ipsilateral to the lesion and a bilateral increase in c-fos mRNA expression in the subthalamic nucleus. These results suggest that continuous L-DOPA tends to normalize the 6-OHDA-lesion-induced alterations in cell signaling in the pallido-subthalamic loop. On the other hand, we propose that chronic intermittent L-DOPA exerts a dual effect by normalizing cell signaling in a subpopulation of neurons in the globus pallidus and subthalamic nucleus while inducing abnormal signaling in another subpopulation.
Collapse
Affiliation(s)
- Kirsten M Nielsen
- Department of Anatomy and Neurobiology, Boston University School of Medicine, 715 Albany Street, Boston, MA 02118, USA
| | | |
Collapse
|
28
|
Winkler C, Bentlage C, Cenci MA, Nikkhah G, Björklund A. Regulation of neuropeptide mRNA expression in the basal ganglia by intrastriatal and intranigral transplants in the rat Parkinson model. Neuroscience 2003; 118:1063-77. [PMID: 12732251 DOI: 10.1016/s0306-4522(03)00007-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Previous studies have shown that intrastriatal transplants of dopamine (DA)-rich fetal ventral mesencephalic (VM) tissue can correct denervation-induced changes in the cellular expression of neuropeptide and receptor mRNAs in the rat Parkinson model. However, with the standard transplantation approach normalization of all cellular parameters has not been obtained. This may be due either to the incomplete striatal reinnervation achieved by these transplants, or to the ectopic placement of the grafts. In the present study we have used a microtransplantation approach to obtain a more complete reinnervation of the denervated striatum (20 micrograft deposits spread over the entire structure). Neurons were also implanted directly into the substantia nigra. In rats with multiple intrastriatal VM transplants the lesion-induced upregulation of mRNAs encoding for preproenkephalin (PPE), the D(2)-type DA-receptor, and the GABA-synthesizing enzyme glutamic acid decarboxylase (GAD(67)) was normalized throughout the striatum, whereas the lesion-induced downregulation of preprotachykinin mRNA was unaffected. Intranigral grafts of either fetal DA-rich VM tissue or GABA-rich striatal tissue did not induce any changes in striatal neuropeptide and D(2)-receptor mRNA expression despite significant behavioral improvement. Comparison of the behavioral data with levels of neuropeptide expression showed that in rats with intrastriatal VM transplants a complete normalization of striatal PPE and GAD(67) mRNA expression did not translate into a complete recovery of spontaneous motor behaviors. The results show that extensive DA reinnervation of the host striatum by multiple VM microtransplants is insufficient to obtain full recovery of all lesion-induced changes at both the cellular and the behavioral level. A full reconstruction of the nigrostriatal pathway or, alternatively, modulation of basal ganglia function by grafting in non-striatal regions may be required to further improve the functional outcome in the DA-denervated brain.
Collapse
Affiliation(s)
- C Winkler
- Lund University, Wallenberg Neuroscience Center, Department of Physiological Sciences, BMC A11, S-22184. , Sweden
| | | | | | | | | |
Collapse
|
29
|
Chase TN, Bibbiani F, Oh JD. Striatal glutamatergic mechanisms and extrapyramidal movement disorders. Neurotox Res 2003; 5:139-46. [PMID: 12832228 DOI: 10.1007/bf03033378] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
The nonphysiologic stimulation of striatal dopaminergic receptors, as a result of disease- or drug-related denervation or intermittent excitation, triggers adaptive responses in the basal ganglia which contribute to the appearance of parkinsonian symptoms and later to the dyskinesias and other alterations in motor response associated with dopaminergic therapy. Current evidence suggests that these altered responses involve activation of signal transduction cascades in striatal medium spiny neurons linking dopaminergic to coexpressed ionotropic glutamatergic receptors of the N-methyl-D-aspartate (NMDA) and Alpha-amino-3-hydroxy-5-methyl-4-isoxazole proprionic acid (AMPA) classes. These intraneuronal signaling pathways appear capable of modifying the phosphorylation state of NMDA and AMPA receptor subunits; resultant sensitization enhances cortical glutamatergic input which in turn modifies striatal output in ways that compromise motor behavior. The regulation of these spiny neuron glutamate receptors can also be affected by the activation state of coexpressed nondopaminergic receptors as well as by changes associated with Huntington's disease. These observations lend new insight into molecular mechanisms contributing to the integration of synaptic inputs to spiny neurons. They also suggest novel approaches to the pharmacotherapy of extrapyramidal motor dysfunction.
Collapse
Affiliation(s)
- Thomas N Chase
- National Institutes of Health, Experimental Therapeutics Branch, NINDS, NIH, Building 10, Room 5C103, Bethesda, MD, USA.
| | | | | |
Collapse
|
30
|
Oh JD, Bibbiani F, Chase TN. Quetiapine attenuates levodopa-induced motor complications in rodent and primate parkinsonian models. Exp Neurol 2002; 177:557-64. [PMID: 12429201 DOI: 10.1006/exnr.2002.8009] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The contribution of serotoninergic mechanisms to motor dysfunction in Parkinson's disease (PD) has yet to be fully elucidated. Recent clinical observations increasingly suggest that drugs able to block serotonin 5HT2A/C receptors can benefit patients with certain extrapyramidal movement disorders. To further explore the roles of these and other neurotransmitter receptors in the pathogenesis of parkinsonian signs and levodopa-induced dyskinesias; we evaluated the effects of quetiapine, an atypical antipsychotic with 5HT2A/C and D2/3 antagonistic activity, on motor behavior in 6-hydroxydopamine-lesioned rats and MPTP-lesioned nonhuman primates. In hemiparkinsonian rats, quetiapine (5 mg/kg, po) reversed the shortened motor response to levodopa challenge produced by 3 weeks of twice-daily levodopa treatment (P < 0.01). Quetiapine (5 mg/kg po) also normalized the shortened response to the acute injection of either a dopamine D1 receptor agonist (SKF 38392) or a D2 agonist (quinpirole) in rats that had received chronic levodopa treatment. Quetiapine had no effect on parkinsonian dysfunction when given alone or with levodopa to parkinsonian rats and monkeys. Quetiapine (4 mg/kg, po) did, however, substantially reduce levodopa-induced dyskinesias when coadministered with levodopa (P < 0.05). These results suggest that quetiapine could confer therapeutic benefits to patients with levodopa-induced motor complications. Moreover, our findings may indicate that 5HT2A/C receptor-mediated mechanisms, alone or in combination with other mechanisms, contribute to the pathogenesis of the altered motor responses associated with the treatment of PD.
Collapse
MESH Headings
- 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine
- Animals
- Antipsychotic Agents/pharmacology
- Behavior, Animal/drug effects
- Dibenzothiazepines/pharmacology
- Disease Models, Animal
- Dopamine Agonists/pharmacology
- Dose-Response Relationship, Drug
- Drug Evaluation, Preclinical
- Drug Therapy, Combination
- Dyskinesia, Drug-Induced/prevention & control
- Female
- Levodopa/adverse effects
- Levodopa/therapeutic use
- Macaca fascicularis
- Male
- Motor Activity/drug effects
- Oxidopamine
- Parkinsonian Disorders/chemically induced
- Parkinsonian Disorders/drug therapy
- Parkinsonian Disorders/physiopathology
- Quetiapine Fumarate
- Rats
- Receptor, Serotonin, 5-HT2A
- Receptor, Serotonin, 5-HT2C
- Receptors, Dopamine D1/agonists
- Receptors, Dopamine D2/agonists
- Receptors, Serotonin/drug effects
- Serotonin Antagonists/pharmacology
Collapse
Affiliation(s)
- Justin D Oh
- Department of Psychology, Central Michigan University, Sloan 224, Mount Pleasant, Michigan 48859, USA
| | | | | |
Collapse
|
31
|
Steiner H, Kitai ST. Unilateral striatal dopamine depletion: time-dependent effects on cortical function and behavioural correlates. Eur J Neurosci 2001; 14:1390-404. [PMID: 11703467 DOI: 10.1046/j.0953-816x.2001.01756.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Previously, we showed that unilateral blockade of D1 dopamine receptors in the striatum inhibits immediate-early gene expression bilaterally throughout large parts of the cortex, including sensory-evoked expression in the barrel cortex. To further investigate this dopamine regulation of cortical function, we examined the effects of dopamine depletion on cortical gene regulation and behavioural correlates. Two days after unilateral infusion of 6-hydroxydopamine into the midbrain, rats displayed a (to some degree) bilateral reduction in cortical zif 268 expression that was more pronounced on the lesioned side. This decrease was found across motor, somatosensory, insular and piriform, but not cingulate, cortex, similar to the effects of blockade of striatal D1 receptors. Furthermore, whisker stimulation-evoked c-fos and zif 268 expression in the barrel cortex ipsilateral to the lesion was also attenuated by acute dopamine depletion. These cortical deficits were accompanied by a breakdown of spontaneous behaviours in an open-field test. In contrast, 21 days after dopamine depletion, both basal and sensory-evoked gene expression in the cortex were near-normal. This cortical recovery was paralleled by recovery in locomotion and in sensory-guided behaviour (scanning) related to the hemisphere contralateral to the lesion, but not in scanning by the dopamine-depleted hemisphere. Our results suggest that striatal dopamine exerts a widespread facilitatory influence on cortical function that is necessary, but not sufficient, for normal behaviour. Moreover, the mechanisms mediating this cortical facilitation appear to be subject to substantial neuroplasticity after dopamine perturbation.
Collapse
Affiliation(s)
- H Steiner
- Department of Anatomy and Neurobiology, College of Medicine, University of Tennessee, Memphis, TN 38163, USA.
| | | |
Collapse
|
32
|
Pirker W, Tedroff J, Pontén H, Gunne L, Andrén PE, Hurd YL. Coadministration of (-)-OSU6162 with l-DOPA normalizes preproenkephalin mRNA expression in the sensorimotor striatum of primates with unilateral 6-OHDA lesions. Exp Neurol 2001; 169:122-34. [PMID: 11312565 DOI: 10.1006/exnr.2001.7647] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The substituted phenylpiperidine (-)-OSU6162 is a novel modulator of the dopaminergic systems with low affinity for dopamine D(2) receptors and potent normalizing effects on l-DOPA-induced dyskinesias. We studied the effects of coadministration of (-)-OSU6162 with l-DOPA on the regulation of striatal preproenkephalin (PPE) and prodynorphin (PDyn) mRNA expression in the primate brain by in situ hybridization histochemistry. Common marmoset monkeys sustaining unilateral 6-hydroxydopamine lesions of the nigrostriatal pathway received l-DOPA/carbidopa, l-DOPA/carbidopa plus (-)-OSU6162, or vehicle over 14 days. In vehicle-treated animals, PPE mRNA levels were markedly increased in the sensorimotor territory of the lesioned striatum. By contrast, a rather uniform lesion-induced reduction of PDyn mRNA levels was found in the vehicle group. Subchronic l-DOPA treatment induced a further increase in PPE mRNA expression in a number of sensorimotor and associative subregions of the denervated striatum. Coadministration of (-)-OSU6162 with l-DOPA partially reversed the lesion- and l-DOPA-induced elevation of PPE expression and, by affecting PPE mRNA expression differentially on the intact and lesioned striatum, markedly reduced the side-to-side difference in PPE mRNA expression. The effects on PPE mRNA expression were apparent throughout the rostrocaudal extent of the putamen and the dorsal portions of the caudate nucleus. l-DOPA treatment resulted in an enhancement in PDyn mRNA expression in all functional compartments of the striatum. Coadministration of (-)-OSU6162 had no apparent influence on these l-DOPA-induced changes in PDyn mRNA expression. The present results suggest that (-)-OSU6162 acts primarily by modifying striatal output via the indirect pathway.
Collapse
Affiliation(s)
- W Pirker
- Department of Clinical Neuroscience, Karolinska Hospital, Stockholm, S-17176, Sweden
| | | | | | | | | | | |
Collapse
|
33
|
Izquierdo-Claros RM, del Boyano-Adánez M, Arilla-Ferreiro E. Activation of D1 and D2 dopamine receptors increases the activity of the somatostatin receptor-effector system in the rat frontoparietal cortex. J Neurosci Res 2000; 62:91-8. [PMID: 11002291 DOI: 10.1002/1097-4547(20001001)62:1<91::aid-jnr10>3.0.co;2-d] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The role of dopamine D1 and D2 receptor subtypes in the regulation, in vivo, of the somatostatin (SRIF) receptor-effector system in rat frontoparietal cortex was investigated. The D1-receptor agonist SKF 38393 (4 mg/kg) or the D2-receptor agonist bromocriptine (2 mg/kg), administered intraperitoneally to rats, increased the number of SRIF receptors without altering the affinity constant, an effect antagonized by both SCH 23390 (0.25 mg/kg) and raclopride (5 mg/kg), D1 and D2 receptor antagonists, respectively. These antagonists alone had no effect on [(125)I]Tyr(3) octreotide binding to its receptors. No change in binding was detected when the dopamine agonists were added in vitro. Basal adenylyl cyclase (AC) activity was increased by SKF 38393 treatment and decreased by bromocriptine. Octreotide (SMS 201-995)-mediated inhibition of basal and forskolin-stimulated AC was increased by SKF 38393 or bromocriptine treatment. In frontoparietal cortical slices, basal inositol-1,4, 5-triphosphate (IP(3)) levels were decreased by bromocriptine treatment but were unaffected by SKF 38393. SMS 201-995 increased the IP(3) accumulation in control, SKF 38393-, and bromocriptine-treated rats. Insofar as SRIF and dopamine appear to be involved in motor regulation and could well modulate somatosensory functions in frontal and parietal cortex, respectively, heterologous receptor regulation may have important repercussions regarding the control exerted by these neurotransmitters on frontal and parietal cortical function in the intact animal.
Collapse
MESH Headings
- 2,3,4,5-Tetrahydro-7,8-dihydroxy-1-phenyl-1H-3-benzazepine/pharmacology
- Animals
- Benzazepines/pharmacology
- Binding, Competitive/drug effects
- Bromocriptine/pharmacology
- Cell Membrane/chemistry
- Cell Membrane/metabolism
- Colforsin/pharmacology
- Dopamine Agonists/pharmacology
- Dopamine Antagonists/pharmacology
- Dopamine D2 Receptor Antagonists
- Frontal Lobe/chemistry
- Frontal Lobe/drug effects
- Frontal Lobe/metabolism
- Male
- Octreotide/pharmacology
- Parietal Lobe/chemistry
- Parietal Lobe/drug effects
- Parietal Lobe/metabolism
- Raclopride/pharmacology
- Rats
- Rats, Wistar
- Receptors, Dopamine D1/agonists
- Receptors, Dopamine D1/antagonists & inhibitors
- Receptors, Dopamine D1/metabolism
- Receptors, Dopamine D2/agonists
- Receptors, Dopamine D2/metabolism
- Receptors, Somatostatin/metabolism
Collapse
Affiliation(s)
- R M Izquierdo-Claros
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad de Alcalá, Alcalá de Henares, Madrid, Spain
| | | | | |
Collapse
|
34
|
Van Kampen JM, Stoessl AJ. Effects of oligonucleotide antisense to dopamine D(1A) receptor messenger RNA in a rodent model of levodopa-induced dyskinesia. Neuroscience 2000; 98:61-7. [PMID: 10858612 DOI: 10.1016/s0306-4522(00)00090-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Dyskinesias are abnormal involuntary movements which develop as a side-effect of long-term treatment with levodopa in patients with Parkinson's disease. The pathophysiology underlying these dyskinesias remains unclear, although, it has been suggested that heightened activity of dopamine D(1) receptor-bearing striatonigral neurons may play a key role. Chronic pulsatile levodopa administration to hemiparkinsonian rats results in sensitization of rotational responses to apomorphine. This sensitization is thought to be analogous to levodopa-induced dyskinesias in humans. In these studies, we further clarify the role of the dopamine D(1A) receptor in this rodent model of levodopa-induced dyskinesias using an in vivo oligonucleotide antisense approach. Hemiparkinsonian rats received twice daily injections of levodopa for three weeks followed by intrastriatal infusion of dopamine D(1A) receptor antisense (7nmol/day, three days), a scrambled missense control sequence, or saline. Those animals treated with antisense displayed significantly fewer apomorphine-induced rotations than saline- or missense-treated controls.By reducing dopamine D(1A) receptor expression, we were able to attenuate sensitization of the response to apomorphine resulting from chronic pulsatile levodopa treatment. Thus, the dopamine D(1A) receptor appears to play a significant role in levodopa-induced dyskinesias and warrants further examination. These findings may have important implications for the development of selective treatment strategies designed to alleviate parkinsonian symptoms, while minimizing motor complications.
Collapse
MESH Headings
- Animals
- Antiparkinson Agents/adverse effects
- Apomorphine/pharmacology
- Autoradiography
- Behavior, Animal/drug effects
- Behavior, Animal/physiology
- Cocaine/analogs & derivatives
- Cocaine/metabolism
- Cocaine/pharmacology
- Denervation
- Disease Models, Animal
- Dopamine Antagonists/metabolism
- Dopamine Antagonists/pharmacology
- Dopamine Uptake Inhibitors/metabolism
- Dopamine Uptake Inhibitors/pharmacology
- Dyskinesia, Drug-Induced/genetics
- Dyskinesia, Drug-Induced/physiopathology
- Gene Expression/physiology
- Levodopa/adverse effects
- Male
- Oligonucleotides, Antisense/pharmacology
- Oxidopamine
- Phenotype
- RNA, Messenger/metabolism
- Raclopride/metabolism
- Raclopride/pharmacology
- Rats
- Rats, Sprague-Dawley
- Receptors, Dopamine D1/analysis
- Receptors, Dopamine D1/genetics
- Receptors, Dopamine D1/metabolism
- Receptors, Dopamine D2/analysis
- Receptors, Dopamine D2/metabolism
- Rotation
- Substantia Nigra/chemistry
- Substantia Nigra/physiopathology
- Sympatholytics
- Tritium
Collapse
Affiliation(s)
- J M Van Kampen
- Neurodegenerative Disorders Centre, Faculty of Medicine, University of British Columbia, 2221 Wesbrook Mall, B.C., V6T 2B5, Vancouver, Canada
| | | |
Collapse
|
35
|
Bordet R, Ridray S, Schwartz JC, Sokoloff P. Involvement of the direct striatonigral pathway in levodopa-induced sensitization in 6-hydroxydopamine-lesioned rats. Eur J Neurosci 2000; 12:2117-23. [PMID: 10886351 DOI: 10.1046/j.1460-9568.2000.00089.x] [Citation(s) in RCA: 112] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Induction of dopamine D3 receptor gene expression in 6-hydroxydopamine-lesioned rats by repeated administration of levodopa had been suggested to be responsible for behavioural sensitization developing in these animals. Using double in situ hybridization techniques, we show that D3 receptor mRNA induction after repeated administration of levodopa took place mainly in dynorphin/substance P-expressing neurons of the direct striatonigral pathway. In agreement, induction of D3 receptor binding sites was evidenced, using 7-[3H]hydroxy-N,N-di-propyl-2-aminotetralin ([3H]7-OH-DPAT), in substantia nigra pars reticulata, the projection area of the direct nigrostriatonigral pathway. Changes in D3 receptor binding and behavioural sensitization during intermittent administration of levodopa paralleled changes in prodynorphin/preprotachykinin rather than preproenkephalin/prodynorphin and preproenkephalin/preprotachykinin mRNA ratios. Behavioural sensitization, induction of D3 receptor binding and changes in prodynorphin/preprotachykinin ratio were all prevented together when levodopa was continuously delivered or intermittently delivered in combination with R-(+)-7-chloro-8-hydroxy-3-methyl-1-phenyl-2,3,4, 5-tetrahydro-1H-3-benzazepine (SCH 23390), a selective D1 receptor antagonist. Our results indicate that functional changes of the direct striatal output pathway, possibly through an interaction between D1 and D3 receptors at the level of terminals in the substantia nigra pars reticulata, are important for the development of behavioural sensitization.
Collapse
Affiliation(s)
- R Bordet
- Unité de Neurobiologie et Pharmacologie Moléculaire (INSERM U 109), Centre Paul Broca, 2ter rue d'Alésia, 75014, Paris, France
| | | | | | | |
Collapse
|
36
|
Smiałowska M, Bajkowska M, Prezewłocka B, Maj M, Turchan J, Przewłocki R. Effect of 6-hydroxydopamine on neuropeptide Y and corticotropin-releasing factor expression in rat amygdala. Neuroscience 2000; 94:1125-32. [PMID: 10625052 DOI: 10.1016/s0306-4522(99)00393-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The influence of dopaminergic denervation on neuropeptide Y and corticotropin-releasing factor-containing neurons in the amygdala was investigated in rats by examining the effects of a selective, unilateral 6-hydroxydopamine lesion of mesencephalic dopaminergic neurons in both the substantia nigra and the ventral tegmental area on these peptides and their messenger RNA expression, observed eight to 10 days after the lesion. The studies were conducted by immunocytochemical and in situ hybridization methods. Neuropeptide Y or corticotropin-releasing factor-immunoreactive neurons were counted in sections of the amygdala under a microscope, and the messenger RNA expression was measured as optical density units in autoradiograms. A significant increase in both neuropeptide Y and corticotropin-releasing factor messenger RNA expression was found in the amygdala on the lesioned side in comparison with the contralateral one, as well as with the ipsilateral side of vehicle-injected controls. Immunohistochemical studies showed that the number of neuropeptide Y-immunoreactive neurons increased in the whole amygdala on the lesioned side. At the same time, the number of corticotropin-releasing factor-immunoreactive neurons grouped in the central amygdaloid nucleus declined, and so did the staining intensity. The obtained results indicate that dopaminergic denervation stimulates the synthesis of neuropeptide Y and corticotropin-releasing factor in rat amygdala, but the peptide levels are differently regulated, which points to a diverse release of these peptides.
Collapse
Affiliation(s)
- M Smiałowska
- Department of Neurobiology, Institute of Pharmacology, Polish Academy of Sciences, Kraków
| | | | | | | | | | | |
Collapse
|
37
|
Dumont Y, Jacques D, St-Pierre JA, Tong Y, Parker R, Herzog H, Quirion R. Chapter IX Neuropeptide Y, peptide YY and pancreatic polypeptide receptor proteins and mRNAs in mammalian brains. HANDBOOK OF CHEMICAL NEUROANATOMY 2000. [DOI: 10.1016/s0924-8196(00)80011-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
38
|
Pollack AE, Yates TM. Prior D1 dopamine receptor stimulation is required to prime D2-mediated striatal Fos expression in 6-hydroxydopamine-lesioned rats. Neuroscience 1999; 94:505-14. [PMID: 10579212 DOI: 10.1016/s0306-4522(99)00338-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Repeated dopamine agonist administration to rats with unilateral 6-hydroxydopamine lesions of the nigrostriatal pathway potentiates behavioral and neuronal activation in response to subsequent dopamine agonist treatment. This response sensitization has been termed "priming" or "reverse-tolerance". Our prior work has shown that three pretreatment injections of the mixed D1/D2 agonist apomorphine (0.5 mg/kg) into 6-hydroxydopamine-lesioned rats permits a previously inactive dose of the D2 agonist quinpirole (0.25 mg/kg) to induce robust contralateral rotation and striatal Fos expression in striatoentopeduncular "direct" pathway neurons. These striatal neurons typically express D1 but not D2 receptors. Because apomorphine acts as an agonist at both D1 and D2 receptors, the present study sought to determine whether D1, D2, or concomitant D1/D2 receptor stimulation was required to prime D2-mediated contralateral rotation and striatal Fos expression. Twenty-one days following unilateral stereotaxic injection of 6-hydroxydopamine into the medial forebrain bundle, rats received three pretreatment injections, at three- to six-day intervals, with either: the mixed D1/D2 agonist apomorphine, the D1 agonist SKF38393, the D2 agonist quinpirole, or a combination of SKF38393 + quinpirole. Ten days following the third pretreatment injection, 6-hydroxydopamine-lesioned rats were challenged with the D2 agonist quinpirole (0.25 mg/kg). Pretreatment with SKF38393 (10 mg/kg), quinpirole (1 mg/kg) or SKF38393 (1 mg/kg) + quinpirole (0.25 mg/kg) permitted an otherwise inactive dose of quinpirole (0.25 mg/kg) to induce robust contralateral rotation which was similar in magnitude to that observed following apomorphine priming. However, only pretreatment with SKF38393 (10 mg/kg) or SKF38393 (1 mg/kg) + quinpirole (0.25 mg/kg) permitted the same dose of quinpirole (0.25 mg/kg) to induce striatal Fos expression. These results demonstrate that while prior stimulation of D1, D2 or D1/D2 receptors can effectively prime D2-mediated contralateral rotation, prior stimulation of D1 receptors is required to prime D2-mediated striatal Fos expression. This study demonstrates that priming of 6-hydroxydopamine-lesioned rats with a D1 agonist permits a subsequent challenge with a D2 agonist to produce robust rotational behavior that is accompanied by induction of immediate-early gene expression in neurons that comprise the "direct" striatal output pathway. These responses are equivalent to the changes observed in apomorphine-primed 6-hydroxydopamine-lesioned rats challenged with D2 agonist. In contrast, D2 agonist priming was not associated with D2-mediated induction of striatal immediate-early gene expression even though priming of D2-mediated rotational behavior was not different from that observed following priming with apomorphine or D1 agonist. Therefore, while priming-induced alterations in D2-mediated immediate early gene expression in the "direct" striatal output pathway may contribute to the enhanced motor behavior observed, such changes in striatal gene expression do not appear to be required for this potentiated motor response in dopamine-depleted rats.
Collapse
Affiliation(s)
- A E Pollack
- Department of Psychology, Brown University, Providence, RI 02912, USA.
| | | |
Collapse
|
39
|
Mavridis M, Besson MJ. Dopamine-opiate interaction in the regulation of neostriatal and pallidal neuronal activity as assessed by opioid precursor peptides and glutamate decarboxylase messenger RNA expression. Neuroscience 1999; 92:945-66. [PMID: 10426535 DOI: 10.1016/s0306-4522(99)00043-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Neostriatal GABAergic neurons projecting to the globus pallidus synthesize the opioid peptide enkephalin, while those innervating the substantia nigra pars reticulata and the entopeduncular nucleus synthesize dynorphin. The differential control exerted by dopamine on the activity of these two efferent projections concerns also the biosynthesis of these opioid peptides. Using in situ hybridization histochemistry, we investigated the role of opioid co-transmission in the regulation of neostriatal and pallidal activity. The expression of the messenger RNAs encoding glutamate decarboxylase-the biosynthetic enzyme of GABA-and the precursor peptides of enkephalin (preproenkephalin) and dynorphin (preprodynorphin) were measured in rats after a sustained blockade of opioid receptors by naloxone (s.c. implanted osmotic minipump, eight days, 3 mg/kg per h), and/or a subchronic blockade of D2 dopamine receptors by haloperidol (one week, 1.25 mg/kg s.c. twice a day). The density of mu opioid receptors in the neostriatum and globus pallidus was determined by autoradiography. Naloxone treatment resulted in a strong up-regulation of neostriatal and pallidal mu opioid receptors that was not affected by the concurrent administration of haloperidol. Haloperidol alone produced a moderate down-regulation of neostriatal and pallidal micro opioid receptors. Haloperidol strongly stimulated the expression of neostriatal preproenkephalin and preprodynorphin messenger RNAs. This effect was partially attenuated by naloxone, which alone produced moderate increases in preproenkephalin and preprodynorphin messenger RNA levels. In the neostriatum, naloxone did not affect either basal or haloperidol-stimulated glutamate decarboxylase messenger RNA expression. A strong reduction of glutamate decarboxylase messenger RNA expression was detected over pallidal neurons following either naloxone or haloperidol treatment, but concurrent administration of the two antagonists did not result in a further decrease. The amplitude of the variations of mu opioid receptor density and of preproenkephalin and preprodynorphin messenger RNA levels suggests that the regulation of neostriatal and pallidal micro opioid receptors is more susceptible to a direct opioid antagonism, while the biosynthesis of opioid peptides in the neostriatum is more dependent on the dopaminergic transmission. The down-regulation of mu opioid receptors following haloperidol represents probably an adaptive change to increased enkephalin biosynthesis and release. The haloperidol-induced increase in neostriatal preprodynorphin messenger RNA expression might result from an indirect, intermittent stimulation of neostriatal D1 receptors. The haloperidol-induced decrease of pallidal glutamate decarboxylase messenger RNA expression suggests, in keeping with the current functional model of the basal ganglia, that the activation of the striatopallidal projection produced by the interruption of neostriatal dopaminergic transmission reduces the GABAergic output of the globus pallidus. The reduction of pallidal glutamate decarboxylase messenger RNA expression following opioid receptor blockade indicates an indirect, excitatory influence of enkephalin upon globus pallidus neurons and, consequently, a functional antagonism between the two neuroactive substances (GABA and enkephalin) of the striatopallidal projection in the control of globus pallidus output. Through this antagonism enkephalin could partly attenuate the GABA-mediated effects of a dopaminergic denervation on pallidal neuronal activity.
Collapse
Affiliation(s)
- M Mavridis
- Laboratoire de Neurochimie-Anatomie, Institut des Neurosciences, CNRS URA 1488, Université Pierre et Marie Curie, Paris, France
| | | |
Collapse
|
40
|
Steiner H, Gerfen CR. Enkephalin regulates acute D2 dopamine receptor antagonist-induced immediate-early gene expression in striatal neurons. Neuroscience 1999; 88:795-810. [PMID: 10363818 DOI: 10.1016/s0306-4522(98)00241-3] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Projection neurons of the striatum release opioid peptides in addition to GABA. Our previous studies showed that the opioid peptide dynorphin regulates that subtype of projection neurons which sends axons to the substantia nigra/entopeduncular nucleus, as indicated by an inhibitory action of dynorphin/agonists on D1 dopamine receptor-mediated immediate-early gene induction in these neurons. The other subtype of striatal projection neurons projects to the globus pallidus and contains the opioid peptide enkephalin. Here, we investigated whether enkephalin regulates the function of striatopallidal neurons, by analysing opioid effects on immediate-early gene induction by D2 dopamine receptor blockade that occurs in these neurons. Thus, the effects of systemic and intrastriatal administration of various opioid receptor agonists and antagonists on immediate-early gene expression (c-fos, zif 268) induced by the D2 receptor antagonist eticlopride were examined with in situ hybridization histochemistry. Intrastriatal infusion of enkephalin (delta and mu), but not dynorphin (kappa), receptor agonists suppressed immediate-early gene induction by eticlopride in a dose-dependent manner. This suppression was blocked by the opioid receptor antagonist naloxone, confirming the involvement of opioid receptors. Repeated treatment with D2 receptor antagonists produces increased enkephalin expression and diminished immediate-early gene inducibility in striatopallidal neurons, as well as behavioral effects that are attenuated compared to those of acute treatment (e.g., reduced akinesia). Naloxone reversed such behavioral recovery (i.e. reinstated akinesia), but did not significantly affect suppressed immediate-early gene induction. Our results indicate that enkephalin acts, via mu and delta receptors in the striatum, to inhibit acute effects of D2 receptor blockade in striatopallidal neurons. Moreover, the present findings suggest that increased enkephalin expression after repeated D2 receptor antagonist treatment is an adaptive response that counteracts functional consequences of D2 receptor blockade, but is not involved in suppressed immediate-early gene induction. Together with our earlier findings of the role of dynorphin, these results indicate that opioid peptides in the striatum serve as negative feedback systems to regulate the striatal output pathways in which they are expressed.
Collapse
Affiliation(s)
- H Steiner
- Department of Anatomy and Neurobiology, University of Tennessee, College of Medicine, Memphis 38163, USA
| | | |
Collapse
|
41
|
Goulet M, Morissette M, Grondin R, Falardeau P, Bédard PJ, Rostène W, Di Paolo T. Neurotensin receptors and dopamine transporters: effects of MPTP lesioning and chronic dopaminergic treatments in monkeys. Synapse 1999; 32:153-64. [PMID: 10340626 DOI: 10.1002/(sici)1098-2396(19990601)32:3<153::aid-syn2>3.0.co;2-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The effect of denervation with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) of the dopamine (DA) nigrostriatal pathway on neurotensin (NT) receptor and DA transporter (DAT) in basal ganglia of monkeys (Macaca fascicularis) was investigated. The MPTP lesion induced a marked depletion of DA (90% or more vs. control) in the caudate nucleus and putamen. The densities of NT agonist binding sites labeled with [125I]NT and the NT antagonist binding sites labeled with [3H]SR142948A decreased by half in the caudate-putamen of MPTP-monkeys. In addition, the densities of [125I]NT and [3H]SR142948A binding sites markedly decreased (-77 and -63%, respectively) in the substantia nigra of MPTP-monkeys. Levocabastine did not compete with high affinity for [125I]NT binding in the monkey cingulate cortex, suggesting that only one class of NT receptors was labelled in the monkey brain. An extensive decrease of [3H]GBR12935 DAT binding sites (-92% vs. Control) was observed in the striatum of MPTP-monkeys and an important loss of DAT mRNA(-86% vs. Control) was observed in substantia nigra. Treatments for 1 month with either the D1 agonist SKF-82958 (3 mg/kg/day) or the D2 agonist cabergoline (0.25 mg/kg/day) had no effect on the lesion-induced decrease in NT and DAT binding sites or DAT mRNA levels. The decrease of striatal NT binding sites was less than expected from the decrease of DA content in this nucleus, suggesting only partial localization of NT receptors on nigrostriatal DAergic projections. These data also suggest that under severe DA denervation, treatment with D1 or D2 DA agonists does not modulate NT receptors and DAT density.
Collapse
MESH Headings
- 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine/pharmacology
- Adamantane/analogs & derivatives
- Adamantane/metabolism
- Animals
- Autoradiography
- Binding Sites/drug effects
- Carrier Proteins/genetics
- Carrier Proteins/metabolism
- Caudate Nucleus/drug effects
- Caudate Nucleus/metabolism
- Denervation
- Dopamine/metabolism
- Dopamine Agents/metabolism
- Dopamine Agents/pharmacology
- Dopamine Plasma Membrane Transport Proteins
- Dose-Response Relationship, Drug
- Down-Regulation/drug effects
- Imidazoles/metabolism
- In Situ Hybridization
- Macaca fascicularis
- Membrane Glycoproteins
- Membrane Transport Proteins
- Neostriatum/drug effects
- Neostriatum/metabolism
- Nerve Tissue Proteins
- Neurotensin/metabolism
- Piperidines/metabolism
- Putamen/drug effects
- Putamen/metabolism
- RNA, Messenger/analysis
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Receptors, Dopamine/metabolism
- Receptors, Neurotensin/agonists
- Receptors, Neurotensin/antagonists & inhibitors
- Receptors, Neurotensin/metabolism
- Substantia Nigra/drug effects
- Substantia Nigra/metabolism
Collapse
Affiliation(s)
- M Goulet
- Faculty of Pharmacy, Laval University, Québec, Qc, Canada
| | | | | | | | | | | | | |
Collapse
|
42
|
Vesicular monoamine transporter-2 and aromatic L-amino acid decarboxylase enhance dopamine delivery after L-3, 4-dihydroxyphenylalanine administration in Parkinsonian rats. J Neurosci 1999. [PMID: 10191339 DOI: 10.1523/jneurosci.19-08-03266.1999] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Medical therapy in Parkinson's disease (PD) is limited by the short-duration response and development of dyskinesia that result from chronic L-3,4-dihydroxyphenylalanine (L-DOPA) therapy. These problems occur partly because the loss of dopamine storage sites leads to erratic dopamine delivery. Vesicular monoamine transporter-2 (VMAT-2) plays a critical role in dopamine storage by packaging dopamine into synaptic vesicles and regulating sustained release of dopamine. To restore the capacity to produce and store dopamine in parkinsonian rats, primary skin fibroblast cells (PF) were genetically modified with aromatic L-amino acid decarboxylase (AADC) and VMAT-2 genes. After incubation with L-DOPA in culture, the doubly transduced fibroblast cells (PFVMAA) produced and stored dopamine at a much higher level than the cells with either gene alone. PFVMAA cells in culture released dopamine gradually in a constitutive manner. Genetically modified fibroblast cells were grafted in parkinsonian rat striata, and L-DOPA was systemically administered. Higher dopamine levels were sustained for a longer duration in rats grafted with PFVMAA cells than in those grafted with either control cells or cells with AADC alone. These findings underscore the importance of dopamine storage capacity in determining the efficacy of L-DOPA therapy and illustrate a novel method of gene therapy combined with precursor administration to overcome the major obstacles of PD treatment.
Collapse
|
43
|
Cappendijk SL, Hurd YL, Nylander I, van Ree JM, Terenius L. A heroin-, but not a cocaine-expecting, self-administration state preferentially alters endogenous brain peptides. Eur J Pharmacol 1999; 365:175-82. [PMID: 9988100 DOI: 10.1016/s0014-2999(98)00874-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The purpose of the current study was to assess neuropeptidergic alterations during a phase of the drug addiction cycle associated with drug craving as compared to a time period when the drug had been recently self-administered. Male Wistar rats were allowed to self-administer cocaine, heroin or saline for 6 h for 5 consecutive days. Immediately following the last self-administration session ('acute drug on board' state), and just before the next scheduled session ('drug expecting' state), the animals were decapitated and the levels of dynorphin A and B, [Met5]- and [Leu5]-enkephalin and substance P were measured in different brain areas. During the 'acute drug on board' state, peptide levels in animals that self-administered heroin or cocaine were not significantly changed. In contrast, during the 'drug expecting' state, heroin-treated animals had increased levels of dynorphin A, dynorphin B and [Met5]-enkephalin in the caudal striatum as compared to the cocaine- and saline-treated animals, and the level of [Leu5]-enkephalin was increased as compared to the cocaine-treated group. In the septum, an increase of [Met5]-enkephalin and substance P was observed in the animals expecting heroin as compared to the saline- and/or cocaine-treated animals. In the caudal striatum, substance P levels were elevated in the heroin- and cocaine-expecting animals. In conclusion, heroin, as compared to cocaine, appears to have a more pronounced effect on dynorphin, enkephalin and substance P levels in the caudal striatum and septum, especially during periods when self-administration of the drug is expected.
Collapse
Affiliation(s)
- S L Cappendijk
- Karolinska Institute, Department of Clinical Neurosciences, Stockholm, Sweden.
| | | | | | | | | |
Collapse
|
44
|
Eve DJ, Nisbet AP, Kingsbury AE, Hewson EL, Daniel SE, Lees AJ, Marsden CD, Foster OJ. Basal ganglia neuronal nitric oxide synthase mRNA expression in Parkinson's disease. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 1998; 63:62-71. [PMID: 9838046 DOI: 10.1016/s0169-328x(98)00259-9] [Citation(s) in RCA: 89] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Expression of nitric oxide synthase (NOS) mRNA in post mortem brain was studied in putamen, globus pallidus and subthalamic nucleus (STN) of neurologically normal control subjects and patients with Parkinson's disease (PD) using in situ hybridization histochemistry. In PD, a significant increase in NOS mRNA expression was observed in the dorsal two-thirds of the STN with respect to the ventral one-third of the STN. A significant increase in NOS mRNA expression per cell in the medial medullary lamina of the globus pallidus was also observed in PD. NOS mRNA expression was significantly reduced in PD putamen. These findings provide evidence of increased activity of STN neurotransmitter systems in PD and demonstrate for the first time in any species that basal ganglia nitric oxide systems can be selectively regulated in response to changes in dopaminergic input.
Collapse
Affiliation(s)
- D J Eve
- Parkinson's Disease Society, Brain Research Centre (Brain Bank), 1 Wakefield Street, London WC1N 1PJ, UK
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Obuchowicz E, Turchan J. Influence of typical and atypical antipsychotics on neuropeptide Y-like immunoreactivity and NPY mRNA expression in rat striatum. Neuropeptides 1998; 32:473-80. [PMID: 9845010 DOI: 10.1016/s0143-4179(98)90074-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Striatal neuropeptide Y-like immunoreactivity (NPY-LI) levels were investigated in naive rats after acute, subchronic (14 days) or chronic (28 days) intraperitoneal (i.p.) treatment with chlorpromazine (2 or 10mg/kg), haloperidol (0.5 or 2 mg/kg), (+/-)sulpiride (50 or 100 mg/kg) or clozapine (10 or 25 mg/kg), and in chronically treated rats after 8-day drug withdrawal. The most pronounced changes in NPY-LI levels were found 24 h after acute chlorpromazine or haloperidol administration (a decrease) and after withdrawal of chlorpromazine, haloperidol or sulpiride (an increase). The effect of clozapine on NPY-LI differed from those of the other antipsychotics: both single doses had no effect, the higher chronic dose increased NPY-LI levels, and its withdrawal resulted in their decrease. No significant alterations were detected in the hybridization signal of NPY mRNA in response to acute or subchronic administration of haloperidol or clozapine. Our results suggest that the effects of antipsychotics are in part mediated by blockade of dopamine D2-like (D2/D3) or serotonin 5HT2A receptors but not dopamine D1, D4 or alpha1-adrenergic receptors. The antipsychotic-induced changes in NPY system activity has been discussed in connection with adaptive alterations in the dopamine system.
Collapse
Affiliation(s)
- E Obuchowicz
- Department of Clinical Pharmacology, Silesian University School of Medicine, Katowice, Poland
| | | |
Collapse
|
46
|
Abstract
Parkinson's disease, which pathology results predominantly from nigros triatal pathway damage, has been associated with motor dysfunction due to basal ganglia impairment. It is argued that the variability seen within and between individual patients through the course of this neurological disorder may result from abnormal non-uniform neurotransmitter levels as well as functional segregation of neural populations in the basal ganglia. We review evidence that the wide spectrum of motor impairments observed in Parkinsonism may be due to a reduced capability of neurochemical modulation of pallido-thalamocortical activities that impairs movement implementation and execution.
Collapse
|
47
|
Eve DJ, Nisbet AP, Kingsbury AE, Temlett J, Marsden CD, Foster OJ. Selective increase in somatostatin mRNA expression in human basal ganglia in Parkinson's disease. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 1997; 50:59-70. [PMID: 9406918 DOI: 10.1016/s0169-328x(97)00172-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Levels of the neurotransmitter somatostatin (SS) have previously been shown to be reduced in the cortex and hippocampus of demented parkinsonian patients and patients with Alzheimer's disease. In situ hybridisation histochemistry (ISHH) was performed with an 35S tail-labelled oligonucleotide DNA probe to human SS mRNA, to examine its expression within the striatum, medial medullary lamina (MML) and reticular thalamic nucleus in Parkinson's disease (PD) and in matched controls. A chronic unilaterally MPTP-lesioned L-DOPA-naive primate model was also examined for comparison of SS mRNA expression with that in human L-DOPA treated PD subjects. Quantitation of SS mRNA expression on emulsion dipped sections revealed a significant increase (82%) in the MML of the globus pallidus in PD (56.5 microm2 of silver grain/cell, n = 9 cases) compared to controls (26.3 microm2/cell, n = 13 cases, p < 0.01, Student's t-test), paralleling the increase previously observed by this group for NOS mRNA. SS mRNA expression was higher in the dorsolateral than ventromedial putamen in controls (p < 0.001; DL: 24.89 +/- SEM 1.35; VM: 17.96 +/- SEM 2.63; n = 14) but this gradient was lost in PD cases (p > 0.05; DL: 22.68 +/- 1.94; VM: 22.17 +/- 2.94; n = 10). These findings suggest specific modification of basal ganglia SS-ergic pathways in PD.
Collapse
Affiliation(s)
- D J Eve
- Parkinson's Disease Society Brain Research Centre (Brain Bank), London, UK
| | | | | | | | | | | |
Collapse
|
48
|
Morissette M, Goulet M, Soghomonian JJ, Blanchet PJ, Calon F, Bédard PJ, Di Paolo T. Preproenkephalin mRNA expression in the caudate-putamen of MPTP monkeys after chronic treatment with the D2 agonist U91356A in continuous or intermittent mode of administration: comparison with L-DOPA therapy. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 1997; 49:55-62. [PMID: 9387863 DOI: 10.1016/s0169-328x(97)00123-x] [Citation(s) in RCA: 92] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The effect of chronic treatment with the D2 dopamine agonist U91356A or L-DOPA therapy on the regulation of preproenkephalin (PPE) mRNA was investigated in the caudate-putamen of previously drug-naive cynomolgus monkeys Macaca fascicularis rendered parkinsonian by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). In MPTP monkeys, pulsatile treatment with either L-DOPA or U91356A relieved parkinsonian symptoms but caused progressive sensitization to treatment and, as expected, induced choreic dyskinesias. In contrast, U91356A given in a continuous mode led to partial behavioral tolerance without appearance of dyskinesias. Using in situ hybridization histochemistry, lesioning was shown to produce elevation of PPE mRNA levels in the lateral and medial parts of the putamen and in the lateral part of the caudate nucleus compared to control animals at the three rostrocaudal regions analyzed. In general, no change of PPE mRNA levels were observed in the medial caudate after MPTP lesioning with or without L-DOPA or U91356A treatments in the three rostrocaudal regions measured except for an increase in the caudal part of L-DOPA-treated MPTP monkeys. In the putamen and lateral caudate nucleus, elevated PPE mRNA expression by MPTP generally was not corrected (or only partially corrected) by chronic L-DOPA treatment except for the rostral medial putamen where correction to control values was observed. In general, pulsatile administration of U91356A partially corrected the lesion-induced elevation of PPE mRNA levels in the putamen and lateral caudate nucleus whereas the correction was more pronounced and widespread when MPTP monkeys received the continuous administration of this drug. These results indicate that the mode of administration of a D2 dopamine receptor agonist, such as U91356A, although at a roughly equivalent dosage influences the extent of inhibition of the expression of PPE in the denervated striatum of monkeys. In addition, the general lack of correction of the MPTP-induced increase of PPE mRNA in the striatum of L-DOPA-treated monkeys compared to the decreases observed with the D2 agonist treatments suggest that the D1 agonist component of L-DOPA therapy opposes the D2 agonist activity. Hence, D1 receptor agonist activity would stimulate PPE mRNA expression whereas D2 receptor agonists inhibit the expression of this peptide. Increases in PPE expression in the striatum may be implicated in the induction of dyskinesias since both groups of treated MPTP monkeys displaying dyskinesias had elevated striatal PPE mRNA levels whereas the MPTP monkeys with the lowest striatal PPE mRNA levels developed tolerance without dyskinesias.
Collapse
Affiliation(s)
- M Morissette
- Neurobiology Research Center, Enfant-Jésus Hospital, Qúebec, Qué., Canada
| | | | | | | | | | | | | |
Collapse
|
49
|
Geijer T, Jonsson E, Neiman J, Gyllander A, Sedvall G, Rydberg U, Terenius L. Prodynorphin Allelic Distribution in Scandinavian Chronic Alcoholics. Alcohol Clin Exp Res 1997. [DOI: 10.1111/j.1530-0277.1997.tb04456.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
50
|
Laprade N, Soghomonian JJ. Glutamate decarboxylase (GAD65) gene expression is increased by dopamine receptor agonists in a subpopulation of rat striatal neurons. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 1997; 48:333-45. [PMID: 9332731 DOI: 10.1016/s0169-328x(97)00112-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The mRNA levels encoding for the two isoforms of glutamate decarboxylase (GAD65 and GAD67) were measured in the adult rat striatum following systemic administration of dopamine receptor agonists. Double-labeling in situ hybridization histochemistry was used to measure GAD65 or GAD67 mRNA levels in neurons labeled or not with a preproenkephalin (PPE) cRNA probe. Chronic treatment with the D1/D2 dopamine receptor agonist apomorphine or with the D1 dopamine receptor agonist SKF-38393 induced an increase in GAD65 but not GAD67 mRNA levels in different sectors of the striatum. These effects were abolished by pre-administration of the D1 dopamine receptor antagonist SCH-23390. On double-labeled sections, GAD65 mRNA labeling was distributed in neurons labeled and unlabeled with the PPE cRNA probe. About half of all neuronal profiles labeled with the GAD65 cRNA probe were also labeled with the PPE cRNA probe. Quantification of labeling at cellular level demonstrated a significant increase of GAD65 mRNA levels in PPE-unlabeled neurons. On the other hand, no significant changes of GAD65 mRNA levels were detected in PPE-labeled neurons. Our results demonstrate a differential effect of dopamine receptor agonists on striatal GAD65 and GAD67 gene expression. In particular, we show that GAD65 mRNA levels are selectively increased in presumed striato-nigral neurons following treatments with dopamine receptor agonists. These data provide evidence that the GAD65 isoform is preferentially involved in the regulation of GABAergic neurotransmission in striato-nigral neurons.
Collapse
Affiliation(s)
- N Laprade
- Centre de Recherche en Neurobiologie, Université Laval, Québec, Canada
| | | |
Collapse
|