1
|
Pylkkänen R, Maaheimo H, Liljeström V, Mohammadi P, Penttilä M. Glycoside Phosphorylase Catalyzed Cellulose and β-1,3-Glucan Synthesis Using Chromophoric Glycosyl Acceptors. Biomacromolecules 2024; 25:5048-5057. [PMID: 39025475 PMCID: PMC11322998 DOI: 10.1021/acs.biomac.4c00455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 07/04/2024] [Accepted: 07/05/2024] [Indexed: 07/20/2024]
Abstract
Glycoside phosphorylases are enzymes that are frequently used for polysaccharide synthesis. Some of these enzymes have broad substrate specificity, enabling the synthesis of reducing-end-functionalized glucan chains. Here, we explore the potential of glycoside phosphorylases in synthesizing chromophore-conjugated polysaccharides using commercially available chromophoric model compounds as glycosyl acceptors. Specifically, we report cellulose and β-1,3-glucan synthesis using 2-nitrophenyl β-d-glucopyranoside, 4-nitrophenyl β-d-glucopyranoside, and 2-methoxy-4-(2-nitrovinyl)phenyl β-d-glucopyranoside with Clostridium thermocellum cellodextrin phosphorylase and Thermosipho africanus β-1,3-glucan phosphorylase as catalysts. We demonstrate activity for both enzymes with all assayed chromophoric acceptors and report the crystallization-driven precipitation and detailed structural characterization of the synthesized polysaccharides, i.e., their molar mass distributions and various structural parameters, such as morphology, fibril diameter, lamellar thickness, and crystal form. Our results provide insights for the studies of chromophore-conjugated low molecular weight polysaccharides, glycoside phosphorylases, and the hierarchical assembly of crystalline cellulose and β-1,3-glucan.
Collapse
Affiliation(s)
- Robert Pylkkänen
- VTT
Technical Research Centre of Finland Ltd., FI-02044 VTT, Finland
- Department
of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, FI-00076 AALTO, Finland
| | - Hannu Maaheimo
- VTT
Technical Research Centre of Finland Ltd., FI-02044 VTT, Finland
| | - Ville Liljeström
- Nanomicroscopy
Center, OtaNano, Aalto University, FI-00076 AALTO, Finland
| | - Pezhman Mohammadi
- VTT
Technical Research Centre of Finland Ltd., FI-02044 VTT, Finland
| | - Merja Penttilä
- VTT
Technical Research Centre of Finland Ltd., FI-02044 VTT, Finland
- Department
of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, FI-00076 AALTO, Finland
| |
Collapse
|
2
|
Zhong C, Nidetzky B. Bottom-Up Synthesized Glucan Materials: Opportunities from Applied Biocatalysis. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2400436. [PMID: 38514194 DOI: 10.1002/adma.202400436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 03/05/2024] [Indexed: 03/23/2024]
Abstract
Linear d-glucans are natural polysaccharides of simple chemical structure. They are comprised of d-glucosyl units linked by a single type of glycosidic bond. Noncovalent interactions within, and between, the d-glucan chains give rise to a broad variety of macromolecular nanostructures that can assemble into crystalline-organized materials of tunable morphology. Structure design and functionalization of d-glucans for diverse material applications largely relies on top-down processing and chemical derivatization of naturally derived starting materials. The top-down approach encounters critical limitations in efficiency, selectivity, and flexibility. Bottom-up approaches of d-glucan synthesis offer different, and often more precise, ways of polymer structure control and provide means of functional diversification widely inaccessible to top-down routes of polysaccharide material processing. Here the natural and engineered enzymes (glycosyltransferases, glycoside hydrolases and phosphorylases, glycosynthases) for d-glucan polymerization are described and the use of applied biocatalysis for the bottom-up assembly of specific d-glucan structures is shown. Advanced material applications of the resulting polymeric products are further shown and their important role in the development of sustainable macromolecular materials in a bio-based circular economy is discussed.
Collapse
Affiliation(s)
- Chao Zhong
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, NAWI Graz, Petersgasse 12, Graz, 8010, Austria
| | - Bernd Nidetzky
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, NAWI Graz, Petersgasse 12, Graz, 8010, Austria
- Austrian Centre of Industrial Biotechnology (acib), Krenngasse 37, Graz, 8010, Austria
| |
Collapse
|
3
|
Kuga T, Sunagawa N, Igarashi K. Effect of Free Cysteine Residues to Serine Mutation on Cellodextrin Phosphorylase. J Appl Glycosci (1999) 2024; 71:37-46. [PMID: 38863949 PMCID: PMC11163329 DOI: 10.5458/jag.jag.jag-2023_0011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 01/19/2024] [Indexed: 06/13/2024] Open
Abstract
Cellodextrin phosphorylase (CDP) plays a key role in energy-efficient cellulose metabolism of anaerobic bacteria by catalyzing phosphorolysis of cellodextrin to produce cellobiose and glucose 1-phosphate, which can be utilized for glycolysis without consumption of additional ATP. As the enzymatic phosphorolysis reaction is reversible, CDP is also employed to produce cellulosic materials in vitro. However, the enzyme is rapidly inactivated by oxidation, which hinders in vitro utilization in aerobic environments. It has been suggested that the cysteine residues of CDP, which do not form disulfide bonds, are responsible for the loss of activity, and the aim of the present work was to test this idea. For this purpose, we replaced all 11 free cysteine residues of CDP from Acetivibrio thermocellus (formerly known as Clostridium thermocellum) with serine, which structurally resembles cysteine in our previous work. Herein, we show that the resulting CDP variant, named CDP-CS, has comparable activity to the wild-type enzyme, but shows increased stability to oxidation during long-term storage. X-Ray crystallography indicated that the mutations did not markedly alter the overall structure of the enzyme. Ensemble refinement of the crystal structures of CDP and CDP-CS indicated that the C372S and C625S mutations reduce structural fluctuations in the protein main chain, which may contribute to the increased stability of CDP-CS to oxidation.
Collapse
Affiliation(s)
- Tomohiro Kuga
- Department of Biomaterial Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo
| | - Naoki Sunagawa
- Department of Biomaterial Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo
| | - Kiyohiko Igarashi
- Department of Biomaterial Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo
| |
Collapse
|
4
|
Serizawa T, Yamaguchi S, Sugiura K, Marten R, Yamamoto A, Hata Y, Sawada T, Tanaka H, Tanaka M. Antibacterial Synthetic Nanocelluloses Synergizing with a Metal-Chelating Agent. ACS APPLIED BIO MATERIALS 2024; 7:246-255. [PMID: 37967519 PMCID: PMC10792664 DOI: 10.1021/acsabm.3c00846] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/02/2023] [Accepted: 11/02/2023] [Indexed: 11/17/2023]
Abstract
Antibacterial materials composed of biodegradable and biocompatible constituents that are produced via eco-friendly synthetic strategies will become an attractive alternative to antibiotics to combat antibiotic-resistant bacteria. In this study, we demonstrated the antibacterial properties of nanosheet-shaped crystalline assemblies of enzymatically synthesized aminated cellulose oligomers (namely, surface-aminated synthetic nanocelluloses) and their synergy with a metal-chelating antibacterial agent, ethylenediaminetetraacetic acid (EDTA). Growth curves and colony counting assays revealed that the surface-aminated cellulose assemblies had an antibacterial effect against Gram-negative Escherichia coli (E. coli). The cationic assemblies appeared to destabilize the cell wall of E. coli through electrostatic interactions with anionic lipopolysaccharide (LPS) molecules on the outer membrane. The antibacterial properties were significantly enhanced by the concurrent use of EDTA, which potentially removed metal ions from LPS molecules, resulting in synergistic bactericidal effects. No antibacterial activity of the surface-aminated cellulose assemblies was observed against Gram-positive Staphylococcus aureus even in the presence of EDTA, further supporting the contribution of electrostatic interactions between the cationic assemblies and anionic LPS to the activity against Gram-negative bacteria. Analysis using quartz crystal microbalance with dissipation monitoring revealed the attractive interaction of the surface-aminated cellulose assembly with LPS Ra monolayers artificially produced on the device substrate.
Collapse
Affiliation(s)
- Takeshi Serizawa
- Department
of Chemical Science and Engineering, School of Materials and Chemical
Technology, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Saeko Yamaguchi
- Department
of Chemical Science and Engineering, School of Materials and Chemical
Technology, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Kai Sugiura
- Department
of Chemical Science and Engineering, School of Materials and Chemical
Technology, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Ramona Marten
- Physical
Chemistry of Biosystems, Institute of Physical Chemistry, Heidelberg University, Heidelberg D69120, Germany
- Center
for Integrative Medicine and Physics, Institute for Advanced Study, Kyoto University, Kyoto 606-8501, Japan
| | - Akihisa Yamamoto
- Center
for Integrative Medicine and Physics, Institute for Advanced Study, Kyoto University, Kyoto 606-8501, Japan
| | - Yuuki Hata
- Department
of Chemical Science and Engineering, School of Materials and Chemical
Technology, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Toshiki Sawada
- Department
of Chemical Science and Engineering, School of Materials and Chemical
Technology, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Hiroshi Tanaka
- Department
of Chemical Science and Engineering, School of Materials and Chemical
Technology, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Motomu Tanaka
- Physical
Chemistry of Biosystems, Institute of Physical Chemistry, Heidelberg University, Heidelberg D69120, Germany
- Center
for Integrative Medicine and Physics, Institute for Advanced Study, Kyoto University, Kyoto 606-8501, Japan
| |
Collapse
|
5
|
Lehrhofer AF, Goto T, Kawada T, Rosenau T, Hettegger H. The in vitro synthesis of cellulose – A mini-review. Carbohydr Polym 2022; 285:119222. [DOI: 10.1016/j.carbpol.2022.119222] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/31/2022] [Accepted: 02/01/2022] [Indexed: 11/02/2022]
|
6
|
Discovery and Biotechnological Exploitation of Glycoside-Phosphorylases. Int J Mol Sci 2022; 23:ijms23063043. [PMID: 35328479 PMCID: PMC8950772 DOI: 10.3390/ijms23063043] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/01/2022] [Accepted: 03/03/2022] [Indexed: 02/04/2023] Open
Abstract
Among carbohydrate active enzymes, glycoside phosphorylases (GPs) are valuable catalysts for white biotechnologies, due to their exquisite capacity to efficiently re-modulate oligo- and poly-saccharides, without the need for costly activated sugars as substrates. The reversibility of the phosphorolysis reaction, indeed, makes them attractive tools for glycodiversification. However, discovery of new GP functions is hindered by the difficulty in identifying them in sequence databases, and, rather, relies on extensive and tedious biochemical characterization studies. Nevertheless, recent advances in automated tools have led to major improvements in GP mining, activity predictions, and functional screening. Implementation of GPs into innovative in vitro and in cellulo bioproduction strategies has also made substantial advances. Herein, we propose to discuss the latest developments in the strategies employed to efficiently discover GPs and make the best use of their exceptional catalytic properties for glycoside bioproduction.
Collapse
|
7
|
Sakurai Y, Sawada T, Serizawa T. Phosphorylase-catalyzed synthesis and self-assembled structures of cellulose oligomers in the presence of protein denaturants. Polym J 2021. [DOI: 10.1038/s41428-021-00592-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
8
|
Bulmer GS, de Andrade P, Field RA, van Munster JM. Recent advances in enzymatic synthesis of β-glucan and cellulose. Carbohydr Res 2021; 508:108411. [PMID: 34392134 PMCID: PMC8425183 DOI: 10.1016/j.carres.2021.108411] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 07/21/2021] [Accepted: 07/22/2021] [Indexed: 01/07/2023]
Abstract
Bottom-up synthesis of β-glucans such as callose, fungal β-(1,3)(1,6)-glucan and cellulose, can create the defined compounds that are needed to perform fundamental studies on glucan properties and develop applications. With the importance of β-glucans and cellulose in high-profile fields such as nutrition, renewables-based biotechnology and materials science, the enzymatic synthesis of such relevant carbohydrates and their derivatives has attracted much attention. Here we review recent developments in enzymatic synthesis of β-glucans and cellulose, with a focus on progress made over the last five years. We cover the different types of biocatalysts employed, their incorporation in cascades, the exploitation of enzyme promiscuity and their engineering, and reaction conditions affecting the production as well as in situ self-assembly of (non)functionalised glucans. The recent achievements in the application of glycosyl transferases and β-1,4- and β-1,3-glucan phosphorylases demonstrate the high potential and versatility of these biocatalysts in glucan synthesis in both industrial and academic contexts.
Collapse
Affiliation(s)
- Gregory S Bulmer
- Department of Chemistry and Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester M1 7DN, UK
| | - Peterson de Andrade
- Department of Chemistry and Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester M1 7DN, UK
| | - Robert A Field
- Department of Chemistry and Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester M1 7DN, UK
| | - Jolanda M van Munster
- Department of Chemistry and Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester M1 7DN, UK; Scotland's Rural College, Edinburgh, UK.
| |
Collapse
|
9
|
Hata Y, Serizawa T. Robust Gels Composed of Self-Assembled Cello-oligosaccharide Networks. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2021. [DOI: 10.1246/bcsj.20210234] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Yuuki Hata
- Division of Biomedical Engineering, National Defense Medical College Research Institute, 3-2 Namiki, Tokorozawa, Saitama 359-8513, Japan
| | - Takeshi Serizawa
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 2-12-1-H121 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| |
Collapse
|
10
|
Hata Y, Serizawa T. Self-assembly of cellulose for creating green materials with tailor-made nanostructures. J Mater Chem B 2021; 9:3944-3966. [PMID: 33908581 DOI: 10.1039/d1tb00339a] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Inspired by living systems, biomolecules have been employed in vitro as building blocks for creating advanced nanostructured materials. In regard to nucleic acids, peptides, and lipids, their self-assembly pathways and resulting assembled structures are mostly encoded in their molecular structures. On the other hand, outside of its chain length, cellulose, a polysaccharide, lacks structural diversity; therefore, it is challenging to direct this homopolymer to controllably assemble into ordered nanostructures. Nevertheless, the properties of cellulose assemblies are outstanding in terms of their robustness and inertness, and these assemblies are attractive for constructing versatile materials. In this review article, we summarize recent research progress on the self-assembly of cellulose and the applications of assembled cellulose materials, especially for biomedical use. Given that cellulose is the most abundant biopolymer on Earth, gaining control over cellulose assembly represents a promising route for producing green materials with tailor-made nanostructures.
Collapse
Affiliation(s)
- Yuuki Hata
- Division of Biomedical Engineering, National Defense Medical College Research Institute, 3-2 Namiki, Tokorozawa-shi, Saitama 359-8513, Japan.
| | - Takeshi Serizawa
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 2-12-1-H121 Ookayama, Meguro-ku, Tokyo 152-8550, Japan.
| |
Collapse
|
11
|
Sugiura K, Sawada T, Tanaka H, Serizawa T. Enzyme-catalyzed propagation of cello-oligosaccharide chains from bifunctional oligomeric primers for the preparation of block co-oligomers and their crystalline assemblies. Polym J 2021. [DOI: 10.1038/s41428-021-00513-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
12
|
β-Glucan phosphorylases in carbohydrate synthesis. Appl Microbiol Biotechnol 2021; 105:4073-4087. [PMID: 33970317 PMCID: PMC8140972 DOI: 10.1007/s00253-021-11320-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 04/19/2021] [Accepted: 04/26/2021] [Indexed: 01/02/2023]
Abstract
Abstract β-Glucan phosphorylases are carbohydrate-active enzymes that catalyze the reversible degradation of β-linked glucose polymers, with outstanding potential for the biocatalytic bottom-up synthesis of β-glucans as major bioactive compounds. Their preference for sugar phosphates (rather than nucleotide sugars) as donor substrates further underlines their significance for the carbohydrate industry. Presently, they are classified in the glycoside hydrolase families 94, 149, and 161 (www.cazy.org). Since the discovery of β-1,3-oligoglucan phosphorylase in 1963, several other specificities have been reported that differ in linkage type and/or degree of polymerization. Here, we present an overview of the progress that has been made in our understanding of β-glucan and associated β-glucobiose phosphorylases, with a special focus on their application in the synthesis of carbohydrates and related molecules. Key points • Discovery, characteristics, and applications of β-glucan phosphorylases. • β-Glucan phosphorylases in the production of functional carbohydrates.
Collapse
|
13
|
de Andrade P, Muñoz‐García JC, Pergolizzi G, Gabrielli V, Nepogodiev SA, Iuga D, Fábián L, Nigmatullin R, Johns MA, Harniman R, Eichhorn SJ, Angulo J, Khimyak YZ, Field RA. Chemoenzymatic Synthesis of Fluorinated Cellodextrins Identifies a New Allomorph for Cellulose-Like Materials*. Chemistry 2021; 27:1374-1382. [PMID: 32990374 PMCID: PMC7898601 DOI: 10.1002/chem.202003604] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 09/24/2020] [Indexed: 12/12/2022]
Abstract
Understanding the fine details of the self-assembly of building blocks into complex hierarchical structures represents a major challenge en route to the design and preparation of soft-matter materials with specific properties. Enzymatically synthesised cellodextrins are known to have limited water solubility beyond DP9, a point at which they self-assemble into particles resembling the antiparallel cellulose II crystalline packing. We have prepared and characterised a series of site-selectively fluorinated cellodextrins with different degrees of fluorination and substitution patterns by chemoenzymatic synthesis. Bearing in mind the potential disruption of the hydrogen-bond network of cellulose II, we have prepared and characterised a multiply 6-fluorinated cellodextrin. In addition, a series of single site-selectively fluorinated cellodextrins was synthesised to assess the structural impact upon the addition of one fluorine atom per chain. The structural characterisation of these materials at different length scales, combining advanced NMR spectroscopy and microscopy methods, showed that a 6-fluorinated donor substrate yielded multiply 6-fluorinated cellodextrin chains that assembled into particles presenting morphological and crystallinity features, and intermolecular interactions, that are unprecedented for cellulose-like materials.
Collapse
Affiliation(s)
- Peterson de Andrade
- Department of Biological ChemistryJohn Innes CentreNorwichNR4 7UHUK
- Present address: Department of Chemistry and Manchester Institute of BiotechnologyUniversity of ManchesterManchesterM1 7DNUK
| | - Juan C. Muñoz‐García
- School of PharmacyUniversity of East AngliaNorwich Research ParkNorwichNR4 7TJUK
| | - Giulia Pergolizzi
- Department of Biological ChemistryJohn Innes CentreNorwichNR4 7UHUK
- Iceni Diagnostics Ltd.Norwich Research Park Innovation CentreColney LaneNorwichNorfolkNR4 7GJUK
| | - Valeria Gabrielli
- School of PharmacyUniversity of East AngliaNorwich Research ParkNorwichNR4 7TJUK
| | | | - Dinu Iuga
- Department of PhysicsUniversity of WarwickCoventryCV4 7ALUK
| | - László Fábián
- School of PharmacyUniversity of East AngliaNorwich Research ParkNorwichNR4 7TJUK
| | - Rinat Nigmatullin
- Bristol Composites InstituteCAME School of EngineeringUniversity of BristolBristolBS8 1TRUK
| | - Marcus A. Johns
- Bristol Composites InstituteCAME School of EngineeringUniversity of BristolBristolBS8 1TRUK
| | | | - Stephen J. Eichhorn
- Bristol Composites InstituteCAME School of EngineeringUniversity of BristolBristolBS8 1TRUK
| | - Jesús Angulo
- School of PharmacyUniversity of East AngliaNorwich Research ParkNorwichNR4 7TJUK
| | - Yaroslav Z. Khimyak
- School of PharmacyUniversity of East AngliaNorwich Research ParkNorwichNR4 7TJUK
| | - Robert A. Field
- Department of Biological ChemistryJohn Innes CentreNorwichNR4 7UHUK
- Iceni Diagnostics Ltd.Norwich Research Park Innovation CentreColney LaneNorwichNorfolkNR4 7GJUK
- Present address: Department of Chemistry and Manchester Institute of BiotechnologyUniversity of ManchesterManchesterM1 7DNUK
| |
Collapse
|
14
|
Pylkkänen R, Mohammadi P, Arola S, de Ruijter JC, Sunagawa N, Igarashi K, Penttilä M. In Vitro Synthesis and Self-Assembly of Cellulose II Nanofibrils Catalyzed by the Reverse Reaction of Clostridium thermocellum Cellodextrin Phosphorylase. Biomacromolecules 2020; 21:4355-4364. [PMID: 32960595 DOI: 10.1021/acs.biomac.0c01162] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
In nature, various organisms produce cellulose as microfibrils, which are processed into their nano- and microfibrillar and/or crystalline components by humans in order to obtain desired material properties. Interestingly, the natural synthesis machinery can be circumvented by enzymatically synthesizing cellulose from precursor molecules in vitro. This approach is appealing for producing tailor-made cellulosic particles and materials because it enables optimization of the reaction conditions for cellulose synthesis in order to generate particles with a desired morphology in their pure form. Here, we present enzymatic cellulose synthesis catalyzed by the reverse reaction of Clostridium thermocellum cellodextrin phosphorylase in vitro. We were able to produce cellulose II nanofibril networks in all conditions tested, using varying concentrations of the glycosyl acceptors d-glucose or d-cellobiose (0.5, 5, and 50 mM). We show that shorter cellulose chains assemble into flat ribbon-like fibrils with greater diameter, while longer chains assemble into cylindrical fibrils with smaller diameter.
Collapse
Affiliation(s)
- Robert Pylkkänen
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, P.O. Box 16300, FI-00076 Espoo, Finland.,VTT Technical Research Centre of Finland Ltd., P.O. Box 1000, FI-02044 VTT, Finland
| | - Pezhman Mohammadi
- VTT Technical Research Centre of Finland Ltd., P.O. Box 1000, FI-02044 VTT, Finland
| | - Suvi Arola
- VTT Technical Research Centre of Finland Ltd., P.O. Box 1000, FI-02044 VTT, Finland
| | - Jorg C de Ruijter
- VTT Technical Research Centre of Finland Ltd., P.O. Box 1000, FI-02044 VTT, Finland
| | - Naoki Sunagawa
- Department of Biomaterial Sciences, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Bunkyo-ku, 113-8657 Tokyo, Japan
| | - Kiyohiko Igarashi
- VTT Technical Research Centre of Finland Ltd., P.O. Box 1000, FI-02044 VTT, Finland.,Department of Biomaterial Sciences, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Bunkyo-ku, 113-8657 Tokyo, Japan
| | - Merja Penttilä
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, P.O. Box 16300, FI-00076 Espoo, Finland.,VTT Technical Research Centre of Finland Ltd., P.O. Box 1000, FI-02044 VTT, Finland
| |
Collapse
|
15
|
Nidetzky B, Zhong C. Phosphorylase-catalyzed bottom-up synthesis of short-chain soluble cello-oligosaccharides and property-tunable cellulosic materials. Biotechnol Adv 2020; 51:107633. [PMID: 32966861 DOI: 10.1016/j.biotechadv.2020.107633] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 08/23/2020] [Accepted: 09/06/2020] [Indexed: 12/13/2022]
Abstract
Cellulose-based materials are produced industrially in countless varieties via top-down processing of natural lignocellulose substrates. By contrast, cellulosic materials are only rarely prepared via bottom up synthesis and oligomerization-induced self-assembly of cellulose chains. Building up a cellulose chain via precision polymerization is promising, however, for it offers tunability and control of the final chemical structure. Synthetic cellulose derivatives with programmable material properties might thus be obtained. Cellodextrin phosphorylase (CdP; EC 2.4.1.49) catalyzes iterative β-1,4-glycosylation from α-d-glucose 1-phosphate, with the ability to elongate a diversity of acceptor substrates, including cellobiose, d-glucose and a range of synthetic glycosides having non-sugar aglycons. Depending on the reaction conditions leading to different degrees of polymerization (DP), short-chain soluble cello-oligosaccharides (COS) or insoluble cellulosic materials are formed. Here, we review the characteristics of CdP as bio-catalyst for synthetic applications and show advances in the enzymatic production of COS and reducing end-modified, tailored cellulose materials. Recent studies reveal COS as interesting dietary fibers that could provide a selective prebiotic effect. The bottom-up synthesized celluloses involve chains of DP ≥ 9, as precipitated in solution, and they form ~5 nm thick sheet-like crystalline structures of cellulose allomorph II. Solvent conditions and aglycon structures can direct the cellulose chain self-assembly towards a range of material architectures, including hierarchically organized networks of nanoribbons, or nanorods as well as distorted nanosheets. Composite materials are also formed. The resulting materials can be useful as property-tunable hydrogels and feature site-specific introduction of functional and chemically reactive groups. Therefore, COS and cellulose obtained via bottom-up synthesis can expand cellulose applications towards product classes that are difficult to access via top-down processing of natural materials.
Collapse
Affiliation(s)
- Bernd Nidetzky
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, NAWI Graz, Petersgasse 12, Graz 8010, Austria; Austrian Centre of Industrial Biotechnology (acib), Krenngasse 37, Graz 8010, Austria.
| | - Chao Zhong
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, NAWI Graz, Petersgasse 12, Graz 8010, Austria
| |
Collapse
|
16
|
Hata Y, Kojima T, Maeda T, Sawada T, Serizawa T. pH‐Triggered Self‐Assembly of Cellulose Oligomers with Gelatin into a Double‐Network Hydrogel. Macromol Biosci 2020; 20:e2000187. [DOI: 10.1002/mabi.202000187] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 07/08/2020] [Indexed: 12/17/2022]
Affiliation(s)
- Yuuki Hata
- Department of Chemical Science and EngineeringSchool of Materials and Chemical TechnologyTokyo Institute of Technology 2‐12‐1‐H121 Ookayama Meguro‐ku Tokyo 152‐8550 Japan
| | - Tomoya Kojima
- Department of Chemical Science and EngineeringSchool of Materials and Chemical TechnologyTokyo Institute of Technology 2‐12‐1‐H121 Ookayama Meguro‐ku Tokyo 152‐8550 Japan
| | - Tohru Maeda
- Department of Chemical Science and EngineeringSchool of Materials and Chemical TechnologyTokyo Institute of Technology 2‐12‐1‐H121 Ookayama Meguro‐ku Tokyo 152‐8550 Japan
| | - Toshiki Sawada
- Department of Chemical Science and EngineeringSchool of Materials and Chemical TechnologyTokyo Institute of Technology 2‐12‐1‐H121 Ookayama Meguro‐ku Tokyo 152‐8550 Japan
- Precursory Research for Embryonic Science and TechnologyJapan Science and Technology Agency 4‐1‐8 Honcho Kawaguchi‐shi Saitama 332‐0012 Japan
| | - Takeshi Serizawa
- Department of Chemical Science and EngineeringSchool of Materials and Chemical TechnologyTokyo Institute of Technology 2‐12‐1‐H121 Ookayama Meguro‐ku Tokyo 152‐8550 Japan
| |
Collapse
|
17
|
Hata Y, Fukaya Y, Sawada T, Nishiura M, Serizawa T. Biocatalytic oligomerization-induced self-assembly of crystalline cellulose oligomers into nanoribbon networks assisted by organic solvents. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2019; 10:1778-1788. [PMID: 31501749 PMCID: PMC6720341 DOI: 10.3762/bjnano.10.173] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 08/06/2019] [Indexed: 05/05/2023]
Abstract
Crystalline poly- and oligosaccharides such as cellulose can form extremely robust assemblies, whereas the construction of self-assembled materials from such molecules is generally difficult due to their complicated chemical synthesis and low solubility in solvents. Enzyme-catalyzed oligomerization-induced self-assembly has been shown to be promising for creating nanoarchitectured crystalline oligosaccharide materials. However, the controlled self-assembly into organized hierarchical structures based on a simple method is still challenging. Herein, we demonstrate that the use of organic solvents as small-molecule additives allows for control of the oligomerization-induced self-assembly of cellulose oligomers into hierarchical nanoribbon network structures. In this study, we dealt with the cellodextrin phosphorylase-catalyzed oligomerization of phosphorylated glucose monomers from ᴅ-glucose primers, which produce precipitates of nanosheet-shaped crystals in aqueous solution. The addition of appropriate organic solvents to the oligomerization system was found to result in well-grown nanoribbon networks. The organic solvents appeared to prevent irregular aggregation and subsequent precipitation of the nanosheets via solvation for further growth into the well-grown higher-order structures. This finding indicates that small-molecule additives provide control over the self-assembly of crystalline oligosaccharides for the creation of hierarchically structured materials with high robustness in a simple manner.
Collapse
Affiliation(s)
- Yuuki Hata
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Yuka Fukaya
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Toshiki Sawada
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
- Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency (JST), 4-1-8 Honcho, Kawaguchi-shi, Saitama 332-0012, Japan
| | - Masahito Nishiura
- DKS Co. Ltd., 5 Ogawaracho, Kisshoin, Minami-ku, Kyoto-shi, Kyoto 601-8391, Japan
| | - Takeshi Serizawa
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| |
Collapse
|
18
|
Hata Y, Sawada T, Marubayashi H, Nojima S, Serizawa T. Temperature-Directed Assembly of Crystalline Cellulose Oligomers into Kinetically Trapped Structures during Biocatalytic Synthesis. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:7026-7034. [PMID: 31045372 DOI: 10.1021/acs.langmuir.9b00850] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Crystalline polysaccharides, such as cellulose and chitin, can form superior assemblies in terms of physicochemical stability and mechanical properties. However, their use as molecular building blocks for self-assembled materials is rare, possibly because each crystalline polysaccharide has its own unique monomer unit, preventing molecular design for controlling the self-assembly. Herein, we demonstrate the temperature-directed assembly of crystalline cellulose oligomers into kinetically trapped structures, namely, precipitated nanosheets, nanoribbon network hydrogels, and dispersed nanosheets (in descending order of temperature). It was found that enzymatically synthesized cellulose oligomers self-assembled in situ into those structures depending on the synthetic temperatures. Mechanistic studies suggested that the formation of the nanoribbon networks and the dispersed nanosheets at lower temperatures were driven by synergy between the decreased hydrophobic effect and the simultaneously induced self-crowding effect. Furthermore, nanoribbon network formation was exploited for the construction of cellulose oligomer-based hybrid gels with colloidal particles. Our findings promote the development of robust self-assembled materials composed of crystalline polysaccharides with highly ordered nano-to-macroscale structures.
Collapse
Affiliation(s)
- Yuuki Hata
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology , Tokyo Institute of Technology , 2-12-1 Ookayama , Meguro-ku, Tokyo 152-8550 , Japan
| | - Toshiki Sawada
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology , Tokyo Institute of Technology , 2-12-1 Ookayama , Meguro-ku, Tokyo 152-8550 , Japan
- Precursory Research for Embryonic Science and Technology (PRESTO) , Japan Science and Technology Agency (JST) , 4-1-8 Honcho , Kawaguchi-shi , Saitama 332-0012 , Japan
| | - Hironori Marubayashi
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology , Tokyo Institute of Technology , 2-12-1 Ookayama , Meguro-ku, Tokyo 152-8550 , Japan
| | - Shuichi Nojima
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology , Tokyo Institute of Technology , 2-12-1 Ookayama , Meguro-ku, Tokyo 152-8550 , Japan
| | - Takeshi Serizawa
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology , Tokyo Institute of Technology , 2-12-1 Ookayama , Meguro-ku, Tokyo 152-8550 , Japan
| |
Collapse
|
19
|
|
20
|
Serizawa T, Fukaya Y, Sawada T. Nanoribbon network formation of enzymatically synthesized cellulose oligomers through dispersion stabilization of precursor particles. Polym J 2018. [DOI: 10.1038/s41428-018-0057-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
21
|
Serizawa T, Fukaya Y, Sawada T. Self-Assembly of Cellulose Oligomers into Nanoribbon Network Structures Based on Kinetic Control of Enzymatic Oligomerization. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:13415-13422. [PMID: 29076732 DOI: 10.1021/acs.langmuir.7b03653] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The ability to chemically synthesize desired molecules followed by their in situ self-assembly in reaction solution has attracted much attention as a simple and environmentally friendly method to produce self-assembled nanostructures. In this study, α-d-glucose 1-phosphate monomers and cellobiose primers were subjected to cellodextrin phosphorylase-catalyzed reverse phosphorolysis reactions in aqueous solution in order to synthesize cellulose oligomers, which were then in situ self-assembled into crystalline nanoribbon network structures. The average degree-of-polymerization (DP) values of the cellulose oligomers were estimated to be approximately 7-8 with a certain degree of DP distribution. The cellulose oligomers crystallized with the cellulose II allomorph appeared to align perpendicularly to the base plane of the nanoribbons in an antiparallel manner. Detailed analyses of reaction time dependence suggested that the production of nanoribbon network structures was kinetically controlled by the amount of water-insoluble cellulose oligomers produced.
Collapse
Affiliation(s)
- Takeshi Serizawa
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology , 2-12-1-H121 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Yuka Fukaya
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology , 2-12-1-H121 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Toshiki Sawada
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology , 2-12-1-H121 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
- Precursory Research for Embryonic Science and Technology, Japan Science and Technology Agency , 4-1-8 Honcho, Kawaguchi-shi, Saitama 332-0012, Japan
| |
Collapse
|
22
|
Wang J, Niu J, Sawada T, Shao Z, Serizawa T. A Bottom-Up Synthesis of Vinyl-Cellulose Nanosheets and Their Nanocomposite Hydrogels with Enhanced Strength. Biomacromolecules 2017; 18:4196-4205. [DOI: 10.1021/acs.biomac.7b01224] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Jianquan Wang
- Beijing
Engineering Research Center of Cellulose and Its Derivatives, School
of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
- Department
of Chemical Science and Engineering, School of Materials and Chemical
Technology, Tokyo Institute of Technology, Tokyo 152-8550, Japan
| | - Jiabao Niu
- Beijing
Engineering Research Center of Cellulose and Its Derivatives, School
of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Toshiki Sawada
- Department
of Chemical Science and Engineering, School of Materials and Chemical
Technology, Tokyo Institute of Technology, Tokyo 152-8550, Japan
| | - Ziqiang Shao
- Beijing
Engineering Research Center of Cellulose and Its Derivatives, School
of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Takeshi Serizawa
- Department
of Chemical Science and Engineering, School of Materials and Chemical
Technology, Tokyo Institute of Technology, Tokyo 152-8550, Japan
| |
Collapse
|
23
|
Nohara T, Sawada T, Tanaka H, Serizawa T. Enzymatic synthesis and protein adsorption properties of crystalline nanoribbons composed of cellulose oligomer derivatives with primary amino groups. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2017; 28:925-938. [DOI: 10.1080/09205063.2017.1322248] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Takatoshi Nohara
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, Tokyo, Japan
| | - Toshiki Sawada
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, Tokyo, Japan
| | - Hiroshi Tanaka
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, Tokyo, Japan
| | - Takeshi Serizawa
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, Tokyo, Japan
| |
Collapse
|
24
|
Hata Y, Sawada T, Serizawa T. Effect of solution viscosity on the production of nanoribbon network hydrogels composed of enzymatically synthesized cellulose oligomers under macromolecular crowding conditions. Polym J 2017. [DOI: 10.1038/pj.2017.22] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
25
|
Nohara T, Sawada T, Tanaka H, Serizawa T. Enzymatic Synthesis of Oligo(ethylene glycol)-Bearing Cellulose Oligomers for in Situ Formation of Hydrogels with Crystalline Nanoribbon Network Structures. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:12520-12526. [PMID: 27340728 DOI: 10.1021/acs.langmuir.6b01635] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Enzymatic synthesis of cellulose and its derivatives has gained considerable attention for use in the production of artificial crystalline nanocelluloses with unique structural and functional properties. However, the poor colloidal stability of the nanocelluloses during enzymatic synthesis in aqueous solutions limits their crystallization-based self-assembly to greater architectures. In this study, oligo(ethylene glycol) (OEG)-bearing cellulose oligomers with different OEG chain lengths were systematically synthesized via cellodextrin phosphorylase-catalyzed oligomerization of α-d-glucose l-phosphate monomers against OEG-bearing β-d-glucose primers. The products were self-assembled into extremely well-grown crystalline nanoribbon network structures with the cellulose II allomorph, potentially due to OEG-derived colloidal stability of the nanoribbon's precursors, followed by the in situ formation of physically cross-linked hydrogels. The monomer conversions, average degree of polymerization, and morphologies of the nanoribbons changed significantly, depending on the OEG chain length. Taken together, our findings open a new avenue for the enzymatic reaction-based facile production of novel cellulosic soft materials with regular nanostructures.
Collapse
Affiliation(s)
- Takatoshi Nohara
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology , 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Toshiki Sawada
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology , 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Hiroshi Tanaka
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology , 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Takeshi Serizawa
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology , 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| |
Collapse
|
26
|
Yataka Y, Sawada T, Serizawa T. Multidimensional Self-Assembled Structures of Alkylated Cellulose Oligomers Synthesized via in Vitro Enzymatic Reactions. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:10120-10125. [PMID: 27606835 DOI: 10.1021/acs.langmuir.6b02679] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The self-assembly of biomolecules into highly ordered nano-to-macroscale structures is essential in the construction of biological tissues and organs. A variety of biomolecular assemblies composed of nucleic acids, peptides, and lipids have been used as molecular building units for self-assembled materials. However, crystalline polysaccharides have rarely been utilized in self-assembled materials. In this study, we describe multidimensional self-assembled structures of alkylated cellulose oligomers synthesized via in vitro enzymatic reactions. We found that the alkyl chain length drastically affected the assembled morphologies and allomorphs of cellulose moieties. The modulation of the intermolecular interactions of cellulose oligomers by alkyl substituents was highly effective at controlling their assembly into multidimensional structures. This study proposes a new potential of crystalline oligosaccharides for structural components of molecular assemblies with controlled morphologies and crystal structures.
Collapse
Affiliation(s)
- Yusuke Yataka
- Department of Organic and Polymeric Materials, Graduate School of Science and Engineering, Tokyo Institute of Technology , 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Toshiki Sawada
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology , 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Takeshi Serizawa
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology , 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| |
Collapse
|
27
|
Shoda SI, Uyama H, Kadokawa JI, Kimura S, Kobayashi S. Enzymes as Green Catalysts for Precision Macromolecular Synthesis. Chem Rev 2016; 116:2307-413. [PMID: 26791937 DOI: 10.1021/acs.chemrev.5b00472] [Citation(s) in RCA: 318] [Impact Index Per Article: 39.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The present article comprehensively reviews the macromolecular synthesis using enzymes as catalysts. Among the six main classes of enzymes, the three classes, oxidoreductases, transferases, and hydrolases, have been employed as catalysts for the in vitro macromolecular synthesis and modification reactions. Appropriate design of reaction including monomer and enzyme catalyst produces macromolecules with precisely controlled structure, similarly as in vivo enzymatic reactions. The reaction controls the product structure with respect to substrate selectivity, chemo-selectivity, regio-selectivity, stereoselectivity, and choro-selectivity. Oxidoreductases catalyze various oxidation polymerizations of aromatic compounds as well as vinyl polymerizations. Transferases are effective catalysts for producing polysaccharide having a variety of structure and polyesters. Hydrolases catalyzing the bond-cleaving of macromolecules in vivo, catalyze the reverse reaction for bond forming in vitro to give various polysaccharides and functionalized polyesters. The enzymatic polymerizations allowed the first in vitro synthesis of natural polysaccharides having complicated structures like cellulose, amylose, xylan, chitin, hyaluronan, and chondroitin. These polymerizations are "green" with several respects; nontoxicity of enzyme, high catalyst efficiency, selective reactions under mild conditions using green solvents and renewable starting materials, and producing minimal byproducts. Thus, the enzymatic polymerization is desirable for the environment and contributes to "green polymer chemistry" for maintaining sustainable society.
Collapse
Affiliation(s)
- Shin-ichiro Shoda
- Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University , Aoba-ku, Sendai 980-8579, Japan
| | - Hiroshi Uyama
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University , Yamadaoka, Suita 565-0871, Japan
| | - Jun-ichi Kadokawa
- Department of Chemistry, Biotechnology, and Chemical Engineering, Graduate School of Science and Engineering, Kagoshima University , Korimoto, Kagoshima 890-0065, Japan
| | - Shunsaku Kimura
- Department of Material Chemistry, Graduate School of Engineering, Kyoto University , Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Shiro Kobayashi
- Center for Fiber & Textile Science, Kyoto Institute of Technology , Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| |
Collapse
|
28
|
Serizawa T, Kato M, Okura H, Sawada T, Wada M. Hydrolytic activities of artificial nanocellulose synthesized via phosphorylase-catalyzed enzymatic reactions. Polym J 2016. [DOI: 10.1038/pj.2015.125] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
29
|
Zweckmair T, Oberlerchner JT, Böhmdorfer S, Bacher M, Sauerland V, Rosenau T, Potthast A. Preparation and analytical characterisation of pure fractions of cellooligosaccharides. J Chromatogr A 2016; 1431:47-54. [DOI: 10.1016/j.chroma.2015.12.090] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Revised: 12/14/2015] [Accepted: 12/20/2015] [Indexed: 10/22/2022]
|
30
|
De Winter K, Dewitte G, Dirks-Hofmeister ME, De Laet S, Pelantová H, Křen V, Desmet T. Enzymatic Glycosylation of Phenolic Antioxidants: Phosphorylase-Mediated Synthesis and Characterization. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2015; 63:10131-9. [PMID: 26540621 DOI: 10.1021/acs.jafc.5b04380] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Although numerous biologically active molecules exist as glycosides in nature, information on the activity, stability, and solubility of glycosylated antioxidants is rather limited to date. In this work, a wide variety of antioxidants were glycosylated using different phosphorylase enzymes. The resulting antioxidant library, containing α/β-glucosides, different regioisomers, cellobiosides, and cellotriosides, was then characterized. Glycosylation was found to significantly increase the solubility and stability of all evaluated compounds. Despite decreased radical-scavenging abilities, most glycosides were identified to be potent antioxidants, outperforming the commonly used 2,6-bis(1,1-dimethylethyl)-4-methylphenol (BHT). Moreover, the point of attachment, the anomeric configuration, and the glycosidic chain length were found to influence the properties of these phenolic glycosides.
Collapse
Affiliation(s)
- Karel De Winter
- Centre for Industrial Biotechnology and Biocatalysis, Department of Biochemical and Microbial Technology, Faculty of Biosciences Engineering, Ghent University , Coupure Links 653, B-9000 Ghent, Belgium
| | - Griet Dewitte
- Centre for Industrial Biotechnology and Biocatalysis, Department of Biochemical and Microbial Technology, Faculty of Biosciences Engineering, Ghent University , Coupure Links 653, B-9000 Ghent, Belgium
| | - Mareike E Dirks-Hofmeister
- Centre for Industrial Biotechnology and Biocatalysis, Department of Biochemical and Microbial Technology, Faculty of Biosciences Engineering, Ghent University , Coupure Links 653, B-9000 Ghent, Belgium
| | - Sylvie De Laet
- Centre for Industrial Biotechnology and Biocatalysis, Department of Biochemical and Microbial Technology, Faculty of Biosciences Engineering, Ghent University , Coupure Links 653, B-9000 Ghent, Belgium
| | | | | | - Tom Desmet
- Centre for Industrial Biotechnology and Biocatalysis, Department of Biochemical and Microbial Technology, Faculty of Biosciences Engineering, Ghent University , Coupure Links 653, B-9000 Ghent, Belgium
| |
Collapse
|
31
|
Petrović DM, Kok I, Woortman AJJ, Ćirić J, Loos K. Characterization of oligocellulose synthesized by reverse phosphorolysis using different cellodextrin phosphorylases. Anal Chem 2015; 87:9639-46. [PMID: 26291473 DOI: 10.1021/acs.analchem.5b01098] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Much progress was made in the straightforward and eco-friendly enzymatic synthesis of shorter cellulose chains (oligocellulose). Here, we report the determination of a molar mass distribution of the oligocellulose synthesized from cellobiose (CB) and α-glucose 1-phosphate by reverse phosphorolysis, using enzymes cellodextrin phosphorylase from Clostridium stercorarium or Clostridium thermocellum as catalyst. The oligocellulose molar mass distribution was analyzed using three different methods: (1)H NMR spectroscopy, matrix assisted laser desorption/ionization-time-of-flight mass spectrometry (MALDI-ToF MS) and size exclusion chromatography (SEC). The molar mass distribution of the synthesized oligocellulose was only dependent on the concentration of cellobiose used in the reaction. Data obtained from MALDI-ToF MS and SEC were almost identical and showed that oligocellulose synthesized using 10 mM CB has an average degree of polymerization (DPn) of ∼7, while a DPn of ∼14 was achieved when 0.2 mM CB was used in the reaction. Because of solvent limitation in SEC analysis, MALDI-ToF MS was shown to be the technique of choice for accurate, easy and fast oligocellulose molar mass distribution determination.
Collapse
Affiliation(s)
- Dejan M Petrović
- Department of Polymer Chemistry, Zernike Institute for Advanced Materials, University of Groningen , Nijenborgh 4, 9747AG Groningen, The Netherlands
| | - Inge Kok
- Department of Polymer Chemistry, Zernike Institute for Advanced Materials, University of Groningen , Nijenborgh 4, 9747AG Groningen, The Netherlands
| | - Albert J J Woortman
- Department of Polymer Chemistry, Zernike Institute for Advanced Materials, University of Groningen , Nijenborgh 4, 9747AG Groningen, The Netherlands
| | - Jelena Ćirić
- Department of Polymer Chemistry, Zernike Institute for Advanced Materials, University of Groningen , Nijenborgh 4, 9747AG Groningen, The Netherlands
| | - Katja Loos
- Department of Polymer Chemistry, Zernike Institute for Advanced Materials, University of Groningen , Nijenborgh 4, 9747AG Groningen, The Netherlands
| |
Collapse
|
32
|
Preparation and Analysis of Cello- and Xylooligosaccharides. ADVANCES IN POLYMER SCIENCE 2015. [DOI: 10.1007/12_2015_306] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
33
|
Yataka Y, Sawada T, Serizawa T. Enzymatic synthesis and post-functionalization of two-dimensional crystalline cellulose oligomers with surface-reactive groups. Chem Commun (Camb) 2015; 51:12525-8. [DOI: 10.1039/c5cc04378f] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Two-dimensional crystalline cellulose oligomers with surface-reactive azide groups were synthesized by enzymatic reactions and covalently post-functionalized with alkyne-containing dye molecules through click reactions.
Collapse
Affiliation(s)
- Yusuke Yataka
- Department of Organic and Polymeric Materials
- Tokyo Institute of Technology
- Meguro-ku
- Japan
| | - Toshiki Sawada
- Department of Organic and Polymeric Materials
- Tokyo Institute of Technology
- Meguro-ku
- Japan
| | - Takeshi Serizawa
- Department of Organic and Polymeric Materials
- Tokyo Institute of Technology
- Meguro-ku
- Japan
| |
Collapse
|
34
|
Ciric J, Petrovic DM, Loos K. Polysaccharide Biocatalysis: From Synthesizing Carbohydrate Standards to Establishing Characterization Methods. MACROMOL CHEM PHYS 2014. [DOI: 10.1002/macp.201300801] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Jelena Ciric
- Department of Polymer Chemistry & Zernike Institute for Advanced Materials; University of Groningen; Nijenborgh 4 9747 AG Groningen The Netherlands
| | - Dejan M. Petrovic
- Department of Polymer Chemistry & Zernike Institute for Advanced Materials; University of Groningen; Nijenborgh 4 9747 AG Groningen The Netherlands
| | - Katja Loos
- Department of Polymer Chemistry & Zernike Institute for Advanced Materials; University of Groningen; Nijenborgh 4 9747 AG Groningen The Netherlands
| |
Collapse
|
35
|
Hashimoto A, Shimono K, Horikawa Y, Ichikawa T, Wada M, Imai T, Sugiyama J. Extraction of cellulose-synthesizing activity of Gluconacetobacter xylinus by alkylmaltoside. Carbohydr Res 2011; 346:2760-8. [PMID: 22070831 DOI: 10.1016/j.carres.2011.09.031] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2011] [Revised: 09/26/2011] [Accepted: 09/27/2011] [Indexed: 11/27/2022]
Abstract
This study reinvestigated the synthesis of cellulose in vitro with a well-known cellulose-producing bacterium, Gluconacetobacter xylinus. Alkylmaltoside detergents, which are more frequently used in recent structural biological researches, are uniquely used in this study to solubilize cellulose-synthesizing activity from the cell membrane of G. xylinus. Activity comparable to that previously reported is obtained, while the synthesized cellulose is crystallized into a non-native polymorph of cellulose (cellulose II) as well as the previous studies. In spite of this failure to recover the native activity to synthesize cellulose I microfibril in vitro, the product is a polymer with a degree of polymerization greater than 45 as determined by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOFMS). It was thus concluded that the established protocol can solubilize cellulose-synthesizing activity of G. xylinus with polymerizing activity.
Collapse
Affiliation(s)
- Akira Hashimoto
- Research Institute of Sustainable Humanosphere, Kyoto University, Uji, Kyoto 611-0011, Japan
| | | | | | | | | | | | | |
Collapse
|
36
|
Fusion of a family 9 cellulose-binding module improves catalytic potential of Clostridium thermocellum cellodextrin phosphorylase on insoluble cellulose. Appl Microbiol Biotechnol 2011; 92:551-60. [DOI: 10.1007/s00253-011-3346-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2011] [Revised: 05/02/2011] [Accepted: 05/03/2011] [Indexed: 10/18/2022]
|
37
|
Hai Tran G, Desmet T, De Groeve MRM, Soetaert W. Probing the active site of cellodextrin phosphorylase from Clostridium stercorarium: Kinetic characterization, ligand docking, and site-directed mutagenesis. Biotechnol Prog 2011; 27:326-32. [DOI: 10.1002/btpr.555] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2010] [Revised: 10/13/2010] [Indexed: 11/09/2022]
|
38
|
Affiliation(s)
- Jun-ichi Kadokawa
- Graduate School of Science and Engineering, Kagoshima University, 1-21-40 Korimoto, Kagoshima 890-0065, Japan.
| |
Collapse
|
39
|
Nakai H, Hachem MA, Petersen BO, Westphal Y, Mannerstedt K, Baumann MJ, Dilokpimol A, Schols HA, Duus JØ, Svensson B. Efficient chemoenzymatic oligosaccharide synthesis by reverse phosphorolysis using cellobiose phosphorylase and cellodextrin phosphorylase from Clostridium thermocellum. Biochimie 2010; 92:1818-26. [PMID: 20678539 DOI: 10.1016/j.biochi.2010.07.013] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2010] [Accepted: 07/22/2010] [Indexed: 11/30/2022]
Abstract
Inverting cellobiose phosphorylase (CtCBP) and cellodextrin phosphorylase (CtCDP) from Clostridium thermocellum ATCC27405 of glycoside hydrolase family 94 catalysed reverse phosphorolysis to produce cellobiose and cellodextrins in 57% and 48% yield from α-d-glucose 1-phosphate as donor with glucose and cellobiose as acceptor, respectively. Use of α-d-glucosyl 1-fluoride as donor increased product yields to 98% for CtCBP and 68% for CtCDP. CtCBP showed broad acceptor specificity forming β-glucosyl disaccharides with β-(1→4)- regioselectivity from five monosaccharides as well as branched β-glucosyl trisaccharides with β-(1→4)-regioselectivity from three (1→6)-linked disaccharides. CtCDP showed strict β-(1→4)-regioselectivity and catalysed linear chain extension of the three β-linked glucosyl disaccharides, cellobiose, sophorose, and laminaribiose, whereas 12 tested monosaccharides were not acceptors. Structure analysis by NMR and ESI-MS confirmed two β-glucosyl oligosaccharide product series to represent novel compounds, i.e. β-D-glucopyranosyl-[(1→4)-β-D-glucopyranosyl](n)-(1→2)-D-glucopyranose, and β-D-glucopyranosyl-[(1→4)-β-D-glucopyranosyl](n)-(1→3)-D-glucopyranose (n = 1-7). Multiple sequence alignment together with a modelled CtCBP structure, obtained using the crystal structure of Cellvibrio gilvus CBP in complex with glucose as a template, indicated differences in the subsite +1 region that elicit the distinct acceptor specificities of CtCBP and CtCDP. Thus Glu636 of CtCBP recognized the C1 hydroxyl of β-glucose at subsite +1, while in CtCDP the presence of Ala800 conferred more space, which allowed accommodation of C1 substituted disaccharide acceptors at the corresponding subsites +1 and +2. Furthermore, CtCBP has a short Glu496-Thr500 loop that permitted the C6 hydroxyl of glucose at subsite +1 to be exposed to solvent, whereas the corresponding longer loop Thr637-Lys648 in CtCDP blocks binding of C6-linked disaccharides as acceptors at subsite +1. High yields in chemoenzymatic synthesis, a novel regioselectivity, and novel oligosaccharides including products of CtCDP catalysed oligosaccharide oligomerisation using α-d-glucosyl 1-fluoride, all together contribute to the formation of an excellent basis for rational engineering of CBP and CDP to produce desired oligosaccharides.
Collapse
Affiliation(s)
- Hiroyuki Nakai
- Enzyme and Protein Chemistry, Department of Systems Biology, Technical University of Denmark, Søltofts Plads, Building 224, DK-2800 Kgs. Lyngby, Denmark
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Kobayashi S, Makino A. Enzymatic polymer synthesis: an opportunity for green polymer chemistry. Chem Rev 2010; 109:5288-353. [PMID: 19824647 DOI: 10.1021/cr900165z] [Citation(s) in RCA: 409] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Shiro Kobayashi
- R & D Center for Bio-based Materials, Kyoto Institute of Technology, Kyoto 606-8585, Japan.
| | | |
Collapse
|
41
|
Synthesis of highly ordered cellulose II in vitro using cellodextrin phosphorylase. Carbohydr Res 2009; 344:2468-73. [DOI: 10.1016/j.carres.2009.10.002] [Citation(s) in RCA: 101] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2009] [Revised: 09/30/2009] [Accepted: 10/10/2009] [Indexed: 11/23/2022]
|
42
|
Sletmoen M, Stokke BT. Higher order structure of (1,3)-beta-D-glucans and its influence on their biological activities and complexation abilities. Biopolymers 2008; 89:310-21. [PMID: 18186085 DOI: 10.1002/bip.20920] [Citation(s) in RCA: 120] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
(1,3)-beta-D-Glucans form a group of biologically active biopolymers that exist in different structural organizations depending on the environmental conditions. The biological effect of (1,3)-beta-D-glucans is a core issue stimulating large research efforts of the molecular properties and their consequences for action as biological response modifiers. The fascination for these molecules increased further following the finding of their ability to form complexes of defined geometry with a number of structures, ranging from linear architectures as polymers or carbon nanotubes, to globular structures as gold particles or dye molecules. The fascinating information concerning the relationship between sample treatment history and molecular organization has not yet reached out to all the contributors within the field, resulting in unnecessary apparent inconsistencies in the literature. In addition to environmental conditions, the sample history is known to influence on the precise structural organization of these molecules. The present knowledge related to the structure of native as well as denatured, renatured and annealed (1,3)-beta-D-glucans is reviewed. The influence of their structural organization on the biological activity and complexation abilities is discussed, and some factors hindering progress in the understanding of their biological effects or complexation abilities are pointed out.
Collapse
Affiliation(s)
- Marit Sletmoen
- Biophysics and Medical Technology, Department of Physics, The Norwegian University of Science and Technology, NTNU, Trondheim, Norway
| | | |
Collapse
|
43
|
Hommalai G, Withers SG, Chuenchor W, Cairns JRK, Svasti J. Enzymatic synthesis of cello-oligosaccharides by rice BGlu1 β-glucosidase glycosynthase mutants. Glycobiology 2007; 17:744-53. [PMID: 17405771 DOI: 10.1093/glycob/cwm039] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Rice BGlu1 beta-glucosidase is a glycosyl hydrolase family 1 enzyme that acts as an exoglucanase on beta-(1,4)- and short beta-(1,3)-linked gluco-oligosaccharides. Mutations of BGlu1 beta-glucosidase at glutamate residue 414 of its natural precursor destroyed the enzyme's catalytic activity, but the enzyme could be rescued in the presence of the anionic nucleophiles such as formate and azide, which verifies that this residue is the catalytic nucleophile. The catalytic activities of three candidate mutants, E414G, E414S, and E414A, in the presence of the nucleophiles were compared. The E414G mutant had approximately 25- and 1400-fold higher catalytic efficiency than E414A and E414S, respectively. All three mutants could catalyze the synthesis of mixed length oligosaccharides by transglucosylation, when alpha-glucosyl fluoride was used as donor and pNP-cellobioside as acceptor. The E414G mutant gave the fastest transglucosylation rate, which was approximately 3- and 19-fold faster than that of E414S and E414A, respectively, and gave yields of up to 70-80% insoluble products with a donor-acceptor ratio of 5:1. (13)C-NMR, methylation analysis, and electrospray ionization-mass spectrometry showed that the insoluble products were beta-(1,4)-linked oligomers with a degree of polymerization of 5 to at least 11. The BGlu1 E414G glycosynthase was found to prefer longer chain length oligosaccharides that occupy at least three sugar residue-binding subsites as acceptors for productive transglucosylation. This is the first report of a beta-glucansynthase derived from an exoglycosidase that can produce long-chain cello-oligosaccharides, which likely reflects the extended oligosaccharide-binding site of rice BGlu1 beta-glucosidase.
Collapse
Affiliation(s)
- Greanggrai Hommalai
- Center for Protein Structure and Function, Mahidol University, Bangkok 10400, Thailand
| | | | | | | | | |
Collapse
|
44
|
Rich JR, Wakarchuk WW, Bundle DR. Chemical and Chemoenzymatic Synthesis of S-Linked Ganglioside Analogues and Their Protein Conjugates for Use as Immunogens. Chemistry 2006; 12:845-58. [PMID: 16196067 DOI: 10.1002/chem.200500518] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Analogues of the tumor-associated gangliosides GM(3) and GM(2) containing terminal S-linked neuraminic acid residues and an amino terminated, truncated ceramide homologue have been synthesized and conjugated to a protein. The synthesis involved coupling of a S-linked sialyl alpha(2-->3) galactose disaccharide with a glucosyl sphingosine analogue, followed by elaboration and deprotection to give amino-terminated glycosyl ceramide 1. Glycosyltransferase-catalyzed extension of the trisaccharide 1 provided access to the modified GM(2) tetrasaccharide 2 or sulphur-containing GD(3) analogue 30. Owing to their potentially enhanced resistance to endogenous exo-glycoside hydrolases and their inherent non-self character, carbohydrate antigens containing non-reducing terminal thioglycosidic linkages may be more immunogenic than O-linked antigens and may stimulate the production of antibodies capable of recognizing naturally occurring oligosaccharides. Our initial results suggest that in fact these antigens are viable immunogens and furthermore, that immune sera cross reacts with O-gangliosides in the context of a heterologous glycoprotein conjugate.
Collapse
Affiliation(s)
- Jamie R Rich
- Alberta Ingenuity Centre for Carbohydrate Science, Department of Chemistry, University of Alberta, Edmonton, Canada
| | | | | |
Collapse
|
45
|
Shintate K, Kitaoka M, Kim YK, Hayashi K. Enzymatic synthesis of a library of β-(1→4) hetero- d-glucose and d-xylose-based oligosaccharides employing cellodextrin phosphorylase. Carbohydr Res 2003; 338:1981-90. [PMID: 14499574 DOI: 10.1016/s0008-6215(03)00314-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Enzymatic synthesis was attempted of six trisaccharides and 14 tetrasaccharides comprising beta-(1-->4)-linked D-glucose and D-xylose residues, using cellodextrin phosphorylase (CDP, EC 2.4.1.49) as the enzyme catalyst, with alpha-D-glucose 1-phosphate (1) or alpha-D-xylose 1-phosphate (2) as the donor substrates, and cellobiose (3), xylobiose (4), betaGlc-(1-->4)-Xyl (5), or betaXyl-(1-->4)-Glc (6) as the acceptor substrates. All enzymatic reactions were performed at pH 7.0 and the products purified by gel-filtration chromatography. We successfully synthesized all six hetero-trisaccharides and 10 of the 14 possible hetero-tetrasaccharides. It was not found possible to synthesize the four tetrasaccharides with a Xyl-->Glc sequence at their non-reducing ends employing this method. The stereochemistries of the isolated products were assessed by analysis of their 2D NMR spectra (DQF-COSY, TOCSY, HSQC, HMBC), confirming that all of the glycosidic bonds in the products were beta-(1-->4) linkages.
Collapse
Affiliation(s)
- Keiko Shintate
- Enzyme Laboratory, National Food Research Institute, 2-1-12 Kannondai, Tsukuba, Ibaraki 305-8642, Japan
| | | | | | | |
Collapse
|
46
|
Lai-Kee-Him J, Chanzy H, Müller M, Putaux JL, Imai T, Bulone V. In vitro versus in vivo cellulose microfibrils from plant primary wall synthases: structural differences. J Biol Chem 2002; 277:36931-9. [PMID: 12145282 DOI: 10.1074/jbc.m203530200] [Citation(s) in RCA: 128] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Detergent extracts of microsomal fractions from suspension cultured cells of Rubus fruticosus (blackberry) were tested for their ability to synthesize in vitro sizable quantities of cellulose from UDP-glucose. Both Brij 58 and taurocholate were effective and yielded a substantial percentage of cellulose microfibrils together with (1-->3)-beta-d-glucan (callose). The taurocholate extracts, which did not require the addition of Mg(2+), were the most efficient, yielding roughly 20% of cellulose. This cellulose was characterized after callose removal by methylation analysis, electron microscopy, and electron and x-ray synchrotron diffractions; its resistance toward the acid Updegraff reagent was also evaluated. The cellulose microfibrils synthesized in vitro had the same diameter as the endogenous microfibrils isolated from primary cell walls. Both polymers diffracted as cellulose IV(I), a disorganized form of cellulose I. Besides these similarities, the in vitro microfibrils had a higher perfection and crystallinity as well as a better resistance toward the Updegraff reagent. These differences can be attributed to the mode of synthesis of the in vitro microfibrils that are able to grow independently in a neighbor-free environment, as opposed to the cellulose in the parent cell walls where new microfibrils have to interweave with the already laid polymers, with the result of a number of structural defects.
Collapse
Affiliation(s)
- Joséphine Lai-Kee-Him
- Centre de Recherches sur les Macromolécules Végétales (CERMAV-UPR CNRS 5301), Joseph Fourier University of Grenoble, B.P. 53, 38041 Grenoble cedex 9, France
| | | | | | | | | | | |
Collapse
|
47
|
Kobayashi S, Hobson LJ, Sakamoto J, Kimura S, Sugiyama J, Imai T, Itoh T. Formation and structure of artificial cellulose spherulites via enzymatic polymerization. Biomacromolecules 2002; 1:168-73. [PMID: 11710096 DOI: 10.1021/bm990010w] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The in-depth structural analysis of spherulites of artificial cellulose, formed by the enzymatic polymerization of cellobiosyl fluoride, is reported. Both positive- and negative-type spherulites were observed by polarization optical microscopy. Scanning electron microscopy revealed that the negative spherulites have a three-dimensional round shape, where platelike single crystals of the artificial cellulose originate radially from the center. Transmission electron microscopy confirmed that the cellulose chains orient vertically in the platelike crystals, explaining the observation of negative-type spherulites by polarization optical microscopy. Cellulose spherulites can be formed easily via the enzymatic polymerization process, and the occurrence of both positive- and negative-type spherulites is proposed, due to two independent polymerization mechanisms.
Collapse
Affiliation(s)
- S Kobayashi
- Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Kyoto 606-8501, Japan
| | | | | | | | | | | | | |
Collapse
|
48
|
Affiliation(s)
- S Kobayashi
- Department of Materials Chemistry, Graduate School of Engineering, Kyoto University, Kyoto 606-8501, Japan.
| | | | | |
Collapse
|
49
|
|
50
|
Kandra L, Gyémánt G, Pál M, Petró M, Remenyik J, Lipták A. Chemoenzymatic synthesis of 2-chloro-4-nitrophenyl beta-maltoheptaoside acceptor-products using glycogen phosphorylase b. Carbohydr Res 2001; 333:129-36. [PMID: 11448673 DOI: 10.1016/s0008-6215(01)00138-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In the present work, we aimed at developing a chemoenzymatic procedure for the synthesis of beta-maltooligosaccharide glycosides. The primer in the enzymatic reaction was 2-chloro-4-nitrophenyl beta-maltoheptaoside (G(7)-CNP), synthesised from beta-cyclodextrin using a convenient chemical method. CNP-maltooligosaccharides of longer chain length, in the range of DP 8-11, were obtained by a transglycosylation reaction using alpha-D-glucopyranosyl-phosphate (G-1-P) as a donor. Detailed enzymological studies revealed that the conversion of G(7)-CNP catalysed by rabbit skeletal muscle glycogen phosphorylase b (EC 2.4.1.1) could be controlled by acarbose and was highly dependent on the conditions of transglycosylation. More than 90% conversion of G(7)-CNP was achieved through a 10:1 donor-acceptor ratio. Tranglycosylation at 37 degrees C for 30 min with 10 U enzyme resulted in G(8-->12)-CNP oligomers in the ratio of 22.8, 26.6, 23.2, 16.5, and 6.8%, respectively. The reaction pattern was investigated using an HPLC system. The preparative scale isolation of G(8-->11)-CNP glycosides was achieved on a semipreparative HPLC column. The productivity of the synthesis was improved by yields up to 70-75%. The structures of the oligomers were confirmed by their chromatographic behaviours and MALDI-TOF MS data.
Collapse
Affiliation(s)
- L Kandra
- Department of Biochemistry, University of Debrecen, PO Box 55, H-4010 Debrecen, Hungary.
| | | | | | | | | | | |
Collapse
|