1
|
Amchova P, Ruda-Kucerova J. Depressive-like phenotype enhances relapse of nicotine seeking after forced abstinence in rats. World J Biol Psychiatry 2023; 24:46-57. [PMID: 35473452 DOI: 10.1080/15622975.2022.2070665] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
OBJECTIVE Comorbidity of depression and drug addiction is common, but effective treatment is missing. A rat model combining the olfactory bulbectomy (OBX) model and IV drug self-administration has provided evidence of differential reactivity of the OBX rats towards drugs of abuse. This study evaluates nicotine taking and seeking behaviour in this model. METHODS Adult male Wistar rats were used; in one group, the OBX was performed while the other group was sham-operated. After three weeks of nicotine self-administration (fixed ratio-1 schedule), rats underwent two weeks of forced abstinence followed by a drug-free relapse-like session. Two doses of nicotine were studied: 0.019 and 0.030 mg/kg per infusion. The locomotor test took place before the self-administration protocol and on the first day of abstinence. RESULTS OBX induced characteristic hyperactive locomotor phenotype. OBX rats self-administered more nicotine in the experiment using 0.019 mg/kg per infusion, but they reached lower drug intake in the study using 0.030 mg/kg per infusion. However, relapse of nicotine seeking after forced abstinence was significantly higher in the OBX groups in both cohorts. CONCLUSION These results are in line with previous studies showing OBX-induced dissimilarities in drug-seeking and drug-taking and represent complementary information to reports on other substances.
Collapse
Affiliation(s)
- Petra Amchova
- Department of Pharmacology, Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Jana Ruda-Kucerova
- Department of Pharmacology, Faculty of Medicine, Masaryk University, Brno, Czechia
| |
Collapse
|
2
|
Schmidt HD, Rupprecht LE, Addy NA. Neurobiological and Neurophysiological Mechanisms Underlying Nicotine Seeking and Smoking Relapse. MOLECULAR NEUROPSYCHIATRY 2019; 4:169-189. [PMID: 30815453 PMCID: PMC6388439 DOI: 10.1159/000494799] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 10/23/2018] [Indexed: 12/19/2022]
Abstract
Tobacco-related morbidity and mortality continue to be a significant public health concern. Unfortunately, current FDA-approved smoking cessation pharmacotherapies have limited efficacy and are associated with high rates of relapse. Therefore, a better understanding of the neurobiological and neurophysiological mechanisms that promote smoking relapse is needed to develop novel smoking cessation medications. Here, we review preclinical studies focused on identifying the neurotransmitter and neuromodulator systems that mediate nicotine relapse, often modeled in laboratory animals using the reinstatement paradigm, as well as the plasticity-dependent neurophysiological mechanisms that facilitate nicotine reinstatement. Particular emphasis is placed on how these neuroadaptations relate to smoking relapse in humans. We also highlight a number of important gaps in our understanding of the neural mechanisms underlying nicotine reinstatement and critical future directions, which may lead toward the development of novel, target pharmacotherapies for smoking cessation.
Collapse
Affiliation(s)
- Heath D. Schmidt
- Department of Biobehavioral Health Sciences, School of Nursing, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Laura E. Rupprecht
- Department of Psychiatry, Yale School of Medicine, New Haven, Connecticut, USA
| | - Nii A. Addy
- Department of Psychiatry, Yale School of Medicine, New Haven, Connecticut, USA
- Department of Cellular and Molecular Physiology, Yale School of Medicine, New Haven, Connecticut, USA
- Interdepartmental Neuroscience Program, Yale Graduate School of Arts and Sciences, New Haven, Connecticut, USA
| |
Collapse
|
3
|
Yohn NL, Caruso MJ, Blendy JA. Effects of nicotine and stress exposure across generations in C57BL/6 mice. Stress 2019; 22:142-150. [PMID: 30457440 PMCID: PMC6453752 DOI: 10.1080/10253890.2018.1532991] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 09/16/2018] [Indexed: 02/06/2023] Open
Abstract
Chronic administration of nicotine or exposure to stress can produce long-lasting behavioral and physiological changes in humans and animals alike. Further, the impact of nicotine and stress exposure can be inherited by offspring to produce persistent changes in physiology and behavior. To determine if nicotine and stress interact across generations to influence offspring behavior we exposed F0 male mice to nicotine and F1 male and female mice to chronic unpredictable stress during adolescence. We then measured locomotor sensitization to repeated nicotine injections in the subsequent F2 and F3 generations. Stress exposure alone (F1) did not influence locomotor sensitization in any lineage. However, in the F1 male lineage, F0 nicotine exposure abrogated locomotor sensitization in F2 male and transiently enhanced locomotor sensitization in F2 female offspring. These effects were not passed down to the F3 generations or observed in the F1 female lineage. F1 stress exposure modulated the effects of prior F0 nicotine exposure in a sex-dependent manner. Specifically, stress blunted the nicotine-induced enhancement in locomotor sensitization observed in F2 female offspring of F1 males. The effect of F0 nicotine and F1 stress exposure in females appears to have skipped a generation and enhanced nicotine sensitization only in the F3 generation, and only in females. This novel multigenerational exposure paradigm examining the inheritance of two different environmental exposures demonstrates that nicotine responses can be modified by nicotine and stress exposure from previous generations, and these effects are strongly influenced by sex.
Collapse
Affiliation(s)
- Nicole L. Yohn
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia PA, USA
| | - Michael J. Caruso
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia PA, USA
| | - Julie A. Blendy
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia PA, USA
| |
Collapse
|
4
|
Baur K, Hach A, Bernardi RE, Spanagel R, Bading H, Bengtson CP. c-Fos marking of identified midbrain neurons coactive after nicotine administration in-vivo. J Comp Neurol 2018; 526:2019-2031. [PMID: 29888787 DOI: 10.1002/cne.24471] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2017] [Revised: 04/26/2018] [Accepted: 05/05/2018] [Indexed: 11/08/2022]
Abstract
Despite the reduced life expectancy and staggering financial burden of medical treatment associated with tobacco smoking, the molecular, cellular, and ensemble adaptations associated with chronic nicotine consumption remain poorly understood. Complex circuitry interconnecting dopaminergic and cholinergic regions of the midbrain and mesopontine tegmentum are critical for nicotine associated reward. Yet our knowledge of the nicotine activation of these regions is incomplete, in part due to their cell type diversity. We performed double immunohistochemistry for the immediate early gene and surrogate activity sensor, c-Fos, and markers for either cholinergic, dopaminergic or GABAergic cell types in mice treated with nicotine. Both acute (0.5 mg/kg) and chronic (0.5 mg/kg/day for 7 days) nicotine strongly activated GABAergic neurons of the interpeduncular nucleus and medial terminal nucleus of the accessory optic tract (MT). Acute but not chronic nicotine also activated small percentages of dopaminergic and other neurons in the ventral tegmental area (VTA) as well as noncholinergic neurons in the pedunculotegmental and laterodorsal tegmental nuclei (PTg/LDTg). Twenty four hours of nicotine withdrawal after chronic nicotine treatment suppressed c-Fos activation in the MT. In comparison to nicotine, a single dose of cocaine caused a similar activation in the PTg/LDTg but not the VTA where GABAergic cells were strongly activated but dopaminergic neurons were not affected. These results indicate the existence of drug of abuse specific ensembles. The loss of ensemble activation in the VTA and PTg/LDTg after chronic nicotine represents a molecular and cellular tolerance which may have implications for the mechanisms underlying nicotine dependence.
Collapse
Affiliation(s)
- Katja Baur
- Neurobiology, Interdisciplinary Center for Neurosciences (IZN), University of Heidelberg, Heidelberg, Germany
| | - Arian Hach
- Neurobiology, Interdisciplinary Center for Neurosciences (IZN), University of Heidelberg, Heidelberg, Germany
| | - Rick E Bernardi
- Psychopharmacology, Central Institute of Mental Health, Medical Faculty Mannheim/Heidelberg University, Heidelberg, Germany
| | - Rainer Spanagel
- Psychopharmacology, Central Institute of Mental Health, Medical Faculty Mannheim/Heidelberg University, Heidelberg, Germany
| | - Hilmar Bading
- Neurobiology, Interdisciplinary Center for Neurosciences (IZN), University of Heidelberg, Heidelberg, Germany
| | - C Peter Bengtson
- Neurobiology, Interdisciplinary Center for Neurosciences (IZN), University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
5
|
Weinstein AM, Freedman N, Greif J, Yemini Z, Mishani E, London E, Chisin R, Bocher M. Negative association of pretreatment cigarette use with smoking-induced striatal dopamine release in smokers receiving bupropion treatment. Am J Addict 2016; 25:486-92. [PMID: 27467186 DOI: 10.1111/ajad.12419] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2016] [Revised: 07/15/2016] [Accepted: 07/16/2016] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND AND OBJECTIVES In an effort to help identify factors that maintain heavy smoking, this study tested the association of pretreatment cigarette use (cigarettes per day) with striatal dopamine release during smoking-cessation treatment. METHODS Thirteen regular smokers (≥10 cigarettes per day) were evaluated on parameters of smoking behavior, and they entered a smoking cessation treatment protocol, including bupropion administration and individual counseling for 2 months. On week 7 of treatment, 10 of the participants underwent brain scans using [(11) C]raclopride with positron emission tomography to assess smoking-induced dopamine release in the caudate nucleus and putamen, inferred from changes in dopamine D2 -type receptor availability. RESULTS Receptor availability, measured as binding potential referred to non-displaceable uptake (BPND ) in both striatal regions re-demonstrated a significant decrease after smoking a cigarette; and pre-treatment cigarette use significantly negatively correlated with smoking-induced dopamine release in the caudate. CONCLUSIONS AND SIGNIFICANCE The negative association of cigarette use with dopamine release suggests tolerance or down-regulation of the dopamine system by chronic smoking, or a pre-existing condition that promotes more frequent smoking. This association should be regarded as preliminary evidence that warrants verification. (Am J Addict 2016;25:486-492).
Collapse
Affiliation(s)
- Aviv Malkiel Weinstein
- Department of Behavioral Sciences, University of Ariel, Science Park, Ariel, Israel, 40700.,Department of Medical Biophysics and Nuclear Medicine, Hadassah Hospital Ein Kerem, Jerusalem, Israel, 91120.,Lung Institute, Sourasky Medical Center, 6 Weizman St. Tel Aviv, Israel, 64239
| | - Nanette Freedman
- Department of Medical Biophysics and Nuclear Medicine, Hadassah Hospital Ein Kerem, Jerusalem, Israel, 91120
| | - Joel Greif
- Lung Institute, Sourasky Medical Center, 6 Weizman St. Tel Aviv, Israel, 64239
| | - Zipi Yemini
- Lung Institute, Sourasky Medical Center, 6 Weizman St. Tel Aviv, Israel, 64239
| | - Eyal Mishani
- Department of Medical Biophysics and Nuclear Medicine, Hadassah Hospital Ein Kerem, Jerusalem, Israel, 91120
| | - Edythe London
- Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles, California.,Department of Molecular and Medical Pharmacology, University of California Los Angeles, Los Angeles, California
| | - Roland Chisin
- Department of Medical Biophysics and Nuclear Medicine, Hadassah Hospital Ein Kerem, Jerusalem, Israel, 91120
| | - Moshe Bocher
- Department of Medical Biophysics and Nuclear Medicine, Hadassah Hospital Ein Kerem, Jerusalem, Israel, 91120
| |
Collapse
|
6
|
Pittenger ST, Swalve N, Chou S, Smith MD, Hoonakker AJ, Pudiak CM, Fleckenstein AE, Hanson GR, Bevins RA. Sex differences in neurotensin and substance P following nicotine self-administration in rats. Synapse 2016; 70:336-46. [PMID: 27074301 DOI: 10.1002/syn.21907] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 03/21/2016] [Accepted: 04/08/2016] [Indexed: 02/02/2023]
Abstract
Investigator-administered nicotine alters neurotensin and substance P levels in Sprague-Dawley rats. This finding suggested a role of the dopamine-related endogenous neuropeptides in nicotine addiction. We sought to extend this observation by determining the responses of neurotensin and substance P systems (assessed using radioimmunoassay) in male and female rats following nicotine self-administration (SA). Male and female Sprague-Dawley were trained to self-administer nicotine, or receive saline infusions yoked to a nicotine-administering rat during daily sessions (1-h; 21 days). Brains were extracted 3 h after the last SA session. Nicotine SA increased tissue levels of neurotensin in the males in the anterior and posterior caudate, globus pallidus, frontal cortex, nucleus accumbens core and shell, and ventral tegmental area. Nicotine SA also increased tissue levels of neurotensin in the females in the anterior caudate, globus pallidus, nucleus accumbens core and shell, but not in the posterior caudate, frontal cortex, or ventral tegmental area. There were fewer sex differences observed in the substance P systems. Nicotine SA increased tissue levels of substance P in both the males and females in the posterior caudate, globus pallidus, frontal cortex, nucleus accumbens shell, and ventral tegmental area. A sex difference was observed in the nucleus accumbens core, where nicotine SA increased tissue levels of substance P in the males, yet decreased levels in the females. The regulation of neuropeptides following nicotine SA may play a role in the susceptibility to nicotine dependence in females and males. Synapse 70:336-346, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Steven T Pittenger
- Department of Psychology, University of Nebraska-Lincoln, 238 Burnett Hall, Lincoln, Nebraska, 68588-0308
| | - Natashia Swalve
- Department of Psychology, University of Nebraska-Lincoln, 238 Burnett Hall, Lincoln, Nebraska, 68588-0308
| | - Shinnyi Chou
- Department of Psychology, University of Nebraska-Lincoln, 238 Burnett Hall, Lincoln, Nebraska, 68588-0308
| | - Misty D Smith
- School of Dentistry, University of Utah, 530 so. Wakara Way, Salt Lake City, Utah, 84108.,Department of Pharmacology and Toxicology, University of Utah, Skaggs Hall, Salt Lake City, Utah, 84112
| | - Amanda J Hoonakker
- School of Dentistry, University of Utah, 530 so. Wakara Way, Salt Lake City, Utah, 84108
| | - Cindy M Pudiak
- Department of Psychology, University of Nebraska-Lincoln, 238 Burnett Hall, Lincoln, Nebraska, 68588-0308
| | - Annette E Fleckenstein
- School of Dentistry, University of Utah, 530 so. Wakara Way, Salt Lake City, Utah, 84108
| | - Glen R Hanson
- School of Dentistry, University of Utah, 530 so. Wakara Way, Salt Lake City, Utah, 84108.,Department of Pharmacology and Toxicology, University of Utah, Skaggs Hall, Salt Lake City, Utah, 84112
| | - Rick A Bevins
- Department of Psychology, University of Nebraska-Lincoln, 238 Burnett Hall, Lincoln, Nebraska, 68588-0308
| |
Collapse
|
7
|
Adermark L, Morud J, Lotfi A, Jonsson S, Söderpalm B, Ericson M. Age-contingent influence over accumbal neurotransmission and the locomotor stimulatory response to acute and repeated administration of nicotine in Wistar rats. Neuropharmacology 2015; 97:104-12. [PMID: 26079444 DOI: 10.1016/j.neuropharm.2015.06.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Revised: 05/28/2015] [Accepted: 06/01/2015] [Indexed: 10/23/2022]
Abstract
Nicotine addiction is one of the leading contributors to the global burden of disease, and early onset smokers report a more severe addiction with lower chance of cessation than those with a late onset. Preclinical research supports an age-dependent component to the rewarding and reinforcing properties of nicotine, and the aim of this study was to define behavioral adaptations and changes in accumbal neurotransmission that arise over 15 days of intermittent nicotine treatment (0.36 mg/kg/day) in rats of three different ages (5 weeks, 10 weeks, 36 weeks old). Repeated treatment increased the locomotor stimulatory response to nicotine in all age groups, but significantly faster in the two younger groups. In addition, nicotine decreased rearing activity in a way that sustained even after repeated administration in aged rats but not in the younger age groups. Electrophysiological field potential recordings revealed a decline in input/output function in the nucleus accumbens (NAc) of animals intermittently treated with nicotine starting at 5 weeks of age, but not in older animals. In drug naïve rats, acute administration of nicotine modulated both accumbal dopamine output and excitatory transmission in a partially age-dependent manner. Fifteen days of intermittent nicotine treatment did not alter the acute effect displayed by nicotine on dopamine levels or evoked field potentials. The data presented here show that both acute and repeated nicotine administration modulates accumbal neurotransmission and behavior in an age-contingent manner and that these age-dependent differences could reflect important neurobiological underpinnings associated with the increased vulnerability for nicotine-addiction in adolescents.
Collapse
Affiliation(s)
- L Adermark
- Addiction Biology Unit, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden.
| | - J Morud
- Addiction Biology Unit, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - A Lotfi
- Addiction Biology Unit, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - S Jonsson
- Addiction Biology Unit, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - B Söderpalm
- Addiction Biology Unit, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden; Beroendekliniken, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - M Ericson
- Addiction Biology Unit, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
8
|
Abstract
There is abundant evidence that the dopamine (DA) neurons that project to the nucleus accumbens play a central role in neurobiological mechanisms underpinning drug dependence. This chapter considers the ways in which these projections facilitate the addiction to nicotine and tobacco. It focuses on the complimentary roles of the two principal subdivisions of the nucleus accumbens, the accumbal core and shell, in the acquisition and maintenance of nicotine-seeking behavior. The ways in which tonic and phasic firing of the neurons contributes to the ways in which the accumbens mediate the behavioral responses to nicotine are also considered. Experimental studies suggest that nicotine has relatively weak addictive properties which are insufficient to explain the powerful addictive properties of tobacco smoke. This chapter discusses hypotheses that seek to explain this conundrum. They implicate both discrete sensory stimuli closely paired with the delivery of tobacco smoke and contextual stimuli habitually associated with the delivery of the drug. The mechanisms by which each type of stimulus influence tobacco dependence are hypothesized to depend upon the increased DA release and overflow, respectively, in the two subdivisions of the accumbens. It is suggested that a majority of pharmacotherapies for tobacco dependence are not more successful because they fail to address this important aspect of the dependence.
Collapse
Affiliation(s)
- David J K Balfour
- Medical Research Institute, Division of Neuroscience, Ninewells Hospital and Medical School, Dundee, DD1 9SY, Scotland,
| |
Collapse
|
9
|
Operant self-administration of alcohol and nicotine in a preclinical model of co-abuse. Psychopharmacology (Berl) 2014; 231:4019-29. [PMID: 24696081 PMCID: PMC5357119 DOI: 10.1007/s00213-014-3541-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Accepted: 03/10/2014] [Indexed: 01/07/2023]
Abstract
RATIONALE AND OBJECTIVES Alcohol and nicotine are often taken together. In humans, intake of nicotine, via smoked tobacco, increases alcohol drinking, and alcohol increases smoking. Chronic nicotine treatment increases alcohol self-administration (SA) in laboratory animals; the reverse relationship is less clear. Most animal work modeling this has used passive administration, which lacks relevance to human co-abuse. Here, we describe a model based on sequential operant SA of alcohol and nicotine. METHODS Animals are first trained on alcohol SA (0.19 ml of 12 % alcohol (w/v)/delivery) and then receive separate alcohol (8 %, w/v) and nicotine (15 μg/kg/infusion) SA sessions on the same day ("daily dual access"). Animals then receive access to alcohol and then to nicotine (or in the reverse order) in alternating 5-min periods in 2-h sessions ("alternating access"). We then determine if alternating access modifies the effects of naltrexone on responding for alcohol and nicotine. RESULTS We found that with daily dual access, nicotine significantly increased alcohol SA when alcohol access occurred prior to nicotine access and that nicotine SA significantly decreased when the alcohol SA session preceded it. During alternating access, nicotine also significantly increased alcohol intake. Naltrexone (0.3 or 1 mg/kg) significantly reduced alcohol SA during these alternating access sessions in animals that also received nicotine SA, but had minimal effects on animals receiving alcohol SA alone. Naltrexone did not affect nicotine SA under any condition. CONCLUSIONS This sequential access procedure effectively models the effects of nicotine on alcohol intake noted in humans.
Collapse
|
10
|
Simmons SJ, Gould TJ. Involvement of neuronal β2 subunit-containing nicotinic acetylcholine receptors in nicotine reward and withdrawal: implications for pharmacotherapies. J Clin Pharm Ther 2014; 39:457-67. [PMID: 24828779 DOI: 10.1111/jcpt.12171] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2014] [Accepted: 04/14/2014] [Indexed: 11/28/2022]
Abstract
WHAT IS KNOWN AND OBJECTIVE Tobacco smoking remains a major health problem. Nicotine binds to nicotinic acetylcholine receptors (nAChRs), which can cause addiction and withdrawal symptoms upon cessation of nicotine administration. Pharmacotherapies for nicotine addiction target brain alterations that underlie withdrawal symptoms. This review will delineate the involvement of the β2 subunit of neuronal nAChRs in nicotine reward and in generating withdrawal symptoms to better understand the efficacy of smoking cessation pharmacotherapies. COMMENT Chronic nicotine desensitizes and upregulates β2 subunit-containing nAChRs, and the prolonged upregulation of receptors may underlie symptoms of withdrawal. Experimental research has demonstrated that the β2 subunit of neuronal nAChRs is necessary for generating nicotine reward and withdrawal symptoms. WHAT IS NEW AND CONCLUSION Smoking cessation pharmacotherapies act on β2 subunit-containing nAChRs to reduce nicotine reward and withdrawal symptom severity.
Collapse
Affiliation(s)
- Steven J Simmons
- Department of Psychology, Neuroscience Program, Temple University, Philadelphia, PA, 19122, USA
| | | |
Collapse
|
11
|
Storage S, Mandelkern MA, Phuong J, Kozman M, Neary MK, Brody AL. A positive relationship between harm avoidance and brain nicotinic acetylcholine receptor availability. Psychiatry Res 2013; 214:415-21. [PMID: 24148908 PMCID: PMC3851586 DOI: 10.1016/j.pscychresns.2013.07.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2012] [Revised: 06/22/2013] [Accepted: 07/25/2013] [Indexed: 01/28/2023]
Abstract
Prior research indicates that disturbance of cholinergic neurotransmission reduces anxiety, leading to the hypothesis that people with heightened cholinergic function have a greater tendency toward anxiety-like and/or harm-avoidant behavior. We sought to determine if people with elevated levels of harm avoidance (HA), a dimension of temperament from the Temperament and Character Inventory (TCI), have high α4β2* nicotinic acetylcholine receptor (nAChR) availability. Healthy adults (n=105; 47 non-smokers and 58 smokers) underwent bolus-plus-continuous infusion positron emission tomography (PET) scanning using the radiotracer 2-[18F]fluoro-3-(2(S)azetidinylmethoxy) pyridine (abbreviated as 2-FA). During the uptake period of 2-FA, participants completed the TCI. The central study analysis revealed a significant association between total HA and mean nAChR availability, with higher total HA scores being linked with greater nAChR availability. In examining HA subscales, both 'Fear of Uncertainty' and 'Fatigability' were significant, based on higher levels of these characteristics being associated with greater nAChR availabilities. This study adds to a growing body of knowledge concerning the biological basis of personality and may prove useful in understanding the pathophysiology of psychiatric disorders (such as anxiety disorders) that have similar characteristics to HA. Study findings may indicate that heightened cholinergic neurotransmission is associated with increased anxiety-like traits.
Collapse
Affiliation(s)
- Steven Storage
- UCLA School of Medicine, Los Angeles, California, USA,Department of Research, VA Greater Los Angeles Healthcare System, Los Angeles, CA, USA
| | - Mark A. Mandelkern
- Department of Research, VA Greater Los Angeles Healthcare System, Los Angeles, CA, USA,Department of Physics, University of California at Irvine, California, USA
| | - Jonathan Phuong
- Department of Research, VA Greater Los Angeles Healthcare System, Los Angeles, CA, USA
| | - Maggie Kozman
- Department of Research, VA Greater Los Angeles Healthcare System, Los Angeles, CA, USA
| | - Meaghan K. Neary
- Department of Research, VA Greater Los Angeles Healthcare System, Los Angeles, CA, USA
| | - Arthur L. Brody
- UCLA School of Medicine, Los Angeles, California, USA,Department of Research, VA Greater Los Angeles Healthcare System, Los Angeles, CA, USA,Department of Psychiatry, VA Greater Los Angeles Healthcare System, Los Angeles, CA, USA,Corresponding author at: UCLA Department of Psychiatry & Biobehavioral Sciences 300 UCLA Medical Plaza, Suite 2200 Los Angeles, CA 90095. Tel.: +310 268 4778; fax: +310 206 2802.
| |
Collapse
|
12
|
Lynch WJ, Peterson AB, Sanchez V, Abel J, Smith MA. Exercise as a novel treatment for drug addiction: a neurobiological and stage-dependent hypothesis. Neurosci Biobehav Rev 2013; 37:1622-44. [PMID: 23806439 PMCID: PMC3788047 DOI: 10.1016/j.neubiorev.2013.06.011] [Citation(s) in RCA: 210] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Revised: 04/29/2013] [Accepted: 06/13/2013] [Indexed: 12/11/2022]
Abstract
Physical activity, and specifically exercise, has been suggested as a potential treatment for drug addiction. In this review, we discuss clinical and preclinical evidence for the efficacy of exercise at different phases of the addiction process. Potential neurobiological mechanisms are also discussed focusing on interactions with dopaminergic and glutamatergic signaling and chromatin remodeling in the reward pathway. While exercise generally produces an efficacious response, certain exercise conditions may be either ineffective or lead to detrimental effects depending on the level/type/timing of exercise exposure, the stage of addiction, the drug involved, and the subject population. During drug use initiation and withdrawal, its efficacy may be related to its ability to facilitate dopaminergic transmission, and once addiction develops, its efficacy may be related to its ability to normalize glutamatergic and dopaminergic signaling and reverse drug-induced changes in chromatin via epigenetic interactions with brain-derived neurotrophic factor (BDNF) in the reward pathway. We conclude with future directions, including the development of exercise-based interventions alone or as an adjunct to other strategies for treating drug addiction.
Collapse
Affiliation(s)
- Wendy J Lynch
- Department of Psychiatry and Neurobehavioral Sciences, University of Virginia, 1670 Discovery Drive, Charlottesville, VA 22911, USA.
| | | | | | | | | |
Collapse
|
13
|
Thomsen G, Knudsen GM, Jensen PS, Ziebell M, Holst KK, Asenbaum S, Booij J, Darcourt J, Dickson JC, Kapucu OL, Nobili F, Sabri O, Sera T, Tatsch K, Tossici-Bolt L, Laere KV, Borght TV, Varrone A, Pagani M, Pinborg LH. No difference in striatal dopamine transporter availability between active smokers, ex-smokers and non-smokers using [123I]FP-CIT (DaTSCAN) and SPECT. EJNMMI Res 2013; 3:39. [PMID: 23688063 PMCID: PMC3671201 DOI: 10.1186/2191-219x-3-39] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Accepted: 05/10/2013] [Indexed: 11/30/2022] Open
Abstract
Background Mesolimbic and nigrostriatal dopaminergic pathways play important roles in both the rewarding and conditioning effects of drugs. The dopamine transporter (DAT) is of central importance in regulating dopaminergic neurotransmission and in particular in activating the striatal D2-like receptors. Molecular imaging studies of the relationship between DAT availability/dopamine synthesis capacity and active cigarette smoking have shown conflicting results. Through the collaboration between 13 SPECT centres located in 10 different European countries, a database of FP-CIT-binding in healthy controls was established. We used the database to test the hypothesis that striatal DAT availability is changed in active smokers compared to non-smokers and ex-smokers. Methods A total of 129 healthy volunteers were included. Subjects were divided into three categories according to past and present tobacco smoking: (1) non-smokers (n = 64), (2) ex-smokers (n = 39) and (3) active smokers (n = 26). For imaging of the DAT availability, we used [123I]FP-CIT (DaTSCAN) and single photon emission computed tomography (SPECT). Data were collected in collaboration between 13 SPECT centres located in 10 different European countries. The striatal measure of DAT availability was analyzed in a multiple regression model with age, SPECT centre and smoking as predictor. Results There was no statistically significant difference in DAT availability between the groups of active smokers, ex-smokers and non-smokers (p = 0.34). Further, we could not demonstrate a significant association between striatal DAT and the number of cigarettes per day or total lifetime cigarette packages in smokers and ex-smokers. Conclusion Our results do not support the hypothesis that large differences in striatal DAT availability are present in smokers compared to ex-smokers and healthy volunteers with no history of smoking.
Collapse
Affiliation(s)
- Gerda Thomsen
- Neurobiology Research Unit 9201, Rigshospitalet and Copenhagen University Hospital, Blegdamsvej 9, Copenhagen 2100, Denmark.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Scarr E, Gibbons AS, Neo J, Udawela M, Dean B. Cholinergic connectivity: it's implications for psychiatric disorders. Front Cell Neurosci 2013; 7:55. [PMID: 23653591 PMCID: PMC3642390 DOI: 10.3389/fncel.2013.00055] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2013] [Accepted: 04/12/2013] [Indexed: 01/01/2023] Open
Abstract
Acetylcholine has been implicated in both the pathophysiology and treatment of a number of psychiatric disorders, with most of the data related to its role and therapeutic potential focusing on schizophrenia. However, there is little thought given to the consequences of the documented changes in the cholinergic system and how they may affect the functioning of the brain. This review looks at the cholinergic system and its interactions with the intrinsic neurotransmitters glutamate and gamma-amino butyric acid as well as those with the projection neurotransmitters most implicated in the pathophysiologies of psychiatric disorders; dopamine and serotonin. In addition, with the recent focus on the role of factors normally associated with inflammation in the pathophysiologies of psychiatric disorders, links between the cholinergic system and these factors will also be examined. These interfaces are put into context, primarily for schizophrenia, by looking at the changes in each of these systems in the disorder and exploring, theoretically, whether the changes are interconnected with those seen in the cholinergic system. Thus, this review will provide a comprehensive overview of the connectivity between the cholinergic system and some of the major areas of research into the pathophysiologies of psychiatric disorders, resulting in a critical appraisal of the potential outcomes of a dysregulated central cholinergic system.
Collapse
Affiliation(s)
- Elizabeth Scarr
- Department of Psychiatry, The University of MelbourneParkville, VIC, Australia
- Molecular Psychiatry Laboratories, Florey Institute of Neuroscience and Mental HealthParkville, VIC, Australia
| | - Andrew S. Gibbons
- Department of Psychiatry, The University of MelbourneParkville, VIC, Australia
- Molecular Psychiatry Laboratories, Florey Institute of Neuroscience and Mental HealthParkville, VIC, Australia
| | - Jaclyn Neo
- Department of Psychiatry, The University of MelbourneParkville, VIC, Australia
- Molecular Psychiatry Laboratories, Florey Institute of Neuroscience and Mental HealthParkville, VIC, Australia
| | - Madhara Udawela
- Molecular Psychiatry Laboratories, Florey Institute of Neuroscience and Mental HealthParkville, VIC, Australia
- Centre for Neuroscience, The University of MelbourneParkville, VIC, Australia
| | - Brian Dean
- Department of Psychiatry, The University of MelbourneParkville, VIC, Australia
- Molecular Psychiatry Laboratories, Florey Institute of Neuroscience and Mental HealthParkville, VIC, Australia
| |
Collapse
|
15
|
Froeliger B, Modlin LA, Kozink RV, Wang L, Garland EL, Addicott MA, McClernon FJ. Frontoparietal attentional network activation differs between smokers and nonsmokers during affective cognition. Psychiatry Res 2013; 211:57-63. [PMID: 23154092 PMCID: PMC3557750 DOI: 10.1016/j.pscychresns.2012.05.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2012] [Revised: 05/08/2012] [Accepted: 05/09/2012] [Indexed: 01/29/2023]
Abstract
Smoking withdrawal-induced disruption of affect and cognition is associated with dysregulated prefrontal brain function, although little is known regarding the neural foci of smoker-nonsmoker differences during affective cognition. Thus, the current study used functional magnetic resonance imaging (fMRI) to identify smoker-nonsmoker differences in affective cognition. Thirty-four healthy volunteers (17 smokers, 17 nonsmokers) underwent fMRI during an affective Stroop task (aST). The aST includes emotional cue-reactivity trials, and response selection trials that contain either neutral or negative emotional distractors. Smokers had less activation during negative cue-reactivity trials in regions subserving emotional awareness (i.e., posterior cingulate), inhibitory control (i.e., inferior frontal gyrus) and conflict resolution (i.e., anterior cingulate); during response-selection trials with negative emotional distractors, smokers had greater activation in a frontoparietal attentional network (i.e., middle frontal and supramarginal gyri). Exploratory analyses revealed that task accuracy was positively correlated with anterior cingulate cortex and inferior frontal gyrus response on fMRI. These findings suggests that chronic nicotine use may reduce inhibitory control and conflict resolution of emotional distraction, and result in recruiting additional attentional resources during emotional interference on cognition.
Collapse
Affiliation(s)
- Brett Froeliger
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, NC, USA.
| | - Leslie A. Modlin
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, NC,Duke-UNC Brain Imaging and Analysis Center, Durham, NC
| | - Rachel V. Kozink
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, NC,Duke-UNC Brain Imaging and Analysis Center, Durham, NC
| | - Lihong Wang
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, NC,Duke-UNC Brain Imaging and Analysis Center, Durham, NC
| | - Eric L. Garland
- Trinity Institute for the Addictions, Florida State University, Tallahassee, FL
| | - Merideth A. Addicott
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, NC,Duke-UNC Brain Imaging and Analysis Center, Durham, NC
| | - F. Joseph McClernon
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, NC,Duke-UNC Brain Imaging and Analysis Center, Durham, NC,Durham Veterans Affairs Medical Center, and VISN 6 Mental Illness Research, Education, and Clinical Center, Durham, NC
| |
Collapse
|
16
|
Beta2-containing nicotinic acetylcholine receptors mediate calcium/calmodulin-dependent protein kinase-II and synapsin I protein levels in the nucleus accumbens after nicotine withdrawal in mice. Eur J Pharmacol 2013; 701:1-6. [PMID: 23313759 DOI: 10.1016/j.ejphar.2012.12.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2012] [Revised: 12/06/2012] [Accepted: 12/07/2012] [Indexed: 11/22/2022]
Abstract
Nicotinic acetylcholine receptors are calcium-permeable and the initial targets for nicotine. Studies suggest that calcium-dependent mechanisms mediate some behavioral responses to nicotine; however, the post-receptor calcium-dependent mechanisms associated with chronic nicotine and nicotine withdrawal remain unclear. The proteins calcium/calmodulin-dependent protein kinase II (CaMKII) and synapsin I are essential for neurotransmitter release and were shown to be involved in drug dependence. In the current study, using pharmacological techniques, we sought to (a) complement previously published behavioral findings from our lab indicating a role for calcium-dependent signaling in nicotine dependence and (b) expand on previously published acute biochemical and pharmacological findings indicating the relevance of calcium-dependent mechanisms in acute nicotine responses by evaluating the function of CaMKII and synapsin I after chronic nicotine and withdrawal in the nucleus accumbens, a brain region implicated in drug dependence. Male mice were chronically infused with nicotine for 14 days, and treated with the β2-selective antagonist dihydro-β-erythroidine (DHβE), or the α7 antagonist, methyllycaconitine citrate (MLA) 20min prior to dissection of the nucleus accumbens. Results show that phosphorylated and total CaMKII and synapsin I protein levels were significantly increased in the nucleus accumbens after chronic nicotine infusion, and reduced after treatment with DHβE, but not MLA. A spontaneous nicotine withdrawal assessment also revealed significant reductions in phosphorylated CaMKII and synapsin I levels 24h after cessation of nicotine treatment. Our findings suggest that post-receptor calcium-dependent mechanisms associated with nicotine withdrawal are mediated through β2-containing nicotinic receptors.
Collapse
|
17
|
Enrico P, Sirca D, Mereu M, Peana AT, Mercante B, Diana M. Acute restraint stress prevents nicotine-induced mesolimbic dopaminergic activation via a corticosterone-mediated mechanism: a microdialysis study in the rat. Drug Alcohol Depend 2013; 127:8-14. [PMID: 22809896 DOI: 10.1016/j.drugalcdep.2012.06.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2011] [Revised: 05/04/2012] [Accepted: 06/01/2012] [Indexed: 12/28/2022]
Abstract
BACKGROUND Stress affects the responsiveness to nicotine (NIC), by increasing drug use, facilitating relapse and reinstating NIC self administration even after prolonged abstinence. In turn, high corticosterone (CORT) blood levels induced by stress may alter the neurobiological properties of NIC by acting on the dopamine (DA) mesolimbic system. METHODS In this study, we evaluated the effect of exposure to acute restraint stress on NIC-induced stimulation of the mesolimbic DA system of the rat, by studying extracellular DA levels in the nucleus accumbens shell (NAccs) with microdialysis. RESULTS NIC intravenous administration (130 μg/kg) increased DA levels in the NAccs in control rats but not in subjects exposed to stress; this latter phenomenon was prevented by blockade of CORT effects with the inhibitor of corticosterone synthesis metirapone (100 mg/kg) or the glucorticoid receptor antagonist mifepristone (150 μmol/kg). CONCLUSIONS These observations show that exposure to acute stress inhibits the stimulatory response of the mesolimbic DA system to NIC and suggest that this effect is mediated by circulating CORT acting on its receptors. These results may bear relevance in explaining the role played by stressful stimuli in NIC-seeking and taking behavior.
Collapse
Affiliation(s)
- Paolo Enrico
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy.
| | | | | | | | | | | |
Collapse
|
18
|
Chen H, Saad S, Sandow SL, Bertrand PP. Cigarette smoking and brain regulation of energy homeostasis. Front Pharmacol 2012; 3:147. [PMID: 22848202 PMCID: PMC3404499 DOI: 10.3389/fphar.2012.00147] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2012] [Accepted: 07/09/2012] [Indexed: 12/16/2022] Open
Abstract
Cigarette smoking is an addictive behavior, and is the primary cause of cardiovascular and pulmonary disease, and cancer (among other diseases). Cigarette smoke contains thousands of components that may affect caloric intake and energy expenditure, although nicotine is the major addictive substance present, and has the best described actions. Nicotine exposure from cigarette smoke can change brain feeding regulation to reduce appetite via both energy homeostatic and reward mechanisms, causing a negative energy state which is characterized by reduced energy intake and increased energy expenditure that are linked to low body weight. These findings have led to the public perception that smoking is associated with weight loss. However, its effects at reducing abdominal fat mass (a predisposing factor for glucose intolerance and insulin resistance) are marginal, and its promotion of lean body mass loss in animal studies suggests a limited potential for treatment in obesity. Smoking during pregnancy puts pressure on the mother's metabolic system and is a significant contributor to adverse pregnancy outcomes. Smoking is a predictor of future risk for respiratory dysfunction, social behavioral problems, cardiovascular disease, obesity, and type-2 diabetes. Catch-up growth is normally observed in children exposed to intrauterine smoke, which has been linked to subsequent childhood obesity. Nicotine can have a profound impact on the developing fetal brain, via its ability to rapidly and fully pass the placenta. In animal studies this has been linked with abnormal hypothalamic gene expression of appetite regulators such as downregulation of NPY and POMC in the arcuate nucleus of the hypothalamus. Maternal smoking or nicotine replacement leads to unhealthy eating habits (such as junk food addiction) and other behavioral disorders in the offspring.
Collapse
Affiliation(s)
- Hui Chen
- Faculty of Science, School of Medical and Molecular Biosciences, University of TechnologySydney, NSW, Australia
- Faculty of Medicine, Department of Pharmacology, School of Medical Sciences, University of New South WalesSydney, NSW, Australia
| | - Sonia Saad
- Renal Research Group, Kolling Institute, University of SydneySydney, NSW, Australia
| | - Shaun L. Sandow
- Faculty of Medicine, Department of Physiology, School of Medical Sciences, University of New South WalesSydney, NSW, Australia
| | - Paul P. Bertrand
- Faculty of Medicine, Department of Physiology, School of Medical Sciences, University of New South WalesSydney, NSW, Australia
| |
Collapse
|
19
|
|
20
|
Brody AL, London ED, Olmstead RE, Allen-Martinez Z, Shulenberger S, Costello MR, Abrams AL, Scheibal D, Farahi J, Shoptaw S, Mandelkern MA. Smoking-induced change in intrasynaptic dopamine concentration: effect of treatment for Tobacco Dependence. Psychiatry Res 2010; 183:218-24. [PMID: 20682457 PMCID: PMC2947623 DOI: 10.1016/j.pscychresns.2009.06.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2008] [Revised: 06/12/2009] [Accepted: 06/17/2009] [Indexed: 11/29/2022]
Abstract
The aim of this study was to determine whether standard treatments for Tobacco Dependence affect smoking-induced changes in intrasynaptic dopamine (DA) concentration. Forty-three otherwise healthy adult cigarette smokers (10 to 40 cigarettes per day) were treated with either practical group counseling (PGC) psychotherapy (n=14), bupropion HCl (n=14), or matching pill placebo (n=15) (random assignment) for 8 weeks. Before and after treatment, each subject underwent a bolus-plus-continuous-infusion (11)C-raclopride positron emission tomography (PET) scanning session, during which he or she smoked a regular cigarette. The PET scanning outcome measure of interest was percent change in smoking-induced (11)C-raclopride binding potential (BP(ND)) in the ventral caudate/nucleus accumbens (VCD/NAc), as an indirect measure of DA release. Although the entire study sample had a smaller mean smoking-induced reduction in VCD/NAc BP(ND) after treatment (compared to before treatment), this change was highly correlated with smaller total cigarette puff volumes (and not other treatment variables). These data indicate that smoking-induced DA release is dose-dependent, and is not significantly affected by reductions in daily smoking levels or treatment type.
Collapse
Affiliation(s)
- Arthur L Brody
- Department of Psychiatry, UCLA, Los Angeles, CA 90095, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Effects of dopamine antagonists on drug cue-induced reinstatement of nicotine-seeking behavior in rats. Behav Pharmacol 2010; 21:153-60. [PMID: 20168211 DOI: 10.1097/fbp.0b013e328337be95] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Dopaminergic neurotransmission has been implicated in associative learning processes related to drugs of abuse. However, it is not clear whether blockade of activation of dopamine receptors alters conditioned incentive properties of nicotine-associated cues. Using a response-reinstatement procedure, this study examined the effects of antagonists selective for the D1 and the D2 subtypes of dopamine receptors on cue-induced reinstatement of nicotine-seeking behavior. Male Sprague-Dawley rats were trained in 30 daily 1 h sessions to intravenously self-administer nicotine (0.03 mg/kg/infusion) on a fixed ratio 5 schedule and associate a conditioned stimulus (cue) with each nicotine delivery. After extinction of responding by withholding nicotine (saline substitution) and its cue, the reinstatement tests were conducted following subcutaneous administration of a D1 antagonist SCH23390 (0, 5, 10, 30 microg/kg) or a D2 antagonist eticlopride (0, 5, 10, 30 microg/kg) in different groups of animals. Both SCH23390 and eticlopride significantly attenuated the magnitude of cue-elicited reinstatement of nicotine-seeking responding. These results indicate that activation of dopaminergic D1 and D2 receptors may play a role in mediating the conditioned motivational effects of nicotine-associated cues as measured in the response-reinstatement procedure. These findings suggest that manipulation of dopaminergic neurotransmission at D1 and/or D2 receptors may prove to be a potential target for the development of pharmacotherapy for prevention of environmental nicotine cue-triggered smoking relapse.
Collapse
|
22
|
|
23
|
The neuropharmacological substrates of nicotine reward: reinforcing versus reinforcement-enhancing effects of nicotine. Behav Pharmacol 2009; 20:211-25. [PMID: 19421028 DOI: 10.1097/fbp.0b013e32832c7083] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Compulsive nicotine use is thought to be maintained by the acute reinforcing effects of nicotine and the reinforcement-enhancing effects of nicotine, in addition to the negative consequences of nicotine abstinence. Nicotine self-administration and nicotine-induced enhancement of non-nicotine reinforcers such as intracranial self-stimulation provide measures of these dual rewarding properties of nicotine. First, pharmacological manipulations that modulate the reinforcing and reinforcement-enhancing effects of nicotine are identified and discussed. Second, the interpretation and implications of data that identified shared and specific pharmacological substrates underlying the dual rewarding effects of nicotine are discussed, including implications for the preclinical testing of putative antismoking medications. In conclusion, reinforcement-related behaviors that are mediated by central reinforcement processes are likely to, and generally do, exhibit a number of common pharmacological substrates. Interestingly, however, a few pharmacological classes of compounds seem to exert selective effects on components of the dual nicotine reward mechanisms, indicating differences in the pharmacological substrates of the reinforcing and reinforcement-enhancing effects of nicotine. Further characterization of such compounds may ultimately lead to the identification of novel medications for nicotine dependence in humans.
Collapse
|
24
|
Domino EF, Tsukada H, Harada N. Positron emission tomographic measure of brain dopamine dependence to nicotine as a model of drugs of abuse. Psychopharmacology (Berl) 2009; 204:149-53. [PMID: 19137279 DOI: 10.1007/s00213-008-1445-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2008] [Accepted: 12/17/2008] [Indexed: 11/27/2022]
Abstract
RATIONALE Nicotine/tobacco are prototypic substances used throughout the world. Nicotine abstinence produces some depressive-like effects which are treated by the dopamine (DA) and norepinephrine reuptake inhibitor bupropion. A quantitative measure of the regional brain utilization of these catecholamines (CA) during nicotine dependence and withdrawal is important. OBJECTIVE The aim of this study was to prove that regional brain DA utilization by nicotine can be quantified by positron emission tomography (PET) using L-[beta-(11)C]DOPA. MATERIALS AND METHODS Eight young Macaca mulatta monkeys were given 0.9% NaCl or nicotine in doses of 32 or 100 microg/kg i.m. bid for 9 days to produce minimal dependence. On the tenth day, PET measurements were repeated before and after i.v. nicotine administration. PET studies were done in habituated, trained, and fully conscious animals. RESULTS Compared to a 0.9% NaCl control, acute i.v. nicotine as a bolus plus infusion for 30 min in similar doses to maintain a steady-state level for 30 min did not affect the utilization rate constant (k (3)) in dorsal or ventral striatum as measured by L-[beta-(11)C]DOPA. When monkeys were given nicotine bid repeatedly after overnight nicotine abstinence, CA utilization was reduced. A subsequent nicotine dose normalized utilization to slightly above control levels. Changes in ventral striatum were similar to those in dorsal striatum. The reduced rate of utilization demonstrated with L-[beta-(11)C]DOPA after overnight nicotine abstinence and its reversal by nicotine the next day provides an important PET measure of brain nicotine dependence and withdrawal. This method can be applied to other substances of abuse that release DA.
Collapse
Affiliation(s)
- Edward F Domino
- Department of Pharmacology, University of Michigan, Ann Arbor, MI 48109-0632, USA.
| | | | | |
Collapse
|
25
|
Domino EF, Tsukada H. Nicotine sensitization of monkey striatal dopamine release. Eur J Pharmacol 2009; 607:91-5. [PMID: 19232339 DOI: 10.1016/j.ejphar.2009.02.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2008] [Revised: 01/20/2009] [Accepted: 02/09/2009] [Indexed: 11/26/2022]
Abstract
This study with monkeys was designed to answer two questions. 1) Does acute nicotine preferentially release more dopamine in the striatum than in the prefrontal cortex? 2) Do repeated doses of nicotine produce sensitization of striatal dopamine release? Microdialysis techniques were used to measure extracellular dopamine in both brain regions in two separate groups of conscious animals. The acute nicotine i.v. dose schedule was a bolus of 32 microg/kg plus an infusion of +/-0.8 microg/kg/min and a 100 microg/kg bolus plus an infusion of +/-2.53 microg/kg/min for 30 min to mimic human tobacco smoking arterial plasma nicotine concentrations. Acute nicotine given i.v. released more dopamine in the striatum than in the prefrontal cortex. In the second experiment, for convenience, daily nicotine was given i.m. and not i.v. bid in doses of 32 or 100 microg/kg for nine days. Dopamine release was measured after overnight nicotine abstinence using the i.v. dose schedule from the first experiment. Baseline dopamine release was significantly reduced (77.6% of control, P<0.05). With a lowered baseline, a greater facilitation of dopamine release was produced by nicotine compared to that obtained under control conditions when the baseline was higher. The impaired dopamine release with overnight nicotine abstinence was transiently enhanced in a dose dependent manner. These data regarding the striatum are consistent with previous findings in rodents of nicotine sensitization of dopamine release especially in nucleus accumbens following repeated administration.
Collapse
Affiliation(s)
- Edward F Domino
- Central Research Laboratory, Hamamatsu Photonics K.K., Hamamatsu, Shizuoka 484-6601, Japan.
| | | |
Collapse
|
26
|
Abstract
Accumulating evidence suggests that the antecedents, consequences, and mechanisms of drug abuse and dependence are not identical in males and females and that gender may be an important variable in treatment and prevention. Although there has been a decline in smoking prevalence in developed countries, females are less successful in quitting. Tobacco use is accepted to be a form of addiction, which manifests sex differences. There is also evidence for sex differences in the central effects of nicotine in laboratory animals. Although social factors impact smoking substantially in humans, findings from nonhuman subjects in controlled experiments provide support that sex differences in nicotine/tobacco addiction have a biological basis. Differences in the pharmacokinetic properties of nicotine or the effect of gonadal hormones may underlie some but not all sex differences observed. Laboratory-based information is very important in developing treatment strategies. Literature findings suggest that including sex as a factor in nicotine/tobacco-related studies will improve our success rates in individually tailored smoking cessation programs.
Collapse
Affiliation(s)
- Sakire Pogun
- Ege University Center for Brain Research, Ege University, Bornova, Izmir, 35100, Turkey.
| | | |
Collapse
|
27
|
Abstract
While most cigarette smokers endorse a desire to quit smoking, only 14-49% will achieve abstinence after 6 months or more of treatment. A greater understanding of the effects of smoking on brain function may result in improved pharmacological and behavioral interventions for this condition. Research groups have examined the effects of acute and chronic nicotine/cigarette exposure on brain activity using functional imaging; the purpose of this chapter is to synthesize findings from such studies and present a coherent model of brain function in smokers. Responses to acute administration of nicotine/smoking include reduced global brain activity; activation of the prefrontal cortex, thalamus, and visual system; activation of the thalamus and visual cortex during visual cognitive tasks; and increased dopamine (DA) concentration in the ventral striatum/nucleus accumbens. Responses to chronic nicotine/cigarette exposure include decreased monoamine oxidase (MAO) A and B activity in the basal ganglia and a reduction in alpha4beta2 nicotinic acetylcholine receptor (nAChR) availability in the thalamus and putamen (accompanied by an overall upregulation of these receptors). These findings indicate that smoking enhances neurotransmission through cortico-basal ganglia-thalamic circuits by direct stimulation of nAChRs, indirect stimulation via DA release or MAO inhibition, or a combination of these and possibly other factors. Activation of this circuitry may be responsible for the effects of smoking seen in tobacco-dependent smokers, such as improvements in attentional performance, mood, anxiety, and irritability.
Collapse
Affiliation(s)
- Anil Sharma
- Department of Psychiatry and Biobehavioral Sciences, UCLA School of Medicine, Greater Los Angeles VA Healthcare System, 11301 Wilshire Blvd. Bldg 256 Suite 221, Los Angeles, CA 90073, USA.
| | | |
Collapse
|
28
|
Ventral striatal dopamine release in response to smoking a regular vs a denicotinized cigarette. Neuropsychopharmacology 2009; 34:282-9. [PMID: 18563061 PMCID: PMC2777990 DOI: 10.1038/npp.2008.87] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Prior studies have demonstrated that both nicotine administration and cigarette smoking lead to dopamine (DA) release in the ventral striatum/nucleus accumbens. In tobacco-dependent individuals, smoking denicotinized cigarettes leads to reduced craving, but less pleasure, than smoking regular cigarettes. Using denicotinized cigarettes and (11)C-raclopride positron emission tomography (PET) scanning, we sought to determine if nicotine is necessary for smoking-induced DA release. Sixty-two tobacco-dependent smokers underwent (11)C-raclopride PET scanning, during which they smoked either a regular or denicotinized cigarette (double-blind). Change in (11)C-raclopride binding potential (BP) in the ventral striatum from before to after smoking was determined as an indirect measure of DA release. Cigarette craving, anxiety, and mood were monitored during scanning. Smoking a regular cigarette resulted in a significantly greater mean reduction in ventral striatal (11)C-raclopride BP than smoking a denicotinized cigarette. Although both groups had reductions in craving and anxiety with smoking, the regular cigarette group had a greater improvement in mood. For the total group, change in BP correlated inversely with change in mood, indicating that greater smoking-induced DA release was associated with more smoking-related mood improvement. Thus, nicotine delivered through cigarette smoking appears to be important for ventral striatal DA release. Study findings also suggest that mood improvement from smoking is specifically related to ventral striatal DA release.
Collapse
|
29
|
McMurray MS, Williams SK, Jarrett TM, Cox ET, Fay EE, Overstreet DH, Walker CH, Johns JM. Gestational ethanol and nicotine exposure: effects on maternal behavior, oxytocin, and offspring ethanol intake in the rat. Neurotoxicol Teratol 2008; 30:475-86. [PMID: 18664381 DOI: 10.1016/j.ntt.2008.07.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2008] [Revised: 06/26/2008] [Accepted: 07/06/2008] [Indexed: 10/21/2022]
Abstract
Alcohol consumption and smoking during pregnancy is common, despite the known adverse effects of these drugs on fetal development. Though studies on the effects of each drug separately are published, little is known about the effect of concurrent use of alcohol and nicotine in humans or in preclinical models. In this report, we examined the impact of continuous gestational exposure to both ethanol via liquid diet and nicotine via an osmotic minipump on maternal behavior, offspring ethanol intake, and oxytocin levels in a rat model. Dams were tested for the onset of maternal behavior with litters of unexposed surrogate pups and then killed to examine oxytocin levels within specific brain regions. Drug-exposed offspring reared by surrogate dams were tested for ethanol intake at either adolescence or adulthood, and oxytocin levels were measured in relevant brain regions after behavioral tests. Dams exhibited minor deficits in maternal care, which were associated with lower oxytocin levels in both the ventral tegmental and medial preoptic areas compared to control dams. Prenatal exposure altered sex-specific ethanol intake, with differential effects at adolescence and adulthood. Oxytocin system changes were also apparent in the ventral tegmental and medial preoptic regions of drug-exposed adolescent and adult offspring. These results suggest that dam treatment with ethanol and nicotine can somewhat negatively affect the early rearing environment, and that prenatal exposure to both of these drugs results in drinking behavior differing from what would be expected from either drug alone. Oxytocin's possible involvement in the mediation of these effects is highlighted.
Collapse
Affiliation(s)
- M S McMurray
- The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7096, USA.
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Jain R, Mukherjee K, Balhara YPS. The role of NMDA receptor antagonists in nicotine tolerance, sensitization, and physical dependence: a preclinical review. Yonsei Med J 2008; 49:175-88. [PMID: 18452252 PMCID: PMC2615322 DOI: 10.3349/ymj.2008.49.2.175] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2007] [Accepted: 05/30/2007] [Indexed: 12/04/2022] Open
Abstract
Nicotine, the primary psychoactive component of tobacco products, produces diverse neurophysiological, motivational, and behavioral effects through several brain regions and neurochemical pathways. Various neurotransmitter systems have been explored to understand the mechanisms behind nicotine tolerance, dependence, and withdrawal. Recent evidence suggests that glutamate neurotransmission has an important role in this phenomenon. The aim of the present review is to discuss preclinical findings concerning the role of N-methyl-D-aspartate (NMDA) receptor neurotransmission in mediating the behavioral effects of nicotine, tolerance, sensitization, dependence, and withdrawal. Based on preclinical findings, it is hypothesized that NMDA receptors mediate the common adaptive processes that are involved in the development, maintenance, and expression of nicotine addiction. Modulation of glutamatergic neurotransmission with NMDA receptor antagonists may prove to be useful in alleviating the symptoms of nicotine abstinence and facilitate tobacco-smoking cessation.
Collapse
Affiliation(s)
- Raka Jain
- National Drug Dependence Treatment Centre and Department of Psychiatry, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, Pin 110029, India.
| | | | | |
Collapse
|
31
|
Vezina P, McGehee DS, Green WN. Exposure to nicotine and sensitization of nicotine-induced behaviors. Prog Neuropsychopharmacol Biol Psychiatry 2007; 31:1625-38. [PMID: 17936462 PMCID: PMC2139894 DOI: 10.1016/j.pnpbp.2007.08.038] [Citation(s) in RCA: 118] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Evidence for an important link between sensitization of midbrain dopamine (DA) neuron reactivity and enhanced self-administration of amphetamine and cocaine has been reported. To the extent that exposure to nicotine also sensitizes nucleus accumbens DA reactivity, it is likely that it will also impact subsequent drug taking. It is thus necessary to gain an understanding of the long-term effects of exposure to nicotine on nicotinic acetylcholine receptors (nAChRs), neuronal excitability and behavior. A review of the literature is presented in which different regimens of nicotine exposure are assessed for their effects on upregulation of nAChRs, induction of LTP in interconnected midbrain nuclei and development of long-lasting locomotor and DA sensitization. Exposure to nicotine upregulates nAChRs and nAChR currents and produces LTP of excitatory inputs to midbrain DA neurons. These effects appear in the hours to days following exposure. Exposure to nicotine also leads to long-lasting sensitization of nicotine's nucleus accumbens DA and locomotor activating effects. These effects appear days to weeks after drug exposure. A model is proposed in which nicotine exposure regimens that produce transient nAChR upregulation and LTP consequently produce long-lasting sensitization of midbrain DA neuron reactivity and nicotine-induced behaviors. These neuroadaptations are proposed to constitute critical components of the mechanisms underlying the initiation, maintenance and escalation of drug use.
Collapse
Affiliation(s)
- P Vezina
- Department of Psychiatry, The University of Chicago, 5841 S. Maryland Avenue, MC3077, Chicago, IL 60637, United States.
| | | | | |
Collapse
|
32
|
Collins AC, Bhat RV, Pauly JR, Marks MJ. Modulation of nicotine receptors by chronic exposure to nicotinic agonists and antagonists. CIBA FOUNDATION SYMPOSIUM 2007; 152:68-82; discussion 82-6. [PMID: 2209260 DOI: 10.1002/9780470513965.ch5] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Although numerous studies have demonstrated that chronic nicotine treatment often results in tolerance to this drug, the mechanisms that underlie this tolerance are not well defined. Recent evidence suggests that chronic nicotine treatment results in an up-regulation of brain nicotinic receptors, but the majority of these receptors may be desensitized or inactivated, thereby explaining tolerance. There is evidence that while all mouse strains show increased receptor numbers following chronic nicotine treatment, some mouse strains develop maximal changes in [3H] nicotine binding before any tolerance is detected. Other strains show a high correlation between increase in receptor number and tolerance. Studies with several other nicotinic agonists indicate that up-regulation of nicotine receptors can occur without changes in drug sensitivity. Similarly, chronic antagonists treatment can also elicit changes in receptors without affecting sensitivity to nicotine. Some of these discrepancies may be due to genetically influenced interactions between the adrenal steroid, corticosterone (CCS), and the nicotinic receptors. The addition of CCS in vitro inhibits binding to nicotinic receptors, and chronic CCS treatment results in decreases in the number of brain nicotinic receptors measured by [125I] bungarotoxin binding. Either of these biochemical measures may explain why altering CCS concentrations in vivo results in altered sensitivity to nicotine. It may be that both changes in the number of receptors and altered steroid interactions with the nicotinic receptors explain tolerance to nicotine.
Collapse
Affiliation(s)
- A C Collins
- Institute for Behavioral Genetics, School of Pharmacy, University of Colorado, Boulder 80309
| | | | | | | |
Collapse
|
33
|
Janhunen S, Ahtee L. Differential nicotinic regulation of the nigrostriatal and mesolimbic dopaminergic pathways: implications for drug development. Neurosci Biobehav Rev 2006; 31:287-314. [PMID: 17141870 DOI: 10.1016/j.neubiorev.2006.09.008] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2006] [Revised: 09/10/2006] [Accepted: 09/18/2006] [Indexed: 01/21/2023]
Abstract
Neuronal nicotinic acetylcholine receptors (nAChRs) modulate dopaminergic function. Discovery of their multiplicity has lead to the search for subtype-selective nAChR agonists that might be therapeutically beneficial in diseases linked to brain dopaminergic pathways. The regulation and responses of the nigrostriatal and mesolimbic dopaminergic pathways are often similar, but some differences do exist. The cerebral distribution and characteristics of various nAChR subtypes differ between nigrostriatal and mesolimbic dopaminergic pathways. Comparison of nicotine and epibatidine, two nAChR agonists whose relative affinities for various nAChR subtypes differ, revealed differences in the nAChR-mediated regulation of dopaminergic activation between these dopamine systems. Nicotine preferentially stimulates the mesolimbic pathway, whereas epibatidine's stimulatory effect falls on the nigrostriatal pathway. Thus, it may be possible to stimulate the nigrostriatal pathway with selective nAChR agonists that do not significantly affect the mesolimbic pathway, and thus lack addictive properties. Furthermore, dopamine uptake inhibition revealed a novel inhibitory effect of epibatidine on accumbal dopamine release, which could form a basis for novel antipsychotics that could alleviate the elevated accumbal dopaminergic tone found in schizophrenia during the active psychotic state. Different regulation of nigrostriatal and mesolimbic dopaminergic pathways by nAChRs could be an important basis for developing novel drugs for treatment of Parkinson's disease and schizophrenia.
Collapse
Affiliation(s)
- Sanna Janhunen
- Division of Pharmacology and Toxicology, Faculty of Pharmacy, University of Helsinki, P.O. Box 56 (Viikinkaari 5), Helsinki, FIN-00014, Finland.
| | | |
Collapse
|
34
|
Brody AL, Mandelkern MA, London ED, Olmstead RE, Farahi J, Scheibal D, Jou J, Allen V, Tiongson E, Chefer SI, Koren AO, Mukhin AG. Cigarette smoking saturates brain alpha 4 beta 2 nicotinic acetylcholine receptors. ACTA ACUST UNITED AC 2006; 63:907-15. [PMID: 16894067 PMCID: PMC2773659 DOI: 10.1001/archpsyc.63.8.907] [Citation(s) in RCA: 265] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
CONTEXT 2-[18F]fluoro-3-(2(S)-azetidinylmethoxy) pyridine (2-F-A-85380, abbreviated as 2-FA) is a recently developed radioligand that allows for visualization of brain alpha 4 beta 2* nicotinic acetylcholine receptors (nAChRs) with positron emission tomography (PET) scanning in humans. OBJECTIVE To determine the effect of cigarette smoking on alpha 4 beta 2* nAChR occupancy in tobacco-dependent smokers. DESIGN Fourteen 2-FA PET scanning sessions were performed. During the PET scanning sessions, subjects smoked 1 of 5 amounts (none, 1 puff, 3 puffs, 1 full cigarette, or to satiety [2(1/2) to 3 cigarettes]). SETTING Academic brain imaging center. PARTICIPANTS Eleven tobacco-dependent smokers (paid volunteers). Main Outcome Measure Dose-dependent effect of smoking on occupancy of alpha 4 beta 2* nAChRs, as measured with 2-FA and PET in nAChR-rich brain regions. RESULTS Smoking 0.13 (1 to 2 puffs) of a cigarette resulted in 50% occupancy of alpha 4 beta 2* nAChRs for 3.1 hours after smoking. Smoking a full cigarette (or more) resulted in more than 88% receptor occupancy and was accompanied by a reduction in cigarette craving. A venous plasma nicotine concentration of 0.87 ng/mL (roughly 1/25th of the level achieved in typical daily smokers) was associated with 50% occupancy of alpha 4 beta 2* nAChRs. CONCLUSIONS Cigarette smoking in amounts used by typical daily smokers leads to nearly complete occupancy of alpha 4 beta 2* nAChRs, indicating that tobacco-dependent smokers maintain alpha 4 beta 2* nAChR saturation throughout the day. Because prolonged binding of nicotine to alpha 4 beta 2* nAChRs is associated with desensitization of these receptors, the extent of receptor occupancy found herein suggests that smoking may lead to withdrawal alleviation by maintaining nAChRs in the desensitized state.
Collapse
Affiliation(s)
- Arthur L Brody
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, CA 90095, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Brody AL, Mandelkern MA, Olmstead RE, Scheibal D, Hahn E, Shiraga S, Zamora-Paja E, Farahi J, Saxena S, London ED, McCracken JT. Gene variants of brain dopamine pathways and smoking-induced dopamine release in the ventral caudate/nucleus accumbens. ACTA ACUST UNITED AC 2006; 63:808-16. [PMID: 16818870 PMCID: PMC2873693 DOI: 10.1001/archpsyc.63.7.808] [Citation(s) in RCA: 168] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
CONTEXT Preclinical studies demonstrate that nicotine administration leads to dopamine release in the ventral striatum. However, human studies reveal considerable interindividual variability in the extent of smoking-induced dopamine release. OBJECTIVE To determine whether common gene variants of the brain dopamine pathway explain this observed phenotypic variability in humans. DESIGN Blood samples were drawn to determine gene variants of dopamine system components, and positron emission tomography scanning with the radiotracer raclopride labeled with radioactive carbon (11C) was performed to measure smoking-induced dopamine release. SETTING Academic brain imaging center. PARTICIPANTS Forty-five tobacco-dependent smokers. INTERVENTIONS Subjects either smoked a cigarette (n = 35) or did not smoke (n = 10) during positron emission tomography scanning. MAIN OUTCOME MEASURES Gene variants of dopamine system components (the dopamine transporter variable nucleotide tandem repeat, D2 receptor Taq A1/A2, D4 receptor variable nucleotide tandem repeat, and catechol-O-methyltransferase Val158Met polymorphisms) and change in [11C]raclopride binding potential in the ventral caudate/nucleus accumbens on positron emission tomography scans. RESULTS For subjects who smoked during scanning, those with at least one 9 allele of the dopamine transporter variable nucleotide tandem repeat, fewer than 7 repeats of the D4 variable nucleotide tandem repeat, and the Val/Val catechol-O-methyltransferase genotype had greater decreases in binding potential (an indirect measure of dopamine release) with smoking than those with the alternate genotypes. An overall decrease in ventral caudate/nucleus accumbens binding potential in those who smoked compared with those who did not smoke was also found but was smaller in magnitude than previously reported. CONCLUSIONS Smokers with genes associated with low resting dopamine tone have greater smoking-induced (phasic) dopamine release than those with alternate genotypes. These findings suggest that dopamine system genotype variabilities explain a significant proportion of the interindividual variability in smoking-induced dopamine release and indicate that smoking-induced dopamine release has a genetic predisposition.
Collapse
Affiliation(s)
- Arthur L Brody
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, CA 90095, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Brody AL. Functional brain imaging of tobacco use and dependence. J Psychiatr Res 2006; 40:404-18. [PMID: 15979645 PMCID: PMC2876087 DOI: 10.1016/j.jpsychires.2005.04.012] [Citation(s) in RCA: 140] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2005] [Revised: 04/22/2005] [Accepted: 04/26/2005] [Indexed: 11/25/2022]
Abstract
While most cigarette smokers endorse a desire to quit smoking, only about 14% to 49% will achieve abstinence after 6 months or more of treatment. A greater understanding of the effects of smoking on brain function may (in conjunction with other lines of research) result in improved pharmacological (and behavioral) interventions. Many research groups have examined the effects of acute and chronic nicotine/cigarette exposure on brain activity using functional imaging; the purpose of this paper is to synthesize findings from such studies and present a coherent model of brain function in smokers. Responses to acute administration of nicotine/smoking include: a reduction in global brain activity; activation of the prefrontal cortex, thalamus, and visual system; activation of the thalamus and visual cortex during visual cognitive tasks; and increased dopamine (DA) concentration in the ventral striatum/nucleus accumbens. Responses to chronic nicotine/cigarette exposure include decreased monoamine oxidase (MAO) A and B activity in the basal ganglia and a reduction in alpha4beta2 nicotinic acetylcholine receptor (nAChR) availability in the thalamus and putamen. Taken together, these findings indicate that smoking enhances neurotransmission through cortico-basal ganglia-thalamic circuits either by direct stimulation of nAChRs, indirect stimulation via DA release or MAO inhibition, or a combination of these factors. Activation of this circuitry may be responsible for the effects of smoking seen in tobacco dependent subjects, such as improvements in attentional performance, mood, anxiety, and irritability.
Collapse
Affiliation(s)
- Arthur L Brody
- Department of Psychiatry and Biobehavioral Sciences, UCLA School of Medicine, 300 UCLA Medical Plaza, Suite 2200, Los Angeles, CA 90095, United States.
| |
Collapse
|
37
|
Kim SE, Shim I, Chung JK, Lee MC. Effect of ginseng saponins on enhanced dopaminergic transmission and locomotor hyperactivity induced by nicotine. Neuropsychopharmacology 2006; 31:1714-21. [PMID: 16251992 DOI: 10.1038/sj.npp.1300945] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Several studies have shown that behavioral hyperactivity induced by psychomotor stimulants is prevented by ginseng saponins. In an attempt to investigate whether the effect of ginseng saponins is through their inhibitory action on the enhanced dopaminergic transmission by psychomotor stimulants, we examined the effects of ginseng total saponin (GTS) presynaptically on nicotine-induced dopamine (DA) release in the striatum of freely moving rats using in vivo microdialysis technique and postsynaptically on the in vitro and in vivo binding of [3H]raclopride to DA D2 receptors. Also, we examined the effects of GTS on nicotine-induced locomotor hyperactivity and on nicotine-induced Fos protein expression in the nucleus accumbens and striatum. Systemic pretreatment with GTS (100 and 400 mg/kg, intraperitoneally (i.p.)) resulted in a dose-dependent inhibition of locomotor hyperactivity induced by nicotine. GTS decreased nicotine-induced DA release in the striatum in a dose-dependent manner. However, GTS had no effects on resting levels of locomotor activity and extracellular DA in the striatum. GTS inhibited the in vitro binding of [3H]raclopride to rat striatal membranes with an IC50 of 5.14+/-1.09 microM. High doses of GTS (400 and 800 mg/kg, i.p.) resulted in decreases in the in vivo binding of [3H]raclopride in the striatum. GTS decreased nicotine-induced Fos protein expression in the nucleus accumbens and striatum, reflecting the inhibition by GTS of nicotine-induced enhancement of dopaminergic transmission. The results of the present study suggest that GTS acts not only on dopaminergic neurons directly or indirectly to prevent nicotine-induced DA release but also postsynaptically by binding to DA D2 receptors. This may explain the blocking effect of GTS on behavioral activation induced by nicotine and conceivably by other psychostimulants. Our data raise the possibility that GTS, by attenuating nicotine-induced enhancement of dopaminergic transmission, may prove to be a useful therapeutic agent for nicotine addiction and warrant further investigation on its effect on nicotine's rewarding property.
Collapse
Affiliation(s)
- Sang Eun Kim
- Department of Nuclear Medicine, Seoul National University College of Medicine, Seoul, Korea.
| | | | | | | |
Collapse
|
38
|
Lecca D, Cacciapaglia F, Valentini V, Gronli J, Spiga S, Di Chiara G. Preferential increase of extracellular dopamine in the rat nucleus accumbens shell as compared to that in the core during acquisition and maintenance of intravenous nicotine self-administration. Psychopharmacology (Berl) 2006; 184:435-46. [PMID: 16397746 DOI: 10.1007/s00213-005-0280-4] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2005] [Accepted: 11/24/2005] [Indexed: 10/25/2022]
Abstract
RATIONALE It has been reported that passive administration of nicotine increases preferentially extracellular dopamine (DA) release in the shell as compared to that in the core of the nucleus accumbens (NAc). To date, no information is available if this also applies to active, response-contingent nicotine administration. OBJECTIVE This study was aimed to monitor the changes of extracellular DA in the NAc shell and core during active intravenous nicotine self-administration (SA). METHODS Rats were bilaterally implanted with chronic cannulae and were trained to self-administer nicotine (0.03 mg/kg, i.v.) in single daily 1-h session for 6 weeks, with an initial fixed ratio (FR) 1 schedule increased to FR 2. Dialysate DA from the NAc shell and core was monitored before and for 90 min after the start of SA. RESULTS Significant increases of active nose-pokes over inactive ones were found starting from the 16th SA session. No differences were found in basal extracellular DA in the NAc subdivisions. Data analysis showed (1) significant increases over basal of dialysate DA in the NAc subdivisions during nicotine SA, starting from the first week in the shell and from the second week in the core, (2) preferential increase of extracellular DA during nicotine SA in the shell (24-43%) compared to that in the core (10-23%) and (3) no change in dialysate DA in NAc subdivisions during extinction. CONCLUSIONS Response-contingent nicotine SA preferentially increases the DA output in the NAc shell as compared to that in the core, independently from the duration of the nicotine exposure. Increase in NAc DA is strictly related to nicotine action since is not observed during extinction in spite of active responding.
Collapse
Affiliation(s)
- Daniele Lecca
- Department of Toxicology, University of Cagliari, Via Ospedale 72, 09124 Cagliari, Italy
| | | | | | | | | | | |
Collapse
|
39
|
Tammimäki A, Pietilä K, Raattamaa H, Ahtee L. Effect of quinpirole on striatal dopamine release and locomotor activity in nicotine-treated mice. Eur J Pharmacol 2006; 531:118-25. [PMID: 16442094 DOI: 10.1016/j.ejphar.2005.12.027] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2005] [Revised: 12/15/2005] [Accepted: 12/16/2005] [Indexed: 10/25/2022]
Abstract
The effect of chronic oral nicotine treatment which in its intermittent delivery resembles human smoking was studied on the sensitivity of dopamine autoreceptors in mice. On the 50th day of nicotine administration in the drinking water or after 23-25 h withdrawal quinpirole (D2/D3 agonist, 0.01-0.1 mg/kg s.c.) was given, and accumbal and dorsal striatal dopamine outflow, locomotor activity and body temperature were measured. Dorsal striatal extracellular dopamine concentration and locomotor activity were found to be elevated during nicotine administration. Chronic nicotine did not alter the effects of small, autoreceptor preferring doses of quinpirole on accumbal or dorsal striatal dopamine, locomotor activity or body temperature. However, quinpirole's locomotor activity reducing effect was slightly diminished in mice treated repeatedly with nicotine (0.4 mg/kg twice daily for 10 days s.c.). Thus, although repeated nicotine treatment for 5-14 days decreases dopamine autoreceptor sensitivity, after long-term oral nicotine treatment such a decrease is not seen. Thus, the changes occurring in the sensitivity of D2-like dopamine receptors probably play a minor role in regulating the dopaminergic transmission during long-term nicotine administration.
Collapse
Affiliation(s)
- Anne Tammimäki
- Division of Pharmacology and Toxicology, Faculty of Pharmacy, P.O. Box 56, FIN-00014 University of Helsinki, Finland
| | | | | | | |
Collapse
|
40
|
Pakkanen JS, Stenfors J, Jokitalo E, Tuominen RK. Effect of chronic nicotine treatment on localization of neuronal nicotinic acetylcholine receptors at cellular level. Synapse 2006; 59:383-93. [PMID: 16485261 DOI: 10.1002/syn.20249] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Chronic nicotine treatment increases the number of neuronal nicotinic acetylcholine receptors (nAChRs). Localization of nAChRs at a cellular level determines their functional role. However, changes in the localization of nAChRs caused by chronic nicotine treatment are not well known. In this study, we have examined the effects of chronic nicotine treatment on alpha7 and beta2 nAChR subunits in vitro in cell lines and in vivo in mouse striatum. In vitro, two different cell lines were used, SH-SY5Y cells endogenously expressing several nAChR subtypes and SH-EP1-halpha7 cells, transfected with the human alpha7 nAChR subunit gene. Effects of chronic nicotine treatment (10 microM, 3 days) were studied in vitro by using confocal and electron microscopy and calcium fluorometry. In vitro in SH-SY5Y cells, alpha7 and beta2 subunits formed groups, unlike alpha7 subunits in SH-EP1-halpha7 cells, which were partially localized on endoplastic reticulum. Chronic nicotine treatment did not change the localization of nAChRs in endosomes, but caused clustering of alpha7 subunits in SH-EP1-halpha7 cells. In vivo, nicotine was given to mice in their drinking water for 7 weeks. Results showed that alpha7 and beta2 subunits formed groups, and that chronic nicotine treatment increased the size of the clusters. As a conclusion, our data show that there are large intracellular pools of nAChR subunits, which are partially localized on endoplastic reticulum. Chronic nicotine treatment does not change endocytotic trafficking of nAChRs. Chronic nicotine treatment increased clustering of nAChRs, which could have a role in the release of dopamine (DA) evoked by nicotine.
Collapse
Affiliation(s)
- Jukka S Pakkanen
- Division of Pharmacology and Toxicology, Faculty of Pharmacy, University of Helsinki, Finland.
| | | | | | | |
Collapse
|
41
|
Tsukada H, Miyasato K, Nishiyama S, Fukumoto D, Kakiuchi T, Domino EF. Nicotine normalizes increased prefrontal cortical dopamine D1 receptor binding and decreased working memory performance produced by repeated pretreatment with MK-801: a PET study in conscious monkeys. Neuropsychopharmacology 2005; 30:2144-53. [PMID: 15856080 DOI: 10.1038/sj.npp.1300745] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The effects of acute nicotine were determined on dopamine (DA) D(1) (D(1)R) and D(2) (D(2)R) receptor binding in the neocortex of conscious monkeys under control conditions as well as after chronic pretreatment with MK-801 (dizocilpine), a noncompetitive N-methyl-D-aspartate (NMDA) receptor antagonist. Extrastriatal neocortical D(1)R and D(2)R binding was evaluated with [(11)C]NNC112 and [(11)C]FLB457 with high-specific radioactivity using positron emission tomography (PET). Acute administration of nicotine bitartrate, given as an intravenous (i.v.) bolus plus infusion for 30 min at doses of 32 microg/kg+0.8 microg/kg/min or 100 microg/kg+2.53 microg/kg/min as base, induced slight but significant dose-dependent increases of DA in the extracellular fluid of prefrontal cortex (PFC) as determined by microdialysis. However, acute nicotine did not affect either [(11)C]NNC112 or [(11)C]FLB457 binding to D(1)R or D(2)R, respectively, in any cortical region. Chronic MK-801 (0.03 mg/kg, intramuscularly (i.m.), twice daily for 13 days) increased [(11)C]NNC112 binding to D(1)R in PFC. No significant changes were detected in [(11)C]FLB457 binding to PFC D(2)R. Although chronic MK-801 lowered baseline DA and glutamate levels in PFC, acute nicotine normalized reduced DA to control levels. Acute nicotine dose-dependently normalized the increased binding of [(11)C]NNC112 to D(1)R produced by chronic MK-801 but [(11)C]FLB457 binding to PFC D(2)R did not change. Working memory performance, impaired after chronic MK-801, was partially improved by acute nicotine. These results demonstrate that acute nicotine normalizes MK-801-induced PFC abnormality of D(1)R in PFC.
Collapse
Affiliation(s)
- Hideo Tsukada
- Central Research Laboratory, Hamamatsu Photonics KK, Hamakita, Shizuoka, Japan
| | | | | | | | | | | |
Collapse
|
42
|
Pierce RC, Kumaresan V. The mesolimbic dopamine system: the final common pathway for the reinforcing effect of drugs of abuse? Neurosci Biobehav Rev 2005; 30:215-38. [PMID: 16099045 DOI: 10.1016/j.neubiorev.2005.04.016] [Citation(s) in RCA: 590] [Impact Index Per Article: 31.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2005] [Revised: 04/05/2005] [Accepted: 04/19/2005] [Indexed: 11/23/2022]
Abstract
In this review we will critically assess the hypothesis that the reinforcing effect of virtually all drugs of abuse is primarily dependent on activation of the mesolimbic dopamine system. The focus is on five classes of abused drugs: psychostimulants, opiates, ethanol, cannabinoids and nicotine. For each of these drug classes, the pharmacological and physiological mechanisms underlying the direct or indirect influence on mesolimbic dopamine transmission will be reviewed. Next, we evaluate behavioral pharmacological experiments that specifically assess the influence of activation of the mesolimbic dopamine system on drug reinforcement, with particular emphasis on animal experiments using drug self-administration paradigms. There is overwhelming evidence that all five classes of abused drugs increase dopamine transmission in limbic regions of the brain through interactions with a variety of transporters, ionotropic receptors and metabotropic receptors. Behavioral pharmacological experiments indicate that increased dopamine transmission is clearly both necessary and sufficient to promote psychostimulant reinforcement. For the other four classes of abused substances, self-administration experiments suggest that although increasing mesolimbic dopamine transmission plays an important role in the reinforcing effects of opiates, ethanol, cannabinoids and nicotine, there are also dopamine-independent processes that contribute significantly to the reinforcing effects of these compounds.
Collapse
Affiliation(s)
- R Christopher Pierce
- Department of Pharmacology, Boston University School of Medicine, 715 Albany Street, L603 Boston, MA 02118, USA.
| | | |
Collapse
|
43
|
Popik P, Krawczyk M, Kos T, Nalepa I, Kowalska M, Witarski T, Antkiewicz-Michaluk L, Vetulani J. Nicotine produces antidepressant-like actions: Behavioral and neurochemical evidence. Eur J Pharmacol 2005; 515:128-33. [PMID: 15893747 DOI: 10.1016/j.ejphar.2005.04.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2004] [Revised: 03/24/2005] [Accepted: 04/08/2005] [Indexed: 01/09/2023]
Abstract
Converging lines of evidence indicate the involvement of nicotinic acetylcholine receptors in depressive illness and antidepressant drug action. We investigated the effects of sub-chronic and chronic treatment with imipramine, nicotine and their combination on: (a) the ability of a dopamine-mimetic challenge to produce locomotor stimulation and (b) cortical density of beta-adrenoceptors. One week of treatment with imipramine (10 mg/kg, twice daily) did not result in an altered response to the apomorphine (0.15 mg/kg) challenge, but after 2 weeks, the imipramine-treated rats demonstrated hyperactivity. Conversely, such increased locomotor response was observed in rats treated with nicotine (0.4 mg/kg, twice daily) for 1 but not for 2 weeks. Groups treated with nicotine+imipramine for 1 and 2 weeks demonstrated equally high hyperactivity in response to the apomorphine challenge. This effect was not different from the effects of 1-week treatment with nicotine or 2-week treatment with imipramine. The density of beta-adrenoceptors was equally decreased by 2 (but not 1) weeks of the treatment with imipramine, nicotine and their combination. The present behavioral and neurochemical data suggest the antidepressant-like effect of the chronic treatment with nicotine. It appears that the potentiation of the dopamine-mimetic-induced hyperactivity cannot be explained by beta-adrenoceptor down-regulation.
Collapse
Affiliation(s)
- Piotr Popik
- Institute of Pharmacology, Polish Academy of Sciences, 12 Smetna Street, 31-343 Kraków, Poland.
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Janhunen S, Ahtee L. Comparison of the effects of nicotine and epibatidine on the striatal extracellular dopamine. Eur J Pharmacol 2005; 494:167-77. [PMID: 15212971 DOI: 10.1016/j.ejphar.2004.05.015] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2004] [Revised: 05/06/2004] [Accepted: 05/11/2004] [Indexed: 11/19/2022]
Abstract
We compared the effects of nicotine and epibatidine on striatal extracellular dopamine and its metabolites, 3,4-dihydroxyphenylacetic acid (DOPAC) and homovanillic acid (HVA), by microdialysis in freely moving rats. Nicotine (0.5 mg/kg) elevated dopamine in the caudate-putamen and somewhat more in the nucleus accumbens. Epibatidine at 0.3 microg/kg reduced, and at 0.6 and 1.0 microg/kg increased, dopamine in the caudate-putamen; 2.0 and 3.0 microg/kg had no effect. Accumbal dopamine epibatidine elevated only at 3.0 microg/kg. Thus, in contrast to nicotine, epibatidine increased dopamine output in the caudate-putamen at smaller doses than in the accumbens. Both epibatidine and nicotine enhanced accumbal dopamine metabolism clearly more than that in the caudate-putamen. Also epibatidine was found to elevate 5-hydroxyindoleacetic acid (5-HIAA) in the nucleus accumbens at smaller doses than in the caudate-putamen. Similarly to what has been reported concerning nicotine, the dose-response curve of epibatidine to increase the dopamine output in the caudate-putamen was bell-shaped and clearly differed from that in the accumbens. These findings indicate that the nicotinic mechanisms controlling dopamine release and metabolism in the nigrostriatal and mesolimbic dopaminergic pathways differ fundamentally.
Collapse
Affiliation(s)
- Sanna Janhunen
- Faculty of Pharmacy, Division of Pharmacology and Toxicology, University of Helsinki, P.O. Box 56, Viikinkaari 5, Helsinki FIN-00014, Finland
| | | |
Collapse
|
45
|
Tsukada H, Miyasato K, Harada N, Nishiyama S, Fukumoto D, Kakiuchi T. Nicotine modulates dopamine synthesis rate as determined by L-[β-11C]DOPA: PET studies compared with [11C]raclopride binding in the conscious monkey brain. Synapse 2005; 57:120-2. [PMID: 15906385 DOI: 10.1002/syn.20157] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Hideo Tsukada
- Central Research Laboratory, Hamamatsu Photonics K.K., Hamakita, Shizuoka 434-8601, Japan.
| | | | | | | | | | | |
Collapse
|
46
|
Li SP, Park MS, Kim JH, Kim MO. Chronic nicotine and smoke treatment modulate dopaminergic activities in ventral tegmental area and nucleus accumbens and the ?-aminobutyric acid type B receptor expression of the rat prefrontal cortex. J Neurosci Res 2004; 78:868-79. [PMID: 15521060 DOI: 10.1002/jnr.20329] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Dopaminergic afferents from the mesencephalic areas, such as ventral tegmental area (VTA), synapse with the gamma-aminobutyric acid (GABA)-ergic interneurons in the prefrontal cortex (PFC). Pharmacological and electrophysiological data show that the reinforcement, the dependence-producing properties, as well as the psychopharmacologic effects of nicotine depend to a great extent on activation of nicotinic receptors within the mesolimbocortical dopaminergic projection. To explore further the relationship between the mesencephalic dopaminergic neurons and PFC GABAergic neurons, we investigated the effects of nicotine and passive exposure to cigarette smoke on the regulation of tyrosine hydroxylase (TH) in VTA and substantia nigra (SNC) and dopamine (DA) D1 receptor levels in nucleus accumbens (NAc) and caudate-putamen (CPu). Also, the simultaneous changes in GABAB receptors mRNAs in the PFC were studied. The results showed that chronic nicotine and smoking treatment differentially changed the levels of TH protein in VTA and SNC and DA D1 receptor levels in Nac and CPu. GABAB1 and GABAB2 receptor mRNA levels also showed different change patterns. Ten and thirty minutes of smoke exposure increased GABAB1 receptor mRNA to a greater extent than that of GABAB2, whereas GABAB2 was greatly enhanced after 1 hr of smoke exposure. The TH levels in VTA were closely related to DA D1 receptor levels in NAc and with GABAB receptor mRNA changes in PFC. These results suggest that the mesolimbic pathway and GABAB receptor mRNA in PFC are modulated by nicotine and cigarette smoke, implying an important role in nicotine's psychopharmacological effects.
Collapse
Affiliation(s)
- Shu-Peng Li
- Division of Life Science, College of Natural Sciences and Applied Life Science (Brain Korea 21), Gyeongsang National University, Chinju, South Korea
| | | | | | | |
Collapse
|
47
|
Bednar I, Friberg L, Nordberg A. Modulation of dopamine release by the nicotinic agonist epibatidine in the frontal cortex and the nucleus accumbens of naive and chronic nicotine treated rats. Neurochem Int 2004; 45:1049-55. [PMID: 15337304 DOI: 10.1016/j.neuint.2004.05.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2004] [Accepted: 05/12/2004] [Indexed: 11/30/2022]
Abstract
The effect of the nicotinic acetylcholine receptors (nAChRs) agonist (+/-)epibatidine on the modulation of dopamine (DA) release was investigated by microdialysis in vivo in the frontal cortex and the nucleus accumbens of naive and chronic nicotine-treated awake rats. (+/-)Epibatidine (2.5 microg/kg, s.c.), contrary to (-)nicotine (0.5 mg/kg, s.c.), decreased the extracellular concentrations of DA in the brain of naive rats. Subchronic nicotine treatment (0.45 mg/kg, s.c., twice daily for 7 days) attenuated the (+/-)epibatidine induced decrease in the DA level. The extracellular concentrations of the DA metabolites 3,4-dihydroxyphenylacetic acid (DOPAC) and homovanillic acid (HVA) were elevated by (+/-)epibatidine administration in both naïve and subchronic treated rats. The findings suggest that the decrease in DA extracellular concentrations induced by the high affinity nAChRs agonist (+/-)epibatidine might be due to inactivation of nAChRs, which can be overcome by subchronic treatment with nicotine. Different mechanisms in modulation of DA release appears to be involved in the rat brain by (+/-)epibatidine compare to (-)nicotine.
Collapse
Affiliation(s)
- Ivan Bednar
- Department of Neurotec, Division of Molecular Neuropharmacology, Karolinska Institutet, Karolinska University Hospital, Stockholm, SE 14186 Stockholm, Sweden.
| | | | | |
Collapse
|
48
|
Shoaib M, Lowe AS, Williams SCR. Imaging localised dynamic changes in the nucleus accumbens following nicotine withdrawal in rats. Neuroimage 2004; 22:847-54. [PMID: 15193614 DOI: 10.1016/j.neuroimage.2004.01.026] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2003] [Revised: 01/16/2004] [Accepted: 01/20/2004] [Indexed: 11/20/2022] Open
Abstract
This study utilises pharmacological functional magnetic resonance imaging (fMRI) to examine the neurobiological mechanisms through which nicotine produces dependence. Using an established regime to induce physical dependence to nicotine in rats (osmotic minipumps delivering 3.16 mg/kg/day nicotine for 7 days SC), animals were subsequently anaesthetised under urethane and positioned in a stereotaxic frame to allow collection of gradient echo whole brain images with a 4.7-T MRI spectrometer. Rats were initially scanned for 34 min (40 baseline image volumes, 1 volume per 51 s) then challenged with mecamylamine (1.0 mg/kg SC) or saline (1 ml/kg) and scanned for a further 68 min (80 image volumes). Mecamylamine precipitated highly significant positive changes in fMRI blood oxygen level dependent (BOLD) contrast that were predominantly localised to the NAc of nicotine-dependent rats. Saline-treated rats challenged with the same dose of mecamylamine exhibited similar but smaller increases in BOLD contrast although such changes were less defined around the NAc. Precipitated withdrawal also elicited statistically significant negative BOLD contrast changes in widespread cortical regions. These findings are consistent with previous neurochemical reports on decreases in dopamine in the NAc during nicotine withdrawal. This fMRI study further highlights the potential and power to image the neurobiological events during nicotine dependence.
Collapse
Affiliation(s)
- Mohammed Shoaib
- Section of Behavioural Pharmacology, Division of Psychological Medicine, Institute of Psychiatry, Kings College London, London SE5 8AF, UK.
| | | | | |
Collapse
|
49
|
Di Matteo V, Pierucci M, Esposito E. Selective stimulation of serotonin2c receptors blocks the enhancement of striatal and accumbal dopamine release induced by nicotine administration. J Neurochem 2004; 89:418-29. [PMID: 15056285 DOI: 10.1111/j.1471-4159.2004.02337.x] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
The effects of acute and repeated nicotine administration on the extracellular levels of dopamine (DA) in the corpus striatum and the nucleus accumbens were studied in conscious, freely moving rats by in vivo microdialysis. Acute intraperitoneal (i.p.) injection of nicotine (1 mg/kg) increased DA outflow both in the corpus striatum and the nucleus accumbens. Repeated daily injection of nicotine (1 mg/kg, i.p.) for 10 consecutive days caused a significant increase in basal DA outflow both in the corpus striatum and the nucleus accumbens. Acute challenge with nicotine (1 mg/kg, i.p.) in animals treated repeatedly with this drug enhanced DA extracellular levels in both brain areas. However, the effect of nicotine was potentiated in the nucleus accumbens, but not in the corpus striatum. To test the hypothesis that stimulation of 5-HT (5-hydroxytryptamine, serotonin)(2C) receptors could affect nicotine-induced DA release, the selective 5-HT(2C) receptor agonist RO 60-0175 was used. Pretreatment with RO 60-0175 (1 and 3 mg/kg, i.p.) dose-dependently prevented the enhancement in DA release elicited by acute nicotine in the corpus striatum, but was devoid of any significant effect in the nucleus accumbens. RO 60-0175 (1 and 3 mg/kg, i.p.) dose-dependently reduced the stimulatory effect on striatal and accumbal DA release induced by an acute challenge with nicotine (1 mg/kg, i.p.) in rats treated repeatedly with this alkaloid. However, only the effect of 3 mg/kg RO 60-0175 reached statistical significance. The inhibitory effect of RO 60-0175 on DA release induced by nicotine in the corpus striatum and the nucleus accumbens was completely prevented by SB 242084 (0.5 mg/kg, i.p.) and SB 243213 (0.5 mg/kg, i.p.), two selective antagonists of 5-HT(2C) receptors. It is concluded that selective activation of 5-HT(2C) receptors can block the stimulatory action of nicotine on central DA function, an effect that might be relevant for the reported antiaddictive properties of RO 60-0175.
Collapse
Affiliation(s)
- Vincenzo Di Matteo
- Istituto di Ricerche Farmacologiche Mario Negri, Consorzio Mario Negri Sud, Santa Maria Imbaro, Chieti, Italy
| | | | | |
Collapse
|
50
|
Parker SL, Fu Y, McAllen K, Luo J, McIntosh JM, Lindstrom JM, Sharp BM. Up-regulation of brain nicotinic acetylcholine receptors in the rat during long-term self-administration of nicotine: disproportionate increase of the alpha6 subunit. Mol Pharmacol 2004; 65:611-22. [PMID: 14978239 DOI: 10.1124/mol.65.3.611] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
In male rats continually self-administering nicotine (approximately 1.5 mg free base/kg/day), we found a significant increase of nicotinic acetylcholine receptors (nAChRs) labeled by epibatidine (Epb) in 11 brain areas. A large increase of high-affinity Epb binding sites was apparent in the ventral tegmentum/substantia nigra, nucleus tractus solitarii, nucleus accumbens, thalamus/subthalamus, parietal cortex, hypothalamus, and amygdala. A smaller but significant up-regulation of high-affinity Epb sites was seen in the piriform cortex, hippocampus, caudate/putamen, and cerebellar cortex. The up-regulation of nAChRs, shown by immunoadsorption and Western blotting, involved alpha4, alpha6, and beta2 subunits. As a consequence of long-term self-administration of nicotine, the alpha6 immunoreactive (IR) binding of either labeled Epb or 125I-alpha-conotoxin MII increased to a much greater extent than did alpha4 or beta2 IR binding of Epb. In addition, the beta2 IR binding of Epb was consistently enhanced to a greater extent than was alpha4. These findings may reflect a larger surface membrane retention of alpha6-containing and, to some degree, beta2-containing nAChRs compared with alpha4-containing nAChRs during long-term self-administration of nicotine.
Collapse
Affiliation(s)
- Steven L Parker
- Department of Pharmacology, University of Tennessee College of Medicine, Memphis, TN 38163, USA
| | | | | | | | | | | | | |
Collapse
|