1
|
Hendry E, McCallister B, Elman DJ, Freeman R, Borsook D, Elman I. Validity of mental and physical stress models. Neurosci Biobehav Rev 2024; 158:105566. [PMID: 38307304 PMCID: PMC11082879 DOI: 10.1016/j.neubiorev.2024.105566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 01/13/2024] [Accepted: 01/27/2024] [Indexed: 02/04/2024]
Abstract
Different stress models are employed to enhance our understanding of the underlying mechanisms and explore potential interventions. However, the utility of these models remains a critical concern, as their validities may be limited by the complexity of stress processes. Literature review revealed that both mental and physical stress models possess reasonable construct and criterion validities, respectively reflected in psychometrically assessed stress ratings and in activation of the sympathoadrenal system and the hypothalamic-pituitary-adrenal axis. The findings are less robust, though, in the pharmacological perturbations' domain, including such agents as adenosine or dobutamine. Likewise, stress models' convergent- and discriminant validity vary depending on the stressors' nature. Stress models share similarities, but also have important differences regarding their validities. Specific traits defined by the nature of the stressor stimulus should be taken into consideration when selecting stress models. Doing so can personalize prevention and treatment of stress-related antecedents, its acute processing, and chronic sequelae. Further work is warranted to refine stress models' validity and customize them so they commensurate diverse populations and circumstances.
Collapse
Affiliation(s)
- Erin Hendry
- Center for Autonomic and Peripheral Nerve Disorders, Harvard Medical School, Boston, MA, USA; Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Brady McCallister
- Center for Autonomic and Peripheral Nerve Disorders, Harvard Medical School, Boston, MA, USA
| | - Dan J Elman
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Roy Freeman
- Center for Autonomic and Peripheral Nerve Disorders, Harvard Medical School, Boston, MA, USA; Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - David Borsook
- Departments of Psychiatry and Radiology, Massachusetts General Hospital, Harvard Medical School, Department of Anesthesiology, Harvard Medical School, Boston, MA, USA.
| | - Igor Elman
- Department of Psychiatry, Cambridge Health Alliance, Harvard Medical School, Cambridge, MA, USA
| |
Collapse
|
2
|
Flak JN, Goforth PB, Dell’Orco J, Sabatini PV, Li C, Bozadjieva N, Sorensen M, Valenta A, Rupp A, Affinati AH, Cras-Méneur C, Ansari A, Sacksner J, Kodur N, Sandoval DA, Kennedy RT, Olson DP, Myers MG. Ventromedial hypothalamic nucleus neuronal subset regulates blood glucose independently of insulin. J Clin Invest 2020; 130:2943-2952. [PMID: 32134398 PMCID: PMC7260001 DOI: 10.1172/jci134135] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 02/20/2020] [Indexed: 12/14/2022] Open
Abstract
To identify neurons that specifically increase blood glucose from among the diversely functioning cell types in the ventromedial hypothalamic nucleus (VMN), we studied the cholecystokinin receptor B-expressing (CCKBR-expressing) VMN targets of glucose-elevating parabrachial nucleus neurons. Activation of these VMNCCKBR neurons increased blood glucose. Furthermore, although silencing the broader VMN decreased energy expenditure and promoted weight gain without altering blood glucose levels, silencing VMNCCKBR neurons decreased hIepatic glucose production, insulin-independently decreasing blood glucose without altering energy balance. Silencing VMNCCKBR neurons also impaired the counterregulatory response to insulin-induced hypoglycemia and glucoprivation and replicated hypoglycemia-associated autonomic failure. Hence, VMNCCKBR cells represent a specialized subset of VMN cells that function to elevate glucose. These cells not only mediate the allostatic response to hypoglycemia but also modulate the homeostatic setpoint for blood glucose in an insulin-independent manner, consistent with a role for the brain in the insulin-independent control of glucose homeostasis.
Collapse
Affiliation(s)
| | - Paulette B. Goforth
- Department of Pharmacology, University of Michigan, Ann Arbor, Michigan, USA
| | | | | | - Chien Li
- Novo Nordisk, Seattle, Washington, USA
| | | | | | | | | | | | | | | | | | | | | | | | - David P. Olson
- Division of Endocrinology, Department of Pediatrics, University of Michigan, Ann Arbor, Michigan, USA
| | | |
Collapse
|
3
|
Tachi M, Yamaguchi N, Okada S. Thromboxane A 2 in the paraventricular hypothalamic nucleus mediates glucoprivation-induced adrenomedullary outflow. Eur J Pharmacol 2020; 875:173034. [PMID: 32097659 DOI: 10.1016/j.ejphar.2020.173034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 02/20/2020] [Accepted: 02/21/2020] [Indexed: 11/30/2022]
Abstract
Glucoprivation stimulates a rapid sympathetic response to release and/or secrete catecholamines into the bloodstream. However, the central regulatory mechanisms involving adrenoceptors and prostanoids production in the paraventricular hypothalamic nucleus (PVN) that are responsible for the glucoprivation-induced elevation of plasma catecholamines are still unresolved. In this study, we aimed to clarify whether glucoprivation-induced activation of noradrenergic neurons projecting to the PVN can induce α- and/or β-adrenergic receptor activation and prostanoids production in the PVN to elevate plasma catecholamine levels. We examined the effects of α- and β-adrenergic receptor antagonists, a cyclooxygenase inhibitor, a thromboxane A synthase inhibitor, and a PGE2 subtype EP3 receptor antagonist on intravenously administered 2-deoxy-D-glucose (2-DG)-induced elevation of noradrenaline in the PVN and plasma levels of catecholamine in freely moving rats. In addition, we examined whether intravenously administered 2-DG can increase prostanoids levels in the PVN microdialysates. Intracerebroventricular (i.c.v.) pretreatment with phentolamine (a non-selective α-adrenergic receptor antagonist) suppressed the 2-DG-induced increase in the plasma level of adrenaline, whereas i.c.v. pretreatment with propranolol (a non-selective β-adrenergic receptor antagonist) suppressed the 2-DG-induced elevation of the plasma level of noradrenaline. I.c.v. pretreatment with indomethacin (a cyclooxygenase inhibitor) and furegrelate (a thromboxane synthase inhibitor) attenuated the 2-DG-induced elevations of both noradrenaline and adrenaline levels. Furthermore, 2-DG administration elevated the thromboxane B2 level, a metabolite of thromboxane A2 in PVN microdialysates. Our results suggest that glucoprivation-induced activation of α- and β-adrenergic receptor in the brain including the PVN and then thromboxane A2 production in the PVN, which are essential for the 2-DG-induced elevations of both plasma adrenaline and noradrenaline levels.
Collapse
Affiliation(s)
| | - Naoko Yamaguchi
- Department of Pharmacology, Aichi Medical University School of Medicine, Japan
| | - Shoshiro Okada
- Department of Pharmacology, Aichi Medical University School of Medicine, Japan.
| |
Collapse
|
4
|
Horman T, Fernandes MF, Zhou Y, Fuller B, Tigert M, Leri F. An exploration of the aversive properties of 2-deoxy-D-glucose in rats. Psychopharmacology (Berl) 2018; 235:3055-3063. [PMID: 30112578 DOI: 10.1007/s00213-018-4998-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 08/07/2018] [Indexed: 12/20/2022]
Abstract
Hypoglycemia can alter arousal and negatively impact mood. This study tests the hypothesis that acute drops in glucose metabolism cause an aversive state mediated by monoamine activity. In experiment 1, male Sprague-Dawley rats were either food deprived (FD) or pre-fed (PF) and tested on conditioned place avoidance (CPA; biased place conditioning design; 3 pairings drug/vehicle, each 30 min-long) induced by the glucose antimetabolite 2-deoxy-D-glucose (2-DG; 0, 300 or 500 mg/kg, SC). Locomotion and blood glucose were also assessed. Experiment 2 examined whether clonidine (noradrenergic α2 agonist, 0, 10 or 40 μg/kg, SC) or bupropion (monoamine reuptake blocker, 0, 10 or 30 mg/kg, SC) could alter CPA induced by 500 mg/kg 2-DG. In experiment 3, blood corticosterone (CORT) was measured in response to 500 mg/kg 2-DG, alone or in combination with 40 μg/kg clonidine or 30 mg/kg bupropion. Finally, experiment 4 controlled for possible place conditioning induced by 10 or 40 μg/kg clonidine, or 10 or 30 mg/kg bupropion injected without 2-DG. It was found that 2-DG increased blood glucose and produced a robust CPA. The feeding status of the animals modulated these effects, including CORT levels. Both clonidine and bupropion attenuated the effects of 2-DG on CPA and CORT, but only bupropion reversed suppression of locomotion. Taken together, these results in rats suggest that impaired glucose metabolism can negatively impact arousal and mood via effects on HPA and monoamine systems.
Collapse
Affiliation(s)
- Thomas Horman
- Department of Psychology and Neuroscience, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | | | - Yan Zhou
- Laboratory of the Biology of Addictive Diseases, The Rockefeller University, New York, NY, USA
| | - Benjamin Fuller
- Department of Psychology and Neuroscience, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Melissa Tigert
- Department of Psychology and Neuroscience, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Francesco Leri
- Department of Psychology and Neuroscience, University of Guelph, Guelph, ON, N1G 2W1, Canada.
| |
Collapse
|
5
|
Wolf K, Zarkua G, Chan SA, Sridhar A, Smith C. Spatial and activity-dependent catecholamine release in rat adrenal medulla under native neuronal stimulation. Physiol Rep 2017; 4:4/17/e12898. [PMID: 27597763 PMCID: PMC5027341 DOI: 10.14814/phy2.12898] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Accepted: 07/25/2016] [Indexed: 11/24/2022] Open
Abstract
Neuroendocrine chromaffin cells of the adrenal medulla in rat receive excitatory synaptic input through anterior and posterior divisions of the sympathetic splanchnic nerve. Upon synaptic stimulation, the adrenal medulla releases the catecholamines, epinephrine, and norepinephrine into the suprarenal vein for circulation throughout the body. Under sympathetic tone, catecholamine release is modest. However, upon activation of the sympathoadrenal stress reflex, and increased splanchnic firing, adrenal catecholamine output increases dramatically. Moreover, specific stressors can preferentially increase release of either epinephrine (i.e., hypoglycemia) or norepinephrine (i.e., cold stress). The mechanism for this stressor-dependent segregated release of catecholamine species is not yet fully understood. We tested the hypothesis that stimulation of either division of the splanchnic selects for epinephrine over norepinephrine release. We introduce an ex vivo rat preparation that maintains native splanchnic innervation of the adrenal gland and we document experimental advantages and limitations of this preparation. We utilize fast scanning cyclic voltammetry to detect release of both epinephrine and norepinephrine from the adrenal medulla, and report that epinephrine and norepinephrine release are regulated spatially and in a frequency-dependent manner. We provide data to show that epinephrine is secreted preferentially from the periphery of the medulla and exhibits a higher threshold and steeper stimulus-secretion function than norepinephrine. Elevated stimulation of the whole nerve specifically enhances epinephrine release from the peripheral medulla. Our data further show that elimination of either division from stimulation greatly attenuated epinephrine release under elevated stimulation, while either division alone can largely support norepinephrine release.
Collapse
Affiliation(s)
- Kyle Wolf
- Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, Ohio
| | - Georgy Zarkua
- Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, Ohio
| | - Shyue-An Chan
- Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, Ohio
| | - Arun Sridhar
- Bioelectronics Research and Development, GlaxoSmithKline, Stevenage, United Kingdom
| | - Corey Smith
- Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, Ohio
| |
Collapse
|
6
|
Fasting induces a form of autonomic synaptic plasticity that prevents hypoglycemia. Proc Natl Acad Sci U S A 2016; 113:E3029-38. [PMID: 27092009 DOI: 10.1073/pnas.1517275113] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
During fasting, activation of the counter-regulatory response (CRR) prevents hypoglycemia. A major effector arm is the autonomic nervous system that controls epinephrine release from adrenal chromaffin cells and, consequently, hepatic glucose production. However, whether modulation of autonomic function determines the relative strength of the CRR, and thus the ability to withstand food deprivation and maintain euglycemia, is not known. Here we show that fasting leads to altered transmission at the preganglionic → chromaffin cell synapse. The dominant effect is a presynaptic, long-lasting increase in synaptic strength. Using genetic and pharmacological approaches we show this plasticity requires neuropeptide Y, an adrenal cotransmitter and the activation of adrenal Y5 receptors. Loss of neuropeptide Y prevents a fasting-induced increase in epinephrine release and results in hypoglycemia in vivo. These findings connect plasticity within the sympathetic nervous system to a physiological output and indicate the strength of the final synapse in this descending pathway plays a decisive role in maintaining euglycemia.
Collapse
|
7
|
Wang Q, Whim MD. Stress-induced changes in adrenal neuropeptide Y expression are regulated by a negative feedback loop. J Neurochem 2013; 125:16-25. [PMID: 23311866 DOI: 10.1111/jnc.12150] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2012] [Revised: 12/20/2012] [Accepted: 01/02/2013] [Indexed: 12/21/2022]
Abstract
Neuropeptide Y is a co-transmitter that is synthesized by chromaffin cells in the adrenal medulla. During the fight-or-flight response these cells release NPY in addition to epinephrine and norepinephrine. Following the stress-induced reflex, the levels of NPY are increased as part of a homeostatic response that modulates catecholaminergic signaling. Here, we examined the control of NPY expression in mice after brief exposure to the cold water forced swim test. This treatment led to a shift in NPY expression between two populations of chromaffin cells that reversed over the course of 1 week. When NPY(GFP) BAC transgenic animals were exposed to stress, there was an increase in cytoplasmic, non-secretable GFP, indicating that stress increased NPY promoter activity. In vivo blockage of Y2 (but not Y1 or Y5) receptors increased basal adrenal NPY expression and so modulated the effects of stress. We conclude that release of NPY mediates a negative feedback loop that inhibits its own expression. Thus, the levels of NPY are determined by a balance between the potentiating effects of stress and the tonic inhibitory actions of Y2 receptors. This may be an efficient way to ensure the levels of this modulator do not decline following intense sympathetic activity.
Collapse
Affiliation(s)
- Qian Wang
- Department of Biology, Pennsylvania State University, State College, PA, USA
| | | |
Collapse
|
8
|
Guardiola FA, Cerezuela R, Meseguer J, Esteban MA. Effects of 2-deoxy-D-glucose on the immune system of seabream (Sparus aurata L.). FISH & SHELLFISH IMMUNOLOGY 2011; 30:592-599. [PMID: 21167944 DOI: 10.1016/j.fsi.2010.12.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2010] [Revised: 12/03/2010] [Accepted: 12/05/2010] [Indexed: 05/30/2023]
Abstract
Stressful situations are a major problem in aquaculture because they affect the immune system. 2-Deoxy-D-glucose (2-DG) is a derivative of a glucose analogue that reduces the availability of energy, thereby inhibiting cell metabolism so that it is unable to enter the glycolysis pathway. In this paper, 2-DG has been administered in order to study if the immune function is compromised during metabolic stress. Blood glucose level was measured as an indicator of the inhibition of glycolysis, and the effects of intraperitoneal administration of 2-DG on the main parameters of the humoral (complement, IgM levels and peroxidase activity in blood plasma) and cellular (respiratory burst, intracellular peroxidase level and phagocytosis activity) immune parameters of gilthead seabream (Sparus aurata, L) were evaluated. Furthermore, the expression levels of immune-associated genes (CSF-1R, NCCRP-1, Hep, TCR-β, IgM(H), MHC-IIα, C3 and IL-1β) were analyzed by real-time PCR in head-kidney. A total of 5 intraperitoneal injections were performed at 48 h intervals. Three experimental groups were established: a control group injected with phosphate buffer saline, group 2-DG 500 and group 2-DG 750 injected with 500 mg kg⁻¹ and 750 mg kg⁻¹ 2-DG, respectively (N=15). After the third and fourth injection, some specimens of both DG-treated groups died. Following the first and third injection, the blood glucose levels of both 2-DG treated groups increased to a statistically significant extent with respect to the control group. While the humoral immune parameters were not significantly affected as a consequence of 2-DG administration, the cellular activities of leucocytes were. The injection of 500 mg kg⁻¹ 2-DG provoked up- or down-regulation of the immune-relevant genes analyzed, while the injection of 750 mg kg⁻¹ always caused down-regulation of these genes. The results suggest that 2-DG provokes metabolic stress, which reduces the activities carried out by immune cells (leucocytes) and induces down-regulation of the immune-relevant genes analyzed when the energy available to the cell decreases.
Collapse
Affiliation(s)
- F A Guardiola
- Fish Innate Immune System Group, Department of Cell Biology and Histology, Faculty of Biology, University of Murcia, 30100 Murcia, Spain
| | | | | | | |
Collapse
|
9
|
Okada S, Yamaguchi-Shima N, Shimizu T, Arai J, Yorimitsu M, Yokotani K. Centrally administered N-methyl-d-aspartate evokes the adrenal secretion of noradrenaline and adrenaline by brain thromboxane A2-mediated mechanisms in rats. Eur J Pharmacol 2008; 586:145-50. [PMID: 18374330 DOI: 10.1016/j.ejphar.2008.02.069] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2007] [Revised: 02/07/2008] [Accepted: 02/25/2008] [Indexed: 11/16/2022]
Abstract
Plasma adrenaline mainly originated from adrenaline-containing cells in the adrenal medulla, while plasma noradrenaline reflects the release from sympathetic nerves in addition to the secretion from noradrenaline-containing cells in the adrenal medulla. The present study was undertaken to characterize the source of plasma catecholamines induced by centrally administered N-methyl-d-aspartate with regard to the brain prostanoid, using urethane-anesthetized rats. Intracerebroventricularly (i.c.v.) administered N-methyl-d-aspartate (1.0, 5.0, 10.0 nmol/animal) dose-dependently elevated plasma levels of noradrenaline and adrenaline. The N-methyl-d-aspartate (5.0 nmol/animal, i.c.v.)-induced elevation of both catecholamines was reduced by dizocilpine maleate (5 nmol/animal, i.c.v.), a non-competitive N-methyl-d-aspartate receptor antagonist. Indomethacin (0.6 and 1.2 micromol/animal, i.c.v.), an inhibitor of cyclooxygenase, dose-dependently reduced the N-methyl-d-aspartate (5.0 nmol/animal, i.c.v.)-induced elevation of both catecholamines. The N-methyl-d-aspartate-induced response was dose-dependently attenuated by furegrelate (0.9 and 1.8 micromol/animal, i.c.v.), an inhibitor of thromboxane A2 synthase. Furthermore, the acute bilateral adrenalectomy abolished the N-methyl-d-aspartate-induced responses, indicating that the source of increase in plasma noradrenaline evoked by N-methyl-d-aspartate is due to secretion from the adrenal gland and not due to release from sympathetic nerve terminals. These results suggest that centrally administered N-methyl-d-aspartate induces the secretion of noradrenaline and adrenaline from adrenal medulla by the brain thromboxane A2-mediated mechanisms in rats.
Collapse
Affiliation(s)
- Shoshiro Okada
- Department of Pharmacology: Graduate School of Medicine, Kochi University, Nankoku, Kochi 783-8505, Japan.
| | | | | | | | | | | |
Collapse
|
10
|
de Diego AMG, Gandía L, García AG. A physiological view of the central and peripheral mechanisms that regulate the release of catecholamines at the adrenal medulla. Acta Physiol (Oxf) 2008; 192:287-301. [PMID: 18005392 DOI: 10.1111/j.1748-1716.2007.01807.x] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Here we review the tight neural control of the differential secretion into the circulation, of the adrenal medullary hormones adrenaline and noradrenaline. One or the other catecholamines are differentially released on various stress conditions. This is specifically controlled by central nervous system nuclei at the cortex, hypothalamus and spinal cord. Different firing patterns of splanchnic nerves and nicotinic or muscarinic receptors cause the selective release of noradrenaline or adrenaline, to adapt the body to the 'fight or flight' reaction, or during severe hypoglycaemia, haemorrhage, cold, acute myocardial infarction or other severe stressful conflicts. Endogenously acetylcholine (ACh) released at the splanchnic nerve-chromaffin cell synapse, acting on muscarinic and nicotinic receptors, causes membrane depolarization and action potentials (AP) in chromaffin cells. These changes vary with the animal species, the cell preparation (intact bisected adrenal, adrenal slices, or isolated fresh or cultured cells) or the recording technique (intracellular microelectrodes, patch-clamp, perforated-patch, cell-attached). Conflicting results leave many open questions concerning the actions of ACh on chromaffin cell excitability. The use of adrenal slices and field electrical stimulation will surely provide new insights into these mechanisms. Chromaffin cells have been thoroughly used as models to study the relationship between Ca2+ entry, cytosolic Ca2+ signals, exocytosis and endocytosis, using patch-clamp and amperometric techniques. Cells have been stimulated with single depolarizing pulses (DPs), DP trains and with simulated AP waveforms. These approaches have provided useful information but we have no data on APs generated by pulsatile secretory quanta of ACh, trying to mimic the intermittent and repetitive splanchnic nerve discharge of the neurotransmitter. We present some recent experiments using ultrashort ACh pulses (25 ms), that cause non-desensitizing repetitive APs with each ACh pulse, at low ACh concentrations (30 microM). Ultrashort pulses of a high ACh concentration (1000 microM) causes a single AP followed by a prolonged depolarization. It could be interesting trying to correlate these 'patterns of splanchnic nerve discharge' with Ca2+ signals and exocytosis. This, together with the use of adrenal slices and transmural electrical stimulation of splanchnic nerves will provide new physiologically sound data on the regulation of adrenal medullary secretion.
Collapse
Affiliation(s)
- A M G de Diego
- Instituto Teófilo Hernando, Departamento de Farmacología y Terapéutica, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain
| | | | | |
Collapse
|
11
|
Ghizoni DM, João LM, Moratelli Neto L, da Cunha IC, Orlandi Pereira L, Borges FRM, Battisti R, de Oliveira LG, Meneghini L, Lucinda AM, Marino Neto J, Paschoalini MA, Faria MS. The effects of metabolic stress and vagotomy on emotional learning in an animal model of anxiety. Neurobiol Learn Mem 2006; 86:107-16. [PMID: 16530435 DOI: 10.1016/j.nlm.2006.01.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2005] [Revised: 01/20/2006] [Accepted: 01/25/2006] [Indexed: 12/01/2022]
Abstract
The aim of the present study is to evaluate the role of the blood glucose (BG) level in emotional learning in the elevated plus maze (EPM), an animal model of anxiety. In Experiment 1, male Wistar rats were submitted to different EPM trial lengths (1- or 5-min). Blood samples were withdrawn before and after the maze exploration, through a polyethylene cannula chronically implanted into the jugular vein. In Experiment 2, the animals received either saline or 2-deoxy-D-glucose, a glucoprivic drug (2-DG, 250 or 500 mg kg(-1)) by i.p. route, 30 min before a 5-min EPM exposure and were retested in the maze (Trial1/Trial2 EPM procedure) 24 h later. In an independent group of rats, blood samples were withdrawn 0, 5, 15, and 30 min after 2-DG administration, through the jugular vein, to determine BG. In Experiment 3, the animals underwent a vagotomy and were tested in a Trial1/Trial2 EPM procedure four weeks later. The results showed that rats exploring the EPM for 5 min displayed increased fear and higher hyperglycemia than those exploring the EPM for 1 min. In addition, rats submitted to 5-min EPM Trial1 length displayed higher level of fear on Trial2, as well as higher percentage of shortening of the %Open arm entries and %Open arm time from Trial1 to Trial2, which characterizes the occurrence of emotional learning. In contrast, rats previously vagotomized or treated with 2-DG (500 mg kg(-1)) showed the same level of fear on both EPM trials and a low percentage of shortening, from Trial1 to Trial2, of the %Open arm entries and %Open arm time, indicating poor emotional learning. The data is discussed regarding the role of glycaemia in emotional learning in the EPM.
Collapse
Affiliation(s)
- Daniel Matias Ghizoni
- Department of Physiological Sciences, Centre of Biological Sciences, Federal University of Santa Catarina, 88.040-900, Florianópolis, SC, Brazil
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Kandov Y, Israel Y, Kest A, Dostova I, Verasammy J, Bernal SY, Kasselman L, Bodnar RJ. GABA receptor subtype antagonists in the nucleus accumbens shell and ventral tegmental area differentially alter feeding responses induced by deprivation, glucoprivation and lipoprivation in rats. Brain Res 2006; 1082:86-97. [PMID: 16516868 DOI: 10.1016/j.brainres.2006.01.112] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2005] [Revised: 01/26/2006] [Accepted: 01/28/2006] [Indexed: 10/24/2022]
Abstract
GABA(A) and GABA(B) receptor agonists stimulate feeding following microinjection into the nucleus accumbens shell and ventral tegmental area, effects blocked selectively and respectively by GABA(A) and GABA(B) receptor antagonists. GABA antagonists also differentially alter opioid-induced feeding responses elicited from these sites. Although GABA agonists and antagonists have been shown to modulate feeding elicited by deprivation or glucoprivation, there has been no systematic examination of feeding elicited by homeostatic challenges following GABA antagonists in these sites. Therefore, the present study examined the dose-dependent ability of GABA(A) (bicuculline, 75-150 ng) and GABA(B) (saclofen, 1.5-3 microg) antagonists administered into the nucleus accumbens shell or ventral tegmental area upon feeding responses elicited by food deprivation (24 h), 2-deoxy-D-glucose-induced glucoprivation (500 mg/kg) or mercaptoacetate-induced lipoprivation (70 mg/kg). A site-specific effect of GABA receptor antagonism was observed for deprivation-induced feeding in that both bicuculline and saclofen administered into the nucleus accumbens shell, but not the ventral tegmental area, produced short-term (1-4 h), but not long-term (24-48 h) effects upon deprivation-induced intake without meaningfully altering body weight recovery. In contrast to the relative inability of GABA receptor antagonism in both sites to alter 2-deoxy-D-glucose-induced intake, mercaptoacetate-induced intake was eliminated by saclofen and significantly reduced by bicuculline in the nucleus accumbens shell and eliminated by both bicuculline and saclofen in the ventral tegmental area. These data reinforce the findings that GABA(A) and GABA(B) receptors in the nucleus accumbens shell and ventral tegmental area are not only important in the modulation of pharmacologically induced feeding responses, but also participate in differentially mediating the short-term feeding response to food deprivation in the nucleus accumbens shell as well strongly modulating lipoprivic, but not glucoprivic feeding responses in both sites.
Collapse
Affiliation(s)
- Y Kandov
- Department of Psychology, Doctoral Sub-Program, Queens College, CUNY, Flushing, NY 11367, USA
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Lewis SR, Ahmed S, Khaimova E, Israel Y, Singh A, Kandov Y, Kest B, Bodnar RJ. Genetic variance contributes to ingestive processes: a survey of 2-deoxy-D-glucose-induced feeding in eleven inbred mouse strains. Physiol Behav 2006; 87:595-601. [PMID: 16427100 DOI: 10.1016/j.physbeh.2005.12.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2005] [Revised: 10/28/2005] [Accepted: 12/13/2005] [Indexed: 11/30/2022]
Abstract
The feeding response following administration of the anti-metabolic glucose analogue, 2-deoxy-d-glucose (2DG), is conceptualized as an experimental model of glucoprivation, which may contribute to the understanding of inter-individual differences in glucose and carbohydrate intake and, ultimately, obesity. Although variation in the intake of several nutrients as well as food and water are known to be associated with genetic variation, it is not known whether 2DG-induced feeding is similarly genotype dependent. The present study therefore examined 2DG-induced feeding in mice of 11 inbred (A/J, AKR/J, BALB/cJ, CBA/J, C3H/HeJ, C57BL6/J, C57BL10/J, DBA/2J, SJL/J, SWR/J, 129P3/J) and one outbred (CD-1) strains across a wide range of previously determined effective 2-DG doses (200, 400, 600, 800 mg/kg) and test times (1-4 h). Orderly dose-dependent increases in 2DG-induced feeding occurred after all four doses in outbred CD-1 and inbred DBA/2J mice, across the three highest doses for BALB/cJ, SJL/J and 129P3/J mice, and across the two highest doses for CBA/J and AKR/J mice. Limited instances of 2DG-induced feeding were noted only at the highest dose in A/J and C3H/HeJ mice, or at a moderate dose in C57BL/6J mice. Further, the full 2DG dose range failed to alter food intake in C57BL/10J mice, and produced significant reductions in food intake in SWR/J mice. Food intake after 2DG doses of 200-600 mg/kg, but not 800 mg/kg, displayed significant cross-correlation, suggesting that large 2DG doses may recruit non-specific effects upon food intake. There was no correlation between food intake in the absence (vehicle baseline) of and presence of 2DG, suggesting that the regulation of glucose intake in non-challenged mice does not predict subsequent responses to glucoprivic challenge. The data demonstrate genotype-dependent variability in this glucoprivic response, and may provide the basis for the subsequent identification of trait-relevant genes.
Collapse
|
14
|
Lenard NR, Dunn AJ. Mechanisms and Significance of the Increased Brain Uptake of Tryptophan. Neurochem Res 2005; 30:1543-8. [PMID: 16362773 DOI: 10.1007/s11064-005-8832-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/19/2005] [Indexed: 11/28/2022]
Abstract
Changes in brain tryptophan concentrations may affect the synthesis of brain serotonin (5-hydroxytryptamine, 5-HT). Concentrations of tryptophan are regulated more than those of any other amino acid. Such stimuli as acute stress, carbohydrate ingestion, and treatment with various drugs increase the brain content of tryptophan. Treatment of rats and mice with interleukin-1 (IL-1), interleukin-6 (IL-6), lipopolysaccharide (LPS), and beta-adrenoceptor agonists, as well as a variety of stressors, such as footshock and restraint, all increase brain concentrations of tryptophan. The peak effect following both acute stress and beta-adrenoceptor agonist administration occurs within 30-60 min, whereas the peak effect following LPS and the cytokines occurs much later at around 4-8 h. Experiments using the ganglionic blocker chlorisondamine, and beta-adrenoceptor antagonists suggest that the sympathetic nervous system plays an important role in the modulation of brain tryptophan concentrations. The mechanisms involved in the increases observed in brain tryptophan are discussed, as well as their possible biological significance.
Collapse
|
15
|
Affiliation(s)
- Deborah J Clegg
- Department of Psychiatry, University of Cincinnati Medical Center, Cincinnati, Ohio 45267-0559, USA
| | | |
Collapse
|
16
|
Swithers SE, Doerflinger A, Mowery T. 2-Mercaptoacetate does not stimulate chow intake in periweanling rats. Physiol Behav 2004; 82:3-9. [PMID: 15234582 DOI: 10.1016/j.physbeh.2004.04.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2004] [Accepted: 04/02/2004] [Indexed: 11/29/2022]
Abstract
In adult rats, administration of drugs that suppress oxidation of fatty acids, like mercaptoacetate (MA), produces increases in food intake. During development, the consequences of administration of MA are more varied. For example, in very young pups, intake of milk diets is unaffected by MA, while pups aged 12 to 15 days demonstrate increases in intake. However, in 18- and 21-day-old rats, milk intake is suppressed by administration of MA. Typically, the paradigms used to test rat pups differ significantly from those used to assess intake in adult rats. The present experiments were designed to examine whether 18-day-old pups tested with adultlike paradigms showed adultlike responses to administration of MA. In the first experiment, rat pups aged 18 days were injected with 0 or 68.4 mg/kg MA, then given 60-min tests while consuming either milk or chow diets that were novel, or to which they had previously been exposed. The results demonstrated that chow intake was not affected by administration of MA, but milk intake in experienced animals was suppressed by MA. Experiment 2 demonstrated that in contrast to administration of MA, 18-day-old pups deprived of food overnight showed increases in intake of chow and milk diets. In Experiment 3, when the effects of a range of doses of MA (22.8, 45.6, 68.4 and 91.2) on chow intake over a 4-h period were assessed, all doses of MA produced a significant suppression of chow intake in 18-day-old pups. Taken together, the data suggest that alterations in fatty acid oxidation produced by administration of MA do not stimulate chow intake in periweanling pups tested in an adultlike fashion.
Collapse
Affiliation(s)
- Susan E Swithers
- Department of Psychological Sciences, Purdue University, 703 Third Street, West Lafayette, IN 47907USA.
| | | | | |
Collapse
|
17
|
Ritter RC. Increased food intake and CCK receptor antagonists: beyond abdominal vagal afferents. Am J Physiol Regul Integr Comp Physiol 2004; 286:R991-3. [PMID: 15142854 DOI: 10.1152/ajpregu.00116.2004] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
18
|
Martins ACP, Souza KLA, Shio MT, Mathias PCF, Lelkes PI, Garcia RMG. Adrenal medullary function and expression of catecholamine-synthesizing enzymes in mice with hypothalamic obesity. Life Sci 2004; 74:3211-22. [PMID: 15094322 DOI: 10.1016/j.lfs.2003.10.034] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2003] [Accepted: 10/14/2003] [Indexed: 12/17/2022]
Abstract
The mechanisms underlying the onset of obesity are complex and not completely understood. An imbalance of autonomic nervous system has been proposed to be a major cause of great fat deposits accumulation in hypothalamic obesity models. In this work we therefore investigated the adrenal chromaffin cells in monosodium glutamate (MSG)-treated obese female mice. Newborn mice were injected daily with MSG (4 mg/g body weight) or saline (controls) during the first five days of life and studied at 90 days of age. The adrenal catecholamine content was 56.0% lower in the obese group when compared to lean controls (P < 0.0001). Using isolated adrenal medulla we observed no difference in basal catecholamine secretion percentile between obese and lean animals. However, the percentile of catecholamine secretion stimulated by high K+ concentration was lower in the obese group. There was a decrease in the tyrosine hydroxylase enzyme expression (57.3%, P < 0.004) in adrenal glands of obese mice. Interestingly, the expression of dopamine beta-hydroxylase was also reduced (47.0%, P < 0.005). Phenylethanolamine N-methyltransferase expression was not affected. Our results show that in the MSG model, obesity status is associated with a defective adrenal chromaffin cell function. We conclude that in MSG obesity the low total catecholamine content is directly related to a decrease of key catecholamine-synthesizing enzymes, which by its turn may lead to a defective catecholamine secretion.
Collapse
Affiliation(s)
- Andréia C P Martins
- Department of Cell Biology and Genetics, State University of Maringá, Maringá, PR, Brazil
| | | | | | | | | | | |
Collapse
|
19
|
Larkin JE, Yellon SM, Zucker I. Melatonin production accompanies arousal from daily torpor in Siberian hamsters. Physiol Biochem Zool 2003; 76:577-85. [PMID: 13130436 DOI: 10.1086/375436] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/23/2003] [Indexed: 11/03/2022]
Abstract
Arousal from deep hibernation is accompanied by a transient rise of melatonin (Mel) in circulation; there are no comparable analyses of Mel concentrations in species that undergo much shallower, shorter duration episodes of daily torpor. Serum Mel concentrations were determined during arousal from both natural daily torpor and torpor induced by 2-deoxy-D-glucose (2-DG) treatment (2,500 mg/kg, intraperitoneal [IP]); blood samples were drawn from the retro-orbital sinus of anesthetized Siberian hamsters. For animals kept in darkness during torpor, Mel concentrations were highest during early arousal when thermogenesis is maximal, and they decreased as body temperature increased during arousal and returned to baseline once euthermia was reestablished. In hamsters kept in the light during the torpor bout, Mel concentrations were elevated above basal values during arousal, but the response was significantly blunted in comparison with values recorded in darkness. Increased Mel concentrations were detected in hamsters only during arousal from torpor (either natural or 2-DG induced) and were not simply a result of the drug treatment; hamsters that remained euthermic or manifested mild hypothermia after drug treatment maintained basal Mel concentrations. We propose that increased Mel production may reflect enhanced sympathetic activation associated with intense thermogenesis during arousal from torpor rather than an adjustment of the circadian rhythm of Mel secretion.
Collapse
Affiliation(s)
- Jennie E Larkin
- Department of Psychology, University of California, Berkeley, CA 94720-1650, USA.
| | | | | |
Collapse
|
20
|
Abstract
During early postnatal life, rat pups make a transition from suckling to food intake independent of the dam. Accompanying this transition is the requirement for pups to independently modulate their ingestive behavior. In adult animals, one set of signals known to modulate intake is generated by administration of agents that interfere with metabolism of glucose or fats (such as mercaptoacetate [MA] or 2-deoxyglucose [2-DG]). However, demonstrations of the effects of such agents in young rats have been less robust. Recent work in our lab has focused on examining the effects of MA and methyl palmoxirate (MP) on independent ingestion in pre- and periweaning rats. In rat pups between the ages of 12 and 15 days, latencies to initiate intake independent of the dam are typically longer relative to older or younger pups. However, the latency with which 12- and 15-day-old pups initiate independent ingestion is reduced following administration of MA. Further, MA produces physiological changes consistent with a change in the oxidation of fatty acids in 12- and 15-day-old pups, and similar physiological changes are produced during moderate periods of food deprivation in pups at the same ages. Thus, signals related to changes in the oxidation of fatty acids normally produced by moderate food deprivation in periweaning rats may provide a fundamental signal involved in the onset and modulation of intake independent of the dam.
Collapse
Affiliation(s)
- Susan E Swithers
- Department of Psychological Sciences, Purdue University, 703 Third Street, West Lafayette, IN 47907-2004, USA.
| |
Collapse
|
21
|
Levin BE, Dunn-Meynell AA, Routh VH. CNS sensing and regulation of peripheral glucose levels. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2003; 51:219-58. [PMID: 12420361 DOI: 10.1016/s0074-7742(02)51007-2] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
It is clear that the brain has evolved a mechanism for sensing levels of ambient glucose. Teleologically, this is likely to be a function of its requirement for glucose as a primary metabolic substrate. There is no question that the brain can sense and mount a counterregulatory response to restore very low levels of plasma and brain glucose. But it is less clear that the changes in glucose associated with normal diurnal rhythms and feeding cycles are sufficient to influence either ingestive behavior or the physiologic responses involved in regulating plasma glucose levels. Glucosensing neurons are clearly a distinct class of metabolic sensors with the capacity to respond to a variety of intero- and exteroceptive stimuli. This makes it likely that these glucosensing neurons do participate in physiologically relevant homeostatic mechanisms involving energy balance and the regulation of peripheral glucose levels. It is our challenge to identify the mechanisms by which these neurons sense and respond to these metabolic cues.
Collapse
Affiliation(s)
- Barry E Levin
- Neurology Service, VA Medical Center, East Orange, New Jersey 07018, USA
| | | | | |
Collapse
|
22
|
Salter D, Watts AG. Differential suppression of hyperglycemic, feeding, and neuroendocrine responses in anorexia. Am J Physiol Regul Integr Comp Physiol 2003; 284:R174-82. [PMID: 12388472 DOI: 10.1152/ajpregu.00275.2002] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have used the anorexia shown by rats given hypertonic saline to drink to investigate central mechanisms that can inhibit feeding. Rats dehydrated in this manner for 3 or 5 days showed a severe attenuation of the compensatory feeding observed after an overnight fast compared with control euhydrated rats or rats whose food was restricted to match the intake of anorexic rats. Food intake after injections of 2-deoxy-d-glucose (2-DG) was also significantly decreased in dehydrated animals compared with that after a 2-DG injection given before dehydration. However, all the dehydrated animals demonstrated a robust eating response after water was returned whether they had received injection of 2-DG or vehicle. Despite a profound reduction in 2-DG-induced feeding, other glucoregulatory responses to 2-DG remained intact in dehydrated animals. After 2-DG injection, corticosterone secretion and blood glucose were significantly elevated from preinjection values whether or not animals were dehydrated. Thus the mechanisms responsible for anorexia in dehydrated animals specifically target stimulatory feeding pathways but leave intact other counterregulatory glucometabolic motor events.
Collapse
Affiliation(s)
- Dawna Salter
- NIBS-Neuroscience Program and Department of Biological Sciences, University of Southern California, Los Angeles, California 90089-2520, USA
| | | |
Collapse
|
23
|
Swithers SE, McCurley M. Effects of 2-mercaptoacetate on ingestive behavior in 18- and 21-day-old rats. Behav Brain Res 2002; 136:511-20. [PMID: 12429414 DOI: 10.1016/s0166-4328(02)00206-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Previous work has demonstrated that mercaptoacetate (MA), which interferes with oxidation of fatty acids, can produce increases in intake in both adult and preweanling rats between 12 and 15 days of age. In both pups and adults, the increased intake is related to a decrease in the latency to initiate intake, but the duration of the effects of MA and the effective doses of MA differ in young pups compared to adult rats. Thus, in the present experiments, we examined older pups to determine the effects of administration of MA on ingestive behavior and energy-related markers (blood glucose, free fatty acids, and beta-hydroxybutryrate levels and weight loss) during the weaning transition. Pups aged 18 or 21 days received an i.p. injection of a 0, 22.8, 45.6 or 68.4 mg/kg MA, and after 1 h consumed a milk diet from the floor of a test container. Unlike younger pups or adult rats, MA did not stimulate intake in 18- or 21-day-old pups in a 30 or 60 min test, instead, the higher doses significantly suppressed intake. In addition, while latency to initiate intake was not reduced, primarily due to the very short latencies observed in control pups, the duration of intake was decreased by the higher doses of MA. Finally, MA did produce changes in fatty acid oxidation in pups at both ages, but baseline levels of free fatty acids and beta-hydroxybutryrate differed across the ages, as did the pattern of changes produced by MA. The results suggest that in contrast to the effects observed in both younger pups and adult rats, during the early weaning period exogenous alterations of fatty acid oxidation fail to stimulate intake. In addition, similar to effects seen in young pups, high doses of MA can significantly suppress intake. These differences in responding to MA during the weaning period may reflect heightened sensitivity to similar signals produced endogenously as a result of developmental changes in diet and/or metabolism or may result from heightened sensitivity to aversive properties of administration of MA.
Collapse
Affiliation(s)
- Susan E Swithers
- Department of Psychological Sciences, Purdue University, West Lafayette, IN 47907-1364, USA.
| | | |
Collapse
|
24
|
Abizaid A, Jafferali S, Pelletier JG, Woodside B. Effect of metabolic fuel availability on fertility varies with reproductive state. Physiol Behav 2001; 74:77-83. [PMID: 11564455 DOI: 10.1016/s0031-9384(01)00557-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
A 48-h fast extends the estrous cycle of virgin rats and, when instituted on days 13 and 14 postpartum (pp), prolongs lactational infertility. We investigated the ability of 2-deoxy-D-glucose (2DG) alone or combined with mercaptoacetate (MA) to mimic these effects of fasting. In Experiment 1, we monitored estrous cyclicity in virgin rats receiving 800, 1200, or 1600 mg/kg/day of 2DG during metestrus and diestrus. In Experiment 2, we assessed the effects of 2DG (1600 mg/kg/day) given on days 13 and 14 pp, on the duration of lactational infertility. In Experiment 3, the combined effects of 2DG (1600, 2000, or 2400 mg/kg/day) and MA (180 mg/kg/day) on the length of lactational diestrus were evaluated. 2DG was sufficient to extend the estrous cycle of virgin rats, but neither 2DG alone nor given with MA prolonged the length of lactational diestrus. Results suggest that lactating rats are less sensitive than virgin rats to the effects of metabolic fuel inhibition on fertility. These data are discussed in relation to the hormonal state of the dam as well as in relation to the effects of these drugs on lactational performance.
Collapse
Affiliation(s)
- A Abizaid
- Department of Psychology, Center for Studies in Behavioral Neurobiology, Concordia University, 7141 Sherbrooke Street West, H4B 1R6, Montreal, Quebec, Canada.
| | | | | | | |
Collapse
|
25
|
Abstract
This chapter reviews the recent literature on hormonal and neural signals critical to the regulation of individual meals and body fat. Rather than eating in response to acute energy deficits, animals eat when environmental conditions (social and learned factors, food availability, opportunity, etc.) are optimal. Hence, eating patterns are idiosyncratic. Energy homeostasis, the long-term matching of food intake to energy expenditure, is accomplished via controls over the size of meals. Individuals who have not eaten sufficient food to maintain their normal weight have lower levels of adiposity signals (leptin and insulin) in the blood and brain, and one consequence is that meal-generated signals (such as CCK) are less efficacious at reducing meal size. The converse is true if individuals are above their normal weight, when they tend to eat smaller meals. The final section reviews how these signals are received and integrated by the CNS, as well as the neural circuits and transmitters involved.
Collapse
Affiliation(s)
- S C Woods
- Department of Psychiatry, University of Cincinnati Medical Center, Ohio 45267, USA.
| | | | | | | |
Collapse
|
26
|
Dréau D, Foster M, Morton DS, Fowler N, Kinney K, Sonnenfeld G. Immune alterations in three mouse strains following 2-deoxy-D-glucose administration. Physiol Behav 2000; 70:513-20. [PMID: 11111005 DOI: 10.1016/s0031-9384(00)00296-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Using 2-deoxy-D-glucose (2-DG)-induced stress, our laboratory has developed studies to define stress effects on immune responses. Here, we report effects of increasing doses of 2-DG on the immune response of BALB/c, C57BL/6 and BDF(1) mice 2 h after three injections of 0 to 2000 mg/kg of 2-DG. Female 4- to 5-week-old mice were euthanized and blood and spleens were collected. A suspension of partially purified mature T splenocytes was obtained by negative selection using J11.d2 antibodies. Glucose and corticosterone levels were measured in the plasma of each mouse. Splenocyte and mature T splenocyte suspensions were tested in in vitro proliferation assays with or without concanavalin A. Splenocytes were analyzed for the following cell-surface markers: CD3, TCR alpha/beta, CD4, CD8 and major histocompatibility complex (MHC) Class II. Significant increases in blood glucose levels were observed in C57BL/6 and BALB/c strains with the highest 2-DG dose (p<0.05). Corticosterone levels were higher in BDF(1) mice and C57BL/6 mice following the administration of 1000 and 2000 mg/kg of 2-DG, respectively (p<0.01). In vitro proliferation of mature T splenocytes in the presence of concanavalin A was decreased in BDF(1) (p<0.05) but not in BALB/c and C57BL/6 mice. In addition, in BDF(1) mice the decrease was highly correlated with an increase of CD3+ and TCR alpha/beta+ cells in the spleen. These results demonstrated high variability in the response of different mouse strains to 2-DG-induced stress.
Collapse
Affiliation(s)
- D Dréau
- Department of General Surgery Research, Carolinas Medical Center, 1000, Blythe Boulevard, PO Box 32861, Charlotte, NC 28232, USA.
| | | | | | | | | | | |
Collapse
|
27
|
Abstract
Consuming food and taking drugs share several important characteristics. In particular, each causes changes in important physiological parameters that are constantly being monitored and regulated by the brain. As examples, blood glucose increases after meals; and body temperature decreases after ethanol is taken. Such changes elicit neurally-mediated homeostatic responses that serve to reduce the magnitude and duration of the perturbation. It is argued that when an individual can accurately anticipate pending meals or drugs, it can make appropriate responses to minimize or totally neutralize the meal/drug-elicited perturbations. This phenomenon, which is the basis for meal and drug tolerance, relies upon Pavlovian conditioning. Literature is reviewed which documents the role of conditioning processes in the development of tolerance. The argument is made that conditioned responses enable individuals to derive necessary or desirable aspects of food and drugs while minimizing some of their negative effects. In a final section, drug tolerance is discussed as a natural consequence of evolution-derived, meal-related learning processes, with associated negative consequences.
Collapse
Affiliation(s)
- S C Woods
- Department of Psychiatry, Box 670559, University of Cincinnati School of Medicine, Cincinnati, OH 45267, USA.
| | | |
Collapse
|
28
|
Dréau D, Morton DS, Foster M, Fowler N, Sonnenfeld G. Effects of 2-deoxy-D-glucose administration on cytokine production in BDF1 mice. J Interferon Cytokine Res 2000; 20:247-55. [PMID: 10714561 DOI: 10.1089/107999000312667] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Physical exercise and diet changes have been shown to affect immune parameters, and similar effects are also induced by the administration of a nonmetabolizable glucose analog, 2-deoxy-D-glucose (2-DG). The present study was designed to characterize the effects of glucoprivation induced by 2-DG administration on concentrations of tumor necrosis factor-alpha (TNF-alpha), interleukin-1beta (IL-1beta), and IL-6 in the blood and interferon-gamma (IFN-gamma), IL-2, and IL-4 in vitro production by partially purified T splenocytes in BDF1 mice. Mice (n = 8 per group) were injected intraperitoneally one or three times with 0, 500, 750, or 1000 mg/kg of 2-DG, and blood and spleens were collected 2 h after the last injection. Partially purified T splenocytes were cultured 24 h in the presence of concanavalin A (ConA). A significant increase in the corticosterone levels with the amount of 2-DG injected was observed after one or three injections (p<0.05). The amount of 2-DG injected was associated with an increase in TNF-alpha, IL-1beta, and IL-6 concentrations in the blood of mice after one or three injections of 2-DG (p<0.05). A significant decrease in in vitro proliferation of partially purified splenocytes in the presence of ConA was associated with a decrease in IFN-gamma production in the culture supernatants and an increase in IL-1 receptor expression on the cell surface (p<0.05).
Collapse
Affiliation(s)
- D Dréau
- Department of General Surgery Research, Carolinas Medical Center, Charlotte, NC 28232, USA.
| | | | | | | | | |
Collapse
|
29
|
Ritter S, Ritter JB, Cromer L. 2-Deoxy-D-glucose and mercaptoacetate induce different patterns of macronutrient ingestion. Physiol Behav 1999; 66:709-15. [PMID: 10386918 DOI: 10.1016/s0031-9384(99)00009-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
2-Deoxy-D-glucose (2DG) and mercaptoacetate (MA) are antimetabolic agents that reduce the metabolism of glucose and fatty acids, respectively, and stimulate feeding. The present study compared the effects of MA and 2DG on macronutrient self-selection. Because 2DG and MA have different metabolic actions and appear to activate different neural pathways, our hypothesis was that 2DG and MA would elicit different patterns of macronutrient selection. The first experiment examined macronutrient selection in response to 2DG, MA, and 0.9% saline in rats maintained on a three-macronutrient self-selection diet consisting of cornstarch, casein, and vegetable oil. Subsequently, one macronutrient source was replaced in each of three similar experiments with Polycose, albumin, or solid vegetable shortening. Finally, 2DG and MA tests were conducted in which only one macronutrient (cornstarch, casein, or oil) was available during the test. Results show that MA and 2DG elicit different macronutrient preferences. 2DG elicits intake of all three macronutrients in the same relative proportion consumed during spontaneous feeding across a number of dietary conditions, suggesting that glucoprivation activates interoceptive signals and neural pathways similar to those involved in normal hunger. MA elicits a selective intake of protein. Conditions in which carbohydrate palatability is enhanced or protein palatability is diminished lead to a relative increase in carbohydrate intake in response to MA. However, MA did not increase the intake of fat. Results suggest that intake of each macronutrient is subject to separate neural or endocrine control, and that these controls are linked to metabolic cues.
Collapse
Affiliation(s)
- S Ritter
- Department of Veterinary and Comparative Anatomy, Pharmacology and Physiology, Washington State University, Pullman 99164-6520, USA.
| | | | | |
Collapse
|
30
|
Bartness TJ, Bamshad M. Innervation of mammalian white adipose tissue: implications for the regulation of total body fat. THE AMERICAN JOURNAL OF PHYSIOLOGY 1998; 275:R1399-411. [PMID: 9791054 DOI: 10.1152/ajpregu.1998.275.5.r1399] [Citation(s) in RCA: 117] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We review the extensive physiological and neuroanatomical evidence for the innervation of white adipose tissue (WAT) by the sympathetic nervous system (SNS) as well as what is known about the sensory innervation of this tissue. The SNS innervation of WAT appears to be a part of the general SNS outflow from the central nervous system, consisting of structures and connections throughout the neural axis. The innervation of WAT by the SNS could play a role in the regulation of total body fat in general, most likely plays an important role in regional differences in lipid mobilization specifically, and may have a trophic affect on WAT. The exact nature of the SNS innervation of WAT is not known but it may involve contact with adipocytes and/or their associated vasculature. We hypothesize that the SNS innervation of WAT is an important contributor to the apparent "regulation" of total body fat.
Collapse
Affiliation(s)
- T J Bartness
- Departments of Psychology, and of Biology, Neuropsychology and Behavioral Neurosciences, Georgia State University, Atlanta, Georgia 30303, USA
| | | |
Collapse
|
31
|
Ritter S, Llewellyn-Smith I, Dinh TT. Subgroups of hindbrain catecholamine neurons are selectively activated by 2-deoxy-D-glucose induced metabolic challenge. Brain Res 1998; 805:41-54. [PMID: 9733914 DOI: 10.1016/s0006-8993(98)00655-6] [Citation(s) in RCA: 150] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Glucose is a major fuel for body energy metabolism and an essential metabolic fuel for the brain. Consequently, glucose deficit (glucoprivation) elicits a variety of physiological and behavioral responses crucial for survival. Previous work indicates an important role for brain catecholamine neurons in mediation of responses to glucoprivation. This experiment was conducted to identify the specific catecholamine neurons that are activated by glucoprivation. Activation of hindbrain catecholamine neurons by the antimetabolic glucose analogue, 2-deoxy-D-glucose (2DG; 50, 100, 200 or 400 mg/kg, s.c.) was evaluated using double label immunohistochemistry. Fos protein was used as the marker for neuronal activation and the enzymes tyrosine hydroxylase (TH) and phenethanolamine-N-methyl transferase (PNMT) were used as the markers for norepinephrine (NE) and epinephrine (E) neurons. 2-Deoxy-D-glucose (200 and 400 mg/kg) produced selective activation of distinct hindbrain catecholamine cell groups. In the ventrolateral medulla, doubly labeled neurons were concentrated in the area of A1/C1 and were predominantly adrenergic in phenotype. In the dorsal medulla, doubly labeled neurons were limited to C2 and C3 cell groups. In the pons, some A6 neurons were Fos-positive. Neurons in rostral C1, ventral C3, A2, A5 and A7 did not express Fos-ir in response to 2DG. Our results identify specific subpopulations of catecholamine neurons that are selectively activated by 2DG. Previously demonstrated connections of these subpopulations are consistent with their participation in the feeding and hyperglycemic response to glucoprivation. Finally, the predominant and seemingly preferential activation of epinephrine neurons suggests that they may play a unique role in the brain's response to glucose deficit.
Collapse
Affiliation(s)
- S Ritter
- Department of Veterinary and Comparative Anatomy, Pharmacology and Physiology, Washington State University, Pullman, WA 99164-6520, USA.
| | | | | |
Collapse
|
32
|
Edmonds BK, Edwards GL. Dorsomedial hindbrain participation in glucoprivic feeding response to 2DG but not 2DG-induced hyperglycemia or activation of the HPA axis. Brain Res 1998; 801:21-8. [PMID: 9729250 DOI: 10.1016/s0006-8993(98)00528-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
2-Deoxy-d-glucose (2DG) is a glucose analogue that inhibits intracellular utilization of glucose and produces a characteristic behavioral response known as glucoprivic feeding. The area postrema (AP) is a caudal hindbrain structure shown previously to be involved in 2DG-induced glucoprivic feeding. In addition, peripheral administration of 2DG is known to elicit activation of both the hypothalamic-pituitary-adrenal (HPA) axis and the sympathoadrenomedullary system. The neural substrates for these neuroendocrine and neural responses to 2DG are not known although they may also involve the AP. The possible role of the AP in 2DG-induced feeding, activation of the HPA axis and hyperglycemia was investigated in Sprague-Dawley rats with lesions centered on the area postrema (APX) and sham-operated (SHM) rats administered 2DG (200 mg/kg) or physiological saline (1 ml/kg). Peripheral administration of 2DG evoked a feeding response in SHM rats that was abolished in APX animals. Interestingly, 2DG administered at this dose produced a significant increase in plasma corticosterone and plasma glucose in both SHM and APX rats for up to 4 h after drug treatment. Collectively, these findings suggest that the AP is involved in the behavioral (feeding) response to peripheral administration of 2DG, but does not appear to be a common neural substrate for the neuroendocrine (HPA axis) and sympathoadrenal (hyperglycemic) responses to this agent.
Collapse
Affiliation(s)
- B K Edmonds
- Department of Physiology and Pharmacology, College of Veterinary Medicine, The University of Georgia, Athens, GA 30602, USA
| | | |
Collapse
|
33
|
Rusnák M, Jeloková J, Vietor I, Sabban EL, Kvetnanský R. Different effects of insulin and 2-deoxy-D-glucose administration on tyrosine hydroxylase gene expression in the locus coeruleus and the adrenal medulla in rats. Brain Res Bull 1998; 46:447-52. [PMID: 9739008 DOI: 10.1016/s0361-9230(98)00033-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The major brain norepinephrinergic nucleus, locus coeruleus, is an important integrating element of extero- and interoceptive stimuli in organisms facing different physiological challenges. We investigated the effects of single and repeated (seven times) exposure to immobilization stress (120 min daily), insulin (5 IU/kg, i.p. daily) or 2-deoxy-D-glucose (500 mg/kg, i.p. daily) administration on tyrosine hydroxylase (TH) mRNA levels, the rate-limiting enzyme in catecholamine biosynthesis, by in situ hybridization in locus coeruleus and by Northern blot analysis in the adrenal medulla of rats. Both the single and repeated immobilization caused a significant increase in TH mRNA levels in the locus coeruleus (1.5-2-fold; p < 0.05) and in the adrenal medulla (about 4-fold; p < 0.05) when compared with unstressed controls. Hypoglycemia induced by a single or repeated insulin administration led to about fourfold (p < 0.01) elevation in adrenal medullary TH mRNA levels, whereas TH mRNA in locus coeruleus remained unchanged when compared with saline-treated controls. In contrast to the effect of insulin-induced hypoglycemia, cellular glucoprivation caused by a single or repeated 2-deoxy-D-glucose administration significantly elevated TH mRNA levels in both the adrenal medulla (fourfold; p < 0.01) and the locus coeruleus (twofold; p < 0.01). Our data suggest that in contrast to immobilization or cellular glucoprivation caused by 2-deoxy-D-glucose administration, insulin-induced hypoglycemia is not a specific or quantitatively sufficient stimulus for induction of TH gene expression in the locus coeruleus, although all these stressors strongly activate the process in the adrenal medulla.
Collapse
Affiliation(s)
- M Rusnák
- Institute of Experimental Endocrinology Slovak Academy of Sciences, Bratislava.
| | | | | | | | | |
Collapse
|
34
|
Dréau D, Morton DS, Foster M, Fowler N, Sonnenfeld G. Effects of 2-deoxy-D-glucose administration on immune parameters in mice. IMMUNOPHARMACOLOGY 1998; 39:201-13. [PMID: 9754906 DOI: 10.1016/s0162-3109(98)00016-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Physical exercise and diet alterations have been shown to affect immune parameters. Similar effects are also induced by the administration of the non-metabolizable glucose analog, 2-deoxy-D-glucose (2-DG). The current study was designed to characterize the effects of glucoprivation induced by 2-DG administration on leukocyte subset distribution and function. BDF1 mice (n = 8 per group) were injected intraperitoneally one or three times with 0, 500, 750, 1000 or 1500 mg/kg of 2-DG. Two hours after the last injection of 2-DG, immunological parameters were analyzed. A dose-dependent increase in plasma glucose concentrations of mice injected once with up to 1500 mg/kg of 2-DG was observed (p < 0.001). After either one or three injections of up to 1500 mg/kg of 2-DG, corticosterone levels, leukocyte counts in the spleen, and CD3+ cells in the thymus increased. In vitro proliferation of partially purified lymphocytes from the spleen in the presence of both concanavalin-A and lipopolysaccharide decreased in a dose dependent manner (p < 0.05). In addition, after three injections, the proportion of both thymocytes and splenocytes bearing alphabeta-TCR increased as the concentration of 2-DG increased (p < 0.01). These results demonstrate that 2-DG administration induced dose-dependent changes in both thymus and spleen cell distribution and function.
Collapse
Affiliation(s)
- D Dréau
- Dept. General Surgery Research, Carolinas Medical Center, Charlotte, NC 28203, USA.
| | | | | | | | | |
Collapse
|
35
|
Filipsson K, Pacini G, Scheurink AJ, Ahrén B. PACAP stimulates insulin secretion but inhibits insulin sensitivity in mice. THE AMERICAN JOURNAL OF PHYSIOLOGY 1998; 274:E834-42. [PMID: 9612241 DOI: 10.1152/ajpendo.1998.274.5.e834] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Although pituitary adenylate cyclase-activating polypeptide (PACAP) stimulates insulin secretion, its net influence on glucose homeostasis in vivo has not been established. We therefore examined the action of PACAP-27 and PACAP-38 on insulin secretion, insulin sensitivity, and glucose disposal as derived from the minimal model of glucose disappearance during an intravenous glucose tolerance test in anesthetized mice. PACAP-27 and PACAP-38 markedly and equipotently potentiated glucose-stimulated insulin secretion, with a half-maximal effect at 33 pmol/kg. After PACAP-27 or PACAP-38 (1.3 nmol/kg), the acute (1-5 min) insulin response was 3.8 +/- 0.4 nmol/l (PACAP-27) and 3.3 +/- 0.3 nmol/l (PACAP-38), respectively, vs. 1.4 +/- 0.1 nmol/l after glucose alone (P < 0.001), and the total area under the curve for insulin (AUCinsulin) was potentiated by 60% (P < 0.001). In contrast, PACAP-27 and PACAP-38 reduced the insulin sensitivity index (SI) [0.23 +/- 0.04 10(-4) min-1/(pmol/l) for PACAP-27 and 0.29 +/- 0.06 10(-4) min-1/(pmol/l) for PACAP-38 vs. 0.46 +/- 0.02 10(-4) min-1/(pmol/l) for controls (P < 0.01)]. Furthermore, PACAP-27 or PACAP-38 did not affect glucose elimination determined as glucose half-time or the glucose elimination rate after glucose injection or the area under the curve for glucose. Moreover, glucose effectiveness and the global disposition index (AUCinsulin times SI) were not affected by PACAP-27 or PACAP-38. Finally, when given together with glucose, PACAP-27 did not alter plasma glucagon or norepinephrine levels but significantly increased plasma epinephrine levels. We conclude that PACAP, besides its marked stimulation of insulin secretion, also inhibits insulin sensitivity in mice, the latter possibly explained by increased epinephrine. This complex action explains why the peptide does not enhance glucose disposal.
Collapse
Affiliation(s)
- K Filipsson
- Department of Medicine, Lund University, Malmö, Sweden
| | | | | | | |
Collapse
|
36
|
Dréau D, Morton DS, Foster M, Swiggett JP, Sonnenfeld G. Immune alterations in male and female mice after 2-deoxy-D-glucose administration. Physiol Behav 1997; 62:1325-31. [PMID: 9383121 DOI: 10.1016/s0031-9384(97)00346-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Administration of 2-deoxy-D-glucose (2-DG) induces acute cellular glucoprivation. In the current study, we examined differences in immune parameters after 2-DG administration in both sexes. Male and female BDF1 mice were injected three times, 48 h apart, either with a saline solution (control group) or with 2-DG in saline (500 mg/kg). Two hours after the last injection, blood and spleens were collected. Plasma levels of interleukin-1beta, and interferon-gamma levels were measured. Additionally, the levels of the specific leukocyte antigens CD3, CD4, CD8, T cell receptor (TCR) alpha/beta, I-Ad, and H-2Ld/H-2Db were evaluated by flow cytometry on both blood and spleen cells. The blastogenic response of leukocytes from both tissues to mitogens was assessed. Levels of glucose, corticosterone, testosterone, progesterone, 17beta-estradiol, follicle-stimulating hormone, and luteinizing hormone were also determined. Increases in the percentage of cells bearing TCR alpha/beta and I-Ad in the blood and H-2Ld/H-2Db in the spleen were observed in the 2-DG-treated group for both sexes. In contrast, higher corticosterone and IL-1beta plasma concentrations, as well as higher percentages of splenocytes bearing TCR alpha/beta and I-Ad, and lower mitogen-induced proliferation of mature T splenocytes (79%) were observed in female but not in male mice injected with 2-DG compared with those injected with saline (p < 0.05). Taken together, these results suggest that female mice are more sensitive than male mice to immune alterations induced by 2-DG administration.
Collapse
Affiliation(s)
- D Dréau
- Department of General Surgery Research, Carolinas Medical Center, Charlotte, NC 28232-2861, USA.
| | | | | | | | | |
Collapse
|
37
|
Singer LK, York DA, Bray GA. Feeding response to mercaptoacetate in Osborne-Mendel and S5B/PL rats. OBESITY RESEARCH 1997; 5:587-94. [PMID: 9449144 DOI: 10.1002/j.1550-8528.1997.tb00580.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The purpose of this experiment was to determine if Osborne-Mendel (OM) rats, which are susceptible to dietary-induced obesity, and S5B/PL (S5B) rats, which are resistant to dietary-induced obesity, differ in their feeding responses to mercaptoacetate (MA), which blocks fatty acid oxidation, or 2-deoxy-D-glucose (2DG), which blocks glucose utilization. 2DG (100 mg/kg or 200 mg/kg) increased food intake in both strains of rats on a high-fat diet (56% energy from fat). Mercaptoacetate (600 mumol/kg) increased food intake in OM but not S5B rats on a high-fat diet. When maintained on a low-fat diet (10% energy from fat), MA (400 mumol/kg or 600 mumol/kg) stimulated food intake in OM rats, whereas S5B rats increased food intake only after the highest dose of MA (600 mumol/kg). MA stimulated carbohydrate and protein intake in OM rats maintained on a macronutrient selection diet, whereas S5B rats maintained on this diet did not significantly increase intake of any macronutrient after MA. These results demonstrate that OM and S5B rats have a similar food intake response to 2DG but a dissimilar response to MA. The variable response to MA in these strains may be due to a difference in peripheral or central signaling systems related to fatty acid oxidation or a difference in metabolic environments between the strains, which in turn affects the feeding response to MA. These studies suggest that a difference in control of fatty acid oxidation may account for the difference in susceptibility to obesity when eating a high-fat diet.
Collapse
Affiliation(s)
- L K Singer
- Pennington Biomedical Research Center, Baton Rouge, LA 70808-4124, USA
| | | | | |
Collapse
|
38
|
Vietor I, Rusnak M, Viskupic E, Blazicek P, Sabban EL, Kvetnansky R. Glucoprivation by insulin leads to trans-synaptic increase in rat adrenal tyrosine hydroxylase mRNA levels. Eur J Pharmacol 1996; 313:119-27. [PMID: 8905338 DOI: 10.1016/0014-2999(96)00508-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Effects of single or repeated insulin or 2-deoxy-D-glucose administration on adrenal tyrosine hydroxylase mRNA and protein levels were examined in rats. Insulin produced hypoglycemia and an elevation in plasma epinephrine and norepinephrine levels. A significant increase (3-5-fold) in tyrosine hydroxylase mRNA levels was found at 5 h, decreasing to near basal levels at 24 h following the first and also the sixth consecutive injection of insulin or 2-deoxy-D-glucose. Whereas insulin treatment raised tyrosine hydroxylase mRNA levels in intact adrenals, no increase in tyrosine hydroxylase mRNA levels occurred following adrenal denervation by splanchnic nerve transection. Western blot analysis showed that although a single insulin treatment did not affect tyrosine hydroxylase protein levels, a significant increase was observed following the seventh administration. This study shows that insulin-induced hypoglycemia increases tyrosine hydroxylase gene expression and that this process is regulated by a central mechanism via the splanchnic nerve.
Collapse
Affiliation(s)
- I Vietor
- Institute of Experimental Endocrinology, Slovak Academy of Sciences, Bratislava, Slovakia
| | | | | | | | | | | |
Collapse
|
39
|
Koegler FH, Ritter S. Feeding induced by pharmacological blockade of fatty acid metabolism is selectively attenuated by hindbrain injections of the galanin receptor antagonist, M40. OBESITY RESEARCH 1996; 4:329-36. [PMID: 8822757 DOI: 10.1002/j.1550-8528.1996.tb00240.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Galanin has been shown to stimulate feeding when injected intracranially in rats. Lesion and Fos studies have shown that the neural pathway for feeding stimulated by mercaptoacetate (MA)-induced blockade of fatty acid oxidation includes several structures rich in galanin cell bodies or terminals. In the present experiment, we examined the role of hindbrain galanin in feeding stimulated by MA. We found that galanin (1 nmol) stimulates feeding when injected in the nucleus of the solitary tract (NTS), a site that is crucial for MA-induced feeding, or into the fourth ventricle (4V, 1 or 5 nmol) and that NTS or 4V injections of the galanin receptor antagonist, M40 (1.5 or 5 nmol), completely blocked feeding induced by MA (68 mg/kg). The effect of the M40 appeared to be specific for MA-induced feeding, since M40 did not significantly attenuate either feeding induced by the antimetabolic glucose analog, 2-deoxy-D-glucose (2DG, 100 or 200 mg/kg), or deprivation-induced water intake. Results suggest that feeding induced by decreased fatty acid oxidation relies upon galaninergic terminals in the hindbrain. Furthermore, results indicate that hindbrain neurons involved in MA-induced feeding differ neurochemically from those important for 2DG-induced feeding.
Collapse
Affiliation(s)
- F H Koegler
- Department of Veterinary Comparative Anatomy, Pharmacology and Physiology, College of Veterinary Medicine, Washington State University, Pullman 99164-6520, USA
| | | |
Collapse
|
40
|
Scheurink AJ, Balkan B, Strubbe JH, van Dijk G, Steffens AB. Overfeeding, autonomic regulation and metabolic consequences. Cardiovasc Drugs Ther 1996; 10 Suppl 1:263-73. [PMID: 8827949 DOI: 10.1007/bf00120496] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The autonomic nervous system plays an important role in the regulation of body processes in health and disease. Overfeeding and obesity (a disproportional increase of the fat mass of the body) are often accompanied by alterations in both sympathetic and parasympathetic autonomic functions. The overfeeding-induced changes in autonomic outflow occur with typical symptoms such as adiposity and hyperinsulinemia. There might be a causal relationship between autonomic disturbances and the consequences of overfeeding and obesity. Therefore studies were designed to investigate autonomic functioning in experimentally and genetically hyperphagic rats. Special emphasis was given to the processes that are involved in the regulation of peripheral energy substrate homeostasis. The data revealed that overfeeding is accompanied by increased parasympathetic outflow. Typical indices of vagal activity (such as the cephalic insulin release during food ingestion) were increased in all our rat models for hyperphagia. Overfeeding was also accompanied by increased sympathetic tone, reflected by enhanced baseline plasma norepinephrine (NE) levels in both VMH-lesioned animals and rats rendered obese by hyperalimentation. Plasma levels of NE during exercise were, however, reduced in these two groups of animals. This diminished increase in the exercise-induced NE outflow could be normalized by prior food deprivation. It was concluded from these experiments that overfeeding is associated with increased parasympathetic and sympathetic tone. In models for hyperphagia that display a continuously elevated nutrient intake such as the VMH-lesioned and the overfed rat, this increased sympathetic tone was accompanied by a diminished NE response to exercise. This attenuated outflow of NE was directly related to the size of the fat reserves, indicating that the feedback mechanism from the periphery to the central nervous system is altered in the overfed state.
Collapse
Affiliation(s)
- A J Scheurink
- Department of Animal Physiology, University of Groningen, Haren, The Netherlands
| | | | | | | | | |
Collapse
|
41
|
Abstract
In female mammals, reproduction is extremely sensitive to the availability of oxidizable metabolic fuels. When food intake is limited or when an inordinate fraction of the available energy is diverted to other uses such as exercise or fattening, reproductive attempts are suspended in favor of processes necessary for individual survival. Both reproductive physiology and sexual behaviors are influenced by food availability. Nutritional effects on reproductive physiology are mediated by changes in the activity of gonadotropin-releasing hormone (GnRH) neurons in the forebrain, whereas the suppression of sexual behaviors appears to be due, at least in part, to decreases in estrogen receptor in the ventromedial hypothalamus. Work using pharmacological inhibitors of glucose and fatty acid oxidation indicates that reproductive physiology and behavior respond to short-term (minute-to-minute or hour-to-hour) changes in metabolic fuel oxidation, rather than to any aspect of body size or composition (e.g., body fat content or fat-to-lean ratio). These metabolic cues seem to be detected in the viscera (most likely in the liver) and in the caudal hindbrain (probably in the area postrema). This metabolic information is then transmitted to the GnRH-secreting or estradiol-binding effector neurons in the forebrain. There is no evidence to date for direct detection of metabolic cues by these forebrain effector neurons. This metabolic fuels hypothesis is consistent with a large body of evidence and seems to account for the infertility that is seen in a number of situations, including famine, eating disorders, excessive exercise, cold exposure, lactation, some types of obesity, and poorly controlled diabetes mellitus.
Collapse
Affiliation(s)
- G N Wade
- Department of Psychology, University of Massachusetts, Amherst 01003-7710, USA
| | | | | |
Collapse
|
42
|
Ritter S, Scheurink A, Singer LK. 2-Deoxy-D-glucose but not 2-mercaptoacetate increases Fos-like immunoreactivity in adrenal medulla and sympathetic preganglionic neurons. OBESITY RESEARCH 1995; 3 Suppl 5:729S-734S. [PMID: 8653555 DOI: 10.1002/j.1550-8528.1995.tb00492.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
2-Deoxy-D-glucose (2DG) and 2-mercaptoacetate (MA) are drugs that competitively inhibit metabolism of glucose and fatty acids, respectively. Both 2DG and MA stimulate food intake. In addition, 2DG-induced glucoprivation is a known stimulus for adrenomedullary secretion. However, very little is known about the effects of MA on the sympathoadrenal system. In the present study, we examined effects of 2DG and MA on the activity of preganglionic neurons and the adrenal medulla, as indicated by expression of Fos-like immunoreactivity (Fos-li). 2DG, MA, or saline was administered using a stress-attenuated paradigm incorporating remote drug infusion. Expression of Fos-like immunoreactivity (Fos-li) was subsequently examined in the adrenal medulla and in preganglionic sympathetic neurons throughout the intermediolateral column (IML) of the thoracic and lumbar spinal cord. We found that 2DG increased Fos-li in the adrenal medulla and in the IML primarily at spinal cord segments T7-T10, where adrenomedullary preganglionic neurons reside. In contrast, MA did not induce Fos-li either in the adrenal medulla or in sympathetic preganglionic neurons at any cord level. Results support the hypothesis that decreased fatty acid oxidation is not a stimulus for adrenal medullary secretion and provide evidence for a highly selective stimulation of adrenal medullary preganglionic neurons by 2DG.
Collapse
Affiliation(s)
- S Ritter
- Department of Veterinary and Comparative Anatomy, Pharmacology and Physiology, Washington State University, Pullman 99164, USA
| | | | | |
Collapse
|
43
|
Scheurink AJ, Balkan B, Nyakas C, van Dijk G, Steffens AB, Bohus B. Energy homeostasis, autonomic activity and obesity. OBESITY RESEARCH 1995; 3 Suppl 5:721S-727S. [PMID: 8653554 DOI: 10.1002/j.1550-8528.1995.tb00491.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Obesity is often accompanied by alterations in both sympathetic and parasympathetic autonomic functions. The present paper summarizes the results of a number of studies designed to investigate autonomic functioning in normal, genetically, and experimentally obese rats. Particular emphasis is given to autonomic functioning and dysfunctioning in relation to the processes that are involved in the regulation of peripheral energy substrate homeostasis. It is concluded that alterations in autonomic regulation in obesity are determined by causal factors such as overeating, genetic make-up, age and/or the duration of obesity.
Collapse
Affiliation(s)
- A J Scheurink
- Department of Animal Physiology, University of Groningen, Haren, The Netherlands
| | | | | | | | | | | |
Collapse
|
44
|
Ahrén B, Karlsson S, Scheurink AJ, Steffens AB. Involvement of nitric oxide in neuroglycopenia-induced insulin and glucagon secretion in the mouse. Eur J Pharmacol 1995; 280:27-35. [PMID: 7498251 DOI: 10.1016/0014-2999(95)00171-g] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Neuroglycopenia induced by administration of 2-deoxy-D-glucose is known to stimulate the secretion of both insulin and glucagon in mice by a mechanism that is dependent on neural activity. In the present study, we examined whether the neurotransmitter nitric oxide (NO) is involved in this process. Therefore, 2-deoxy-D-glucose (500 mg/kg) was injected intravenously alone or together with the inhibitor of NO synthase, NG-nitro-L-arginine methyl ester (50 mg/kg) to conscious mice. It was found that NG-nitro-L-arginine methyl ester inhibited the increased plasma levels of both insulin (by 26%; P = 0.039) and glucagon (by 45%; P < 0.001) at 10 min after injection of 2-deoxy-D-glucose. Similarly, the NO synthase inhibitor, NG-nitro-L-arginine, which is devoid of the anticholinergic property of NG-nitro-L-arginine methyl ester, inhibited the responses of both insulin (by 53%; P = 0.026) and glucagon (by 57%; P = 0.003) to 2-deoxy-D-glucose. In contrast, the stereoisomer of NG-nitro-L-arginine methyl ester, NG-nitro-D-arginine methyl ester, which is devoid of NO synthase inhibitory activity, was without effect on 2-deoxy-D-glucose-induced insulin and glucagon secretion. Plasma levels of adrenaline and noradrenaline after administration of 2-deoxy-D-glucose were also reduced by NG-nitro-L-arginine methyl ester. In contrast, the insulin and glucagon secretory responses to intravenous injection of arginine (250 mg/kg), glucose (500 mg/kg) or the cholinergic agonist, carbachol (30 micrograms/kg), were not influenced by NG-nitro-L-arginine methyl ester, NG-nitro-D-arginine methyl ester or NG-nitro-L-arginine.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- B Ahrén
- Department of Medicine, Lund University, Malmö, Sweden
| | | | | | | |
Collapse
|
45
|
van Dijk G, Scheurink A, Ritter S, Steffens A. Glucose homeostasis and sympathoadrenal activity in mercaptoacetate-treated rats. Physiol Behav 1995; 57:759-64. [PMID: 7777614 DOI: 10.1016/0031-9384(94)00323-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The effect of the fatty acid oxidation inhibitor, sodium mercaptoacetate (MA, 600 mumol/kg) on peripheral energy substrate metabolism was investigated in rats with permanent heart catheters. Rats were either fed, 48-h food deprived, or exercising for 30 min. Before and after intravenous MA injection, stress-free blood samples were taken for measurement of blood glucose, plasma free fatty acids (FFA), insulin, epinephrine (E), and norepinephrine (NE) concentrations. In fed animals, MA increased blood glucose, plasma FFA, and NE and decreased insulin concentrations. Plasma E levels did not change. In 48-h-deprived animals, MA elevated low baseline glucose concentrations to levels observed in MA-treated fed animals. Plasma insulin concentrations decreased to almost undetectable levels. Plasma catecholamines and FFA were increased compared to fed rats. In exercising rats, MA caused an exaggerated increase of blood glucose and a pronounced reduction of plasma insulin without affecting exercise-induced FFA and catecholamine responses. The data revealed that the mechanisms that regulate blood glucose concentrations during MA treatment are dependent on the nutritional state and ambient energy expenditure.
Collapse
Affiliation(s)
- G van Dijk
- Department of Animal Physiology, University of Groningen, Haren, The Netherlands
| | | | | | | |
Collapse
|