1
|
Rubin-Kahana DS, Butler K, Hassan AN, Sanches M, Le Foll B. Cannabis Use Characteristics Associated with Self-Reported Cognitive Function in a Nationally Representative U.S. sample. Subst Use Misuse 2024; 59:1303-1312. [PMID: 38664196 DOI: 10.1080/10826084.2024.2340975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
BACKGROUND With increases in cannabis use and potency, there is a need to improve our understanding of the impact of use on cognitive function. Previous research indicates long-term cannabis use may have a negative effect on executive function. Few studies have examined persistence of it in protracted abstinence, and there is limited evidence of predictors of worse cognitive function in current and former users. In this study, we aim to evaluate the associations between cannabis use status (current, former, and never use) and self-report cognition. Further, we investigate if cannabis use characteristics predict self-report cognitive function. METHODS Cross-sectional cannabis use data from the National Epidemiological Survey on Alcohol and Related Conditions-III (NESARC-III), a national survey (N = 36,309) conducted in the USA between 2012 and 2013 were used alongside the Executive Function Index scales. The data were analyzed by using Ordinary Least Squares regression. RESULTS Current (N = 3,681, Female = 37.7%) and former users (N = 7,448, Female = 45.4%) reported poorer cognition than never users (N = 24,956, Female = 56.6%). Self-reported cognition of former users was in-between that of current and never users. Several cannabis use characteristics were associated with self-reported cognition in current and former users. CONCLUSION While prospective studies are required to confirm, findings suggest cannabis use is linked to worse cognition. There may be some limited recovery of cognition in former users and some cannabis use characteristics predict impairment. These findings add to our understanding of the cognitive impact of cannabis use. As worse cognitive function may impact relapse, findings have implications for personalization of cannabis use disorder treatment.
Collapse
Affiliation(s)
- Dafna Sara Rubin-Kahana
- Translational Addiction Research Laboratory, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
- Department of Psychiatry, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Kevin Butler
- Translational Addiction Research Laboratory, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
- School of Psychology, College of Health and Science, University of Lincoln, Lincoln, UK
| | - Ahmed Nabeel Hassan
- Translational Addiction Research Laboratory, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
- Department of Psychiatry, King Abdul-Aziz University, Jeddah, Saudi Arabia
- Department of Psychiatry, Campbell Family Mental Health Research Institute, CAMH, Toronto, Ontario, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Canada
| | - Marcos Sanches
- Biostatistics Core, Centre for Addiction and Mental Health, Centre for Addiction and Health, Toronto, Ontario, Canada
| | - Bernard Le Foll
- Translational Addiction Research Laboratory, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
- Department of Psychiatry, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Department of Psychiatry, Campbell Family Mental Health Research Institute, CAMH, Toronto, Ontario, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Canada
- Departments of Family and Community Medicine, University of Toronto, Toronto, Canada
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
2
|
Mohammadpanah M, Farrokhi S, Sani M, Moghaddam MH, Bayat AH, Boroujeni ME, Abdollahifar MA, Fathi M, Vakili K, Nikpour F, Omran HS, Ahmadirad H, Ghorbani Z, Peyvandi AA, Aliaghaei A. Exposure to Δ9-tetrahydrocannabinol leads to a rise in caspase-3, morphological changes in microglial, and astrocyte reactivity in the cerebellum of rats. Toxicol Res (Camb) 2023; 12:1077-1094. [PMID: 38145099 PMCID: PMC10734605 DOI: 10.1093/toxres/tfad098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 08/21/2023] [Accepted: 10/06/2023] [Indexed: 12/26/2023] Open
Abstract
The present study aimed to elucidate the effect of 10 mg/kg Δ9-tetrahydrocannabinol (THC) on cerebellar neuronal and glial morphology, apoptosis and inflammatory gene expression using a series of histological assays including stereology, Sholl analysis, immunofluorescence and real-time qPCR in male Wistar rats. A decrease in the number of Purkinje neurons and the thickness of the granular layer in the cerebellum was reported in THC-treated rats. Increased expression of Iba-1 and arborization of microglial processes were evidence of microgliosis and morphological changes in microglia. In addition, astrogliosis and changes in astrocyte morphology were other findings associated with THC administration. THC also led to an increase in caspase-3 positive cells and a decrease in autophagy and inflammatory gene expression such as mTOR, BECN1 and LAMP2. However, there were no significant changes in the volume of molecular layers and white matter, the spatial arrangement of granular layers and white matter, or the spatial arrangement of granular layers and white matter in the cerebellum. Taken together, our data showed both neuroprotective and neurodegenerative properties of THC in the cerebellum, which require further study in the future.
Collapse
Affiliation(s)
- Mojtaba Mohammadpanah
- Hearing Disorders Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sheida Farrokhi
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mojtaba Sani
- Department of Educational Neuroscience, Aras International Campus, University of Tabriz, Tabriz, Iran
| | - Meysam Hassani Moghaddam
- Department of Anatomical Sciences, Faculty of Medicine, AJA University of Medical Sciences, Tehran, Iran
| | - Amir-Hossein Bayat
- Department of Neuroscience, School of Sciences and Advanced Technology in Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mahdi Eskandarian Boroujeni
- Laboratory of Human Molecular Genetics, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Poznan, Poland
| | - Mohammad-Amin Abdollahifar
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mobina Fathi
- Student Research Committee, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Kimia Vakili
- Student Research Committee, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Nikpour
- Department of Cell Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hossein Salehi Omran
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hossein Ahmadirad
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zeynab Ghorbani
- Department of Anatomy, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Ali Asghar Peyvandi
- Hearing Disorders Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abbas Aliaghaei
- Hearing Disorders Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
3
|
Ganesh S, Lam TT, Garcia-Milian R, D’Souza D, Nairn AC, Elgert K, Eitan E, Ranganathan M. Peripheral signature of altered synaptic integrity in young onset cannabis use disorder: A proteomic study of circulating extracellular vesicles. World J Biol Psychiatry 2023; 24:603-613. [PMID: 36994633 PMCID: PMC10471733 DOI: 10.1080/15622975.2023.2197039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 03/20/2023] [Accepted: 03/27/2023] [Indexed: 03/31/2023]
Abstract
BACKGROUND Rates of Cannabis Use Disorder (CUD) are highest amongst young adults. Paucity of brain tissue samples limits the ability to examine the molecular basis of cannabis related neuropathology. Proteomic studies of neuron-derived extracellular vesicles (NDEs) isolated from the biofluids may reveal markers of neuropathology in CUD. METHODS NDEs were extracted using ExoSORT, an immunoaffinity method to enrich NDEs from plasma samples from patients with young onset CUD and matched controls. Differential proteomic profiles were explored with Label Free Quantification (LFQ) mass spectrometry. Selected proteins were validated using orthogonal methods. RESULTS A total of 231 (±10) proteins were identified in NDE preparations from CUD and controls of which 28 were differentially abundant between groups. The difference in abundance of properdin (CFP gene) was statistically significant. SHANK1 (SHANK1 gene), an adapter protein at the post-synaptic density, was nominally depleted in the CUD NDE preparations. CONCLUSION In this pilot study, we noted a decrease in SHANK1 protein, involved in the structural and functional integrity of glutamatergic post-synapse, a potential peripheral signature of CUD neuropathology. The study shows that LFQ mass spectrometry proteomic analysis of NDEs derived from plasma may yield important insights into the synaptic pathology associated with CUD.
Collapse
Affiliation(s)
- Suhas Ganesh
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, 06520
| | - TuKiet T. Lam
- Department of Molecular Biophysics and Biochemistry, Yale School of Medicine, New Haven, CT, 06520
- Keck Mass Spectrometry & Proteomics Resource, Yale School of Medicine, New Haven, CT, 06510
| | - Rolando Garcia-Milian
- Bioinformatics Support Program, Cushing/Whitney Medical Library, Yale School of Medicine, New Haven, CT, 06510
| | - Deepak D’Souza
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, 06520
| | - Angus C. Nairn
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, 06520
| | | | | | - Mohini Ranganathan
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, 06520
| |
Collapse
|
4
|
Pintori N, Caria F, De Luca MA, Miliano C. THC and CBD: Villain versus Hero? Insights into Adolescent Exposure. Int J Mol Sci 2023; 24:ijms24065251. [PMID: 36982327 PMCID: PMC10048857 DOI: 10.3390/ijms24065251] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/05/2023] [Accepted: 03/06/2023] [Indexed: 03/12/2023] Open
Abstract
Cannabis is the most used drug of abuse worldwide. It is well established that the most abundant phytocannabinoids in this plant are Δ9-tetrahydrocannabinol (THC) and cannabidiol (CBD). These two compounds have remarkably similar chemical structures yet vastly different effects in the brain. By binding to the same receptors, THC is psychoactive, while CBD has anxiolytic and antipsychotic properties. Lately, a variety of hemp-based products, including CBD and THC, have become widely available in the food and health industry, and medical and recreational use of cannabis has been legalized in many states/countries. As a result, people, including youths, are consuming CBD because it is considered “safe”. An extensive literature exists evaluating the harmful effects of THC in both adults and adolescents, but little is known about the long-term effects of CBD exposure, especially in adolescence. The aim of this review is to collect preclinical and clinical evidence about the effects of cannabidiol.
Collapse
Affiliation(s)
- Nicholas Pintori
- Department of Biomedical Sciences, University of Cagliari, 09042 Cagliari, Italy
| | - Francesca Caria
- Department of Biomedical Sciences, University of Cagliari, 09042 Cagliari, Italy
| | - Maria Antonietta De Luca
- Department of Biomedical Sciences, University of Cagliari, 09042 Cagliari, Italy
- Correspondence: ; Tel.: +39-070-6758633
| | - Cristina Miliano
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| |
Collapse
|
5
|
Lorenzetti V, Kowalczyk M, Duehlmeyer L, Greenwood LM, Chye Y, Yücel M, Whittle S, Roberts CA. Brain Anatomical Alterations in Young Cannabis Users: Is it All Hype? A Meta-Analysis of Structural Neuroimaging Studies. Cannabis Cannabinoid Res 2023; 8:184-196. [PMID: 35443799 DOI: 10.1089/can.2021.0099] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Introduction: Cannabis use has a high prevalence in young youth and is associated with poor psychosocial outcomes. Such outcomes have been ascribed to the impact of cannabis exposure on the developing brain. However, findings from individual studies of volumetry in youth cannabis users are equivocal. Objectives: Our primary objective was to systematically review the evidence on brain volume differences between young cannabis users and nonusers aged 12-26 where profound neuromaturation occurs, accounting for the role of global brain volumes (GBVs). Our secondary objective was to systematically integrate the findings on the association between youth age and volumetry in youth cannabis users. Finally, we aimed to evaluate the quality of the evidence. Materials and Methods: A systematic search was run in three databases (PubMed, Scopus, and PsycINFO) and was reported using the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. We run meta-analyses (with and without controlling for GBV) of brain volume differences between young cannabis users and nonusers. We conducted metaregressions to explore the role of age on volumetric differences. Results: Sixteen studies were included. The reviewed samples included 830 people with mean age 22.5 years (range 14-26 years). Of these, 386 were cannabis users (with cannabis use onset at 15-19 years) and 444 were controls. We found no detectable group differences in any of the GBVs (intracranium, total brain, total white matter, and total gray matter) and regional brain volumes (i.e., hippocampus, amygdala, orbitofrontal cortex, and total cerebellum). Age and cannabis use level did not predict (standardized mean) volume group differences in metaregression. We found little evidence of publication bias (Egger's test p>0.1). Conclusions: Contrary to evidence in adult samples (or in samples mixing adults and youth), previous single studies in young cannabis users, and meta-analyses of brain function in young cannabis users, this early evidence suggests nonsignificant volume differences between young cannabis users and nonusers. While prolonged and long-term exposure to heavy cannabis use may be required to detect gross volume alterations, more studies in young cannabis users are needed to map in detail cannabis-related neuroanatomical changes.
Collapse
Affiliation(s)
- Valentina Lorenzetti
- Neuroscience of Addiction and Mental Health Program, Healthy Brain and Mind Research Centre, School of Behavioural and Health Sciences, Faculty of Health Sciences, Australian Catholic University, Fitzroy, Australia
| | - Magdalena Kowalczyk
- Neuroscience of Addiction and Mental Health Program, Healthy Brain and Mind Research Centre, School of Behavioural and Health Sciences, Faculty of Health Sciences, Australian Catholic University, Fitzroy, Australia
| | - Leonie Duehlmeyer
- Neuroscience of Addiction and Mental Health Program, Healthy Brain and Mind Research Centre, School of Behavioural and Health Sciences, Faculty of Health Sciences, Australian Catholic University, Fitzroy, Australia
| | - Lisa-Marie Greenwood
- Research School of Psychology, The Australian National University, Canberra, Australia
| | - Yann Chye
- BrainPark, The Turner Institute for Brain and Mental Health, School of Psychological Sciences and Monash Biomedical Imaging Facility, Clayton, Australia
| | - Murat Yücel
- BrainPark, The Turner Institute for Brain and Mental Health, School of Psychological Sciences and Monash Biomedical Imaging Facility, Clayton, Australia
| | - Sarah Whittle
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne, Carlton, Australia
| | - Carl A Roberts
- Department of Psychology, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
6
|
Laws JS, Smid SD. Evaluating Cannabis sativa L.'s neuroprotection potential: From bench to bedside. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 107:154485. [PMID: 36209703 DOI: 10.1016/j.phymed.2022.154485] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 09/09/2022] [Accepted: 09/27/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Neurodegenerative diseases and dementia pose a global health challenge in an aging population, exemplified by the increasing incidence and prevalence of its most common form, Alzheimer's disease. Although several approved treatments exist for Alzheimer's disease, they only afford transient symptomatic improvements and are not considered disease-modifying. The psychoactive properties of Cannabis sativa L. have been recognized for thousands of years and now with burgeoning access to medicinal formulations globally, research has turned to re-evaluate cannabis and its myriad phytochemicals as a potential treatment and adjunctive agent for neurodegenerative diseases. PURPOSE This review evaluated the neuroprotective potential of C. sativa's active constituents for potential therapeutic use in dementia and Alzheimer's disease, based on published studies demonstrating efficacy in experimental preclinical settings associated with neurodegeneration. STUDY DESIGN Relevant information on the neuroprotective potential of the C. sativa's phytoconstituents in preclinical studies (in vitro, in vivo) were included. The collated information on C. sativa's component bioactivity was organized for therapeutic applications against neurodegenerative diseases. METHODS The therapeutic use of C. sativa related to Alzheimer's disease relative to known phytocannabinoids and other phytochemical constituents were derived from online databases, including PubMed, Elsevier, The Plant List (TPL, www.theplantlist.org), Science Direct, as well as relevant information on the known pharmacological actions of the listed phytochemicals. RESULTS Numerous C. sativa -prevalent phytochemicals were evidenced in the body of literature as having efficacy in the treatment of neurodegenerative conditions exemplified by Alzheimer's disease. Several phytocannabinoids, terpenes and select flavonoids demonstrated neuroprotection through a myriad of cellular and molecular pathways, including cannabinoid receptor-mediated, antioxidant and direct anti-aggregatory actions against the pathological toxic hallmark protein in Alzheimer's disease, amyloid β. CONCLUSIONS These findings provide strong evidence for a role of cannabis constituents, individually or in combination, as potential neuroprotectants timely to the emergent use of medicinal cannabis as a novel treatment for neurodegenerative diseases. Future randomized and controlled clinical studies are required to substantiate the bioactivities of phytocannabinoids and terpenes and their likely synergies.
Collapse
Affiliation(s)
- John Staton Laws
- Discipline of Pharmacology, School of Biomedicine, Faculty of Health and Medical Sciences, The University of Adelaide, South Australia, Australia
| | - Scott D Smid
- Discipline of Pharmacology, School of Biomedicine, Faculty of Health and Medical Sciences, The University of Adelaide, South Australia, Australia.
| |
Collapse
|
7
|
Dasram MH, Walker RB, Khamanga SM. Recent Advances in Endocannabinoid System Targeting for Improved Specificity: Strategic Approaches to Targeted Drug Delivery. Int J Mol Sci 2022; 23:13223. [PMID: 36362014 PMCID: PMC9658826 DOI: 10.3390/ijms232113223] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 10/07/2022] [Accepted: 10/13/2022] [Indexed: 11/26/2022] Open
Abstract
Opportunities for developing innovative and intelligent drug delivery technologies by targeting the endocannabinoid system are becoming more apparent. This review provides an overview of strategies to develop targeted drug delivery using the endocannabinoid system (ECS). Recent advances in endocannabinoid system targeting showcase enhanced pharmaceutical therapy specificity while minimizing undesirable side effects and overcoming formulation challenges associated with cannabinoids. This review identifies advances in targeted drug delivery technologies that may permit access to the full pharmacotherapeutic potential of the ECS. The design of optimized nanocarriers that target specific tissues can be improved by understanding the nature of the signaling pathways, distribution in the mammalian body, receptor structure, and enzymatic degradation of the ECS. A closer look at ligand-receptor complexes, endocannabinoid tone, tissue distribution, and G-protein activity leads to a better understanding of the potential of the ECS toolkit for therapeutics. The signal transduction pathways examine the modulation of downstream effector proteins, desensitization, signaling cascades, and biased signaling. An in-depth and overall view of the targeted system is achieved through homology modeling where mutagenesis and ligand binding examine the binding site and allow sequence analysis and the formation of libraries for molecular docking and molecular dynamic simulations. Internalization routes exploring receptor-mediated endocytosis and lipid rafts are also considered for explicit signaling. Furthermore, the review highlights nanotechnology and surface modification aspects as a possible future approach for specific targeting.
Collapse
Affiliation(s)
| | | | - Sandile M. Khamanga
- Division of Pharmaceutics, Faculty of Pharmacy, Rhodes University, Makhanda 6139, South Africa
| |
Collapse
|
8
|
Chronic ∆-9-tetrahydrocannabinol administration delays acquisition of schedule-induced drinking in rats and retains long-lasting effects. Psychopharmacology (Berl) 2022; 239:1359-1372. [PMID: 34436650 PMCID: PMC9110535 DOI: 10.1007/s00213-021-05952-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 08/03/2021] [Indexed: 12/29/2022]
Abstract
RATIONALE Schedule-induced drinking (SID) is a behavioural phenomenon characterized by an excessive and repetitive drinking pattern with a distinctive temporal distribution that has been proposed as a robust and replicable animal model of compulsivity. Despite cannabis currently being the most widely consumed illicit drug, with growing interest in its clinical applications, little is known about the effects of ∆-9-tetrahydrocannabinol (THC) on SID. OBJECTIVES The effects of chronic and acute THC administration on SID acquisition, maintenance and extinction were studied, as were the effects of such administrations on the distinctive temporal distribution pattern of SID. METHODS THC (5 mg/kg i.p.), or the corresponding vehicle, was administered to adult Wistar rats for 14 days in a row. Subsequently, THC effects on SID acquisition were tested during 21 sessions using a 1-h fixed-time 60-s food delivery schedule. Acute effects of THC were also evaluated after SID development. Finally, two extinction sessions were conducted to assess behavioural persistence. RESULTS The results showed that previous chronic THC treatment delayed SID acquisition and altered the distinctive behavioural temporal distribution pattern during sessions. Moreover, acute THC administration after SID development decreased SID performance in animals chronically pre-treated with the drug. No great persistence effects were observed during extinction in animals pre-treated with THC. CONCLUSIONS These results suggest that chronic THC affects SID development, confirming that it can disrupt learning, possibly causing alterations in time estimation, and also leads to animals being sensitized when they are re-exposed to the drug after long periods without drug exposure.
Collapse
|
9
|
D'Souza DC, Radhakrishnan R, Naganawa M, Ganesh S, Nabulsi N, Najafzadeh S, Ropchan J, Ranganathan M, Cortes-Briones J, Huang Y, Carson RE, Skosnik P. Preliminary in vivo evidence of lower hippocampal synaptic density in cannabis use disorder. Mol Psychiatry 2021; 26:3192-3200. [PMID: 32973170 DOI: 10.1038/s41380-020-00891-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 08/21/2020] [Accepted: 09/14/2020] [Indexed: 12/15/2022]
Abstract
Cannabis is one of the most commonly and widely used psychoactive drugs. The rates of cannabis misuse have been increasing. Therefore, understanding the effects of cannabis use on the brain is important. Adolescent and adult rodents exposed to repeated administration of cannabinoids show persistent microstructural changes in the hippocampus both pre- and post-synaptically. Whether similar alterations exist in human cannabis users, has not yet been demonstrated in vivo. Positron emission tomography (PET) and [11C]UCB-J, a radioligand for the synaptic vesicle glycoprotein 2A (SV2A), were used to study hippocampal synaptic integrity in vivo in an equal number (n = 12) of subjects with DSM-5 cannabis use disorder (CUD) and matched healthy controls (HC). Arterial sampling was used to measure plasma input function. [11C]UCB-J binding potential (BPND) was estimated using a one-tissue (1T) compartment model with centrum semiovale as the reference region. Hippocampal function was assessed using a verbal memory task. Relative to HCs, CUDs showed significantly lower [11C]UCB-J BPND in the hippocampus (~10%, p = 0.008, effect size 1.2) and also performed worse on the verbal memory task. These group differences in hippocampal BPND persisted after correction for volume differences (p = 0.013), and correction for both age and volume (p = 0.03). We demonstrate, for the first time, in vivo evidence of lower hippocampal synaptic density in cannabis use disorder. These results are consistent with the microstructural findings from experimental studies with cannabinoids in animals, and studies of hippocampal macrostructure in human with CUD. Whether the lower hippocampal synaptic density resolves with abstinence warrants further study.
Collapse
Affiliation(s)
- Deepak Cyril D'Souza
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA. .,Psychiatry Service, VA Connecticut Healthcare System, West Haven, CT, USA. .,Schizophrenia Neuropharmacology Research Group at Yale (SNRGY), New Haven, CT, USA. .,Abraham Ribicoff Research Facilities, Connecticut Mental Health Center, New Haven, CT, USA.
| | - Rajiv Radhakrishnan
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA.,Psychiatry Service, VA Connecticut Healthcare System, West Haven, CT, USA.,Schizophrenia Neuropharmacology Research Group at Yale (SNRGY), New Haven, CT, USA.,Abraham Ribicoff Research Facilities, Connecticut Mental Health Center, New Haven, CT, USA
| | - Mika Naganawa
- Department of Radiology and Biomedical Engineering, Yale University School of Medicine, New Haven, CT, USA
| | - Suhas Ganesh
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA.,Abraham Ribicoff Research Facilities, Connecticut Mental Health Center, New Haven, CT, USA
| | - Nabeel Nabulsi
- Department of Radiology and Biomedical Engineering, Yale University School of Medicine, New Haven, CT, USA
| | - Soheila Najafzadeh
- Department of Radiology and Biomedical Engineering, Yale University School of Medicine, New Haven, CT, USA
| | - Jim Ropchan
- Department of Radiology and Biomedical Engineering, Yale University School of Medicine, New Haven, CT, USA
| | - Mohini Ranganathan
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA.,Psychiatry Service, VA Connecticut Healthcare System, West Haven, CT, USA.,Schizophrenia Neuropharmacology Research Group at Yale (SNRGY), New Haven, CT, USA.,Abraham Ribicoff Research Facilities, Connecticut Mental Health Center, New Haven, CT, USA
| | - Jose Cortes-Briones
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA.,Psychiatry Service, VA Connecticut Healthcare System, West Haven, CT, USA.,Schizophrenia Neuropharmacology Research Group at Yale (SNRGY), New Haven, CT, USA.,Abraham Ribicoff Research Facilities, Connecticut Mental Health Center, New Haven, CT, USA
| | - Yiyun Huang
- Department of Radiology and Biomedical Engineering, Yale University School of Medicine, New Haven, CT, USA
| | - Richard E Carson
- Department of Radiology and Biomedical Engineering, Yale University School of Medicine, New Haven, CT, USA
| | - Patrick Skosnik
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA.,Psychiatry Service, VA Connecticut Healthcare System, West Haven, CT, USA.,Schizophrenia Neuropharmacology Research Group at Yale (SNRGY), New Haven, CT, USA.,Abraham Ribicoff Research Facilities, Connecticut Mental Health Center, New Haven, CT, USA
| |
Collapse
|
10
|
Chye Y, Kirkham R, Lorenzetti V, McTavish E, Solowij N, Yücel M. Cannabis, Cannabinoids, and Brain Morphology: A Review of the Evidence. BIOLOGICAL PSYCHIATRY: COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2020; 6:627-635. [PMID: 32948510 DOI: 10.1016/j.bpsc.2020.07.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 06/19/2020] [Accepted: 07/10/2020] [Indexed: 11/26/2022]
Abstract
Cannabis and cannabinoid-based products are increasingly being accepted and commodified globally. Yet there is currently limited understanding of the effect of the varied cannabinoid compounds on the brain. Exogenous cannabinoids interact with the endogenous cannabinoid system that underpins vital functions in the brain and body, and they are thought to perturb key brain and cognitive function. However, much neuroimaging research has been confined to observational studies of cannabis users, without examining the specific role of the various cannabinoids (Δ9-tetrahydrocannabinol, cannabidiol, etc.). This review summarizes the brain structural imaging evidence to date associated with cannabis use, its major cannabinoids (e.g., Δ9-tetrahydrocannabinol, cannabidiol), and synthetic cannabinoid products that have emerged as recreational drugs. In doing so, we seek to highlight some of the key issues to consider in understanding cannabinoid-related brain effects, emphasizing the dual neurotoxic and neuroprotective role of cannabinoids, and the need to consider the distinct role of the varied cannabinoids in establishing their effect on the brain.
Collapse
Affiliation(s)
- Yann Chye
- BrainPark, Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Melbourne, Victoria, Australia; Monash Biomedical Imaging Facility, Monash University, Melbourne, Victoria, Australia
| | - Rebecca Kirkham
- BrainPark, Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Melbourne, Victoria, Australia; Monash Biomedical Imaging Facility, Monash University, Melbourne, Victoria, Australia
| | - Valentina Lorenzetti
- BrainPark, Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Melbourne, Victoria, Australia; Monash Biomedical Imaging Facility, Monash University, Melbourne, Victoria, Australia; School of Psychology, Faculty of Health Sciences, Australian Catholic University, Melbourne, Victoria, Australia
| | - Eugene McTavish
- BrainPark, Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Melbourne, Victoria, Australia; Monash Biomedical Imaging Facility, Monash University, Melbourne, Victoria, Australia
| | - Nadia Solowij
- School of Psychology, University of Wollongong, Wollongong, New South Wales, Australia; Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, New South Wales, Australia; Australian Centre for Cannabinoid Clinical and Research Excellence, New Lambton Heights, New South Wales, Australia
| | - Murat Yücel
- BrainPark, Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Melbourne, Victoria, Australia; Monash Biomedical Imaging Facility, Monash University, Melbourne, Victoria, Australia.
| |
Collapse
|
11
|
Gibula-Tarlowska E, Wydra K, Kotlinska JH. Deleterious Effects of Ethanol, Δ(9)-Tetrahydrocannabinol (THC), and Their Combination on the Spatial Memory and Cognitive Flexibility in Adolescent and Adult Male Rats in the Barnes Maze Task. Pharmaceutics 2020; 12:pharmaceutics12070654. [PMID: 32660138 PMCID: PMC7407502 DOI: 10.3390/pharmaceutics12070654] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 07/03/2020] [Accepted: 07/07/2020] [Indexed: 11/29/2022] Open
Abstract
Research demonstrates that adolescents differ from adults in their response to drugs of abuse. The aim of the present study was to examine the influence of ethanol, Δ9-tetrahydrocannabinol hydrochloride (THC), and a combination of these drugs given during adolescence on spatial memory in adolescent and adult rats. Thus, adolescent rats (postnatal day (PND) 30) were subjected to the following groups: 0.9% NaCl; 1.5 g/kg ethanol; 1.0 mg/kg THC; 1.5 g/kg ethanol + 1.0 mg/kg THC. Rats received drug injection four times at three-day intervals. One day after the last injection, half of the treated animals were tested in the Barnes maze task, whereas the remaining animals were tested on PND 70. Results show that there was a significant age effect on spatial memory in the Barnes maze task after these drug administrations. Adolescent animals demonstrated more potent deficits in the spatial learning and memory (probe trial) and in cognitive flexibility (reversal learning) than did adults. However, in adult rats that received these drugs in adolescence, memory decline was observed only after ethanol and ethanol + THC administration. Thus, our results are important in understanding the deleterious impact of THC and/or ethanol abuse during adolescence on memory function across the lifespan (adolescent versus adult).
Collapse
Affiliation(s)
- Ewa Gibula-Tarlowska
- Department of Pharmacology and Pharmacodynamics, Medical University, 20-093 Lublin, Poland;
- Correspondence:
| | - Karolina Wydra
- Department of Drug Addiction Pharmacology, Maj Institute of Pharmacology Polish Academy of Sciences, 31-343 Krakow, Poland;
| | - Jolanta H. Kotlinska
- Department of Pharmacology and Pharmacodynamics, Medical University, 20-093 Lublin, Poland;
| |
Collapse
|
12
|
Sarne Y. Beneficial and deleterious effects of cannabinoids in the brain: the case of ultra-low dose THC. THE AMERICAN JOURNAL OF DRUG AND ALCOHOL ABUSE 2019; 45:551-562. [PMID: 30864864 DOI: 10.1080/00952990.2019.1578366] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
This article reviews the neurocognitive advantages and drawbacks of cannabinoid substances, and discusses the possible physiological mechanisms that underlie their dual activity. The article further reviews the neurocognitive effects of ultra-low doses of ∆9-tetrahydrocannabinol (THC; 3-4 orders of magnitude lower than the conventional doses) in mice, and proposes such low doses of THC as a possible remedy for various brain injuries and for the treatment of age-related cognitive decline.
Collapse
Affiliation(s)
- Yosef Sarne
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
13
|
Carty DR, Thornton C, Gledhill JH, Willett KL. Developmental Effects of Cannabidiol and Δ9-Tetrahydrocannabinol in Zebrafish. Toxicol Sci 2019; 162:137-145. [PMID: 29106691 DOI: 10.1093/toxsci/kfx232] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Cannabidiol (CBD) has gained much attention in the past several years for its therapeutic potential in the treatment of drug-resistant epilepsy, such as Dravet syndrome. Although CBD has shown anecdotal efficacy in reducing seizure frequency, little is known regarding the potential adverse side effects of CBD on physiology, development, organogenesis, or behavior. The goal of this project was to compare the relative morphological, behavioral, and gene expression phenotypes resulting after a developmental exposure to Δ9-tetrahydrocannabinol (THC) or CBD. Zebrafish were exposed from blastula through larval stage (96 h postfertilization [hpf]) to 0.3, 0.6, 1.25, 2.5, 5 mg/l (1, 2, 4, 8, 16 µM) THC or 0.07, 0.1, 0.3, 0.6, 1.25 mg/l CBD (0.25, 0.5, 1, 2, 4 µM). Despite the similarity in THC and CBD dysmorphologies, ie, edemas, curved axis, eye/snout/jaw/trunk/fin deformities, swim bladder distention, and behavioral abnormalities, the LC50 for CBD (0.53 mg/l) was nearly 7 times lower than THC (3.65 mg/l). At 96 hpf, c-fos, dazl, and vasa were differentially expressed following THC exposure, but only c-fos expression was significantly increased by CBD. Cannabidiol was more bioconcentrated compared with THC despite higher THC water concentrations. This work supports the potential for persistent developmental impacts of cannabinoid exposure, but more studies are needed to assess latent effects and their molecular mechanisms of toxicity.
Collapse
Affiliation(s)
- Dennis R Carty
- Division of Environmental Toxicology, Department of BioMolecular Sciences, School of Pharmacy, University of Mississippi, University, Mississippi 38677
| | - Cammi Thornton
- Division of Environmental Toxicology, Department of BioMolecular Sciences, School of Pharmacy, University of Mississippi, University, Mississippi 38677
| | - James H Gledhill
- Division of Environmental Toxicology, Department of BioMolecular Sciences, School of Pharmacy, University of Mississippi, University, Mississippi 38677
| | - Kristine L Willett
- Division of Environmental Toxicology, Department of BioMolecular Sciences, School of Pharmacy, University of Mississippi, University, Mississippi 38677
| |
Collapse
|
14
|
Lorenzetti V, Chye Y, Silva P, Solowij N, Roberts CA. Does regular cannabis use affect neuroanatomy? An updated systematic review and meta-analysis of structural neuroimaging studies. Eur Arch Psychiatry Clin Neurosci 2019; 269:59-71. [PMID: 30706169 DOI: 10.1007/s00406-019-00979-1] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 01/03/2019] [Indexed: 12/22/2022]
Abstract
Regular cannabis use is associated with adverse cognitive and mental health outcomes that have been ascribed to aberrant neuroanatomy in brain regions densely innervated with cannabinoid receptors. Neuroanatomical differences between cannabis users and controls have been assessed in multiple structural magnetic resonance imaging (sMRI) studies. However, there is heterogeneity in the results leading to cautious interpretation of the data so far. We examined the sMRI evidence to date in human cannabis users, to establish more definitely whether neuroanatomical alterations are associated with regular cannabis use. The regional specificity and association with cannabis use indices (i.e. cumulative dosage, duration) were also explored. We systematically reviewed and meta-analysed published sMRI studies investigating regional brain volumes (cortical, subcortical and global) in cannabis users and non-user controls. Three electronic databases were searched (PubMed, Scopus, and PsycINFO). A total of 17 meta-analyses were conducted (one for each cortical, subcortical and global volume) using the generic inverse variance method, whereby standardised mean difference in volume was calculated between users and non-users. Exploratory meta-regressions were conducted to investigate the association between cannabis use indices and regional brain volumes. A total of 30 articles were eligible for inclusion, contributing 106 effect sizes across 17 meta-analyses. Regular cannabis users had significantly smaller volumes of the hippocampus (SMD = 0.14, 95% CIs [0.02, 0.27]; Z = 2.29, p = 0.02, I2 = 74%) and orbitofrontal cortex {medial (SMD = 0.30, 95% CIs [0.15, 0.45]; Z = 3.89, p = 0.0001, I2 = 51%), lateral (SMD = 0.19, 95% CIs [0.07, 0.32]; Z = 3.10, p = 0.002, I2 = 26%)} relative to controls. The volumes of the hippocampus and orbitofrontal cortex were not significantly associated with cannabis duration and dosage. Our findings are consistent with evidence of aberrance in brain regions involved in reward, learning and memory, and motivation circuits in the regular use of substances other than cannabis, pointing to commonality in neurobiological abnormalities between regular users of cannabis and of other substances.
Collapse
Affiliation(s)
- Valentina Lorenzetti
- School of Psychology, Faculty of Health Sciences, Australian Catholic University, Daniel Mannix building, Fitzroy, VIC, 3065, Australia.
| | - Yann Chye
- Brain and Mental Health Research Hub, Monash Institute of Cognitive and Clinical Neuroscience, School of Psychological Sciences, Monash University, Melbourne, Australia
| | - Pedro Silva
- Department of Psychological Sciences, University of Liverpool, Liverpool, UK
| | - Nadia Solowij
- School of Psychology and Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, Australia
| | - Carl A Roberts
- Department of Psychological Sciences, University of Liverpool, Liverpool, UK
| |
Collapse
|
15
|
Gorey C, Kuhns L, Smaragdi E, Kroon E, Cousijn J. Age-related differences in the impact of cannabis use on the brain and cognition: a systematic review. Eur Arch Psychiatry Clin Neurosci 2019; 269:37-58. [PMID: 30680487 PMCID: PMC6394430 DOI: 10.1007/s00406-019-00981-7] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 01/03/2019] [Indexed: 01/20/2023]
Abstract
The impact of cannabis on the adolescent compared to adult brain is of interest to researchers and society alike. From a theoretical perspective, adolescence represents a period of both risk and resilience to the harms of cannabis use and cannabis use disorders. The aim of this systematic review is to provide a critical examination of the moderating role of age on the relationship between cannabis use and cognition. To this end, we reviewed human and animal studies that formally tested whether age, adolescent or adult, changes the relationship between cannabis exposure and cognitive outcomes. While the results of this review do not offer a conclusive answer on the role of age, the novel review question, along with the inclusion of both human and animal work, has allowed for the formation of new hypotheses to be addressed in future work. First, general executive functioning seems to be more impaired in adolescent frequent cannabis users compared to adult frequent cannabis users. Second, age-effects may be most prominent among very heavy and dependent users. Third, craving and inhibitory control may not decrease as much post-intoxication in adolescents compared to adults. Lastly, adolescents' vulnerability to reduced learning following cannabis use may not persist after sustained abstinence. If these hypotheses prove correct, it could lead to important developments in policy and prevention efforts.
Collapse
Affiliation(s)
- Claire Gorey
- Department of Psychology, Addiction Development and Psychopathology (ADAPT) Research Center, University of Amsterdam, P.O. box 15916, 1001 NK, Amsterdam, The Netherlands
- Dynamics of Externalizing (DEXTER) Lab, Department of Psychology, University of South Florida, Tampa, FL, USA
| | - Lauren Kuhns
- Department of Psychology, Addiction Development and Psychopathology (ADAPT) Research Center, University of Amsterdam, P.O. box 15916, 1001 NK, Amsterdam, The Netherlands
- The Amsterdam Brain and Cognition Center (ABC), University of Amsterdam, Amsterdam, The Netherlands
| | - Eleni Smaragdi
- Department of Psychology, Addiction Development and Psychopathology (ADAPT) Research Center, University of Amsterdam, P.O. box 15916, 1001 NK, Amsterdam, The Netherlands
| | - Emese Kroon
- Department of Psychology, Addiction Development and Psychopathology (ADAPT) Research Center, University of Amsterdam, P.O. box 15916, 1001 NK, Amsterdam, The Netherlands
- The Amsterdam Brain and Cognition Center (ABC), University of Amsterdam, Amsterdam, The Netherlands
| | - Janna Cousijn
- Department of Psychology, Addiction Development and Psychopathology (ADAPT) Research Center, University of Amsterdam, P.O. box 15916, 1001 NK, Amsterdam, The Netherlands.
- The Amsterdam Brain and Cognition Center (ABC), University of Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
16
|
Murphy SK, Itchon-Ramos N, Visco Z, Huang Z, Grenier C, Schrott R, Acharya K, Boudreau MH, Price TM, Raburn DJ, Corcoran DL, Lucas JE, Mitchell JT, McClernon FJ, Cauley M, Hall BJ, Levin ED, Kollins SH. Cannabinoid exposure and altered DNA methylation in rat and human sperm. Epigenetics 2018; 13:1208-1221. [PMID: 30521419 PMCID: PMC6986792 DOI: 10.1080/15592294.2018.1554521] [Citation(s) in RCA: 138] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Little is known about the reproductive effects of paternal cannabis exposure. We evaluated associations between cannabis or tetrahydrocannabinol (THC) exposure and altered DNA methylation in sperm from humans and rats, respectively. DNA methylation, measured by reduced representation bisulfite sequencing, differed in the sperm of human users from non-users by at least 10% at 3,979 CpG sites. Pathway analyses indicated Hippo Signaling and Pathways in Cancer as enriched with altered genes (Bonferroni p < 0.02). These same two pathways were also enriched with genes having altered methylation in sperm from THC-exposed versus vehicle-exposed rats (p < 0.01). Data validity is supported by significant correlations between THC exposure levels in humans and methylation for 177 genes, and substantial overlap in THC target genes in rat sperm (this study) and genes previously reported as having altered methylation in the brain of rat offspring born to parents both exposed to THC during adolescence. In humans, cannabis use was also associated with significantly lower sperm concentration. Findings point to possible pre-conception paternal reproductive risks associated with cannabis use.
Collapse
Affiliation(s)
- Susan K Murphy
- a Department of Obstetrics and Gynecology , Duke University Medical Center , Durham , NC , USA
| | - Nilda Itchon-Ramos
- b Department of Psychiatry and Behavioral Sciences , Duke University Medical Center , Durham , NC , USA
| | - Zachary Visco
- a Department of Obstetrics and Gynecology , Duke University Medical Center , Durham , NC , USA
| | - Zhiqing Huang
- a Department of Obstetrics and Gynecology , Duke University Medical Center , Durham , NC , USA
| | - Carole Grenier
- a Department of Obstetrics and Gynecology , Duke University Medical Center , Durham , NC , USA
| | - Rose Schrott
- c Duke Nicholas School of the Environment , University Program in Environmental Health , Durham , NC , USA
| | - Kelly Acharya
- a Department of Obstetrics and Gynecology , Duke University Medical Center , Durham , NC , USA
| | - Marie-Helene Boudreau
- a Department of Obstetrics and Gynecology , Duke University Medical Center , Durham , NC , USA
| | - Thomas M Price
- a Department of Obstetrics and Gynecology , Duke University Medical Center , Durham , NC , USA
| | - Douglas J Raburn
- a Department of Obstetrics and Gynecology , Duke University Medical Center , Durham , NC , USA
| | - David L Corcoran
- d Duke Center for Genomic and Computational Biology , Duke University Medical Center , Durham , NC , USA
| | - Joseph E Lucas
- e Social Sciences Research Institute , Duke University Medical Center , Durham , NC , USA
| | - John T Mitchell
- b Department of Psychiatry and Behavioral Sciences , Duke University Medical Center , Durham , NC , USA
| | - F Joseph McClernon
- b Department of Psychiatry and Behavioral Sciences , Duke University Medical Center , Durham , NC , USA
| | - Marty Cauley
- f Duke Cancer Institute, Duke University Medical Center , Durham , NC , USA
| | - Brandon J Hall
- g Department of Surgery , Duke University Medical Center , Durham , NC , USA
| | - Edward D Levin
- b Department of Psychiatry and Behavioral Sciences , Duke University Medical Center , Durham , NC , USA
| | - Scott H Kollins
- b Department of Psychiatry and Behavioral Sciences , Duke University Medical Center , Durham , NC , USA
| |
Collapse
|
17
|
Burggren AC, Siddarth P, Mahmood Z, London ED, Harrison TM, Merrill DA, Small GW, Bookheimer SY. Subregional Hippocampal Thickness Abnormalities in Older Adults with a History of Heavy Cannabis Use. Cannabis Cannabinoid Res 2018; 3:242-251. [PMID: 30547094 PMCID: PMC6290479 DOI: 10.1089/can.2018.0035] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Background and Aims: Legalization of cannabis (CB) for both medicinal and, in some states, recreational use, has given rise to increasing usage rates across the country. Of particular concern are indications that frequent CB use may be selectively harmful to the developing adolescent brain compared with adult-onset usage. However, the long-term effects of heavy, adolescent CB use on brain structure and cognitive performance in late-life remain unknown. A critical brain region is the hippocampus (HC), where there is a striking intersection between high concentrations of cannabinoid 1 (CB1) receptors and age-related pathology. Design: We investigated whether older adults (average age=66.6+7.2 years old) with a history of early life CB use show morphological differences in hippocampal subregions compared with older, nonusers. Methods: We performed high-resolution magnetic resonance imaging combined with computational techniques to assess cortical thickness of the medial temporal lobe, neuropsychological testing, and extensive drug use histories on 50 subjects (24 formerly heavy cannabis users [CB+ group] abstinent for an average of 28.7 years, 26 nonusers [CB− group]). We investigated group differences in hippocampal subregions, controlling for age, sex, and intelligence (as measured by the Wechsler Test of Adult Reading), years of education, and cigarette use. Results: The CB+ subjects exhibited thinner cortices in subfields cornu ammonis 1 [CA1; F(1,42)=9.96, p=0.0003], and CA2, 3, and the dentate gyrus [CA23DG; F(1,42)=23.17, p<0.0001], and in the entire HC averaged over all subregions [F(1,42)=8.49, p=0.006]. Conclusions: Negative effects of chronic adolescent CB use on hippocampal structure are maintained well into late life. Because hippocampal cortical loss underlies and exacerbates age-related cognitive decline, these findings have profound implications for aging adults with a history of early life usage. Clinical Trial Registration: ClinicalTrials.gov # NCT01874886.
Collapse
Affiliation(s)
- Alison C Burggren
- Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, California.,Center for Cognitive Neurosciences, University of California, Los Angeles, California
| | - Prabha Siddarth
- Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, California
| | - Zanjbeel Mahmood
- San Diego Joint Doctoral Program in Clinical Psychology, San Diego State University/University of California, San Diego, California
| | - Edythe D London
- Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, California.,Department of Molecular and Medical Pharmacology, University of California, Los Angeles, California
| | - Theresa M Harrison
- Helen Wills Neuroscience Institute, University of California, Berkeley, California
| | - David A Merrill
- Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, California
| | - Gary W Small
- Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, California
| | - Susan Y Bookheimer
- Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, California.,Center for Cognitive Neurosciences, University of California, Los Angeles, California
| |
Collapse
|
18
|
Abulseoud OA, Zuccoli ML, Zhang L, Barnes A, Huestis MA, Lin DT. The acute effect of cannabis on plasma, liver and brain ammonia dynamics, a translational study. Eur Neuropsychopharmacol 2017; 27:679-690. [PMID: 28456476 PMCID: PMC6091863 DOI: 10.1016/j.euroneuro.2017.03.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Revised: 02/22/2017] [Accepted: 03/18/2017] [Indexed: 01/08/2023]
Abstract
Recent reports of ammonia released during cannabis smoking raise concerns about putative neurotoxic effects. Cannabis (54mg) was administered in a double-blind, placebo-controlled design to healthy cannabis users (n=15) either orally, or through smoking (6.9%THC cigarette) or inhalation of vaporized cannabis (Volcano®). Serial assay of plasma ammonia concentrations at 0, 2, 4, 6, 8, 10, 15, 30, and 90min from onset of cannabis administration showed significant time (P=0.016), and treatment (P=0.0004) effects with robust differences between placebo and edible at 30 (P=0.002), and 90min (P=0.007) and between placebo and vaporized (P=0.02) and smoking routes (P=0.01) at 90min. Furthermore, plasma ammonia positively correlated with blood THC concentrations (P=0.03). To test the hypothesis that this delayed increase in plasma ammonia originates from the brain we administered THC (3 and 10mg/kg) to mice and measured plasma, liver, and brain ammonia concentrations at 1, 3, 5 and 30min post-injection. Administration of THC to mice did not cause significant change in plasma ammonia concentrations within the first 5min, but significantly reduced striatal glutamine-synthetase (GS) activity (P=0.046) and increased striatal ammonia concentration (P=0.016). Furthermore, plasma THC correlated positively with striatal ammonia concentration (P<0.001) and negatively with striatal GS activity (P=0.030). At 30min, we found marked increase in striatal ammonia (P<0.0001) associated with significant increase in plasma ammonia (P=0.042) concentration. In conclusion, the results of these studies demonstrate that cannabis intake caused time and route-dependent increases in plasma ammonia concentrations in human cannabis users and reduced brain GS activity and increased brain and plasma ammonia concentrations in mice.
Collapse
Affiliation(s)
- Osama A Abulseoud
- Chemistry and Drug Metabolism Section, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD, USA.
| | - Maria Laura Zuccoli
- Chemistry and Drug Metabolism Section, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD, USA; Department of Internal Medicine, Pharmacology and Toxicology Unit, University of Genoa, Italy
| | - Lifeng Zhang
- Neural Engineering Unit, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD 21224, USA
| | - Allan Barnes
- Chemistry and Drug Metabolism Section, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD, USA
| | - Marilyn A Huestis
- Chemistry and Drug Metabolism Section, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD, USA
| | - Da-Ting Lin
- Neural Engineering Unit, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD 21224, USA.
| |
Collapse
|
19
|
O’Shea M, Singh ME, McGregor IS, Mallet PE. Chronic cannabinoid exposure produces lasting memory impairment and increased anxiety in adolescent but not adult rats. J Psychopharmacol 2016. [PMID: 15582916 DOI: 10.1177/0269881104047277] [Citation(s) in RCA: 139] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Although many studies have examined the acute behavioural effects of cannabinoids in rodents, few have examined the lasting effects of cannabinoids at different developmental ages. This study compared lasting effects of cannabinoid exposure occurring in adolescence to that occurring in early adulthood. Forty, 30-day old (adolescent) and 18, 56-day old (adult) female albino Wistar rats were injected with vehicle or incremental doses of the cannabinoid receptor agonist (-)- cis-3-[2-hydroxy-4-(1,1-dimethylheptyl)phenyl]- trans-4-(3-hydroxypropyl) cyclohexanol (CP 55,940) once per day for 21 consecutive days (150, 200 and 300 μg/kg i.p. for 3, 8 and 10 days, respectively). Following a 21-day drug-free period, working memory was assessed using an object recognition task. Locomotor activity was also measured in the object recognition apparatus via a ceiling-mounted passive infrared sensor. Three days later, anxiety was assessed using a social interaction test. In the object recognition task, significantly poorer working memory was observed in the adolescent but not adult CP 55,940-treated rats. Adolescent, but not adult CP 55,940-treated rats, also exhibited a significant decrease in social interaction with a novel conspecific. These results suggest that chronic exposure to a cannabinoid receptor agonist well after the immediate postnatal period, but before reaching sexual maturity, can lead to increased anxiety and a lasting impairment of working memory.
Collapse
Affiliation(s)
- Melanie O’Shea
- School of Psychology, University of New England, Armidale, New South Wales, Australia
| | - Malini E. Singh
- School of Psychology, University of New England, Armidale, New South Wales, Australia
| | - Iain S. McGregor
- School of Psychology, Sydney University, New South Wales, Australia
| | - Paul E. Mallet
- School of Psychology, University of New England, Armidale, New South Wales, Australia
| |
Collapse
|
20
|
McCann UD, Lowe KA, Ricaurte GA. REVIEW ■ : Long-lasting Effects of Recreational Drugs of Abuse on the Central Nervous System. Neuroscientist 2016. [DOI: 10.1177/107385849700300613] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Although a wealth of knowledge exists regarding the acute pharmacological effects of recreational drugs on the CNS, much less is known about the long-term toxic effects of recreational drugs on the CNS. Recent findings in nonhuman primates treated with amphetamine analogs, such as ±3,4-methylenedioxymetham phetamine (MDMA), indicate that these drugs can produce long-lasting, probably permanent, changes in brain serotonin innervation. Similarly, animals treated with phencyclidine (PCP) and related drugs develop neurodegenerative changes in selected brain regions. It seems clear, then, that some psychoactive drugs have the potential to produce persistent changes in CNS structure and, possibly, function. The goal of this article is to summarize current knowledge regarding the long-term effects of several popular recreational drugs, including MDMA and related amphetamine analogs, cocaine, marijuana, alcohol, PCP, lysergic acid (LSD), and opiates. Gaps in the current knowledge base are identified, and areas ripe for future research efforts are suggested. NEUROSCIENTIST 3:399-411, 1997
Collapse
Affiliation(s)
- Una D. McCann
- Biological Psychiatry Branch NIMH-IRP Bethesda, Maryland
| | - Kelly A. Lowe
- Department of Neurology Johns Hopkins Medical Institutions
Baltimore, Maryland
| | - George A. Ricaurte
- Department of Neurology Johns Hopkins Medical Institutions
Baltimore, Maryland
| |
Collapse
|
21
|
Nguyen JD, Aarde SM, Vandewater SA, Grant Y, Stouffer DG, Parsons LH, Cole M, Taffe MA. Inhaled delivery of Δ(9)-tetrahydrocannabinol (THC) to rats by e-cigarette vapor technology. Neuropharmacology 2016; 109:112-120. [PMID: 27256501 DOI: 10.1016/j.neuropharm.2016.05.021] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Revised: 05/24/2016] [Accepted: 05/29/2016] [Indexed: 11/25/2022]
Abstract
Most human Δ(9)-tetrahydrocannabinol (THC) use is via inhalation, and yet few animal studies of inhalation exposure are available. Popularization of non-combusted methods for the inhalation of psychoactive drugs (Volcano(®), e-cigarettes) further stimulates a need for rodent models of this route of administration. This study was designed to develop and validate a rodent chamber suitable for controlled exposure to vaporized THC in a propylene glycol vehicle, using an e-cigarette delivery system adapted to standard size, sealed rat housing chambers. The in vivo efficacy of inhaled THC was validated using radiotelemetry to assess body temperature and locomotor responses, a tail-flick assay for nociception and plasma analysis to verify exposure levels. Hypothermic responses to inhaled THC in male rats depended on the duration of exposure and the concentration of THC in the vehicle. The temperature nadir was reached after ∼40 min of exposure, was of comparable magnitude (∼3 °Celsius) to that produced by 20 mg/kg THC, i.p. and resolved within 3 h (compared with a 6 h time course following i.p. THC). Female rats were more sensitive to hypothermic effects of 30 min of lower-dose THC inhalation. Male rat tail-flick latency was increased by THC vapor inhalation; this effect was blocked by SR141716 pretreatment. The plasma THC concentration after 30 min of inhalation was similar to that produced by 10 mg/kg THC i.p. This approach is flexible, robust and effective for use in laboratory rats and will be of increasing utility as users continue to adopt "vaping" for the administration of cannabis.
Collapse
Affiliation(s)
- Jacques D Nguyen
- Committee on the Neurobiology of Addictive Disorders, The Scripps Research Institute, La Jolla, CA, USA
| | - Shawn M Aarde
- Committee on the Neurobiology of Addictive Disorders, The Scripps Research Institute, La Jolla, CA, USA
| | - Sophia A Vandewater
- Committee on the Neurobiology of Addictive Disorders, The Scripps Research Institute, La Jolla, CA, USA
| | - Yanabel Grant
- Committee on the Neurobiology of Addictive Disorders, The Scripps Research Institute, La Jolla, CA, USA
| | - David G Stouffer
- Committee on the Neurobiology of Addictive Disorders, The Scripps Research Institute, La Jolla, CA, USA
| | - Loren H Parsons
- Committee on the Neurobiology of Addictive Disorders, The Scripps Research Institute, La Jolla, CA, USA
| | - Maury Cole
- La Jolla Alcohol Research, Inc, La Jolla, CA, USA
| | - Michael A Taffe
- Committee on the Neurobiology of Addictive Disorders, The Scripps Research Institute, La Jolla, CA, USA.
| |
Collapse
|
22
|
Lorenzetti V, Solowij N, Yücel M. The Role of Cannabinoids in Neuroanatomic Alterations in Cannabis Users. Biol Psychiatry 2016; 79:e17-31. [PMID: 26858212 DOI: 10.1016/j.biopsych.2015.11.013] [Citation(s) in RCA: 145] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Revised: 10/28/2015] [Accepted: 11/01/2015] [Indexed: 01/18/2023]
Abstract
The past few decades have seen a marked change in the composition of commonly smoked cannabis. These changes primarily involve an increase of the psychoactive compound ∆(9)-tetrahydrocannabinol (THC) and a decrease of the potentially therapeutic compound cannabidiol (CBD). This altered composition of cannabis may be linked to persistent neuroanatomic alterations typically seen in regular cannabis users. In this review, we summarize recent findings from human structural neuroimaging investigations. We examine whether neuroanatomic alterations are 1) consistently observed in samples of regular cannabis users, particularly in cannabinoid receptor-high areas, which are vulnerable to the effects of high circulating levels of THC, and 2) associated either with greater levels of cannabis use (e.g., higher dosage, longer duration, and earlier age of onset) or with distinct cannabinoid compounds (i.e., THC and CBD). Across the 31 studies selected for inclusion in this review, neuroanatomic alterations emerged across regions that are high in cannabinoid receptors (i.e., hippocampus, prefrontal cortex, amygdala, cerebellum). Greater dose and earlier age of onset were associated with these alterations. Preliminary evidence shows that THC exacerbates, whereas CBD protects from, such harmful effects. Methodologic differences in the quantification of levels of cannabis use prevent accurate assessment of cannabis exposure and direct comparison of findings across studies. Consequently, the field lacks large "consortium-style" data sets that can be used to develop reliable neurobiological models of cannabis-related harm, recovery, and protection. To move the field forward, we encourage a coordinated approach and suggest the urgent development of consensus-based guidelines to accurately and comprehensively quantify cannabis use and exposure in human studies.
Collapse
Affiliation(s)
- Valentina Lorenzetti
- Brain and Mental Health Laboratory, Monash Institute of Cognitive and Clinical Neurosciences, School of Psychological Sciences, Monash University, Melbourne; Melbourne Neuropsychiatry Centre, The University of Melbourne and Melbourne Health, Melbourne
| | - Nadia Solowij
- School of Psychology, Centre for Health Initiatives and Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, Australia
| | - Murat Yücel
- Brain and Mental Health Laboratory, Monash Institute of Cognitive and Clinical Neurosciences, School of Psychological Sciences, Monash University, Melbourne; Melbourne Neuropsychiatry Centre, The University of Melbourne and Melbourne Health, Melbourne.
| |
Collapse
|
23
|
Pagliaccio D, Barch DM, Bogdan R, Wood PK, Lynskey MT, Heath AC, Agrawal A. Shared Predisposition in the Association Between Cannabis Use and Subcortical Brain Structure. JAMA Psychiatry 2015; 72:994-1001. [PMID: 26308883 PMCID: PMC4624286 DOI: 10.1001/jamapsychiatry.2015.1054] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
IMPORTANCE Prior neuroimaging studies have suggested that alterations in brain structure may be a consequence of cannabis use. Siblings discordant for cannabis use offer an opportunity to use cross-sectional data to disentangle such causal hypotheses from shared effects of genetics and familial environment on brain structure and cannabis use. OBJECTIVES To determine whether cannabis use is associated with differences in brain structure in a large sample of twins/siblings and to examine sibling pairs discordant for cannabis use to separate potential causal and predispositional factors linking lifetime cannabis exposure to volumetric alterations. DESIGN, SETTING, AND PARTICIPANTS Cross-sectional diagnostic interview, behavioral, and neuroimaging data were collected from community sampling and established family registries from August 2012 to September 2014. This study included data from 483 participants (22-35 years old) enrolled in the ongoing Human Connectome Project, with 262 participants reporting cannabis exposure (ie, ever used cannabis in their lifetime). MAIN OUTCOMES AND MEASURES Cannabis exposure was measured with the Semi-Structured Assessment for the Genetics of Alcoholism. Whole-brain, hippocampus, amygdala, ventral striatum, and orbitofrontal cortex volumes were related to lifetime cannabis use (ever used, age at onset, and frequency of use) using linear regressions. Genetic (ρg) and environmental (ρe) correlations between cannabis use and brain volumes were estimated. Linear mixed models were used to examine volume differences in sex-matched concordant unexposed (n = 71 pairs), exposed (n = 81 pairs), or exposure discordant (n = 89 pairs) sibling pairs. RESULTS Among 483 study participants, cannabis exposure was related to smaller left amygdala (approximately 2.3%; P = .007) and right ventral striatum (approximately 3.5%; P < .005) volumes. These volumetric differences were within the range of normal variation. The association between left amygdala volume and cannabis use was largely owing to shared genetic factors (ρg = -0.43; P = .004), while the origin of the association with right ventral striatum volumes was unclear. Importantly, brain volumes did not differ between sex-matched siblings discordant for use (fixed effect = -7.43; t = -0.93, P = .35). Both the exposed and unexposed siblings in pairs discordant for cannabis exposure showed reduced amygdala volumes relative to members of concordant unexposed pairs (fixed effect = 12.56; t = 2.97; P = .003). CONCLUSIONS AND RELEVANCE In this study, differences in amygdala volume in cannabis users were attributable to common predispositional factors, genetic or environmental in origin, with little support for causal influences. Causal influences, in isolation or in conjunction with predispositional factors, may exist for other brain regions (eg, ventral striatum) or at more severe levels of cannabis involvement and deserve further study.
Collapse
Affiliation(s)
- David Pagliaccio
- The Program in Neuroscience Washington University in St. Louis, St. Louis, MO, United States
,Corresponding author: Washington University in St Louis, Campus Box 1125, One Brookings Drive, St Louis, MO 63130, USA,
| | - Deanna M. Barch
- Department of Psychiatry Washington University in St. Louis, St. Louis, MO, United States
,Department of Psychology Washington University in St. Louis, St. Louis, MO, United States
,Department of Radiology Washington University in St. Louis, St. Louis, MO, United States
| | - Ryan Bogdan
- Department of Psychology Washington University in St. Louis, St. Louis, MO, United States
| | | | - Michael T. Lynskey
- Institute of Psychiatry, Psychology & Neuroscience, Department of Addictions, Kings College, London, UK
| | - Andrew C. Heath
- Department of Psychiatry Washington University in St. Louis, St. Louis, MO, United States
| | - Arpana Agrawal
- Department of Psychiatry Washington University in St. Louis, St. Louis, MO, United States
| |
Collapse
|
24
|
Abstract
There is extensive research on the safety, toxicology, potency, and therapeutic potential of cannabis. However, uncertainty remains facilitating continued debate on medical and recreational cannabis policies at the state and federal levels. This review will include a brief description of cannabinoids and the endocannabinoid system; a summary of the acute and long-term effects of cannabis; and a discussion of the therapeutic potential of cannabis. The conclusions about safety and efficacy will then be compared with the current social and political climate to suggest future policy directions and general guidelines.
Collapse
Affiliation(s)
- Jane Sachs
- Department of Psychiatry, University of Utah, 383 Colorow Drive, Salt Lake City, UT, 84108, USA.
| | - Erin McGlade
- Department of Psychiatry, University of Utah, 383 Colorow Drive, Salt Lake City, UT, 84108, USA
| | - Deborah Yurgelun-Todd
- Department of Psychiatry, University of Utah, 383 Colorow Drive, Salt Lake City, UT, 84108, USA
| |
Collapse
|
25
|
Wetherill RR, Fang Z, Jagannathan K, Childress AR, Rao H, Franklin TR. Cannabis, cigarettes, and their co-occurring use: Disentangling differences in default mode network functional connectivity. Drug Alcohol Depend 2015; 153:116-23. [PMID: 26094186 PMCID: PMC4509835 DOI: 10.1016/j.drugalcdep.2015.05.046] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Revised: 05/26/2015] [Accepted: 05/29/2015] [Indexed: 11/19/2022]
Abstract
BACKGROUND Resting-state functional connectivity is a noninvasive, neuroimaging method for assessing neural network function. Altered functional connectivity among regions of the default-mode network have been associated with both nicotine and cannabis use; however, less is known about co-occurring cannabis and tobacco use. METHODS We used posterior cingulate cortex (PCC) seed-based resting-state functional connectivity analyses to examine default mode network (DMN) connectivity strength differences between four groups: (1) individuals diagnosed with cannabis dependence who do not smoke tobacco (n=19; ages 20-50), (2) cannabis-dependent individuals who smoke tobacco (n=23, ages 21-52), (3) cannabis-naïve, nicotine-dependent individuals who smoke tobacco (n=24, ages 21-57), and (4) cannabis- and tobacco-naïve healthy controls (n=21, ages 21-50), controlling for age, sex, and alcohol use. We also explored associations between connectivity strength and measures of cannabis and tobacco use. RESULTS PCC seed-based analyses identified the core nodes of the DMN (i.e., PCC, medial prefrontal cortex, inferior parietal cortex, and temporal cortex). In general, the cannabis-dependent, nicotine-dependent, and co-occurring use groups showed lower DMN connectivity strengths than controls, with unique group differences in connectivity strength between the PCC and the cerebellum, medial prefrontal cortex, parahippocampus, and anterior insula. In cannabis-dependent individuals, PCC-right anterior insula connectivity strength correlated with duration of cannabis use. CONCLUSIONS This study extends previous research that independently examined the differences in resting-state functional connectivity among individuals who smoke cannabis and tobacco by including an examination of co-occurring cannabis and tobacco use and provides further evidence that cannabis and tobacco exposure is associated with alterations in DMN connectivity.
Collapse
Affiliation(s)
- Reagan R Wetherill
- University of Pennsylvania, Department of Psychiatry, Philadelphia, PA 19104, USA.
| | - Zhuo Fang
- University of Pennsylvania, Department of Psychiatry, Philadelphia, PA 19104, USA
| | - Kanchana Jagannathan
- University of Pennsylvania, Department of Psychiatry, Philadelphia, PA 19104, USA
| | - Anna Rose Childress
- University of Pennsylvania, Department of Psychiatry, Philadelphia, PA 19104, USA
| | - Hengyi Rao
- University of Pennsylvania, Center for Functional Neuroimaging, Philadelphia, PA 19104 USA
| | - Teresa R Franklin
- University of Pennsylvania, Department of Psychiatry, Philadelphia, PA 19104, USA
| |
Collapse
|
26
|
Caltana LR, Heimrich B, Brusco A. Further Evidence for the Neuroplastic Role of Cannabinoids: A Study in Organotypic Hippocampal Slice Cultures. J Mol Neurosci 2015; 56:773-781. [PMID: 25645684 DOI: 10.1007/s12031-015-0499-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Accepted: 01/15/2015] [Indexed: 12/20/2022]
Abstract
Endocannabinoid receptors CB1R and CB2R are present in the CNS and modulate synaptic activity. By using an in vitro model, two concentrations of CB1R agonist ACEA at 0.5 and 5 μM doses and CB1R antagonist AM251 at 1 and 10 μM doses were administered in organotypic slice cultures of mouse hippocampus, and their effects on neurons and glial cells were analyzed at different time points. Exposure to low concentrations of ACEA (0.5 μM) did not seem to affect tissue organization, neuronal morphology, or glial response. In contrast, at a higher concentration of ACEA, many neurons in the dentate gyrus exhibited strong caspase-3 immunoreactivity. After treatment with AM251, we observed an increase in caspase-3 immunoreactivity and a downregulation of CB1R expression. Results show that long-term hippocampal slice cultures respond to both CB1R activation and inactivation by changing neuronal protein expression patterns. In the present study, we demonstrate that CB1R agonist ACEA promotes alterations in the neuronal cytoskeleton as well as changes in CB1R expression in organotypic hippocampal slice cultures, and that CB1R antagonist AM251 promotes neuronal death and astroglial reaction.
Collapse
Affiliation(s)
- Laura Romina Caltana
- Institute of Anatomy and Cell Biology, Center for Neuroscience, University of Freiburg, Freiburg, Germany. .,Cell Biology and Neuroscience Institute, School of Medicine, University of Buenos Aires, Paraguay 2155, 3rd floor, Buenos Aires, 1114, Argentina.
| | - Bernd Heimrich
- Institute of Anatomy and Cell Biology, Center for Neuroscience, University of Freiburg, Freiburg, Germany
| | - Alicia Brusco
- Cell Biology and Neuroscience Institute, School of Medicine, University of Buenos Aires, Paraguay 2155, 3rd floor, Buenos Aires, 1114, Argentina
| |
Collapse
|
27
|
Lubman DI, Cheetham A, Yücel M. Cannabis and adolescent brain development. Pharmacol Ther 2014; 148:1-16. [PMID: 25460036 DOI: 10.1016/j.pharmthera.2014.11.009] [Citation(s) in RCA: 191] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Accepted: 11/03/2014] [Indexed: 12/14/2022]
Abstract
Heavy cannabis use has been frequently associated with increased rates of mental illness and cognitive impairment, particularly amongst adolescent users. However, the neurobiological processes that underlie these associations are still not well understood. In this review, we discuss the findings of studies examining the acute and chronic effects of cannabis use on the brain, with a particular focus on the impact of commencing use during adolescence. Accumulating evidence from both animal and human studies suggests that regular heavy use during this period is associated with more severe and persistent negative outcomes than use during adulthood, suggesting that the adolescent brain may be particularly vulnerable to the effects of cannabis exposure. As the endocannabinoid system plays an important role in brain development, it is plausible that prolonged use during adolescence results in a disruption in the normative neuromaturational processes that occur during this period. We identify synaptic pruning and white matter development as two processes that may be adversely impacted by cannabis exposure during adolescence. Potentially, alterations in these processes may underlie the cognitive and emotional deficits that have been associated with regular use commencing during adolescence.
Collapse
Affiliation(s)
- Dan I Lubman
- Turning Point, Eastern Health and Eastern Health Clinical School, Monash University, Victoria, Australia.
| | - Ali Cheetham
- Turning Point, Eastern Health and Eastern Health Clinical School, Monash University, Victoria, Australia
| | - Murat Yücel
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne and Melbourne Health, Victoria, Australia; Monash Clinical & Imaging Neuroscience, School of Psychological Sciences, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
28
|
Wilson-Poe AR, Pocius E, Herschbach M, Morgan MM. The periaqueductal gray contributes to bidirectional enhancement of antinociception between morphine and cannabinoids. Pharmacol Biochem Behav 2012; 103:444-9. [PMID: 23063785 DOI: 10.1016/j.pbb.2012.10.002] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2012] [Revised: 10/02/2012] [Accepted: 10/04/2012] [Indexed: 12/23/2022]
Abstract
Co-administration of opioids and cannabinoids can enhance pain relief even when administered on different days. Repeated systemic administration of morphine has been shown to enhance the antinociceptive effect of tetrahydrocannabinol (THC) administered 12h later, and repeated microinjection of the cannabinoid receptor agonist HU-210 into the ventrolateral periaqueductal gray (PAG) has been shown to enhance the antinociceptive effect of morphine administered 1 day later. The primary objective of the present study was to test the hypothesis that this cannabinoid/opioid interaction is bidirectional. Experiment 1 showed that microinjection of morphine into the ventrolateral PAG of male Sprague-Dawley rats twice daily for 2 days enhanced the antinociceptive effect of HU-210 measured 1 day later. In Experiment 2, twice daily systemic injections of THC enhanced the antinociceptive effect of morphine administered 1 day later. These results complement the previously mentioned studies by showing that morphine and cannabinoid interactions are bidirectional and that the ventrolateral PAG plays an important role in this effect. In contrast to the PAG, repeated administration of HU-210 or the cannabinoid receptor agonist, WIN 55,212-2, into the RVM had a neurotoxic effect. Rats became ill following repeated cannabinoid administration whether given alone or with morphine. Presumably, this neurotoxic effect was caused by the high cannabinoid concentration following RVM microinjection because rats did not become ill following repeated systemic THC administration. These findings indicate that alternating opioid and cannabinoid treatment could produce a longer lasting and more potent analgesia than either compound given alone.
Collapse
Affiliation(s)
- Adrianne R Wilson-Poe
- Department of Psychology, Washington State University Vancouver, 14204 NE Salmon Creek Ave, Vancouver, WA 98686-9600, USA
| | | | | | | |
Collapse
|
29
|
Meier MH, Caspi A, Ambler A, Harrington H, Houts R, Keefe RSE, McDonald K, Ward A, Poulton R, Moffitt TE. Persistent cannabis users show neuropsychological decline from childhood to midlife. Proc Natl Acad Sci U S A 2012; 109:E2657-64. [PMID: 22927402 PMCID: PMC3479587 DOI: 10.1073/pnas.1206820109] [Citation(s) in RCA: 881] [Impact Index Per Article: 73.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Recent reports show that fewer adolescents believe that regular cannabis use is harmful to health. Concomitantly, adolescents are initiating cannabis use at younger ages, and more adolescents are using cannabis on a daily basis. The purpose of the present study was to test the association between persistent cannabis use and neuropsychological decline and determine whether decline is concentrated among adolescent-onset cannabis users. Participants were members of the Dunedin Study, a prospective study of a birth cohort of 1,037 individuals followed from birth (1972/1973) to age 38 y. Cannabis use was ascertained in interviews at ages 18, 21, 26, 32, and 38 y. Neuropsychological testing was conducted at age 13 y, before initiation of cannabis use, and again at age 38 y, after a pattern of persistent cannabis use had developed. Persistent cannabis use was associated with neuropsychological decline broadly across domains of functioning, even after controlling for years of education. Informants also reported noticing more cognitive problems for persistent cannabis users. Impairment was concentrated among adolescent-onset cannabis users, with more persistent use associated with greater decline. Further, cessation of cannabis use did not fully restore neuropsychological functioning among adolescent-onset cannabis users. Findings are suggestive of a neurotoxic effect of cannabis on the adolescent brain and highlight the importance of prevention and policy efforts targeting adolescents.
Collapse
Affiliation(s)
- Madeline H Meier
- Department of Psychology and Neuroscience, Duke University, Durham, NC 27708, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Long-term behavioral and biochemical effects of an ultra-low dose of Δ9-tetrahydrocannabinol (THC): neuroprotection and ERK signaling. Exp Brain Res 2012; 221:437-48. [DOI: 10.1007/s00221-012-3186-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2012] [Accepted: 07/03/2012] [Indexed: 10/28/2022]
|
31
|
Sarne Y, Asaf F, Fishbein M, Gafni M, Keren O. The dual neuroprotective-neurotoxic profile of cannabinoid drugs. Br J Pharmacol 2012; 163:1391-401. [PMID: 21323910 DOI: 10.1111/j.1476-5381.2011.01280.x] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Extensive in vitro and in vivo studies have shown that cannabinoid drugs have neuroprotective properties and suggested that the endocannabinoid system may be involved in endogenous neuroprotective mechanisms. On the other hand, neurotoxic effects of cannabinoids in vitro and in vivo were also described. Several possible explanations for these dual, opposite effects of cannabinoids on cellular fate were suggested, and it is conceivable that various factors may determine the final outcome of the cannabinoid effect in vivo. In the current review, we focus on one of the possible reasons for the dual neuroprotective/neurotoxic effects of cannabinoids in vivo, namely, the opposite effects of low versus high doses of cannabinoids. While many studies reported neuroprotective effects of the conventional doses of cannabinoids in various experimental models for acute brain injuries, we have shown that a single administration of an extremely low dose of Δ(9) -tetrahydrocannabinol (THC) (3-4 orders of magnitude lower than the conventional doses) to mice induced long-lasting mild cognitive deficits that affected various aspects of memory and learning. These findings led to the idea that this low dose of THC, which induces minor damage to the brain, may activate preconditioning and/or postconditioning mechanisms and thus will protect the brain from more severe insults. Indeed, our recent findings support this assumption and show that a pre- or a postconditioning treatment with extremely low doses of THC, several days before or after brain injury, provides effective long-term cognitive neuroprotection. The future therapeutical potential of these findings is discussed.
Collapse
Affiliation(s)
- Yosef Sarne
- The Adelson Center for the Biology of Addictive Diseases and The Mauerberger Chair in Neuropharmacology, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel.
| | | | | | | | | |
Collapse
|
32
|
Abstract
AbstractAccumulating evidence from the field of neuroscience indicates a crucial role for epigenetic regulation of gene expression in development and aging of nervous system and suggests that aberrations in the epigenetic machinery are involved in the etiology of psychiatric disorders. Epidemiologic evidence on epigenetics in psychiatry, however, is currently very sparsely available, but is consistent with a mediating role for epigenetic mechanisms in bringing together inherited and acquired risk factors into a neurodevelopmental etiological model of psychiatric disorders. Here, we review evidence from the epidemiological and neuroscience literature, and aim to converge the evidence into an etiological model of psychiatric disorders that encompasses environmental, genetic and epigenetic contributions. Given the dynamic nature of the epigenetic machinery and the potential reversibility of epigenetic modifications, future well-designed interdisciplinary and translational studies will be of key importance in order to identify new targets for prevention and therapeutic strategies.
Collapse
|
33
|
Rudenko V, Rafiuddin A, Leheste JR, Friedman LK. Inverse relationship of cannabimimetic (R+)WIN 55, 212 on behavior and seizure threshold during the juvenile period. Pharmacol Biochem Behav 2011; 100:474-84. [PMID: 22019959 DOI: 10.1016/j.pbb.2011.10.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2011] [Revised: 09/26/2011] [Accepted: 10/02/2011] [Indexed: 11/28/2022]
Abstract
Cannabinoids have anti-convulsant effects in both in vivo and in vitro models of status epilepticus. Since the development of spontaneous seizures and neuronal vulnerability are age-dependent, we hypothesized that the anti-convulsant effects of cannabimimetics are also age-dependent. We administered a single injection of varied doses of (R+)WIN 55,212 (0.5, 1, 5 mg/kg) to postnatal (P) day 20 rats 90 min prior to induction of kainate (KA)-induced status epilepticus. The highest dose of (R+)WIN 55,212 (5 mg/kg) resulted in rapid onset of behavioral stupor, loss of balance, stiffening and immobility while standing on hind legs or laying flat in prone position; lower doses had minimal or no behavioral effect. After KA administration, seizure scores and electroencephalography (EEG) recordings were inversely related to (R+)WIN 55,212 dosage whereby higher doses were associated with high seizures scores and synchronous epileptiform activity and low doses with low seizure scores and diminished spiking in the EEG. Immunohistochemistry revealed a dose-dependent reduction in CB1 receptor expression with increasing concentrations of (R+)WIN 55,212 in presence or absence of KA seizures. Nissl and NeuN staining showed hippocampal injury was attenuated only when seizures were mild following low doses of WIN 55,212 (0.5, 1 mg/kg), consistent with the level of CB1 expression. Since low doses abolished seizures without psychotropic side-effects further study may facilitate a groundbreaking cannabamimetic therapeutic strategy to treat early-life seizures. Higher doses had adverse effects on behavior and failed to prevent seizures and protect CA1 neurons possibly due to inactivation or loss of CB1 receptors.
Collapse
Affiliation(s)
- V Rudenko
- New York College of Osteopathic Medicine, Old Westbury, NY 11568, USA
| | | | | | | |
Collapse
|
34
|
McQueeny T, Padula CB, Price J, Medina KL, Logan P, Tapert SF. Gender effects on amygdala morphometry in adolescent marijuana users. Behav Brain Res 2011; 224:128-34. [PMID: 21664935 DOI: 10.1016/j.bbr.2011.05.031] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2011] [Revised: 05/24/2011] [Accepted: 05/26/2011] [Indexed: 11/24/2022]
Abstract
Adolescent developments in limbic structures and the endogenous cannabinoid system suggest that teenagers may be more vulnerable to the negative consequences of marijuana use. This study examined the relationships between amygdala volume and internalizing symptoms in teenaged chronic marijuana users. Participants were 35 marijuana users and 47 controls ages 16-19 years. Exclusions included psychiatric (e.g., mood and anxiety) or neurologic disorders. Substance use, internalizing (anxiety/depression) symptoms and brain scans were collected after 28 days of monitored abstinence. Reliable raters manually traced amygdala and intracranial volumes on high-resolution magnetic resonance images. Female marijuana users had larger right amygdala volumes and more internalizing symptoms than female controls, after covarying head size, alcohol, nicotine and other substance use (p<0.05), while male users had similar volumes as male controls. For female controls and males, worse mood/anxiety was linked to smaller right amygdala volume (p<0.05), whereas more internalizing problems was associated with bigger right amygdala in female marijuana users. Gender interactions may reflect marijuana-related interruptions to sex-specific neuromaturational processes and staging. Subtle amygdala development abnormalities may underlie particular vulnerabilities to sub-diagnostic depression and anxiety in teenage female marijuana users.
Collapse
Affiliation(s)
- Tim McQueeny
- Department of Psychology, University of Cincinnati, Cincinnati, OH 45221, USA
| | | | | | | | | | | |
Collapse
|
35
|
|
36
|
Landucci E, Scartabelli T, Gerace E, Moroni F, Pellegrini-Giampietro DE. CB1 receptors and post-ischemic brain damage: studies on the toxic and neuroprotective effects of cannabinoids in rat organotypic hippocampal slices. Neuropharmacology 2010; 60:674-82. [PMID: 21130785 DOI: 10.1016/j.neuropharm.2010.11.021] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2010] [Revised: 11/24/2010] [Accepted: 11/26/2010] [Indexed: 12/31/2022]
Abstract
Cannabinoids (CBs) are implicated in a number of physiological and pathological mechanisms in the central nervous system, but their exact role in post-ischemic brain injury is unclear. The toxic and neuroprotective effects of synthetic and endogenous CBs were evaluated in rat organotypic hippocampal slices exposed to 20 min oxygen-glucose deprivation (OGD) and in gerbils subjected to bilateral carotid occlusion for 5 min. When present in the incubation medium, the synthetic CB agonists WIN 55212-2 and CP 55940 (1-30 μM) and the CB1 agonist ACEA exacerbated CA1 injury induced by OGD, whereas the CB1 receptor antagonists AM 251 and LY 320135 were neuroprotective with maximal activity at 1 μM. AM 251 (at 3 mg/kg, i.p.) also attenuated CA1 pyramidal cell death in gerbils in vivo. The endocannabinoid 2-arachidonoylglycerol (2-AG) reduced OGD injury in hippocampal slices at 0.1-1 μM, whereas anandamide (AEA) was neurotoxic at the same concentrations. The effects of WIN 55212-2, AEA and 2-AG in slices were all dependent on the activation of CB1 but not CB2 receptors, except for the toxic effects of AEA that were also dependent on vanilloid TRPV1 receptors. Our results suggest that exogenous administration of CB1 agonists and the production of endocannabinoids "on demand" may produce different, if not opposite, effects on the fate of neurons following cerebral ischemia.
Collapse
Affiliation(s)
- Elisa Landucci
- Dipartimento di Farmacologia Preclinica e Clinica, Università di Firenze, Firenze, Italy
| | | | | | | | | |
Collapse
|
37
|
Roser P, Della B, Norra C, Uhl I, Brüne M, Juckel G. Auditory mismatch negativity deficits in long-term heavy cannabis users. Eur Arch Psychiatry Clin Neurosci 2010; 260:491-8. [PMID: 20127103 DOI: 10.1007/s00406-010-0097-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2009] [Accepted: 01/08/2010] [Indexed: 11/30/2022]
Abstract
Mismatch negativity (MMN) is an auditory event-related potential indicating auditory sensory memory and information processing. The present study tested the hypothesis that chronic cannabis use is associated with deficient MMN generation. MMN was investigated in age- and gender-matched chronic cannabis users (n = 30) and nonuser controls (n = 30). The cannabis users were divided into two groups according to duration and quantity of cannabis consumption. The MMNs resulting from a pseudorandomized sequence of 2 × 900 auditory stimuli were recorded by 32-channel EEG. The standard stimuli were 1,000 Hz, 80 dB SPL and 90 ms duration. The deviant stimuli differed in duration (50 ms) or frequency (1,200 Hz). There were no significant differences in MMN values between cannabis users and nonuser controls in both deviance conditions. With regard to subgroups, reduced amplitudes of frequency MMN at frontal electrodes were found in long-term (≥8 years of use) and heavy (≥15 joints/week) users compared to short-term and light users. The results indicate that chronic cannabis use may cause a specific impairment of auditory information processing. In particular, duration and quantity of cannabis use could be identified as important factors of deficient MMN generation.
Collapse
Affiliation(s)
- Patrik Roser
- Department of Psychiatry, Ruhr-University Bochum, Alexandrinenstr. 1, 44791, Bochum, Germany.
| | | | | | | | | | | |
Collapse
|
38
|
Bossong MG, Niesink RJM. Adolescent brain maturation, the endogenous cannabinoid system and the neurobiology of cannabis-induced schizophrenia. Prog Neurobiol 2010; 92:370-85. [PMID: 20624444 DOI: 10.1016/j.pneurobio.2010.06.010] [Citation(s) in RCA: 197] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2010] [Revised: 05/15/2010] [Accepted: 06/30/2010] [Indexed: 12/13/2022]
Abstract
Cannabis use during adolescence increases the risk of developing psychotic disorders later in life. However, the neurobiological processes underlying this relationship are unknown. This review reports the results of a literature search comprising various neurobiological disciplines, ultimately converging into a model that might explain the neurobiology of cannabis-induced schizophrenia. The article briefly reviews current insights into brain development during adolescence. In particular, the role of the excitatory neurotransmitter glutamate in experience-dependent maturation of specific cortical circuitries is examined. The review also covers recent hypotheses regarding disturbances in strengthening and pruning of synaptic connections in the prefrontal cortex, and the link with latent psychotic disorders. In the present model, cannabis-induced schizophrenia is considered to be a distortion of normal late postnatal brain maturation. Distortion of glutamatergic transmission during critical periods may disturb prefrontal neurocircuitry in specific brain areas. Our model postulates that adolescent exposure to Δ9-tetrahydrocannabinol (THC), the primary psychoactive substance in cannabis, transiently disturbs physiological control of the endogenous cannabinoid system over glutamate and GABA release. As a result, THC may adversely affect adolescent experience-dependent maturation of neural circuitries within prefrontal cortical areas. Depending on dose, exact time window and duration of exposure, this may ultimately lead to the development of psychosis or schizophrenia. The proposed model provides testable hypotheses which can be addressed in future studies, including animal experiments, reanalysis of existing epidemiological data, and prospective epidemiological studies in which the role of the dose-time-effect relationship should be central.
Collapse
Affiliation(s)
- Matthijs G Bossong
- Rudolf Magnus Institute of Neuroscience, Department of Neurology and Neurosurgery, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| | | |
Collapse
|
39
|
Sewell RA, Skosnik PD, Garcia-Sosa I, Ranganathan M, D'Souza DC. Efeitos comportamentais, cognitivos e psicofisiológicos dos canabinoides: relevância para a psicose e a esquizofrenia. BRAZILIAN JOURNAL OF PSYCHIATRY 2010. [DOI: 10.1590/s1516-44462010000500005] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Avanços recentes no conhecimento sobre a função do receptor de canabinoide renovaram o interesse na associação entre cannabis e psicose. Linhas convergentes de evidências sugerem que os canabinoides podem produzir uma ampla gama de sintomas transitórios positivos, negativos e cognitivos assemelhados aos de esquizofrenia. Os canabinoides também produzem alguns déficits psicofisiológicos sabidamente presentes na esquizofrenia. É igualmente claro que em indivíduos com um transtorno psicótico estabelecido, os canabinoides podem exacerbar sintomas, desencadear recaídas e ter consequências negativas no curso da doença. Evidências crescentes sugerem que a exposição precoce e pesada à cannabis pode aumentar o risco de se desenvolver um transtorno psicótico como a esquizofrenia. A relação entre exposição à cannabis e esquizofrenia preenche alguns, mas não todos os critérios usuais de causalidade. Porém, a maioria das pessoas que utilizam cannabis não desenvolve esquizofrenia e muitas pessoas diagnosticadas com esquizofrenia nunca utilizaram cannabis. Portanto, é provável que a exposição à cannabis seja uma "causa componente" que interage com outros fatores para "causar" esquizofrenia ou outro transtorno psicótico, mas não é nem necessária nem suficiente para fazê-lo sozinha. No entanto, na ausência de causas conhecidas da esquizofrenia e com as implicações de políticas de saúde pública, se tal vínculo for estabelecido, as causas componentes, tais como a exposição a canabinoide, devem continuar sendo um foco de estudos futuros. Finalmente, são necessárias mais pesquisas para identificar os fatores subjacentes à vulnerabilidade à psicose relacionada a canabinoide e para elucidar os mecanismos biológicos subjacentes a esse risco.
Collapse
Affiliation(s)
- R. Andrew Sewell
- VA Connecticut Healthcare System, EUA; Connecticut Mental Health Center, EUA; Yale University School of Medicine, EUA
| | - Patrick D. Skosnik
- VA Connecticut Healthcare System, EUA; Connecticut Mental Health Center, EUA; Yale University School of Medicine, EUA
| | - Icelini Garcia-Sosa
- VA Connecticut Healthcare System, EUA; Connecticut Mental Health Center, EUA; Yale University School of Medicine, EUA
| | - Mohini Ranganathan
- VA Connecticut Healthcare System, EUA; Connecticut Mental Health Center, EUA; Yale University School of Medicine, EUA
| | - Deepak Cyril D'Souza
- VA Connecticut Healthcare System, EUA; Connecticut Mental Health Center, EUA; Yale University School of Medicine, EUA
| |
Collapse
|
40
|
Abstract
ISSUES Marijuana and hashish consist of at least 66 distinctive plant-derived (phyto-) cannabinoid compounds, with tetrahydrocannabinoids proving the most effective phytocannabinoid psychotropically. Despite the known pharmacological effects of phytocannabinoids, their role in controlling the cell survival/death decision in cells of the CNS continues to be unravelled. APPROACH In this review, we examine the influence of phytocannabinoids on neural cell fate, with particular emphasis on how the time of marijuana exposure (neonatal vs. pubertal vs. adult) might influence the neurotoxic activities of phytocannabinoid compounds. KEY FINDINGS Evidence in the literature indicates that exposure to phytocannabinoids during the prenatal period, in addition to the adolescent period, can alter the temporally ordered sequence of events that occur during neurotransmitter development, in addition to negatively impacting neural cell survival and maturation. Regarding the effect of marijuana consumption on brain composition in adults the evidence is contradictory. IMPLICATIONS Exposure to marijuana during pregnancy might impact negatively on brain structure in the first years of postnatal life. Furthermore, early-onset (before age 17) marijuana use might also have damaging effects on brain composition. CONCLUSION The neonatal and immature CNS is more susceptible to phytocannabinoid damage. In the adult CNS the data are conflicting and the continued development of methods to assess whether marijuana consumption results in brain atrophy or morphometric changes will determine if structural changes are occurring.
Collapse
Affiliation(s)
- Eric J Downer
- Physiology Department, Trinity College Institute for Neuroscience, Dublin, Ireland.
| | | |
Collapse
|
41
|
Abstract
The major psychotic disorders schizophrenia and bipolar disorder are etiologically complex involving both heritable and nonheritable factors. The absence of consistently replicated major genetic effects, together with evidence for lasting changes in gene expression after environmental exposures, is consistent with the concept that the biologic underpinnings of these disorders are epigenetic in form rather than DNA sequence based. Psychosis-associated environmental exposures, particularly at key developmental stages, may result in long-lasting epigenetic alterations that impact on the neurobiological processes involved in pathology. Although direct evidence for epigenetic dysfunction in both schizophrenia and bipolar disorder is still limited, methodological technologies in epigenomic profiling have advanced. This means that we are at the exciting stage where it is feasible to start investigating molecular modifications to DNA and histones and examine the mechanisms by which environmental factors can act upon the genome to bring about epigenetic changes in gene expression involved in the etiology of these disorders. Given the dynamic nature of the epigenetic machinery and potential reversibility of epigenetic modifications, the understanding of such mechanisms is of key relevance for clinical psychiatry and for identifying new targets for prevention and/or intervention.
Collapse
Affiliation(s)
- Bart P. F. Rutten
- Department of Psychiatry and Neuropsychology, School of Mental Health and Neuroscience, Maastricht University Medical Centre, European Graduate School of Neuroscience, South Limburg Mental Health Research and Teaching Network, Vijverdalseweg 1, Maastricht 6226 NB, The Netherlands,To whom correspondence should be addressed; tel: +31-43-3688697, fax: +31-43-3688669, e-mail:
| | - Jonathan Mill
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, King's College London, De Crespigny Park, London, UK
| |
Collapse
|
42
|
Galve-Roperh I, Palazuelos J, Aguado T, Guzmán M. The endocannabinoid system and the regulation of neural development: potential implications in psychiatric disorders. Eur Arch Psychiatry Clin Neurosci 2009; 259:371-82. [PMID: 19588184 DOI: 10.1007/s00406-009-0028-y] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2009] [Accepted: 06/05/2009] [Indexed: 12/20/2022]
Abstract
During brain development, functional neurogenesis is achieved by the concerted action of various steps that include the expansion of progenitor cells, neuronal specification, and establishment of appropriate synapses. Brain patterning and regionalization is regulated by a variety of extracellular signals and morphogens that, together with neuronal activity, orchestrate and regulate progenitor proliferation, differentiation, and neuronal maturation. In the adult brain, CB(1) cannabinoid receptors are expressed at very high levels in selective areas and are engaged by endocannabinoids, which act as retrograde messengers controlling neuronal function and preventing excessive synaptic activity. In addition, the endocannabinoid system is present at early developmental stages of nervous system formation. Recent studies have provided novel information on the role of this endogenous neuromodulatory system in the control of neuronal specification and maturation. Thus, cannabinoid receptors and locally produced endocannabinoids regulate neural progenitor proliferation and pyramidal specification of projecting neurons. CB(1) receptors also control axonal navigation, migration, and positioning of interneurons and excitatory neurons. Loss of function studies by genetic ablation or pharmacological blockade of CB(1) receptors interferes with long-range subcortical projections and, likewise, prenatal cannabinoid exposure induces different functional alterations in the adult brain. Potential implications of these new findings, such as the participation of the endocannabinoid system in the pathogenesis of neurodevelopmental disorders (e.g., schizophrenia) and the regulation of neurogenesis in brain depression, are discussed herein.
Collapse
Affiliation(s)
- Ismael Galve-Roperh
- Department of Biochemistry and Molecular Biology I, School of Biology and Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Complutense University, 28040 Madrid, Spain.
| | | | | | | |
Collapse
|
43
|
Amal H, Fridman-Rozevich L, Senn R, Strelnikov A, Gafni M, Keren O, Sarne Y. Long-term consequences of a single treatment of mice with an ultra-low dose of Delta9-tetrahydrocannabinol (THC). Behav Brain Res 2009; 206:245-53. [PMID: 19766676 DOI: 10.1016/j.bbr.2009.09.021] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2009] [Revised: 09/07/2009] [Accepted: 09/11/2009] [Indexed: 01/01/2023]
Abstract
A single administration of an extremely low dose (0.002 mg/kg) of Delta9-tetrahydrocannabinol (THC; the psychoactive ingredient of marijuana) to ICR mice induced long-term cognitive deficits that lasted for at least 5 months. The behavioral deficits were detected by several tests that evaluated different aspects of memory and learning, including spatial navigation and spatial and non-spatial recognition. Our findings point to possible deficits in attention or motivation that represent a common upstream cognitive process that may affect the performance of the mice in the different behavioral assays. Similar ultra-low doses of THC (3-4 orders of magnitude lower than doses that are known to evoke the acute effects of THC) also induced sustained activation of extracellular-regulated kinase (ERK1/2) in the cerebellum, indicating that a single injection of such low doses of the cannabinoid drug can stimulate neuronal regulatory mechanisms. The relevance of these findings to the behavioral consequences of chronic exposure to marijuana is discussed.
Collapse
Affiliation(s)
- Haitham Amal
- The Adelson Center for the Biology of Addictive Diseases and The Mauerberger Chair in Neuropharmacology, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv 69978, Israel
| | | | | | | | | | | | | |
Collapse
|
44
|
Learning and memory deficits in ecstasy users and their neural correlates during a face-learning task. Brain Res 2009; 1292:71-81. [DOI: 10.1016/j.brainres.2009.07.040] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2009] [Revised: 07/02/2009] [Accepted: 07/15/2009] [Indexed: 11/24/2022]
|
45
|
Pellegrini-Giampietro DE, Mannaioni G, Bagetta G. Post-ischemic brain damage: the endocannabinoid system in the mechanisms of neuronal death. FEBS J 2008; 276:2-12. [DOI: 10.1111/j.1742-4658.2008.06765.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
46
|
Gowran A, Campbell VA. A role for p53 in the regulation of lysosomal permeability by Δ9-tetrahydrocannabinol in rat cortical neurones: implications for neurodegeneration. J Neurochem 2008; 105:1513-24. [DOI: 10.1111/j.1471-4159.2008.05278.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
47
|
Nestor L, Roberts G, Garavan H, Hester R. Deficits in learning and memory: Parahippocampal hyperactivity and frontocortical hypoactivity in cannabis users. Neuroimage 2008; 40:1328-39. [PMID: 18296071 DOI: 10.1016/j.neuroimage.2007.12.059] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2007] [Revised: 12/21/2007] [Accepted: 12/27/2007] [Indexed: 11/18/2022] Open
Affiliation(s)
- Liam Nestor
- Department of Psychology and Institute of Neuroscience, Trinity College, University of Dublin, Ireland.
| | | | | | | |
Collapse
|
48
|
Downer EJ, Gowran A, Campbell VA. A comparison of the apoptotic effect of Δ9-tetrahydrocannabinol in the neonatal and adult rat cerebral cortex. Brain Res 2007; 1175:39-47. [PMID: 17884022 DOI: 10.1016/j.brainres.2007.07.076] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2007] [Revised: 07/24/2007] [Accepted: 07/30/2007] [Indexed: 11/21/2022]
Abstract
The maternal use of cannabis during pregnancy results in a number of cognitive deficits in the offspring that persist into adulthood. The endocannabinoid system has a role to play in neurodevelopmental processes such as neurogenesis, migration and synaptogenesis. However, exposure to phytocannabinoids, such as Delta(9)-tetrahydrocannabinol, during gestation may interfere with these events to cause abnormal patterns of neuronal wiring and subsequent cognitive impairments. Aberrant cell death evoked by Delta(9)-tetrahydrocannabinol may also contribute to cognitive deficits and in cultured neurones Delta(9)-tetrahydrocannabinol induces apoptosis via the CB(1) cannabinoid receptor. In this study we report that Delta(9)-tetrahydrocannabinol (5-50 microM) activates the stress-activated protein kinase, c-jun N-terminal kinase, and the pro-apoptotic protease, caspase-3, in in vitro cerebral cortical slices obtained from the neonatal rat brain. The proclivity of Delta(9)-tetrahydrocannabinol to impact on these pro-apoptotic signalling molecules was not observed in in vitro cortical slices obtained from the adult rat brain. In vivo, subcutaneous administration of Delta(9)-tetrahydrocannabinol (1-30 mg/kg) activated c-jun N-terminal kinase, caspase-3 and cathepsin-D, and induced DNA fragmentation in the cerebral cortex of neonatal rats. In contrast, in vivo administration of Delta(9)-tetrahydrocannabinol to adult rats was not associated with the apoptotic pathway in the cerebral cortex. The data provide evidence which supports the hypothesis that the neonatal rat brain is more vulnerable to the neurotoxic influence of Delta(9)-tetrahydrocannabinol, suggesting that the cognitive deficits that are observed in humans exposed to marijuana during gestation may be due, in part, to abnormal engagement of the apoptotic cascade during brain development.
Collapse
Affiliation(s)
- Eric J Downer
- Department of Physiology and Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin 2, Ireland
| | | | | |
Collapse
|
49
|
Villares J. Chronic use of marijuana decreases cannabinoid receptor binding and mRNA expression in the human brain. Neuroscience 2007; 145:323-34. [PMID: 17222515 DOI: 10.1016/j.neuroscience.2006.11.012] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2006] [Revised: 11/07/2006] [Accepted: 11/08/2006] [Indexed: 10/23/2022]
Abstract
Chronic exposure to Cannabis sativa (marijuana) produced a significant down-regulation of cannabinoid receptor in the postmortem human brain. The significant decrease in maximal binding capacity was not accompanied by changes in the affinity constant. [3H]SR141716A binding was reduced in the caudate nucleus, putamen and in the accumbens nucleus. A significant decrease of binding sites was seen in the globus pallidus. Also in the ventral tegmental area and substantia nigra pars reticulata quantitative analysis of the density of receptors shows a significant reduction in [3H]SR141716A binding. In Cannabis sativa user brains, compared with normal brains [3H]SR141716A binding was reduced only in the hippocampus. The density of cannabinoid receptor 1 mRNA-positive neurons was significantly lower in Cannabis sativa users than in control brains for the caudate nucleus, putamen, accumbens nucleus and hippocampal region (CA1-CA4, areas of Ammon's horn). No hybridization was seen in the mesencephalon and globus pallidus.
Collapse
Affiliation(s)
- J Villares
- Universidade Federal de São Paulo, Aging and Neurodegenerative Diseases Brain Bank Laboratory, Department of Psychobiology, Rua Botucatu n. 862, Biological Science Building, São Paulo SP, Brazil, CEP 04023-062.
| |
Collapse
|
50
|
Kochman LJ, dos Santos AA, Fornal CA, Jacobs BL. Despite strong behavioral disruption, Δ9-tetrahydrocannabinol does not affect cell proliferation in the adult mouse dentate gyrus. Brain Res 2006; 1113:86-93. [PMID: 16930565 DOI: 10.1016/j.brainres.2006.07.080] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2006] [Revised: 07/06/2006] [Accepted: 07/08/2006] [Indexed: 11/17/2022]
Abstract
Marijuana is a widely abused illicit drug known to cause significant cognitive impairments. Marijuana has been hypothesized to target neurons in the hippocampus because of the abundance of cannabinoid receptors present in this structure. While there is no clear evidence of neuropathology in vivo, suppression of brain mitogenesis, and ultimately neurogenesis, may provide a sensitive index of marijuana's more subtle effects on neural mechanisms subserving cognitive functions. We examined the effects of different doses and treatment regimens of Delta(9)-tetrahydrocannabinol (THC), the main active ingredient in marijuana, on cell proliferation in the dentate gyrus of adult male mice. Following drug treatment, the thymidine analog 5-bromo-2'-deoxyuridine (BrdU; 200 mg/kg, i.p.) was administered two hours prior to sacrifice to assess cell proliferation, the first step in neurogenesis. Administration of THC produced dose-dependent catalepsy and suppression of motor activity. The number of BrdU-labeled cells was not significantly changed from vehicle control levels following either acute (1, 3, 10, 30 mg/kg, i.p.), sequential (two injections of 10 or 30 mg/kg, i.p., separated by 5 h), or chronic escalating (20 to 80 mg/kg, p.o.; for 3 weeks) drug administration. Furthermore, acute administration of the potent synthetic cannabinoid receptor agonist R-(+)-WIN 55,212-2 (WIN; 5 mg/kg, i.p.) also had no significant effect on cell proliferation. These findings provide no evidence for an effect of THC on hippocampal cell proliferation, even at doses producing gross behavioral intoxication. Whether marijuana or THC affects neurogenesis remains to be explored.
Collapse
Affiliation(s)
- Linda J Kochman
- Program in Neuroscience, Department of Psychology, Princeton University, Green Hall, Washington Road, Princeton, NJ 08540-1010, USA.
| | | | | | | |
Collapse
|