1
|
Werner M, Brinkhofer J, Hammermüller L, Heim T, Pham TL, Huber J, Klein C, Thomas F. Peptide Boronic Acids by Late-Stage Hydroboration on the Solid Phase. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2400640. [PMID: 38810019 PMCID: PMC11267286 DOI: 10.1002/advs.202400640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/15/2024] [Indexed: 05/31/2024]
Abstract
Organoboron compounds have a wide range of applications in numerous research fields, and methods to incorporate them in biomolecules are much sought after. Here, on-resin chemical syntheses of aliphatic and vinylogous peptide boronic acids are presented by transition metal-catalyzed late-stage hydroboration of alkene and alkyne groups in peptides and peptoids, for example on allyl- and propargylglycine residues, using readily available chemicals. These methods yield peptide boronic acids with much shorter linkers than previously reported on-resin methods. Furthermore, the methods are regio- and stereoselective, compatible with all canonical amino acid residues and can be applied to short, long, and in part even "difficult" peptide sequences. In a feasibility study, the protected peptide vinylboronic acids are further derivatized by the Petasis reaction using salicylaldehyde derivatives. The ability of the obtained peptide boronic acids to reversibly bind to carbohydrates is demonstrated in a catch-release model experiment using a fluorescently labeled peptide boronic acid on cross-linked dextran beads. In summary, this highlights the potential of the target compounds for drug discovery, glycan-specific target recognition, controlled release, and diagnostics.
Collapse
Affiliation(s)
- Marius Werner
- Institute of Organic ChemistryHeidelberg UniversityIm Neuenheimer Feld 27069120HeidelbergGermany
- Medicinal ChemistryInstitute of Pharmacy and Molecular Biotechnology (IPMB)Heidelberg UniversityIm Neuenheimer Feld 36469120HeidelbergGermany
| | - Julian Brinkhofer
- Institute of Organic ChemistryHeidelberg UniversityIm Neuenheimer Feld 27069120HeidelbergGermany
| | - Leon Hammermüller
- Institute of Organic ChemistryHeidelberg UniversityIm Neuenheimer Feld 27069120HeidelbergGermany
| | - Thomas Heim
- Institute of Organic ChemistryHeidelberg UniversityIm Neuenheimer Feld 27069120HeidelbergGermany
| | - Truc Lam Pham
- Institute of Organic ChemistryHeidelberg UniversityIm Neuenheimer Feld 27069120HeidelbergGermany
| | - Jonas Huber
- Institute of Organic ChemistryHeidelberg UniversityIm Neuenheimer Feld 27069120HeidelbergGermany
| | - Christian Klein
- Medicinal ChemistryInstitute of Pharmacy and Molecular Biotechnology (IPMB)Heidelberg UniversityIm Neuenheimer Feld 36469120HeidelbergGermany
| | - Franziska Thomas
- Institute of Organic ChemistryHeidelberg UniversityIm Neuenheimer Feld 27069120HeidelbergGermany
| |
Collapse
|
2
|
CD4 + T Cells Recognize Conserved Influenza A Epitopes through Shared Patterns of V-Gene Usage and Complementary Biochemical Features. Cell Rep 2021; 32:107885. [PMID: 32668259 PMCID: PMC7370177 DOI: 10.1016/j.celrep.2020.107885] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Revised: 01/20/2020] [Accepted: 06/17/2020] [Indexed: 12/15/2022] Open
Abstract
T cell recognition of peptides presented by human leukocyte antigens (HLAs) is mediated by the highly variable T cell receptor (TCR). Despite this built-in TCR variability, individuals can mount immune responses against viral epitopes by using identical or highly related TCRs expressed on CD8+ T cells. Characterization of these TCRs has extended our understanding of the molecular mechanisms that govern the recognition of peptide-HLA. However, few examples exist for CD4+ T cells. Here, we investigate CD4+ T cell responses to the internal proteins of the influenza A virus that correlate with protective immunity. We identify five internal epitopes that are commonly recognized by CD4+ T cells in five HLA-DR1+ subjects and show conservation across viral strains and zoonotic reservoirs. TCR repertoire analysis demonstrates several shared gene usage biases underpinned by complementary biochemical features evident in a structural comparison. These epitopes are attractive targets for vaccination and other T cell therapies.
Collapse
|
3
|
Tian Y, da Silva Antunes R, Sidney J, Lindestam Arlehamn CS, Grifoni A, Dhanda SK, Paul S, Peters B, Weiskopf D, Sette A. A Review on T Cell Epitopes Identified Using Prediction and Cell-Mediated Immune Models for Mycobacterium tuberculosis and Bordetella pertussis. Front Immunol 2018; 9:2778. [PMID: 30555469 PMCID: PMC6281829 DOI: 10.3389/fimmu.2018.02778] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 11/12/2018] [Indexed: 01/01/2023] Open
Abstract
In the present review, we summarize work from our as well as other groups related to the characterization of bacterial T cell epitopes, with a specific focus on two important pathogens, namely, Mycobacterium tuberculosis (Mtb), the bacterium that causes tuberculosis (TB), and Bordetella pertussis (BP), the bacterium that causes whooping cough. Both bacteria and their associated diseases are of large societal significance. Although vaccines exist for both pathogens, their efficacy is incomplete. It is widely thought that defects and/or alteration in T cell compartments are associated with limited vaccine effectiveness. As discussed below, a full genome-wide map was performed in the case of Mtb. For BP, our focus has thus far been on the antigens contained in the acellular vaccine; a full genome-wide screen is in the planning stage. Nevertheless, the sum-total of the results in the two different bacterial systems allows us to exemplify approaches and techniques that we believe are generally applicable to the mapping and characterization of human immune responses to bacterial pathogens. Finally, we add, as a disclaimer, that this review by design is focused on the work produced by our laboratory as an illustration of approaches to the study of T cell responses to Mtb and BP, and is not meant to be comprehensive, nor to detract from the excellent work performed by many other groups.
Collapse
Affiliation(s)
- Yuan Tian
- Division of Vaccine Discovery, La Jolla Institute for Immunology, La Jolla, CA, United States
| | | | - John Sidney
- Division of Vaccine Discovery, La Jolla Institute for Immunology, La Jolla, CA, United States
| | | | - Alba Grifoni
- Division of Vaccine Discovery, La Jolla Institute for Immunology, La Jolla, CA, United States
| | - Sandeep Kumar Dhanda
- Division of Vaccine Discovery, La Jolla Institute for Immunology, La Jolla, CA, United States
| | - Sinu Paul
- Division of Vaccine Discovery, La Jolla Institute for Immunology, La Jolla, CA, United States
| | - Bjoern Peters
- Division of Vaccine Discovery, La Jolla Institute for Immunology, La Jolla, CA, United States.,Department of Medicine, University of California San Diego, La Jolla, CA, United States
| | - Daniela Weiskopf
- Division of Vaccine Discovery, La Jolla Institute for Immunology, La Jolla, CA, United States
| | - Alessandro Sette
- Division of Vaccine Discovery, La Jolla Institute for Immunology, La Jolla, CA, United States.,Department of Medicine, University of California San Diego, La Jolla, CA, United States
| |
Collapse
|
4
|
Pham J, Oseroff C, Hinz D, Sidney J, Paul S, Greenbaum J, Vita R, Phillips E, Mallal S, Peters B, Sette A. Sequence conservation predicts T cell reactivity against ragweed allergens. Clin Exp Allergy 2016; 46:1194-205. [PMID: 27359111 DOI: 10.1111/cea.12772] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 06/01/2016] [Accepted: 06/01/2016] [Indexed: 01/03/2023]
Abstract
BACKGROUND Ragweed is a major cause of seasonal allergy, affecting millions of people worldwide. Several allergens have been defined based on IgE reactivity, but their relative immunogenicity in terms of T cell responses has not been studied. OBJECTIVE We comprehensively characterized T cell responses from atopic, ragweed-allergic subjects to Amb a 1, Amb a 3, Amb a 4, Amb a 5, Amb a 6, Amb a 8, Amb a 9, Amb a 10, Amb a 11, and Amb p 5 and examined their correlation with serological reactivity and sequence conservation in other allergens. METHODS Peripheral blood mononuclear cells (PBMCs) from donors positive for IgE towards ragweed extracts after in vitro expansion for secretion of IL-5 (a representative Th2 cytokine) and IFN-γ (Th1) in response to a panel of overlapping peptides spanning the above-listed allergens were assessed. RESULTS Three previously identified dominant T cell epitopes (Amb a 1 176-191, 200-215, and 344-359) were confirmed, and three novel dominant epitopes (Amb a 1 280-295, 304-319, and 320-335) were identified. Amb a 1, the dominant IgE allergen, was also the dominant T cell allergen, but dominance patterns for T cell and IgE responses for the other ragweed allergens did not correlate. Dominance for T cell responses correlated with conservation of ragweed epitopes with sequences of other well-known allergens. CONCLUSIONS AND CLINICAL RELEVANCE These results provide the first assessment of the hierarchy of T cell reactivity in ragweed allergens, which is distinct from that observed for IgE reactivity and influenced by T cell epitope sequence conservation. The results suggest that ragweed allergens associated with lesser IgE reactivity and significant T cell reactivity may be targeted for T cell immunotherapy, and further support the development of immunotherapies against epitopes conserved across species to generate broad reactivity against many common allergens.
Collapse
Affiliation(s)
- J Pham
- La Jolla Institute for Allergy and Immunology, La Jolla, CA, USA
| | - C Oseroff
- La Jolla Institute for Allergy and Immunology, La Jolla, CA, USA
| | - D Hinz
- La Jolla Institute for Allergy and Immunology, La Jolla, CA, USA
| | - J Sidney
- La Jolla Institute for Allergy and Immunology, La Jolla, CA, USA
| | - S Paul
- La Jolla Institute for Allergy and Immunology, La Jolla, CA, USA
| | - J Greenbaum
- La Jolla Institute for Allergy and Immunology, La Jolla, CA, USA
| | - R Vita
- La Jolla Institute for Allergy and Immunology, La Jolla, CA, USA
| | - E Phillips
- Institute for Immunology and Infectious Diseases, Murdoch University, Perth, WA, Australia.,Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - S Mallal
- Institute for Immunology and Infectious Diseases, Murdoch University, Perth, WA, Australia.,Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - B Peters
- La Jolla Institute for Allergy and Immunology, La Jolla, CA, USA
| | - A Sette
- La Jolla Institute for Allergy and Immunology, La Jolla, CA, USA
| |
Collapse
|
5
|
Adaptive evolution of a novel avian-origin influenza A/H7N9 virus. Genomics 2014; 104:545-53. [PMID: 25449177 DOI: 10.1016/j.ygeno.2014.10.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Revised: 10/25/2014] [Accepted: 10/29/2014] [Indexed: 11/21/2022]
Abstract
In China, the recent outbreak of novel influenza A/H7N9 virus has been assumed to be severe, and it may possibly turn brutal in the near future. In order to develop highly protective vaccines and drugs for the A/H7N9 virus, it is critical to find out the selection pressure of each amino acid site. In the present study, six different statistical methods consisting of four independent codon-based maximum likelihood (CML) methods, one hierarchical Bayesian (HB) method and one branch-site (BS) method, were employed to determine if each amino acid site of A/H7N9 virus is under natural selection pressure. Functions for both positively and negatively selected sites were inferred by annotating these sites with experimentally verified amino acid sites. Comprehensively, the single amino acid site 627 of PB2 protein was inferred as positively selected and it function was identified as a T-cell epitope (TCE). Among the 26 negatively selected amino acid sites of PB2, PB1, PA, HA, NP, NA, M1 and NS2 proteins, only 16 amino acid sites were identified to be involved in TCEs. In addition, 7 amino acid sites including, 608 and 609 of PA, 480 of NP, and 24, 25, 109 and 205 of M1, were identified to be involved in both B-cell epitopes (BCEs) and TCEs. Conversely, the function of positions 62 of PA, and, 43 and 113 of HA was unknown. In conclusion, the seven amino acid sites engaged in both BCEs and TCEs were identified as highly suitable targets, as these sites will be predicted to play a principal role in inducing strong humoral and cellular immune responses against A/H7N9 virus.
Collapse
|
6
|
Sant AJ, Chaves FA, Krafcik FR, Lazarski CA, Menges P, Richards K, Weaver JM. Immunodominance in CD4 T-cell responses: implications for immune responses to influenza virus and for vaccine design. Expert Rev Vaccines 2014; 6:357-68. [PMID: 17542751 DOI: 10.1586/14760584.6.3.357] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
CD4 T cells play a primary role in regulating immune responses to pathogenic organisms and to vaccines. Antigen-specific CD4 T cells provide cognate help to B cells, a requisite event for immunoglobulin switch and affinity maturation of B cells that produce neutralizing antibodies and also provide help to cytotoxic CD8 T cells, critical for their expansion and persistence as memory cells. Finally, CD4 T cells may participate directly in pathogen clearance via cell-mediated cytotoxicity or through production of cytokines. Understanding the role of CD4 T-cell immunity to viruses and other pathogens, as well as evaluation of the efficacy of vaccines, requires insight into the specificity of CD4 T cells. This review focuses on the events within antigen-presenting cells that focus CD4 T cells toward a limited number of peptide antigens within the pathogen or vaccine. The molecular events are discussed in light of the special challenges that the influenza virus poses, owing to the high degree of genetic variability, unpredictable pathogenicity and the repeated encounters that human populations face with this highly infectious pathogenic organism.
Collapse
Affiliation(s)
- Andrea J Sant
- David H Smith Center for Vaccine Biology and Immunology, Aab Institute and Department of Microbiology and Immunology, University of Rochester, Rochester, NY 14642, USA.
| | | | | | | | | | | | | |
Collapse
|
7
|
Abu-Amero KK, Kapoor S, Hellani A, Monga S, Bosley TM. Horizontal gaze palsy and progressive scoliosis due to a deleterious mutation in ROBO3. Ophthalmic Genet 2011; 32:231-6. [PMID: 21592015 DOI: 10.3109/13816810.2011.580445] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
PURPOSE To describe a family with horizontal gaze palsy and progressive scoliosis with a deleterious mutation in the ROBO3 gene. METHODS All family members had full ophthalmologic, neurologic, and orthopedic examinations and complete sequencing of the ROBO3 gene. RESULTS Four affected members had complete loss of horizontal gaze with progressive scoliosis that varied between family members. ROBO3 sequencing revealed a novel 15 base deletion (c.2_16 delTGCTGCGCTACCTGC) in exon 1 that segregated in homozygous form with the phenotype and probably alters the shape and ionic charge of the extracellular immunoglobulin motif 1. This mutation was not detected in 100 control chromosomes. CONCLUSIONS The novel ROBO3 mutation in this family may be among the most deleterious yet reported. Family members in general were severely affected, but comparison of this family to other families with ROBO3 mutations did not yield a definitive phenotype-genotype correlation.
Collapse
Affiliation(s)
- Khaled K Abu-Amero
- Ophthalmic Genetics Laboratory, Department of Ophthalmology, College of Medicine, King Saud University, Riyadh, Saudi Arabia.
| | | | | | | | | |
Collapse
|
8
|
Williams O, Houseman BT, Kunkel EJ, Aizenstein B, Hoffman R, Knight ZA, Shokat KM. Discovery of dual inhibitors of the immune cell PI3Ks p110delta and p110gamma: a prototype for new anti-inflammatory drugs. CHEMISTRY & BIOLOGY 2010; 17:123-34. [PMID: 20189103 PMCID: PMC2858875 DOI: 10.1016/j.chembiol.2010.01.010] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2009] [Revised: 12/19/2009] [Accepted: 01/04/2010] [Indexed: 01/10/2023]
Abstract
PI3Kdelta and PI3Kgamma regulate immune cell signaling, while the related PI3Kalpha and PI3Kbeta regulate cell survival and metabolism. Selective inhibitors of PI3Kdelta/gamma represent a potential class of anti-inflammatory agents lacking the antiproliferative effects associated with PI3Kalpha/beta inhibition. Here we report the discovery of PI3Kdelta/gamma inhibitors that display up to 1000-fold selectivity over PI3Kalpha/beta and evaluate these compounds in a high-content inflammation assay using mixtures of primary human cells. We find selective inhibition of only PI3Kdelta is weakly anti-inflammatory, but PI3Kdelta/gamma inhibitors show superior inflammatory marker suppression through suppression of lipopolysaccharide-induced TNFalpha production and T cell activation. Moreover, PI3Kdelta/gamma inhibition yields an anti-inflammatory signature distinct from pan-PI3K inhibition and known anti-inflammatory drugs, yet bears striking similarities to glucocorticoid receptor agonists. These results highlight the potential of selectively designing drugs that target kinases with shared biological function.
Collapse
Affiliation(s)
- Olusegun Williams
- Graduate Program in Chemistry and Chemical Biology, University of California, San Francisco, 600 16th Street, San Francisco, California 94158, USA
| | - Benjamin T. Houseman
- Howard Hughes Medical Institute and Department of Cellular and Molecular Pharmacology, University of California, San Francisco, 600 16 St., San Francisco, CA 94158
| | - Eric J. Kunkel
- BioSeek, Inc., 310 Utah Ave., Suite 100, South San Francisco, CA 94080
| | - Brian Aizenstein
- Invitrogen Corporation, 501 Charmany Drive, Madison, Wisconsin 53719, USA
| | - Randy Hoffman
- Invitrogen Corporation, 501 Charmany Drive, Madison, Wisconsin 53719, USA
| | - Zachary A. Knight
- Howard Hughes Medical Institute and Department of Cellular and Molecular Pharmacology, University of California, San Francisco, 600 16 St., San Francisco, CA 94158
| | - Kevan M. Shokat
- Howard Hughes Medical Institute and Department of Cellular and Molecular Pharmacology, University of California, San Francisco, 600 16 St., San Francisco, CA 94158
- Department of Chemistry, University of California, Berkeley, Berkeley, California, USA
| |
Collapse
|
9
|
Influenza A virus matrix protein 1-specific human CD8+ T-cell response induced in trivalent inactivated vaccine recipients. J Virol 2008; 82:9283-7. [PMID: 18614638 DOI: 10.1128/jvi.01047-08] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Among 17 HLA-A2-positive healthy adults, CD8+ T-cell responses against an HLA-A2-restricted matrix protein 1 (M1) epitope increased after immunization with trivalent inactivated influenza vaccine (TIV) in two individuals. The presence of M1 in TIV was confirmed by Western blotting. T-cell cytotoxicity assays showed that TIV is processed and the epitope is presented by antigen-presenting cells to an M1 epitope-specific CD8+ T-cell line for specific lysis. These data show that TIV, which is formulated to contain surface glycoproteins to induce serotype-specific antibody responses, also contains M1, capable of inducing subtype cross-reactive CD8+ T-cell responses in some vaccinees.
Collapse
|
10
|
Sidney J, Assarsson E, Moore C, Ngo S, Pinilla C, Sette A, Peters B. Quantitative peptide binding motifs for 19 human and mouse MHC class I molecules derived using positional scanning combinatorial peptide libraries. Immunome Res 2008; 4:2. [PMID: 18221540 PMCID: PMC2248166 DOI: 10.1186/1745-7580-4-2] [Citation(s) in RCA: 252] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2007] [Accepted: 01/25/2008] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND It has been previously shown that combinatorial peptide libraries are a useful tool to characterize the binding specificity of class I MHC molecules. Compared to other methodologies, such as pool sequencing or measuring the affinities of individual peptides, utilizing positional scanning combinatorial libraries provides a baseline characterization of MHC molecular specificity that is cost effective, quantitative and unbiased. RESULTS Here, we present a large-scale application of this technology to 19 different human and mouse class I alleles. These include very well characterized alleles (e.g. HLA A*0201), alleles with little previous data available (e.g. HLA A*3201), and alleles with conflicting previous reports on specificity (e.g. HLA A*3001). For all alleles, the positional scanning combinatorial libraries were able to elucidate distinct binding patterns defined with a uniform approach, which we make available here. We introduce a heuristic method to translate this data into classical definitions of main and secondary anchor positions and their preferred residues. Finally, we validate that these matrices can be used to identify candidate MHC binding peptides and T cell epitopes in the vaccinia virus and influenza virus systems, respectively. CONCLUSION These data confirm, on a large scale, including 15 human and 4 mouse class I alleles, the efficacy of the positional scanning combinatorial library approach for describing MHC class I binding specificity and identifying high affinity binding peptides. These libraries were shown to be useful for identifying specific primary and secondary anchor positions, and thereby simpler motifs, analogous to those described by other approaches. The present study also provides matrices useful for predicting high affinity binders for several alleles for which detailed quantitative descriptions of binding specificity were previously unavailable, including A*3001, A*3201, B*0801, B*1501 and B*1503.
Collapse
Affiliation(s)
- John Sidney
- La Jolla Institute for Allergy and Immunology, 9420 Athena Circle, La Jolla, CA 92037, USA
| | - Erika Assarsson
- La Jolla Institute for Allergy and Immunology, 9420 Athena Circle, La Jolla, CA 92037, USA
| | - Carrie Moore
- La Jolla Institute for Allergy and Immunology, 9420 Athena Circle, La Jolla, CA 92037, USA
| | - Sandy Ngo
- La Jolla Institute for Allergy and Immunology, 9420 Athena Circle, La Jolla, CA 92037, USA
| | - Clemencia Pinilla
- Torrey Pines Institute for Molecular Studies, 3550 General Atomics Court, 2-129, San Diego, CA 92121, USA
| | - Alessandro Sette
- La Jolla Institute for Allergy and Immunology, 9420 Athena Circle, La Jolla, CA 92037, USA
| | - Bjoern Peters
- La Jolla Institute for Allergy and Immunology, 9420 Athena Circle, La Jolla, CA 92037, USA
| |
Collapse
|
11
|
Abstract
Influenza viruses are the etiological agents of influenza. Although vaccines and drugs are available for the prophylaxis and treatment of influenza virus infections, the generation of escape mutants has been reported. To develop vaccines and drugs that are less susceptible to the generation of escape mutants, it is important to understand the evolutionary mechanisms of the viruses. Here natural selection operating on all the proteins encoded by the H3N2 human influenza A virus genome was inferred by comparing the numbers of synonymous (d(S) [D(S)]) and nonsynonymous (d(N) [D(N)]) substitutions per site. Natural selection was also inferred for the groups of functional amino acid sites involved in B-cell epitopes (BCEs), T-cell epitopes (TCEs), drug resistance, and growth in eggs. The entire region of PB1-F2 was positively selected, and positive selection also appeared to operate on BCEs, TCEs, and growth in eggs. The frequency of escape mutant generation appeared to be positively correlated with the d(N)/d(S) (D(N)/D(S)) values for the targets of vaccines and drugs, suggesting that the amino acid sites under strong functional constraint are suitable targets. In particular, TCEs may represent candidate targets because the d(N)/d(S) (D(N)/D(S)) values were small and negative selection was inferred for many of them.
Collapse
Affiliation(s)
- Yoshiyuki Suzuki
- Center for Information Biology and DNA Data Bank of Japan, National Institute of Genetics, Mishima-shi, Shizuoka-ken, Japan.
| |
Collapse
|
12
|
Oseroff C, Kos F, Bui HH, Peters B, Pasquetto V, Glenn J, Palmore T, Sidney J, Tscharke DC, Bennink JR, Southwood S, Grey HM, Yewdell JW, Sette A. HLA class I-restricted responses to vaccinia recognize a broad array of proteins mainly involved in virulence and viral gene regulation. Proc Natl Acad Sci U S A 2005; 102:13980-5. [PMID: 16172378 PMCID: PMC1236582 DOI: 10.1073/pnas.0506768102] [Citation(s) in RCA: 124] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We have analyzed by ex vivo ELISPOT the anti-vaccinia cytotoxic T lymphocyte responses of peripheral blood mononuclear cells from humans vaccinated with Dryvax vaccine. More than 6,000 peptides from 258 putative vaccinia ORFs predicted to bind the common molecules of the HLA A1, A2, A3, A24, B7, and B44 supertypes were screened with peripheral blood mononuclear cells of 31 vaccinees. A total of 48 epitopes derived from 35 different vaccinia antigens were identified, some of which (B8R, D1R, D5R, C10L, C19L, C7L, F12, and O1L) were recognized by multiple donors and contain multiple epitopes recognized in the context of different HLA types. The antigens recognized tend to be >100 residues in length and are expressed predominantly in the early phases of infection, although some late antigens were also recognized. Viral genome regulation and virulence factor were recognized most frequently, whereas few structural proteins were immunogenic. Finally, most epitopes were highly conserved among vaccinia virus Western Reserve, variola major and modified vaccinia Ankara, supporting their potential use in vaccine and diagnostic applications.
Collapse
Affiliation(s)
- Carla Oseroff
- La Jolla Institute for Allergy and Immunology, 3030 Bunker Hill Street, Suite 326, San Diego, CA 92109, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Ovsyannikova IG, Johnson KL, Muddiman DC, Vierkant RA, Poland GA. Identification and characterization of novel, naturally processed measles virus class II HLA-DRB1 peptides. J Virol 2004; 78:42-51. [PMID: 14671086 PMCID: PMC303425 DOI: 10.1128/jvi.78.1.42-51.2004] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Previously, we identified a naturally processed and presented measles virus (MV) 19-amino-acid peptide, ASDVETAEGGEIHELLRLQ (MV-P), derived from the phosphoprotein and eluted from the human leukocyte antigen (HLA) class II molecule by using mass spectrometry. We report here the identification of a 14-amino-acid peptide, SAGKVSSTLASELG, derived from the MV nucleoprotein (MV-N) bound to HLA-DRB1*0301. Peripheral blood mononuclear cells (PBMC) from 281 previously vaccinated measles-mumps-rubella II (MMR-II) subjects (HLA discordant) were studied for peptide recognition by T cells. Significant gamma interferon (IFN-gamma) responses to MV-P and MV-N peptides were observed in 55.9 and 15.3% of subjects, respectively. MV-P- and MV-N-specific interleukin-4 (IL-4) responses were detected in 19.2 and 23.1%, respectively, of PBMC samples. Peptide-specific cytokine responses and HLA-DRB1 allele associations revealed that, for the MV-P peptide, the allele with the strongest association with both IFN-gamma (P = 0.02) and IL-4 (P = 0.03) secretion was DRB1*0301. For MV-N, the allele with the strongest association with IFN-gamma secretion was DRB1*1501 (P = 0.04), and the alleles with the strongest associations with IL-4 secretion were DRB1*1103 and DRB1*1303 (P = 0.01). These results indicate that HLA class II MV proteins can be processed, presented, and identified, and the ability to generate cell-mediated immune responses can be demonstrated. This information is promising for new vaccine design strategies with peptide-based vaccines.
Collapse
Affiliation(s)
- Inna G Ovsyannikova
- Mayo Vaccine Research Group, Mayo Clinic and College of Medicine, Rochester, Minnesota 55905, USA
| | | | | | | | | |
Collapse
|
14
|
Danke NA, Kwok WW. HLA class II-restricted CD4+ T cell responses directed against influenza viral antigens postinfluenza vaccination. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2003; 171:3163-9. [PMID: 12960344 DOI: 10.4049/jimmunol.171.6.3163] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The memory T cell response is polyclonal, with the magnitude and specificity of the response controlled in part by the burst size of T cells expanded from effector/memory precursors. Sensitive assays using HLA class II multimers were used to detect low-frequency Ag-specific T cells directed against influenza viral Ags in subjects immunized with the influenza vaccine. Direct ex vivo tetramer staining of PBMC from five individuals identified frequencies of hemagglutinin (HA) 306-318 tetramer binding CD4(+) T cells in the peripheral blood ranging from 1 in 600 to 1 in 30,000 CD4(+) T cells. These frequencies were validated by counting CFSE(low), tetramer-positive T cells after in vitro expansion. Low frequency of T cells directed to other influenza epitopes, including DRA1*0101/DRB1*0401-restricted matrix protein 60-73, DRA1*0101/DRB1*0101-restricted matrix protein 18-29, DRA1*0101/DRB1*0701-restricted HA 232-244 and DRA1*0101/DRB1*0101-restricted nucleoprotein 206-217 were also determined. T cells which occurred at a frequency as low as 1 in 350,000 could be ascertained by in vitro expansion of precursors. Peripheral HA(306-318)-responsive T cells expanded 2- to 5-fold following influenza vaccination. Examination of phenotypic markers of the HA(306-318)-responsive T cells in the peripheral blood indicated that the majority were CD45RA(-), CD27(+), CD25(-), CD28(+), and CD62L(-), while T cell clones derived from this population were CD45RA(-), CD27(-), CD25(+), CD28(+), and CD62L(-).
Collapse
Affiliation(s)
- Nancy A Danke
- Benaroya Research Institute at Virginia Mason, Seattle, WA 98101, USA
| | | |
Collapse
|
15
|
Venturini S, Mosier DE, Burton DR, Poignard P. Characterization of human immunodeficiency virus type 1 (HIV-1) Gag- and Gag peptide-specific CD4(+) T-cell clones from an HIV-1-seronegative donor following in vitro immunization. J Virol 2002; 76:6987-99. [PMID: 12072499 PMCID: PMC136330 DOI: 10.1128/jvi.76.14.6987-6999.2002] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Substantial evidence argues that human immunodeficiency virus type 1 (HIV-1)-specific CD4(+) T cells play an important role in the control of HIV-1 replication in infected individuals. Moreover, it is increasingly clear that an HIV vaccine should elicit potent cytotoxic lymphocyte and antibody responses that will likely require an efficient CD4(+) T-cell response. Therefore, understanding and characterizing HIV-specific CD4(+) T-cell responses is an important aim. Here we describe the generation of HIV-1 Gag- and Gag peptide-specific CD4(+) T-cell clones from an HIV-1-seronegative donor by in vitro immunization with HIV-1 Gag peptides. The Gag peptides were able to induce a strong CD4(+) T-cell immune response in peripheral blood mononuclear cells from the HIV-1-seronegative donor. Six Gag peptide-specific CD4(+) T-cell clones were isolated and their epitopes were mapped. The region of p24 between amino acids 201 and 300 of Gag was defined as the immunodominant region of Gag. A new T helper epitope in the p6 protein of Gag was identified. Two clones were shown to recognize Gag peptides and processed Gag protein, while the other four clones reacted only to Gag peptides under the experimental conditions used. Functional analysis of the clones indicated that both Th1 and Th2 types of CD4(+) T cells were obtained. One clone showed direct antigen-specific cytotoxic activity. These clones represent a valuable tool for understanding the cellular immune response to HIV-1, and the study provides new insights into the HIV-1-specific CD4(+) T-cell response and the induction of an anti-Gag and -Gag peptide cellular primary immune response in vitro.
Collapse
Affiliation(s)
- Sara Venturini
- Department of Immunology, The Scripps Research Institute, La Jolla, California 92037, USA
| | | | | | | |
Collapse
|
16
|
Joshi SK, Suresh PR, Chauhan VS. Flexibility in MHC and TCR Recognition: Degenerate Specificity at the T Cell Level in the Recognition of Promiscuous Th Epitopes Exhibiting No Primary Sequence Homology. THE JOURNAL OF IMMUNOLOGY 2001; 166:6693-703. [PMID: 11359825 DOI: 10.4049/jimmunol.166.11.6693] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Recognition of peptide Ags by T cells through the TCR can be highly specific. In this report we show the degeneracy of Ag recognition at both MHC and TCR levels. We present evidence that unrelated promiscuous Th cell epitopes from various protein sources exhibit sufficient structural homology, despite minimal structural identity, to elicit cross-reactive proliferative responses at the bulk T cell level. This epitopic mimicry was also observed when peptide (CS.T3(378-395) and TT(830-844))-specific CD4+ T cell lines and T cell hybridoma clones were used in proliferation and Ag presentation assays. A scrambled CS.T3(378-395) peptide did not show any proliferation, indicating that the specificity of the cross-reactive responses may be linked with the primary structure of the peptides. Blocking of CS.T3(378-395)-specific CD4+ T cell proliferation by anti-MHC class II mAb showed that recognition of promiscuous T cell epitopes is largely in association with MHC class II molecules. These findings suggest that promiscuous Th epitopes may be useful in designing peptide-based vaccine constructs. At the same time these results show that at the T cell level there may be a great deal of immunological cross-reactivity between heterologous pathogens, and because of this the host's response to a pathogen may be modified by its previous experience with other unrelated pathogens.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Antibodies, Monoclonal/pharmacology
- CD4-Positive T-Lymphocytes/immunology
- CD4-Positive T-Lymphocytes/metabolism
- Cell Line
- Clone Cells
- Epitopes, T-Lymphocyte/metabolism
- Female
- Genes, T-Cell Receptor beta
- Histocompatibility Antigens Class II/immunology
- Histocompatibility Antigens Class II/metabolism
- Hybridomas/metabolism
- Lymphocyte Activation/immunology
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C3H
- Mice, Inbred C57BL
- Mice, Inbred DBA
- Molecular Sequence Data
- Peptide Fragments/antagonists & inhibitors
- Peptide Fragments/immunology
- Peptide Fragments/metabolism
- Plasmodium falciparum/immunology
- Protein Binding/immunology
- Protozoan Proteins/immunology
- Protozoan Proteins/metabolism
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/metabolism
- Receptors, Antigen, T-Cell, alpha-beta/biosynthesis
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Sequence Homology, Amino Acid
- Species Specificity
- T-Lymphocytes, Helper-Inducer/immunology
- T-Lymphocytes, Helper-Inducer/metabolism
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- S K Joshi
- Malaria Research Group, International Center for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | | | | |
Collapse
|
17
|
Hennecke J, Carfi A, Wiley DC. Structure of a covalently stabilized complex of a human alphabeta T-cell receptor, influenza HA peptide and MHC class II molecule, HLA-DR1. EMBO J 2000; 19:5611-24. [PMID: 11060013 PMCID: PMC305780 DOI: 10.1093/emboj/19.21.5611] [Citation(s) in RCA: 211] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
An alphabeta T-cell receptor (alphabetaTCR)/hemagglutinin (HA) peptide/human leukocyte antigen (HLA)-DR1 complex was stabilized by flexibly linking the HA peptide with the human HA1.7 alphabetaTCR, to increase the local concentration of the interacting proteins once the peptide has been loaded onto the major histocompatibility complex (MHC) molecule. The structure of the complex, determined by X-ray crystallography, has a binding mode similar to that of the human B7 alphabetaTCR on a pMHCI molecule. Twelve of the 15 MHC residues contacted are at the same positions observed earlier in class I MHC/peptide/TCR complexes. One contact, to an MHC loop outside the peptide-binding site, is conserved and specific to pMHCII complexes. TCR gene usage in the response to HA/HLA-DR appears to conserve charged interactions between three lysines of the peptide and acidic residues on the TCR.
Collapse
MESH Headings
- Amino Acid Sequence
- Binding Sites/genetics
- Crystallography, X-Ray
- Drug Stability
- HLA-DR1 Antigen/chemistry
- HLA-DR1 Antigen/genetics
- Hemagglutinin Glycoproteins, Influenza Virus/chemistry
- Hemagglutinin Glycoproteins, Influenza Virus/genetics
- Humans
- In Vitro Techniques
- Macromolecular Substances
- Models, Molecular
- Molecular Sequence Data
- Protein Conformation
- Protein Engineering
- Protein Folding
- Receptors, Antigen, T-Cell, alpha-beta/chemistry
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Recombinant Proteins/chemistry
- Recombinant Proteins/genetics
- Sequence Homology, Amino Acid
- Static Electricity
Collapse
Affiliation(s)
- J Hennecke
- Department of Molecular and Cellular Biology, Harvard University, Howard Hughes Medical Institute, 7 Divinity Avenue, Cambridge, MA 02138, USA
| | | | | |
Collapse
|
18
|
Sheikh J, Souberbielle B, Westby M, Austen B, Dalgleish AG. HIV gp120 plus specific peptides are recognized in a similar manner to specific HLA plus peptide by HLA-restricted antigen-specific T-cell lines. Viral Immunol 2000; 13:9-17. [PMID: 10733164 DOI: 10.1089/vim.2000.13.9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
HIV induces disease only following chronic activation of the immune system. Other retroviruses such as the mouse mammary tumour virus (MMTV) activate a large percentage of T cells by encoding a superantigen (SAg). To date there is no evidence that HIV encodes a SAg. An alternative way to induce pan-activation of the immune system is by allogeneic stimulation, which occurs following transplantation. Here we extend previous work which demonstrated that HIVpg120 could bind peptides in a similar manner to HLA, by demonstrating that human antigen presenting cells (APCs) expressing gp120 (but not DR1) can present a DR1-restricted peptide to induce proliferation of a DR1-restricted peptide-specific T-cell line in a similar manner to the same peptide presented by a DR1 expressing APC. Our data provide strong support for the hypothesis that the HLA-like regions of gp120 encode functional properties shared with HLA, and could explain the extraordinary clinical and immunological similarities between AIDS and chronic graft versus host disease.
Collapse
Affiliation(s)
- J Sheikh
- Division of Surgery, St. George's Hospital Medical School, Tooting, London, UK
| | | | | | | | | |
Collapse
|
19
|
Landry SJ. Helper T-cell epitope immunodominance associated with structurally stable segments of hen egg lysozyme and HIV gp120. J Theor Biol 2000; 203:189-201. [PMID: 10716904 DOI: 10.1006/jtbi.1999.1056] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Although many antigen sequences potentially can bind to the MHCII proteins, only a small number of epitopes dominate the immune response. Additional mechanisms of processing, presentation or recognition must restrict the immune response against a large portion of the antigen. A highly significant correlation is found between epitope immunodominance and local structural stability in hen egg lysozyme. Since antigen proteins are likely to retain substantial native-like structure in the processing compartment, protease action may be focused on regions that are most readily accommodated in the protease active sites, and thus, the intervening sequence are preferentially presented. Immunodominance also correlates with sequence conservation as expected from the constraints imposed by structure. These results suggest that the three-dimensional structure of the antigen limits the immune response against some antigen segments. For HIV gp120, a substantial improvement in the accuracy of epitope prediction is obtained by combining rules for MHCII binding with a restriction of the predicted epitopes to well-conserved sequences.
Collapse
Affiliation(s)
- S J Landry
- Department of Biochemistry, Tulane University School of Medicine, 1430 Tulane Avenue, New Orleans, LA 70112, USA.
| |
Collapse
|
20
|
Jameson J, Cruz J, Terajima M, Ennis FA. Human CD8+ and CD4+ T Lymphocyte Memory to Influenza A Viruses of Swine and Avian Species. THE JOURNAL OF IMMUNOLOGY 1999. [DOI: 10.4049/jimmunol.162.12.7578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Abstract
Recently, an avian influenza A virus (A/Hong Kong/156/97, H5N1) was isolated from a young child who had a fatal influenza illness. All eight RNA segments were of avian origin. The H5 hemagglutinin is not recognized by neutralizing Abs present in humans as a result of infection with the human H1, H2, or H3 subtypes of influenza A viruses. Subsequently, five other deaths and several more human infections in Hong Kong were associated with this avian-derived virus. We investigated whether influenza A-specific human CD8+ and CD4+ T lymphocytes would recognize epitopes on influenza A virus strains derived from swine or avian species, including the 1997 H5N1 Hong Kong virus strains. Our results demonstrate that adults living in an urban area of the U.S. possess influenza A cross-serotype reactive CD8+ and CD4+ CTL that recognize multiple epitopes on influenza A viruses of other species. Bulk culture cytotoxicity was demonstrated against avian and human influenza A viruses. Enzyme-linked immunospot assays detected precursor CTL specific for both human CTL epitopes and the corresponding A/HK/97 viral sequences. We hypothesize that these cross-reactive CTL might provide partial protection to humans against novel influenza A virus strains introduced into humans from other species.
Collapse
Affiliation(s)
- Julie Jameson
- Center for Infectious Disease and Vaccine Research, University of Massachusetts Medical Center, Worcester, MA 01655
| | - John Cruz
- Center for Infectious Disease and Vaccine Research, University of Massachusetts Medical Center, Worcester, MA 01655
| | - Masanori Terajima
- Center for Infectious Disease and Vaccine Research, University of Massachusetts Medical Center, Worcester, MA 01655
| | - Francis A. Ennis
- Center for Infectious Disease and Vaccine Research, University of Massachusetts Medical Center, Worcester, MA 01655
| |
Collapse
|
21
|
Alexander J, Fikes J, Hoffman S, Franke E, Sacci J, Appella E, Chisari FV, Guidotti LG, Chesnut RW, Livingston B, Sette A. The optimization of helper T lymphocyte (HTL) function in vaccine development. Immunol Res 1998; 18:79-92. [PMID: 9844827 DOI: 10.1007/bf02788751] [Citation(s) in RCA: 92] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Helper T lymphocyte (HTL) responses play an important role in the induction of both humoral and cellular immune responses. Therefore, HTL epitopes are likely to be a crucial component of prophylactic and immunotherapeutic vaccines. For this reason, Pan DR helper T cell epitopes (PADRE), engineered to bind most common HLA-DR molecules with high affinity and act as powerful immunogens, were developed. Short linear peptide constructs comprising PADRE and Plasmodium-derived B cell epitopes induced antibody responses comparable to more complex multiple antigen peptides (MAP) constructs in mice. These antibody responses were composed mostly of the IgG subclass, reactive against intact sporozoites, inhibitory of schizont formation in liver invasion assays, and protective against sporozoite challenge in vivo. The PADRE HTL epitope has also been shown to augment the potency of vaccines designed to stimulate a cellular immune response. Using a HBV transgenic murine model, it was found that CTL tolerance was broken by PADRE-CTL epitope lipopeptide, but not by a similar construct containing a conventional HTL epitope. There are a number of prophylactic vaccines that are of limited efficacy, require multiple boosts, and/or confer protection to only a fraction of the immunized population. Also, in the case of virally infected or cancerous cells, new immunotherapeutic vaccines that induce strong cellular immune responses are desirable. Therefore, optimization of HTL function by use of synthetic epitopes such as PADRE or pathogen-derived, broadly crossreactive epitopes holds promise for a new generation of highly efficacious vaccines.
Collapse
|
22
|
Abstract
The murine CD8(+) cytotoxic-T-lymphocyte (CTL) repertoire appears to be quite limited in response to influenza A viruses. The CTL responses to influenza A virus in humans were examined to determine if the CTL repertoire is also very limited. Bulk cultures revealed that a number of virus proteins were recognized in CTL assays. CTL lines were isolated from three donors for detailed study and found to be specific for epitopes on numerous influenza A viral proteins. Eight distinct CD8(+) CTL lines were isolated from donor 1. The proteins recognized by these cell lines included the nucleoprotein (NP), matrix protein (M1), nonstructural protein 1 (NS1), polymerases (PB1 and PB2), and hemagglutinin (HA). Two CD4(+) cell lines, one specific for neuraminidase (NA) and the other specific for M1, were also characterized. These CTL results were confirmed by precursor frequency analysis of peptide-specific gamma interferon-producing cells detected by ELISPOT. The epitopes recognized by 6 of these 10 cell lines have not been previously described; 8 of the 10 cell lines were cross-reactive to subtype H1N1, H2N2, and H3N2 viruses, 1 cell line was cross-reactive to subtypes H1N1 and H2N2, and 1 cell line was subtype H1N1 specific. A broad CTL repertoire was detected in the two other donors, and cell lines specific for the NP, NA, HA, M1, NS1, and M2 viral proteins were isolated. These findings indicate that the human memory CTL response to influenza A virus is broadly directed to epitopes on a wide variety of proteins, unlike the limited response observed following infection of mice.
Collapse
Affiliation(s)
- J Jameson
- Center for Infectious Disease and Vaccine Research, University of Massachusetts Medical Center, Worcester, Massachusetts 01655, USA
| | | | | |
Collapse
|
23
|
Hetzel C, Janssen R, Ely SJ, Kristensen NM, Bunting K, Cooper JB, Lamb JR, Young DB, Thole JE. An epitope delivery system for use with recombinant mycobacteria. Infect Immun 1998; 66:3643-8. [PMID: 9673244 PMCID: PMC108397 DOI: 10.1128/iai.66.8.3643-3648.1998] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
We have developed a novel epitope delivery system based on the insertion of peptides within a permissive loop of a bacterial superoxide dismutase molecule. This system allowed high-level expression of heterologous peptides in two mycobacterial vaccine strains, Mycobacterium bovis bacille Calmette-Guérin (BCG) and Mycobacterium vaccae. The broader application of the system was analyzed by preparation of constructs containing peptide epitopes from a range of infectious agents and allergens. We report detailed characterization of the immunogenicity of one such construct, in which an epitope from the Der p1 house dust mite allergen was expressed in M. vaccae. The construct was able to stimulate T-cell hybridomas specific for Der p1, and it induced peptide-specific gamma interferon responses when used to immunize naive mice. This novel expression system demonstrates new possibilities for the use of mycobacteria as vaccine delivery vehicles.
Collapse
Affiliation(s)
- C Hetzel
- Department of Biology, Imperial College School of Medicine, London, United Kingdom
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Southwood S, Sidney J, Kondo A, del Guercio MF, Appella E, Hoffman S, Kubo RT, Chesnut RW, Grey HM, Sette A. Several Common HLA-DR Types Share Largely Overlapping Peptide Binding Repertoires. THE JOURNAL OF IMMUNOLOGY 1998. [DOI: 10.4049/jimmunol.160.7.3363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Abstract
The peptide binding specificities of HLA-DRB1*0401, DRB1*0101, and DRB1*0701 have been analyzed by the use of large collections of synthetic peptides corresponding to naturally occurring sequences. The results demonstrated that nearly all peptides binding to these DR molecules bear a motif characterized by a large aromatic or hydrophobic residue in position 1 (Y, F, W, L, I, V, M) and a small, noncharged residue in position 6 (S, T, C, A, P, V, I, L, M). In addition, allele-specific secondary effects and secondary anchors were defined, and these parameters were utilized to derive allele-specific motifs and algorithms. By the combined use of such algorithms, peptides capable of degenerate DRB1*0101, DRB1*0401, and DRB1*0701 binding were identified. Additional experiments utilizing a panel of quantitative assays specific for nine additional common DR molecules identified a large set of DR molecules, which includes at least the DRB1*0101, DRB1*0401, DRB1*0701, DRB5*0101, DRB1*1501, DRB1*0901, and DRB1*1302 allelic products, characterized by overlapping peptide-binding repertoires. These results have implications for understanding the molecular interactions involved in peptide-DR binding, as well as the genetic and structural basis of MHC polymorphism. These results also have potential practical implications for the development of epitope-based prophylactic and therapeutic vaccines.
Collapse
Affiliation(s)
| | | | | | | | - Ettore Appella
- ‡National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Stephen Hoffman
- §Malaria Program, Naval Medical Research Institute, Bethesda, MD 20889
| | | | | | - Howard M. Grey
- ∥La Jolla Institute for Allergy and Immunology, San Diego, CA 92121
| | | |
Collapse
|
25
|
Rajnavölgyi E, Horváth A, Gogolák P, Tóth GK, Fazekas G, Fridkin M, Pecht I. Characterizing immunodominant and protective influenza hemagglutinin epitopes by functional activity and relative binding to major histocompatibility complex class II sites. Eur J Immunol 1997; 27:3105-14. [PMID: 9464794 DOI: 10.1002/eji.1830271205] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In the present study the analysis of functional activity and major histocompatibility complex (MHC) binding of two adjacent MHC class II-restricted epitopes, located in the C-terminal 306-329 region of human influenza A virus hemagglutinin 1 subunit (HA1) conserved with subtype sequences and not affected by antigenic drift, was undertaken to explore the hierarchy of local immunodominance. The functional activity of two T cell hybridomas of the memory/effector Th1 phenotype in combination with in vivo immunization studies provided a good tool for investigating the functional characteristics of the T cell response. The in vitro binding assays performed with a series of overlapping, N-terminal biotinylated peptides covering the 306-341 sequence enabled us to compare the relative binding efficiency of peptides, comprising two distinct epitopes of this region, to I-Ed expressed on living antigen-presenting cells. Our studies revealed that (i) immunization of BALB/c mice with the 306-329 H1 or H2 peptides resulted in the activation and proliferation of T cells recognizing both the 306-318 and the 317-329 epitopes, while the 306-329 H3 peptide elicits predominantly 306-318-specific T cells, (ii) the 317-329 HA1 epitope of the H1 and H2 but not the H3 sequence is recognized by T cells and is available for recognition not only in the 317-329 peptide but also in the extended 306-329 or 306-341 peptides, (iii) the 306-318 and the 317-329 hemagglutinin peptides encompassing the H1, H2 but not the H3 sequence bind with an apparently similar affinity to and therefore compete for I-Ed binding sites, and (iv) the 317-341, the 317-329 peptides and their truncated analogs show subtype-dependent differences in MHC binding and those with lower binding capacity represent the H3 subtype sequences. These results demonstrate that differences in the binding capacity of peptides comprising two non-overlapping epitopes located in the C-terminal 306-329 region of HA1 of all three subtype-specific sequences to MHC class II provide a rationale for the local and also for the previously observed in vivo immunodominance of the 306-318 region over the 317-329 epitope in the H3 but not in the H1 or H2 sequences. In good correlation with the results of the binding and functional inhibition assays, these data demonstrate that in the H1 and H2 subtypes both regions are available for T cell recognition, they compete for the same restriction element with an apparently similar binding efficiency and, therefore, function as co-dominant epitopes. Due to the stabilizing effect of the fusion peptide, peptides comprising the 306-341 or 317-341 H1 sequences are highly immunogenic and elicit a protective immune response which involves the production of antibodies and interleukin-2 and tumor necrosis factor producing effector Th1 cells both directed against the 317-329 region. Based on the similarity of the I-Ed and HLA-DR1 peptide binding grooves and motifs, these results suggest that amino acid substitutions inserted to the H3 subtype sequence during viral evolution can modify the relative MHC binding capacity and invert the local hierarchy of immunodominance of two closely situated epitopes that are able to bind to the same MHC class II molecule.
Collapse
Affiliation(s)
- E Rajnavölgyi
- Department of Immunology, L. Eötvös University, Göd, Hungary.
| | | | | | | | | | | | | |
Collapse
|
26
|
Denzin LK, Sant'Angelo DB, Hammond C, Surman MJ, Cresswell P. Negative regulation by HLA-DO of MHC class II-restricted antigen processing. Science 1997; 278:106-9. [PMID: 9311912 DOI: 10.1126/science.278.5335.106] [Citation(s) in RCA: 182] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
HLA-DM is a major histocompatibility complex (MHC) class II-like molecule that facilitates antigen processing by catalyzing the exchange of invariant chain-derived peptides (CLIP) from class II molecules for antigenic peptides. HLA-DO is a second class II-like molecule that physically associates with HLA-DM in B cells. HLA-DO was shown to block HLA-DM function. Purified HLA-DM-DO complexes could not promote peptide exchange in vitro. Expression of HLA-DO in a class II+ and DM+, DO- human T cell line caused the accumulation of class II-CLIP complexes, indicating that HLA-DO blocked DM function in vivo and suggesting that HLA-DO is an important modulator of class II-restricted antigen processing.
Collapse
Affiliation(s)
- L K Denzin
- Section of Immunobiology, Howard Hughes Medical Institute, Yale University School of Medicine, 310 Cedar Street, New Haven, CT 06510, USA
| | | | | | | | | |
Collapse
|
27
|
Stumptner P, Benaroch P. Interaction of MHC class II molecules with the invariant chain: role of the invariant chain (81-90) region. EMBO J 1997; 16:5807-18. [PMID: 9312039 PMCID: PMC1170212 DOI: 10.1038/sj.emboj.7590555] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Association of the invariant chain (Ii) with MHC class II alpha and beta chains is central for their functionality and involves the Ii CLIP(81-104) region. Ii mutants with an antigenic peptide sequence in place of the CLIP region are shown to form alphabetaIi complexes resistant to dissociation by SDS at 25 degrees C. This reflects class II peptide binding site occupancy, since substitution of the major anchor residue within the antigenic peptide sequence of one of these Ii mutants abolishes its capacity to form SDS-stable heterotrimers. Therefore, CLIP location within Ii is compatible with CLIP access to the class II binding groove. However, in wild-type Ii this access does not lead to a tight association, which seems to be affected by the Ii 81-90 region. This region, together with a region C-terminal of CLIP, is shown to contribute to Ii association with HLA-DR1 molecules. Thus, Ii mutants with non-HLA-DR1 binding sequences in place of the CLIP(87-102) region can still associate with HLA-DR1 molecules and inhibit peptide binding.
Collapse
Affiliation(s)
- P Stumptner
- Institut Cochin de Génétique Moléculaire, UPR-0415, 22 rue Méchain, 75014 Paris, France
| | | |
Collapse
|
28
|
Tsitoura DC, Gelder CM, Kemeny DM, Lamb JR. Regulation of cytokine production by human Th0 cells following stimulation with peptide analogues: differential expression of TGF-beta in activation and anergy. Immunol Suppl 1997; 92:10-9. [PMID: 9370918 PMCID: PMC1363975 DOI: 10.1046/j.1365-2567.1997.00319.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The different biological activities of T-cell-derived cytokines and their level of production influences the qualitative nature of immune responses and, in certain forms of T-cell tolerance, the lack of antigen responsiveness is associated with the production of transforming growth factor-beta (TGF-beta) and interleukin-4 (IL-4). In this study we have investigated the effects of T-cell receptor (TCR) ligation with peptide analogues and the native peptide, in the presence and absence of costimulation, on cytokine production by human T-helper type 0 (Th0) cells reactive with influenza virus haemagglutinin (HA) peptide (HA306-318) and restricted by HLA-DRB1*0101. We observed that resting Th0 cells constitutively produced TGF-beta, but when stimulated with peptide and antigen-presenting cells (APC) under conditions that induce clonal expansion, TGF-beta secretion was abrogated. Furthermore, exposure of the T cells to the wild-type HA peptide under conditions that induce T-cell anergy resulted in the secretion of TGF-beta, and subsequent antigenic rechallenge was unable to override this signal and down-regulate TGF-beta production. Stimulation with altered TCR ligands that failed to induce proliferation also resulted in marked production of TGF-beta, although in many instances the levels were less than those observed in the total absence of antigen, suggesting that partial signalling has occurred. Although in general, there was a direct positive correlation between proliferation and the production of IL-2, IL-4 and interferon-gamma (IFN-gamma) following stimulation with certain analogues, the production of selected cytokines was dissociated.
Collapse
Affiliation(s)
- D C Tsitoura
- Department of Biology, Imperial College of Science, Technology and Medicine, King's College School of Medicine and Dentistry, London, UK
| | | | | | | |
Collapse
|
29
|
Huppa JB, Ploegh HL. In vitro translation and assembly of a complete T cell receptor-CD3 complex. J Exp Med 1997; 186:393-403. [PMID: 9236191 PMCID: PMC2198996 DOI: 10.1084/jem.186.3.393] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/1997] [Revised: 06/02/1997] [Indexed: 02/04/2023] Open
Abstract
The T cell receptor for antigen (TCR) is a multisubunit complex that consists of at least seven polypeptides: the clonotypic, disulfide-linked alpha/beta heterodimer that is noncovalently associated with the invariant polypeptides of the CD3 complex (CD3-gamma, -delta, -epsilon) and zeta, a disulfide-linked homodimer. We achieved the complete assembly of the human TCR in an in vitro transcription/translation system supplemented with dog pancreas microsomes by simultaneous translation of the messenger RNAs encoding the TCR-alpha, -beta and CD3-gamma, -delta, -epsilon, and -zeta subunits. CD3-epsilon, one of the subunits that initiates the assembly of the TCR in living cells, forms misfolded, disulfide-linked homooligomers when translated alone. However, co-translation of one of its first binding partners in the course of assembly, CD3-gamma or -delta, led to the expression of mainly monomeric and correctly folded epsilon subunits, the only form we could detect as part of a properly assembled TCR complex. In the absence of these subunits, the ER-resident chaperone calnexin interacted with oligomeric, i.e. misfolded, structures of CD3-epsilon in a glycan-independent manner. A glycan-dependent interaction between CD3-epsilon and calnexin was mediated by CD3-gamma and concerned only monomeric CD3-epsilon complexed with CD3-gamma, but was dispensable for proper folding of CD3-epsilon. We suggest that in addition to its signaling function, CD3-epsilon serves as a monitor for proper subunit assembly of the TCR.
Collapse
Affiliation(s)
- J B Huppa
- Center for Cancer Research, Massachusetts Institute of Technology, Cambridge 02139, USA
| | | |
Collapse
|
30
|
Bertoni R, Sidney J, Fowler P, Chesnut RW, Chisari FV, Sette A. Human histocompatibility leukocyte antigen-binding supermotifs predict broadly cross-reactive cytotoxic T lymphocyte responses in patients with acute hepatitis. J Clin Invest 1997; 100:503-13. [PMID: 9239396 PMCID: PMC508216 DOI: 10.1172/jci119559] [Citation(s) in RCA: 137] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The present study was designed to determine if highly conserved hepatitis B virus (HBV)-derived peptides that bind multiple HLA class I alleles with high affinity are recognized as cytotoxic T lymphocyte (CTL) epitopes in acutely infected patients. Peripheral blood mononuclear cells from 67 patients with acute hepatitis B, and 12 patients convalescent from acute hepatitis B, were stimulated with three panels of peptides, each of which bind with high affinity to several class I alleles from the HLA-A2-, HLA-A3-, or HLA-B7-supertypes. In these patients, 8 of the 19 peptides tested were found to represent CTL epitopes recognized by two or more alleles in each supertype. Two sets of nested peptides were recognized in the context of alleles with completely unrelated peptide binding specificities. Finally, promiscuous recognition by the same CTL of a given peptide presented by target cells expressing different A2 subtypes was also commonly observed. In conclusion, several HBV-specific CTL epitopes, recognized by acutely infected or convalescent patients in the context of a wide range of HLA alleles have been identified. These results demonstrate the functional relevance of the supertype grouping of HLA class I molecules in a human viral disease setting. Furthermore, they represent a significant advance in the development of a totally synthetic vaccine to terminate chronic HBV infection and support the feasibility of a systematic approach to development of similar vaccines for prevention and treatment of other chronic viral infections.
Collapse
Affiliation(s)
- R Bertoni
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, California 92037, USA
| | | | | | | | | | | |
Collapse
|
31
|
Zhu X, Bavari S, Ulrich R, Sadegh-Nasseri S, Ferrone S, McHugh L, Mage M. A recombinant single-chain human class II MHC molecule (HLA-DR1) as a covalently linked heterotrimer of alpha chain, beta chain, and antigenic peptide, with immunogenicity in vitro and reduced affinity for bacterial superantigens. Eur J Immunol 1997; 27:1933-41. [PMID: 9295029 DOI: 10.1002/eji.1830270817] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Major histocompatibility complex (MHC) class II molecules bind to numerous peptides and display these on the cell surface for T cell recognition. In a given immune response, receptors on T cells recognize antigenic peptides that are a minor population of MHC class II-bound peptides. To control which peptides are presented to T cells, it may be desirable to use recombinant MHC molecules with covalently bound antigenic peptides. To study T cell responses to such homogeneous peptide-MHC complexes, we engineered an HLA-DR1 cDNA coding for influenza hemagglutinin, influenza matrix, or HIV p24 gag peptides covalently attached via a peptide spacer to the N terminus of the DR1 beta chain. Co-transfection with DR alpha cDNA into mouse L cells resulted in surface expression of HLA-DR1 molecules that reacted with monoclonal antibodies (mAb) specific for correctly folded HLA-DR epitopes. This suggested that the spacer and peptide did not alter expression or folding of the molecule. We then engineered an additional peptide spacer between the C terminus of a truncated beta chain (without transmembrane or cytoplasmic domains) and the N terminus of full-length DR alpha chain. Transfection of this cDNA into mouse L cells resulted in surface expression of the entire covalently linked heterotrimer of peptide, beta chain, and alpha chain with the expected molecular mass of approximately 66 kDa. These single-chain HLA-DR1 molecules reacted with mAb specific for correctly folded HLA-DR epitopes, and identified one mAb with [MHC + peptide] specificity. Affinity-purified soluble secreted single-chain molecules with truncated alpha chain moved in electrophoresis as compact class II MHC dimers. Cell surface two-chain or single-chain HLA-DR1 molecules with a covalent HA peptide stimulated HLA-DR1-restricted HA-specific T cells. They were immunogenic in vitro for peripheral blood mononuclear cells. The two-chain and single-chain HLA-DR1 molecules with covalent HA peptide had reduced binding for the bacterial superantigens staphylococcal enterotoxin A and B and almost no binding for toxic shock syndrome toxin-1. The unique properties of these engineered HLA-DR1 molecules may facilitate our understanding of the complex nature of antigen recognition and aid in the development of novel vaccines with reduced superantigen binding.
Collapse
Affiliation(s)
- X Zhu
- Laboratory of Biochemistry, DCBDC, NCI, NIH, Bethesda, MD 20892, USA
| | | | | | | | | | | | | |
Collapse
|
32
|
Riese RJ, Wolf PR, Brömme D, Natkin LR, Villadangos JA, Ploegh HL, Chapman HA. Essential role for cathepsin S in MHC class II-associated invariant chain processing and peptide loading. Immunity 1996; 4:357-66. [PMID: 8612130 DOI: 10.1016/s1074-7613(00)80249-6] [Citation(s) in RCA: 423] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Destruction of li by proteolysis is required for MHC class II molecules to bind antigenic peptides, and for transport of the resulting complexes to the cell surface. The cysteine protease cathepsin S is highly expressed in spleen, lymphocytes, monocytes, and other class II-positive cells, and is inducible with interferon-gamma. Specific inhibition of cathepsin S in B lymphoblastoid cells prevented complete proteolysis of li, resulting in accumulation of a class II-associated 13 kDa li fragment in vivo. Consequently, the formation of SDS-stable complexes was markedly reduced. Purified cathepsin S, but not cathepsin B, H, or D, specifically digested li from alpha beta li trimers, generating alpha beta-CLIP complexes capable of binding exogenously added peptide in vitro. Thus, cathepsin S is essential in B cells for effective li proteolysis necessary to render class II molecules competent for binding peptides.
Collapse
Affiliation(s)
- R J Riese
- Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | |
Collapse
|
33
|
Tompkins SM, Moore JC, Jensen PE. An insulin peptide that binds an alternative site in class II major histocompatibility complex. J Exp Med 1996; 183:857-66. [PMID: 8642290 PMCID: PMC2192356 DOI: 10.1084/jem.183.3.857] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
We report that a peptide from the B chain of insulin, B(10-30), binds with high affinity to multiple class II proteins, including IAb,d,k, IEd,k, and DR1. The ability of B(10-30) to inhibit the binding of other peptide antigens to class II does not correlate with its affinity for class II. B(10-30) only weakly inhibits the binding of antigenic peptides. Conversely, peptides with high affinity for the peptide-binding groove of various class II proteins do not inhibit B(10-30) binding. The rate of association of B(10-30) with class II is unusually rapid, approaching saturation in 1-2 h compared with 1-2 d for classical peptide antigens in the same conditions. The dissociation rate is also relatively rapid. The B(10-30) peptide inhibits the binding of the super-antigen staphylococcal enterotoxin B (SEB) to IAk. It also inhibits SEB-mediated T cell activation. These observations support the conclusion that B(10-30) binds to a site outside the peptide-binding groove. Our findings indicate that short-lived peptide-class II complexes can be formed through interactions involving the SEB-binding site and raise the possibility that alternative complexes may serve as T cell receptor ligands.
Collapse
Affiliation(s)
- S M Tompkins
- Department of Pathology, Emory University, Atlanta, Georgia 30322, USA
| | | | | |
Collapse
|
34
|
Dorling A, Binns R, Lechler RI. Cellular xenoresponses: Although vigorous, direct human T cell anti-pig primary xenoresponses are significantly weaker than equivalent alloresponses. Xenotransplantation 1996. [DOI: 10.1111/j.1399-3089.1996.tb00132.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
35
|
Kropshofer H, Vogt AB, Stern LJ, Hämmerling GJ. Self-release of CLIP in peptide loading of HLA-DR molecules. Science 1995; 270:1357-9. [PMID: 7481823 DOI: 10.1126/science.270.5240.1357] [Citation(s) in RCA: 80] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The assembly and transport of major histocompatibility complex (MHC) class II molecules require interaction with the invariant chain. A fragment of the invariant chain, CLIP, occupies the peptide-binding groove of the class II molecule. At endosomal pH, the binding of CLIP to human MHC class II HLA-DR molecules was counteracted by its amino-terminal segment (residues 81 to 89), which facilitated rapid release. The CLIP (81-89) fragment also catalyzed the release of CLIP(90-105) and a subset of other self-peptides, probably by transient interaction with an effector site outside the groove. Thus, CLIP may facilitate peptide loading through an allosteric release mechanism.
Collapse
Affiliation(s)
- H Kropshofer
- Department of Molecular Immunology, German Cancer Research Center, Heidelberg, Germany
| | | | | | | |
Collapse
|
36
|
Evavold BD, Sloan-Lancaster J, Wilson KJ, Rothbard JB, Allen PM. Specific T cell recognition of minimally homologous peptides: evidence for multiple endogenous ligands. Immunity 1995; 2:655-63. [PMID: 7540944 DOI: 10.1016/1074-7613(95)90010-1] [Citation(s) in RCA: 173] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The T cell receptor (TCR) can interact with a spectrum of peptides as part of its ligand, including the immunogenic peptide, variants of this peptide,and apparently unrelated peptides. The basis of this broad specificity for ligand was investigated by substitution analysis of a peptide antigen and functional testing using a B cell apoptosis assay. A peptide containing as few as 1 aa in common with this peptide could stimulate a specific T cell response. Two endogenous ligands, an agonist and a partial agonist, were readily identified from a search of the SwissProt database, indicating that multiple endogenous ligands likely exist for a given T cell. These findings strongly support the concept that one TCR has the ability to interact productively with multiple different ligands, and provide evidence that such ligands exist in the endogenous peptide repertoire.
Collapse
Affiliation(s)
- B D Evavold
- Department of Pathology Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | | | | | |
Collapse
|
37
|
Nauss JL, Reid RH, Sadegh-Nasseri S. Accuracy of a structural homology model for a class II histocompatibility protein, HLA-DR1: comparison to the crystal structure. J Biomol Struct Dyn 1995; 12:1213-33. [PMID: 7669268 DOI: 10.1080/07391102.1995.10508808] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Structural homology modeling is used to test the accuracy by which a Class I major histocompatibility complex (MHC) could be used to model a Class II MHC. The crystal structure of HLA-aw68 served as a reference molecule to model HLA-DR1. The resulting model was compared to the recently released crystal structure by Brown et al. (Nature, Vol. 364, p. 33-39 (1993)). The overall tertiary structure motif (two alpha-helices and a beta-sheet forming a peptide binding cleft) was maintained. However, significant deviations in the secondary structure elements were found between the model and the DR1 crystal structure. These deviations were consistent with the differences between Class I and Class II crystal structures. In regions where the model and DR1 crystals structures are most similar, side chain orientations are also similar. Specific peptide-MHC interactions are discussed and compared with the crystal structure results.
Collapse
Affiliation(s)
- J L Nauss
- Department of Gastroenterology, Walter Reed Army Institute of Research, Washington, D.C. 20307-5100, USA
| | | | | |
Collapse
|
38
|
Bijlmakers MJ, Benaroch P, Ploegh HL. Mapping functional regions in the lumenal domain of the class II-associated invariant chain. J Exp Med 1994; 180:623-9. [PMID: 7519244 PMCID: PMC2191624 DOI: 10.1084/jem.180.2.623] [Citation(s) in RCA: 107] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The MHC class II-associated invariant chain interacts in trimeric form with class II molecules, inhibits peptide binding, and mediates targeting of class II molecules to endosomal compartments. To dissect the different functions of the invariant (Ii) chain, a set of cDNAs, encoding truncated forms of the Ii chain, was constructed. mRNAs, transcribed from these cDNAs were translated in vitro, together with mRNAs encoding class II HLA DR1 alpha and beta subunits. An Ii chain truncation that contains the 104 NH2-terminal amino acids was able to associate with class II molecules. This construct contains the region from which class II-associated Ii chain peptides (CLIP, amino acids 81-104) are derived. The absence of a further eight residues at the COOH terminus results in a construct of 96 amino acids that is unable to associate with class II molecules. Association of the truncated Ii chains with class II molecules showed a strict correlation with inhibition of peptide binding. Removal of the NH2-terminal cytoplasmic tail and transmembrane region of Ii chain and its replacement with a cleavable signal sequence led to aberrant folding and impaired association with class II molecules. The region between amino acids 163 and 183 was found to be essential for visualization of Ii chain homotrimers by covalent cross-linking.
Collapse
Affiliation(s)
- M J Bijlmakers
- Department of Biology, Massachusetts Institute of Technology, Cambridge 02139
| | | | | |
Collapse
|
39
|
Johansen BH, Gedde-Dahl T, Sollid LM, Vartdal F, Thorsby E, Gaudernack G. Binding of ras oncogene peptides to purified HLA-DQ(alpha 1*0102,beta 1*0602) and -DR(alpha,beta 1*0101) molecules. Scand J Immunol 1994; 39:607-12. [PMID: 8009176 DOI: 10.1111/j.1365-3083.1994.tb03420.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Mutated oncogene peptides may be presented to T cells by HLA molecules. To be able to design the optimal peptides for stimulation of T cells in individuals with different HLA molecules, it is important to analyse the binding characteristics of oncogene peptides to HLA. HLA-DQ6 (DQ(alpha 1*0102,beta 1*0602)) and HLA-DR1 (DR(alpha,beta 1*0101)) molecules were purified from lysates of homozygous EBV-transformed cell lines. Purified HLA molecules were then tested for their ability to bind synthetic peptides in gel filtration assays. A p21 ras oncogene peptide (previously found to stimulate DQ6-restricted T-cell clones) and an influenza matrix peptide were labelled with 125I and served as indicator peptides for binding to DQ6 and DR1 respectively. Binding of homologous truncated and mutated p21 ras peptides and unrelated peptides was then evaluated by their capacity to inhibit binding of the indicator peptides. p21 ras-derived peptides were found to bind to both DQ6 and DR1 molecules indicating the existence of a promiscuous binding motif in these peptides. The binding affinities seemed to vary between the different peptides, but the amino acid substitutions resulting from natural mutations were not critical for binding. Notably, the results obtained for DQ6 in the biochemical peptide binding assay correlated well with results obtained in a functional assay using T-cell clones as probes.
Collapse
Affiliation(s)
- B H Johansen
- Institute of Transplantation Immunology, National Hospital, Oslo, Norway
| | | | | | | | | | | |
Collapse
|
40
|
Ortmann B, Androlewicz MJ, Cresswell P. MHC class I/beta 2-microglobulin complexes associate with TAP transporters before peptide binding. Nature 1994; 368:864-7. [PMID: 8159247 DOI: 10.1038/368864a0] [Citation(s) in RCA: 301] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Major histocompatibility complex class I molecules bind antigenic peptides in the endoplasmic reticulum (ER) and transport them to the cell surface for recognition by cytotoxic T lymphocytes. The peptides are predominantly generated from cytoplasmic proteins, probably by the action of the multicatalytic proteinase complex, or proteasome. They are transported into the ER by the transporters associated with antigen processing (TAP), a complex formed from two subunits, TAP.1 and TAP.2 (refs 3-5). Here we show that the TAP molecules are intimately involved in the assembly of the class I/beta 2-microglobulin (beta 2m) peptide complex. Free class I heavy chains are associated in the ER with the chaperone calnexin. In human B-cell lines, however, class I/beta 2m dimers in the ER are physically associated with TAP molecules rather than calnexin. Our results suggest that calnexin mediates class I/beta 2m dimerization, and subsequent binding of the dimers to TAP molecules facilitates their association with TAP-transported peptides.
Collapse
Affiliation(s)
- B Ortmann
- Section of Immunobiology, Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, Connecticut 06520
| | | | | |
Collapse
|
41
|
Jaraquemada D, Martí M, Martin R, Wagner A, MacFarland HF, Rosen-Bronson S. Different requirements of ICAM-1/LFA-1 adhesion in allorecognition and self-restricted antigen recognition by class II-specific T cell clones. Eur J Immunol 1994; 24:947-51. [PMID: 7908635 DOI: 10.1002/eji.1830240425] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
We have analyzed the influence of non-antigen-specific interactions between ICAM-1 and LFA-1 in target recognition by allospecific and antigen-specific T cells at the clonal level, using human and mouse fibroblasts transfected with HLA-DR1 or DR2 with or without co-expression of ICAM-1, as antigen-presenting cells. The results show a great heterogeneity in the requirements for ICAM-1/LFA-1 interactions for antigen-specific and alloreactive T cell responses and this requirement may depend on the avidity of any particular interaction. The data also show that for most alloreactive clones, ICAM-1/LFA-1 adhesion is not sufficient to facilitate efficient T cell recognition of its target molecule. HLA class II recognition by a large proportion of the DR1- and DR2-specific alloreactive clones studied was different for class II molecules expressed on murine or human fibroblasts compared to human lymphoid cells, and was independent of ICAM-1 expression on the stimulator cells. The inability of some T cell clones to recognize HLA-class II expressed on non-lymphoid cells suggests the absence of specific epitopes and could be due to the lack of the relevant peptides, either because they are derived from species-specific proteins or to differences in processing of endogenous antigen in the transfected stimulator cells.
Collapse
Affiliation(s)
- D Jaraquemada
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville
| | | | | | | | | | | |
Collapse
|
42
|
Androlewicz MJ, Cresswell P. Human transporters associated with antigen processing possess a promiscuous peptide-binding site. Immunity 1994; 1:7-14. [PMID: 7889401 DOI: 10.1016/1074-7613(94)90004-3] [Citation(s) in RCA: 148] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The peptide selectivity of the human transporters associated with antigen processing (TAP) was investigated using a panel of peptides of varying length and sequence. Peptides were assayed for their ability to compete for the translocation of a labeled reporter peptide containing an N-linked glycosylation acceptor site in Streptolysin O (SLO)-permeabilized cells. We find that human TAP is very promiscuous for peptides in the 8-12 amino acid range, while showing increased selectivity and lower translocation efficiency for peptides in the 13-30 amino acid range. The minimum peptide length appears to be 8 amino acids, while the maximum length appears to be approximately 25 amino acids. Furthermore, a photoactive peptide analogue was synthesized that can photolabel TAP molecules. Using this analogue, we showed that an ATP-independent peptide-binding site exists on TAP, and that competition for translocation reflects competition for peptide binding.
Collapse
Affiliation(s)
- M J Androlewicz
- Section of Immunobiology, Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, Connecticut 06510
| | | |
Collapse
|
43
|
Skinner MA, Watson L, Geursen A, Tan PL. Lymphocyte responses to DR1/4 restricted peptides in rheumatoid arthritis. Ann Rheum Dis 1994; 53:171-7. [PMID: 8154934 PMCID: PMC1005281 DOI: 10.1136/ard.53.3.171] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
OBJECTIVE To determine whether analog and unrelated DR1/4 binding peptides alter DR1/4 restricted responses of peripheral blood lymphocytes (PBL) from patients with rheumatoid arthritis (RA). METHODS PBL from 25 patients with RA and 12 healthy controls were cultured with DR1/4 restricted peptides of the influenza haemagglutinin, amino acids 307-319 (HA) and matrix proteins, amino acids 17-29 (IM). Responses were determined by 3H-thymidine uptake proliferation assays and limiting dilution analysis. Competitor peptides were analogs HA-R312 and HA-K313 differing from HA by one amino acid at the 312 or 313 position respectively or unrelated peptides which bind to DR1/4. RESULTS The responses of eight patients with RA to the two stimulatory influenza peptides did not differ significantly from controls and this was confirmed by the frequency estimate of T cells in PBL which responded to HA (mean frequency: 1 in 9.0 x 10(4), n = 5, in DR1/4+ RA patients, 1 in 7.6 x 10(4), n = 5, in DR1/4+ healthy controls). DR1/4 binding analogs of the HA peptide inhibited HA specific peptide responses of PBL from patients with RA and controls. Inhibition was also detected with unrelated peptides which bind to DR1/4 but to which the individual did not respond. CONCLUSION Similar responses to two DR1/4 restricted peptides were observed in patients with RA and controls. Both antigen analog- and unrelated peptide-major histocompatibility complexes (MHC) can result in the inhibition of antigen specific responses in multi-clonal human lymphocyte populations. However, an analog peptide may be stimulatory in some individuals. These results provide some initial data for the development of a rational approach to MHC-specific immunomodulation in rheumatoid arthritis.
Collapse
Affiliation(s)
- M A Skinner
- Department of Molecular Medicine, University of Auckland, School of Medicine, New Zealand
| | | | | | | |
Collapse
|
44
|
Daibata M, Xu M, Humphreys RE, Reyes VE. More efficient peptide binding to MHC class II molecules during cathepsin B digestion of Ii than after Ii release. Mol Immunol 1994; 31:255-60. [PMID: 8139580 DOI: 10.1016/0161-5890(94)90122-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The binding of a T cell-presented peptide to MHC class II alpha,beta chains occurs as a concurrent process with the release of the associated invariant chain (Ii) by cathepsin B. Ii was digested by cathepsin B from solubilized, MHC class II alpha,beta,Ii complexes in the presence of N-hydroxysuccinimidyl-4-azidobenzoate-conjugated, 125I-labeled, influenza virus matrix (18-29) peptide. The peptide was crosslinked where it became bound. This HLA-DR1-restricted peptide bound about three times more efficiently to class II alpha,beta chains of DR1-positive B cells when present during cathepsin B digestion of Ii than when added afterward, also at pH 5.0. Binding was competed by similarly DR-restricted peptides. Cathepsin D cleaved Ii but did not enhance peptide binding. However, a trace level of cathepsin D, added to the assay for peptide binding in the presence of cathepsin B, further enhanced peptide binding about three times. These experiments support an hypothesis for the staged release of Ii fragments by cathepsin D and cathepsin B, catalyzing at one point the insertion of a peptide into the antigen binding site formed by class II alpha and beta chains.
Collapse
Affiliation(s)
- M Daibata
- Department of Pharmacology, University of Massachusetts Medical School, Worcester 01655
| | | | | | | |
Collapse
|
45
|
Altuvia Y, Berzofsky JA, Rosenfeld R, Margalit H. Sequence features that correlate with MHC restriction. Mol Immunol 1994; 31:1-19. [PMID: 8302295 DOI: 10.1016/0161-5890(94)90133-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Identification of common sequence motifs in antigenic peptides restricted to a specific class II molecule has not been easy due to the large variation in length and sequence that is observed in these peptides. The goal of this study is to develop an automated computerized method for the identification of sequence features and structural determinants that play a role in the MHC restriction of helper T-cell antigenic peptides. For this, we compiled an extended database of helper T-cell sites, including the information on MHC restriction, when available. Two groups of peptides are assigned to each MHC type: (1) peptides that bind to that MHC molecule to elicit a T-cell response, and (2) peptides that were shown experimentally either not to bind to or not to elicit a T-cell proliferative response in association with that MHC molecule. We search for common motifs in the group of binding peptides, and identify significant motifs that are frequent among these peptides but almost absent in the group of non-binding peptides. A motif consists of physical-chemical and structural properties that may be responsible for binding specificity and can be extracted from sequence data, such as, hydrophobicity, charge, hydrogen bonding capability, etc. The first search is performed on the non-aligned binding peptides. Next, the sequences are aligned according to an identified motif and a search for additional, conserved, properties is performed. The statistical significance of the motifs is evaluated as well as their compatibility with published experimental results on substitution effects. Here we demonstrate the general scheme of the analysis and results for I-Ek and I-Ak associated peptides.
Collapse
Affiliation(s)
- Y Altuvia
- Department of Molecular Genetics, Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | | | | | | |
Collapse
|
46
|
Modelling of peptide and protein structures. Amino Acids 1994; 7:175-202. [DOI: 10.1007/bf00814159] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/1993] [Accepted: 08/12/1993] [Indexed: 10/26/2022]
|
47
|
Sherman MA, Runnels HA, Moore JC, Stern LJ, Jensen PE. Membrane interactions influence the peptide binding behavior of DR1. J Exp Med 1994; 179:229-34. [PMID: 8270868 PMCID: PMC2191328 DOI: 10.1084/jem.179.1.229] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
We analyzed the binding of an influenza matrix protein-derived peptide, MAT(17-31), to cell surface and purified DR1. The pH dependence of peptide binding was dramatically influenced by the membrane environment. Cell surface binding was enhanced at low pH, with little or no binding detected at neutral pH and optimal binding at pH 4. By contrast, hydrogen ion concentration had minimal effect on peptide binding to purified DR1. Exposure to low pH in the absence of peptide did not affect the peptide binding capacity of cell-associated DR1. Purified DR1 was stable at low pH, excluding the possibility that enhanced binding was offset by a competing denaturation event at low pH. The striking effect of pH on peptide binding characteristic of cell surface DR1 was recovered after reconstitution of purified DR1 in B cell membranes by detergent dialysis. This behavior was partially recovered by reconstitution of full-length, but not truncated DR1 in vesicles containing purified lipid. Our results demonstrate that interactions involving membrane components influence the peptide-binding behavior of DR1.
Collapse
Affiliation(s)
- M A Sherman
- Department of Pathology, Emory University School of Medicine, Atlanta, Georgia 30322
| | | | | | | | | |
Collapse
|
48
|
Evavold BD, Sloan-Lancaster J, Allen PM. Tickling the TCR: selective T-cell functions stimulated by altered peptide ligands. IMMUNOLOGY TODAY 1993; 14:602-9. [PMID: 8305133 DOI: 10.1016/0167-5699(93)90200-5] [Citation(s) in RCA: 314] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Recent observations of T-cell responses following T-cell receptor (TCR) interaction with altered peptide ligands have highlighted the complexity of this signalling system. The indications are that the TCR responds to minor changes in ligand with gradations of T-cell activation and effector functions. Brian Evavold, Joanne Sloan-Lancaster and Paul Allen review these studies and present a model in which partial T-cell activation and TCR antagonism are related events in a continuum of signalling through the TCR.
Collapse
Affiliation(s)
- B D Evavold
- Dept of Pathology, Washington University School of Medicine, St Louis, MO 63110
| | | | | |
Collapse
|
49
|
Russell-Jones GJ, Sullivan JS, Geczy AF. Peptide sequences with strong stimulatory activity for lymphoid cells: implications for vaccine development. Vaccine 1993; 11:1310-5. [PMID: 7507623 DOI: 10.1016/0264-410x(93)90100-c] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Seven peptides derived from the bacterial major outer-membrane protein TraT were synthesized and then tested in lymphoproliferative assays using lymphoid cells from a variety of animals that had been immunized with the native TraT molecule in saline. A hierarchical pattern of responsiveness to the peptides was observed in the four animal species studied and in particular three of the peptides (T2, T4 and T6) showed very strong responses in all species. The 'universality' of the TraT-derived peptides was confirmed by studying the responsiveness of lymphoid cells obtained from the peripheral blood of twenty clinically normal human donors. Thus, following a secondary in vitro immunization with TraT-pulsed human peripheral blood mononuclear cells, responsiveness to TraT and to the TraT-derived peptides was observed in the cultures derived from all twenty donors. Taken together, our findings imply that the putative T-cell epitope peptides (T2, T4 and T6) could be employed as carriers in subunit vaccines and thereby help to overcome the unresponsiveness observed in animals and humans as a result of MHC restriction.
Collapse
|
50
|
Hammer J, Valsasnini P, Tolba K, Bolin D, Higelin J, Takacs B, Sinigaglia F. Promiscuous and allele-specific anchors in HLA-DR-binding peptides. Cell 1993; 74:197-203. [PMID: 8334703 DOI: 10.1016/0092-8674(93)90306-b] [Citation(s) in RCA: 317] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The major histocompatibility complex (MHC) class II molecules are highly polymorphic membrane glycoproteins that bind peptide fragments of proteins and display them for recognition by CD4+ T cells. To understand the effect of human MHC class II polymorphism on peptide-MHC interaction, we have isolated M13 phage from a large M13 peptide display library by selection with DRB1*0401 and DRB1*1101 molecules, as recently described for DRB1*0101. Sequence analysis of the peptide-encoding region of DR-bound phage led to the identification of position-specific anchor residues, defining motifs for peptide binding to DR molecules. The three DR motifs share two anchor residues at relative positions 1 and 4, while allele-specific anchor residues have been identified at position 6. These results provide a biophysical basis for both the promiscuity and the specificity of peptide recognition by DR molecules.
Collapse
|