1
|
Mo Y, Jin F, Li D, Zou W, Zhong J, Tong Z, Wang W, Qian F. Prevalence and molecular characteristics of occult hepatitis B virus infection among blood donors in Huzhou City, eastern China. Gene 2024; 927:148718. [PMID: 38914243 DOI: 10.1016/j.gene.2024.148718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 05/23/2024] [Accepted: 06/20/2024] [Indexed: 06/26/2024]
Abstract
Occult hepatitis B virus (HBV) infection (OBI) is a significant challenge for HBV prevention and control. We investigated the prevalence and surface (S) gene mutations of OBI among blood donors in Huzhou City, eastern China. The hepatitis B surface antigen (HBsAg) was routinely screened among 44,256 blood donors. HBV-DNA was detected using the Roche cobas®system. Serum samples that were HBsAg negative and HBV-DNA positive were selected, and the HBV S gene was amplified and sequenced. HBV genotype and S gene mutations were analyzed. The OBI rate in these blood donors was 0.070 % (31/44,256). Among the blood donors with OBI, only two cases (2/31, 6.5 %) were anti-HBc negative. The S gene sequences of 28 samples were successfully obtained, and we found that HBV genotype C (21/28, 70 %) was predominant among blood donors with OBI. Most S gene mutations were associated with OBI, and the high frequency mutations included N40S, G44E, Q51R/P, T113A/S,T118K/M, P120Q/S/T, and Y161F/S. Notably, amino acid substitutions at some sites differed from those reported previously, such as Y72F, G102V, P127L, Q129P, and S143T. Additionally, six novel mutations (S31I/N/R, P46L, S58C, C76Y, Y200F/C, and I208T) that may be associated with OBI were found. OBI was detected in a certain proportion of blood donors in Huzhou City. S gene mutations play an important role in OBI development. Further research is required to explore the functions of novel S gene mutants in OBI pathogenesis. The findings of this study may provide important insights to prevent HBV transmission through blood transfusions.
Collapse
Affiliation(s)
- Yanping Mo
- Huzhou Center Blood Station, 577 Fenghuang Road, Huzhou, Zhejiang 313000, China
| | - Fang Jin
- Departmentof Precision Medicine, Huzhou Central Hospital, Affiliated Central Hospital, Huzhou University, Huzhou, Zhejiang 313000, China; Huzhou Key Laboratory of Precision Medicine Research and Translation for Infectious Diseases, Huzhou Central Hospital, Affiliated Huzhou Hospital, Zhejiang University School of Medicine, Huzhou, Zhejiang 313000, China
| | - Dongli Li
- Departmentof Precision Medicine, Huzhou Central Hospital, Affiliated Central Hospital, Huzhou University, Huzhou, Zhejiang 313000, China; Huzhou Key Laboratory of Precision Medicine Research and Translation for Infectious Diseases, Huzhou Central Hospital, Affiliated Huzhou Hospital, Zhejiang University School of Medicine, Huzhou, Zhejiang 313000, China
| | - Weihua Zou
- Department of Laboratory Medicine, Huzhou Central Hospital, Affiliated Central Hospital, Huzhou University, Huzhou, Zhejiang 313000, China
| | - Jianfeng Zhong
- Huzhou Key Laboratory of Precision Medicine Research and Translation for Infectious Diseases, Huzhou Central Hospital, Affiliated Huzhou Hospital, Zhejiang University School of Medicine, Huzhou, Zhejiang 313000, China; Department of Infectious Diseases, Huzhou Central Hospital, Affiliated Central Hospital, Huzhou University, Huzhou, Zhejiang 313000, China
| | - Zhaowei Tong
- Huzhou Key Laboratory of Precision Medicine Research and Translation for Infectious Diseases, Huzhou Central Hospital, Affiliated Huzhou Hospital, Zhejiang University School of Medicine, Huzhou, Zhejiang 313000, China; Department of Infectious Diseases, Huzhou Central Hospital, Affiliated Central Hospital, Huzhou University, Huzhou, Zhejiang 313000, China
| | - Weihong Wang
- Huzhou Key Laboratory of Precision Medicine Research and Translation for Infectious Diseases, Huzhou Central Hospital, Affiliated Huzhou Hospital, Zhejiang University School of Medicine, Huzhou, Zhejiang 313000, China; Department of Infectious Diseases, Huzhou Central Hospital, Affiliated Central Hospital, Huzhou University, Huzhou, Zhejiang 313000, China
| | - Fuchu Qian
- Departmentof Precision Medicine, Huzhou Central Hospital, Affiliated Central Hospital, Huzhou University, Huzhou, Zhejiang 313000, China; Huzhou Key Laboratory of Precision Medicine Research and Translation for Infectious Diseases, Huzhou Central Hospital, Affiliated Huzhou Hospital, Zhejiang University School of Medicine, Huzhou, Zhejiang 313000, China.
| |
Collapse
|
2
|
Pondé RADA, Amorim GDSP. Exchanges in the 'a' determinant of the hepatitis B virus surface antigen revisited. Virology 2024; 599:110184. [PMID: 39127000 DOI: 10.1016/j.virol.2024.110184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 07/02/2024] [Accepted: 07/17/2024] [Indexed: 08/12/2024]
Abstract
The hepatitis B virus surface antigen's (HBsAg) 'a' determinant comprises a sequence of amino acid residues located in the major hydrophilic region of the S protein, whose exchanges are closely associated with compromising the antigenicity and immunogenicity of that antigen. The HBsAg is generally present in the bloodstream of individuals with acute or chronic hepatitis B virus (HBV) infection. It is classically known as the HBV infection marker, and is therefore the first marker to be investigated in the laboratory in the clinical hypothesis of infection by this agent. One of the factors that compromises the HBsAg detection in the bloodstream by the assays adopted in serological screening in both clinical contexts is the loss of S protein antigenicity. This can occur due to mutations that emerge in the HBV genome regions that encode the S protein, especially for its immunodominant region - the 'a' determinant. These mutations can induce exchanges of amino acid residues in the S protein's primary structure, altering its tertiary structure and the antigenic conformation, which may not be recognized by anti-HBs antibodies, compromising the infection diagnosis. In addition, these exchanges can render ineffective the anti-HBs antibodies action acquired by vaccination, compromise the effectiveness of the chronically HBV infected patient's treatment, and also the HBsAg immunogenicity, by promoting its retention within the cell. In this review, the residues exchange that alter the S protein's structure is revisited, as well as the mechanisms that lead to the HBsAg antigenicity loss, and the clinical, laboratory and epidemiological consequences of this phenomenon.
Collapse
Affiliation(s)
- Robério Amorim de Almeida Pondé
- Secretaria de Estado da Saúde -SES/Superintendência de Vigilância Em Saúde-SUVISA/GO, Gerência de Vigilância Epidemiológica de Doenças Transmissíveis-GVEDT/Coordenação de Análises e Pesquisas-CAP, Goiânia, Goiás, Brazil; Laboratory of Human Virology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, Goiás, Brazil.
| | | |
Collapse
|
3
|
Hossain MG, Ueda K. Regulation of Hepatitis B Virus Replication by Modulating Endoplasmic Reticulum Stress (ER-Stress). Int J Microbiol 2024; 2024:9117453. [PMID: 39246409 PMCID: PMC11379510 DOI: 10.1155/2024/9117453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 08/21/2024] [Indexed: 09/10/2024] Open
Abstract
Hepatitis B virus (HBV), resistant to several antiviral drugs due to viral genomic mutations, has been reported, which aggravates chronic infection and leads to hepatocellular carcinoma. Therefore, host cellular factors/signaling modulation might be an alternative way of treatment for drug-resistant HBV. Here, we investigated the viral protein expression, replication, and virion production using endoplasmic reticulum (ER) stress-modulating chemicals, tunicamycin (an ER-stress inducer), and salubrinal (an ER-stress inhibitor). We found that ER-stress could be induced by HBV replication in transfected HepG2 cells as well as by tunicamycin as demonstrated by dual luciferase assay. HBV intracellular core-associated DNA quantified by qPCR has been significantly increased by tunicamycin in transfected HepG2 cells. Inversely, intracellular core associated and extracellular particle DNA has been significantly decreased in a dose-dependent manner in salubrinal-treated HepG2 cells transfected with HBV-replicating plasmid pHBI. Similar results were found in stably HBV-expressing hepatoblastoma (HB611) cells treated with salubrinal. However, increased or decreased ER-stress by tunicamycin or salubrinal treatment, respectively, has been confirmed by expression analysis of grp78 using Western blot. In addition, Western blot results demonstrated that the expression of HBV core protein and large HBsAg is increased and decreased by tunicamycin and salubrinal, respectively. In conclusion, the sal-mediated inhibition of the HBV replication and virion production might be due to the simultaneous reduction of core and large HBsAg expression and maintaining the ER homeostasis. These results of HBV replication regulation by modulation of ER-stress dynamics would be useful for designing/identifying anti-HBV drugs targeting cellular signaling pathways.
Collapse
Affiliation(s)
- Md Golzar Hossain
- Department of Microbiology and Hygiene Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Keiji Ueda
- Division of Virology Department of Microbiology and Immunology Graduate School of Medicine Osaka University, Osaka, Japan
| |
Collapse
|
4
|
Zhang J, Wang Q, Yuan W, Li J, Yuan Q, Zhang J, Xia N, Wang Y, Li J, Tong S. Both middle and large envelope proteins can mediate neutralization of hepatitis B virus infectivity by anti-preS2 antibodies: escape by naturally occurring preS2 deletions. J Virol 2024; 98:e0192923. [PMID: 39078152 PMCID: PMC11334434 DOI: 10.1128/jvi.01929-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 07/02/2024] [Indexed: 07/31/2024] Open
Abstract
Hepatitis B virus (HBV) expresses co-terminal large (L), middle (M), and small (S) envelope proteins containing preS1/preS2/S, preS2/S, and S domain alone, respectively. S and preS1 domains mediate sequential virion attachment to heparan sulfate proteoglycans and sodium taurocholate cotransporting polypeptide (NTCP), respectively, which can be blocked by anti-S and anti-preS1 antibodies. How anti-preS2 antibodies neutralize HBV infectivity remains enigmatic. The late stage of chronic HBV infection often selects for mutated preS2 translation initiation codon to prevent M protein expression, or in-frame preS2 deletions to shorten both L and M proteins. When introduced to infectious clone of genotype C or D, both M-minus mutations and most 5' preS2 deletions sustained virion production. Such mutant progeny viral particles were infectious in NTCP-reconstituted HepG2 cells. Neutralization experiments were performed on the genotype D clone. Although remaining susceptible to anti-preS1 and anti-S neutralizing antibodies, M-minus mutants were only partially neutralized by two anti-preS2 antibodies tested while preS2 deletion mutants were resistant. By infection experiments using viral particles with lost versus increased M protein expression, or a neutralization escaping preS2 deletion only present on L or M protein, we found that both full-length L and M proteins contributed to virus neutralization by the two anti-preS2 antibodies. Thus, immune escape could be a driving force for the selection of M-minus mutations, and especially preS2 deletions. The fact that both L and M proteins could mediate neutralization by anti-preS2 antibodies may shed light on the underlying molecular mechanism.IMPORTANCEThe large (L), middle (M), and small (S) envelope proteins of hepatitis B virus (HBV) contain preS1/preS2/S, preS2/S, and S domain alone, respectively. The discovery of heparan sulfate proteoglycans and sodium taurocholate cotransporting polypeptide (NTCP) as the low- and high-affinity HBV receptors could explain neutralizing potential of anti-S and anti-preS1 antibodies, respectively, but how anti-preS2 neutralizing antibodies work remains enigmatic. In this study, we found two M-minus mutants in the context of genotype D partially escaped two anti-preS2 neutralizing antibodies in NTCP-reconstituted HepG2 cells, while several naturally occurring preS2 deletion mutants escaped both antibodies. By point mutations to eliminate or enhance M protein expression, and by introducing preS2 deletion selectively to L or M protein, we found binding of anti-preS2 antibodies to both L and M proteins contributed to neutralization of wild-type HBV infectivity. Our finding may shed light on the possible mechanism(s) whereby anti-preS2 antibodies neutralize HBV infectivity.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Pathobiology, Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Qianru Wang
- Department of Pathobiology, Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Wenqing Yuan
- Liver Research Center, Rhode Island Hospital, The Warren Alpert School of Medicine, Brown University, Providence, Rhode Island, USA
| | - Jing Li
- Liver Research Center, Rhode Island Hospital, The Warren Alpert School of Medicine, Brown University, Providence, Rhode Island, USA
- Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Quan Yuan
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, China
| | - Jiming Zhang
- Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Ningshao Xia
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, China
| | - Yongxiang Wang
- Department of Pathobiology, Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Jisu Li
- Liver Research Center, Rhode Island Hospital, The Warren Alpert School of Medicine, Brown University, Providence, Rhode Island, USA
| | - Shuping Tong
- Department of Pathobiology, Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Fudan University, Shanghai, China
- Liver Research Center, Rhode Island Hospital, The Warren Alpert School of Medicine, Brown University, Providence, Rhode Island, USA
| |
Collapse
|
5
|
Xie C, Lu D. Evolution and diversity of the hepatitis B virus genome: Clinical implications. Virology 2024; 598:110197. [PMID: 39098184 DOI: 10.1016/j.virol.2024.110197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/14/2024] [Accepted: 07/30/2024] [Indexed: 08/06/2024]
Abstract
Hepatitis B virus (HBV) infection remains a significant global health burden. The genetic variation of HBV is complex. HBV can be divided into nine genotypes, which show significant differences in geographical distribution, clinical manifestations, transmission routes and treatment response. In recent years, substantial progress has been made through various research methods in understanding the development, pathogenesis, and antiviral treatment response of clinical disease associated with HBV genetic variants. This progress provides important theoretical support for a deeper understanding of the natural history of HBV infection, virus detection, drug treatment, vaccine development, mother-to-child transmission, and surveillance management. This review summarizes the mechanisms of HBV diversity, discusses methods used to detect viral diversity in current studies, and the impact of viral genome variation during infection on the development of clinical disease.
Collapse
Affiliation(s)
- Chengzuo Xie
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Daiqiang Lu
- Institute of Molecular and Medical Virology, Key Laboratory of Ministry of Education for Viral Pathogenesis & Infection Prevention and Control, School of Medicine, Jinan University, Guangzhou, Guangdong Province, 510632, China.
| |
Collapse
|
6
|
Kuo TY, Chang JCJ, Chien YC, Jan CF. The seroepidemiology of isolated core antibody against hepatitis B among Taiwanese adults - A large hospital-based study. J Formos Med Assoc 2024; 123:693-700. [PMID: 37978028 DOI: 10.1016/j.jfma.2023.10.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 10/17/2023] [Accepted: 10/20/2023] [Indexed: 11/19/2023] Open
Abstract
BACKGROUND/PURPOSE This study aims to investigate the prevalence of isolated core antibodies against hepatitis B (IAHBc) in different birth cohorts using a large medical record database. METHODS Hepatitis B viral serological test data were collected from a chart cloud database at a medical center in Taiwan between January 2006 and December 2018. The data collected included birth year, sex, hepatitis B viral markers (HBsAg, anti-HBs or anti-HBc), and hepatitis B vaccination records. Enrolled patients were grouped according to their birth year into three categories: ≤ 1986, 1987-1992, and ≥ 1993, which correspond to no neonatal hepatitis B immunization, plasma-derived HB vaccine (PDHBV), and recombinant hepatitis B vaccine (RHBV), respectively. Prevalence of hepatitis B viral seromarkers, including IAHBc, was calculated by sex, age groups, and birth cohorts. Those who underwent repeated hepatitis B serology tests were included for further analysis to follow up their serostatus. RESULTS A total of 117,335 adults with complete hepatitis B serologic data were analyzed. Among them, 6641 individuals (5.7 %) were found to have IAHBc. The prevalence of IAHBc was 11.4 %, 0.8 %, and 0.3 % among those born before 1986, between 1987 and 1992, and after 1992, respectively. Among the 690 subjects with repeated blood tests and complete hepatitis B serologic data, 551 cases (79.9 %) remained IAHBc. The other cases included resolved infection status (13.9 %), seronegativity for three HB seromarkers (3 %), and carrier of hepatitis B virus (2.3 %). CONCLUSION The management of individuals with IAHBc should be tailored to their age, vaccination status, and risk factors for occult hepatitis B viral infection.
Collapse
Affiliation(s)
- Ting-Ya Kuo
- Department of Family Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Jerry Che-Jui Chang
- Department of Family Medicine, National Taiwan University Hospital Hsin-Chu Branch, Hsin-Chu, Taiwan; College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Yin-Chu Chien
- Genomic Research Center, Academia Sinica, Taipei, Taiwan
| | - Chyi-Feng Jan
- Department of Family Medicine, National Taiwan University Hospital, Taipei, Taiwan; College of Medicine, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
7
|
Al-Busafi SA, Alwassief A. Global Perspectives on the Hepatitis B Vaccination: Challenges, Achievements, and the Road to Elimination by 2030. Vaccines (Basel) 2024; 12:288. [PMID: 38543922 PMCID: PMC10975970 DOI: 10.3390/vaccines12030288] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 02/23/2024] [Accepted: 02/27/2024] [Indexed: 10/21/2024] Open
Abstract
Annually, more than 1.5 million preventable new hepatitis B (HBV) infections continue to occur, with an estimated global burden of 296 million individuals living with chronic hepatitis B infection. This substantial health challenge results in over 820,000 annual deaths being attributed to complications such as liver cirrhosis and hepatocellular carcinoma (HCC). The HBV vaccination remains the cornerstone of public health policy to prevent chronic hepatitis B and its related complications. It serves as a crucial element in the global effort to eliminate HBV, as established by the World Health Organization (WHO), with an ambitious 90% vaccination target by 2030. However, reports on global birth dose coverage reveal substantial variability, with an overall coverage rate of only 46%. This comprehensive review thoroughly examines global trends in HBV vaccination coverage, investigating the profound impact of vaccination on HBV prevalence and its consequences across diverse populations, including both high-risk and general demographics. Additionally, the review addresses the essential formidable challenges and facilitating factors for achieving WHO's HBV vaccination coverage objectives and elimination strategies in the coming decade and beyond.
Collapse
Affiliation(s)
- Said A. Al-Busafi
- Division of Gastroenterology and Hepatology, Department of Medicine, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat 123, Oman
| | - Ahmed Alwassief
- Division of Gastroenterology and Hepatology, Department of Medicine, Sultan Qaboos University Hospital, Muscat 123, Oman
| |
Collapse
|
8
|
Khan S, Anwer A, Sevak JK, Trehanpati N, Kazim SN. Cytokines Expression Compared to the Determinants of Cellular Apoptosis Prominently Attributes to the Deleterious Effects of 'A' Determinant Surface Gene Mutations in HBV Transfected Hepatoma Cell Line. Immunol Invest 2024; 53:224-240. [PMID: 38095846 DOI: 10.1080/08820139.2023.2288841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2024]
Abstract
BACKGROUND Previous studies have explored the role of AKT protein in anti-apoptotic/proliferative activities. However, there has been a lack of information regarding the role of Akt in association with cytokines expression in HBV-related (wild type HBV and HBV with mutations of 'a' determinant region) studies either in the case of HBV infection or in transfected hepatoma cells. The present study tries to determine the role of Akt and cytokines expression in the presence of small surface gene mutants in the hepatoma cell line. METHODS Mutations of 'a' determinant region, viz. sA128V and sG145R, were created in wild-type pHBV1.3 by site-directed mutagenesis and transfected in hepatoma cell line. Secretory levels of HBsAg in the wild type as well as in both the mutants were analyzed by ELISA. Apoptotic analysis of transfected cells was studied by flow cytometry. Expression analysis of Akt and cytokines (TNF-alpha, IL-6, and IFN-gamma) was done by qPCR. RESULTS The presence of significantly more alive cells in sG145R than sA128V transfected cells may be due to the up-regulation of the Akt gene expression. Cytokines expression was nearly similar between sA128V and wild-type pHBV1.3 transfected cells. Presence of sG145R showed dramatically high cytokines expression than sA128V and wild-type pHBV1.3. CONCLUSION Cytokines expression predominantly contributes to the detrimental effects associated with the 'a' determinant region mutations particularly sG145R mutant. It may also be inferred that mechanisms associated with cellular apoptosis apparently do not play any major role to assign the 'a' determinant small surface gene mutation(s) for their pathological outcome.
Collapse
Affiliation(s)
- Saniya Khan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Ayesha Anwer
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Jayesh Kumar Sevak
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
- Department of Molecular and Cellular Medicine, Institute of Liver and Biliary Sciences, New Delhi, India
| | - Nirupama Trehanpati
- Department of Molecular and Cellular Medicine, Institute of Liver and Biliary Sciences, New Delhi, India
| | - Syed Naqui Kazim
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| |
Collapse
|
9
|
Lazarevic I, Banko A, Miljanovic D, Cupic M. Hepatitis B Surface Antigen Isoforms: Their Clinical Implications, Utilisation in Diagnosis, Prevention and New Antiviral Strategies. Pathogens 2024; 13:46. [PMID: 38251353 PMCID: PMC10818932 DOI: 10.3390/pathogens13010046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 12/27/2023] [Accepted: 01/02/2024] [Indexed: 01/23/2024] Open
Abstract
The hepatitis B surface antigen (HBsAg) is a multifunctional glycoprotein composed of large (LHB), middle (MHB), and small (SHB) subunits. HBsAg isoforms have numerous biological functions during HBV infection-from initial and specific viral attachment to the hepatocytes to initiating chronic infection with their immunomodulatory properties. The genetic variability of HBsAg isoforms may play a role in several HBV-related liver phases and clinical manifestations, from occult hepatitis and viral reactivation upon immunosuppression to fulminant hepatitis and hepatocellular carcinoma (HCC). Their immunogenic properties make them a major target for developing HBV vaccines, and in recent years they have been recognised as valuable targets for new therapeutic approaches. Initial research has already shown promising results in utilising HBsAg isoforms instead of quantitative HBsAg for correctly evaluating chronic infection phases and predicting functional cures. The ratio between surface components was shown to indicate specific outcomes of HBV and HDV infections. Thus, besides traditional HBsAg detection and quantitation, HBsAg isoform quantitation can become a useful non-invasive biomarker for assessing chronically infected patients. This review summarises the current knowledge of HBsAg isoforms, their potential usefulness and aspects deserving further research.
Collapse
Affiliation(s)
- Ivana Lazarevic
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (A.B.); (D.M.); (M.C.)
| | | | | | | |
Collapse
|
10
|
Bubonja-Šonje M, Peruč D, Abram M, Mohar-Vitezić B. Prevalence of occult hepatitis B virus infection and characterisation of hepatitis B surface antigen mutants among adults in western Croatia. Ann Hepatol 2024; 29:101156. [PMID: 37758118 DOI: 10.1016/j.aohep.2023.101156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 07/27/2023] [Accepted: 09/11/2023] [Indexed: 10/03/2023]
Abstract
INTRODUCTION AND OBJECTIVES Occult hepatitis B virus (HBV) infection (OBI) is characterised by low levels of hepatitis B virus (HBV) DNA in the blood/liver of patients with negative hepatitis B surface antigen (HBsAg). This study aimed to determine the OBI prevalence and virological characteristics (viral genotypes and HBsAg mutants) in patients with an "anti-HBc only" serological profile. MATERIALS AND METHODS A total of 24 900 serum samples were routinely screened for hepatitis B markers over a five-year period. All anti-HBc-positive/HBsAg-negative/anti-HBs-negative sera were selected and analysed for the presence of HBV DNA. Mutational analyses of the HBs gene and polymerase gene sequences were performed. RESULTS 1749 (7.02%) sera were anti-HBc positive, and 113 (0.45%) sera had an "anti-HBc only" serological profile (HBsAg/anti-HBs negative). HBV DNA was detected in 12/113 (10.61%) "anti-HBc only" positive sera, representing 0.048% of all routinely tested samples. Due to extremely low viremia, HBV genome was successfully sequenced in only two sera where subgenotype D3 was confirmed. Mutational analyses of the S gene revealed multiple missense mutations. In addition to the M133I, Y134F, and G145R mutations, already associated with diagnostic escape, we also found nine novel OBI-related S-gene mutations - S136Y, F158L, K160N, E164G, S167L, A168V, L175S, S210I and F212C. CONCLUSIONS We detected multiple known and novel S gene mutations in 2/12 (16.6%) OBI cases, nevertheless, further studies are required to determine their role in the pathogenesis of OBI. Understanding the frequencies of clinically relevant HBV mutations may contribute to improvement of diagnostic protocols.
Collapse
Affiliation(s)
- Marina Bubonja-Šonje
- Department of Microbiology and Parasitology, Faculty of Medicine, University of Rijeka, Braće Branchetta 20, Rijeka 51000, Croatia; Department of Clinical Microbiology, Clinical Hospital Centre Rijeka, Krešimirova 42, Rijeka 51000, Croatia.
| | - Dolores Peruč
- Department of Microbiology and Parasitology, Faculty of Medicine, University of Rijeka, Braće Branchetta 20, Rijeka 51000, Croatia; Department of Clinical Microbiology, Teaching Institute of Public Health of Primorsko-Goranska County, Krešimirova 52a, Rijeka, Croatia
| | - Maja Abram
- Department of Microbiology and Parasitology, Faculty of Medicine, University of Rijeka, Braće Branchetta 20, Rijeka 51000, Croatia; Department of Clinical Microbiology, Clinical Hospital Centre Rijeka, Krešimirova 42, Rijeka 51000, Croatia
| | - Bojana Mohar-Vitezić
- Department of Microbiology and Parasitology, Faculty of Medicine, University of Rijeka, Braće Branchetta 20, Rijeka 51000, Croatia; Department of Clinical Microbiology, Clinical Hospital Centre Rijeka, Krešimirova 42, Rijeka 51000, Croatia
| |
Collapse
|
11
|
Osasona OG, Oguntoye OO, Arowosaye AO, Abdulkareem LO, Adewumi MO, Happi C, Folarin O. Patterns of hepatitis b virus immune escape and pol/rt mutations across clinical cohorts of patients with genotypes a, e and occult hepatitis b infection in Nigeria: A multi-centre study. Virulence 2023; 14:2218076. [PMID: 37262110 DOI: 10.1080/21505594.2023.2218076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 03/27/2023] [Accepted: 05/20/2023] [Indexed: 06/03/2023] Open
Abstract
Hepatitis B virus (HBV) immune escape and Pol/RT mutations account for HBV immunoprophylactic, therapeutic, and diagnostic failure globally. Little is known about circulating HBV immune escape and Pol/RT mutants in Nigeria. This study focused on narrowing the knowledge gap of the pattern and prevalence of the HBV mutants across clinical cohorts of infected patients in southwestern Nigeria. Ninety-five enrollees were purposively recruited across clinical cohorts of HBV-infected patients with HBsAg or anti-HBc positive serological outcome and occult HBV infection. Total DNA was extracted from patients' sera. HBV S and Pol gene-specific nested PCR amplification was carried out. The amplicons were further sequenced for serotypic, genotypic, phylogenetic, and mutational analysis. HBV S and Pol genes were amplified in 60 (63.2%) and 19 (20%) of HBV isolates, respectively. All the sixty HBV S gene and 14 of 19 Pol gene sequences were exploitable. The ayw4 serotype was predominant (95%) while ayw1 serotype was identified in 5% of isolates. Genotype E predominates in 95% of sequences, while genotype A, sub-genotype A3 was observed in 5%. Prevalence of HBV IEMs in the "a" determinant region was 29%. Commonest HBV IEM was S113T followed by G145A and D144E. The Pol/RT mutations rtV214A and rtI163V among others were identified in this study. This study provided data on the occurrence of existing and new HBV IEMs and Pol gene mutations in Nigeria.
Collapse
Affiliation(s)
- Oluwadamilola G Osasona
- African Centre of Excellence for the Genomics of Infectious Diseases, Redeemers University, Ede, Nigeria
| | | | - Abiola O Arowosaye
- Department of Virology, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Lukman O Abdulkareem
- Department of Internal Medicine, University of Abuja Teaching Hospital, Gwagwalada, Abuja, Nigeria
| | - Moses O Adewumi
- Department of Virology, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Christian Happi
- African Centre of Excellence for the Genomics of Infectious Diseases, Redeemers University, Ede, Nigeria
| | - Onikepe Folarin
- African Centre of Excellence for the Genomics of Infectious Diseases, Redeemers University, Ede, Nigeria
| |
Collapse
|
12
|
Angelo L, Vaillant A, Blanchet M, Labonté P. Pangenomic antiviral effect of REP 2139 in CRISPR/Cas9 engineered cell lines expressing hepatitis B virus surface antigen. PLoS One 2023; 18:e0293167. [PMID: 37910550 PMCID: PMC10619774 DOI: 10.1371/journal.pone.0293167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 10/06/2023] [Indexed: 11/03/2023] Open
Abstract
Chronic hepatitis B remains a global health problem with 296 million people living with chronic HBV infection and being at risk of developing cirrhosis and hepatocellular carcinoma. Non-infectious subviral particles (SVP) are produced in large excess over infectious Dane particles in patients and are the major source of Hepatitis B surface antigen (HBsAg). They are thought to exhaust the immune system, and it is generally considered that functional cure requires the clearance of HBsAg from blood of patient. Nucleic acid polymers (NAPs) antiviral activity lead to the inhibition of HBsAg release, resulting in rapid clearance of HBsAg from circulation in vivo. However, their efficacy has only been demonstrated in limited genotypes in small scale clinical trials. HBV exists as nine main genotypes (A to I). In this study, the HBsAg ORFs from the most prevalent genotypes (A, B, C, D, E, G), which account for over 96% of human cases, were inserted into the AAVS1 safe-harbor of HepG2 cells using CRISPR/Cas9 knock-in. A cell line producing the D144A vaccine escape mutant was also engineered. The secretion of HBsAg was confirmed into these new genotype cell lines (GCLs) and the antiviral activity of the NAP REP 2139 was then assessed. The results demonstrate that REP 2139 exerts an antiviral effect in all genotypes and serotypes tested in this study, including the vaccine escape mutant, suggesting a pangenomic effect of the NAPs.
Collapse
Affiliation(s)
- Léna Angelo
- Institut National de la Recherche Scientifique–Centre Armand-Frappier Santé Biotechnologies, Laval, Canada
| | | | - Matthieu Blanchet
- Institut National de la Recherche Scientifique–Centre Armand-Frappier Santé Biotechnologies, Laval, Canada
- Replicor Inc, Montréal, Canada
| | - Patrick Labonté
- Institut National de la Recherche Scientifique–Centre Armand-Frappier Santé Biotechnologies, Laval, Canada
| |
Collapse
|
13
|
Lempp FA, Volz T, Cameroni E, Benigni F, Zhou J, Rosen LE, Noack J, Zatta F, Kaiser H, Bianchi S, Lombardo G, Jaconi S, Vincenzetti L, Imam H, Soriaga LB, Passini N, Belnap DM, Schulze A, Lütgehetmann M, Telenti A, Cathcart AL, Snell G, Purcell LA, Hebner CM, Urban S, Dandri M, Corti D, Schmid MA. Potent broadly neutralizing antibody VIR-3434 controls hepatitis B and D virus infection and reduces HBsAg in humanized mice. J Hepatol 2023; 79:1129-1138. [PMID: 37459920 DOI: 10.1016/j.jhep.2023.07.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 06/12/2023] [Accepted: 07/05/2023] [Indexed: 09/29/2023]
Abstract
BACKGROUND & AIMS Chronic hepatitis B is a global public health problem, and coinfection with hepatitis delta virus (HDV) worsens disease outcome. Here, we describe a hepatitis B virus (HBV) surface antigen (HBsAg)-targeting monoclonal antibody (mAb) with the potential to treat chronic hepatitis B and chronic hepatitis D. METHODS HBsAg-specific mAbs were isolated from memory B cells of HBV vaccinated individuals. In vitro neutralization was determined against HBV and HDV enveloped with HBsAg representing eight HBV genotypes. Human liver-chimeric mice were treated twice weekly with a candidate mAb starting 3 weeks post HBV inoculation (spreading phase) or during stable HBV or HBV/HDV coinfection (chronic phase). RESULTS From a panel of human anti-HBs mAbs, VIR-3434 was selected and engineered for pre-clinical development. VIR-3434 targets a conserved, conformational epitope within the antigenic loop of HBsAg and neutralized HBV and HDV infection with higher potency than hepatitis B immunoglobulins in vitro. Neutralization was pan-genotypic against strains representative of HBV genotypes A-H. In the spreading phase of HBV infection in human liver-chimeric mice, a parental mAb of VIR-3434 (HBC34) prevented HBV dissemination and the increase in intrahepatic HBV RNA and covalently closed circular DNA. In the chronic phase of HBV infection or co-infection with HDV, HBC34 treatment decreased circulating HBsAg by >1 log and HDV RNA by >2 logs. CONCLUSIONS The potently neutralizing anti-HBs mAb VIR-3434 reduces circulating HBsAg and HBV/HDV viremia in human liver-chimeric mice. VIR-3434 is currently in clinical development for treatment of patients with chronic hepatitis B or D. IMPACT AND IMPLICATIONS Chronic infection with hepatitis B virus and co-infection with hepatitis D virus place approximately 290 million individuals worldwide at risk of severe liver disease and cancer. Available treatments result in low rates of functional cure or require lifelong therapy that does not eliminate the risk of liver disease. We isolated and characterized a potent human antibody that neutralizes hepatitis B and D viruses and reduces infection in a mouse model. This antibody could provide a new treatment for patients with chronic hepatitis B and D.
Collapse
Affiliation(s)
| | - Tassilo Volz
- Department of Internal Medicine, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; German Center for Infection Research, Hamburg-Lübeck-Borstel-Riems and Heidelberg Sites, Germany
| | - Elisabetta Cameroni
- Humabs Biomed SA, A Subsidiary of Vir Biotechnology, 6500 Bellinzona, Switzerland
| | - Fabio Benigni
- Humabs Biomed SA, A Subsidiary of Vir Biotechnology, 6500 Bellinzona, Switzerland
| | - Jiayi Zhou
- Vir Biotechnology, San Francisco, California 94158, USA
| | - Laura E Rosen
- Vir Biotechnology, San Francisco, California 94158, USA
| | - Julia Noack
- Vir Biotechnology, San Francisco, California 94158, USA
| | - Fabrizia Zatta
- Humabs Biomed SA, A Subsidiary of Vir Biotechnology, 6500 Bellinzona, Switzerland
| | - Hannah Kaiser
- Vir Biotechnology, San Francisco, California 94158, USA
| | - Siro Bianchi
- Humabs Biomed SA, A Subsidiary of Vir Biotechnology, 6500 Bellinzona, Switzerland
| | - Gloria Lombardo
- Humabs Biomed SA, A Subsidiary of Vir Biotechnology, 6500 Bellinzona, Switzerland
| | - Stefano Jaconi
- Humabs Biomed SA, A Subsidiary of Vir Biotechnology, 6500 Bellinzona, Switzerland
| | - Lucia Vincenzetti
- Humabs Biomed SA, A Subsidiary of Vir Biotechnology, 6500 Bellinzona, Switzerland
| | - Hasan Imam
- Vir Biotechnology, San Francisco, California 94158, USA
| | | | - Nadia Passini
- Humabs Biomed SA, A Subsidiary of Vir Biotechnology, 6500 Bellinzona, Switzerland
| | - David M Belnap
- School of Biological Sciences and Department of Biochemistry, University of Utah, Salt Lake City, Utah 84112, USA
| | - Andreas Schulze
- Department of Infectious Diseases, Molecular Virology, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Marc Lütgehetmann
- German Center for Infection Research, Hamburg-Lübeck-Borstel-Riems and Heidelberg Sites, Germany; Department of Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | | | | | - Gyorgy Snell
- Vir Biotechnology, San Francisco, California 94158, USA
| | | | | | - Stephan Urban
- German Center for Infection Research, Hamburg-Lübeck-Borstel-Riems and Heidelberg Sites, Germany; Department of Infectious Diseases, Molecular Virology, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Maura Dandri
- Department of Internal Medicine, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; German Center for Infection Research, Hamburg-Lübeck-Borstel-Riems and Heidelberg Sites, Germany
| | - Davide Corti
- Humabs Biomed SA, A Subsidiary of Vir Biotechnology, 6500 Bellinzona, Switzerland
| | - Michael A Schmid
- Humabs Biomed SA, A Subsidiary of Vir Biotechnology, 6500 Bellinzona, Switzerland.
| |
Collapse
|
14
|
Sanada T, Oda Y, Ohashi C, Isotani K, Goh Y, Kohara M. Hybrid large hepatitis B surface protein composed of two viral genotypes C and D induces strongly cross-neutralizing antibodies. Vaccine 2023; 41:6514-6521. [PMID: 37739886 DOI: 10.1016/j.vaccine.2023.09.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/14/2023] [Accepted: 09/15/2023] [Indexed: 09/24/2023]
Abstract
Hepatitis B virus (HBV) vaccination is known to effectively decrease the risk of HBV infection. However, several issues need to be addressed in order to develop an improved HBV vaccine. Although the HBV vaccine has been shown to be effective, this vaccine needs to be more efficacious in defined groups, including non-responders (i.e., individuals who do not develop a protective response even after vaccination) and in health care workers and travelers who require rapid protection. Furthermore, it has been reported that universal HBV vaccination has accelerated the appearance of vaccine-escape mutants resulting from the accumulation of mutations altering the "a" determinant of the hepatitis B surface (HBs) protein. To address these problems, we have been focusing on the large HBs (LHBs) protein, which consists of three domains: pre-S1, pre-S2, and S (in N- to C-terminal order). To enhance the immunogenicity of LHBs, we developed a yeast-derived hybrid LHBs (hy-LHBs) antigen composed of the LHBs proteins from two distinct genotypes (Genotypes C and D). The levels of antibodies induced by hy-LHBs immunization were high not only against S, but also against the pre-S1 and pre-S2 domains. Additionally, hy-LHBs immunization induced significantly more strongly cross-reactive neutralizing antibodies than did small HBs (SHBs) or LHBs of any genotype alone. These findings suggested that hy-LHBs might serve as a candidate antigen for use in an improved prophylactic HBV vaccine.
Collapse
Affiliation(s)
- Takahiro Sanada
- Department of Microbiology and Cell Biology, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan
| | - Yasunori Oda
- Kyoto Research Laboratory, Beacle, Inc., 14-1 Yoshida-Kawaracho, Sakyo-ku, Kyoto 606-8305, Japan
| | - Chinatsu Ohashi
- Kyoto Research Laboratory, Beacle, Inc., 14-1 Yoshida-Kawaracho, Sakyo-ku, Kyoto 606-8305, Japan
| | - Kentaro Isotani
- Kyoto Research Laboratory, Beacle, Inc., 14-1 Yoshida-Kawaracho, Sakyo-ku, Kyoto 606-8305, Japan
| | - Yasumasa Goh
- Kyoto Research Laboratory, Beacle, Inc., 14-1 Yoshida-Kawaracho, Sakyo-ku, Kyoto 606-8305, Japan
| | - Michinori Kohara
- Department of Microbiology and Cell Biology, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan.
| |
Collapse
|
15
|
Sant'Anna TB, Araujo NM. Hepatitis B Virus Genotype D: An Overview of Molecular Epidemiology, Evolutionary History, and Clinical Characteristics. Microorganisms 2023; 11:1101. [PMID: 37317074 PMCID: PMC10221421 DOI: 10.3390/microorganisms11051101] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/19/2023] [Accepted: 04/20/2023] [Indexed: 06/16/2023] Open
Abstract
The hepatitis B virus (HBV) genotype D (HBV/D) is the most extensively distributed genotype worldwide with distinct molecular and epidemiological features. This report provides an up-to-date review on the history of HBV/D subgenotyping and misclassifications, along with large-scale analysis of over 1000 HBV/D complete genome sequences, with the aim of gaining a thorough understanding of the global prevalence and geographic distribution of HBV/D subgenotypes. We have additionally explored recent paleogenomic findings, which facilitated the detection of HBV/D genomes dating back to the late Iron Age and provided new perspectives on the origins of modern HBV/D strains. Finally, reports on distinct disease outcomes and responses to antiviral therapy among HBV/D subgenotypes are discussed, further highlighting the complexity of this genotype and the importance of HBV subgenotyping in the management and treatment of hepatitis B.
Collapse
Affiliation(s)
- Thaís B Sant'Anna
- Laboratory of Molecular Virology and Parasitology, Oswaldo Cruz Institute, FIOCRUZ, Rio de Janeiro 21041-250, RJ, Brazil
| | - Natalia M Araujo
- Laboratory of Molecular Virology and Parasitology, Oswaldo Cruz Institute, FIOCRUZ, Rio de Janeiro 21041-250, RJ, Brazil
| |
Collapse
|
16
|
Osasona OG, Oguntoye T, Eromon P, Abdulkareem L, Arowosaye AO, Ariyo OE, George UE, Yusuf M, Adewumi OM, Happi C, Folarin OA. Atypical serologic profiles of hepatitis B virus infection across clinical cohorts of patients in Southwestern Nigeria. J Immunoassay Immunochem 2023; 44:176-191. [PMID: 36681932 DOI: 10.1080/15321819.2023.2168556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Hepatitis B virus (HBV) infection follows a natural course of events predicted by a dynamic interaction between viral antigen and the host immune system, which forms the basis for HBV serological diagnosis. These interactions may deviate from the typical serologic patterns. This study investigates the types of atypical HBV serologic profiles (AHBSP) across clinical cohorts of patients with HBV infection in southwestern Nigeria. This is a cross-sectional, hospital-based, multi-centered study. Patients' sera were analyzed for HBsAg, anti-HBs, HBeAg, anti-HBe, anti-HBc IgM, and anti-HBc IgG by ELISA from 279 study participants attending selected gastroenterology clinics between August 2019 and December 2020. The prevalence of atypical HBV serologic profiles was 27% (n = 76). The mean age of patients was 35.7 ± 11.2 years. The gender distribution involved 183 females (65.6%) and 96 males (34.4%). Across clinical cohorts of patients with atypical serologic profiles, HBeAg Negative, anti-HBe positive with detectable HBV DNA had the highest prevalence of 21% followed by isolated anti-HBc antibody positive, HBsAg negative and detectable HBV DNA, 5%. The atypical serologic profiles, HBeAg positive, HBsAg negative with detectable HBV DNA and concurrent anti-HBs with HBsAg, had the lowest prevalence, 0.4%, respectively. This study identified the considerable presence of atypical HBV serologic profiles across clinical cohorts of HBV infection in southwestern Nigeria.
Collapse
Affiliation(s)
| | - Tosin Oguntoye
- Department of Medicine, Federal Teaching Hospital Ido- Ekiti, Federal Teaching Hospital Ido-Ekiti, Ido Ekiti, Nigeria
| | - Philomena Eromon
- African Center of Excellence for Genomics of Infectious diseases Redeemer's University, Redeemer's University Ede, Ede, Nigeria
| | - Lukman Abdulkareem
- Department of Medicine, University of Abuja Teaching Hospital, Gwagwalada, Nigeria
| | | | - Olumuyiwa Elijah Ariyo
- Department of Medicine, Federal Teaching Hospital Ido- Ekiti, Federal Teaching Hospital Ido-Ekiti, Ido Ekiti, Nigeria
| | - Uwem Etop George
- Department of Biological Sciences, Redeemer's University, Osun, Nigeria
| | - Musa Yusuf
- Department of Medicine, Federal Teaching Hospital Ido- Ekiti, Federal Teaching Hospital Ido-Ekiti, Ido Ekiti, Nigeria
| | | | - Christian Happi
- African Centre of Excellence for Genomics of Infectious Diseases, Department of Biological Sciences, Redeemers University, Ede, Nigeria
| | | |
Collapse
|
17
|
Elbahrawy A, Atalla H, Alboraie M, Alwassief A, Madian A, El Fayoumie M, Tabll AA, Aly HH. Recent Advances in Protective Vaccines against Hepatitis Viruses: A Narrative Review. Viruses 2023; 15:214. [PMID: 36680254 PMCID: PMC9862019 DOI: 10.3390/v15010214] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 01/03/2023] [Accepted: 01/07/2023] [Indexed: 01/15/2023] Open
Abstract
Vaccination has been confirmed to be the safest and, sometimes, the only tool of defense against threats from infectious diseases. The successful history of vaccination is evident in the control of serious viral infections, such as smallpox and polio. Viruses that infect human livers are known as hepatitis viruses and are classified into five major types from A to E, alphabetically. Although infection with hepatitis A virus (HAV) is known to be self-resolving after rest and symptomatic treatment, there were 7134 deaths from HAV worldwide in 2016. In 2019, hepatitis B virus (HBV) and hepatitis C virus (HCV) resulted in an estimated 820,000 and 290,000 deaths, respectively. Hepatitis delta virus (HDV) is a satellite virus that depends on HBV for producing its infectious particles in order to spread. The combination of HDV and HBV infection is considered the most severe form of chronic viral hepatitis. Hepatitis E virus (HEV) is another orally transmitted virus, common in low- and middle-income countries. In 2015, it caused 44,000 deaths worldwide. Safe and effective vaccines are already available to prevent hepatitis A and B. Here, we review the recent advances in protective vaccines against the five major hepatitis viruses.
Collapse
Affiliation(s)
- Ashraf Elbahrawy
- Gastroenterology and Hepatology Unit, Department of Internal Medicine, Al-Azhar University, Cairo 11884, Egypt
| | - Hassan Atalla
- Gastroenterology and Hepatology Unit, Department of Internal Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Mohamed Alboraie
- Gastroenterology and Hepatology Unit, Department of Internal Medicine, Al-Azhar University, Cairo 11884, Egypt
| | - Ahmed Alwassief
- Gastroenterology and Hepatology Unit, Department of Internal Medicine, Al-Azhar University, Cairo 11884, Egypt
- Gastroenterology Unit, Department of Internal Medicine, Sultan Qaboos University Hospital, P.O. Box 50, Muscat 123, Oman
| | - Ali Madian
- Department of Internal Medicine, Faculty of Medicine, Al-Azhar University, Assiut 71524, Egypt
| | - Mohammed El Fayoumie
- Gastroenterology and Hepatology Unit, Department of Internal Medicine, Al-Azhar University, Cairo 11884, Egypt
| | - Ashraf A. Tabll
- Microbial Biotechnology Department, Biotechnology Research Institute, National Research Center, Giza 12622, Egypt
- Egypt Center for Research and Regenerative Medicine (ECRRM), Cairo 11517, Egypt
| | - Hussein H. Aly
- Department of Virology II, National Institute of Infectious Diseases, Toyama1-23-1, Shinjuku-ku, Tokyo 162-8640, Japan
| |
Collapse
|
18
|
Kato T, Akari H. [Neutralization of hepatitis B virus with vaccine-escape mutations by novel hepatitis B vaccine with large-HBs antigen]. Uirusu 2023; 72:149-158. [PMID: 38220203 DOI: 10.2222/jsv.72.149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2024]
Abstract
Although the current hepatitis B (HB) vaccine comprising yeast-derived small hepatitis B surface antigen (HBsAg) is potent and safe and used worldwide, specific concerns should not be ignored, such as the attenuated prophylaxis against hepatitis B virus (HBV) infection with specific amino acid polymorphisms, called vaccine-escape mutations (VEMs). We investigated a novel HB vaccine consisting of large-HBsAg that covers the shortcomings of the current HB vaccine in a nonhuman primate model. The yeast-derived large-HBsAg was mixed with the adjuvant and used to immunize rhesus macaques, and the induction of antibodies to HBsAg was compared with that of the current HB vaccine. The current HB vaccine predominantly induced antibodies to small-HBsAg, whereas immunization with the large-HBsAg vaccine mainly induced antibodies to the preS1 region. Although the antibodies induced by the current HB vaccine could not prevent infection of HBV with VEMs, the large-HBsAg vaccine-induced antibodies neutralized infection of HBV with VEMs at levels similar to those of the wild type. The HBV genotypes that exhibited attenuated neutralization by induced antibodies differed between these vaccines. In conclusion, the novel HB vaccine consisting of large-HBsAg was revealed to be useful to compensate for shortcomings of the current HB vaccine. The combined use of these HB vaccines may be able to induce antibodies that can neutralize HBV strains with VEMs or multiple HBV genotypes.
Collapse
Affiliation(s)
- Takanobu Kato
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
| | - Hirofumi Akari
- Center for the Evolutionary Origins of Human Behavior, Kyoto University, Aichi, Japan
| |
Collapse
|
19
|
Campos-Valdez M, Feustel S, Monroy-Ramírez HC, Barrientos-Salcedo C, Ayón-Pérez MF, Ramos-Márquez ME, Fernández-Galindo DA, Silva-Gómez JA, Santos A, Armendáriz-Borunda J, Sánchez-Orozco LV. Influence of C107R mutation from hepatitis B virus genotype H on in vitro hepatitis B surface antigen detection and IFN-β-1a treatment. Future Virol 2022. [DOI: 10.2217/fvl-2021-0347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Aim: Assess the in vitro effect of hepatitis B virus (HBV) genotype H (HBV/H) with the small surface HBV protein (HBs) C107R mutation on hepatitis B surface antigen (HBsAg) detection, TGFB1, CAT and IFNB1A expression, and the response to IFN-β-1a treatment. Methods: HBV/H wild-type and HBs C107R variant replicons were constructed and transfected into hepatic stellate cells and/or Huh7 that were later treated with IFN-β-1a. HBsAg, HBV-DNA, pgRNA, TGFB1, CAT and IFNB1A expression was analyzed. 3D HBs structure from wild-type and C107R were foreseen by AlphaFold protein predictor, and IFN-β-1a antiviral effect was evaluated. Results: C107R mutation did not impact viral replication, but HBsAg serologic detection was affected. Wild-type and C107R similarly modified gene expression and responded to IFN-β-1a. Conclusion: C107R disrupts the Cys107/Cys138 disulfide bond and impairs HBsAg detection. Independently of the mutation, there were changes in TGFB1, CAT and IFNB1A expression, and a medium response to IFN-β-1a treatment compared with genotype A and C.
Collapse
Affiliation(s)
- Marina Campos-Valdez
- Instituto de Biología Molecular en Medicina, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Jalisco, 44340, México
| | - Sina Feustel
- Instituto de Biología Molecular en Medicina, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Jalisco, 44340, México
| | - Hugo Christian Monroy-Ramírez
- Instituto de Biología Molecular en Medicina, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Jalisco, 44340, México
| | - Carolina Barrientos-Salcedo
- Laboratorio de Química Médica y Quimiogenómica, Facultad de Bioanálisis, Universidad Veracruzana, Veracruz, México
| | | | - Martha Eloísa Ramos-Márquez
- Instituto de Enfermedades Crónico Degenerativas, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Jalisco, 44340, México
| | - David A Fernández-Galindo
- Instituto de Biología Molecular en Medicina, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Jalisco, 44340, México
| | - Jorge Antonio Silva-Gómez
- Instituto de Biología Molecular en Medicina, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Jalisco, 44340, México
| | - Arturo Santos
- Escuela de Medicina y Ciencias de la Salud, Tecnológico de Monterrey, Campus Guadalajara, Zapopan, Jalisco, 45201, México
| | - Juan Armendáriz-Borunda
- Escuela de Medicina y Ciencias de la Salud, Tecnológico de Monterrey, Campus Guadalajara, Zapopan, Jalisco, 45201, México
| | - Laura Verónica Sánchez-Orozco
- Instituto de Biología Molecular en Medicina, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Jalisco, 44340, México
- Instituto de Enfermedades Crónico Degenerativas, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Jalisco, 44340, México
| |
Collapse
|
20
|
Neutralization of hepatitis B virus with vaccine-escape mutations by hepatitis B vaccine with large-HBs antigen. Nat Commun 2022; 13:5207. [PMID: 36064848 PMCID: PMC9441830 DOI: 10.1038/s41467-022-32910-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 08/22/2022] [Indexed: 11/09/2022] Open
Abstract
Although the current hepatitis B (HB) vaccine comprising small-HBs antigen (Ag) is potent and safe, attenuated prophylaxis against hepatitis B virus (HBV) with vaccine-escape mutations (VEMs) has been reported. We investigate an HB vaccine consisting of large-HBsAg that overcomes the shortcomings of the current HB vaccine. Yeast-derived large-HBsAg is immunized into rhesus macaques, and the neutralizing activities of the induced antibodies are compared with those of the current HB vaccine. Although the antibodies induced by the current HB vaccine cannot prevent HBV infection with VEMs, the large-HBsAg vaccine-induced antibodies neutralize those infections. The HBV genotypes that exhibited attenuated neutralization via these vaccines are different. Here, we show that the HB vaccine consisting of large-HBsAg is useful to compensate for the shortcomings of the current HB vaccine. The combined use of these HB vaccines may induce antibodies that can neutralize HBV strains with VEMs or multiple HBV genotypes.
Collapse
|
21
|
Abstract
Following the initiation of the unprecedented global vaccination campaign against Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), attention has now turned to the potential impact of this large-scale intervention on the evolution of the virus. In this Essay, we summarize what is currently known about pathogen evolution in the context of immune priming (including vaccination) from research on other pathogen species, with an eye towards the future evolution of SARS-CoV-2.
Collapse
Affiliation(s)
- Troy Day
- Department of Mathematics and Statistics, Department of Biology, Queen’s University, Kingston, Ontario, Canada
| | - David A. Kennedy
- Department of Biology, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Andrew F. Read
- Department of Biology, Pennsylvania State University, University Park, Pennsylvania, United States of America
- Department of Entomology, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Sylvain Gandon
- CEFE, CNRS, Univ Montpellier, EPHE, IRD, Montpellier, France
| |
Collapse
|
22
|
Wong GLH, Hui VWK, Yip TCF, Liang LY, Zhang X, Tse YK, Lai JCT, Chan HLY, Wong VWS. Universal HBV vaccination dramatically reduces the prevalence of HBV infection and incidence of hepatocellular carcinoma. Aliment Pharmacol Ther 2022; 56:869-877. [PMID: 35864571 DOI: 10.1111/apt.17120] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/11/2022] [Accepted: 06/22/2022] [Indexed: 01/30/2023]
Abstract
BACKGROUND Universal vaccination of newborns with hepatitis B virus (HBV) vaccine is the most important strategy to prevent chronic HBV infection and its complications of which hepatocellular carcinoma (HCC) as the deadliest. AIMS To evaluate the impact of universal HBV vaccination on the prevalence of chronic HBV infection, and the incidences of HCC and hepatic events in young adults born before and after the introduction of the universal HBV vaccination programme in 1988 in Hong Kong METHODS: This was a territory-wide retrospective observational cohort study of consecutive adult subjects born in 1970-2002 with hepatitis B surface antigen (HBsAg) checked. Subjects born during the vaccination era (1988-2002) were included in the vaccinated cohort; subjects born between 1970 and 1987 were included in the unvaccinated cohort. RESULTS We included 695,925 subjects for HBV prevalence analysis. Chronic HBV infection dropped from 14.3% in subjects born in 1970, to 6.7% in subjects born in 1988. In total, 53,960 vaccinated and 318,290 unvaccinated subjects who had available clinical data were included for event analysis. HCC and hepatic events occurred in 44 (0.1%) and 75 (0.1%) of the vaccinated subjects and in 1305 (0.4%) and 1806 (0.6%) of the unvaccinated subjects, respectively. All incidence rates remained numerically lower in vaccinated subjects after adjustment for age, gender and antiviral treatment, but failed to reach statistical significance due to very low incidence rates. CONCLUSIONS Universal HBV vaccination markedly reduces the prevalence of chronic HBV infection and may contribute to the decreased incidences of HCC and hepatic events.
Collapse
Affiliation(s)
- Grace Lai-Hung Wong
- Medical Data Analytic Centre, The Chinese University of Hong Kong, China.,Department of Medicine and Therapeutics, The Chinese University of Hong Kong, China.,Institute of Digestive Disease, The Chinese University of Hong Kong, China
| | - Vicki Wing-Ki Hui
- Medical Data Analytic Centre, The Chinese University of Hong Kong, China.,Department of Medicine and Therapeutics, The Chinese University of Hong Kong, China.,Institute of Digestive Disease, The Chinese University of Hong Kong, China
| | - Terry Cheuk-Fung Yip
- Medical Data Analytic Centre, The Chinese University of Hong Kong, China.,Department of Medicine and Therapeutics, The Chinese University of Hong Kong, China.,Institute of Digestive Disease, The Chinese University of Hong Kong, China
| | - Lilian Yan Liang
- Medical Data Analytic Centre, The Chinese University of Hong Kong, China.,Department of Medicine and Therapeutics, The Chinese University of Hong Kong, China
| | - Xinrong Zhang
- Medical Data Analytic Centre, The Chinese University of Hong Kong, China.,Department of Medicine and Therapeutics, The Chinese University of Hong Kong, China
| | - Yee-Kit Tse
- Medical Data Analytic Centre, The Chinese University of Hong Kong, China.,Department of Medicine and Therapeutics, The Chinese University of Hong Kong, China
| | - Jimmy Che-To Lai
- Medical Data Analytic Centre, The Chinese University of Hong Kong, China.,Department of Medicine and Therapeutics, The Chinese University of Hong Kong, China.,Institute of Digestive Disease, The Chinese University of Hong Kong, China
| | - Henry Lik-Yuen Chan
- Medical Data Analytic Centre, The Chinese University of Hong Kong, China.,Union Hospital; Hong Kong SAR, China
| | - Vincent Wai-Sun Wong
- Medical Data Analytic Centre, The Chinese University of Hong Kong, China.,Department of Medicine and Therapeutics, The Chinese University of Hong Kong, China.,Institute of Digestive Disease, The Chinese University of Hong Kong, China
| |
Collapse
|
23
|
Takuissu GR, Kenmoe S, Amougou Atsama M, Atenguena Okobalemba E, Mbaga DS, Ebogo-Belobo JT, Bowo-Ngandji A, Oyono MG, Magoudjou-Pekam JN, Kame-Ngasse GI, Menkem EZ, Selly Ngaloumo AA, Banlock ATR, Feudjio AF, Zemnou-Tepap C, Meta-Djomsi D, Nyimbe Mviena GL, Nyebe Eloundou I, Yéngué JF, Kenfack-Zanguim J, Ndzie Ondigui JL, Zekeng Mekontchou RM, Touangnou-Chamda SA, Kamtchueng Takeu Y, Taya-Fokou JB, Mbongue Mikangue CA, Kenfack-Momo R, Kengne-Nde C, Nkie Esemu S, Njouom R, Ndip L. Global epidemiology of occult hepatitis B virus infections in blood donors, a systematic review and meta-analysis. PLoS One 2022; 17:e0272920. [PMID: 35994469 PMCID: PMC9394819 DOI: 10.1371/journal.pone.0272920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 07/28/2022] [Indexed: 11/19/2022] Open
Abstract
This study aimed to assess the global prevalence of occult hepatitis B in blood donors. We searched PubMed, Web of Science, Global Index Medicus, and Excerpta Medica Database. Study selection and data extraction were performed by at least two independent investigators. Heterogeneity (I2) was assessed using the χ2 test on the Cochran Q statistic and H parameters. Sources of heterogeneity were explored by subgroup analyses. This study is registered with PROSPERO, number CRD42021252787. We included 82 studies in this meta-analysis. The overall prevalence of OBI was 6.2% (95% CI: 5.4–7.1) in HBsAg negative and anti-HBc positive blood donors. Only sporadic cases of OBI were reported in HBsAg negative and anti-HBc negative blood donors. The overall prevalence of OBI was 0.2% (95% CI: 0.1–0.4) in HBsAg negative blood donors. The prevalence of OBI was generally higher in countries with low-income economic status. The results of this study show that despite routine screening of blood donors for hepatitis B, the transmission of HBV by blood remains possible via OBI and/or a seronegative window period; hence there is a need for active surveillance and foremost easier access to molecular tests for the screening of blood donors before transfusion.
Collapse
Affiliation(s)
- Guy Roussel Takuissu
- Centre for Food, Food Security and Nutrition Research, Institute of Medical Research and Medicinal Plants Studies, Yaounde, Cameroon
| | - Sebastien Kenmoe
- Department of Microbiology and Parasitology, University of Buea, Buea, Cameroon
- * E-mail:
| | - Marie Amougou Atsama
- Centre de Recherche sur les Maladies Émergentes et Re-Emergentes, Institut de Recherches Médicales et d’Etudes des Plantes Médicinales, Yaounde, Cameroon
| | | | | | - Jean Thierry Ebogo-Belobo
- Medical Research Centre, Institute of Medical Research and Medicinal Plants Studies, Yaounde, Cameroon
| | - Arnol Bowo-Ngandji
- Department of Microbiology, The University of Yaounde I, Yaounde, Cameroon
| | - Martin Gael Oyono
- Centre for Research on Health and Priority Pathologies, Institute of Medical Research and Medicinal Plants Studies, Yaounde, Cameroon
| | | | - Ginette Irma Kame-Ngasse
- Medical Research Centre, Institute of Medical Research and Medicinal Plants Studies, Yaounde, Cameroon
| | | | | | | | | | | | - Dowbiss Meta-Djomsi
- Centre de Recherche sur les Maladies Émergentes et Re-Emergentes, Institut de Recherches Médicales et d’Etudes des Plantes Médicinales, Yaounde, Cameroon
| | | | | | | | | | | | | | | | - Yrene Kamtchueng Takeu
- Medical Research Centre, Institute of Medical Research and Medicinal Plants Studies, Yaounde, Cameroon
| | | | | | - Raoul Kenfack-Momo
- Department of Biochemistry, The University of Yaounde I, Yaounde, Cameroon
| | - Cyprien Kengne-Nde
- Epidemiological Surveillance, Evaluation and Research Unit, National AIDS Control Committee, Douala, Cameroon
| | | | - Richard Njouom
- Virology Department, Centre Pasteur of Cameroon, Yaounde, Cameroon
| | - Lucy Ndip
- Department of Microbiology and Parasitology, University of Buea, Buea, Cameroon
| |
Collapse
|
24
|
Lalana Garcés M, Ortiz Pastor O, Solé Enrech G, Guerra-Ruiz AR, Casals Mercadal G, Almería Lafuente A, Ballesteros Vizoso MA, Medina PG, Salgüero Fernández S, Zamora Trillo A, Aured de la Serna I, Hurtado JC, Pérez-Del-Pulgar S, Forns X, Morales Ruiz M. Control of occult hepatitis B virus infection. ADVANCES IN LABORATORY MEDICINE / AVANCES EN MEDICINA DE LABORATORIO 2022. [DOI: 10.1515/almed-2022-0065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Background
The diagnosis of hepatitis B virus (HBV) infection requires HBV DNA testing and serologic testing for detection of the surface antigen (HBsAg) and the hepatitis B core antibody (anti-HBc). There is a population of patients with occult HBV infection (OBI), which is not detected by HBsAg or HBV DNA quantification in blood, despite the presence of active replication in the liver.
Scope
This document provides a definition of OBI and describes the diagnostic techniques currently used. It also addresses the detection of patients with risk factors and the need for screening for OBI in these patients.
Summary
Correct diagnosis of OBI prevents HBV reactivation and transmission. Diagnosis of OBI is based on the detection of HBV DNA in patients with undetectable HBsAg in blood.
Perspectives
A high number of patients with OBI may remain undiagnosed; therefore, screening for OBI in patients with factor risks is essential. For a correct diagnosis of OBI, it is necessary that new markers such as ultrasensitive HBsAg are incorporated, and a more comprehensive marker study is performed by including markers such as cccDNA.
Collapse
Affiliation(s)
- Marta Lalana Garcés
- Comisión de Valoración Bioquímica de la Enfermedad Hepática, Sociedad Española de Medicina de Laboratorio (SEQC-ML) , Barcelona , Spain
- Servicio de Análisis Clínicos, Hospital de Barbastro , Huesca , Spain
| | - Oihana Ortiz Pastor
- Comisión de Valoración Bioquímica de la Enfermedad Hepática, Sociedad Española de Medicina de Laboratorio (SEQC-ML) , Barcelona , Spain
- Servicio de Bioquímica Clínica, Hospital Universitario Miguel Servet , Zaragoza , Spain
| | - Gemma Solé Enrech
- Comisión de Valoración Bioquímica de la Enfermedad Hepática, Sociedad Española de Medicina de Laboratorio (SEQC-ML) , Barcelona , Spain
- Servei de laboratori, UDIAT-CD, Corporació Sanitaria Parc Taulí , Sabadell , Spain
| | - Armando R. Guerra-Ruiz
- Comisión de Valoración Bioquímica de la Enfermedad Hepática, Sociedad Española de Medicina de Laboratorio (SEQC-ML) , Barcelona , Spain
- Servicio de Análisis Clínicos, Hospital Universitario Marqués de Valdecilla , Santander , Spain
| | - Gregori Casals Mercadal
- Comisión de Valoración Bioquímica de la Enfermedad Hepática, Sociedad Española de Medicina de Laboratorio (SEQC-ML) , Barcelona , Spain
- Servicio de Bioquímica y Genética Molecular, CDB, Hospital Clínic de Barcelona, IDIBAPS, CIBEREHD , Barcelona , Spain
| | - Alejandro Almería Lafuente
- Comisión de Valoración Bioquímica de la Enfermedad Hepática, Sociedad Española de Medicina de Laboratorio (SEQC-ML) , Barcelona , Spain
- Servicio de Bioquímica Clínica, Hospital Royo Villanova , Zaragoza , Spain
| | - María Antonieta Ballesteros Vizoso
- Comisión de Valoración Bioquímica de la Enfermedad Hepática, Sociedad Española de Medicina de Laboratorio (SEQC-ML) , Barcelona , Spain
- Servicio de Análisis Clínicos, Hospital Universitario Son Espases , Palma de Mallorca , Spain
| | - Pablo Gabriel Medina
- Comisión de Valoración Bioquímica de la Enfermedad Hepática, Sociedad Española de Medicina de Laboratorio (SEQC-ML) , Barcelona , Spain
- Servicio de Bioquímica Clínica, Hospital Universitari Vall d’Hebron , Barcelona , Spain
| | - Sergio Salgüero Fernández
- Comisión de Valoración Bioquímica de la Enfermedad Hepática, Sociedad Española de Medicina de Laboratorio (SEQC-ML) , Barcelona , Spain
- Servicio de Análisis Clínicos, Hospital Universitario Fundación Alcorcón , Madrid , Spain
| | - Angielys Zamora Trillo
- Comisión de Valoración Bioquímica de la Enfermedad Hepática, Sociedad Española de Medicina de Laboratorio (SEQC-ML) , Barcelona , Spain
- Servicio de Bioquímica Clínica, Hospital General Universitario Gregorio Marañón , Madrid , Spain
| | | | - Juan Carlos Hurtado
- Servicio de Microbiología, CDB, Hospital Clínic de Barcelona, Universitat de Barcelona , Barcelona , Spain
- Instituto de Salud Global de Barcelona (ISGlobal) , Barcelona , Spain
| | - Sofía Pérez-Del-Pulgar
- Servicio de Hepatología, Hospital Clínic de Barcelona, IDIBAPS, CIBEREHD , Barcelona , Spain
| | - Xavier Forns
- Servicio de Hepatología, Hospital Clínic de Barcelona, IDIBAPS, CIBEREHD , Barcelona , Spain
| | - Manuel Morales Ruiz
- Comisión de Valoración Bioquímica de la Enfermedad Hepática, Sociedad Española de Medicina de Laboratorio (SEQC-ML) , Barcelona , Spain
- Servicio de Bioquímica y Genética Molecular, CDB, Hospital Clínic de Barcelona, IDIBAPS, CIBEREHD , Barcelona , Spain
- Departamento de Biomedicina de la Facultad de Medicina y Ciencias de la Salud-Universidad de Barcelona , Barcelona , Spain
| |
Collapse
|
25
|
Lalana Garcés M, Pastor OO, Solé Enrech G, Guerra-Ruiz AR, Mercadal GC, Almería Lafuente A, Ballesteros Vizoso MA, Medina PG, Salgüero Fernández S, Zamora Trillo A, Aured de la Serna I, Hurtado JC, Pérez-Del-Pulgar S, Forns X, Morales Ruiz M. Revisión de la infección oculta por el virus de la hepatitis B. ADVANCES IN LABORATORY MEDICINE / AVANCES EN MEDICINA DE LABORATORIO 2022. [DOI: 10.1515/almed-2021-0084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Resumen
Introducción
El diagnóstico actual del virus de la hepatitis B (VHB) está basado en la detección mediante técnicas moleculares de ADN de VHB y ensayos serológicos, como el antígeno de superficie (HBsAg) y anticuerpos frente al core VHB (anti-HBc). Existe un grupo de pacientes con infección oculta de VHB (OBI) en los que estos ensayos no son capaces de detectar el HBsAg ni la cuantificación de ADN de VHB en sangre, aunque exista replicación activa en hígado.
Contenido
El documento define la OBI, y los métodos actuales para su diagnóstico. También aborda la detección de pacientes con factores de riesgo y la necesidad de realizar el cribado de OBI en ellos.
Resumen
Un correcto diagnóstico de OBI, previene la reactivación del VHB y su transmisión. El diagnóstico de OBI actualmente está basado en la detección de ADN de VHB en pacientes con HBsAg indetectable en sangre.
Perspectivas
Un número elevado de pacientes con OBI puede permanecer sin diagnosticar. Es importante realizar el cribado de OBI en determinados pacientes con factores de riesgo. La introducción de nuevos marcadores, como el HBsAg ultrasensible, y estudios más profundos de marcadores, como el ADNccc hepático, serán necesarios para un correcto diagnóstico de OBI.
Collapse
Affiliation(s)
- Marta Lalana Garcés
- Comisión de Valoración Bioquímica de la Enfermedad Hepática , Sociedad Española de Medicina de Laboratorio (SEQC-ML) , Barcelona , España
- Servicio de Análisis Clínicos , Hospital de Barbastro , Huesca , España
| | - Oihana Ortiz Pastor
- Comisión de Valoración Bioquímica de la Enfermedad Hepática , Sociedad Española de Medicina de Laboratorio (SEQC-ML) , Barcelona , España
- Servicio de Bioquímica Clínica , Hospital Universitario Miguel Servet , Zaragoza , España
| | - Gemma Solé Enrech
- Comisión de Valoración Bioquímica de la Enfermedad Hepática , Sociedad Española de Medicina de Laboratorio (SEQC-ML) , Barcelona , España
- Servei de laboratori , UDIAT-CD. Corporació Sanitaria Parc Taulí , Sabadell , España
| | - Armando Raul Guerra-Ruiz
- Comisión de Valoración Bioquímica de la Enfermedad Hepática , Sociedad Española de Medicina de Laboratorio (SEQC-ML) , Barcelona , España
- Servicio de Análisis Clínicos , Hospital Universitario Marqués de Valdecilla , Santander , España
| | - Gregori Casals Mercadal
- Comisión de Valoración Bioquímica de la Enfermedad Hepática , Sociedad Española de Medicina de Laboratorio (SEQC-ML) , Barcelona , España
- Servicio de Bioquímica y Genética Molecular, CDB , Hospital Clínic de Barcelona, IDIBAPS, CIBEREHD , Barcelona , España
| | - Alejandro Almería Lafuente
- Comisión de Valoración Bioquímica de la Enfermedad Hepática , Sociedad Española de Medicina de Laboratorio (SEQC-ML) , Barcelona , España
- Servicio de Bioquímica Clínica , Hospital Royo Villanova , Zaragoza , España
| | - María Antonieta Ballesteros Vizoso
- Comisión de Valoración Bioquímica de la Enfermedad Hepática , Sociedad Española de Medicina de Laboratorio (SEQC-ML) , Barcelona , España
- Servicio de Análisis Clínicos , Hospital Universitario Son Espases , Palma de Mallorca , España
| | - Pablo Gabriel Medina
- Comisión de Valoración Bioquímica de la Enfermedad Hepática , Sociedad Española de Medicina de Laboratorio (SEQC-ML) , Barcelona , España
- Servicio de Bioquímica Clínica , Hospital Universitari Vall d’Hebron , Barcelona , España
| | - Sergio Salgüero Fernández
- Comisión de Valoración Bioquímica de la Enfermedad Hepática , Sociedad Española de Medicina de Laboratorio (SEQC-ML) , Barcelona , España
- Servicio de Análisis Clínicos , Hospital Universitario Fundación Alcorcón , Madrid , España
| | - Angielys Zamora Trillo
- Comisión de Valoración Bioquímica de la Enfermedad Hepática , Sociedad Española de Medicina de Laboratorio (SEQC-ML) , Barcelona , España
- Servicio de Bioquímica Clínica , Hospital General Universitario Gregorio Marañón , Madrid , España
| | | | - Juan Carlos Hurtado
- Servicio de Microbiología, CDB, Hospital Clínic de Barcelona , Universitat de Barcelona , Barcelona , España
- Instituto de Salud Global de Barcelona (ISGlobal) , Barcelona , España
| | - Sofía Pérez-Del-Pulgar
- Servicio de Hepatología , Hospital Clínic de Barcelona, IDIBAPS, CIBEREHD , Barcelona , España
| | - Xavier Forns
- Servicio de Hepatología , Hospital Clínic de Barcelona, IDIBAPS, CIBEREHD , Barcelona , España
| | - Manuel Morales Ruiz
- Comisión de Valoración Bioquímica de la Enfermedad Hepática , Sociedad Española de Medicina de Laboratorio (SEQC-ML) , Barcelona , España
- Servicio de Bioquímica y Genética Molecular, CDB , Hospital Clínic de Barcelona, IDIBAPS, CIBEREHD , Barcelona , España
- Departamento de Biomedicina de la Facultad de Medicina y Ciencias de la Salud -Universidad de Barcelona , Barcelona , España
| |
Collapse
|
26
|
Liu H, Hong X, Xi J, Menne S, Hu J, Wang JCY. Cryo-EM structures of human hepatitis B and woodchuck hepatitis virus small spherical subviral particles. SCIENCE ADVANCES 2022; 8:eabo4184. [PMID: 35930632 PMCID: PMC9355357 DOI: 10.1126/sciadv.abo4184] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 06/23/2022] [Indexed: 06/15/2023]
Abstract
The loss of detectable hepatitis B surface antigen (HBsAg) is considered a functional cure in chronic hepatitis B. Naturally, HBsAg can be incorporated into the virion envelope or assembled into subviral particles (SVPs) with lipid from host cells. Until now, there has been no detailed structure of HBsAg, and the published SVP structures are controversial. Here, we report the first subnanometer-resolution structures of spherical SVP from hepatitis B virus (HBV) and the related woodchuck hepatitis virus (WHV) determined by cryo-electron microscopy in combination with AlphaFold2 prediction. Both structures showed unique rhombicuboctahedral symmetry with 24 protruding spikes comprising dimer of small HBsAg with four helical domains. The lipid moiety in the SVP is organized in a noncanonical lipid patch instead of a lipid bilayer, which can accommodate the exposed hydrophobic surface and modulate particle stability. Together, these findings advance our knowledge of viral membrane organization and the structures of HBV and WHV spherical SVPs.
Collapse
Affiliation(s)
- Haitao Liu
- Department of Microbiology and Immunology, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Xupeng Hong
- Department of Microbiology and Immunology, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Ji Xi
- Department of Microbiology and Immunology, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Stephan Menne
- Department of Microbiology and Immunology, Georgetown University Medical Center, Washington DC 20007, USA
| | - Jianming Hu
- Department of Microbiology and Immunology, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Joseph Che-Yen Wang
- Department of Microbiology and Immunology, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| |
Collapse
|
27
|
Romano’ L, Zanetti AR. Hepatitis B Vaccination: A Historical Overview with a Focus on the Italian Achievements. Viruses 2022; 14:1515. [PMID: 35891495 PMCID: PMC9320049 DOI: 10.3390/v14071515] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/08/2022] [Accepted: 07/08/2022] [Indexed: 11/16/2022] Open
Abstract
Vaccination is the most effective way to control and prevent acute and chronic hepatitis B, including cirrhosis and HCC, on a global scale. According to WHO recommendations, 190 countries in the world have introduced hepatitis B vaccination into their national childhood immunization programs with an excellent profile of safety, immunogenicity, and effectiveness. Following vaccination, seroprotection rates are close to 100% in healthy children and over 95% in healthy adults. Persistence of anti-HBs is related to the antibody peak achieved after vaccination. The peak is higher the longer the antibody duration is. Loss of anti-HBs does not necessarily mean loss of immunity since most vaccinated individuals retain immune memory for HBsAg and rapidly develop strong anamnestic responses when boosted. Evidence indicates that the duration of protection can persist for at least 35 years after priming. Hence, booster doses of vaccines are currently not recommended to sustain long-term immunity in healthy vaccinated individuals. In Italy, vaccination against hepatitis B is met with success. In 2020, Italy became one of the first countries in Europe to be validated for achieving the WHO regional hepatitis B control targets.
Collapse
Affiliation(s)
- Luisa Romano’
- Dipartimento di Scienze Biomediche per la Salute, Università degli Studi, 20133 Milano, Italy;
| | | |
Collapse
|
28
|
Lai MW, Chang YL, Cheng PJ, Chueh HY, Chang SC, Yeh CT. Absence of chronicity in infants born to immunized mothers with occult HBV infection in Taiwan. J Hepatol 2022; 77:63-70. [PMID: 35176439 DOI: 10.1016/j.jhep.2022.01.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 01/06/2022] [Accepted: 01/28/2022] [Indexed: 12/04/2022]
Abstract
BACKGROUND & AIMS In the Taiwanese population born in the universal vaccination era, HBsAg carrier rates have fallen below 2%, while approximately 5% develop occult hepatitis B infection (OBI). However, the potential for transmission from mothers with OBI to their infants has not been well studied. We aimed to investigate whether mothers with OBI could transmit HBV to their babies. METHODS A total of 253 pregnant women who were born after July 1986 and had been fully vaccinated against HBV during infancy were recruited from a tertiary hospital in Northern Taiwan. HBV serology and DNA levels were determined. Babies born to mothers with OBI were followed-up until 1 year of age. The surface genes were sequenced. RESULTS HBV infection was documented in 18 vaccinated mothers, 2 of whom were HBsAg-reactive (0.79 %). Seventeen were positive for HBV DNA, among whom 16 (6.32%) presented with OBI with a median DNA level of 145 IU/ml (interquartile range: 37.8-657.3 IU/ml). Eleven babies born to 10 mothers with OBI were recruited. Three babies were HBsAg-reactive, and 2 were positive for HBV DNA (17.0 and 212.0 IU/ml). Seven mothers with OBI carried multiple surface gene variants. Two transiently infected babies harbored variants originating from their mother's HBV quasi-species. All infants received complete hepatitis B vaccines. At 12 months of age, none of the babies were positive for HBsAg or HBV DNA. CONCLUSIONS It was possible for mothers with OBI to transmit HBV to their babies, who consequently harbored surface gene variants originating from their mothers' minor variants. Viremia was cleared 1 year after completing the hepatitis B vaccination series. LAY SUMMARY Since initiating the hepatitis B vaccination program in Taiwan, the rate of young individuals (i.e. born after 1986) carrying the HBV surface antigen has fallen below 2%, although around 5% of vaccinated individuals develop occult HBV infections. Herein, we show that pregnant mothers with occult HBV infections can transmit HBV to their offspring. However, no infant had sustained infection at 1 year of age having completed a full HBV vaccination series.
Collapse
Affiliation(s)
- Ming-Wei Lai
- Department of Pediatrics, Chang Gung Memorial Hospital, Linkou Branch and Chang Gung University College of Medicine, Taoyuan, Taiwan; Liver Research Center, Chang Gung Memorial Hospital, Linkou Branch and Chang Gung University College of Medicine, Taoyuan, Taiwan.
| | - Yao-Lung Chang
- Department of Obstetrics and Gynecology, Chang Gung Memorial Hospital, Linkou Branch and Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Po-Jen Cheng
- Department of Obstetrics and Gynecology, Chang Gung Memorial Hospital, Linkou Branch and Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Ho-Yen Chueh
- Department of Obstetrics and Gynecology, Chang Gung Memorial Hospital, Linkou Branch and Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Shun-Chih Chang
- Department of Obstetrics and Gynecology, Chang Gung Memorial Hospital, Linkou Branch and Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Chau-Ting Yeh
- Department of Hepatogastroenterology, Chang Gung Memorial Hospital, Linkou Branch and Chang Gung University College of Medicine, Taoyuan, Taiwan; Liver Research Center, Chang Gung Memorial Hospital, Linkou Branch and Chang Gung University College of Medicine, Taoyuan, Taiwan.
| |
Collapse
|
29
|
Wu CR, Kim HJ, Sun CP, Chung CY, Lin YY, Tao MH, Kim JH, Chen DS, Chen PJ. Mapping the conformational epitope of a therapeutic monoclonal antibody against HBsAg by in vivo selection of HBV escape variants. Hepatology 2022; 76:207-219. [PMID: 34957587 DOI: 10.1002/hep.32307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 10/27/2021] [Accepted: 12/22/2021] [Indexed: 12/08/2022]
Abstract
BACKGROUND AND AIMS Hepatitis B immunoglobulin (HBIG) has been routinely applied in the liver transplantation setting to block HBV reinfection of grafts. However, new monoclonal anti-HBV surface antibodies have been developed to replace HBIG. The epitopes of such monoclonal antibodies may affect the emergence of escape variants and deserve study. APPROACH AND RESULTS The conformational epitope of sLenvervimab, a surrogate form of Lenvervimab, which is a monoclonal anti-HBsAg antibody currently under phase 3 trial, was investigated by selecting escape mutants from a human liver chimeric mouse. HBV-infected chimeric mice treated with sLenvervimab monotherapy showed an initial decline in circulating HBsAg levels, followed by a quick rebound in 1 month. Sequencing of circulating or liver HBV DNA revealed emerging variants, with replacement of amino acid E164 or T140, two residues widely separated in HBsAg. E164 HBV variants strongly resisted sLenvervimab neutralization in cell culture infection, and the T140 variant moderately resisted sLenvervimab neutralization. Natural HBV variants with amino-acid replacements adjacent to E164 were constructed and examined for sLenvervimab neutralization effects. Variants with K160 replacement also resisted neutralization. These data revealed the conformational epitope of sLenvervimab. CONCLUSIONS Selection of antibody-escape HBV variants in human chimeric mice works efficiently. Analysis of such emerging variants helps to identify anchor amino-acid residues of the conformational epitope that are difficult to discover by conventional approaches.
Collapse
Affiliation(s)
- Chang-Ru Wu
- Graduate Institute of Microbiology, National Taiwan University College of Medicine, Taipei, Taiwan (R.O.C.)
| | - Hyun-Jin Kim
- Mogam Institute for Biomedical Research, Yongin-Si, Gyunggi-Do, Korea
| | - Cheng-Pu Sun
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan (R.O.C.)
| | - Chen-Yen Chung
- Graduate Institute of Microbiology, National Taiwan University College of Medicine, Taipei, Taiwan (R.O.C.)
| | - You-Yu Lin
- Graduate Institute of Clinical Medicine, National Taiwan University College of Medicine, Taipei, Taiwan (R.O.C.)
| | - Mi-Hua Tao
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan (R.O.C.)
| | - Jung-Hwan Kim
- Mogam Institute for Biomedical Research, Yongin-Si, Gyunggi-Do, Korea
| | - Ding-Shinn Chen
- Graduate Institute of Clinical Medicine, National Taiwan University College of Medicine, Taipei, Taiwan (R.O.C.).,Division of Gastroenterology, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan (R.O.C.)
| | - Pei-Jer Chen
- Graduate Institute of Microbiology, National Taiwan University College of Medicine, Taipei, Taiwan (R.O.C.).,Graduate Institute of Clinical Medicine, National Taiwan University College of Medicine, Taipei, Taiwan (R.O.C.).,Division of Gastroenterology, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan (R.O.C.).,Hepatitis Research Center, National Taiwan University Hospital, Taipei, Taiwan (R.O.C.)
| |
Collapse
|
30
|
Wang J, Ding W, Liu J, Liu Y, Yan X, Xia J, Wu W, Jia B, Chen Y, Gao D, Hong S, Wang X, Wang L, Tong X, Yin S, Zhang Z, Li J, Huang R, Wu C. Association of Coexistent Hepatitis B Surface Antigen and Antibody With Severe Liver Fibrosis and Cirrhosis in Treatment-Naive Patients With Chronic Hepatitis B. JAMA Netw Open 2022; 5:e2216485. [PMID: 35696167 PMCID: PMC9194671 DOI: 10.1001/jamanetworkopen.2022.16485] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
IMPORTANCE Coexistence of hepatitis B surface antigen (HBsAg) and antibody against HBsAg (anti-HBs) constitutes an atypical serological profile in chronic hepatitis B virus infection, and the association between coexistent HBsAg and anti-HBs with severe liver fibrosis and cirrhosis in patients with chronic hepatitis B (CHB) remains unclear. OBJECTIVE To investigate the association of coexistent HBsAg and anti-HBs with severe liver fibrosis and cirrhosis in patients with CHB. DESIGN, SETTING, AND PARTICIPANTS Consecutive treatment-naive patients with CHB from 2 medical institutions in China were enrolled between January 10, 2015, and March 31, 2021. Severe liver fibrosis and cirrhosis were identified using the aspartate transaminase (AST) to platelet ratio index (APRI), the fibrosis index based on 4 factors (FIB-4; factors comprise age, AST level, alanine aminotransferase [ALT] level, and platelet count), transient elastography, or ultrasonography. Data were analyzed from August 1, 2021, to April 15, 2022. MAIN OUTCOMES AND MEASURES The primary outcomes were rates of severe liver fibrosis and cirrhosis among patients with vs patients without coexistant HBsAg and anti-HBs. Severe liver fibrosis was defined as an APRI score of 1.5 or higher, a FIB-4 score of 3.25 or higher, or a liver stiffness measurement of 8 kPa or higher; cirrhosis was defined as an APRI score of 2.0 or higher, a FIB-4 score of 6.5 or higher, a liver stiffness measurement of 11 kPa or higher, or ultrasonographic findings suggestive of cirrhosis. RESULTS Of 6534 enrolled patients, 4033 patients (61.7%) were male, and the median (IQR) age was 41.0 (33.0-52.0) years. A total of 277 patients (4.2%) had coexistent HBsAg and anti-HBs. Patients with vs without anti-HBs were older (median [IQR], 46.0 [33.0-55.5] years vs 41.0 [33.0-52.0] years) and had a higher proportion of hepatitis B e antigen (HBeAg) positivity (123 of 277 patients [44.4%] vs 2115 of 6257 patients [33.8%]; P < .001), higher ALT levels (median [IQR], 45.1 [24.6-119.0] U/L vs 36.7 [22.0-77.0] U/L; P = .001) and AST levels (median [IQR], 35.0 [23.5-68.4] U/L vs 28.3 [21.6-51.0] U/L; P < .001), and lower platelet counts (median [IQR], 173.0 × 103/μL [129.0-212.5 × 103/μL] vs 185.0 × 103/μL [141.0-224.0 × 103/μL]; P = .004), albumin levels (median [IQR], 4.37 [4.11-4.56] g/dL vs 4.43 [4.17-4.61] g/dL; P = .02), and HBsAg levels (median [IQR], 2.8 log10 [1.6-3.4 log10] IU/mL vs 3.3 log10 [2.6-3.9 log10] IU/mL; P < .001). Compared with patients without anti-HBs, those with anti-HBs had higher APRI scores (median [IQR], 0.5 [0.3-1.4] vs 0.4 [0.3-0.9]; P < .001), FIB-4 scores (median [IQR], 1.4 [0.9-2.6] vs 1.1 [0.7-2.1]; P < .001), and liver stiffness values (median [IQR], 7.5 [6.2-9.8] kPa vs 6.3 [5.2-8.1] kPa; P = .003). Patients with anti-HBs also had higher proportions of severe liver fibrosis (102 of 277 patients [36.8%] vs 1397 of 6207 patients [22.5%]; P < .001) and cirrhosis (87 of 277 patients [31.4%] vs 1194 of 6213 patients [19.2%]; P < .001) compared with patients without anti-HBs. The coexistence of HBsAg and anti-HBs was independently associated with severe liver fibrosis (odds ratio [OR], 2.29; 95% CI, 1.56-3.38; P < .001) and cirrhosis (OR, 1.73; 95% CI, 1.12-2.68; P = .01) in the multivariate analysis. However, the association of coexistent HBsAg and anti-HBs with cirrhosis was only observed in patients with HBeAg negativity (OR, 1.66; 95% CI, 1.05-2.62; P = .03) and not in patients with HBeAg positivity (OR, 1.45; 95% CI, 0.87-2.43; P = .16). CONCLUSIONS AND RELEVANCE In this cross-sectional study, the coexistence of HBsAg and anti-HBs was unusual in hepatitis B virus infection and was associated with more advanced liver diseases, such as severe liver fibrosis and cirrhosis, especially among patients with HBeAg negativity. These results suggest that close monitoring for liver fibrosis and cirrhosis is warranted in patients with CHB who have this serological profile.
Collapse
Affiliation(s)
- Jian Wang
- Department of Infectious Diseases, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
- Institute of Viruses and Infectious Diseases, Nanjing University, Nanjing, Jiangsu, China
| | - Weimao Ding
- Department of Hepatology, Huai’an No. 4 People’s Hospital, Huai’an, Jiangsu, China
| | - Jiacheng Liu
- Department of Infectious Diseases, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
- Department of Infectious Diseases, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Yong Liu
- Institute of Viruses and Infectious Diseases, Nanjing University, Nanjing, Jiangsu, China
- Department of Laboratory Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Xiaomin Yan
- Department of Infectious Diseases, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
- Institute of Viruses and Infectious Diseases, Nanjing University, Nanjing, Jiangsu, China
| | - Juan Xia
- Department of Infectious Diseases, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
- Institute of Viruses and Infectious Diseases, Nanjing University, Nanjing, Jiangsu, China
| | - Weihua Wu
- Department of Infectious Diseases, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
- Institute of Viruses and Infectious Diseases, Nanjing University, Nanjing, Jiangsu, China
| | - Bei Jia
- Department of Infectious Diseases, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
- Institute of Viruses and Infectious Diseases, Nanjing University, Nanjing, Jiangsu, China
| | - Yuxin Chen
- Institute of Viruses and Infectious Diseases, Nanjing University, Nanjing, Jiangsu, China
- Department of Laboratory Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Dongmei Gao
- Community Work Office, Huai’an No. 4 People’s Hospital, Huai’an, Jiangsu, China
| | - Shuqin Hong
- Hospital Grade Creation Office, Huai’an No. 4 People’s Hospital, Huai’an, Jiangsu, China
| | - Xiaohong Wang
- Department of Surgery, Huai’an No. 4 People’s Hospital, Huai’an, Jiangsu, China
| | - Li Wang
- Department of Infectious Diseases, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Xin Tong
- Department of Infectious Diseases, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
- Institute of Viruses and Infectious Diseases, Nanjing University, Nanjing, Jiangsu, China
| | - Shengxia Yin
- Department of Infectious Diseases, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
- Institute of Viruses and Infectious Diseases, Nanjing University, Nanjing, Jiangsu, China
| | - Zhaoping Zhang
- Department of Infectious Diseases, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Jie Li
- Department of Infectious Diseases, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
- Institute of Viruses and Infectious Diseases, Nanjing University, Nanjing, Jiangsu, China
| | - Rui Huang
- Department of Infectious Diseases, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
- Institute of Viruses and Infectious Diseases, Nanjing University, Nanjing, Jiangsu, China
- Department of Infectious Diseases, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Chao Wu
- Department of Infectious Diseases, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
- Institute of Viruses and Infectious Diseases, Nanjing University, Nanjing, Jiangsu, China
- Department of Infectious Diseases, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| |
Collapse
|
31
|
Akbar SMF, Al Mahtab M, Khan S, Yoshida O, Aguilar JC, Gerardo GN, Hiasa Y. Innovative Therapies Targeting the Virus and the Host for Treating Chronic Hepatitis B Virus Infection: From Bench to Bedside. Vaccines (Basel) 2022; 10:vaccines10050746. [PMID: 35632502 PMCID: PMC9144882 DOI: 10.3390/vaccines10050746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/05/2022] [Accepted: 05/07/2022] [Indexed: 11/16/2022] Open
Abstract
Chronic hepatitis B (CHB) is a highly complicated pathological process in which the disease is initiated by the hepatitis B virus (HBV); however, host immune responses are primarily responsible for variable extents of liver damage. If the patients with CHB remain untreated, many CHB patients will eventually develop complications like cirrhosis of the liver (LC) and hepatocellular carcinoma (HCC). In 2019, an estimated 882,000 patients died due to HBV-related complications worldwide. Accordingly, several drugs with antiviral properties have been used to treat CHB patients during the last four decades. However, the treatment outcome is not satisfactory because viral suppression is not usually related to the containment of progressive liver damage. Although proper reconstruction of host immunity is essential in CHB patients, as of today, there is no acceptable immune therapeutic protocol for them. These realities have exposed new, novel, and innovative therapeutic regimens for the management of CHB patients. This review will update the scope and limitation of the different innovative antiviral and immune therapeutic approaches for restoring effective host immunity and containing the virus in CHB patients to block progression to LC and HCC.
Collapse
Affiliation(s)
- Sheikh Mohammad Fazle Akbar
- Department of Gastroenterology and Metabology, Graduate School of Medicine, Ehime University, Ehime 791-0295, Japan; (O.Y.); (Y.H.)
- Correspondence: ; Tel.: +81-89-960-5308; Fax: +81-89-960-5310
| | - Mamun Al Mahtab
- Department of Hepatology, Bangabandhu Sheikh Mujib Medical University, BSMMU, Dhaka 1000, Bangladesh;
| | - Sakirul Khan
- Department of Microbiology, Oita University, Oita 879-5593, Japan;
| | - Osamu Yoshida
- Department of Gastroenterology and Metabology, Graduate School of Medicine, Ehime University, Ehime 791-0295, Japan; (O.Y.); (Y.H.)
| | - Julio Cesar Aguilar
- Center for Genetic Engineering and Biotechnology, Havana 10600, Cuba; (J.C.A.); (G.N.G.)
| | - Guillen Nieto Gerardo
- Center for Genetic Engineering and Biotechnology, Havana 10600, Cuba; (J.C.A.); (G.N.G.)
| | - Yoichi Hiasa
- Department of Gastroenterology and Metabology, Graduate School of Medicine, Ehime University, Ehime 791-0295, Japan; (O.Y.); (Y.H.)
| |
Collapse
|
32
|
Azim Majumder MA, Razzaque MS. Repeated vaccination and 'vaccine exhaustion': relevance to the COVID-19 crisis. Expert Rev Vaccines 2022; 21:1011-1014. [PMID: 35475680 DOI: 10.1080/14760584.2022.2071705] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
33
|
Asai A, Hirai S, Yokohama K, Nishikawa T, Nishikawa H, Higuchi K. Effect of an Electronic Alert System on Hepatitis B Virus Reactivation in Patients Receiving Immunosuppressive Drug Therapy. J Clin Med 2022; 11:jcm11092446. [PMID: 35566572 PMCID: PMC9104084 DOI: 10.3390/jcm11092446] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 04/19/2022] [Accepted: 04/23/2022] [Indexed: 02/04/2023] Open
Abstract
Hepatitis B virus (HBV) reactivation (HBVr) can occur in patients receiving immunosuppressive drug therapies, causing significant morbidity and mortality. Although the guidelines for HBVr have been proposed by several academic societies, some providers do not follow them, resulting in HBVr and death. As HBV-DNA levels increase before liver enzyme levels do, we previously constructed an electronic alert system that recommends the measurement of HBV-DNA. Here, we investigated whether this alert system improves the HBV-DNA measurement rate and elicits responses according to guidelines. A total of 5329 patients were divided into two groups, before and after the introduction of the alert system, and the HBV-DNA measurement rates in both groups were compared. Because of the introduction of the alert system, the HBV-DNA measurement rate among HBsAg-negative patients with anti-HBs and/or anti-HBc before immunosuppressive drug therapy improved significantly. The HBV-DNA monitoring rate within 3 months also improved significantly (p = 0.0034) in HBV-remission phase patients. HBVr was detected immediately, and the affected patients were treated with nucleotide analogs before severe hepatitis onset. The introduction of the alert system for HBVr improved the HBV-DNA measurement rates in patients receiving immunosuppressive drug therapy, leading to the rapid treatment of patients with HBVr.
Collapse
Affiliation(s)
- Akira Asai
- The Second Department of Internal Medicine, Osaka Medical and Pharmaceutical University, Takatsuki 569-8686, Japan; (K.Y.); (T.N.); (H.N.); (K.H.)
- Correspondence: ; Tel.: +81-(726)-83-1221
| | - Saho Hirai
- Faculty of Medicine, Osaka Medical and Pharmaceutical University, Takatsuki 569-8686, Japan;
| | - Keisuke Yokohama
- The Second Department of Internal Medicine, Osaka Medical and Pharmaceutical University, Takatsuki 569-8686, Japan; (K.Y.); (T.N.); (H.N.); (K.H.)
| | - Tomohiro Nishikawa
- The Second Department of Internal Medicine, Osaka Medical and Pharmaceutical University, Takatsuki 569-8686, Japan; (K.Y.); (T.N.); (H.N.); (K.H.)
| | - Hiroki Nishikawa
- The Second Department of Internal Medicine, Osaka Medical and Pharmaceutical University, Takatsuki 569-8686, Japan; (K.Y.); (T.N.); (H.N.); (K.H.)
| | - Kazuhide Higuchi
- The Second Department of Internal Medicine, Osaka Medical and Pharmaceutical University, Takatsuki 569-8686, Japan; (K.Y.); (T.N.); (H.N.); (K.H.)
| |
Collapse
|
34
|
Marcelin JR, Pettifor A, Janes H, Brown ER, Kublin JG, Stephenson KE. COVID-19 Vaccines and SARS-CoV-2 Transmission in the Era of New Variants: A Review and Perspective. Open Forum Infect Dis 2022; 9:ofac124. [PMID: 35493113 PMCID: PMC8992234 DOI: 10.1093/ofid/ofac124] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 03/07/2022] [Indexed: 11/22/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19) vaccines have yielded definitive prevention and major reductions in morbidity and mortality from severe acute respiratory syndrome coronavirus 2 infection, even in the context of emerging and persistent variants of concern. Newer variants have revealed less vaccine protection against infection and attenuation of vaccine effects on transmission. COVID-19 vaccines still likely reduce transmission compared with not being vaccinated at all, even with variants of concern; however, determining the magnitude of transmission reduction is constrained by the challenges of performing these studies, requiring accurate linkage of infections to vaccine status and timing thereof, particularly within households. In this review, we synthesize the currently available data on the impact of COVID-19 vaccines on infection, serious illness, and transmission; we also identify the challenges and opportunities associated with policy development based on this data.
Collapse
Affiliation(s)
- Jasmine R Marcelin
- Division of Infectious Diseases, University of Nebraska Medical Center, Omaha Nebraska, USA
| | | | - Holly Janes
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
- Department of Biostatistics, University of Washington, Seattle, WA 98195, USA
| | - Elizabeth R Brown
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
- Department of Biostatistics, University of Washington, Seattle, WA 98195, USA
| | - James G Kublin
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Kathryn E Stephenson
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Division of Infectious Diseases, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
| |
Collapse
|
35
|
Li H, Qian F, Zou W, Jin F, Li D, Zhang Y. OUP accepted manuscript. Trans R Soc Trop Med Hyg 2022; 116:874-880. [PMID: 35543271 DOI: 10.1093/trstmh/trac040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 02/17/2022] [Accepted: 04/16/2022] [Indexed: 11/14/2022] Open
Affiliation(s)
- Haiyan Li
- Department of Laboratory Medicine, Huzhou Maternity and Child Health Care Hospital, 2 East Street, Huzhou, Zhejiang Province, China
| | - Fuchu Qian
- Department of Precision Medicine, Affiliated Central Hospital Huzhou University, Huzhou Central Hospital, 1558 Sanhuan North Road, Huzhou, Zhejiang Province, China
- Huzhou Key Laboratory of Molecular Medicine, 1558 Sanhuan North Road, Huzhou, Zhejiang Province, China
| | - Weihua Zou
- Department of Laboratory Medicine, Affiliated Central Hospital Huzhou University, Huzhou Central Hospital, 1558 Sanhuan North Road, Huzhou, Zhejiang Province, China
| | - Fang Jin
- Department of Precision Medicine, Affiliated Central Hospital Huzhou University, Huzhou Central Hospital, 1558 Sanhuan North Road, Huzhou, Zhejiang Province, China
- Huzhou Key Laboratory of Molecular Medicine, 1558 Sanhuan North Road, Huzhou, Zhejiang Province, China
| | - Dongli Li
- Department of Precision Medicine, Affiliated Central Hospital Huzhou University, Huzhou Central Hospital, 1558 Sanhuan North Road, Huzhou, Zhejiang Province, China
- Huzhou Key Laboratory of Molecular Medicine, 1558 Sanhuan North Road, Huzhou, Zhejiang Province, China
| | - Yaqin Zhang
- Department of Laboratory Medicine, Huzhou Maternity and Child Health Care Hospital, 2 East Street, Huzhou, Zhejiang Province, China
| |
Collapse
|
36
|
Knolle PA, Huang LR, Kosinska A, Wohlleber D, Protzer U. Improving Therapeutic Vaccination against Hepatitis B-Insights from Preclinical Models of Immune Therapy against Persistent Hepatitis B Virus Infection. Vaccines (Basel) 2021; 9:1333. [PMID: 34835264 PMCID: PMC8623083 DOI: 10.3390/vaccines9111333] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/05/2021] [Accepted: 11/09/2021] [Indexed: 12/02/2022] Open
Abstract
Chronic hepatitis B affects more than 250 million individuals worldwide, putting them at risk of developing liver cirrhosis and liver cancer. While antiviral immune responses are key to eliminating hepatitis B virus (HBV) infections, insufficient antiviral immunity characterized by failure to eliminate HBV-infected hepatocytes is associated with chronic hepatitis B. Prophylactic vaccination against hepatitis B successfully established protective immunity against infection with the hepatitis B virus and has been instrumental in controlling hepatitis B. However, prophylactic vaccination schemes have not been successful in mounting protective immunity to eliminate HBV infections in patients with chronic hepatitis B. Here, we discuss the current knowledge on the development and efficacy of therapeutic vaccination strategies against chronic hepatitis B with particular emphasis on the pathogenetic understanding of dysfunctional anti-viral immunity. We explore the development of additional immune stimulation measures within tissues, in particular activation of immunogenic myeloid cell populations, and their use for combination with therapeutic vaccination strategies to improve the efficacy of therapeutic vaccination against chronic hepatitis B.
Collapse
Affiliation(s)
- Percy A. Knolle
- Institute of Molecular Immunology and Experimental Oncology, School of Medicine, Technical University of Munich, 81675 Munich, Germany;
- German Center for infection Research (DZIF), Munich Site, 81675 Munich, Germany;
| | - Li-Rung Huang
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Zhunan Town, Miaoli City 350, Taiwan;
| | - Anna Kosinska
- Institute of Virology, School of Medicine, Technical University of Munich, 81675 Munich, Germany;
| | - Dirk Wohlleber
- Institute of Molecular Immunology and Experimental Oncology, School of Medicine, Technical University of Munich, 81675 Munich, Germany;
| | - Ulrike Protzer
- German Center for infection Research (DZIF), Munich Site, 81675 Munich, Germany;
- Institute of Virology, School of Medicine, Technical University of Munich, 81675 Munich, Germany;
| |
Collapse
|
37
|
de Almeida Pondé RA. Detection of the serological markers hepatitis B virus surface antigen (HBsAg) and hepatitis B core IgM antibody (anti-HBcIgM) in the diagnosis of acute hepatitis B virus infection after recent exposure. Microbiol Immunol 2021; 66:1-9. [PMID: 34528725 DOI: 10.1111/1348-0421.12943] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 09/04/2021] [Accepted: 09/14/2021] [Indexed: 12/30/2022]
Abstract
The serological diagnosis of acute hepatitis B virus (HBV) infection after recent exposure has been established by the hepatitis B virus surface antigen (HBsAg) and anti-hepatitis B core IgM antibody (anti-HBcIgM) detection in serum, sometimes accompanied by the detection of hepatitis B "e" antigen (HBeAg). Despite this characteristic serological profile, misdiagnosis can occur in cases of unexpected or atypical behavior of the serological markers in the bloodstream, or if the true meaning of its expression is not properly investigated, or even if there is a possibility of interference from factors not necessarily linked to the infectious process, in the detection of these markers. This review discusses the influence of these variables on laboratory results for these two serological markers and, therefore, the potential risk of these variables compromising the correct diagnosis of acute infection after recent HBV exposure.
Collapse
Affiliation(s)
- Robério Amorim de Almeida Pondé
- Laboratory of Human Virology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, Goiás, Brazil.,Secretaria de Estado da Saúde-SES/Superintendência de Vigilância em Saúde-SUVISA/GO, Gerência de Vigilância Epidemiológica-GVE/Coordenação de Análises e Pesquisas-CAP, Goiânia, Goiás, Brazil
| |
Collapse
|
38
|
Ghosh S, Chakraborty A, Banerjee S. Persistence of Hepatitis B Virus Infection: A Multi-Faceted Player for Hepatocarcinogenesis. Front Microbiol 2021; 12:678537. [PMID: 34526974 PMCID: PMC8435854 DOI: 10.3389/fmicb.2021.678537] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 07/06/2021] [Indexed: 12/14/2022] Open
Abstract
Hepatitis B virus (HBV) infection has a multi-dimensional effect on the host, which not only alters the dynamics of immune response but also persists in the hepatocytes to predispose oncogenic factors. The virus exists in multiple forms of which the nuclear localized covalently closed circular DNA (cccDNA) is the most stable and the primary reason for viral persistence even after clearance of surface antigen and viral DNA. The second reason is the existence of pregenomic RNA (pgRNA) containing virion particles. On the other hand, the integration of the viral genome in the host chromosome also leads to persistent production of viral proteins along with the chromosomal instabilities. The interferon treatment or administration of nucleot(s)ide analogs leads to reduction in the viral DNA load, but the pgRNA and surface antigen clearance are a slow process and complete loss of serological HBsAg is rare. The prolonged exposure of immune cells to the viral antigens, particularly HBs antigen, in the blood circulation results in T-cell exhaustion, which disrupts immune clearance of the virus and virus-infected cells. In addition, it predisposes immune-tolerant microenvironment, which facilitates the tumor progression. Thus cccDNA, pgRNA, and HBsAg along with the viral DNA could be the therapeutic targets in the early disease stages that may improve the quality of life of chronic hepatitis B patients by impeding the progression of the disease toward hepatocellular carcinoma.
Collapse
Affiliation(s)
| | | | - Soma Banerjee
- Centre for Liver Research, School of Digestive and Liver Diseases, Institute of Post Graduate Medical Education and Research, Kolkata, India
| |
Collapse
|
39
|
Ohta T, Ito K, Sugiura T, Koyama N, Saitoh S, Murakami S, Tanaka Y. Breakthrough HBV infection in a vaccinated child due to vaccine escape mutant. KANZO 2021; 62:403-412. [DOI: 10.2957/kanzo.62.403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Affiliation(s)
- Takanori Ohta
- Department of Pediatrics and Neonatology, Graduate School of Medical Sciences, Nagoya City University
| | - Koichi Ito
- Department of Pediatrics and Neonatology, Graduate School of Medical Sciences, Nagoya City University
| | | | | | - Shinji Saitoh
- Department of Pediatrics and Neonatology, Graduate School of Medical Sciences, Nagoya City University
| | - Shuko Murakami
- Department of Virology and Liver Unit, Graduate School of Medical Sciences, Nagoya City University
| | - Yasuhito Tanaka
- Department of Gastroenterology and Hepatology, Kumamoto University
| |
Collapse
|
40
|
Detection of Q129H Immune Escape Mutation in Apparently Healthy Hepatitis B Virus Carriers in Southwestern Nigeria. Viruses 2021; 13:v13071273. [PMID: 34210073 PMCID: PMC8310067 DOI: 10.3390/v13071273] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 06/27/2021] [Accepted: 06/27/2021] [Indexed: 12/12/2022] Open
Abstract
As the global effort to eradicate hepatitis B continues, immune escape mutations (IEMs) and drug resistance mutations (DRMs) affecting its diagnosis, treatment, and prevention are compromising this goal. However, knowledge about the prevalence and circulation of these mutations in Nigeria is scarce. Serum samples (n = 199) from apparently healthy prospective blood donors, pregnant women, and individuals presenting with fever in southwestern Nigeria were analyzed for the presence of IEMs and DRMs by means of nested PCR in the HBV S (HBs) and HBV polymerase (Pol) genes, followed by phylogenetic and mutational analyses. In total, 25.1% (n = 50/199) of samples were positive for HBV, as measured by PCR. In 41 samples (20.6%), both fragments could be amplified, whereas the HBs gene and the Pol gene fragment alone were detected in 0.5% (n = 1/199) and 4% (n = 8/199) of samples, respectively. Sequences were successfully obtained for all 42 HBs gene fragments but for only 31/49 Pol gene fragments (totaling 73 sequences from 44 individuals). All sequences were identified as HBV genotype E. IEMs were present in 18.2% (n = 8/44) of the sequences of HBV-positive individuals with available sequences. IEM Q129H was detected in eight out of the 44 (18.2%) HBV isolates sequenced in this study; however, no DRMs were observed. This study confirms the circulation of HBV IEMs and reports the presence of Q129H IEM for the first time in Nigeria. Intensified research on the dynamics of IEM is necessary in order to enhance the elimination of HBV.
Collapse
|
41
|
El-Mokhtar MA, Hetta HF, Mekky MA, Abd El-Kareem DM, Ramadan M, Salah M, Mohamed NA, El-Masry EA, Adel S, Sayed IM. Characterization of Antigen Escape Mutations in Chronic HBV-Infected Patients in Upper Egypt. Infect Drug Resist 2021; 14:2419-2427. [PMID: 34234472 PMCID: PMC8254413 DOI: 10.2147/idr.s315299] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Accepted: 05/24/2021] [Indexed: 12/27/2022] Open
Abstract
Background Mutations within the “a” determinant region (position 124–147) that is present in the major hydrophilic region (MHR, position 99–160) of the hepatitis B surface antigen (HBsAg) are associated with vaccine-escape, lack of diagnosis, and failure to hepatitis B immunoglobulin (HBIG) therapy. Data regarding the amino acid changes of “a” determinant region of HBsAg are limited in Egypt. The prevalence and mutations in this region among chronic HBV (CHB)-infected patients in Upper Egypt are not known. Material and Methods Blood samples were collected from HBsAg-positive CHB-infected patients (n=123) admitted to Assiut University Hospitals. Serum samples were screened for HBsAg, HBeAg, anti-HBs and anti-HBe antibodies using commercially available ELISA kits. Viral load was determined by qPCR. In addition, mutational analysis was carried out targeting the HBV surface gene to determine the HBV genotype and vaccine escape mutations. Results Sequencing analysis of HBV DNA revealed that genotype D is the major circulating type (81.3%), followed by genotype E (18.7%). Analysis of the HBV genome revealed that 103/123 (83.7%) patients showed wild-type sequences and 20/123 (16.3%) showed mutations in the HBsAg gene. Mutation in seventeen patients (17/20, 85%) showed only one mutation, and three patients showed two mutations (3/20, 15%) in the “a” determinant region. The observed mutations were T115S (3/20, 15%), P120T/S (3/20, 15%), T126S (1/20, 5%), Q129R (2/20, 10%), M133T (2/20, 10%), S143L (5/20, 25%), D144E/A (3/20, 15%), and G145R/A (4/20, 20%). Mutations in the “a” determinant region were detected in genotype D isolates only. Conclusion We described for the first time the prevalence and characterization of vaccine escape mutants in CHB patients in Upper Egypt. Mutational analysis of the “a” determinant region revealed the presence of a wide spectrum of mutants in the circulating HBV isolates that could be a potential threat to HBV diagnosis, therapy success, and HBV vaccination program in Upper Egypt.
Collapse
Affiliation(s)
- Mohamed A El-Mokhtar
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Assiut University, Assiut, 71515, Egypt
| | - Helal F Hetta
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Assiut University, Assiut, 71515, Egypt
| | - Mohamed A Mekky
- Department of Tropical Medicine and Gastroenterology, Assiut University Hospital, Assiut, Egypt
| | - Doaa M Abd El-Kareem
- Department of Clinical Pathology, Faculty of Medicine Assiut University, Assiut, Egypt
| | - Mohammed Ramadan
- Microbiology and Immunology Department, Faculty of Pharmacy Al-Azhar University-Assiut branch, Assiut, 71526, Egypt
| | - Mohammed Salah
- Microbiology and Immunology Department, Faculty of Pharmacy Port Said University, Port Said, 42526, Egypt
| | - Nahed A Mohamed
- Department of Medical Biochemistry, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Eman A El-Masry
- Microbiology and Immunology Unit, Department of Pathology, College of Medicine, Jouf University, Al-Jouf, Saudi Arabia.,Department of Medical Microbiology and Immunology, College of Medicine, Menoufia University, Menoufia, Egypt
| | - Sara Adel
- Department of Clinical Pathology, Faculty of Medicine, Al-Azhar University, Assiut, 71515, Egypt
| | - Ibrahim M Sayed
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Assiut University, Assiut, 71515, Egypt.,Department of Pathology, School of Medicine, University of California, San Diego, CA, 92093, USA
| |
Collapse
|
42
|
Lost Small Envelope Protein Expression from Naturally Occurring PreS1 Deletion Mutants of Hepatitis B Virus Is Often Accompanied by Increased HBx and Core Protein Expression as Well as Genome Replication. J Virol 2021; 95:e0066021. [PMID: 33910956 PMCID: PMC8223946 DOI: 10.1128/jvi.00660-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Hepatitis B virus (HBV) transcribes coterminal mRNAs of 0.7 to 3.5 kb from the 3.2-kb covalently closed circular DNA, with the 2.1-kb RNA being most abundant. The 0.7-kb RNA produces HBx protein, a transcriptional transactivator, while the 3.5-kb pregenomic RNA (pgRNA) drives core and P protein translation as well as genome replication. The large (L) and small (S) envelope proteins are translated from the 2.4-kb and 2.1-kb RNAs, respectively, with the majority of the S protein being secreted as noninfectious subviral particles and detected as hepatitis B surface antigen (HBsAg). pgRNA transcription could inhibit transcription of subgenomic RNAs. The present study characterized naturally occurring in-frame deletions in the 3' preS1 region, which not only codes for L protein but also serves as the promoter for 2.1-kb RNA. The human hepatoma cell line Huh7 was transiently transfected with subgenomic expression constructs for envelope (and HBx) proteins, dimeric constructs, or constructs mimicking covalently closed circular DNA. The results confirmed lost 2.1-kb RNA transcription and HBsAg production from many deletion mutants, accompanied by increases in other (especially 2.4-kb) RNAs, intracellular HBx and core proteins, and replicative DNA but impaired virion and L protein secretion. The highest intracellular L protein levels were achieved by mutants that had residual S protein expression or retained the matrix domain in L protein. Site-directed mutagenesis of a high replicating deletion mutant suggested that increased HBx protein expression and blocked virion secretion both contributed to the high replication phenotype. Our findings could help explain why such deletions are selected at a late stage of chronic HBV infection and how they contribute to viral pathogenesis. IMPORTANCE Expression of hepatitis B e antigen (HBeAg) and overproduction of HBsAg by wild-type HBV are implicated in the induction of immune tolerance to achieve chronic infection. How HBV survives the subsequent immune clearance phase remains incompletely understood. Our previous characterization of core promoter mutations to reduce HBeAg production revealed the ability of the 3.5-kb pgRNA to diminish transcription of coterminal RNAs of 2.4 kb, 2.1 kb, and 0.7 kb. The later stage of chronic HBV infection often selects for in-frame deletions in the preS region. Here, we found that many 3' preS1 deletions prevented transcription of the 2.1-kb RNA for HBsAg production, which was often accompanied by increases in intracellular 3.5-, 0.7-, and especially 2.4-kb RNAs, HBx and core proteins, and replicative DNA but lost virion secretion. These findings established the biological consequences of preS1 deletions, thus shedding light on why they are selected and how they contribute to hepatocarcinogenesis.
Collapse
|
43
|
Campos-Valdez M, Monroy-Ramírez HC, Armendáriz-Borunda J, Sánchez-Orozco LV. Molecular Mechanisms during Hepatitis B Infection and the Effects of the Virus Variability. Viruses 2021; 13:v13061167. [PMID: 34207116 PMCID: PMC8235420 DOI: 10.3390/v13061167] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 06/10/2021] [Accepted: 06/11/2021] [Indexed: 12/16/2022] Open
Abstract
The immunopathogenesis and molecular mechanisms involved during a hepatitis B virus (HBV) infection have made the approaches for research complex, especially concerning the patients’ responses in the course of the early acute stage. The study of molecular bases involved in the viral clearance or persistence of the infection is complicated due to the difficulty to detect patients at the most adequate points of the disease, especially in the time lapse between the onset of the infection and the viral emergence. Despite this, there is valuable data obtained from animal and in vitro models, which have helped to clarify some aspects of the early immune response against HBV infection. The diversity of the HBV (genotypes and variants) has been proven to be associated not only with the development and outcome of the disease but also with the response to treatments. That is why factors involved in the virus evolution need to be considered while studying hepatitis B infection. This review brings together some of the published data to try to explain the immunological and molecular mechanisms involved in the different stages of the infection, clinical outcomes, viral persistence, and the impact of the variants of HBV in these processes.
Collapse
Affiliation(s)
- Marina Campos-Valdez
- Centro Universitario de Ciencias de la Salud, Departamento de Biología Molecular y Genómica, Instituto de Biología Molecular en Medicina, Universidad de Guadalajara, Guadalajara 44340, Jalisco, México; (M.C.-V.); (H.C.M.-R.); (J.A.-B.)
| | - Hugo C. Monroy-Ramírez
- Centro Universitario de Ciencias de la Salud, Departamento de Biología Molecular y Genómica, Instituto de Biología Molecular en Medicina, Universidad de Guadalajara, Guadalajara 44340, Jalisco, México; (M.C.-V.); (H.C.M.-R.); (J.A.-B.)
| | - Juan Armendáriz-Borunda
- Centro Universitario de Ciencias de la Salud, Departamento de Biología Molecular y Genómica, Instituto de Biología Molecular en Medicina, Universidad de Guadalajara, Guadalajara 44340, Jalisco, México; (M.C.-V.); (H.C.M.-R.); (J.A.-B.)
- Escuela de Medicina y Ciencias de la Salud, Tecnológico de Monterrey, Campus Guadalajara, Zapopan 45201, Jalisco, México
| | - Laura V. Sánchez-Orozco
- Centro Universitario de Ciencias de la Salud, Departamento de Biología Molecular y Genómica, Instituto de Biología Molecular en Medicina, Universidad de Guadalajara, Guadalajara 44340, Jalisco, México; (M.C.-V.); (H.C.M.-R.); (J.A.-B.)
- Correspondence: ; Tel.: +52-33-3954-5677
| |
Collapse
|
44
|
Inoue J, Sato K, Ninomiya M, Masamune A. Envelope Proteins of Hepatitis B Virus: Molecular Biology and Involvement in Carcinogenesis. Viruses 2021; 13:1124. [PMID: 34208172 PMCID: PMC8230773 DOI: 10.3390/v13061124] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 06/08/2021] [Accepted: 06/09/2021] [Indexed: 12/15/2022] Open
Abstract
The envelope of hepatitis B virus (HBV), which is required for the entry to hepatocytes, consists of a lipid bilayer derived from hepatocyte and HBV envelope proteins, large/middle/small hepatitis B surface antigen (L/M/SHBs). The mechanisms and host factors for the envelope formation in the hepatocytes are being revealed. HBV-infected hepatocytes release a large amount of subviral particles (SVPs) containing L/M/SHBs that facilitate escape from the immune system. Recently, novel drugs inhibiting the functions of the viral envelope and those inhibiting the release of SVPs have been reported. LHBs that accumulate in ER is considered to promote carcinogenesis and, especially, deletion mutants in the preS1/S2 domain have been reported to be associated with the development of hepatocellular carcinoma (HCC). In this review, we summarize recent reports on the findings regarding the biological characteristics of HBV envelope proteins, their involvement in HCC development and new agents targeting the envelope.
Collapse
Affiliation(s)
- Jun Inoue
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai 980-8574, Japan; (K.S.); (M.N.); (A.M.)
| | | | | | | |
Collapse
|
45
|
Rochman N, Wolf YI, Koonin EV. Substantial impact of post-vaccination contacts on cumulative infections during viral epidemics. F1000Res 2021; 10:315. [PMID: 34504684 PMCID: PMC8406440 DOI: 10.12688/f1000research.52341.2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/17/2021] [Indexed: 12/15/2022] Open
Abstract
Background: The start of 2021 was marked by the initiation of a global vaccination campaign against the novel coronavirus SARS-CoV-2. Formulating an optimal distribution strategy under social and economic constraints is challenging. Optimal distribution is additionally constrained by the potential emergence of vaccine resistance. Analogous to chronic low-dose antibiotic exposure, recently inoculated individuals who are not yet immune play an outsized role in the emergence of resistance. Classical epidemiological modelling is well suited to explore how the behavior of the inoculated population impacts the total number of infections over the entirety of an epidemic. Methods: A deterministic model of epidemic evolution is analyzed, with seven compartments defined by their relationship to the emergence of vaccine-resistant mutants and representing three susceptible populations, three infected populations, and one recovered population. This minimally computationally intensive design enables simulation of epidemics across a broad parameter space. The results are used to identify conditions minimizing the cumulative number of infections. Results: When an escape variant is only modestly less infectious than the originating strain within a naïve population, the cumulative number of infections does not monotonically decrease with the rate of vaccine distribution. Analysis of the model also demonstrates that inoculated individuals play a major role in the mitigation or exacerbation of vaccine-resistant outbreaks. Modulating the rate of host-host contact for the inoculated population by less than an order of magnitude can alter the cumulative number of infections by more than 20%. Conclusions: Mathematical modeling shows that limiting post-vaccination contacts can perceptibly affect the course of an epidemic. The consideration of limitations on post-vaccination contacts remains relevant for the entire duration of any vaccination campaign including the current status of SARS-CoV-2 vaccination.
Collapse
Affiliation(s)
- Nash Rochman
- National Center for Biotechnology Information, NIH, Bethesda, MD, 20894, USA
| | - Yuri I Wolf
- National Center for Biotechnology Information, NIH, Bethesda, MD, 20894, USA
| | - Eugene V Koonin
- National Center for Biotechnology Information, NIH, Bethesda, MD, 20894, USA
| |
Collapse
|
46
|
Rochman N, Wolf YI, Koonin EV. Substantial impact of post-vaccination contacts on cumulative infections during viral epidemics. F1000Res 2021; 10:315. [PMID: 34504684 PMCID: PMC8406440 DOI: 10.12688/f1000research.52341.1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/14/2021] [Indexed: 07/20/2023] Open
Abstract
Background: The start of 2021 was marked by the initiation of a global vaccination campaign against the novel coronavirus SARS-CoV-2. Formulating an optimal distribution strategy under social and economic constraints is challenging. Optimal distribution is additionally constrained by the potential emergence of vaccine resistance. Analogous to chronic low-dose antibiotic exposure, recently inoculated individuals who are not yet immune play an outsized role in the emergence of resistance. Classical epidemiological modelling is well suited to explore how the behavior of the inoculated population impacts the total number of infections over the entirety of an epidemic. Methods: A deterministic model of epidemic evolution is analyzed, with seven compartments defined by their relationship to the emergence of vaccine-resistant mutants and representing three susceptible populations, three infected populations, and one recovered population. This minimally computationally intensive design enables simulation of epidemics across a broad parameter space. The results are used to identify conditions minimizing the cumulative number of infections. Results: When an escape variant is only modestly less infectious than the originating strain within a naïve population, there exists an optimal rate of vaccine distribution. Exceeding this rate increases the cumulative number of infections due to vaccine escape. Analysis of the model also demonstrates that inoculated individuals play a major role in the mitigation or exacerbation of vaccine-resistant outbreaks. Modulating the rate of host-host contact for the inoculated population by less than an order of magnitude can alter the cumulative number of infections by more than 20%. Conclusions: Mathematical modeling shows that optimization of the vaccination rate and limiting post-vaccination contacts can perceptibly affect the course of an epidemic. The consideration of limitations on post-vaccination contacts remains relevant for the entire duration of any vaccination campaign including the current status of SARS-CoV-2 vaccination.
Collapse
Affiliation(s)
- Nash Rochman
- National Center for Biotechnology Information, NIH, Bethesda, MD, 20894, USA
| | - Yuri I Wolf
- National Center for Biotechnology Information, NIH, Bethesda, MD, 20894, USA
| | - Eugene V Koonin
- National Center for Biotechnology Information, NIH, Bethesda, MD, 20894, USA
| |
Collapse
|
47
|
A putative amphipathic alpha helix in hepatitis B virus small envelope protein plays a critical role in the morphogenesis of subviral particles. J Virol 2021; 95:JVI.02399-20. [PMID: 33536177 PMCID: PMC8103704 DOI: 10.1128/jvi.02399-20] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Hepatitis B virus (HBV) small (S) envelope protein has the intrinsic ability to direct the formation of small spherical subviral particles (SVPs) in eukaryotic cells. However, the molecular mechanism underlying the morphogenesis of SVPs from the monomeric S protein initially synthesized at the endoplasmic reticulum (ER) membrane remains largely elusive. Structure prediction and extensive mutagenesis analysis suggested that the amino acid residues spanning W156 to R169 of S protein form an amphipathic alpha helix and play essential roles in SVP production and S protein metabolic stability. Further biochemical analyses showed that the putative amphipathic alpha helix was not required for the disulfide-linked S protein oligomerization, but was essential for SVP morphogenesis. Pharmacological disruption of vesicle trafficking between the ER and Golgi complex in SVP producing cells supported the hypothesis that S protein-directed SVP morphogenesis takes place at the ER-Golgi intermediate compartment (ERGIC). Moreover, it was demonstrated that S protein is degraded in hepatocytes via a 20S proteasome-dependent, but ubiquitination-independent non-classic ER-associated degradation (ERAD) pathway. Taken together, the results reported herein favor a model in which the amphipathic alpha helix at the antigenic loop of S protein attaches to the lumen leaflet to facilitate SVP budding from the ERGIC compartment, whereas the failure of budding process may result in S protein degradation by 20S proteasome in an ubiquitination-independent manner.Importance Subviral particles are the predominant viral product produced by HBV-infected hepatocytes. Their levels exceed the virion particles by 10,000 to 100,000-fold in the blood of HBV infected individuals. The high levels of SVPs, or HBV surface antigen (HBsAg), in the circulation induces immune tolerance and contributes to the establishment of persistent HBV infection. The loss of HBsAg, often accompanied by appearance of anti-HBs antibodies, is the hallmark of durable immune control of HBV infection. Therapeutic induction of HBsAg loss is, therefore, considered to be essential for the restoration of host antiviral immune response and functional cure of chronic hepatitis B. Our findings on the mechanism of SVP morphogenesis and S protein metabolism will facilitate the rational discovery and development of antiviral drugs to achieve this therapeutic goal.
Collapse
|
48
|
Olusola BA, Faneye AO, Oluwasemowo OO, Motayo BO, Adebayo S, Oludiran-Ayoade AE, Aleru B, George UE, Oragwa AO. Profiles of mutations in hepatitis B virus surface and polymerase genes isolated from treatment-naïve Nigerians infected with genotype E. J Med Microbiol 2021; 70. [PMID: 33704041 DOI: 10.1099/jmm.0.001338] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Introduction. Hepatitis B virus (HBV) infection is the leading cause of hepatitis, liver cirrhosis, and hepatocellular carcinoma (HCC). HBV genotype E (HBV/E) is the predominant genotype in West Africa and has been linked epidemiologically with chronic and occult HBV infections as well as development of HCC. Mutations in the surface and polymerase genes of HBV have been associated with occult infection, drug resistance, vaccine escape, as well as HCC.Hypothesis/Gap Statement. There is limited data on the occurrence and patterns of mutations associated with occult infection, drug resistance, vaccine escape and HCC for HBV/E.Aim. This study characterized amino acid (aa) substitutions in the major hydrophilic (MHR) and reverse transcriptase (RT) regions of the surface and polymerase genes respectively of HBV sequences from a group of Nigerians with genotype E infection. The CpG islands of the PreC/C and PreS/S regions of these sequences were also described.Methodology. HBV surface and polymerase genes were detected using PCR techniques. Occurrence of new and previously described mutations in these genes were analysed using phylogenetic techniques.Results. Overall 13 HBV isolates were each sequenced for polymerase and surface genes mutations. Thirteen and nine PreS/S and PreC/C HBV genes respectively were analysed for CpG islands. Mutations in the MHR and a-determinants region of the S protein were discovered in eleven and nine of the 13 tested isolates respectively. These mutations were concomitant with aa changes in the RT functional domains of the isolates. Mutations associated with vaccine escape, occult infection and poor HCC prognosis were identified in HBV/E isolated in this study. Furthermore, all the isolates had at least one putative nucleotide analogue resistance mutations. Drug resistance mutations had the highest association with CpG islands.Conclusion. The results of this study contribute to further understanding of HBV variability in Nigeria and the West African region. This will aid the planning of adequate HBV immunization and treatment programmes for the countries in the region.
Collapse
Affiliation(s)
- Babatunde A Olusola
- Department of Virology, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Adedayo O Faneye
- Department of Virology, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | | | - Babatunde O Motayo
- Federal Medical Center, Abeokuta, Nigeria.,Department of Virology, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Sopeju Adebayo
- Department of Virology, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Ayomide E Oludiran-Ayoade
- Present address: Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada.,Department of Virology, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Bisola Aleru
- Department of Virology, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Uwem E George
- Department of Biological Sciences, Redeemer's University, Ede, Osun State, Nigeria
| | - Arthur O Oragwa
- Department of Veterinary Microbiology, Faculty of Veterinary Medicine, University of Jos, Jos-Plateau State, Nigeria
| |
Collapse
|
49
|
Identification of Two Critical Neutralizing Epitopes in the Receptor Binding Domain of Hepatitis B Virus preS1. J Virol 2021; 95:JVI.01680-20. [PMID: 33298539 PMCID: PMC8092832 DOI: 10.1128/jvi.01680-20] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Hepatitis B virus (HBV) infection is a major public health problem. Human hepatocytes are infected with HBV via binding between the preS1 region in the large envelope protein of HBV and sodium taurocholate cotransporting polypeptide. Although several monoclonal antibodies (MAbs) that recognize the receptor binding domain in preS1 and neutralize HBV infection have been isolated, details of neutralizing epitopes are not understood. In this study, we generated 13 MAbs targeting the preS1 receptor binding domain from preS1-specific memory B cells derived from DNA immunized mice. The MAbs were classified into three groups according to the epitope regions, designated epitopes I-III. A virus neutralization assay revealed that MAbs recognizing epitopes I and III neutralized HBV infection, suggesting that these domains are critical epitopes for viral neutralization. In addition, a neutralization assay against multiple genotypes of HBV revealed that epitope I is a semi-pangenotypic neutralizing epitope, whereas epitope III is a genotype-specific epitope. We also showed that neutralizing MAbs against preS1 could neutralize HBV bearing vaccine-induced escape mutation. These findings provide insight into novel immunoprophylaxis for the prevention and treatment of HBV infection.IMPORTANCE The HBV preS1 2-47 aa region (preS1/2-47) is essential for virus binding with sodium taurocholate cotransporting polypeptide. Several MAbs targeting preS1/2-47 have been reported to neutralize HBV infection; however, which region in preS1/2-47 contains the critical neutralizing epitope for HBV infection is unclear. Here, we generated several MAbs targeting preS1/2-47 and found that MAbs recognizing the N- or C-terminus of preS1/2-47 remarkably neutralized HBV infection. We further confirmed the neutralizing activity of anti-preS1 MAbs against HBV with vaccine escape mutation. These data clarified the relationship between the antibody epitope and the virus neutralizing activity and also suggested the potential ability of a vaccine antigen containing the preS1 region to overcome the weakness of current HB vaccines comprising the small S protein.
Collapse
|
50
|
Tsuruya K, Anzai K, Shioyama S, Ito A, Arase Y, Hirose S, Tanaka Y, Suzuki H, Kagawa T. Case of hepatitis B virus reactivation after ibrutinib therapy in which the patient remained negative for hepatitis B surface antigens throughout the clinical course. Hepatol Res 2021; 51:239-244. [PMID: 32978866 DOI: 10.1111/hepr.13575] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 08/28/2020] [Accepted: 09/08/2020] [Indexed: 12/17/2022]
Abstract
A 71-year-old man was diagnosed with B-cell chronic lymphocytic leukemia. He was negative for hepatitis B surface antigen (HBsAg), positive for antibodies against the hepatitis B surface and core, and negative for hepatitis B virus (HBV)-DNA before starting chemotherapy. A total of 13 months after the initiation of ibrutinib (a Bruton's tyrosine kinase inhibitor), the patient's alanine aminotransferase levels suddenly increased to 427 U/L. As the level of serum HBV-DNA increased to 5.2 logIU/mL, a diagnosis of HBV reactivation was made, whereas the patient remained negative for HBsAg. The patient's serum alanine aminotransferase levels normalized after the initiation of entecavir at a dose of 1 mg/day. However, it took >1 year to achieve an undetectable level of HBV-DNA, even with an add-on therapy of tenofovir disoproxil fumarate. Interestingly, the patient remained negative for HBsAg throughout the clinical course owing to triple HBsAg escape mutations: Q101K, M133L, and G145A.
Collapse
Affiliation(s)
- Kota Tsuruya
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Tokai University School of Medicine, Isehara, Japan
| | - Kazuya Anzai
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Tokai University School of Medicine, Isehara, Japan
| | - Shunsuke Shioyama
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Tokai University School of Medicine, Isehara, Japan
| | - Ayano Ito
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Tokai University School of Medicine, Isehara, Japan
| | - Yoshitaka Arase
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Tokai University School of Medicine, Isehara, Japan
| | - Shunji Hirose
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Tokai University School of Medicine, Isehara, Japan
| | - Yasuhito Tanaka
- Department of Gastroenterology and Hepatology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Hidekazu Suzuki
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Tokai University School of Medicine, Isehara, Japan
| | - Tatehiro Kagawa
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Tokai University School of Medicine, Isehara, Japan
| |
Collapse
|