1
|
Xu T, Zhang Y, Tao Q, Xu L, Lai SY, Ai YR, Huang JB, Yang BL, Zhu L, Xu ZW. Transcriptome analysis reveals that PRV XJ delgE/gI/TK protects against intestinal damage in nose-dropping-infected mice by regulating ECM-ITGA/ITGB-P-FAK. Microbiol Spectr 2025; 13:e0182824. [PMID: 39611821 PMCID: PMC11705885 DOI: 10.1128/spectrum.01828-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 11/10/2024] [Indexed: 11/30/2024] Open
Abstract
Pseudorabies virus (PRV) is an ideal model for mechanistic investigations into α-herpesvirus. The neurotropism and latent infection of PRV have been extensively studied. Apart from neurological symptoms, diarrhea caused by PRV infection is also an essential cause of mortality in newborn and weaned piglets. However, little research has been done on PRV invasion of the gut. To fill this gap, a nasal drip PRV-infection mouse model was developed, consisting of three groups: the challenged group (Group A), the immunization-challenged group (Group B), and a mock group (Group C). The results showed that immunization with PRV XJ delgE/gI/TK successfully prevented intestinal damage caused by PRV drop-nose infection. Subsequently, intestines were collected for transcriptional analysis. Differentially expressed genes analysis revealed that PRV XJ delgE/gI/TK was effective in reducing the organismal intestinal transcriptional activity caused by PRV. The Group A vs Group C and Group A vs Group B had similar Kyoto Encyclopedia of Genes and Genomes (KEGG)-enriched signaling pathways and the differentially expressed genes were primarily enriched in pathways, such as cell adhesion molecules, focal adhesion kinase, and actin cytoskeleton regulation. Notably, transcriptome analysis indicated that genes associated with the focal adhesion kinase (FAK) signaling pathway (ECM-ITGA/ITGB-p-FAK) were significantly more highly expressed in Group A than in Group B and Group C. The results of quantitative real-time PCR (RT-qPCR) and western blotting were consistent with KEGG analysis. Therefore, we hypothesized that PRV promotes self-infection through activation of the ECM-ITGA/ITGB-p-FAK signaling pathway and that PRV XJ delgE/gI/TK immunization could attenuate the intestinal damage caused by PRV by inhibiting the activation of this pathway.IMPORTANCEPseudorabies virus (PRV) poses a significant threat to the swine industry and public health due to its ability to infect multiple species, including humans, leading to substantial economic losses and potential health risks. This study addresses a critical gap in understanding the impact of PRV infection on the gut, which has been less explored compared to its neurological effects. By developing a drip-nose PRV-infection mouse model, the research indicated that PRV might promote self-infection through activation of the ECM-ITGA/ITGB-p-FAK signaling pathway, and PRV XJ delgE/gI/TK immunization effectively prevents intestinal damage by significantly reducing the expression of genes in the ECM-ITGA/ITGB-p-FAK signaling pathway. The research has important implications for the swine industry and public health by contributing to the development of better vaccines and treatments, ultimately helping to control PRV and prevent its cross-species transmission.
Collapse
Affiliation(s)
- Tong Xu
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yang Zhang
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Qian Tao
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Lei Xu
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Si-Yuan Lai
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yan-Ru Ai
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Jian-Bo Huang
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Ben-Lu Yang
- College Of Animal Science and Technology of Jiangxi Agricultural University, Nanchang, China
| | - Ling Zhu
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- College of Veterinary Medicine Sichuan Key Laboratory of Animal Epidemic Disease and Human Health, Sichuan Agricultural University, Chengdu, China
| | - Zhi-Wen Xu
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- College of Veterinary Medicine Sichuan Key Laboratory of Animal Epidemic Disease and Human Health, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
2
|
Chen X, Li W. The heat shock protein DNAJB8 inhibits pseudorabies virus replication by autophagy. Vet Microbiol 2024; 295:110165. [PMID: 38936156 DOI: 10.1016/j.vetmic.2024.110165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 06/20/2024] [Accepted: 06/22/2024] [Indexed: 06/29/2024]
Abstract
Pseudorabies virus (PRV) effectively utilizes numerous host proteins and pathways to establish a successful infection. Consequently, it becomes imperative to investigate novel host factors implicated in viral infections to gain a deeper understanding of PRV pathogenesis. In this study, we reveal that the host heat shock protein, DNAJB8, functions as a negative regulator in PRV replication. Our findings indicated that both mRNA and protein levels of DNAJB8 were downregulated in cells infected with PRV. Further analysis demonstrated that overexpressing DNAJB8 suppressed PRV replication, whereas its knockdown enhanced viral replication. From a mechanistic perspective, DNAJB8 promoted cellular autophagy, subsequently impeding viral replication. Additionally, we discovered that the transcription factor SOX30 regulated DNAJB8 expression, thereby influencing viral replication. Collectively, these findings enhance our comprehension of the roles played by DNAJB8 and SOX30 in viral replication, broadening our knowledge of virus-host interactions.
Collapse
Affiliation(s)
- Xiaoyong Chen
- Xingzhi College, Zhejiang Normal University, Jinhua, Zhejiang, PR China.
| | - Wenfeng Li
- College of Animal Science, Wenzhou Vocational College of Technology and Science, Wenzhou, Zhejiang, PR China
| |
Collapse
|
3
|
Huang R, Rao CH, Bai YZ, Yu C, Chen M, Peng JM, Xu SJ, Sun Y, Fandan M, Lyu C, Khan M, An TQ, Tian ZJ, Cai XH, Wang G, Tang YD. MARCH1 and MARCH2 inhibit pseudorabies virus replication by trapping the viral cell-to-cell fusion complex in trans-Golgi network. Vet Microbiol 2024; 295:110164. [PMID: 38936155 DOI: 10.1016/j.vetmic.2024.110164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/18/2024] [Accepted: 06/20/2024] [Indexed: 06/29/2024]
Abstract
The membrane-associated RING-CH (MARCH) family of proteins are members of the E3 ubiquitin ligase family and are essential for a variety of biological functions. Currently, MARCH proteins are discovered to execute antiviral functions by directly triggering viral protein degradation or blocking the furin cleavage of viral class I fusion proteins. Here, we report a novel antiviral mechanism of MARCH1 and MARCH2 (MARCH1/2) in the replication of Pseudorabies virus (PRV), a member of the Herpesviridae family. We discovered MARCH1/2 restrict PRV replication at the cell-to-cell fusion step. Furthermore, MARCH1/2 block gB cleavage, and this is dependent on their E3 ligase activity. Interestingly, the blocking of gB cleavage by MARCH1/2 does not contribute to their antiviral activity in vitro. We discovered that MARCH1/2 are associated with the cell-to-cell fusion complex of gB, gD, gH, and gL and trap these viral proteins in the trans-Golgi network (TGN) rather than degrading them. Overall, we conclude that MARCH1/2 inhibit PRV by trapping the viral cell-to-cell fusion complex in TGN.
Collapse
Affiliation(s)
- Rui Huang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Veterinary Medicine, Shandong Agricultural University, Tai'an 271000, China
| | - Cui-Hong Rao
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, China
| | - Yuan-Zhe Bai
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, China
| | - Changqing Yu
- Engineering Center of Agricultural Biosafety Assessment and Biotechnology, School of Advanced Agricultural Sciences, Yibin Vocational and Technical College, Yibin, China
| | - Meng Chen
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, China; Heilongjiang Provincial Research Center for Veterinary Biomedicine, Harbin, China; Heilongjiang Provincial Key Laboratory of Veterinary Immunology, Harbin, China
| | - Jin-Mei Peng
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, China
| | - Shi-Jia Xu
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, China
| | - Yue Sun
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, China
| | - Meng Fandan
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, China
| | - Chuang Lyu
- Qingdao Key Laboratory of Livestock & Poultry Pathogen Biotechnology, Qingdao Jiazhi Biotechnology Co., Ltd., Qingdao 266100, China
| | - Mirwaise Khan
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, China
| | - Tong-Qing An
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, China
| | - Zhi-Jun Tian
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, China
| | - Xue-Hui Cai
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, China; Heilongjiang Provincial Research Center for Veterinary Biomedicine, Harbin, China.
| | - Gang Wang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Veterinary Medicine, Shandong Agricultural University, Tai'an 271000, China.
| | - Yan-Dong Tang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, China; Heilongjiang Provincial Research Center for Veterinary Biomedicine, Harbin, China; Heilongjiang Provincial Key Laboratory of Veterinary Immunology, Harbin, China.
| |
Collapse
|
4
|
Wu Z, Deng J, Chen M, Lu P, Yan Z, Wu X, Ji Q, Fan H, Luo Y, Ju C. Additional Insertion of gC Gene Triggers Better Immune Efficacy of TK/gI/gE-Deleted Pseudorabies Virus in Mice. Viruses 2024; 16:706. [PMID: 38793591 PMCID: PMC11125823 DOI: 10.3390/v16050706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 04/25/2024] [Accepted: 04/28/2024] [Indexed: 05/26/2024] Open
Abstract
In recent years, pseudorabies virus (PRV) variants have resulted in an epidemic in swine herds and huge economic losses in China. Therefore, it is essential to develop an efficacious vaccine against the spread of PRV variants. Here, the triple-gene-deletion virus and the triple-gene-deletion plus gC virus were constructed by homologous recombination (HR). And then, their growth capacity, proliferation ability, and immune efficacy were evaluated. The results showed that the growth kinetics of the recombinant viruses were similar to those of the parental strain PRV-AH. Compared with the triple-gene-deletion virus group, the more dominant level of neutralizing antibody (NA) can be induced in the triple-gene-deletion plus gC virus group with the same 106.0 TCID50 dose after 4 and 6 weeks post-initial immunization (PII) (p < 0.0001). In addition, the antibody titers in mice immunized with the triple-gene-deletion plus gC virus were significantly higher than those immunized with triple-gene deletion virus with the same 105.0 TCID50 dose after 6 weeks PII (p < 0.001). More importantly, in the triple-gene-deletion plus gC virus group with 105.0 TCID50, the level of NA was close to that in the triple-gene deletion virus group with 106.0 TCID50 at 6 weeks PII. Meanwhile, the cytokines IL-4 and IFN-γ in sera were tested by enzyme-linked immunosorbent assay (ELISA) in each group. The highest level of IL-4 or IFN-γ was also elicited in the triple-gene deletion plus gC virus group at a dose of 106.0 TCID50. After challenge with PRV-AH, the survival rates of the triple-gene deletion plus gC virus immunized groups were higher than those of other groups. In immunized groups with 105.0 TCID50, the survival rate shows a significant difference between the triple-gene deletion plus gC virus group (75%, 6/8) and the triple-gene deletion virus group (12.5%, 1/8). In general, the immune efficacy of the PRV TK/gI/gE-deleted virus can be increased with additional gC insertion in mice, which has potential for developing an attenuated vaccine candidate for PRV control.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Yongwen Luo
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (Z.W.); (J.D.); (M.C.); (P.L.); (Z.Y.); (X.W.); (Q.J.); (H.F.)
| | - Chunmei Ju
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (Z.W.); (J.D.); (M.C.); (P.L.); (Z.Y.); (X.W.); (Q.J.); (H.F.)
| |
Collapse
|
5
|
Zhang L, van den Born E, Segers RPAM, Raes M, Di D, Liu BB, Li WL, Hao F, Wang J, Gan Y, Yuan T, Feng ZX, Liu F, Shao GQ. Intradermal vaccination with Porcilis® Begonia can clinically protect against fatal PRV challenge with the highly virulent ZJ01 field strain. Microb Pathog 2024; 187:106513. [PMID: 38147968 DOI: 10.1016/j.micpath.2023.106513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 12/11/2023] [Accepted: 12/20/2023] [Indexed: 12/28/2023]
Abstract
Since pseudorabies (PR) re-emerged and rapidly spread in China at the end of 2011, researchers have focused on effective vaccine strategies to prevent and control pseudorabies virus (PRV) infection in pig herds. Due to the extensive application of an attenuated vaccine based on the Bartha-K61 strain isolated in Hungary in 1961 and the variation of the PRV strain, it has been suggested that traditional vaccines based on the Bartha-K61 strain offer only partial protection against variant strains. It was therefore evaluated whether the Porcilis® Begonia vaccine, which is based on the NIA-3 strain with deletions in the gE and TK genes, is efficacious against experimental infection with the virulent, contemporary Chinese PRV strain ZJ01. In this study, piglets were vaccinated with Porcilis® Begonia through either the intradermal (ID) route or the intramuscular (IM) route and subsequently challenged intranasally with strain ZJ01 at 4 weeks post-vaccination. An unvaccinated challenge group and an unvaccinated/nonchallenged group were also included in the study. All animals were monitored for 14 days after challenge. Vaccinated and negative control pigs stayed healthy during the study, while the unvaccinated control animals developed lesions associated with PRV ZJ01 challenge, and 44% of these pigs died before the end of the experiment. This study demonstrated that ID or IM vaccination of pigs with a vaccine based on the NIA-3 strain Porcilis® Begonia clinically protects against fatal PRV challenge with the ZJ01 strain.
Collapse
Affiliation(s)
- Lei Zhang
- Single Molecule Nanometry Laboratory, Nanjing Agricultural University, Nanjing, 210095, China; Key Laboratory for Veterinary Bio-Product Engineering, Ministry of Agriculture and Rural Affairs, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China; GuoTai (Taizhou) Center of Technology Innovation for Veterinary Biologicals, Taizhou, 225300, China.
| | | | | | - Maurice Raes
- MSD Animal Health, P.O. Box 31, 5830 AA, Boxmeer, the Netherlands
| | - Di Di
- MSD (Ningbo) Animal Health Technology Co., Ltd, Hangzhou Bay New Zone, Ningbo, 315336, China
| | - Bei-Bei Liu
- Key Laboratory for Veterinary Bio-Product Engineering, Ministry of Agriculture and Rural Affairs, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China; GuoTai (Taizhou) Center of Technology Innovation for Veterinary Biologicals, Taizhou, 225300, China
| | - Wen-Liang Li
- Key Laboratory for Veterinary Bio-Product Engineering, Ministry of Agriculture and Rural Affairs, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China; GuoTai (Taizhou) Center of Technology Innovation for Veterinary Biologicals, Taizhou, 225300, China
| | - Fei Hao
- Key Laboratory for Veterinary Bio-Product Engineering, Ministry of Agriculture and Rural Affairs, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China; GuoTai (Taizhou) Center of Technology Innovation for Veterinary Biologicals, Taizhou, 225300, China
| | - Jia Wang
- Key Laboratory for Veterinary Bio-Product Engineering, Ministry of Agriculture and Rural Affairs, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China; GuoTai (Taizhou) Center of Technology Innovation for Veterinary Biologicals, Taizhou, 225300, China
| | - Yuan Gan
- Key Laboratory for Veterinary Bio-Product Engineering, Ministry of Agriculture and Rural Affairs, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China; GuoTai (Taizhou) Center of Technology Innovation for Veterinary Biologicals, Taizhou, 225300, China
| | - Ting Yuan
- Key Laboratory for Veterinary Bio-Product Engineering, Ministry of Agriculture and Rural Affairs, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China; GuoTai (Taizhou) Center of Technology Innovation for Veterinary Biologicals, Taizhou, 225300, China
| | - Zhi-Xin Feng
- Key Laboratory for Veterinary Bio-Product Engineering, Ministry of Agriculture and Rural Affairs, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China; GuoTai (Taizhou) Center of Technology Innovation for Veterinary Biologicals, Taizhou, 225300, China
| | - Fei Liu
- Single Molecule Nanometry Laboratory, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Guo-Qing Shao
- Key Laboratory for Veterinary Bio-Product Engineering, Ministry of Agriculture and Rural Affairs, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China; GuoTai (Taizhou) Center of Technology Innovation for Veterinary Biologicals, Taizhou, 225300, China.
| |
Collapse
|
6
|
Liao X, Nie J, Yuan X, Feng Z, Cui E, Wu Y, Li Y, Scherman D, Liu Y. Carbopol dispersed PAA-modified UIO-66 with high colloidal stability as a combination nano-adjuvant boosts immune response and protection against pseudorabies virus in mice and pigs. Acta Biomater 2023; 168:540-550. [PMID: 37393970 DOI: 10.1016/j.actbio.2023.06.039] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 06/07/2023] [Accepted: 06/27/2023] [Indexed: 07/04/2023]
Abstract
Although inactivated vaccines have higher safety than live-attenuated vaccines in the control of pseudorabies virus (PRV), their protection efficacy is limited due to insufficient immunogenicity when used alone. High-performance adjuvants that can potentiate immune responses are highly desirable to improve the protection efficacy of inactivated vaccines. In this work, we have developed U@PAA-Car, a Carbopol dispersed zirconium-based metal-organic framework UIO-66 modified by polyacrylic acid (PAA), as a promising adjuvant for inactivated PRV vaccines. The U@PAA-Car has good biocompatibility, high colloidal stability, and antigen (vaccine) loading capacity. It significantly potentiates humoral and cellular immune responses over either U@PAA, Carbopol, or commercial adjuvants such as Alum and biphasic 201 by inducing a higher specific antibody titer, IgG2a/IgG1 ratio, cell cytokine secretion, and splenocyte proliferation. A protection rate of over 90% was observed in challenge tests in the model animal mice and the host animal pigs, which is much higher than that observed with commercial adjuvants. The high performance of the U@PAA-Car is attributed to antigen sustainable release at the injection site and highly efficient antigen internalization and presentation. In conclusion, this work not only demonstrates a great potential of the developed U@PAA-Car nano-adjuvant for the inactivated PRV vaccine but also gives a preliminary explanation of its action mechanism. STATEMENT OF SIGNIFICANCE: We have developed a Carbopol dispersed PAA-modified zirconium-based metal-organic framework UIO-66 (U@PAA-Car) as a promising combination nano-adjuvant for the inactivated PRV vaccine. The U@PAA-Car induced higher specific antibody titers and IgG2a/IgG1 ratio, increased cell cytokines secretion, and better splenocyte proliferation than U@PAA, Carbopol, and the commercial adjuvants Alum and biphasic 201, indicating that it induces a significant potentiation of humoral and cellular immune response. In addition, much higher protection rates were achieved with the U@PAA-Car-adjuvanted PRV vaccine in mice and pigs challenge than those observed from the commercial adjuvant groups. This work not only demonstrates the great potential of the U@PAA-Car nano-adjuvant in an inactivated PRV vaccine but also gives a preliminary explanation of its action mechanism.
Collapse
Affiliation(s)
- Xiaoling Liao
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, School of Materials and Energy, Southwest University, Chongqing 400715, China
| | - Jingjing Nie
- Adjuvant Research Laboratory, Sinopharm Animal Health Co., Ltd., Wuhan 430073, China
| | - Xiangyang Yuan
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, School of Materials and Energy, Southwest University, Chongqing 400715, China
| | - Zhao Feng
- Adjuvant Research Laboratory, Sinopharm Animal Health Co., Ltd., Wuhan 430073, China
| | - Endian Cui
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, School of Materials and Energy, Southwest University, Chongqing 400715, China
| | - Yang Wu
- Adjuvant Research Laboratory, Sinopharm Animal Health Co., Ltd., Wuhan 430073, China.
| | - Yuan Li
- Central Laboratory of Yongchuan Hospital, Chongqing Medical University, Chongqing 402160, China.
| | - Daniel Scherman
- Université Paris Cité, CNRS, INSERM, UTCBS, Unité de Technologies Chimiques et Biologiques pour la Santé, F-75006 Paris, France
| | - Yingshuai Liu
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, School of Materials and Energy, Southwest University, Chongqing 400715, China.
| |
Collapse
|
7
|
Wang HM, Qiao YY, Cai BY, Tan J, Na L, Wang Y, Lu H, Tang YD. Genome editing of pseudorabies virus in the CRISPR/Cas9 era: a mini-review. Front Vet Sci 2023; 10:1237186. [PMID: 37476821 PMCID: PMC10354360 DOI: 10.3389/fvets.2023.1237186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 06/22/2023] [Indexed: 07/22/2023] Open
Abstract
Pseudorabies virus (PRV) is an important swine virus that has a significant impact on the global swine industry. PRV is a member of the herpesvirus family, specifically the alphaherpesvirus subfamily, and has been extensively utilized as a prototype herpesvirus. Notably, recent studies have reported that PRV sporadically spills over into humans. The PRV genome is approximately 150 kb in size and is difficult to manipulate at the genomic level. The development of clustered regularly interspaced short palindromic repeat-associated protein (CRISPR/Cas9) technology has revolutionized PRV genome editing. CRISPR/Cas9 has been widely used in the construction of reporter viruses, knock-out/knock-in of genes of interest, single virus tracking and antiviral strategies. Most importantly, for vaccine development, virulence gene knockout PRV vaccine candidates can be obtained within 2 weeks using CRISPR/Cas9. In this mini-review, we provide a concise overview of the application of CRISPR/Cas9 in PRV research and mainly share our experience with methods for efficiently editing the PRV genome. Through this review, we hope to give researchers better insight into the genome editing of pseudorabies virus.
Collapse
Affiliation(s)
- Hai-Ming Wang
- Jiangsu Agri-animal Husbandry Vocational College, Taizhou, Jiangsu, China
| | - Yang-Yang Qiao
- Jiangsu Agri-animal Husbandry Vocational College, Taizhou, Jiangsu, China
| | - Bing-Yan Cai
- Jiangsu Agri-animal Husbandry Vocational College, Taizhou, Jiangsu, China
| | - Ju Tan
- Jiangsu Agri-animal Husbandry Vocational College, Taizhou, Jiangsu, China
| | - Lei Na
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, China
- Jiangsu Vocational College Agriculture and Forestry, Taizhou, Jiangsu, China
| | - Yu Wang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, China
| | - Hui Lu
- Jiangsu Agri-animal Husbandry Vocational College, Taizhou, Jiangsu, China
| | - Yan-Dong Tang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, China
- Heilongjiang Provincial Research Center for Veterinary Biomedicine, Harbin, China
| |
Collapse
|
8
|
Luo C, Wang Q, Guo R, Zhang J, Zhang J, Zhang R, Ma X, Wang P, Adam FEA, Zeshan B, Yang Z, Zhou Y, Wang X. A novel Pseudorabies virus vaccine developed using HDR-CRISPR/Cas9 induces strong humoral and cellular immune response in mice. Virus Res 2022; 322:198937. [PMID: 36174845 DOI: 10.1016/j.virusres.2022.198937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/20/2022] [Accepted: 09/24/2022] [Indexed: 12/24/2022]
Abstract
Outbreaks of Pseudorabies (PR) by numerous highly virulent and antigenic variant Pseudorabies virus (PRV) strains have been causing severe economic losses to the pig industry in China since 2011. However, current commercial vaccines are often unable to induce thorough protective immunity. In this study, a TK/gI/gE deleted recombinant PRV expressing GM-CSF was developed by using the HDR-CRISPR/Cas9 system. Here, a four-sgRNA along with the Cas9D10A targeting system was utilized for TK/gI/gE gene deletion and GM-CSF insertion. Our study showed that the four-sgRNA targeting system appeared to have higher knock-in efficiency for PRVs editing. The replication of the recombinant PRVs were slightly lower than that of the parental strain, but they appeared to have similar properties in terms of growth curves and plaque morphology. The mice vaccinated with the recombinant PRV expressing GM-CSF via intramuscular injection showed no obvious clinical symptoms, milder pathological lesions, and were completely protected against wild-type PRV challenge. When compared to the triple gene-deleted PRV, the gB antibodies and neutralizing antibody titers were improved and the immunized mice appeared to have lower viral load and higher mRNA levels of IL-2, IL-4, IL-6, and IFN-γ in spleens. Our study offers a novel approach for recombinant PRV construction, and the triple gene-deleted PRV expressing GM-CSF could serve as a promising vaccine candidate for PR control.
Collapse
Affiliation(s)
- Chen Luo
- Department of Life Science, Nanjing Xiaozhuang University, Nanjing,Jiangsu 211171, China; College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Qianqian Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Ruhai Guo
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jingnan Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jingya Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Riteng Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xin Ma
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Peixin Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China
| | | | - Basit Zeshan
- Faculty of Sustainable Agriculture, Universiti Malaysia Sabah, Sandakan, Sabah 90509, Malaysia
| | - Zengqi Yang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yefei Zhou
- Department of Life Science, Nanjing Xiaozhuang University, Nanjing,Jiangsu 211171, China.
| | - Xinglong Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
9
|
Neuropilin-1 Facilitates Pseudorabies Virus Replication and Viral Glycoprotein B Promotes Its Degradation in a Furin-Dependent Manner. J Virol 2022; 96:e0131822. [PMID: 36173190 PMCID: PMC9599266 DOI: 10.1128/jvi.01318-22] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pseudorabies virus (PRV), which is extremely infectious and can infect numerous mammals, has a risk of spillover into humans. Virus-host interactions determine viral entry and spreading. Here, we showed that neuropilin-1 (NRP1) significantly potentiates PRV infection. Mechanistically, NRP1 promoted PRV attachment and entry, and enhanced cell-to-cell fusion mediated by viral glycoprotein B (gB), gD, gH, and gL. Furthermore, through in vitro coimmunoprecipitation (Co-IP) and bimolecular fluorescence complementation (BiFC) assays, NRP1 was found to physically interact with gB, gD, and gH, and these interactions were C-end Rule (CendR) motif independent, in contrast to currently known viruses. Remarkably, we illustrated that the viral protein gB promotes NRP1 degradation via a lysosome-dependent pathway. We further demonstrate that gB promotes NRP1 degradation in a furin-cleavage-dependent manner. Interestingly, in this study, we generated gB furin cleavage site (FCS)-knockout PRV (Δfurin PRV) and evaluated its pathogenesis; in vivo, we found that Δfurin PRV virulence was significantly attenuated in mice. Together, our findings demonstrated that NRP1 is an important host factor for PRV and that NRP1 may be a potential target for antiviral intervention. IMPORTANCE Recent studies have shown accelerated PRV cross-species spillover and that PRV poses a potential threat to humans. PRV infection in humans always manifests as a high fever, tonic-clonic seizures, and encephalitis. Therefore, understanding the interaction between PRV and host factors may contribute to the development of new antiviral strategies against PRV. NRP1 has been demonstrated to be a receptor for several viruses that harbor CendR, including SARS-CoV-2. However, the relationships between NRP1 and PRV are poorly understood. Here, we found that NRP1 significantly potentiated PRV infection by promoting PRV attachment and enhanced cell-to-cell fusion. For the first time, we demonstrated that gB promotes NRP1 degradation via a lysosome-dependent pathway. Last, in vivo, Δfurin PRV virulence was significantly attenuated in mice. Therefore, NRP1 is an important host factor for PRV, and NRP1 may be a potential target for antiviral drug development.
Collapse
|
10
|
Huan C, Xu Y, Zhang W, Ni B, Gao S. Glycyrrhiza Polysaccharide Inhibits Pseudorabies Virus Infection by Interfering with Virus Attachment and Internalization. Viruses 2022; 14:v14081772. [PMID: 36016393 PMCID: PMC9413916 DOI: 10.3390/v14081772] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/12/2022] [Accepted: 08/12/2022] [Indexed: 11/22/2022] Open
Abstract
Pseudorabies virus (PRV) is one of the most important pathogens causing serious diseases and leads to huge economic losses in the global swine industry. With the continuous emergence of PRV variants and the increasing number of cases of human infection, there is an urgent need to develop antiviral drugs. In this study, we discover that Glycyrrhiza polysaccharide (GCP) has anti-PRV infection activity in vitro, and 600 μg/mL GCP can completely block viral infection. The addition of GCP simultaneously with or after PRV infection had a significant inhibitory effect on PRV. Addition of GCP at different times of the virus life cycle mainly led to the inhibition of the attachment and internalization of PRV but does not affect viral replication and release. Our findings suggest that GCP has potential as a drug against PRV infection.
Collapse
Affiliation(s)
- Changchao Huan
- Institutes of Agricultural Science and Technology Development, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- Key Laboratory of Avian Bioproduct Development, Ministry of Agriculture and Rural Affairs, Yangzhou 225009, China
| | - Yao Xu
- Institutes of Agricultural Science and Technology Development, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- Key Laboratory of Avian Bioproduct Development, Ministry of Agriculture and Rural Affairs, Yangzhou 225009, China
| | - Wei Zhang
- Institutes of Agricultural Science and Technology Development, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- Key Laboratory of Avian Bioproduct Development, Ministry of Agriculture and Rural Affairs, Yangzhou 225009, China
| | - Bo Ni
- Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, China
| | - Song Gao
- Institutes of Agricultural Science and Technology Development, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- Key Laboratory of Avian Bioproduct Development, Ministry of Agriculture and Rural Affairs, Yangzhou 225009, China
- China Animal Health and Epidemiology Center, Qingdao 266011, China
- Correspondence:
| |
Collapse
|
11
|
Wang G, Zha Z, Huang P, Sun H, Huang Y, He M, Chen T, Lin L, Chen Z, Kong Z, Que Y, Li T, Gu Y, Yu H, Zhang J, Zheng Q, Chen Y, Li S, Xia N. Structures of pseudorabies virus capsids. Nat Commun 2022; 13:1533. [PMID: 35318331 PMCID: PMC8940892 DOI: 10.1038/s41467-022-29250-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 03/02/2022] [Indexed: 11/10/2022] Open
Abstract
Pseudorabies virus (PRV) is a major etiological agent of swine infectious diseases and is responsible for significant economic losses in the swine industry. Recent data points to human viral encephalitis caused by PRV infection, suggesting that PRV may be able to overcome the species barrier to infect humans. To date, there is no available therapeutic for PRV infection. Here, we report the near-atomic structures of the PRV A-capsid and C-capsid, and illustrate the interaction that occurs between these subunits. We show that the C-capsid portal complex is decorated with capsid-associated tegument complexes. The PRV capsid structure is highly reminiscent of other α-herpesviruses, with some additional structural features of β- and γ-herpesviruses. These results illustrate the structure of the PRV capsid and elucidate the underlying assembly mechanism at the molecular level. This knowledge may be useful for the development of oncolytic agents or specific therapeutics against this arm of the herpesvirus family.
Collapse
Affiliation(s)
- Guosong Wang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, School of Life Sciences, Xiamen University, Xiamen, 361102, China.,National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, 361102, China
| | - Zhenghui Zha
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, School of Life Sciences, Xiamen University, Xiamen, 361102, China.,National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, 361102, China
| | - Pengfei Huang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, School of Life Sciences, Xiamen University, Xiamen, 361102, China.,National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, 361102, China
| | - Hui Sun
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, School of Life Sciences, Xiamen University, Xiamen, 361102, China.,National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, 361102, China
| | - Yang Huang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, School of Life Sciences, Xiamen University, Xiamen, 361102, China.,National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, 361102, China
| | - Maozhou He
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, School of Life Sciences, Xiamen University, Xiamen, 361102, China.,National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, 361102, China
| | - Tian Chen
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, School of Life Sciences, Xiamen University, Xiamen, 361102, China.,National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, 361102, China
| | - Lina Lin
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, School of Life Sciences, Xiamen University, Xiamen, 361102, China.,National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, 361102, China
| | - Zhenqin Chen
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, School of Life Sciences, Xiamen University, Xiamen, 361102, China.,National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, 361102, China
| | - Zhibo Kong
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, School of Life Sciences, Xiamen University, Xiamen, 361102, China.,National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, 361102, China
| | - Yuqiong Que
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, School of Life Sciences, Xiamen University, Xiamen, 361102, China.,National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, 361102, China
| | - Tingting Li
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, School of Life Sciences, Xiamen University, Xiamen, 361102, China.,National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, 361102, China
| | - Ying Gu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, School of Life Sciences, Xiamen University, Xiamen, 361102, China.,National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, 361102, China
| | - Hai Yu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, School of Life Sciences, Xiamen University, Xiamen, 361102, China.,National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, 361102, China
| | - Jun Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, School of Life Sciences, Xiamen University, Xiamen, 361102, China.,National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, 361102, China
| | - Qingbing Zheng
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, School of Life Sciences, Xiamen University, Xiamen, 361102, China. .,National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, 361102, China.
| | - Yixin Chen
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, School of Life Sciences, Xiamen University, Xiamen, 361102, China. .,National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, 361102, China.
| | - Shaowei Li
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, School of Life Sciences, Xiamen University, Xiamen, 361102, China. .,National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, 361102, China.
| | - Ningshao Xia
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, School of Life Sciences, Xiamen University, Xiamen, 361102, China. .,National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, 361102, China. .,Research Unit of Frontier Technology of Structural Vaccinology, Chinese Academy of Medical Sciences, Xiamen, 361102, China.
| |
Collapse
|
12
|
Generation of Premature Termination Codon (PTC)-Harboring Pseudorabies Virus (PRV) via Genetic Code Expansion Technology. Viruses 2022; 14:v14030572. [PMID: 35336979 PMCID: PMC8950157 DOI: 10.3390/v14030572] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 02/28/2022] [Accepted: 03/09/2022] [Indexed: 12/27/2022] Open
Abstract
Despite many efforts and diverse approaches, developing an effective herpesvirus vaccine remains a great challenge. Traditional inactivated and live-attenuated vaccines always raise efficacy or safety concerns. This study used Pseudorabies virus (PRV), a swine herpes virus, as a model. We attempted to develop a live but replication-incompetent PRV by genetic code expansion (GCE) technology. Premature termination codon (PTC) harboring PRV was successfully rescued in the presence of orthogonal system MbpylRS/tRNAPyl pair and unnatural amino acids (UAA). However, UAA incorporating efficacy seemed extremely low in our engineered PRV PTC virus. Furthermore, we failed to establish a stable transgenic cell line containing orthogonal translation machinery for PTC virus replication, and we demonstrated that orthogonal tRNAPyl is a key limiting factor. This study is the first to demonstrate that orthogonal translation system-mediated amber codon suppression strategy could precisely control PRV-PTC engineered virus replication. To our knowledge, this is the first reported PTC herpesvirus generated by GCE technology. Our work provides a proof-of-concept for generating UAAs-controlled PRV-PTC virus, which can be used as a safe and effective vaccine.
Collapse
|
13
|
Cheng TY, Magtoto R, Henao-Díaz A, Poonsuk K, Buckley A, Van Geelen A, Lager K, Zimmerman J, Giménez-Lirola L. Detection of pseudorabies virus antibody in swine serum and oral fluid specimens using a recombinant gE glycoprotein dual-matrix indirect ELISA. J Vet Diagn Invest 2021; 33:1106-1114. [PMID: 34448438 DOI: 10.1177/10406387211040755] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Pseudorabies (Aujeszky disease) virus (PRV) was eliminated from domestic swine in many countries using glycoprotein E (gE)-deleted vaccines and serum antibody gE ELISAs, but PRV continues to circulate in some regions and in most feral swine populations in the world. We created a dual-matrix (serum and oral fluid) indirect IgG gE ELISA (iELISA) and evaluated its performance using samples from 4 groups of 10 pigs each: negative control (NC), vaccination (MLV), PRV inoculation (PRV), and vaccination followed by challenge (MLV-PRV). All serum and oral fluid samples collected before PRV challenge and all NC samples throughout the study were negative for gE antibodies by commercial blocking ELISA (bELISA) and our iELISA. Nasal swab samples from 9 of 10 animals in the PRV group were gB quantitative PRC (qPCR) positive at 2 days post-inoculation (dpi). The oral fluid iELISA detected a significant S/P response in the PRV (p = 0.03) and MLV-PRV (p = 0.01) groups by 6 dpi. ROC analyses of serum bELISA (n = 428), serum iELISA (n = 426), and oral fluid iELISA (n = 247) showed no significant differences in performance (p > 0.05). Our data support the concept of PRV surveillance based on oral fluid samples tested by an indirect gE ELISA.
Collapse
Affiliation(s)
- Ting-Yu Cheng
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Wu X, Wu H, Wang H, Luo L, Wang J, Wu B, He Q, Cao G, Lei Y, Chen X, Dai J. A new strategy to develop pseudorabies virus-based bivalent vaccine with high immunogenicity of porcine circovirus type 2. Vet Microbiol 2021; 255:109022. [PMID: 33711567 DOI: 10.1016/j.vetmic.2021.109022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Accepted: 02/22/2021] [Indexed: 12/28/2022]
Abstract
Herpesvirus based multivalent vaccines have been extensively studied, whereas few of them have been successfully used in clinic and animal husbandry industry due to the low expression of foreign immunogens in herpesvirus. In this study, we developed a new strategy to construct herpesvirus based bivalent vaccine with high-level expression of foreign immunogen, by which the ORF2 gene encoding the major antigen protein Cap of porcine circovirus type 2 (PCV2), was highly expressed in pseudorabies virus (PRV). To obtain the high expression of PCV2 immunogen, tandem repeats of PCV2 ORF2 gene were firstly linked by protein quantitation ratioing (PQR) linker to reach equal expression of each ORF2 gene. Then, the multiple copies of ORF2 gene were respectively inserted into the gE and gG sites of PRV using CRISPR/Cas9 system, in which the expression of ORF2 gene was driven by endogenous strong promoters of PRV. Through this way, the highest yield of Cap protein was achieved in two copies of quadruple ORF2 gene insertion. Finally, in mice and pigs immunized with the bivalent vaccine candidate, we detected high titer of specific antibodies for PRV and neutralized antibodies for PCV2, and observed protective effect of the bivalent vaccine candidate against PRV challenge in immunized pigs, suggesting a potential clinical application of the bivalent vaccine candidate we constructed. Together, our strategy could be extensively applied to the generation of other multivalent vaccines, and will pave the way to construct herpesvirus based multivalent vaccines to effectively reduce the cost of vaccine.
Collapse
Affiliation(s)
- Xiaofeng Wu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China; College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Hao Wu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China; College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Hongxia Wang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China; College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Li Luo
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China; College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jiao Wang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China; College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Beili Wu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China; College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Qigai He
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China; College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Wuhan, 430070, China
| | - Gang Cao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China; College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Wuhan, 430070, China; Bio-Medical Center, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yingying Lei
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Wuhan, 430070, China.
| | - Xi Chen
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Wuhan, 430070, China.
| | - Jinxia Dai
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China; College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Wuhan, 430070, China.
| |
Collapse
|
15
|
Grabowska K, Wąchalska M, Graul M, Rychłowski M, Bieńkowska-Szewczyk K, Lipińska AD. Alphaherpesvirus gB Homologs Are Targeted to Extracellular Vesicles, but They Differentially Affect MHC Class II Molecules. Viruses 2020; 12:v12040429. [PMID: 32290097 PMCID: PMC7232241 DOI: 10.3390/v12040429] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 03/24/2020] [Accepted: 04/08/2020] [Indexed: 12/14/2022] Open
Abstract
Herpesvirus envelope glycoprotein B (gB) is one of the best-documented extracellular vesicle (EVs)-incorporated viral proteins. Regarding the sequence and structure conservation between gB homologs, we asked whether bovine herpesvirus-1 (BoHV-1) and pseudorabies virus (PRV)-encoded gB share the property of herpes simplex-1 (HSV-1) gB to be trafficked to EVs and affect major histocompatibility complex (MHC) class II. Our data highlight some conserved and differential features of the three gBs. We demonstrate that mature, fully processed BoHV-1 and PRV gBs localize to EVs isolated from constructed stable cell lines and EVs-enriched fractions from virus-infected cells. gB also shares the ability to co-localize with CD63 and MHC II in late endosomes. However, we report here a differential effect of the HSV-1, BoHV-1, and PRV glycoprotein on the surface MHC II levels, and MHC II loading to EVs in stable cell lines, which may result from their adverse ability to bind HLA-DR, with PRV gB being the most divergent. BoHV-1 and HSV-1 gB could retard HLA-DR exports to the plasma membrane. Our results confirm that the differential effect of gB on MHC II may require various mechanisms, either dependent on its complex formation or on inducing general alterations to the vesicular transport. EVs from virus-infected cells also contained other viral glycoproteins, like gD or gE, and they were enriched in MHC II. As shown for BoHV-1 gB- or BoHV-1-infected cell-derived vesicles, those EVs could bind anti-virus antibodies in ELISA, which supports the immunoregulatory potential of alphaherpesvirus gB.
Collapse
|
16
|
Zhang A, Wan B, Jiang D, Wu Y, Ji P, Du Y, Zhang G. The Cytoprotective Enzyme Heme Oxygenase-1 Suppresses Pseudorabies Virus Replication in vitro. Front Microbiol 2020; 11:412. [PMID: 32231654 PMCID: PMC7082841 DOI: 10.3389/fmicb.2020.00412] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 02/27/2020] [Indexed: 12/12/2022] Open
Abstract
Pseudorabies virus (PRV) infection brings about great economic losses to the swine industry worldwide, as there are currently no effective therapeutic agents or vaccines against this disease, and mutations in endemic wild virulent PRV strains result in immune failure of traditional vaccines. Heme oxygenase-1 (HO-1) catalyzes the conversion of heme into biliverdin (BV), iron and carbon monoxide (CO), all of which have been demonstrated to protect cells from various stressors. However, the role of HO-1 in PRV replication remains unknown. Thus, the present study aimed to investigate the effect of HO-1 on PRV replication and determine its underlying molecular mechanisms. The results demonstrated that induction of HO-1 via cobalt-protoporphyrin (CoPP) markedly suppressed PRV replication, while HO-1 specific small interfering RNA or inhibitor zinc-protoporphyrin partially reversed the inhibitory effect of CoPP on PRV replication. Furthermore, overexpression of HO-1 notably inhibited PRV replication, while knockdown of endogenous HO-1 expression promoted PRV replication. Mechanism analyses indicated that the HO-1 downstream metabolites, CO and BV/BR partially mediated the virus suppressive effect of HO-1. Taken together, the results of the present study suggest that HO-1 may be developed as a novel endogenous antiviral factor against PRV, and the HO-1/BV/CO system may constitute a unique antiviral protection network during PRV infection and interaction with host cells.
Collapse
Affiliation(s)
- Angke Zhang
- College of Animal Sciences and Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Bo Wan
- College of Animal Sciences and Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Dawei Jiang
- College of Animal Sciences and Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Yanan Wu
- College of Animal Sciences and Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Pengchao Ji
- College of Animal Sciences and Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Yongkun Du
- College of Animal Sciences and Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Gaiping Zhang
- College of Animal Sciences and Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| |
Collapse
|
17
|
CRISPR/Cas9-Based Antiviral Strategy: Current Status and the Potential Challenge. Molecules 2019; 24:molecules24071349. [PMID: 30959782 PMCID: PMC6480260 DOI: 10.3390/molecules24071349] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 03/29/2019] [Accepted: 04/04/2019] [Indexed: 12/15/2022] Open
Abstract
From its unexpected discovery as a bacterial adaptive immune system to its countless applications as one of the most versatile gene-editing tools, the CRISPR/Cas9 system has revolutionized every field of life science. Virology is no exception to this ever-growing list of CRISPR/Cas9-based applications. Direct manipulation of a virus genome by CRISPR/Cas9 has enabled a systematic study of cis-elements and trans-elements encoded in a virus genome. In addition, this virus genome-specific mutagenesis by CRISPR/Cas9 was further funneled into the development of a novel class of antiviral therapy targeting many incurable chronic viral infections. In this review, a general concept on the CRISPR/Cas9-based antiviral strategy will be described first. To understand the current status of the CRISPR/Cas9-based antiviral approach, a series of recently published antiviral studies involving CRISPR/Cas9-mediated control of several clinically-relevant viruses including human immunodeficiency virus, hepatitis B virus, herpesviruses, human papillomavirus, and other viruses will be presented. Lastly, the potential challenge and future prospect for successful clinical translation of this CRISPR/Cas9-based antiviral method will be discussed.
Collapse
|
18
|
Santander Parra S, Nunez L, Buim MR, Astolfi-Ferreira CS, Piantino Ferreira AJ. Development of a qPCR for the detection of infectious laryngotracheitis virus (ILTV) based on the gE gene. Br Poult Sci 2018; 59:402-407. [PMID: 29798683 DOI: 10.1080/00071668.2018.1479060] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
1. Infectious laryngotracheitis is a respiratory disease that affects the poultry industry worldwide. It is common in flocks with high-bird density, causing major economic losses. 2. In this study, a SYBR® FAST polymerase chain reaction (PCR) double-strand DNA intercalating agent assay was performed for the detection of infectious laryngotracheitis virus (ILTV) in clinical samples in comparison with a conventional nested-PCR, both based on the glycoprotein E encoding gene. This assay amplified 56 bp and was capable of detecting 19 to 1 copies of virus. 3. In total, 164 clinical samples were obtained from birds with respiratory problems from the period of 2009-2016. In the nested-PCR, there were 45.12% positive samples and 54.88% negative samples, while in the real-time PCR (qPCR), there were 81.1% positive samples and 18.9% negative samples. 4. In conclusion, qPCR from the DNA double-strand intercalating agent SYBR® GREEN FAST was useful for the diagnosis of ILTV because it detected samples that were negative in nested-PCR. This assay has advantages, such as a shortened processing-time, and no need for post-amplification processing (electrophoresis) with additional reagents, such as MgCl2 and agarose. Hence, qPCR proved to be useful, rapid and low cost for use with clinical samples.
Collapse
Affiliation(s)
- Silvana Santander Parra
- a Department of Pathology , School of Veterinary Medicine, University of São Paulo (USP) , São Paulo , SP , Brazil
| | - Luis Nunez
- a Department of Pathology , School of Veterinary Medicine, University of São Paulo (USP) , São Paulo , SP , Brazil
| | - Marcos R Buim
- b Laboratory of Avian Diseases , Instituto Biológico , Bastos , SP , Brazil
| | - Claudete S Astolfi-Ferreira
- a Department of Pathology , School of Veterinary Medicine, University of São Paulo (USP) , São Paulo , SP , Brazil
| | - Antonio J Piantino Ferreira
- a Department of Pathology , School of Veterinary Medicine, University of São Paulo (USP) , São Paulo , SP , Brazil
| |
Collapse
|
19
|
Tang YD, Liu JT, Wang TY, Sun MX, Tian ZJ, Cai XH. CRISPR/Cas9-mediated multiple single guide RNAs potently abrogate pseudorabies virus replication. Arch Virol 2017; 162:3881-3886. [PMID: 28900740 DOI: 10.1007/s00705-017-3553-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2017] [Accepted: 08/02/2017] [Indexed: 01/12/2023]
Abstract
Pseudorabies virus (PRV) is a swine herpesvirus that causes significant morbidity and mortality in swine populations and has caused huge economic losses in the worldwide swine industry. Currently, there is no effective antiviral drug in clinical use for PRV infection; it is also difficult to eliminate PRV from infected swine. In our study, we set out to combat these swine herpesvirus infections by exploiting the CRISPR/Cas9 system. We designed 75 single guide RNAs (sgRNA) by targeting both essential and non-essential genes across the genome of PRV. We applied a firefly luciferase-tagged reporter PRV virus for high-throughput sgRNA screening and found that most of the sgRNAs significantly inhibited PRV replication. More importantly, using a transfection assay, we demonstrated that simultaneous targeting of PRV with multiple sgRNAs completely abolished the production of infectious viruses in cells. These data suggest that CRISPR/Cas9 could be a novel therapeutic agent against PRV in the future.
Collapse
Affiliation(s)
- Yan-Dong Tang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 678 HaPing Road, XiangFang, Harbin, 150069, China
| | - Ji-Ting Liu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 678 HaPing Road, XiangFang, Harbin, 150069, China
| | - Tong-Yun Wang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 678 HaPing Road, XiangFang, Harbin, 150069, China
| | - Ming-Xia Sun
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 678 HaPing Road, XiangFang, Harbin, 150069, China
| | - Zhi-Jun Tian
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 678 HaPing Road, XiangFang, Harbin, 150069, China
| | - Xue-Hui Cai
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 678 HaPing Road, XiangFang, Harbin, 150069, China.
| |
Collapse
|
20
|
Comparison of Pathogenicity-Related Genes in the Current Pseudorabies Virus Outbreak in China. Sci Rep 2017; 7:7783. [PMID: 28798304 PMCID: PMC5552686 DOI: 10.1038/s41598-017-08269-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 07/06/2017] [Indexed: 11/08/2022] Open
Abstract
There is currently a pandemic of pseudorabies virus (PRV) variant strains in China. Despite extensive research on PRV variant strains in the past two years, few studies have investigated PRV pathogenicity-related genes. To determine which gene(s) is/are linked to PRV virulence, ten putative virulence genes were knocked out using clustered regularly interspaced palindromic repeats (CRISPR)/Cas9 technology. The pathogenicity of these mutants was evaluated in a mouse model. Our results demonstrated that of the ten tested genes, the thymidine kinase (TK) and glycoprotein M (gM) knockout mutants displayed significantly reduced virulence. However, mutants of other putative virulence genes, such as glycoprotein E (gE), glycoprotein I (gI), Us2, Us9, Us3, glycoprotein G (gG), glycoprotein N (gN) and early protein 0 (EP0), did not exhibit significantly reduced virulence compared to that of the wild-type PRV. To our knowledge, this study is the first to compare virulence genes from the current pandemic PRV variant strain. This study will provide a valuable reference for scientists to design effective live attenuated vaccines in the future.
Collapse
|
21
|
Tang YD, Liu JT, Wang TY, An TQ, Sun MX, Wang SJ, Fang QQ, Hou LL, Tian ZJ, Cai XH. Live attenuated pseudorabies virus developed using the CRISPR/Cas9 system. Virus Res 2016; 225:33-39. [PMID: 27619840 DOI: 10.1016/j.virusres.2016.09.004] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 08/16/2016] [Accepted: 09/08/2016] [Indexed: 01/06/2023]
Abstract
Currently, pseudorabies virus (PRV) variant strains are outbreaking in China; these variants belong to genotype II PRV. The traditional Bartha-K61 vaccine has failed to provide complete protection against the emergent variant strains. Therefore, rapid attenuation of current epidemic strains is needed for effective PRV control. In this study, we report a rapid method for editing the PRV genome using the CRISPR-Cas9 system. We developed a triple gE/gI/TK gene-inactivated HeN1 PRV strain, because mice were more susceptible to PRV infection, we then evaluated the attenuation of PRV in the mice and demonstrated that modified PRV was fully attenuated. Furthermore, the attenuated strain also induced immune protection in response to a parental PRV challenge. Overall, we showed that PRVs can be rapidly attenuated using CRISPR-Cas9 technology, which will be critical for PRV control, especially when new variant PRV strains emerge.
Collapse
Affiliation(s)
- Yan-Dong Tang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin 150001, China
| | - Ji-Ting Liu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin 150001, China; College of Animal Science and Technology, Jilin Agriculture University, Changchun 130018, China
| | - Tong-Yun Wang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin 150001, China
| | - Tong-Qing An
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin 150001, China
| | - Ming-Xia Sun
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin 150001, China
| | - Shu-Jie Wang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin 150001, China
| | - Qiong-Qiong Fang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin 150001, China
| | - Lin-Lin Hou
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin 150001, China
| | - Zhi-Jun Tian
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin 150001, China
| | - Xue-Hui Cai
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin 150001, China.
| |
Collapse
|
22
|
Patel JR, Heldens JGM. Immunoprophylaxis against important virus disease of horses, farm animals and birds. Vaccine 2009; 27:1797-1810. [PMID: 19402200 PMCID: PMC7130586 DOI: 10.1016/j.vaccine.2008.12.063] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2008] [Revised: 11/24/2008] [Accepted: 12/18/2008] [Indexed: 01/31/2023]
Abstract
Since the refinement of tissue culture techniques for virus isolation and propagation from the mid 1960s onwards, veterinary virology has received much academic and industrial interest, and has now become a major global industry largely centred on vaccine development against economically important virus diseases of food animals. Bio-tech approaches have been widely used for improved vaccines development. While many viral diseases are controlled through vaccination, many still lack safe and efficacious vaccines. Additional challenges faced by academia, industry and governments are likely to come from viruses jumping species and also from the emergence of virulent variants of established viruses due to natural mutations. Also viral ecology is changing as the respective vectors adapt to new habitats as has been shown in the recent incursion by bluetongue virus into Europe. In this paper the current vaccines for livestock, horses and birds are described in a species by species order. The new promising bio-tech approaches using reverse genetics, non-replicating viral vectors, alpha virus vectors and genetic vaccines in conjunction with better adjuvants and better ways of vaccine delivery are discussed as well
Collapse
Affiliation(s)
- J R Patel
- JAS Biologicals Limited, The Centre for Veterinary Science, Madingley Road, Cambridge, CB3 0ES, UK.
| | | |
Collapse
|
23
|
Heldens JGM, Patel JR, Chanter N, Ten Thij GJ, Gravendijck M, Schijns VEJC, Langen A, Schetters TPM. Veterinary vaccine development from an industrial perspective. Vet J 2008; 178:7-20. [PMID: 18313956 PMCID: PMC7110856 DOI: 10.1016/j.tvjl.2007.11.009] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2007] [Revised: 09/26/2007] [Accepted: 11/12/2007] [Indexed: 11/20/2022]
Abstract
Veterinary vaccines currently available in Europe and in other parts of the world are developed by the veterinary pharmaceutical industry. The development of a vaccine for veterinary use is an economic endeavour that takes many years. There are many obstacles along the path to the successful development and launch of a vaccine. The industrial development of a vaccine for veterinary use usually starts after the proof of concept that is based on robust academic research. A vaccine can only be made available to the veterinary community once marketing authorisation has been granted by the veterinary authorities. This review gives a brief description of the regulatory requirements which have to be fulfilled before a vaccine can be admitted to the market. Vaccines have to be produced in a quality controlled environment to guarantee delivery of a product of consistent quality with well defined animal and consumer safety and efficacy characteristics. The regulatory and manufacturing legislative framework in which the development takes place is described, as well as the trend in developments in production systems. Recent developments in bacterial, viral and parasite vaccine research and development are also addressed and the development of novel adjuvants that use the expanding knowledge of immunology and disease pathology are described.
Collapse
Affiliation(s)
- J G M Heldens
- Department for Virological R&D, Nobilon International BV, Exportstraat 39b, 5830 AH Boxmeer, The Netherlands.
| | | | | | | | | | | | | | | |
Collapse
|
24
|
McKillen J, Hjertner B, Millar A, McNeilly F, Belák S, Adair B, Allan G. Molecular beacon real-time PCR detection of swine viruses. J Virol Methods 2006; 140:155-65. [PMID: 17196673 DOI: 10.1016/j.jviromet.2006.11.018] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2006] [Revised: 10/31/2006] [Accepted: 11/08/2006] [Indexed: 11/29/2022]
Abstract
Rapid and reliable detection of viral pathogens is critical for the management of the diseases threatening the economic competitiveness of the swine farming industry worldwide. Molecular beacon assays are one type of real-time polymerase chain reaction (PCR) technology capable of fast, specific, sensitive, and reliable viral detection. In this paper, the development of molecular beacon assays as novel tools for the rapid detection of Aujeszky's disease virus, African swine fever virus, porcine circovirus type 2 and porcine parvovirus is described. The assays are capable of rapidly detecting 2 x 10(1) copies of target and are linear between 2 x 10(9) and 2 x 10(2) copies. They can detect virus specifically in clinical samples such as whole blood, serum and tissue. In comparison to conventional PCR they are either as sensitive or more sensitive. As such these molecular beacon assays represent a powerful tool for the detection of these viruses in swine.
Collapse
Affiliation(s)
- John McKillen
- Veterinary Sciences Division, Agri-Food and Biosciences Institute, Stormont, Belfast BT4 3SD, United Kingdom.
| | | | | | | | | | | | | |
Collapse
|
25
|
Silva ADD, Sortica VA, Braga AC, Spilki FR, Franco AC, Esteves PA, Rijsewijk F, Rosa JCA, Batista HBC, Oliveira AP, Roehe PM. Caracterização antigênica e molecular de oito amostras do vírus da doença de Aujeszky isoladas no estado do Rio Grande do Sul em 2003. PESQUISA VETERINARIA BRASILEIRA 2005. [DOI: 10.1590/s0100-736x2005000100005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A doença de Aujeszky ou pseudoraiva (DA), causada pelo vírus da pseudoraiva (PRV) é a maior preocupação na produção de suínos. No estado do Rio Grande do Sul, Brasil, a DA foi somente detectada em 1954, em bovino. Em 2003, ocorreram dois surtos de encefalite em granjas na região norte do estado, fronteira com o estado de Santa Catarina. O vírus da doença de Aujeszky (VDA) foi isolado a partir de animais coletados em oito granjas distintas da região e submetido a análises antigênicas e moleculares. As amostras de VDA isoladas foram comparadas com as amostras padrão NIA-3 e NP. A caracterização antigênica dos mesmos foi realizada com testes de imunoperoxidase frente a um painel de anticorpos mono-clonais (Mabs) preparado contra epitopos de glicoproteinas virais (gB, gC, gD e gE). A caracterização genômica foi realizada através da análise restrição enzimática (REA) sobre o genoma total das amostras, com a enzima de restrição (REA) Bam HI. O perfil antigênico das oito amostras isoladas no Rio Grande do Sul, bem como os apresentados pelas amostras padrão NIA-3 e NP, foram similares. A REA revelou que todos as oito amostras do Rio Grande do Sul apresentaram um arranjo genômico do tipo II, genótipo frequentemente encontrado em surtos prévios de DA em outros estados do Brasil. Os resultados aqui obtidos indicam que as oito amostras isoladas no Rio Grande do Sul são similares.
Collapse
Affiliation(s)
| | - Vinícius A. Sortica
- Fepagro Saúde Animal, Brasil; Universidade Federal do Rio Grande do Sul, Brasil
| | | | - Fernando R. Spilki
- Fepagro Saúde Animal, Brasil; Universidade Federal do Rio Grande do Sul, Brasil
| | | | - Paulo A. Esteves
- Fepagro Saúde Animal, Brasil; Universidade Federal do Rio Grande do Sul, Brasil
| | | | | | | | - Anna P. Oliveira
- Fepagro Saúde Animal, Brasil; Universidade Federal do Rio Grande do Sul, Brasil
| | - Paulo M. Roehe
- Fepagro Saúde Animal, Brasil; Universidade Federal do Rio Grande do Sul, Brasil
| |
Collapse
|
26
|
Huang C, Wu CY. Characterization and expression of the pseudorabies virus early gene UL54. J Virol Methods 2004; 119:129-36. [PMID: 15158594 DOI: 10.1016/j.jviromet.2004.03.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2003] [Accepted: 03/08/2004] [Indexed: 11/22/2022]
Abstract
Pseudorabies virus (PRV) is an alphaherpesvirus, and its gene organization and regulation are similar to the well-characterized human simplex virus (HSV). Sequence analysis of the complete coding region of PRV UL54 gene revealed that the UL54 gene consisted of 1092 nucleotides encoding a protein of 363 amino acids and the gene showed homology to HSV immediate-early protein ICP27. Detection of the UL54 transcript in infected cells by reverse transcription-polymerase chain reaction (RT-PCR) demonstrated that the UL54 gene belonged to the early kinetic class based on sensitivity to cycloheximide and insensitivity to phosphonoacetic acid (PAA). To study the structure and function of UL54 protein, this gene was subcloned on Escherichia coli expression vector pET28b for overexpression, and the expressed product was applied to generate specific antibody against UL54 protein. The specificity of the mouse immuneserum was confirmed by its ability to react with a 40kDa viral protein present in the PRV infected cells in Western immunblotting assay, detected as early as 4h after infection. In addition, immunoperoxidasing staining of PRV infected cells undertaken with this antibody demonstrated mainly nuclear staining pattern. Furthermore, the RNA binding potential of UL54 protein was demonstrated by its binding activity to poly(G) RNA homopolymer in Northwestern blotting assay.
Collapse
Affiliation(s)
- Chienjin Huang
- Graduate Institute of Veterinary Microbiology, College of Veterinary Medicine, National Chung Hsing University, 250 Kuo Kuang Road, Taichung 40227, Taiwan ROC.
| | | |
Collapse
|
27
|
Van Minnebruggen G, Favoreel HW, Nauwynck HJ. Internalization of pseudorabies virus glycoprotein B is mediated by an interaction between the YQRL motif in its cytoplasmic domain and the clathrin-associated AP-2 adaptor complex. J Virol 2004; 78:8852-9. [PMID: 15280493 PMCID: PMC479101 DOI: 10.1128/jvi.78.16.8852-8859.2004] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The cytoplasmic domain of pseudorabies virus (PRV) glycoprotein B (gB) contains three putative internalization motifs. Previously, we demonstrated that the tyrosine-based YQRL motif at positions 902 to 905, but not the YMSI motif at positions 864 to 867 or the LL doublet at positions 887 and 888, is required for correct functioning of gB during antibody-mediated internalization of PRV cell surface-bound glycoproteins. In the present study, we demonstrate that the YQRL motif is also crucial to allow spontaneous internalization of PRV gB, and thus, that spontaneous and antibody-mediated internalizations of PRV gB occur through closely related mechanisms. Furthermore, we found that PRV gB colocalizes with the cellular clathrin-associated AP-2 adaptor complex and that this colocalization depends on the YQRL motif. In addition, by coimmunoprecipitation assays, we found that during both spontaneous and antibody-dependent internalization, PRV gB physically interacts with AP-2, and that efficient interaction between gB and AP-2 required an intact YQRL motif. Collectively, these findings demonstrate for the first time that during internalization of an alphaherpesvirus envelope protein, i.e., PRV gB, a specific amino acid sequence in the cytoplasmic tail of the protein interacts with AP-2 and may constitute a common AP-2-mediated mechanism of internalization of alphaherpesvirus envelope proteins.
Collapse
Affiliation(s)
- Geert Van Minnebruggen
- Laboratories of Virology, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
| | | | | |
Collapse
|
28
|
Boldogköi Z, Sík A, Dénes A, Reichart A, Toldi J, Gerendai I, Kovács KJ, Palkovits M. Novel tracing paradigms--genetically engineered herpesviruses as tools for mapping functional circuits within the CNS: present status and future prospects. Prog Neurobiol 2004; 72:417-45. [PMID: 15177785 DOI: 10.1016/j.pneurobio.2004.03.010] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2003] [Accepted: 03/29/2004] [Indexed: 11/17/2022]
Abstract
The mammalian CNS is composed of an extremely complex meshwork of highly ordered interconnections among billions of neurons. To understand the diverse functions of this neuronal network we need to differentiate between functionally related and nonrelated elements. A powerful labeling method for defining intricate neural circuits is based on the utilization of neurotropic herpesviruses, including pseudorabies virus and herpes simplex virus type 1. The recent development of genetically engineered tracing viruses can open the way toward the conception of novel tract-tracing paradigms. These new-generation tracing viruses may facilitate the clarification of problems, which were inaccessible to earlier approaches. This article first presents a concise review of the general aspects of neuroanatomical tracing protocols. Subsequently, it discusses the molecular biology of alpha-herpesviruses, and the genetic manipulation and gene expression techniques that are utilized for the construction of virus-based tracers. Finally, it describes the current utilization of genetically modified herpesviruses for circuit analysis, and the future directions in their potential applications.
Collapse
Affiliation(s)
- Zsolt Boldogköi
- Laboratory of Neuromorphology, Department of Anatomy, Faculty of Medicine, Semmelweis University and Hungarian Academy of Sciences, Budapest, Hungary.
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Ao JQ, Wang JW, Chen XH, Wang XZ, Long QX. Expression of pseudorabies virus gE epitopes in Pichia pastoris and its utilization in an indirect PRV gE-ELISA. J Virol Methods 2003; 114:145-50. [PMID: 14625049 DOI: 10.1016/j.jviromet.2003.09.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Pseudorabies virus glycoprotein E (PRV gE) has been recognized as a suitable diagnostic antigen for pseudorabies. In order to produce gE antigen in large quantities and at low cost, a gene fragment encoding PRV gE epitopes was expressed in Pichia pastoris expression system. SDS-PAGE and Western blotting revealed that the expression product was two recombinant proteins, approximately 38 and 32 kDa, in the culture supernatant of P. pastoris integrant 72 h after induction. Protein concentration assay showed the expression product amounted to 106.7 mg/l, accounting for 66.67% of total culture supernatant proteins. An indirect PRV gE-ELISA was then established by using the recombinant expression product as a coating antigen. Cross-reactivity assay showed that this antigen was PRV specific. Reproducibility experiment displayed good consistency. Comparison of detection results of 348 field serum samples between PRV gE-ELISA and a commercially available PRV diagnostic kit showed there was no significant difference between these two methods (P > 0.05).
Collapse
Affiliation(s)
- Jing-qun Ao
- State Key Laboratory for Biocontrol, Sun Yat-Sen University, Guangzhou 510275, PR China.
| | | | | | | | | |
Collapse
|
30
|
Chang PC, Chen KT, Shien JH, Shieh HK. Expression of Infectious Laryngotracheitis Virus Glycoproteins in Escherichia coli and Their Application in Enzyme-Linked Immunosorbent Assay. Avian Dis 2002; 46:570-80. [PMID: 12243520 DOI: 10.1637/0005-2086(2002)046[0570:eoilvg]2.0.co;2] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Three glycoproteins of infectious laryngotracheitis virus (ILTV), gC, gE, and gp60, were expressed in Escherichia coli as fusion proteins with a 6-histidine tag at their amino termini. The proteins expressed, designated as r-gC, r-gp60, and r-gE, all retain their antigenicity, as revealed by Western blot with chicken antiserum against ILTV. However, only r-gp60 and r-gE, but not r-gC, were found to be soluble. The soluble r-gp60 and r-gE were purified by a nickel column and then used as the enzyme-linked immunosorbent assay (ELISA) antigen for detecting ILTV-specific antibodies. The diagnostic potential of r-gE and r-gp60 ELISA was assessed with the use of sera prepared from vaccinated or unvaccinated chickens of either specific-pathogen-free (SPF) or field origins. The result shows that r-gp60 and r-gE ELISA could discriminate vaccinated SPF chickens from unvaccinated ones 2 wk postvaccination. Moreover, r-gp60 and r-gE ELISA could also discriminate vaccinated field flocks from unvaccinated ones. This result indicates that r-gp60 and r-gE might serve as an alternative ELISA antigen for detecting ILTV-specific antibodies. Moreover, r-gp60 or r-gE ELISA might play an important role in the eradication of infectious laryngotracheitis (ILT) in the future when the gp60- or gE-deleted marker vaccine of ILT is available.
Collapse
Affiliation(s)
- Poa-Chun Chang
- Institute of Veterinary Microbiology, National Chung Hsing University, Taichung, Taiwan
| | | | | | | |
Collapse
|
31
|
Card JP. Pseudorabies virus neuroinvasiveness: a window into the functional organization of the brain. Adv Virus Res 2002; 56:39-71. [PMID: 11450308 DOI: 10.1016/s0065-3527(01)56004-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- J P Card
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA
| |
Collapse
|
32
|
Boldogköi Z, Braun A, Fodor I. Replication and virulence of early protein 0 and long latency transcript deficient mutants of the Aujeszky's disease (pseudorabies) virus. Microbes Infect 2000; 2:1321-8. [PMID: 11018448 DOI: 10.1016/s1286-4579(00)01285-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Early protein 0 (EP0)-deficient recombinant Aujeszky's disease viruses, Ka-ep0lac and Ba-ep0lac derived from strains Kaplan and Bartha, respectively, were constructed to explore the impact of the mutation on replication, virulence and latency of the virus. Inactivation of the EP0 gene resulted in a mutation of long latency transcript (Cheung et al., 1991) that is located on the complementary DNA strand of EP0 and immediate early protein (IE)175 genes. In infection of immortalized porcine kidney cells, the growth rate and yield of both EP0(-) mutant strains were significantly smaller than that of wild-type virus. Ka-ep0lac was found to be highly virulent, while Ba-ep0lac showed an attenuated phenotype in mice. PCR assay and immunohistochemistry showed that the Ba-ep0lac virus was able to establish latency in the mouse trigeminal ganglia. However, latent virus was not able to reactivate in explant reactivation assays. Accordingly, latent Ba-ep0lac has the potential to be exploited as vectors for the delivery of foreign genes to the nervous system.
Collapse
Affiliation(s)
- Z Boldogköi
- Laboratory of Molecular Virology, Agricultural Biotechnology Center, Gödöllö, 2100 Hungary
| | | | | |
Collapse
|
33
|
Cândido A, Resende M, Oliveira M, Bontempo E, Drumond BP. Partial characterization of a Brazilian strain of Aujeszky’s disease virus recovered from a pig with subclinical infection. ARQ BRAS MED VET ZOO 2000. [DOI: 10.1590/s0102-09352000000400001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
One Brazilian strain of Aujeszky’s disease virus isolated from a piglet in which the disease had not been observed was studied as for its virulence in pigs. The genome of the virus was molecularly analysed as for their restriction endonuclease cleavage pattern. Fifty-day-old non-immune weanlings exposed to this strain showed no disease although the virus was present in their oropharyngeal area for at least three days. All animals developed moderate titers of neutralizing antibody. Based on number of bands and migration rate of restriction fragments the isolate was classified into Herrmann’s type I group. Latent infection was detected in all pigs by PCR. Some variations were detected in the cleavage pattern of the strain ASB Piau when compared to LA031 virulent Brazilian strain, that could be related to differences in the virulence.
Collapse
|
34
|
Günzburg WH, Salmons B. Xenotransplantation: is the risk of viral infection as great as we thought? MOLECULAR MEDICINE TODAY 2000; 6:199-208. [PMID: 10782067 DOI: 10.1016/s1357-4310(00)01708-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
Two major hurdles remain before xenotransplantation can enter the clinic. The first is the more technical issue of being able to overcome the human immune response that leads to rejection of transplanted organs/cells from other species. The second, reviewed here, concerns the potential risk of inadvertent transfer of animal viruses present in the xenotransplant that are able to infect the human recipient. The threat from viruses is a particularly contentious topic because it poses a risk not only to those individuals who receive xenotransplants, but also to healthy individuals who come into contact, either directly or indirectly, with the xenotransplant recipient. In this review, we describe some of the virus types, in addition to the much discussed porcine endogenous retroviruses that might cross the species barrier, and assess the risk of such viruses causing disease in human hosts.
Collapse
Affiliation(s)
- W H Günzburg
- Institute of Virology, University of Veterinary Sciences, Veterinärplatz 1, A-1210 Vienna, Austria.
| | | |
Collapse
|
35
|
Brideau AD, Eldridge MG, Enquist LW. Directional transneuronal infection by pseudorabies virus is dependent on an acidic internalization motif in the Us9 cytoplasmic tail. J Virol 2000; 74:4549-61. [PMID: 10775591 PMCID: PMC111975 DOI: 10.1128/jvi.74.10.4549-4561.2000] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The Us9 gene is conserved among most alphaherpesviruses. In pseudorabies virus (PRV), the Us9 protein is a 98-amino-acid, type II membrane protein found in the virion envelope. It localizes to the trans-Golgi network (TGN) region in infected and transfected cells and is maintained in this compartment by endocytosis from the plasma membrane. Viruses with Us9 deleted have no observable defects in tissue culture yet have reduced virulence and restricted spread to retinorecipient neurons in the rodent brain. In this report, we demonstrate that Us9-promoted transneuronal spread in vivo is dependent on a conserved acidic motif previously shown to be essential for the maintenance of Us9 in the TGN region and recycling from the plasma membrane. Mutant viruses with the acidic motif deleted have an anterograde spread defect indistinguishable from that of Us9 null viruses. Transneuronal spread, however, is not dependent on a dileucine endocytosis motif in the Us9 cytoplasmic tail. Through alanine scanning mutagenesis of the acidic motif, we have identified two conserved tyrosine residues that are essential for Us9-mediated spread as well as two serine residues, comprising putative consensus casein kinase II sites, that modulate the rate of PRV transneuronal spread in vivo.
Collapse
Affiliation(s)
- A D Brideau
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, USA
| | | | | |
Collapse
|
36
|
Grob P, Schijns VE, van den Broek MF, Cox SP, Ackermann M, Suter M. Role of the individual interferon systems and specific immunity in mice in controlling systemic dissemination of attenuated pseudorabies virus infection. J Virol 1999; 73:4748-54. [PMID: 10233935 PMCID: PMC112517 DOI: 10.1128/jvi.73.6.4748-4754.1999] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The importance of each of the two interferon (IFN) systems in impeding herpesvirus replication and in stimulating virus-specific lymphocytes to control an acute systemic infection is not completely understood. To further our knowledge, pseudorabies virus, attenuated by deletion of the glycoprotein E gene to impair its neurovirulence and by deletion of the thymidine kinase gene (gE-TK-PRV), was used to infect wild-type 129Sv/Ev and congenic mice with immune system-associated genetic deficiencies. Mice with mature B and T lymphocytes but lacking either one or both functional receptors for members of each of the two IFN families were infected with gE-TK-PRV. At 3 and 7 but not 14 days after infection, replicating gE-TK-PRV could be isolated only from livers or spleens of mice lacking the receptors for both IFN families, and these mice survived the infection. Therefore, functional IFN receptors were not required to induce a protective immune response against an acute infection with gE-TK-PRV. Furthermore, PRV-specific antibodies of all immunoglobulin G isotypes were produced in these mice. Mice without mature B and T lymphocytes and lacking either one or both functional receptors for members of each of the two IFN families were also infected with gE-TK-PRV. Three days after infection, replicating virus could be isolated only from mice lacking both mature B and T lymphocytes and functional IFN receptors, and these mice were not able to clear the virus. We present evidence that mice with an intact gamma IFN system but without mature B and T cells were able to prevent systemic dissemination of gE-TK-PRV.
Collapse
Affiliation(s)
- P Grob
- Institute of Virology, University of Zürich, CH-8057 Zürich, Switzerland
| | | | | | | | | | | |
Collapse
|
37
|
Zuckermann FA, Martin S, Husmann RJ, Brandt J. Use of interleukin 12 to enhance the cellular immune response of swine to an inactivated herpesvirus vaccine. ADVANCES IN VETERINARY MEDICINE 1999; 41:447-61. [PMID: 9890035 DOI: 10.1016/s0065-3519(99)80034-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Vaccination is the single most successful medical measure against infectious disease. However, the major barrier for achieving the full protective effect or immunization is how to render attenuated, killed, or subunit vaccines as immunogenic as the fully infectious versions of these microbes (Hughes and Babiuk, 1995; Rabinovich et al., 1994). In the case of PrV, infection with wild-type virus induces an immune response superior to vaccination with a live modified vaccine. After primary intranasal infection with wild-type PrV, the replication of a homologous secondary virus challenge is completely inhibited, and the much sought "sterile immunity" is generated (Kimman et al., 1994). In contrast, the immune response of pigs similarly exposed to PrV mutants, which have been attenuated by removal of the thymidine kinase (TK) and the envelope glycoprotein gE gene (McGregor et al., 1985; Zuckermann et al., 1988), is insufficient for preventing the replication of a homologous wild-type virus challenge (Kimman et al., 1994). Furthermore, inactivated PrV vaccines are even less effective at inducing protective immunity than are live modified PrV vaccines (de Leeuw and Van Orischot, 1985; Stellman et al., 1989; Vannier, 1985). The importance of inactivated and subunit vaccines resides in their stability and safety, since no infectious microbe is being introduced into the animal. However, because of the recognized lower effectiveness of inactivated vaccine types, they usually fall in disfavor when a modified live vaccine alternative is available. There is a critical need to develop strategies to enhance the immunogenicity of live, inactivated, and sub-unit vaccines for human and veterinary use (Hughes and Babiuk, 1995; Rabinovich et al., 1994). Although the inoculation of an animal with a virulent microbe is obviously not the desired method to produce sterile immunity, the immune response generated to infection with wild-type PrV clearly demonstrates that this type of immunity is possible. Research directed at devising strategies to increase the immunogenicity of different types of vaccines is necessary. Because of the wealth of information available on PrV immunity (reviewed by Chinsakchai and Molitor, 1994; Nauwynck, 1997), on PrV vaccines (Kimman et al., 1992, 1994; Mettenleiter, 1991; Scherba and Zuckermann, 1996) and increasingly on the porcine immune system (Lunney, 1993; Lunney et al., 1996; Saalmüller, 1995), the swine herpesvirus model is ideal for investigating the development of vaccine formulations with enhanced immunogenicity. Among the strategies currently being examined for the enhancement of the immunogenicity of inactivated and subunit vaccines is the use of recombinant cytokines administered together with antigen (Hughes and Babiuk, 1995; Rabinovich et al., 1994). The ability to regulate the development of an immune response by cytokines such as IL-12 provides the theoretical basis to use these cytokines as adjuvants to immunopotentiate the response to an inactivated vaccine. More importantly, it provides a model to investigate the mechanisms behind the induction of protective immunity and the components of a vaccine necessary for stimulating such a response. By providing cytokines such as IL-12 or IFN-gamma in combination with the vaccine inoculum, it is reasonable to expect that they will be able to direct the differentiation of T cells during the primary immune response. Modulation, in a predictable and desired manner of the quality and quantity of the induced protective immunity, should be achievable. The ability to manipulate a vaccine-induced immune response in the direction of a predominantly cellular response (Th1-like) instead of a predominantly humoral one (Th2-like) is perhaps best illustrated by the need to develop an effective vaccine against the porcine reproductive and respiratory syndrome (PRRS) virus, whose infectivity can be significantly enhanced in vitro and in vivo by antibody induced by vaccination
Collapse
Affiliation(s)
- F A Zuckermann
- Department of Veterinary Pathobiology, University of Illinois, Urbana 61801, USA
| | | | | | | |
Collapse
|
38
|
Streefland C, Maes FW, Bohus B. Autonomic brainstem projections to the pancreas: a retrograde transneuronal viral tracing study in the rat. JOURNAL OF THE AUTONOMIC NERVOUS SYSTEM 1998; 74:71-81. [PMID: 9915620 DOI: 10.1016/s0165-1838(98)00047-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The present study describes brainstem nuclei that participate in the autonomic innervation of the pancreas, using a retrograde viral transneuronal tracing technique. It aimed at identifying the neuronal architecture of the parasympathetic, gustatory-induced insulin release by the endocrine pancreas (preabsorptive insulin response, PIR). Autonomic pathways organized for reflex adjustments of the end organ, as it happens in the PIR, involve relatively simple circuits. This implies a short brainstem circuit from the rostral gustatory nucleus of the solitary tract to the dorsal motor nucleus of the vagus. The present findings confirm projections to the pancreas, originating from preganglionic neurons in the dorsal motor nucleus of the vagus. Transneuronal labeling was detected in the medial, and to a lesser extent in the lateral nucleus of the solitary tract mainly at caudal and intermediate levels. Furthermore, infected neurons were seen in the brainstem in the dorsal and ventral part of the medullary reticular formation, in the area postrema and in the raphe nuclei. Sparse labeling was found in the gustatory zone of the nucleus tractus solitarius. These results indicate that a direct connection between the rostral nucleus tractus solitarius and the medial dorsal motor nucleus of the vagus is very unlikely, so that one or more intermediate stations may be involved. Candidates to complete this pathway are the intermediate or caudal nucleus tractus solitarius, the medullary reticular formation or the parabrachial nucleus.
Collapse
Affiliation(s)
- C Streefland
- Groningen Graduate School for Behavioral and Cognitive Neurosciences, Department of Animal Physiology, University of Groningen, Haren, The Netherlands.
| | | | | |
Collapse
|
39
|
Ferrari M, Gualandi GL, Corradi A, Monaci C, Romanelli MG, Tosi G, Cantoni AM. Experimental infection of pigs with a thymidine kinase negative strain of pseudorabies virus. Comp Immunol Microbiol Infect Dis 1998; 21:291-303. [PMID: 9775359 DOI: 10.1016/s0147-9571(98)00012-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
Sixteen 20 day old pigs, devoid of neutralizing antibody to pseudorabies virus (PRV), were divided into two groups of eight, an the animals of each group were housed in a separate unit. In each group 6 pigs were inoculated intranasally with the thymidine kinase (TK-) mutant (Group 1) or the field strain of PRV (Group 2), each pig receiving an inoculum of 4 ml. The remaining 2 pigs in each group served as uninoculated controls. The only clinical sign observed in the pigs of Group 1 was a transient febrile reaction, in the case of six pigs inoculated with the TK- mutant of PRV, whereas no signs of disease were seen in the uninoculated controls. The virus was isolated from the 6 infected pigs of the group only on post infection day (PID) 2, whereas it was never isolated from the controls. By contrast, the pigs of Group 2, had a severe clinical response and one, among those that were inoculated with the field strain of the PRV, died on PID 9. Virus was consistently isolated from all pigs of Group 2, inoculated and control. On PID 30 all pigs, i.e. the 8 of Group 1 and 7 of the Group 2 which survived to the infection, were subjected to dexamethasone (DMS) treatment. After DMS treatment virus was never isolated from the nasal swabbings obtained from the pigs of Group 1, whereas it was consistently isolated from pigs of Group 2. After 30 d from the start of DMS treatment the pigs were killed and several tissues were collected from each pig for virus detection, by isolation in tissue culture and by PCR analysis. At necropsy no lesions were found in pigs of Group 1, whereas acute pneumonia and gliosis in the trigeminal ganglia were observed in pigs of Group 2. Virus was never isolated from any of the tissues taken from pigs of both, Group 1 and Group 2, nevertheless sequences of PRV were detected by PCR analysis in the trigeminal ganglia of the pigs of both Groups.
Collapse
Affiliation(s)
- M Ferrari
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia, Brescia, Italy
| | | | | | | | | | | | | |
Collapse
|
40
|
Card JP. Practical considerations for the use of pseudorabies virus in transneuronal studies of neural circuitry. Neurosci Biobehav Rev 1998; 22:685-94. [PMID: 9809304 DOI: 10.1016/s0149-7634(98)00007-4] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The development of neurotrophic alpha herpesviruses for transneuronal analysis of neuronal circuitry has emerged from interdisciplinary characterizations of the viral life cycle and the defense response mounted by the nervous system to contain and eliminate the infection. Important findings from a number of fields have combined to provide compelling evidence that these viruses, when used appropriately, are powerful probes of multisynaptic circuits. These studies have also revealed that a number of variables can influence the outcome of infection and should be considered in designing and interpreting data derived from studies employing this experimental approach. The purpose of this paper is to review the literature that has established this experimental approach as a viable method for transynaptic analysis of neuronal circuitry and to define the factors that should be considered in applying this technology.
Collapse
Affiliation(s)
- J P Card
- Department of Neuroscience, University of Pittsburgh, PA 15217, USA.
| |
Collapse
|
41
|
Provencio I, Cooper HM, Foster RG. Retinal projections in mice with inherited retinal degeneration: implications for circadian photoentrainment. J Comp Neurol 1998; 395:417-39. [PMID: 9619497 DOI: 10.1002/(sici)1096-9861(19980615)395:4<417::aid-cne1>3.0.co;2-4] [Citation(s) in RCA: 108] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The availability of naturally occurring and transgenic retinal mutants has made the mouse an attractive experimental model to address questions regarding photoentrainment of circadian rhythms. However, very little is known about the retinal cells and the retinal projections to the nuclei of the murine circadian timing system. Furthermore, the effect of inherited retinal degeneration on these projections is not understood. In this report, we have used pseudorabies virus as a neuroanatomical tract tracer in mice to address a series of questions: Which retinal cells mediate circadian responses to light? What is the nature of the retinohypothalamic projection? What is the impact of the inherited retinal disorder, retinal degenerate (rd/rd), on the structures of the photoentrainment pathway? Our results show that a class ofretinal ganglion cell, morphologically similar to the type III ganglion cells of the rat, appears to project to central circadian structures of the mouse. They are few in number and sparsely distributed throughout the retina. The low number and broad distribution of these specialized retinal ganglion cells may be an adaptive mechanism to integrate environmental irradiance without compromising the spatial resolution required for vision. In addition, viral infection of conelike and rodlike photoreceptors and amacrinelike cells suggest that these cells may mediate or contribute to circadian responses to light. Inherited retinal degeneration has no obvious effect on the anatomy of the retinal cells or their projections to the circadian axis. These anatomical findings are consistent with our previous findings showing that aged rd/rd mice are capable of regulating their circadian rhythms by light with unattenuated sensitivity.
Collapse
Affiliation(s)
- I Provencio
- Department of Biology and National Science Foundation Center for Biological Timing, University of Virginia, Charlottesville 22903, USA
| | | | | |
Collapse
|
42
|
Harder TC, Harder M, de Swart RL, Osterhaus AD, Liess B. Major immunogenic proteins of phocid herpes-viruses and their relationships to proteins of canine and feline herpesviruses. Vet Q 1998; 20:50-5. [PMID: 9563160 DOI: 10.1080/01652176.1998.9694838] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The immunogenic proteins of cells infected with the alpha- or the gamma-herpesvirus of seals, phocid herpesvirus-1 and -2 (PhHV-1, -2), were examined in radioimmunoprecipitation assays as a further step towards the development of a PhHV-1 vaccine. With sera obtained from convalescent seals of different species or murine monoclonal antibodies (Mabs), at least seven virus-induced glycoproteins were detected in lysates of PhHV-1-infected CrFK cells. A presumably disulphide-linked complex composed of glycoproteins of 59, 67 and 113/120 kDa, expressed on the surface of infected cells, was characterized as a major immunogenic infected cell protein of PhHV-1. This glycoprotein complex has previously been identified as the proteolytically cleavable glycoprotein B homologue of PhHV-1 (14). At least three distinct neutralization-relevant epitopes were operationally mapped, by using Mabs, on the glycoprotein B of PhHV-1. Among the infected cell proteins of the antigenically closely related feline and canine herpesvirus, the glycoprotein B equivalent proved to be the most highly conserved glycoprotein. Sera obtained from different seal species from Arctic, Antarctic, and European habitats did not precipitate uniform patterns of infected cell proteins from PhHV-1-infected cell lysates although similar titres of neutralizing antibodies were displayed. Thus, antigenic differences among the alphaherpesvirus species prevalent in the different pinniped populations cannot be excluded. PhHV-2 displayed a different pattern of infected cell proteins and only limited cross-reactivity to PhHV-1 at the protein level was detected, which is in line with its previous classification as a distinct species, based on nucleotide sequence analysis, of the gammaherpesvirus linenge. A Mab raised against PhHV-2 and specific for a major glycoprotein of 117 kDa, cross reacted with the glycoprotein B of PhHV-1. The 117-kDa glycoprotein could represent the uncleaved PhHV-2 glycoprotein B homologue.
Collapse
Affiliation(s)
- T C Harder
- Department of Virology, Erasmus University, Rotterdam, The Netherlands
| | | | | | | | | |
Collapse
|
43
|
Fay RA, Norgren R. Identification of rat brainstem multisynaptic connections to the oral motor nuclei using pseudorabies virus. I. Masticatory muscle motor systems. BRAIN RESEARCH. BRAIN RESEARCH REVIEWS 1997; 25:255-75. [PMID: 9495558 DOI: 10.1016/s0165-0173(97)00026-x] [Citation(s) in RCA: 92] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Oromotor behavior results from the complex interaction between jaw, facial, and lingual muscles. The experiments in this and subsequent papers identify the sources of multisynaptic input to the trigeminal, facial, and hypoglossal motor nuclei. In the current experiments, pseudorabies virus (PRV-Ba) was injected into the jaw-opening (anterior digastric and mylohyoid) and jaw-closing muscles (masseter, medial pterygoid, and temporalis) in bilaterally sympathectomized rats. Injection volumes ranged from 2 to 21 microl with average titers of 2.8 x 10(8) pfu/ml and maximum survival times of 96 h. The labeling patterns and distributions were consistent between each of the individual muscles and muscle groups. A predictable myotopic labeling pattern was produced in the trigeminal motor nucleus (Mo 5). Transneuronally labeled neurons occurred in regions known to project directly to Mo 5 motoneurons including the principal trigeminal sensory and supratrigeminal areas, Kölliker-Fuse region, nucleus subcoeruleus, and the parvicellular reticular formation. Maximum survival times revealed polysynaptic connections from the periaqueductal gray, laterodorsal and pedunculopontine tegmental areas, and the substantia nigra in the midbrain, ventromedial pontine reticular regions including the gigantocellular region and pars alpha and ventralis in the pons and medulla, and the nucleus of the solitary tract, paratrigeminal region, and paramedian field in the medulla. Thus, the results define the structure of the multisynaptic brainstem neural circuits controlling mandibular movement in the rat.
Collapse
Affiliation(s)
- R A Fay
- Department of Behavioral Science, The Pennsylvania State University College of Medicine, Hershey 17033, USA.
| | | |
Collapse
|
44
|
Favoreel HW, Nauwynck HJ, Van Oostveldt P, Mettenleiter TC, Pensaert MB. Antibody-induced and cytoskeleton-mediated redistribution and shedding of viral glycoproteins, expressed on pseudorabies virus-infected cells. J Virol 1997; 71:8254-61. [PMID: 9343177 PMCID: PMC192283 DOI: 10.1128/jvi.71.11.8254-8261.1997] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Fluorescein isothiocyanate-labeled porcine pseudorabies virus (PrV) polyclonal antibodies were added to PrV-infected swine kidney cells in vitro at 37 degrees C. In approximately 47% of the infected cells, the addition induced passive patching and subsequent energy- and microtubule-dependent capping of all viral envelope glycoproteins, expressed on the plasma membranes of the infected cells. Further contraction and extrusion of the capped viral glycoproteins occurred in approximately 30% of the capped cells 2 h after the addition of antibodies and was accompanied by a concentration of F-actin beneath the caps. At that time, about 18% of the extruded caps were shed spontaneously into the surrounding medium. Mechanical force released 85% of the extruded caps, leaving viable cells with no microscopically detectable levels of viral glycoproteins on their plasma membranes. Experiments with PrV deletion mutants showed that viral glycoproteins gE and gI are important in triggering viral glycoprotein redistribution. Since the PrV gE-gI complex exhibits Fc receptor activity which facilitates capping, the importance of gE and gI may be partially explained by antibody bipolar bridging.
Collapse
Affiliation(s)
- H W Favoreel
- Laboratory of Virology, Faculty of Veterinary Medicine, University of Ghent, Belgium
| | | | | | | | | |
Collapse
|
45
|
Chang PC, Lee YL, Shien JH, Shieh HK. Rapid differentiation of vaccine strains and field isolates of infectious laryngotracheitis virus by restriction fragment length polymorphism of PCR products. J Virol Methods 1997; 66:179-86. [PMID: 9255728 DOI: 10.1016/s0166-0934(97)00050-5] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
A procedure was developed for differentiation of vaccine strains and field isolates of infectious laryngotracheitis virus (ILTV) by restriction fragment length polymorphism (RFLP) of DNA fragments amplified from the genome of ILTV by polymerase chain reaction (PCR). RFLP patterns of viral thymidine kinase (TK) gene, glycoprotein C (gC) gene, glycoprotein X (gX) gene and ICP4 gene amplified from different ILT viruses were compared. The results showed that the vaccine strain of tissue-culture-origin (TCO) could be readily distinguished from other ILT viruses. Moreover, two out of the four field isolates could be differentiated from vaccine strains of chicken embryo origin (CEO); but the remaining two field isolates were identical to the CEO vaccine strains. These results suggested that both vaccine-like and vaccine-unlike ILT viruses were involved in the field outbreak of this disease, and that the PCR/RFLP procedure could serve as a fast and sensitive method for the detection and differentiation of vaccine strains and field isolates of ILT viruses.
Collapse
Affiliation(s)
- P C Chang
- Institute of Veterinary Microbiology, National Chung Hsing University, Taichung, Taiwan, ROC
| | | | | | | |
Collapse
|
46
|
Chang PC, Lee YL, Shien JH, Shieh HK. Rapid differentiation of vaccine strains and field isolates of infectious laryngotracheitis virus by restriction fragment length polymorphism of PCR products. J Virol Methods 1997. [DOI: 10.1016/s0166-0934%2897%2900050-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
47
|
Abstract
Abortion or neonatal disease may follow infection with several alpha, beta and gamma-herpesviruses. The alpha-herpesvirus, equid herpesvirus-1 (EHV-1), causes single or epizootic abortions or neonatal deaths in equids, and the closely related virus EHV-4 causes sporadic equine abortions. In cattle, the alpha-herpesviruses, bovine herpesvirus-1 (infectious bovine rhinotracheitis virus) and bovine herpesvirus-5 (bovine encephalitis virus), and a gamma-herpesvirus, bovine herpesvirus-4, have all been implicated as causes of abortion. In pigs, suid herpesvirus-1 (SHV-1: pseudorabies virus), an alpha-herpesvirus, and SHV-2 (porcine cytomegalovirus), a beta-herpesvirus, each cause abortion or neonatal piglet losses. Caprine herpesvirus-1, canine herpesvirus and feline herpesvirus-1, all alpha-herpesviruses, cause abortions or neonatal deaths in goats, dogs and cats, respectively. This review discusses the pathogenesis, pathology and laboratory diagnosis of these herpesviral abortions and neonatal diseases, with an emphasis on experimental studies of each disease. Alternative reviews covering other aspects of each infection, such as the genetic and antigenic structure of the viruses, host immune responses and approaches to vaccination and disease control are indicated at appropriate points in the text.
Collapse
Affiliation(s)
- K C Smith
- Centre for Preventive Medicine, Animal Health Trust, Newmarket, Suffolk, UK
| |
Collapse
|
48
|
Mengeling WL, Brockmeier SL, Lager KM, Vorwald AC. The role of biotechnologically engineered vaccines and diagnostics in pseudorabies (Aujeszky's disease) eradication strategies. Vet Microbiol 1997; 55:49-60. [PMID: 9220596 DOI: 10.1016/s0378-1135(96)01306-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Modern-day biotechnology has an almost unlimited number of possibilities for reducing the impact of hereditary and infectious diseases. To date one of its most visible and rewarding applications for veterinary medicine has been in the genetic engineering of vaccines and diagnostics to assist in the eventual eradication of pseudorabies (PR, Aujeszky's disease). In the following review we summarize some of the most pertinent issues relative to PR eradication and point out the present and potential role of biotechnology in achieving our goal.
Collapse
Affiliation(s)
- W L Mengeling
- Virology Swine Research Unit, National Animal Disease Center, USDA, Agricultural Research Service, Ames, IA 50010, USA
| | | | | | | |
Collapse
|
49
|
Abstract
The transneuronal labeling properties of three genetically engineered forms of the Bartha strain of pseudorabies virus (PRV) were studied in the ocular sympathetic pathway of rats. Bartha PRV mutants in which expression of the viral glycoprotein gI (homologous to gE of herpes simplex virus type 1, HSV-1) was restored (Bartha gI+) or which express a wildtype form of glycoprotein gIII (homologous to gC of HSV-1 and referred here as Bartha gIIIKa) were analyzed. In addition, a Bartha PRV mutant (Bartha beta-gal) containing the lacZ gene encoding E. coli beta-galactosidase inserted into the gX gene (homologous to gG of HSV-1) was also studied. These were compared to the parental strain--Bartha PRV. The pattern of transneuronal labeling in the intermediolateral cell column was studied 4 days after 5 microliters of different concentrations of viral stocks were injected into the anterior chamber of the eye. The optimal infectious dose required to produce the maximal number of cases with specific transneuronal labeling of sympathetic preganglionic neurons was determined and these were as follows: Bartha PRV = 10(7.5) pfu/ml, Bartha beta-galactosidase = 10(6.5) pfu/ml, Bartha gIIIKa = 10(5) pfu/ml, Bartha gI+ = 10(4) pfu/ml. An inverse relationship between specificity and infectivity rate was observed. Bartha beta-gal produced the greatest number of cases with specific labeling (76%); Bartha gI+ produced the lowest level (10%) and thus, this virus is not useful for transneuronal labeling studies. Bartha gIIIKa labeled more sympathetic preganglionic neurons (second-order neurons) than Bartha beta-gal or Bartha PRV. Bartha gIIIKa and Bartha beta-gal viruses labeled more interneurons (third-order) than the standard Bartha PRV.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- J M Sams
- Department of Anatomy and Neurobiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | | | | |
Collapse
|
50
|
Schang LM, Kutish GF, Osorio FA. Correlation between precolonization of trigeminal ganglia by attenuated strains of pseudorabies virus and resistance to wild-type virus latency. J Virol 1994; 68:8470-6. [PMID: 7966645 PMCID: PMC237325 DOI: 10.1128/jvi.68.12.8470-8476.1994] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
We compared the levels of latent pseudorabies virus (PRV) DNA in trigeminal ganglia (TG) of pigs after intranasal inoculation of different PRV strains by using quantitative DNA PCR. The extent of colonization attained in each case varied significantly according to the type of strain and inoculum dose, wild-type (WT) PRV being the most efficient strain in colonizing TG. When groups of pigs representing different levels of precolonization of TG with an attenuated PRV strain were challenged with WT PRV, it became evident that there is a statistically significant inverse correlation between the extent of precolonization attained by an attenuated PRV strain in TG and the level of establishment of latency by superinfecting WT PRV. The protection against WT PRV latency did not correlate with the extent of WT PRV replication at the portal of entry.
Collapse
Affiliation(s)
- L M Schang
- Department of Veterinary & Biomedical Sciences, University of Nebraska-Lincoln 68583-0905
| | | | | |
Collapse
|