1
|
Küchenhoff S, Bayrak Ş, Zsido RG, Saberi A, Bernhardt BC, Weis S, Schaare HL, Sacher J, Eickhoff S, Valk SL. Relating sex-bias in human cortical and hippocampal microstructure to sex hormones. Nat Commun 2024; 15:7279. [PMID: 39179555 PMCID: PMC11344136 DOI: 10.1038/s41467-024-51459-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 07/25/2024] [Indexed: 08/26/2024] Open
Abstract
Determining sex-bias in brain structure is of great societal interest to improve diagnostics and treatment of brain-related disorders. So far, studies on sex-bias in brain structure predominantly focus on macro-scale measures, and often ignore factors determining this bias. Here we study sex-bias in cortical and hippocampal microstructure in relation to sex hormones. Investigating quantitative intracortical profiling in-vivo using the T1w/T2w ratio in 1093 healthy females and males of the cross-sectional Human Connectome Project young adult sample, we find that regional cortical and hippocampal microstructure differs between males and females and that the effect size of this sex-bias varies depending on self-reported hormonal status in females. Microstructural sex-bias and expression of sex hormone genes, based on an independent post-mortem sample, are spatially coupled. Lastly, sex-bias is most pronounced in paralimbic areas, with low laminar complexity, which are predicted to be most plastic based on their cytoarchitectural properties. Albeit correlative, our study underscores the importance of incorporating sex hormone variables into the investigation of brain structure and plasticity.
Collapse
Affiliation(s)
- Svenja Küchenhoff
- Institute of Neuroscience and Medicine (INM-7: Brain and Behavior), Research Centre Jülich, Jülich, Germany.
- Otto Hahn Group Cognitive Neurogenetics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.
- Institute of Systems Neuroscience, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.
- Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, UK.
| | - Şeyma Bayrak
- Institute of Neuroscience and Medicine (INM-7: Brain and Behavior), Research Centre Jülich, Jülich, Germany
- Otto Hahn Group Cognitive Neurogenetics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Rachel G Zsido
- Cognitive Neuroendocrinology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Amin Saberi
- Institute of Neuroscience and Medicine (INM-7: Brain and Behavior), Research Centre Jülich, Jülich, Germany
- Otto Hahn Group Cognitive Neurogenetics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Institute of Systems Neuroscience, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | | | - Susanne Weis
- Institute of Neuroscience and Medicine (INM-7: Brain and Behavior), Research Centre Jülich, Jülich, Germany
- Institute of Systems Neuroscience, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - H Lina Schaare
- Institute of Neuroscience and Medicine (INM-7: Brain and Behavior), Research Centre Jülich, Jülich, Germany
- Otto Hahn Group Cognitive Neurogenetics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Julia Sacher
- Centre for Integrative Women's Health and Gender Medicine, Medical Faculty & University Hospital Leipzig, Leipzig, Germany
| | - Simon Eickhoff
- Institute of Neuroscience and Medicine (INM-7: Brain and Behavior), Research Centre Jülich, Jülich, Germany
- Institute of Systems Neuroscience, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Sofie L Valk
- Institute of Neuroscience and Medicine (INM-7: Brain and Behavior), Research Centre Jülich, Jülich, Germany.
- Otto Hahn Group Cognitive Neurogenetics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.
- Institute of Systems Neuroscience, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.
| |
Collapse
|
2
|
Fernandino L, Binder JR. How does the "default mode" network contribute to semantic cognition? BRAIN AND LANGUAGE 2024; 252:105405. [PMID: 38579461 PMCID: PMC11135161 DOI: 10.1016/j.bandl.2024.105405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 02/26/2024] [Accepted: 03/23/2024] [Indexed: 04/07/2024]
Abstract
This review examines whether and how the "default mode" network (DMN) contributes to semantic processing. We review evidence implicating the DMN in the processing of individual word meanings and in sentence- and discourse-level semantics. Next, we argue that the areas comprising the DMN contribute to semantic processing by coordinating and integrating the simultaneous activity of local neuronal ensembles across multiple unimodal and multimodal cortical regions, creating a transient, global neuronal ensemble. The resulting ensemble implements an integrated simulation of phenomenological experience - that is, an embodied situation model - constructed from various modalities of experiential memory traces. These situation models, we argue, are necessary not only for semantic processing but also for aspects of cognition that are not traditionally considered semantic. Although many aspects of this proposal remain provisional, we believe it provides new insights into the relationships between semantic and non-semantic cognition and into the functions of the DMN.
Collapse
Affiliation(s)
- Leonardo Fernandino
- Department of Neurology, Medical College of Wisconsin, USA; Department of Biomedical Engineering, Medical College of Wisconsin, USA.
| | - Jeffrey R Binder
- Department of Neurology, Medical College of Wisconsin, USA; Department of Biophysics, Medical College of Wisconsin, USA
| |
Collapse
|
3
|
Holley D, Campos LJ, Drzewiecki CM, Zhang Y, Capitanio JP, Fox AS. Rhesus infant nervous temperament predicts peri-adolescent central amygdala metabolism & behavioral inhibition measured by a machine-learning approach. Transl Psychiatry 2024; 14:148. [PMID: 38490997 PMCID: PMC10943234 DOI: 10.1038/s41398-024-02858-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 02/21/2024] [Accepted: 03/01/2024] [Indexed: 03/18/2024] Open
Abstract
Anxiety disorders affect millions of people worldwide and impair health, happiness, and productivity on a massive scale. Developmental research points to a connection between early-life behavioral inhibition and the eventual development of these disorders. Our group has previously shown that measures of behavioral inhibition in young rhesus monkeys (Macaca mulatta) predict anxiety-like behavior later in life. In recent years, clinical and basic researchers have implicated the central extended amygdala (EAc)-a neuroanatomical concept that includes the central nucleus of the amygdala (Ce) and the bed nucleus of the stria terminalis (BST)-as a key neural substrate for the expression of anxious and inhibited behavior. An improved understanding of how early-life behavioral inhibition relates to an increased lifetime risk of anxiety disorders-and how this relationship is mediated by alterations in the EAc-could lead to improved treatments and preventive strategies. In this study, we explored the relationships between infant behavioral inhibition and peri-adolescent defensive behavior and brain metabolism in 18 female rhesus monkeys. We coupled a mildly threatening behavioral assay with concurrent multimodal neuroimaging, and related those findings to various measures of infant temperament. To score the behavioral assay, we developed and validated UC-Freeze, a semi-automated machine-learning (ML) tool that uses unsupervised clustering to quantify freezing. Consistent with previous work, we found that heightened Ce metabolism predicted elevated defensive behavior (i.e., more freezing) in the presence of an unfamiliar human intruder. Although we found no link between infant-inhibited temperament and peri-adolescent EAc metabolism or defensive behavior, we did identify infant nervous temperament as a significant predictor of peri-adolescent defensive behavior. Our findings suggest a connection between infant nervous temperament and the eventual development of anxiety and depressive disorders. Moreover, our approach highlights the potential for ML tools to augment existing behavioral neuroscience methods.
Collapse
Affiliation(s)
- D Holley
- University of California, Department of Psychology, Davis, CA, USA
- California National Primate Research Center, Davis, CA, USA
| | - L J Campos
- University of California, Department of Psychology, Davis, CA, USA
- California National Primate Research Center, Davis, CA, USA
| | - C M Drzewiecki
- California National Primate Research Center, Davis, CA, USA
| | - Y Zhang
- Columbia University, Department of Statistics, New York, NY, USA
| | - J P Capitanio
- University of California, Department of Psychology, Davis, CA, USA
- California National Primate Research Center, Davis, CA, USA
| | - A S Fox
- University of California, Department of Psychology, Davis, CA, USA.
- California National Primate Research Center, Davis, CA, USA.
| |
Collapse
|
4
|
Yang E, Milisav F, Kopal J, Holmes AJ, Mitsis GD, Misic B, Finn ES, Bzdok D. The default network dominates neural responses to evolving movie stories. Nat Commun 2023; 14:4197. [PMID: 37452058 PMCID: PMC10349102 DOI: 10.1038/s41467-023-39862-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 06/27/2023] [Indexed: 07/18/2023] Open
Abstract
Neuroscientific studies exploring real-world dynamic perception often overlook the influence of continuous changes in narrative content. In our research, we utilize machine learning tools for natural language processing to examine the relationship between movie narratives and neural responses. By analyzing over 50,000 brain images of participants watching Forrest Gump from the studyforrest dataset, we find distinct brain states that capture unique semantic aspects of the unfolding story. The default network, associated with semantic information integration, is the most engaged during movie watching. Furthermore, we identify two mechanisms that underlie how the default network liaises with the amygdala and hippocampus. Our findings demonstrate effective approaches to understanding neural processes in everyday situations and their relation to conscious awareness.
Collapse
Affiliation(s)
- Enning Yang
- Department of Biomedical Engineering, TheNeuro-Montreal Neurological Institute (MNI), McConnell Brain Imaging Centre (BIC), McGill University, Montreal, QC, Canada
- Mila-Quebec Artificial Intelligence Institute, Montreal, QC, Canada
| | - Filip Milisav
- Department of Biomedical Engineering, TheNeuro-Montreal Neurological Institute (MNI), McConnell Brain Imaging Centre (BIC), McGill University, Montreal, QC, Canada
| | - Jakub Kopal
- Department of Biomedical Engineering, TheNeuro-Montreal Neurological Institute (MNI), McConnell Brain Imaging Centre (BIC), McGill University, Montreal, QC, Canada
- Mila-Quebec Artificial Intelligence Institute, Montreal, QC, Canada
| | - Avram J Holmes
- Department of Psychology and Psychiatry, Yale University, New Haven, CT, USA
| | - Georgios D Mitsis
- Department of Bioengineering, McGill University, Montreal, QC, Canada
| | - Bratislav Misic
- Department of Biomedical Engineering, TheNeuro-Montreal Neurological Institute (MNI), McConnell Brain Imaging Centre (BIC), McGill University, Montreal, QC, Canada
| | - Emily S Finn
- Department of Psychological and Brain Sciences, Dartmouth College, Hanover, NH, USA
| | - Danilo Bzdok
- Department of Biomedical Engineering, TheNeuro-Montreal Neurological Institute (MNI), McConnell Brain Imaging Centre (BIC), McGill University, Montreal, QC, Canada.
- Mila-Quebec Artificial Intelligence Institute, Montreal, QC, Canada.
| |
Collapse
|
5
|
Sancha-Velasco A, Uceda-Heras A, García-Cabezas MÁ. Cortical type: a conceptual tool for meaningful biological interpretation of high-throughput gene expression data in the human cerebral cortex. Front Neuroanat 2023; 17:1187280. [PMID: 37426901 PMCID: PMC10323436 DOI: 10.3389/fnana.2023.1187280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 05/31/2023] [Indexed: 07/11/2023] Open
Abstract
The interpretation of massive high-throughput gene expression data requires computational and biological analyses to identify statistically and biologically significant differences, respectively. There are abundant sources that describe computational tools for statistical analysis of massive gene expression data but few address data analysis for biological significance. In the present article we exemplify the importance of selecting the proper biological context in the human brain for gene expression data analysis and interpretation. For this purpose, we use cortical type as conceptual tool to make predictions about gene expression in areas of the human temporal cortex. We predict that the expression of genes related to glutamatergic transmission would be higher in areas of simpler cortical type, the expression of genes related to GABAergic transmission would be higher in areas of more complex cortical type, and the expression of genes related to epigenetic regulation would be higher in areas of simpler cortical type. Then, we test these predictions with gene expression data from several regions of the human temporal cortex obtained from the Allen Human Brain Atlas. We find that the expression of several genes shows statistically significant differences in agreement with the predicted gradual expression along the laminar complexity gradient of the human cortex, suggesting that simpler cortical types may have greater glutamatergic excitability and epigenetic turnover compared to more complex types; on the other hand, complex cortical types seem to have greater GABAergic inhibitory control compared to simpler types. Our results show that cortical type is a good predictor of synaptic plasticity, epigenetic turnover, and selective vulnerability in human cortical areas. Thus, cortical type can provide a meaningful context for interpreting high-throughput gene expression data in the human cerebral cortex.
Collapse
Affiliation(s)
- Ariadna Sancha-Velasco
- Department of Anatomy, Histology and Neuroscience, School of Medicine, Autonomous University of Madrid, Madrid, Spain
- Master Program in Neuroscience, Autonomous University of Madrid, Madrid, Spain
| | - Alicia Uceda-Heras
- Master Program in Neuroscience, Autonomous University of Madrid, Madrid, Spain
- Ph.D. Program in Neuroscience UAM-Cajal, Autonomous University of Madrid, Madrid, Spain
| | - Miguel Ángel García-Cabezas
- Department of Anatomy, Histology and Neuroscience, School of Medicine, Autonomous University of Madrid, Madrid, Spain
- Master Program in Neuroscience, Autonomous University of Madrid, Madrid, Spain
- Ph.D. Program in Neuroscience UAM-Cajal, Autonomous University of Madrid, Madrid, Spain
- Neural Systems Laboratory, Department of Health Sciences, Boston University, Boston, MA, United States
| |
Collapse
|
6
|
Rolls ET. Emotion, motivation, decision-making, the orbitofrontal cortex, anterior cingulate cortex, and the amygdala. Brain Struct Funct 2023; 228:1201-1257. [PMID: 37178232 PMCID: PMC10250292 DOI: 10.1007/s00429-023-02644-9] [Citation(s) in RCA: 47] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 04/12/2023] [Indexed: 05/15/2023]
Abstract
The orbitofrontal cortex and amygdala are involved in emotion and in motivation, but the relationship between these functions performed by these brain structures is not clear. To address this, a unified theory of emotion and motivation is described in which motivational states are states in which instrumental goal-directed actions are performed to obtain rewards or avoid punishers, and emotional states are states that are elicited when the reward or punisher is or is not received. This greatly simplifies our understanding of emotion and motivation, for the same set of genes and associated brain systems can define the primary or unlearned rewards and punishers such as sweet taste or pain. Recent evidence on the connectivity of human brain systems involved in emotion and motivation indicates that the orbitofrontal cortex is involved in reward value and experienced emotion with outputs to cortical regions including those involved in language, and is a key brain region involved in depression and the associated changes in motivation. The amygdala has weak effective connectivity back to the cortex in humans, and is implicated in brainstem-mediated responses to stimuli such as freezing and autonomic activity, rather than in declarative emotion. The anterior cingulate cortex is involved in learning actions to obtain rewards, and with the orbitofrontal cortex and ventromedial prefrontal cortex in providing the goals for navigation and in reward-related effects on memory consolidation mediated partly via the cholinergic system.
Collapse
Affiliation(s)
- Edmund T Rolls
- Oxford Centre for Computational Neuroscience, Oxford, UK.
- Department of Computer Science, University of Warwick, Coventry, UK.
| |
Collapse
|
7
|
How processing emotion affects language control in bilinguals. Brain Struct Funct 2023; 228:635-649. [PMID: 36585969 DOI: 10.1007/s00429-022-02608-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 12/23/2022] [Indexed: 01/01/2023]
Abstract
Research has shown that several variables affect language control among bilingual speakers but the effect of affective processing remains unexplored. Chinese-English bilinguals participated in a novel prime-target language switching experiment in which they first judged the affective valence (i.e., positive or negative) of auditorily presented words and then named pictures with neutral emotional valence in either the same (non-switch trial) or different language (switch trial). Brain activity was monitored using functional magnetic resonance imaging (fMRI). The behavioral performance showed that the typical switch cost (i.e., the calculated difference between switch and non-switch trials) emerged after processing positive words but not after negative words. Brain imaging demonstrated that processing negative words immediately before non-switch picturing naming trials (but not for switch trials) increased activation in brain areas associated with domain-general cognitive control. The opposite patterns were found after processing positive words. These findings suggest that an (emotional) negative priming effect is induced by spontaneous exposure to negative words and that these priming effects may be triggered by reactive emotional processing and that they may interact with higher level cognitive functions.
Collapse
|
8
|
Karim AKMR, Proulx MJ, de Sousa AA, Likova LT. Do we enjoy what we sense and perceive? A dissociation between aesthetic appreciation and basic perception of environmental objects or events. COGNITIVE, AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2022; 22:904-951. [PMID: 35589909 PMCID: PMC10159614 DOI: 10.3758/s13415-022-01004-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/27/2022] [Indexed: 05/06/2023]
Abstract
This integrative review rearticulates the notion of human aesthetics by critically appraising the conventional definitions, offerring a new, more comprehensive definition, and identifying the fundamental components associated with it. It intends to advance holistic understanding of the notion by differentiating aesthetic perception from basic perceptual recognition, and by characterizing these concepts from the perspective of information processing in both visual and nonvisual modalities. To this end, we analyze the dissociative nature of information processing in the brain, introducing a novel local-global integrative model that differentiates aesthetic processing from basic perceptual processing. This model builds on the current state of the art in visual aesthetics as well as newer propositions about nonvisual aesthetics. This model comprises two analytic channels: aesthetics-only channel and perception-to-aesthetics channel. The aesthetics-only channel primarily involves restricted local processing for quality or richness (e.g., attractiveness, beauty/prettiness, elegance, sublimeness, catchiness, hedonic value) analysis, whereas the perception-to-aesthetics channel involves global/extended local processing for basic feature analysis, followed by restricted local processing for quality or richness analysis. We contend that aesthetic processing operates independently of basic perceptual processing, but not independently of cognitive processing. We further conjecture that there might be a common faculty, labeled as aesthetic cognition faculty, in the human brain for all sensory aesthetics albeit other parts of the brain can also be activated because of basic sensory processing prior to aesthetic processing, particularly during the operation of the second channel. This generalized model can account not only for simple and pure aesthetic experiences but for partial and complex aesthetic experiences as well.
Collapse
Affiliation(s)
- A K M Rezaul Karim
- Department of Psychology, University of Dhaka, Dhaka, 1000, Bangladesh.
- Envision Research Institute, 610 N. Main St., Wichita, KS, USA.
- The Smith-Kettlewell Eye Research Institute, 2318 Fillmore St., San Francisco, CA, USA.
| | | | | | - Lora T Likova
- The Smith-Kettlewell Eye Research Institute, 2318 Fillmore St., San Francisco, CA, USA
| |
Collapse
|
9
|
García-Cabezas MÁ, Hacker JL, Zikopoulos B. Homology of neocortical areas in rats and primates based on cortical type analysis: an update of the Hypothesis on the Dual Origin of the Neocortex. Brain Struct Funct 2022:10.1007/s00429-022-02548-0. [PMID: 35962240 PMCID: PMC9922339 DOI: 10.1007/s00429-022-02548-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 07/27/2022] [Indexed: 11/02/2022]
Abstract
Sixty years ago, Friedrich Sanides traced the origin of the tangential expansion of the primate neocortex to two ancestral anlagen in the allocortex of reptiles and mammals, and proposed the Hypothesis on the Dual Origin of the Neocortex. According to Sanides, paraolfactory and parahippocampal gradients of laminar elaboration expanded in evolution by addition of successive concentric rings of gradually different cortical types inside the allocortical ring. Rodents had fewer rings and primates had more rings in the inner part of the cortex. In the present article, we perform cortical type analysis of the neocortex of adult rats, Rhesus macaques, and humans to propose hypotheses on homology of cortical areas applying the principles of the Hypothesis on the Dual Origin of the Neocortex. We show that areas in the outer rings of the neocortex have comparable laminar elaboration in rats and primates, while most 6-layer eulaminate areas in the innermost rings of primate neocortex lack homologous counterparts in rats. We also represent the topological distribution of cortical types in simplified flat maps of the cerebral cortex of monotremes, rats, and primates. Finally, we propose an elaboration of the Hypothesis on the Dual Origin of the Neocortex in the context of modern studies of pallial patterning that integrates the specification of pallial sectors in development of vertebrate embryos. The updated version of the hypothesis of Sanides provides explanation for the emergence of cortical hierarchies in mammals and will guide future research in the phylogenetic origin of neocortical areas.
Collapse
Affiliation(s)
- Miguel Ángel García-Cabezas
- Department of Anatomy, Histology and Neuroscience, School of Medicine, Universidad Autónoma de Madrid, Madrid, Spain,Neural Systems Laboratory, Department of Health Sciences, Boston University, Boston, MA, USA
| | - Julia Liao Hacker
- Human Systems Neuroscience Laboratory, Department of Health Sciences, Boston University, 635 Commonwealth Ave., Room 401D, Boston, MA 02215, USA,Present Address: Department of Neurology, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Basilis Zikopoulos
- Human Systems Neuroscience Laboratory, Department of Health Sciences, Boston University, 635 Commonwealth Ave., Room 401D, Boston, MA, 02215, USA. .,Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, MA, USA. .,Graduate Program in Neuroscience, Boston University, Boston, MA, USA.
| |
Collapse
|
10
|
Long Q, Li W, Zhang W, Han B, Chen Q, Shen L, Liu X. Electrical stimulation mapping in the medial prefrontal cortex induced auditory hallucinations of episodic memory: A case report. Front Hum Neurosci 2022; 16:815232. [PMID: 35966994 PMCID: PMC9366097 DOI: 10.3389/fnhum.2022.815232] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 06/30/2022] [Indexed: 11/23/2022] Open
Abstract
It has been well documented that the auditory system in the superior temporal cortex is responsible for processing basic auditory sound features, such as sound frequency and intensity, while the prefrontal cortex is involved in higher-order auditory functions, such as language processing and auditory episodic memory. The temporal auditory cortex has vast forward anatomical projections to the prefrontal auditory cortex, connecting with the lateral, medial, and orbital parts of the prefrontal cortex. The connections between the auditory cortex and the prefrontal cortex thus help in localizing, recognizing, and comprehending external auditory inputs. In addition, the medial prefrontal cortex (MPFC) is believed to be a core region of episodic memory retrieval and is one of the most important regions in the default mode network (DMN). However, previous neural evidence with regard to the comparison between basic auditory processing and auditory episodic memory retrieval mainly comes from fMRI studies. The specific neural networks and the corresponding critical frequency bands of neuronal oscillations underlying the two auditory functions remain unclear. In the present study, we reported results of direct cortical stimulations during stereo-electro-encephalography (SEEG) recording in a patient with drug-resistant epilepsy. Electrodes covered the superior temporal gyrus, the operculum and the insula cortex of bilateral hemispheres, the prefrontal cortex, the parietal lobe, the anterior and middle cingulate cortex, and the amygdala of the left hemisphere. Two types of auditory hallucinations were evoked with direct cortical stimulations, which were consistent with the habitual seizures. The noise hallucinations, i.e., “I could hear buzzing noises in my head,” were evoked with the stimulation of the superior temporal gyrus. The episodic memory hallucinations “I could hear a young woman who was dressed in a red skirt saying: What is the matter with you?,” were evoked with the stimulation of MPFC. The patient described how she had met this young woman when she was young and that the woman said the same sentence to her. Furthermore, by analyzing the high gamma power (HGP) induced by direct electrical stimulation, two dissociable neural networks underlying the two types of auditory hallucinations were localized. Taken together, the present results confirm the hierarchical processing of auditory information by showing the different involvements of the primary auditory cortex vs. the prefrontal cortex in the two types of auditory hallucinations.
Collapse
Affiliation(s)
- Qiting Long
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, Guangzhou, China
- Guangdong Key Laboratory of Mental Health and Cognitive Science, Center for Studies of Psychological Application, School of Psychology, South China Normal University, Guangzhou, China
| | - Wenjie Li
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, Guangzhou, China
- Guangdong Key Laboratory of Mental Health and Cognitive Science, Center for Studies of Psychological Application, School of Psychology, South China Normal University, Guangzhou, China
| | - Wei Zhang
- Department of Neurology, Beijing Tsinghua Changgung Hospital, Beijing, China
| | - Biao Han
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, Guangzhou, China
- Guangdong Key Laboratory of Mental Health and Cognitive Science, Center for Studies of Psychological Application, School of Psychology, South China Normal University, Guangzhou, China
| | - Qi Chen
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, Guangzhou, China
- Guangdong Key Laboratory of Mental Health and Cognitive Science, Center for Studies of Psychological Application, School of Psychology, South China Normal University, Guangzhou, China
| | - Lu Shen
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, Guangzhou, China
- Guangdong Key Laboratory of Mental Health and Cognitive Science, Center for Studies of Psychological Application, School of Psychology, South China Normal University, Guangzhou, China
- *Correspondence: Lu Shen,
| | - Xingzhou Liu
- Department of Neurology, Beijing Tsinghua Changgung Hospital, Beijing, China
- Xingzhou Liu,
| |
Collapse
|
11
|
Gee DG, Hanson C, Caglar LR, Fareri DS, Gabard-Durnam LJ, Mills-Finnerty C, Goff B, Caldera CJ, Lumian DS, Flannery J, Hanson SJ, Tottenham N. Experimental evidence for a child-to-adolescent switch in human amygdala-prefrontal cortex communication: A cross-sectional pilot study. Dev Sci 2022; 25:e13238. [PMID: 35080089 PMCID: PMC9232876 DOI: 10.1111/desc.13238] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 12/20/2021] [Accepted: 01/02/2022] [Indexed: 11/30/2022]
Abstract
Interactions between the amygdala and prefrontal cortex are fundamental to human emotion. Despite the central role of frontoamygdala communication in adult emotional learning and regulation, little is known about how top-down control emerges during human development. In the present cross-sectional pilot study, we experimentally manipulated prefrontal engagement to test its effects on the amygdala during development. Inducing dorsal anterior cingulate cortex (dACC) activation resulted in developmentally-opposite effects on amygdala reactivity during childhood versus adolescence, such that dACC activation was followed by increased amygdala reactivity in childhood but reduced amygdala reactivity in adolescence. Bayesian network analyses revealed an age-related switch between childhood and adolescence in the nature of amygdala connectivity with the dACC and ventromedial PFC (vmPFC). Whereas adolescence was marked by information flow from dACC and vmPFC to amygdala (consistent with that observed in adults), the reverse information flow, from the amygdala to dACC and vmPFC, was dominant in childhood. The age-related switch in information flow suggests a potential shift from bottom-up co-excitatory to top-down regulatory frontoamygdala connectivity and may indicate a profound change in the circuitry supporting maturation of emotional behavior. These findings provide novel insight into the developmental construction of amygdala-cortical connections and implications for the ways in which childhood experiences may influence subsequent prefrontal function.
Collapse
Affiliation(s)
- Dylan G. Gee
- Yale University, Department of Psychology, 2 Hillhouse Avenue, New Haven, CT 06511
- To whom correspondence should be addressed: ,
| | - Catherine Hanson
- Rutgers University, Department of Psychology, 101 Warren Street, Newark, NJ 07102
| | - Leyla Roksan Caglar
- Rutgers University, Department of Psychology, 101 Warren Street, Newark, NJ 07102
| | - Dominic S. Fareri
- Adelphi University, Department of Psychology, Blodgett Hall, Garden City, NY 11530
| | | | | | - Bonnie Goff
- University of California, Los Angeles, Department of Psychology, 1285 Franz Hall, Los Angeles, CA 90095
| | - Christina J. Caldera
- University of California, Los Angeles, Department of Psychology, 1285 Franz Hall, Los Angeles, CA 90095
| | - Daniel S. Lumian
- University of Denver, Department of Psychology, 2155 S. Race Street, Denver, CO 80210
| | - Jessica Flannery
- University of North Carolina, Chapel Hill, Department of Psychology, 235 E. Cameron Ave, Chapel Hill, NC 27599
| | - Stephen J. Hanson
- Rutgers University, Department of Psychology, 101 Warren Street, Newark, NJ 07102
| | - Nim Tottenham
- Columbia University, Department of Psychology, 406 Schermerhorn Hall, 1190 Amsterdam Avenue, New York, NY 10027
| |
Collapse
|
12
|
Kenwood MM, Kalin NH, Barbas H. The prefrontal cortex, pathological anxiety, and anxiety disorders. Neuropsychopharmacology 2022; 47:260-275. [PMID: 34400783 PMCID: PMC8617307 DOI: 10.1038/s41386-021-01109-z] [Citation(s) in RCA: 86] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 07/06/2021] [Accepted: 07/08/2021] [Indexed: 02/07/2023]
Abstract
Anxiety is experienced in response to threats that are distal or uncertain, involving changes in one's subjective state, autonomic responses, and behavior. Defensive and physiologic responses to threats that involve the amygdala and brainstem are conserved across species. While anxiety responses typically serve an adaptive purpose, when excessive, unregulated, and generalized, they can become maladaptive, leading to distress and avoidance of potentially threatening situations. In primates, anxiety can be regulated by the prefrontal cortex (PFC), which has expanded in evolution. This prefrontal expansion is thought to underlie primates' increased capacity to engage high-level regulatory strategies aimed at coping with and modifying the experience of anxiety. The specialized primate lateral, medial, and orbital PFC sectors are connected with association and limbic cortices, the latter of which are connected with the amygdala and brainstem autonomic structures that underlie emotional and physiological arousal. PFC pathways that interface with distinct inhibitory systems within the cortex, the amygdala, or the thalamus can regulate responses by modulating neuronal output. Within the PFC, pathways connecting cortical regions are poised to reduce noise and enhance signals for cognitive operations that regulate anxiety processing and autonomic drive. Specialized PFC pathways to the inhibitory thalamic reticular nucleus suggest a mechanism to allow passage of relevant signals from thalamus to cortex, and in the amygdala to modulate the output to autonomic structures. Disruption of specific nodes within the PFC that interface with inhibitory systems can affect the negative bias, failure to regulate autonomic arousal, and avoidance that characterize anxiety disorders.
Collapse
Affiliation(s)
- Margaux M Kenwood
- Department of Psychiatry, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
- Neuroscience Training Program at University of Wisconsin-Madison, Madison, USA
| | - Ned H Kalin
- Department of Psychiatry, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
- Neuroscience Training Program at University of Wisconsin-Madison, Madison, USA
- Wisconsin National Primate Center, Madison, WI, USA
| | - Helen Barbas
- Neural Systems Laboratory, Department of Health Sciences, Boston University, Boston, MA, USA.
- Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, MA, USA.
| |
Collapse
|
13
|
Abstract
Epigenetic mechanisms such as DNA methylation (DNAm) have been associated with stress responses and increased vulnerability to depression. Abnormal DNAm is observed in stressed animals and depressed individuals. Antidepressant treatment modulates DNAm levels and regulates gene expression in diverse tissues, including the brain and the blood. Therefore, DNAm could be a potential therapeutic target in depression. Here, we reviewed the current knowledge about the involvement of DNAm in the behavioural and molecular changes associated with stress exposure and depression. We also evaluated the possible use of DNAm changes as biomarkers of depression. Finally, we discussed current knowledge limitations and future perspectives.
Collapse
|
14
|
Zhang X, Li D, Xie J, Liu J. Environmental perceptions, mental performance, and physiological responses of people with respiratory allergies exposed to reduced Indoor Air Quality. INDOOR AIR 2021; 31:1458-1472. [PMID: 33432603 DOI: 10.1111/ina.12793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 12/24/2020] [Indexed: 06/12/2023]
Abstract
To investigate the need of allergic population for indoor environment quality, exposure effects of poor air quality on subjects with respiratory allergies were compared with those on healthy people, including perceptual responses, health symptoms, mental performance, and physiological responses. The experimental intervention was with and without ventilation at thermally neutral rooms, creating two exposure conditions indicated by CO2 concentration ranges of 502 to 3297 ppm (2438 ± 1527 ppm) and 517 to 5687 ppm (3615 ± 1527 ppm). 63 subjects (32 allergic subjects and 31 non-allergic subjects) were exposed to both conditions for 3 hours. The main results suggested that, compared with healthy people, people with respiratory allergy seem to be more sensitive or less acceptable to reduced air quality polluted by occupants during instantaneous exposure. Besides, the allergic group performed worse in cognitive tests than non-allergic group. After 3 hours of continuous exposure, people with respiratory allergy reported stronger intensity of respiratory irritations and seemed to suffer more inflammation indicated by a higher level of interleukin 1L-1β.
Collapse
Affiliation(s)
- Xiaojing Zhang
- Key Laboratory of Green Built Environment and Energy Efficient Technology, Beijing University of Technology, Beijing, China
| | - Dandan Li
- Key Laboratory of Green Built Environment and Energy Efficient Technology, Beijing University of Technology, Beijing, China
| | - Jingchao Xie
- Key Laboratory of Green Built Environment and Energy Efficient Technology, Beijing University of Technology, Beijing, China
| | - Jiaping Liu
- Key Laboratory of Green Built Environment and Energy Efficient Technology, Beijing University of Technology, Beijing, China
| |
Collapse
|
15
|
Abstract
Emotions can be defined as states elicited by rewards or punishments, and indeed the neurology of emotional disorders can be understood in terms of this foundation. The orbitofrontal cortex in humans and other primates is a critical area in emotion processing, determining the value of stimuli and whether they are rewarding or nonrewarding. The cortical processing that occurs before the orbitofrontal cortex primarily involves defining the identity of stimuli, i.e., "what" is present and not reward value. There is evidence that this holds true for taste, visual, somatosensory, and olfactory stimuli. The human medial orbitofrontal cortex is important in processing many different types of reward, and the lateral orbitofrontal cortex in processing nonreward and punishment. Humans with damage to the orbitofrontal cortex have an impaired ability to identify facial and voice expressions of emotions, and impaired subjective experience of emotion. They can have an altered personality and be impulsive because they are impaired at processing failures to receive expected rewards and at processing punishments. In humans, the role of the amygdala in the processing of emotions is reduced because of the great evolutionary development of the orbitofrontal cortex: amygdala damage has much less effect on emotion than does orbitofrontal cortex damage. The orbitofrontal cortex projects reward value information to the anterior cingulate cortex, which is involved in learning those actions required to obtain rewards and avoid punishments. The cingulate cortex thus provides an output route for emotional behavior. In depression, the medial orbitofrontal cortex has decreased connectivity and sensitivity to reward, and the lateral orbitofrontal cortex has increased connectivity and sensitivity to nonreward. The orbitofrontal cortex has major projections to the anterior cingulate cortex, including its subcommissural region, and the anterior cingulate cortex is also implicated in depression.
Collapse
Affiliation(s)
- Edmund T Rolls
- Oxford Centre for Computational Neuroscience, Oxford, United Kingdom; Department of Computer Science, University of Warwick, Coventry, United Kingdom.
| |
Collapse
|
16
|
Tucker DM, Luu P. Motive control of unconscious inference: The limbic base of adaptive Bayes. Neurosci Biobehav Rev 2021; 128:328-345. [PMID: 34129851 DOI: 10.1016/j.neubiorev.2021.05.029] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 05/01/2021] [Accepted: 05/20/2021] [Indexed: 12/31/2022]
Abstract
Current computational models of neocortical processing, described as predictive coding theory, are providing new ways of understanding Helmholtz's classical insight that perception cannot proceed in a data-driven fashion, but instead requires unconscious inference based on prior experience. Predictive coding is a Bayesian process, in which the operations at each lower level of the cortical hierarchy are predicted by prior projections of expectancies from a higher level, and are then updated by error-correction with lower level evidence. To generalize the predictive coding model to the human neocortex as a whole requires aligning the Bayesian negotiation of prior expectancies with sensory and motor evidence not only within the connectional architecture of the neocortex (primary sensory/motor, unimodal association areas, and heteromodal association areas) but also with the limbic cortex that forms the base for the adaptive control of the heteromodal areas and thereby the cerebral hemisphere as a whole. By reviewing the current evidence on the anatomy of the human corticolimbic connectivity (now formalized as the Structural Model) we address the problem of how limbic cortex resonates to the homeostatic, personal significance of events to provide Bayesian priors to organize the operations of predictive coding across the multiple levels of the neocortex. By reviewing both classical evidence and current models of control exerted between limbic and neocortical networks, we suggest a neuropsychological theory of human cognition, the adaptive Bayes process model, in which prior expectancies are not simply rationalized propositions, but rather affectively-charged expectancies that bias the interpretation of sensory data and action affordances to support allostasis, the motive control of expectancies for future events.
Collapse
Affiliation(s)
- Don M Tucker
- Brain Electrophysiology Laboratory Company, University of Oregon, United States.
| | - Phan Luu
- Brain Electrophysiology Laboratory Company, University of Oregon, United States
| |
Collapse
|
17
|
Calderazzo SM, Busch SE, Moore TL, Rosene DL, Medalla M. Distribution and overlap of entorhinal, premotor, and amygdalar connections in the monkey anterior cingulate cortex. J Comp Neurol 2021; 529:885-904. [PMID: 32677044 PMCID: PMC8214921 DOI: 10.1002/cne.24986] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 06/17/2020] [Accepted: 07/11/2020] [Indexed: 12/22/2022]
Abstract
The anterior cingulate cortex (ACC) is important for decision-making as it integrates motor plans with affective and contextual limbic information. Disruptions in these networks have been observed in depression, bipolar disorder, and post-traumatic stress disorder. Yet, overlap of limbic and motor connections within subdivisions of the ACC is not well understood. Hence, we administered a combination of retrograde and anterograde tracers into structures important for contextual memories (entorhinal cortex), affective processing (amygdala), and motor planning (dorsal premotor cortex) to assess overlap of labeled projection neurons from (outputs) and axon terminals to (inputs) the ACC of adult rhesus monkeys (Macaca mulatta). Our data show that entorhinal and dorsal premotor cortical (dPMC) connections are segregated across ventral (A25, A24a) and dorsal (A24b,c) subregions of the ACC, while amygdalar connections are more evenly distributed across subregions. Among all areas, the rostral ACC (A32) had the lowest relative density of connections with all three regions. In the ventral ACC, entorhinal and amygdalar connections strongly overlap across all layers, especially in A25. In the dorsal ACC, outputs to dPMC and the amygdala strongly overlap in deep layers. However, dPMC input to the dorsal ACC was densest in deep layers, while amygdalar inputs predominantly localized in upper layers. These connection patterns are consistent with diverse roles of the dorsal ACC in motor evaluation and the ventral ACC in affective and contextual memory. Further, distinct laminar circuits suggest unique interactions within specific ACC compartments that are likely important for the temporal integration of motor and limbic information during flexible goal-directed behavior.
Collapse
Affiliation(s)
- Samantha M. Calderazzo
- Department of Anatomy & Neurobiology, Boston University School of Medicine, Boston, Massachusetts
- Center for Systems Neuroscience, Boston University, Boston, Massachusetts
| | - Silas E. Busch
- Department of Anatomy & Neurobiology, Boston University School of Medicine, Boston, Massachusetts
- Department of Neurobiology, University of Chicago, Chicago, Illinois
| | - Tara L. Moore
- Department of Anatomy & Neurobiology, Boston University School of Medicine, Boston, Massachusetts
- Center for Systems Neuroscience, Boston University, Boston, Massachusetts
| | - Douglas L. Rosene
- Department of Anatomy & Neurobiology, Boston University School of Medicine, Boston, Massachusetts
- Center for Systems Neuroscience, Boston University, Boston, Massachusetts
| | - Maria Medalla
- Department of Anatomy & Neurobiology, Boston University School of Medicine, Boston, Massachusetts
- Center for Systems Neuroscience, Boston University, Boston, Massachusetts
| |
Collapse
|
18
|
Yin JB, Liang SH, Li F, Zhao WJ, Bai Y, Sun Y, Wu ZY, Ding T, Sun Y, Liu HX, Lu YC, Zhang T, Huang J, Chen T, Li H, Chen ZF, Cao J, Ren R, Peng YN, Yang J, Zang WD, Li X, Dong YL, Li YQ. dmPFC-vlPAG projection neurons contribute to pain threshold maintenance and antianxiety behaviors. J Clin Invest 2021; 130:6555-6570. [PMID: 32841213 DOI: 10.1172/jci127607] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Accepted: 08/20/2020] [Indexed: 12/21/2022] Open
Abstract
The dorsal medial prefrontal cortex (dmPFC) has been recognized as a key cortical area for nociceptive modulation. However, the underlying neural pathway and the function of specific cell types remain largely unclear. Here, we show that lesions in the dmPFC induced an algesic and anxious state. Using multiple tracing methods including a rabies-based transsynaptic tracing method, we outlined an excitatory descending neural pathway from the dmPFC to the ventrolateral periaqueductal gray (vlPAG). Specific activation of the dmPFC/vlPAG neural pathway by optogenetic manipulation produced analgesic and antianxiety effects in a mouse model of chronic pain. Inhibitory neurons in the dmPFC were specifically activated using a chemogenetic approach, which logically produced an algesic and anxious state under both normal and chronic pain conditions. Antagonists of the GABAA receptor (GABAAR) or mGluR1 were applied to the dmPFC, which produced analgesic and antianxiety effects. In summary, the results of our study suggest that the dmPFC/vlPAG neural pathway might participate in the maintenance of pain thresholds and antianxiety behaviors under normal conditions, while silencing or suppressing the dmPFC/vlPAG pathway might be involved in the initial stages and maintenance of chronic pain and the emergence of anxiety-like behaviors.
Collapse
Affiliation(s)
- Jun-Bin Yin
- Department of Anatomy, Histology and Embryology and K.K. Leung Brain Research Centre, The Fourth Military Medical University, Xi'an, China.,Department of Neurology, the 960th Hospital of PLA, Jinan, China.,Center for the Study of Itch, Washington University School of Medicine, St. Louis, Missouri, USA.,Key Laboratory of Brain Science Research and Transformation in the Tropical Environment of Hainan Province, Haikou, China
| | - Shao-Hua Liang
- Department of Anatomy, Histology and Embryology and K.K. Leung Brain Research Centre, The Fourth Military Medical University, Xi'an, China.,Department of Human Anatomy, Binzhou Medical College, Yantai, China
| | - Fei Li
- Department of Anatomy, Histology and Embryology and K.K. Leung Brain Research Centre, The Fourth Military Medical University, Xi'an, China.,Cadet Brigade, and
| | - Wen-Jun Zhao
- Department of Anatomy, Histology and Embryology and K.K. Leung Brain Research Centre, The Fourth Military Medical University, Xi'an, China.,Cadet Brigade, and
| | - Yang Bai
- Department of Anatomy, Histology and Embryology and K.K. Leung Brain Research Centre, The Fourth Military Medical University, Xi'an, China.,Center for the Study of Itch, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Yi Sun
- Department of Anatomy, Histology and Embryology and K.K. Leung Brain Research Centre, The Fourth Military Medical University, Xi'an, China.,Center for the Study of Itch, Washington University School of Medicine, St. Louis, Missouri, USA.,Department of Human Anatomy, Binzhou Medical College, Yantai, China
| | - Zhen-Yu Wu
- Department of Anatomy, Histology and Embryology and K.K. Leung Brain Research Centre, The Fourth Military Medical University, Xi'an, China.,Center for the Study of Itch, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Tan Ding
- Department of Orthopedics, Xijing Hospital, the Fourth Military Medical University, Xi'an, China
| | | | - Hai-Xia Liu
- Department of Anatomy, Histology and Embryology and K.K. Leung Brain Research Centre, The Fourth Military Medical University, Xi'an, China
| | - Ya-Cheng Lu
- Department of Anatomy, Histology and Embryology and K.K. Leung Brain Research Centre, The Fourth Military Medical University, Xi'an, China
| | - Ting Zhang
- Department of Anatomy, Histology and Embryology and K.K. Leung Brain Research Centre, The Fourth Military Medical University, Xi'an, China
| | - Jing Huang
- Department of Anatomy, Histology and Embryology and K.K. Leung Brain Research Centre, The Fourth Military Medical University, Xi'an, China
| | - Tao Chen
- Department of Anatomy, Histology and Embryology and K.K. Leung Brain Research Centre, The Fourth Military Medical University, Xi'an, China
| | - Hui Li
- Department of Anatomy, Histology and Embryology and K.K. Leung Brain Research Centre, The Fourth Military Medical University, Xi'an, China.,Center for the Study of Itch, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Zhou-Feng Chen
- Center for the Study of Itch, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Jing Cao
- Department of Anatomy, Basic Medical College, Zhengzhou University, Zhengzhou, China
| | - Rui Ren
- Key Laboratory of Brain Science Research and Transformation in the Tropical Environment of Hainan Province, Haikou, China
| | - Ya-Nan Peng
- Key Laboratory of Brain Science Research and Transformation in the Tropical Environment of Hainan Province, Haikou, China
| | - Juan Yang
- Key Laboratory of Brain Science Research and Transformation in the Tropical Environment of Hainan Province, Haikou, China
| | - Wei-Dong Zang
- Department of Anatomy, Basic Medical College, Zhengzhou University, Zhengzhou, China
| | - Xiang Li
- Department of Orthopaedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yu-Lin Dong
- Department of Anatomy, Histology and Embryology and K.K. Leung Brain Research Centre, The Fourth Military Medical University, Xi'an, China
| | - Yun-Qing Li
- Department of Anatomy, Histology and Embryology and K.K. Leung Brain Research Centre, The Fourth Military Medical University, Xi'an, China.,Key Laboratory of Brain Science Research and Transformation in the Tropical Environment of Hainan Province, Haikou, China.,Department of Anatomy, Basic Medical College, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
19
|
Rolls ET, Cheng W, Feng J. The orbitofrontal cortex: reward, emotion and depression. Brain Commun 2020; 2:fcaa196. [PMID: 33364600 PMCID: PMC7749795 DOI: 10.1093/braincomms/fcaa196] [Citation(s) in RCA: 161] [Impact Index Per Article: 40.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 08/13/2020] [Accepted: 10/13/2020] [Indexed: 12/11/2022] Open
Abstract
The orbitofrontal cortex in primates including humans is the key brain area in emotion, and in the representation of reward value and in non-reward, that is not obtaining an expected reward. Cortical processing before the orbitofrontal cortex is about the identity of stimuli, i.e. 'what' is present, and not about reward value. There is evidence that this holds for taste, visual, somatosensory and olfactory stimuli. The human medial orbitofrontal cortex represents many different types of reward, and the lateral orbitofrontal cortex represents non-reward and punishment. Not obtaining an expected reward can lead to sadness, and feeling depressed. The concept is advanced that an important brain region in depression is the orbitofrontal cortex, with depression related to over-responsiveness and over-connectedness of the non-reward-related lateral orbitofrontal cortex, and to under-responsiveness and under-connectivity of the reward-related medial orbitofrontal cortex. Evidence from large-scale voxel-level studies and supported by an activation study is described that provides support for this hypothesis. Increased functional connectivity of the lateral orbitofrontal cortex with brain areas that include the precuneus, posterior cingulate cortex and angular gyrus is found in patients with depression and is reduced towards the levels in controls when treated with medication. Decreased functional connectivity of the medial orbitofrontal cortex with medial temporal lobe areas involved in memory is found in patients with depression. Some treatments for depression may act by reducing activity or connectivity of the lateral orbitofrontal cortex. New treatments that increase the activity or connectivity of the medial orbitofrontal cortex may be useful for depression. These concepts, and that of increased activity in non-reward attractor networks, have potential for advancing our understanding and treatment of depression. The focus is on the orbitofrontal cortex in primates including humans, because of differences of operation of the orbitofrontal cortex, and indeed of reward systems, in rodents. Finally, the hypothesis is developed that the orbitofrontal cortex has a special role in emotion and decision-making in part because as a cortical area it can implement attractor networks useful in maintaining reward and emotional states online, and in decision-making.
Collapse
Affiliation(s)
- Edmund T Rolls
- Oxford Centre for Computational Neuroscience, Oxford, UK
- Department of Computer Science, University of Warwick, Coventry CV4 7AL, UK
- Institute of Science and Technology for Brain-inspired Intelligence, Fudan University, Shanghai 200433, China
| | - Wei Cheng
- Institute of Science and Technology for Brain-inspired Intelligence, Fudan University, Shanghai 200433, China
- Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, Fudan University, Ministry of Education, Shanghai 200433, China
| | - Jianfeng Feng
- Department of Computer Science, University of Warwick, Coventry CV4 7AL, UK
- Institute of Science and Technology for Brain-inspired Intelligence, Fudan University, Shanghai 200433, China
- School of Mathematical Sciences, School of Life Science and the Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200433, China
- Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, Fudan University, Ministry of Education, Shanghai 200433, China
| |
Collapse
|
20
|
Fox AS, Holley D, Klink PC, Arbuckle SA, Barnes CA, Diedrichsen J, Kwok SC, Kyle C, Pruszynski JA, Seidlitz J, Zhou X, Poldrack RA, Gorgolewski KJ. Sharing voxelwise neuroimaging results from rhesus monkeys and other species with Neurovault. Neuroimage 2020; 225:117518. [PMID: 33137472 PMCID: PMC7846271 DOI: 10.1016/j.neuroimage.2020.117518] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 10/15/2020] [Accepted: 10/24/2020] [Indexed: 12/23/2022] Open
Abstract
Animal neuroimaging studies can provide unique insights into brain structure and function, and can be leveraged to bridge the gap between animal and human neuroscience. In part, this power comes from the ability to com bine mechanistic interventions with brain-wide neuroimaging. Due to their phylogenetic proximity to humans, nonhuman primate neuroimaging holds particular promise. Because nonhuman primate neuroimaging studies are often underpowered, there is a great need to share data amongst translational researchers. Data sharing efforts have been limited, however, by the lack of standardized tools and repositories through which nonhuman neuroimaging data can easily be archived and accessed. Here, we provide an extension of the Neurovault framework to enable sharing of statistical maps and related voxelwise neuroimaging data from other species and template-spaces. Neurovault, which was previously limited to human neuroimaging data, now allows researchers to easily upload and share nonhuman primate neuroimaging results. This promises to facilitate open, integrative cross-species science while affording researchers the increased statistical power provided by data aggregation. In addition, the Neurovault code-base now enables the addition of other species and template-spaces. Together, these advances promise to bring neuroimaging data sharing to research in other species, for supplemental data location-based atlases, and data that would otherwise be relegated to a “file-drawer”. As increasing numbers of researchers share their nonhuman neuroimaging data on Neurovault, this resource will enable novel, large-scale, cross-species comparisons that were previously impossible.
Collapse
Affiliation(s)
- Andrew S Fox
- University of California, Davis and the California National Primate Research Center, Davis, CA 95616, USA.
| | - Daniel Holley
- University of California, Davis and the California National Primate Research Center, Davis, CA 95616, USA
| | - Peter Christiaan Klink
- Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, 1105 BA Amsterdam, the Netherlands
| | | | - Carol A Barnes
- University of Arizona, Evelyn F. McKnight Brain Institute and Division of Neural Systems, Memory and Aging, Tucson, AZ, USA
| | - Jörn Diedrichsen
- Brain and Mind Institute, Western University, London, Ontario, Canada
| | - Sze Chai Kwok
- Shanghai Key Laboratory of Brain Functional Genomics, Key Laboratory of Brain Functional Genomics Ministry of Education, Shanghai Key Laboratory of Magnetic Resonance, Affiliated Mental Health Center (ECNU), School of Psychology and Cognitive Science, East China Normal University, Shanghai, China; Division of Natural and Applied Sciences, Duke Kunshan University, Duke Institute for Brain Sciences, Kunshan, Jiangsu, China; NYU-ECNU Institute of Brain and Cognitive Science at NYU Shanghai, Shanghai, China; Shanghai Changning Mental Health Center, China
| | - Colin Kyle
- University of Arizona, Evelyn F. McKnight Brain Institute and Division of Neural Systems, Memory and Aging, Tucson, AZ, USA
| | | | - Jakob Seidlitz
- Lifespan Brain Institute, Children's Hospital of Philadelphia and University of Pennsylvania, Philadelphia, PA, USA
| | - XuFeng Zhou
- Shanghai Key Laboratory of Brain Functional Genomics, Key Laboratory of Brain Functional Genomics Ministry of Education, Shanghai Key Laboratory of Magnetic Resonance, Affiliated Mental Health Center (ECNU), School of Psychology and Cognitive Science, East China Normal University, Shanghai, China
| | | | | |
Collapse
|
21
|
Murphy LE, Bachevalier J. Damage to Orbitofrontal Areas 12 and 13, but Not Area 14, Results in Blunted Attention and Arousal to Socioemotional Stimuli in Rhesus Macaques. Front Behav Neurosci 2020; 14:150. [PMID: 33093825 PMCID: PMC7506161 DOI: 10.3389/fnbeh.2020.00150] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 08/03/2020] [Indexed: 12/12/2022] Open
Abstract
An earlier study in monkeys indicated that lesions to the mid-portion of the ventral orbitofrontal cortex (OFC), including Walker’s areas 11 and 13 (OFC11/13), altered the spontaneous scanning of still pictures of primate faces (neutral and emotional) and the modulation of arousal. Yet, these conclusions were limited by several shortcomings, including the lesion approach, use of static rather than dynamic stimuli, and manual data analyses. To confirm and extend these earlier findings, we compared attention and arousal to social and nonsocial scenes in three groups of rhesus macaques with restricted lesions to one of three OFC areas (OFC12, OFC13, or OFC14) and a sham-operated control group using eye-tracking to capture scanning patterns, focal attention and pupil size. Animals with damage to the lateral OFC areas (OFC12 and OFC13) showed decreased attention specifically to the eyes of negative (threatening) social stimuli and increased arousal (increased pupil diameter) to positive social scenes. In contrast, animals with damage to the ventromedial OFC area (OFC14) displayed no differences in attention or arousal in the presence of social stimuli compared to controls. These findings support the notion that areas of the lateral OFC are critical for directing attention and modulating arousal to emotional social cues. Together with the existence of face-selective neurons in these lateral OFC areas, the data suggest that the lateral OFC may set the stage for multidimensional information processing related to faces and emotion and may be involved in social judgments.
Collapse
Affiliation(s)
- Lauren E Murphy
- Department of Psychology, Emory College of Arts and Sciences, Emory University, Atlanta, GA, United States
| | - Jocelyne Bachevalier
- Department of Psychology, Emory College of Arts and Sciences, Emory University, Atlanta, GA, United States.,Yerkes National Primate Research Center, Emory University, Atlanta, GA, United States
| |
Collapse
|
22
|
Pfaff D, Barbas H. Mechanisms for the Approach/Avoidance Decision Applied to Autism. Trends Neurosci 2020; 42:448-457. [PMID: 31253250 DOI: 10.1016/j.tins.2019.05.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 05/01/2019] [Accepted: 05/01/2019] [Indexed: 02/07/2023]
Abstract
As a neurodevelopmental disorder with serious lifelong consequences, autism has received considerable attention from neuroscientists and geneticists. We present a hypothesis of mechanisms plausibly affected during brain development in autism, based on neural pathways that are associated with social behavior and connect the prefrontal cortex (PFC) to the basal ganglia (BG). We consider failure of social approach in autism as a special case of imbalance in the fundamental dichotomy between behavioral approach and avoidance. Differential combinations of genes mutated, differences in the timing of their impact during development, and graded degrees of hormonal influences may help explain the heterogeneity in symptomatology in autism and predominance in boys.
Collapse
Affiliation(s)
- Donald Pfaff
- Laboratory of Neurobiology and Behavior, Rockefeller University, New York, NY USA.
| | - Helen Barbas
- Neural Systems Laboratory, Boston University, Boston, MA, USA.
| |
Collapse
|
23
|
Esmaeili V, Diamond ME. Neuronal Correlates of Tactile Working Memory in Prefrontal and Vibrissal Somatosensory Cortex. Cell Rep 2020; 27:3167-3181.e5. [PMID: 31189103 PMCID: PMC6581739 DOI: 10.1016/j.celrep.2019.05.034] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 04/05/2019] [Accepted: 05/09/2019] [Indexed: 11/25/2022] Open
Abstract
Tactile working memory engages a broad network of cortical regions in primates. To assess whether the conclusions drawn from primates apply to rodents, we examined the vibrissal primary somatosensory cortex (vS1) and the prelimbic cortex (PL) in a delayed comparison task. Rats compared the speeds of two vibrissal vibrations, stimulus1 and stimulus2, separated by a delay of 2 s. Neuronal firing rates in vS1 and PL encode both stimuli in real time. Across the delay, the stimulus1 representation declines more precipitously in vS1 than in PL. Theta-band local field potential (LFP) coherence between vS1 and PL peaks at trial onset and remains elevated during the interstimulus interval; simultaneously, vS1 spikes become phase locked to PL LFP. Phase locking is stronger on correct (versus error) trials. Tactile working memory in rats appears to be mediated by a posterior (vS1) to anterior (PL) flow of information, with performance facilitated through coherent LFP oscillation. Rats compared the speeds of two sequential vibrissal vibrations, separated by 2 s Neurons in the primary somatosensory (vS1) and prelimbic (PL) cortex coded the stimuli Theta local field potential coherence between vS1 and PL peaked at trial onset Intracortical coherent oscillations may play a role in rat tactile working memory
Collapse
Affiliation(s)
- Vahid Esmaeili
- Tactile Perception and Learning Laboratory, International School for Advanced Studies (SISSA), Via Bonomea 265, 34136 Trieste, Italy
| | - Mathew E Diamond
- Tactile Perception and Learning Laboratory, International School for Advanced Studies (SISSA), Via Bonomea 265, 34136 Trieste, Italy.
| |
Collapse
|
24
|
Wang PS, Wu YT, Wang TY, Wu HM, Soong BW, Jao CW. Supratentorial and Infratentorial Lesions in Spinocerebellar Ataxia Type 3. Front Neurol 2020; 11:124. [PMID: 32194495 PMCID: PMC7062793 DOI: 10.3389/fneur.2020.00124] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 02/04/2020] [Indexed: 12/22/2022] Open
Abstract
Background: Spinocerebellar ataxia type 3 (SCA) is a cerebellum-dominant degenerative disorder that is characterized primarily by infratentorial damage, although less severe supratentorial involvement may contribute to the clinical manifestation. These impairments may result from the efferent loss of the cerebellar cortex and degeneration of the cerebral cortex. Method: We used the three-dimensional fractal dimension (3D-FD) method to quantify the morphological changes in the supratentorial regions and assessed atrophy in the relatively focal regions in patients with SCA3. A total of 48 patients with SCA3 and 50 sex- and age-matched healthy individuals, as the control group, participated in this study. The 3D-FD method was proposed to distinguish 97 automatic anatomical label regions of gray matter (left cerebrum: 45, right cerebrum: 45, cerebellum: 7) between healthy individuals and patients with SCA3. Results: Patients with SCA3 exhibited reduced brain complexity within both the traditional olivopontocerebellar atrophy (OPCA) pattern and specific supratentorial regions. The study results confirmed the extensive involvement of extracerebellar regions in SCA3. The atrophied regions of SCA3 in infratentorial and supratentorial cortex showed a wide range of overlapped areas as in two functional cortexes, namely cerebellum-related cortex and basal ganglia-related cortex. Conclusions: Our results found that the atrophy of the SCA3 are not only limited in the infratentorial regions. Both cerebellar related cortex and basal ganglia related cortex were affected in the disease process of SCA3. Our findings might correlate to the common symptoms of SCA3, such as ataxia, Parkinsonism, dysarthria, and dysmetria. SCA3 should no longer be considered a disease limited to the cerebellum and its connections; rather, it should be considered a pathology affecting the whole brain.
Collapse
Affiliation(s)
- Po-Shan Wang
- Brain Research Center, National Yang-Ming University, Taipei, Taiwan.,Institute of Biophotonics, National Yang-Ming University, Taipei, Taiwan.,Department of Neurology, Taipei Municipal Gan-Dau Hospital, Taipei, Taiwan
| | - Yu-Te Wu
- Brain Research Center, National Yang-Ming University, Taipei, Taiwan.,Institute of Biophotonics, National Yang-Ming University, Taipei, Taiwan.,Department of Biomedical Imaging and Radiological Sciences, National Yang-Ming University, Taipei, Taiwan
| | - Tzu-Yun Wang
- Department of Biomedical Imaging and Radiological Sciences, National Yang-Ming University, Taipei, Taiwan
| | - Hsiu-Mei Wu
- Department of Radiology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Bing-Wen Soong
- Brain Research Center, National Yang-Ming University, Taipei, Taiwan.,Taipei Neuroscience Institute, Taipei Medical University, Taipei, Taiwan.,Department of Neurology, Taipei Medical University-Shuang Ho Hospital, New Taipei City, Taiwan.,Department of Neurology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Chi-Wen Jao
- Brain Research Center, National Yang-Ming University, Taipei, Taiwan.,Institute of Biophotonics, National Yang-Ming University, Taipei, Taiwan.,Department of Neurology, Shin-Kong Wu Ho Su Memorial Hospital, Taipei, Taiwan
| |
Collapse
|
25
|
Tharakan R, Kreimer S, Ubaida-Mohien C, Lavoie J, Olexiouk V, Menschaert G, Ingolia NT, Cole RN, Ishizuka K, Sawa A, Nucifora LG. A methodology for discovering novel brain-relevant peptides: Combination of ribosome profiling and peptidomics. Neurosci Res 2020; 151:31-37. [DOI: 10.1016/j.neures.2019.02.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 02/20/2019] [Accepted: 02/21/2019] [Indexed: 12/26/2022]
|
26
|
Timbie C, García-Cabezas MÁ, Zikopoulos B, Barbas H. Organization of primate amygdalar-thalamic pathways for emotions. PLoS Biol 2020; 18:e3000639. [PMID: 32106269 PMCID: PMC7064256 DOI: 10.1371/journal.pbio.3000639] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 03/10/2020] [Accepted: 02/11/2020] [Indexed: 12/20/2022] Open
Abstract
Studies on the thalamus have mostly focused on sensory relay nuclei, but the organization of pathways associated with emotions is not well understood. We addressed this issue by testing the hypothesis that the primate amygdala acts, in part, like a sensory structure for the affective import of stimuli and conveys this information to the mediodorsal thalamic nucleus, magnocellular part (MDmc). We found that primate sensory cortices innervate amygdalar sites that project to the MDmc, which projects to the orbitofrontal cortex. As in sensory thalamic systems, large amygdalar terminals innervated excitatory relay and inhibitory neurons in the MDmc that facilitate faithful transmission to the cortex. The amygdala, however, uniquely innervated a few MDmc neurons by surrounding and isolating large segments of their proximal dendrites, as revealed by three-dimensional high-resolution reconstruction. Physiologic studies have shown that large axon terminals are found in pathways issued from motor systems that innervate other brain centers to help distinguish self-initiated from other movements. By analogy, the amygdalar pathway to the MDmc may convey signals forwarded to the orbitofrontal cortex to monitor and update the status of the environment in processes deranged in schizophrenia, resulting in attribution of thoughts and actions to external sources.
Collapse
Affiliation(s)
- Clare Timbie
- Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, Massachusetts, United States of America
- Neural Systems Lab, Department of Health Sciences, Boston University, Boston, Massachusetts, United States of America
| | - Miguel Á. García-Cabezas
- Neural Systems Lab, Department of Health Sciences, Boston University, Boston, Massachusetts, United States of America
| | - Basilis Zikopoulos
- Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, Massachusetts, United States of America
- Human Systems Neuroscience Lab, Department of Health Sciences, Boston University, Boston, Massachusetts, United States of America
| | - Helen Barbas
- Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, Massachusetts, United States of America
- Neural Systems Lab, Department of Health Sciences, Boston University, Boston, Massachusetts, United States of America
| |
Collapse
|
27
|
Yang S, Wu M, Ajilore O, Lamar M, Kumar A. Impaired biophysical integrity of macromolecular protein pools in the uncinate circuit in late-life depression. Mol Psychiatry 2019; 24:1844-1855. [PMID: 29880885 PMCID: PMC8806152 DOI: 10.1038/s41380-018-0085-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 04/03/2018] [Accepted: 04/09/2018] [Indexed: 02/02/2023]
Abstract
Major depressive disorder is a common mood disorder in the elderly. Although the neuroanatomical abnormalities have been identified in patients with late-life depression (LLD), the precise biological basis of LLD remains largely unknown. The purpose of this study was to examine the biophysical integrity of macromolecular protein pools in the nodal regions of the "uncinate circuit," a component of fronto-limbic circuitry that is connected by the uncinate fasciculus and is critical in the regulation of mood and emotions, using novel magnetization transfer (MT) imaging. Twenty-four patients with LLD and 27 non-depressed healthy control subjects (HCs) of comparable age, sex, and race were recruited from the communities of the greater Chicago Area. The nodal regions of the uncinate circuit, i.e., bilateral amygdala, hippocampus, and lateral and medial orbitofrontal cortices (OFCs), were examined. Compared with HCs, patients with LLD had significantly lower magnetization transfer ratio (MTR), a measure of the biophysical integrity of macromolecular protein pools, in bilateral amygdala and hippocampus. The lower MTR was negatively correlated with the depression score. Moreover, the MTR of these regions decreased with age and positively correlated with neuropsychological performance in the LLD group but not in the HC group. These findings suggest that LLD is associated with compromised biophysical integrity of macromolecular protein pools in nodal regions of the uncinate circuit, and that major depression may accentuate age-related attenuation of the biophysical integrity of macromolecular protein pools in this circuit. These findings provide important new insights into the neurobiological mechanisms of the pathophysiology of LLD.
Collapse
Affiliation(s)
- Shaolin Yang
- Department of Psychiatry, University of Illinois at Chicago, Chicago, Illinois, 60612, USA. .,Department of Radiology, University of Illinois at Chicago, Chicago, Illinois, 60612, USA. .,Department of Bioengineering, University of Illinois at Chicago, Chicago, Illinois, 60612, USA.
| | - Minjie Wu
- Department of Psychiatry, University of Pittsburgh, Pittsburgh PA 15213, USA
| | - Olusola Ajilore
- Department of Psychiatry, University of Illinois at Chicago, Chicago, Illinois 60612, USA
| | - Melissa Lamar
- Department of Psychiatry, University of Illinois at Chicago, Chicago, Illinois 60612, USA
| | - Anand Kumar
- Department of Psychiatry, University of Illinois at Chicago, Chicago, Illinois, 60612, USA.
| |
Collapse
|
28
|
Rolls ET. The orbitofrontal cortex and emotion in health and disease, including depression. Neuropsychologia 2019; 128:14-43. [DOI: 10.1016/j.neuropsychologia.2017.09.021] [Citation(s) in RCA: 106] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 09/04/2017] [Accepted: 09/20/2017] [Indexed: 12/16/2022]
|
29
|
The Structural Model: a theory linking connections, plasticity, pathology, development and evolution of the cerebral cortex. Brain Struct Funct 2019; 224:985-1008. [PMID: 30739157 PMCID: PMC6500485 DOI: 10.1007/s00429-019-01841-9] [Citation(s) in RCA: 127] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 01/29/2019] [Indexed: 12/21/2022]
Abstract
The classical theory of cortical systematic variation has been independently described in reptiles, monotremes, marsupials and placental mammals, including primates, suggesting a common bauplan in the evolution of the cortex. The Structural Model is based on the systematic variation of the cortex and is a platform for advancing testable hypotheses about cortical organization and function across species, including humans. The Structural Model captures the overall laminar structure of areas by dividing the cortical architectonic continuum into discrete categories (cortical types), which can be used to test hypotheses about cortical organization. By type, the phylogenetically ancient limbic cortices-which form a ring at the base of the cerebral hemisphere-are agranular if they lack layer IV, or dysgranular if they have an incipient granular layer IV. Beyond the dysgranular areas, eulaminate type cortices have six layers. The number and laminar elaboration of eulaminate areas differ depending on species or cortical system within a species. The construct of cortical type retains the topology of the systematic variation of the cortex and forms the basis for a predictive Structural Model, which has successfully linked cortical variation to the laminar pattern and strength of cortical connections, the continuum of plasticity and stability of areas, the regularities in the distribution of classical and novel markers, and the preferential vulnerability of limbic areas to neurodegenerative and psychiatric diseases. The origin of cortical types has been recently traced to cortical development, and helps explain the variability of diseases with an onset in ontogeny.
Collapse
|
30
|
Seok JW, Cheong C. Dynamic Causal Modeling of Effective Connectivity During Anger Experience in Healthy Young Men: 7T Magnetic Resonance Imaging Study. Adv Cogn Psychol 2019; 15:52-62. [PMID: 32537036 PMCID: PMC7278524 DOI: 10.5709/acp-0256-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Little is known about how anger-associated brain regions integrate and modulate external input. Therefore, we investigated the neural connectivity architecture of anger processing using a dynamic causal modeling (DCM) approach. Thirteen subjects underwent functional magnetic resonance imaging (fMRI) while viewing anger-inducing film clips. Conventional fMRI and DCM analyses were conducted to identify a dominant connectivity model. Viewing anger-inducing film clips led to activation in the left superior temporal gyrus, left insula, and left orbitofrontal cortex (OFC). The results of a group-level comparison of eight connectivity models based on conventional fMRI findings showed superiority of the model including reciprocal effective connectivities between the left insula, left superior temporal gyrus, and left orbitofrontal gyrus and bottom-up connectivity from the left superior temporal gyrus to the left orbitofrontal gyrus. Positive coupling effects were identified for connectivities between the left superior temporal gyrus and left insula and the left superior temporal gyrus and left OFC. A negative coupling effect was identified for connectivity between the left OFC and left insula. In conclusion, we propose a model of effective connectivity associated with the anger experience based on dynamic causal modeling. The findings have implications for various psychiatric disorders related to abnormalities in anger processing.
Collapse
Affiliation(s)
- Ji-Woo Seok
- Department of Counseling Psychology, Honam University, Kwangju, South Korea
- Bioimaging Research Team, Korea Basic Science Institute, Cheongju, South Korea
| | - Chaejoon Cheong
- Bioimaging Research Team, Korea Basic Science Institute, Cheongju, South Korea
| |
Collapse
|
31
|
Huang X, Wu W, Qiao H, Ji Y. Brain-Inspired Motion Learning in Recurrent Neural Network With Emotion Modulation. IEEE Trans Cogn Dev Syst 2018. [DOI: 10.1109/tcds.2018.2843563] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
32
|
Barbas H, Wang J, Joyce MKP, García-Cabezas MÁ. Pathway mechanism for excitatory and inhibitory control in working memory. J Neurophysiol 2018; 120:2659-2678. [PMID: 30256740 DOI: 10.1152/jn.00936.2017] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Humans engage in many daily activities that rely on working memory, the ability to hold and sequence information temporarily to accomplish a task. We focus on the process of working memory, based on circuit mechanisms for attending to relevant signals and suppressing irrelevant stimuli. We discuss that connections critically depend on the systematic variation in laminar structure across all cortical systems. Laminar structure is used to group areas into types regardless of their placement in the cortex, ranging from low-type agranular areas that lack layer IV to high-type areas that have six well-delineated layers. Connections vary in laminar distribution and strength based on the difference in type between linked areas, according to the "structural model" (Barbas H, Rempel-Clower N. Cereb Cortex 7: 635-646, 1997). The many possible pathways thus vary systematically by laminar distribution and strength, and they interface with excitatory neurons to select relevant stimuli and with functionally distinct inhibitory neurons that suppress activity at the site of termination. Using prefrontal pathways, we discuss how systematic architectonic variation gives rise to diverse pathways that can be recruited, along with amygdalar and hippocampal pathways that provide sensory, affective, and contextual information. The prefrontal cortex is also connected with thalamic nuclei that receive the output of the basal ganglia and cerebellum, which may facilitate fast sequencing of information. The complement of connections and their interface with distinct inhibitory neurons allows dynamic recruitment of areas and shifts in cortical rhythms to meet rapidly changing demands of sequential components of working memory tasks.
Collapse
Affiliation(s)
- Helen Barbas
- Neural Systems Laboratory, Boston University , Boston, Massachusetts.,Department of Health Sciences, Boston University , Boston, Massachusetts.,Graduate Program in Neuroscience, Boston University , Boston, Massachusetts
| | - Jingyi Wang
- Neural Systems Laboratory, Boston University , Boston, Massachusetts.,Department of Health Sciences, Boston University , Boston, Massachusetts
| | - Mary Kate P Joyce
- Neural Systems Laboratory, Boston University , Boston, Massachusetts.,Graduate Program in Neuroscience, Boston University , Boston, Massachusetts
| | - Miguel Ángel García-Cabezas
- Neural Systems Laboratory, Boston University , Boston, Massachusetts.,Department of Health Sciences, Boston University , Boston, Massachusetts
| |
Collapse
|
33
|
Raos V, Savaki HE. The Role of the Prefrontal Cortex in Action Perception. Cereb Cortex 2018; 27:4677-4690. [PMID: 27600843 DOI: 10.1093/cercor/bhw261] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 08/01/2016] [Indexed: 12/16/2022] Open
Abstract
In an attempt to shed light on the role of the prefrontal cortex in action perception, we used the quantitative 14C-deoxyglucose method to reveal the effects elicited by reaching-to-grasp in the light or in the dark and by observation of the same action executed by an external agent. We analyzed the cortical areas in the principal sulcus, the superior and inferior lateral prefrontal convexities and the orbitofrontal cortex of monkeys. We found that execution in the light and observation activated in common most of the lateral prefrontal and orbitofrontal cortical areas, with the exception of 9/46-dorsal activated exclusively for observation and 9/46-ventral, 11 and 13 activated only for execution. Execution in the dark implicated only the ventral bank of the principal sulcus and its adjacent inferior convexity along with areas 47/12-dorsal and 13, whereas execution in the light activated both banks of the principal sulcus and both superior and inferior convexities along with areas 10 and 11. Our results demonstrate that the prefrontal cortex integrates information in the service of both action generation and action perception, and are discussed in relation to its contribution in movement suppression during action observation and in attribution of action to the correct agent.
Collapse
Affiliation(s)
- Vassilis Raos
- Institute of Applied and Computational Mathematics, Foundation for Research and Technology Hellas, Iraklion, Crete, GR-70013, Greece.,Department of Basic Sciences, Faculty of Medicine, School of Health Sciences, University of Crete, Iraklion, Crete, GR-71003, Greece
| | - Helen E Savaki
- Institute of Applied and Computational Mathematics, Foundation for Research and Technology Hellas, Iraklion, Crete, GR-70013, Greece.,Department of Basic Sciences, Faculty of Medicine, School of Health Sciences, University of Crete, Iraklion, Crete, GR-71003, Greece
| |
Collapse
|
34
|
Silvers JA, Insel C, Powers A, Franz P, Helion C, Martin RE, Weber J, Mischel W, Casey BJ, Ochsner KN. vlPFC-vmPFC-Amygdala Interactions Underlie Age-Related Differences in Cognitive Regulation of Emotion. Cereb Cortex 2018; 27:3502-3514. [PMID: 27341851 DOI: 10.1093/cercor/bhw073] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Emotion regulation is a critical life skill that develops throughout childhood and adolescence. Despite this development in emotional processes, little is known about how the underlying brain systems develop with age. This study examined emotion regulation in 112 individuals (aged 6-23 years) as they viewed aversive and neutral images using a reappraisal task. On "reappraisal" trials, participants were instructed to view the images as distant, a strategy that has been previously shown to reduce negative affect. On "reactivity" trials, participants were instructed to view the images without regulating emotions to assess baseline emotional responding. During reappraisal, age predicted less negative affect, reduced amygdala responses and inverse coupling between the ventromedial prefrontal cortex (vmPFC) and amygdala. Moreover, left ventrolateral prefrontal (vlPFC) recruitment mediated the relationship between increasing age and diminishing amygdala responses. This negative vlPFC-amygdala association was stronger for individuals with inverse coupling between the amygdala and vmPFC. These data provide evidence that vmPFC-amygdala connectivity facilitates vlPFC-related amygdala modulation across development.
Collapse
Affiliation(s)
- Jennifer A Silvers
- Department of Psychology, University of California, Los Angeles, 1285 Franz Hall, Box 951563, Los Angeles, CA 90095, USA
| | - Catherine Insel
- Department of Psychology, Harvard University, 33 Kirkland Hall, Cambridge, MA 02138, USA
| | - Alisa Powers
- Department of Psychology, Long Island University, 1 University Plaza, Brooklyn, NY 11201, USA
| | - Peter Franz
- Department of Psychology, Harvard University, 33 Kirkland Hall, Cambridge, MA 02138, USA
| | - Chelsea Helion
- Department of Psychology, Columbia University, 1190 Amsterdam Avenue, New York, NY 10027, USA
| | - Rebecca E Martin
- Department of Psychology, Columbia University, 1190 Amsterdam Avenue, New York, NY 10027, USA
| | - Jochen Weber
- Department of Psychology, Columbia University, 1190 Amsterdam Avenue, New York, NY 10027, USA
| | - Walter Mischel
- Department of Psychology, Columbia University, 1190 Amsterdam Avenue, New York, NY 10027, USA
| | - B J Casey
- Sackler Institute for Developmental Psychobiology, Weill Cornell Medical College, New York, NY 10065, USA
| | - Kevin N Ochsner
- Department of Psychology, Columbia University, 1190 Amsterdam Avenue, New York, NY 10027, USA
| |
Collapse
|
35
|
Zikopoulos B, García-Cabezas MÁ, Barbas H. Parallel trends in cortical gray and white matter architecture and connections in primates allow fine study of pathways in humans and reveal network disruptions in autism. PLoS Biol 2018; 16:e2004559. [PMID: 29401206 PMCID: PMC5814101 DOI: 10.1371/journal.pbio.2004559] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 02/15/2018] [Accepted: 01/17/2018] [Indexed: 12/14/2022] Open
Abstract
Noninvasive imaging and tractography methods have yielded information on broad communication networks but lack resolution to delineate intralaminar cortical and subcortical pathways in humans. An important unanswered question is whether we can use the wealth of precise information on pathways from monkeys to understand connections in humans. We addressed this question within a theoretical framework of systematic cortical variation and used identical high-resolution methods to compare the architecture of cortical gray matter and the white matter beneath, which gives rise to short- and long-distance pathways in humans and rhesus monkeys. We used the prefrontal cortex as a model system because of its key role in attention, emotions, and executive function, which are processes often affected in brain diseases. We found striking parallels and consistent trends in the gray and white matter architecture in humans and monkeys and between the architecture and actual connections mapped with neural tracers in rhesus monkeys and, by extension, in humans. Using the novel architectonic portrait as a base, we found significant changes in pathways between nearby prefrontal and distant areas in autism. Our findings reveal that a theoretical framework allows study of normal neural communication in humans at high resolution and specific disruptions in diverse psychiatric and neurodegenerative diseases.
Collapse
Affiliation(s)
- Basilis Zikopoulos
- Human Systems Neuroscience Laboratory, Department of Health Sciences, Boston University, Boston, Massachusetts, United States of America
- Graduate Program in Neuroscience, Boston University, Boston, Massachusetts, United States of America
| | - Miguel Ángel García-Cabezas
- Neural Systems Laboratory, Department of Health Sciences, Boston University, Boston, Massachusetts, United States of America
| | - Helen Barbas
- Graduate Program in Neuroscience, Boston University, Boston, Massachusetts, United States of America
- Neural Systems Laboratory, Department of Health Sciences, Boston University, Boston, Massachusetts, United States of America
| |
Collapse
|
36
|
Cortical Connections Position Primate Area 25 as a Keystone for Interoception, Emotion, and Memory. J Neurosci 2018; 38:1677-1698. [PMID: 29358365 DOI: 10.1523/jneurosci.2363-17.2017] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 11/10/2017] [Accepted: 12/08/2017] [Indexed: 02/06/2023] Open
Abstract
The structural and functional integrity of subgenual cingulate area 25 (A25) is crucial for emotional expression and equilibrium. A25 has a key role in affective networks, and its disruption has been linked to mood disorders, but its cortical connections have yet to be systematically or fully studied. Using neural tracers in rhesus monkeys, we found that A25 was densely connected with other ventromedial and posterior orbitofrontal areas associated with emotions and homeostasis. A moderate pathway linked A25 with frontopolar area 10, an area associated with complex cognition, which may regulate emotions and dampen negative affect. Beyond the frontal lobe, A25 was connected with auditory association areas and memory-related medial temporal cortices, and with the interoceptive-related anterior insula. A25 mostly targeted the superficial cortical layers of other areas, where broadly dispersed terminations comingled with modulatory inhibitory or disinhibitory microsystems, suggesting a dominant excitatory effect. The architecture and connections suggest that A25 is the consummate feedback system in the PFC. Conversely, in the entorhinal cortex, A25 pathways terminated in the middle-deep layers amid a strong local inhibitory microenvironment, suggesting gating of hippocampal output to other cortices and memory storage. The graded cortical architecture and associated laminar patterns of connections suggest how areas, layers, and functionally distinct classes of inhibitory neurons can be recruited dynamically to meet task demands. The complement of cortical connections of A25 with areas associated with memory, emotion, and somatic homeostasis provide the circuit basis to understand its vulnerability in psychiatric and neurologic disorders.SIGNIFICANCE STATEMENT Integrity of the prefrontal subgenual cingulate cortex is crucial for healthy emotional function. Subgenual area 25 (A25) is mostly linked with other prefrontal areas associated with emotion in a dense network positioned to recruit large fields of cortex. In healthy states, A25 is associated with internal states, autonomic function, and transient negative affect. Constant hyperactivity in A25 is a biomarker for depression in humans and may trigger extensive activation in its dominant connections with areas associated with emotions and internal balance. A pathway between A25 and frontopolar area 10 may provide a critical link to regulate emotions and dampen persistent negative affect, which may be explored for therapeutic intervention in depression.
Collapse
|
37
|
Grossberg S. Desirability, availability, credit assignment, category learning, and attention: Cognitive-emotional and working memory dynamics of orbitofrontal, ventrolateral, and dorsolateral prefrontal cortices. Brain Neurosci Adv 2018; 2:2398212818772179. [PMID: 32166139 PMCID: PMC7058233 DOI: 10.1177/2398212818772179] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2017] [Accepted: 03/16/2018] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND The prefrontal cortices play an essential role in cognitive-emotional and working memory processes through interactions with multiple brain regions. METHODS This article further develops a unified neural architecture that explains many recent and classical data about prefrontal function and makes testable predictions. RESULTS Prefrontal properties of desirability, availability, credit assignment, category learning, and feature-based attention are explained. These properties arise through interactions of orbitofrontal, ventrolateral prefrontal, and dorsolateral prefrontal cortices with the inferotemporal cortex, perirhinal cortex, parahippocampal cortices; ventral bank of the principal sulcus, ventral prearcuate gyrus, frontal eye fields, hippocampus, amygdala, basal ganglia, hypothalamus, and visual cortical areas V1, V2, V3A, V4, middle temporal cortex, medial superior temporal area, lateral intraparietal cortex, and posterior parietal cortex. Model explanations also include how the value of visual objects and events is computed, which objects and events cause desired consequences and which may be ignored as predictively irrelevant, and how to plan and act to realise these consequences, including how to selectively filter expected versus unexpected events, leading to movements towards, and conscious perception of, expected events. Modelled processes include reinforcement learning and incentive motivational learning; object and spatial working memory dynamics; and category learning, including the learning of object categories, value categories, object-value categories, and sequence categories, or list chunks. CONCLUSION This article hereby proposes a unified neural theory of prefrontal cortex and its functions.
Collapse
Affiliation(s)
- Stephen Grossberg
- Center for Adaptive Systems, Graduate Program in Cognitive and Neural Systems, Departments of Mathematics & Statistics, Psychological & Brain Sciences, Biomedical Engineering, Boston University, Boston, MA, USA
| |
Collapse
|
38
|
Lew CH, Groeniger KM, Bellugi U, Stefanacci L, Schumann CM, Semendeferi K. A postmortem stereological study of the amygdala in Williams syndrome. Brain Struct Funct 2017; 223:1897-1907. [PMID: 29270815 DOI: 10.1007/s00429-017-1592-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Accepted: 11/25/2017] [Indexed: 01/06/2023]
Abstract
Perturbations to the amygdala have been observed in neurological disorders characterized by abnormalities in social behavior, such as autism and schizophrenia. Here, we quantitatively examined the amygdala in the postmortem human brains of male and female individuals diagnosed with Williams Syndrome (WS), a neurodevelopmental disorder caused by a well-defined deletion of ~ 26 genes, and accompanied by a consistent behavioral profile that includes profound hypersociability. Using unbiased stereological sampling, we estimated nucleus volume, number of neurons, neuron density, and neuron soma area in four major amygdaloid nuclei- the lateral nucleus, basal nucleus, accessory basal nucleus, and central nucleus- in a sample of five adult and two infant WS brains and seven age-, sex- and hemisphere-matched typically developing control (TD) brains. Boundaries of the four nuclei examined were drawn on Nissl-stained coronal sections as four separate regions of interest for data collection. We found that the lateral nucleus contains significantly more neurons in WS compared to TD. WS and TD do not demonstrate significant differences in neuron number in the basal, accessory basal, or central nuclei, and there are no significant differences between WS and TD in nuclei volume, neuron density, and neuron soma area in any of the four nuclei. A similarly designed study reported a decrease in lateral nucleus neuron number in autism, mirroring the opposing extremes of the two disorders in the social domain. These results suggest that the number of neurons in the lateral nucleus may contribute to pathological disturbances in amygdala function and sociobehavioral phenotype.
Collapse
Affiliation(s)
- Caroline H Lew
- Department of Anthropology, Social Sciences Building Rm. 210, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0532, USA
| | - Kimberly M Groeniger
- Department of Anthropology, Social Sciences Building Rm. 210, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0532, USA
| | - Ursula Bellugi
- Laboratory for Cognitive Neuroscience, Salk Institute for Biological Studies, 10010 N. Torrey Pines Rd., La Jolla, CA, 92037, USA
| | - Lisa Stefanacci
- Department of Anthropology, Social Sciences Building Rm. 210, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0532, USA
| | - Cynthia M Schumann
- Department of Psychiatry and Behavioral Sciences, MIND Institute, University of California, Davis, Sacramento, CA, 95817, USA
| | - Katerina Semendeferi
- Department of Anthropology, Social Sciences Building Rm. 210, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0532, USA. .,Kavli Institute for Brain and Mind, University of California, 9500 Gilman Drive, La Jolla, CA, 92093, USA.
| |
Collapse
|
39
|
García-Cabezas MÁ, Joyce MKP, John YJ, Zikopoulos B, Barbas H. Mirror trends of plasticity and stability indicators in primate prefrontal cortex. Eur J Neurosci 2017; 46:2392-2405. [PMID: 28921934 DOI: 10.1111/ejn.13706] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 08/22/2017] [Accepted: 08/24/2017] [Indexed: 12/21/2022]
Abstract
Research on plasticity markers in the cerebral cortex has largely focused on their timing of expression and role in shaping circuits during critical and normal periods. By contrast, little attention has been focused on the spatial dimension of plasticity-stability across cortical areas. The rationale for this analysis is based on the systematic variation in cortical structure that parallels functional specialization and raises the possibility of varying levels of plasticity. Here, we investigated in adult rhesus monkeys the expression of markers related to synaptic plasticity or stability in prefrontal limbic and eulaminate areas that vary in laminar structure. Our findings revealed that limbic areas are impoverished in three markers of stability: intracortical myelin, the lectin Wisteria floribunda agglutinin, which labels perineuronal nets, and parvalbumin, which is expressed in a class of strong inhibitory neurons. By contrast, prefrontal limbic areas were enriched in the enzyme calcium/calmodulin-dependent protein kinase II (CaMKII), known to enhance plasticity. Eulaminate areas have more elaborate laminar architecture than limbic areas and showed the opposite trend: they were enriched in markers of stability and had lower expression of the plasticity-related marker CaMKII. The expression of glial fibrillary acidic protein (GFAP), a marker of activated astrocytes, was also higher in limbic areas, suggesting that cellular stress correlates with the rate of circuit reshaping. Elevated markers of plasticity may endow limbic areas with flexibility necessary for learning and memory within an affective context, but may also render them vulnerable to abnormal structural changes, as seen in neurologic and psychiatric diseases.
Collapse
Affiliation(s)
- Miguel Á García-Cabezas
- Neural Systems Laboratory, Department of Health Sciences, Boston University, 635 Commonwealth Ave, Boston, MA, 02215, USA
| | - Mary Kate P Joyce
- Neural Systems Laboratory, Department of Health Sciences, Boston University, 635 Commonwealth Ave, Boston, MA, 02215, USA
| | - Yohan J John
- Neural Systems Laboratory, Department of Health Sciences, Boston University, 635 Commonwealth Ave, Boston, MA, 02215, USA
| | - Basilis Zikopoulos
- Human Systems Neuroscience Laboratory, Boston University, Boston, MA, USA
| | - Helen Barbas
- Neural Systems Laboratory, Department of Health Sciences, Boston University, 635 Commonwealth Ave, Boston, MA, 02215, USA
| |
Collapse
|
40
|
García-Pacios J, Garcés P, Del Río D, Maestú F. Tracking the effect of emotional distraction in working memory brain networks: Evidence from an MEG study. Psychophysiology 2017. [PMID: 28649710 DOI: 10.1111/psyp.12912] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The active maintenance of information in visual working memory (WM) is known to rely on the sustained activity over functional networks including frontal, parietal, occipital, and temporal cortices. Previous studies have described interference-based disturbances in the functional coupling between prefrontal and posterior cortices, and that such disturbances can be restored for a successful WM performance after the presentation of the interfering stimulus. However, very few studies have applied functional connectivity measures to the analysis of the brain dynamics involved in overriding emotional distraction, and all of them have limited their analysis to the particular connections between the amygdala and prefrontal cortex. In this study, we used magnetoencephalography (MEG) to characterize the mutual information-based functional connectivity dynamics among regions of interest located over the prefrontal, the parietal, the temporal, and the occipital cortex. Our results show that the detection of emotional distraction at early latencies (50-150 ms) induces a reduction of functional connectivity involving parietal and temporal cortices that are part of the frontoposterior WM network, while functional coupling among prefrontal areas and between them and posterior cortices is strengthened during the detection of emotional distractors. Later in the processing of the distractor (250-350 and 360-460 ms), the frontoposterior coupling is reestablished for a successful performance, while the orbitofrontal and ventrolateral prefrontal cortex become strongly connected to posterior cortices as a mechanism to cope with emotional distractors.
Collapse
Affiliation(s)
- Javier García-Pacios
- Department of Psychology, Faculty of Health Sciences, Camilo José Cela University, Madrid, Spain.,Laboratory of Cognitive and Computational Neuroscience, Center for Biomedical Technology, Technical University of Madrid and Complutense University of Madrid, Madrid, Spain
| | - Pilar Garcés
- Laboratory of Cognitive and Computational Neuroscience, Center for Biomedical Technology, Technical University of Madrid and Complutense University of Madrid, Madrid, Spain
| | - David Del Río
- Laboratory of Cognitive and Computational Neuroscience, Center for Biomedical Technology, Technical University of Madrid and Complutense University of Madrid, Madrid, Spain.,Department of Basic Psychology II, Complutense University of Madrid, Madrid, Spain
| | - Fernando Maestú
- Laboratory of Cognitive and Computational Neuroscience, Center for Biomedical Technology, Technical University of Madrid and Complutense University of Madrid, Madrid, Spain.,Department of Basic Psychology II, Complutense University of Madrid, Madrid, Spain
| |
Collapse
|
41
|
Kalmady SV, Shivakumar V, Arasappa R, Subramaniam A, Gautham S, Venkatasubramanian G, Gangadhar BN. Clinical correlates of hippocampus volume and shape in antipsychotic-naïve schizophrenia. Psychiatry Res Neuroimaging 2017; 263:93-102. [PMID: 28371658 DOI: 10.1016/j.pscychresns.2017.03.014] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Revised: 03/09/2017] [Accepted: 03/20/2017] [Indexed: 01/25/2023]
Abstract
While volume deficit of hippocampus is an established finding in schizophrenia, very few studies have examined large sample of patients without the confounding effect of antipsychotic treatment. Concurrent evaluation of hippocampus shape will offer additional information on the hippocampal aberrations in schizophrenia. In this study, we analyzed the volume and shape of hippocampus in antipsychotic-naïve schizophrenia patients (N=71) in comparison to healthy controls (N=82). Using 3-T MRI data, gray matter (GM) volume (anterior and posterior sub-divisions) and shape of the hippocampus were analyzed. Schizophrenia patients had significant hippocampal GM volume deficits (specifically the anterior sub-division) in comparison to healthy controls. There were significant positive correlations between anterior hippocampus volume and psychopathology scores of positive syndrome. Shape analyses revealed significant inward deformation of bilateral hippocampal surface in patients. In conclusion, our study findings add robust support for volume deficit in hippocampus in antipsychotic-naïve schizophrenia. Hippocampal shape deficits in schizophrenia observed in this study map to anterior CA1 sub-region. The differential relationship of anterior hippocampus (but not posterior hippocampus) with clinical symptoms is in tune with the findings in animal models. Further systematic studies are needed to evaluate the relationship between these hippocampal gray matter deficits with white matter and functional connectivity to facilitate understanding the hippocampal network abnormalities in schizophrenia.
Collapse
Affiliation(s)
- Sunil Vasu Kalmady
- The Schizophrenia Clinic, Department of Psychiatry, National Institute of Mental Health and Neuro Sciences, Bangalore, India; Translational Psychiatry Laboratory, Cognitive Neurobiology Division, Neurobiology Research Centre, National Institute of Mental Health and Neuro Sciences, Bangalore, India
| | - Venkataram Shivakumar
- The Schizophrenia Clinic, Department of Psychiatry, National Institute of Mental Health and Neuro Sciences, Bangalore, India; Translational Psychiatry Laboratory, Cognitive Neurobiology Division, Neurobiology Research Centre, National Institute of Mental Health and Neuro Sciences, Bangalore, India
| | - Rashmi Arasappa
- The Schizophrenia Clinic, Department of Psychiatry, National Institute of Mental Health and Neuro Sciences, Bangalore, India
| | - Aditi Subramaniam
- The Schizophrenia Clinic, Department of Psychiatry, National Institute of Mental Health and Neuro Sciences, Bangalore, India
| | - S Gautham
- The Schizophrenia Clinic, Department of Psychiatry, National Institute of Mental Health and Neuro Sciences, Bangalore, India
| | - Ganesan Venkatasubramanian
- The Schizophrenia Clinic, Department of Psychiatry, National Institute of Mental Health and Neuro Sciences, Bangalore, India; Translational Psychiatry Laboratory, Cognitive Neurobiology Division, Neurobiology Research Centre, National Institute of Mental Health and Neuro Sciences, Bangalore, India.
| | - Bangalore N Gangadhar
- The Schizophrenia Clinic, Department of Psychiatry, National Institute of Mental Health and Neuro Sciences, Bangalore, India
| |
Collapse
|
42
|
Pessoa L. A Network Model of the Emotional Brain. Trends Cogn Sci 2017; 21:357-371. [PMID: 28363681 DOI: 10.1016/j.tics.2017.03.002] [Citation(s) in RCA: 202] [Impact Index Per Article: 28.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Revised: 02/20/2017] [Accepted: 03/01/2017] [Indexed: 01/13/2023]
Abstract
Emotion is often understood in terms of a circumscribed set of cortical and subcortical brain regions. I propose, instead, that emotion should be understood in terms of large-scale network interactions spanning the entire neuroaxis. I describe multiple anatomical and functional principles of brain organization that lead to the concept of 'functionally integrated systems', cortical-subcortical systems that anchor the organization of emotion in the brain. The proposal is illustrated by describing the cortex-amygdala integrated system and how it intersects with systems involving the ventral striatum/accumbens, septum, hippocampus, hypothalamus, and brainstem. The important role of the thalamus is also highlighted. Overall, the model clarifies why the impact of emotion is wide-ranging, and how emotion is interlocked with perception, cognition, motivation, and action.
Collapse
Affiliation(s)
- Luiz Pessoa
- Department of Psychology and Maryland Neuroimaging Center, University of Maryland, College Park, MD 20742, USA.
| |
Collapse
|
43
|
Abstract
Brain regions that process affect are strongly connected with visual regions, but the functional consequences of this structural organization have been relatively unexplored. How does the momentary affect of an observer influence perception? We induced either pleasant or unpleasant affect in participants and then recorded their neural activity using magnetoencephalography while they completed an object recognition task. We hypothesized, and found, that affect influenced the speed of object recognition by modulating the speed and amplitude of evoked responses in occipitotemporal cortex and regions important for representing affect. Furthermore, affect modulated functional interactions between affective and perceptual regions early during perceptual processing. These findings indicate that affect can serve as an important contextual influence on object recognition processes.
Collapse
|
44
|
Smith R, Thayer JF, Khalsa SS, Lane RD. The hierarchical basis of neurovisceral integration. Neurosci Biobehav Rev 2017; 75:274-296. [PMID: 28188890 DOI: 10.1016/j.neubiorev.2017.02.003] [Citation(s) in RCA: 269] [Impact Index Per Article: 38.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Revised: 01/31/2017] [Accepted: 02/03/2017] [Indexed: 02/07/2023]
Abstract
The neurovisceral integration (NVI) model was originally proposed to account for observed relationships between peripheral physiology, cognitive performance, and emotional/physical health. This model has also garnered a considerable amount of empirical support, largely from studies examining cardiac vagal control. However, recent advances in functional neuroanatomy, and in computational neuroscience, have yet to be incorporated into the NVI model. Here we present an updated/expanded version of the NVI model that incorporates these advances. Based on a review of studies of structural/functional anatomy, we first describe an eight-level hierarchy of nervous system structures, and the contribution that each level plausibly makes to vagal control. Second, we review recent work on a class of computational models of brain function known as "predictive coding" models. We illustrate how the computational dynamics of these models, when implemented within our proposed vagal control hierarchy, can increase understanding of the relationship between vagal control and both cognitive performance and emotional/physical health. We conclude by discussing novel implications of this updated NVI model for future research.
Collapse
Affiliation(s)
- Ryan Smith
- Department of Psychiatry, University of Arizona, 1501 N. Campbell Ave, Tucson, AZ 85724-5002, United States.
| | - Julian F Thayer
- Department of Psychology, Ohio State University, Columbus, OH, United States
| | - Sahib S Khalsa
- Laureate Institute for Brain Research, Tulsa, OK, United States; University of Tulsa, Oxley College of Health Sciences, Tulsa, OK, United States
| | - Richard D Lane
- Department of Psychiatry, University of Arizona, 1501 N. Campbell Ave, Tucson, AZ 85724-5002, United States
| |
Collapse
|
45
|
Franklin DJ, Grossberg S. A neural model of normal and abnormal learning and memory consolidation: adaptively timed conditioning, hippocampus, amnesia, neurotrophins, and consciousness. COGNITIVE, AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2017; 17:24-76. [PMID: 27905080 PMCID: PMC5272895 DOI: 10.3758/s13415-016-0463-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
How do the hippocampus and amygdala interact with thalamocortical systems to regulate cognitive and cognitive-emotional learning? Why do lesions of thalamus, amygdala, hippocampus, and cortex have differential effects depending on the phase of learning when they occur? In particular, why is the hippocampus typically needed for trace conditioning, but not delay conditioning, and what do the exceptions reveal? Why do amygdala lesions made before or immediately after training decelerate conditioning while those made later do not? Why do thalamic or sensory cortical lesions degrade trace conditioning more than delay conditioning? Why do hippocampal lesions during trace conditioning experiments degrade recent but not temporally remote learning? Why do orbitofrontal cortical lesions degrade temporally remote but not recent or post-lesion learning? How is temporally graded amnesia caused by ablation of prefrontal cortex after memory consolidation? How are attention and consciousness linked during conditioning? How do neurotrophins, notably brain-derived neurotrophic factor (BDNF), influence memory formation and consolidation? Is there a common output path for learned performance? A neural model proposes a unified answer to these questions that overcome problems of alternative memory models.
Collapse
Affiliation(s)
- Daniel J Franklin
- Center for Adaptive Systems, Graduate Program in Cognitive and Neural Systems, and Departments of Mathematics, Psychological & Brain Sciences, and Biomedical Engineering, Boston University, 677 Beacon Street, Room 213, Boston, MA, 02215, USA
| | - Stephen Grossberg
- Center for Adaptive Systems, Graduate Program in Cognitive and Neural Systems, and Departments of Mathematics, Psychological & Brain Sciences, and Biomedical Engineering, Boston University, 677 Beacon Street, Room 213, Boston, MA, 02215, USA.
| |
Collapse
|
46
|
Berhanu D, Mattiaccio LM, Antshel KM, Fremont W, Middleton FA, Kates WR. Cortical-amygdala volumetric ratios predict onset of symptoms of psychosis in 22q11.2 deletion syndrome. Psychiatry Res 2017; 259:10-15. [PMID: 27918911 PMCID: PMC5456453 DOI: 10.1016/j.pscychresns.2016.11.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Revised: 10/10/2016] [Accepted: 11/23/2016] [Indexed: 01/09/2023]
Abstract
Dysfunction of cortical circuitry involving prefrontal cortex, cingulate gyrus and mesial temporal lobe has been implicated in the pathophysiology of psychotic symptoms. 22q11.2 deletion syndrome (22q11DS) is a neurogenetic disorder that comports a 25-fold increased risk of developing psychosis. Morphological changes in the neuroanatomy of this syndrome may represent a biological risk factor for the development of psychosis. The present study explored ratios between cortical volumes and the amygdala. We also explored relationships between these ratios and the eventual development of psychosis in youth with 22q11DS. A group of 73 individuals with 22q11DS, 32 community controls, and 27 unaffected siblings were followed every three years, at four timepoints. We analyzed baseline ratios between 34 bilateral FreeSurfer-generated cortical volumes and amygdala, and examined whether baseline cortical ratios predicted positive symptoms of psychosis 12 years later, at the 4th timepoint. Youth with 22q11DS demonstrated significantly smaller cortical volume-to-amygdala ratios in left anterior cingulate, occipital and parietal cortices. An increased risk of developing psychotic episodes in individuals with 22q11DS was associated with a lower cortical volume- to-amygdala ratio, suggesting that cortico-limbic circuitry may play an important role in emotional modulation and may underlie the pathophysiology of positive symptoms of psychosis.
Collapse
Affiliation(s)
- David Berhanu
- Lisbon University, Faculty of Medicine, Lisbon, Portugal; SUNY Upstate Medical University, Syracuse, NY, USA
| | | | | | | | | | | |
Collapse
|
47
|
De Pauw K, Roelands B, Van Cutsem J, Marusic U, Torbeyns T, Meeusen R. Electro-physiological changes in the brain induced by caffeine or glucose nasal spray. Psychopharmacology (Berl) 2017; 234:53-62. [PMID: 27664111 DOI: 10.1007/s00213-016-4435-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Accepted: 09/12/2016] [Indexed: 12/25/2022]
Abstract
OBJECTIVE A direct link between the mouth cavity and the brain for glucose (GLUC) and caffeine (CAF) has been established. The aim of this study is to determine whether a direct link for both substrates also exist between the nasal cavity and the brain. METHODS Ten healthy male subjects (age 22 ± 1 years) performed three experimental trials, separated by at least 2 days. Each trial included a 20-s nasal spray (NAS) period in which solutions placebo (PLAC), GLUC, or CAF were provided in a double-blind, randomized order. During each trial, four cognitive Stroop tasks were performed: two familiarization trials and one pre- and one post-NAS trial. Reaction times and accuracy for different stimuli (neutral, NEUTR; congruent, CON; incongruent INCON) were determined. Electroencephalography was continuously measured throughout the trials. During the Stroop tasks pre- and post-NAS, the P300 was assessed and during NAS, source localization was performed using standardized low-resolution brain electromagnetic tomography (sLORETA). RESULTS AND DISCUSSION NAS activated the anterior cingulate cortex (ACC). CAF-NAS also increased θ and β activity in frontal cortices. Furthermore, GLUC-NAS increased the β activity within the insula. GLUC-NAS also increased the P300 amplitude with INCON (P = 0.046) and reduced P300 amplitude at F3-F4 and P300 latency at CP1-CP2-Cz with NEUTR (P = 0.001 and P = 0.016, respectively). The existence of nasal bitter and sweet taste receptors possibly induce these brain responses. CONCLUSION Greater cognitive efficiency was observed with GLUC-NAS. CAF-NAS activated cingulate, insular, and sensorymotor cortices, whereas GLUC-NAS activated sensory, cingulate, and insular cortices. However, no effect on the Stroop task was found.
Collapse
Affiliation(s)
- K De Pauw
- Research Group Human Physiology, Faculty of Physical Education and Physical Therapy, Vrije Universiteit Brussel, Pleinlaan 2, 1050, Brussels, Belgium
| | - B Roelands
- Research Group Human Physiology, Faculty of Physical Education and Physical Therapy, Vrije Universiteit Brussel, Pleinlaan 2, 1050, Brussels, Belgium.,Fund for Scientific Research Flanders (FWO), Brussels, Belgium
| | - J Van Cutsem
- Research Group Human Physiology, Faculty of Physical Education and Physical Therapy, Vrije Universiteit Brussel, Pleinlaan 2, 1050, Brussels, Belgium
| | - U Marusic
- Institute for Kinesiology Research, Science and Research Centre of Koper, University of Primorska, Koper, Slovenia
| | - T Torbeyns
- Research Group Human Physiology, Faculty of Physical Education and Physical Therapy, Vrije Universiteit Brussel, Pleinlaan 2, 1050, Brussels, Belgium
| | - R Meeusen
- Research Group Human Physiology, Faculty of Physical Education and Physical Therapy, Vrije Universiteit Brussel, Pleinlaan 2, 1050, Brussels, Belgium. .,School of Public Health, Tropical Medicine and Rehabilitation Sciences, James Cook University, Townsville City, QLD, Australia.
| |
Collapse
|
48
|
O'Callaghan C, Kveraga K, Shine JM, Adams RB, Bar M. Predictions penetrate perception: Converging insights from brain, behaviour and disorder. Conscious Cogn 2017; 47:63-74. [PMID: 27222169 PMCID: PMC5764074 DOI: 10.1016/j.concog.2016.05.003] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Revised: 05/10/2016] [Accepted: 05/13/2016] [Indexed: 12/17/2022]
Abstract
It is argued that during ongoing visual perception, the brain is generating top-down predictions to facilitate, guide and constrain the processing of incoming sensory input. Here we demonstrate that these predictions are drawn from a diverse range of cognitive processes, in order to generate the richest and most informative prediction signals. This is consistent with a central role for cognitive penetrability in visual perception. We review behavioural and mechanistic evidence that indicate a wide spectrum of domains-including object recognition, contextual associations, cognitive biases and affective state-that can directly influence visual perception. We combine these insights from the healthy brain with novel observations from neuropsychiatric disorders involving visual hallucinations, which highlight the consequences of imbalance between top-down signals and incoming sensory information. Together, these lines of evidence converge to indicate that predictive penetration, be it cognitive, social or emotional, should be considered a fundamental framework that supports visual perception.
Collapse
Affiliation(s)
- Claire O'Callaghan
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, UK; Department of Psychology, University of Cambridge, Cambridge, UK; Brain and Mind Centre, University of Sydney, Sydney, Australia.
| | - Kestutis Kveraga
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - James M Shine
- School of Psychology, Stanford University, Stanford, CA, USA; Neuroscience Research Australia, Sydney, Australia
| | - Reginald B Adams
- Department of Psychology, The Pennsylvania State University, University Park, PA, USA
| | - Moshe Bar
- Gonda Center for Brain Research, Bar-Ilan University, Ramat Gan, Israel
| |
Collapse
|
49
|
Mindful awareness of feelings increases neural performance monitoring. COGNITIVE AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2016; 16:93-105. [PMID: 26350627 DOI: 10.3758/s13415-015-0375-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Mindfulness has been associated with enhanced performance monitoring; however, little is known about the processes driving this apparent neurocognitive benefit. Here, we tested whether focusing present-moment awareness toward the nonjudgmental experience of emotion facilitates rapid neural responses to negative performance outcomes (i.e., mistakes). In particular, we compared whether directing present-moment awareness toward emotions or thoughts would enhance the neurophysiological correlates of performance monitoring: the error-related negativity (ERN) and the error positivity (Pe). Participants were randomly assigned to either a thought-focused or an emotion-focused group, and first they completed a preinduction go/no-go task. Subsequently, the groups followed inductions that promoted mindful attention toward either thoughts or emotions, before completing a final postinduction go/no-go session. The results indicated that emotion-focused participants demonstrated higher neural sensitivity to errors in the time course of the ERN, whereas focusing on thoughts had no effect on performance monitoring. In contrast, neither induction procedure altered the amplitude of the later Pe component. Although our manipulations also induced changes in behavior, the ERN effects remained significant after controlling for performance. Thus, our results suggest that mindfulness meditation boosts early neural performance monitoring (ERN amplitude), specifically through meditation's influence on affective processing.
Collapse
|
50
|
Grossberg S. Towards solving the hard problem of consciousness: The varieties of brain resonances and the conscious experiences that they support. Neural Netw 2016; 87:38-95. [PMID: 28088645 DOI: 10.1016/j.neunet.2016.11.003] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 10/21/2016] [Accepted: 11/20/2016] [Indexed: 10/20/2022]
Abstract
The hard problem of consciousness is the problem of explaining how we experience qualia or phenomenal experiences, such as seeing, hearing, and feeling, and knowing what they are. To solve this problem, a theory of consciousness needs to link brain to mind by modeling how emergent properties of several brain mechanisms interacting together embody detailed properties of individual conscious psychological experiences. This article summarizes evidence that Adaptive Resonance Theory, or ART, accomplishes this goal. ART is a cognitive and neural theory of how advanced brains autonomously learn to attend, recognize, and predict objects and events in a changing world. ART has predicted that "all conscious states are resonant states" as part of its specification of mechanistic links between processes of consciousness, learning, expectation, attention, resonance, and synchrony. It hereby provides functional and mechanistic explanations of data ranging from individual spikes and their synchronization to the dynamics of conscious perceptual, cognitive, and cognitive-emotional experiences. ART has reached sufficient maturity to begin classifying the brain resonances that support conscious experiences of seeing, hearing, feeling, and knowing. Psychological and neurobiological data in both normal individuals and clinical patients are clarified by this classification. This analysis also explains why not all resonances become conscious, and why not all brain dynamics are resonant. The global organization of the brain into computationally complementary cortical processing streams (complementary computing), and the organization of the cerebral cortex into characteristic layers of cells (laminar computing), figure prominently in these explanations of conscious and unconscious processes. Alternative models of consciousness are also discussed.
Collapse
Affiliation(s)
- Stephen Grossberg
- Center for Adaptive Systems, Boston University, 677 Beacon Street, Boston, MA 02215, USA; Graduate Program in Cognitive and Neural Systems, Departments of Mathematics & Statistics, Psychological & Brain Sciences, and Biomedical Engineering Boston University, 677 Beacon Street, Boston, MA 02215, USA.
| |
Collapse
|