1
|
Wegiel J, Chadman K, London E, Wisniewski T, Wegiel J. Contribution of the serotonergic system to developmental brain abnormalities in autism spectrum disorder. Autism Res 2024; 17:1300-1321. [PMID: 38500252 PMCID: PMC11272444 DOI: 10.1002/aur.3123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 02/28/2024] [Indexed: 03/20/2024]
Abstract
This review highlights a key role of the serotonergic system in brain development and in distortions of normal brain development in early stages of fetal life resulting in cascades of abnormalities, including defects of neurogenesis, neuronal migration, neuronal growth, differentiation, and arborization, as well as defective neuronal circuit formation in the cortex, subcortical structures, brainstem, and cerebellum of autistic subjects. In autism, defects in regulation of neuronal growth are the most frequent and ubiquitous developmental changes associated with impaired neuron differentiation, smaller size, distorted shape, loss of spatial orientation, and distortion of cortex organization. Common developmental defects of the brain in autism include multiregional focal dysplastic changes contributing to local neuronal circuit distortion, epileptogenic activity, and epilepsy. There is a discrepancy between more than 500 reports demonstrating the contribution of the serotonergic system to autism's behavioral anomalies, highlighted by lack of studies of autistic subjects' brainstem raphe nuclei, the center of brain serotonergic innervation, and of the contribution of the serotonergic system to the diagnostic features of autism spectrum disorder (ASD). Discovery of severe fetal brainstem auditory system neuronal deficits and other anomalies leading to a spectrum of hearing deficits contributing to a cascade of behavioral alterations, including deficits of social and verbal communication in individuals with autism, is another argument to intensify postmortem studies of the type and topography of, and the severity of developmental defects in raphe nuclei and their contribution to abnormal brain development and to the broad spectrum of functional deficits and comorbid conditions in ASD.
Collapse
Affiliation(s)
- Jarek Wegiel
- Department of Developmental Neurobiology, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, New York, USA
| | - Kathryn Chadman
- Department of Developmental Neurobiology, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, New York, USA
| | - Eric London
- Department of Psychology, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, New York, USA
| | - Thomas Wisniewski
- Department of Developmental Neurobiology, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, New York, USA
- Center for Cognitive Neurology, Department of Neurology, Pathology and Psychiatry, NYU Grossman School of Medicine, New York, New York, USA
| | - Jerzy Wegiel
- Department of Developmental Neurobiology, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, New York, USA
| |
Collapse
|
2
|
Kembou-Ringert JE, Steinhagen D, Thompson KD, Daly JM, Adamek M. Immune responses to Tilapia lake virus infection: what we know and what we don't know. Front Immunol 2023; 14:1240094. [PMID: 37622112 PMCID: PMC10445761 DOI: 10.3389/fimmu.2023.1240094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 07/20/2023] [Indexed: 08/26/2023] Open
Abstract
Tilapia lake virus (TiLV) is a novel contagious pathogen associated with a lethal disease affecting and decimating tilapia populations on several continents across the globe. Fish viral diseases, such as Tilapia lake virus disease (TiLVD), represent a serious threat to tilapia aquaculture. Therefore, a better understanding of the innate immune responses involved in establishing an antiviral state can help shed light on TiLV disease pathogenesis. Moreover, understanding the adaptive immune mechanisms involved in mounting protection against TiLV could greatly assist in the development of vaccination strategies aimed at controlling TiLVD. This review summarizes the current state of knowledge on the immune responses following TiLV infection. After describing the main pathological findings associated with TiLVD, both the innate and adaptive immune responses and mechanisms to TiLV infection are discussed, in both disease infection models and in vitro studies. In addition, our work, highlights research questions, knowledge gaps and research areas in the immunology of TiLV infection where further studies are needed to better understand how disease protection against TiLV is established.
Collapse
Affiliation(s)
- Japhette E. Kembou-Ringert
- Department of Infection, Immunity and Inflammation, Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| | - Dieter Steinhagen
- Fish Disease Research Unit, Institute for Parasitology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Kim D. Thompson
- Moredun Research Institute, Pentlands Science Park, Penicuik, United Kingdom
| | - Janet M. Daly
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington, United Kingdom
| | - Mikolaj Adamek
- Fish Disease Research Unit, Institute for Parasitology, University of Veterinary Medicine Hannover, Hannover, Germany
| |
Collapse
|
3
|
Ramos A, Granzotto N, Kremer R, Boeder AM, de Araújo JFP, Pereira AG, Izídio GS. Hunting for Genes Underlying Emotionality in the Laboratory Rat: Maps, Tools and Traps. Curr Neuropharmacol 2023; 21:1840-1863. [PMID: 36056863 PMCID: PMC10514530 DOI: 10.2174/1570159x20666220901154034] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 06/13/2022] [Accepted: 07/28/2022] [Indexed: 11/22/2022] Open
Abstract
Scientists have systematically investigated the hereditary bases of behaviors since the 19th century, moved by either evolutionary questions or clinically-motivated purposes. The pioneer studies on the genetic selection of laboratory animals had already indicated, one hundred years ago, the immense complexity of analyzing behaviors that were influenced by a large number of small-effect genes and an incalculable amount of environmental factors. Merging Mendelian, quantitative and molecular approaches in the 1990s made it possible to map specific rodent behaviors to known chromosome regions. From that point on, Quantitative Trait Locus (QTL) analyses coupled with behavioral and molecular techniques, which involved in vivo isolation of relevant blocks of genes, opened new avenues for gene mapping and characterization. This review examines the QTL strategy applied to the behavioral study of emotionality, with a focus on the laboratory rat. We discuss the challenges, advances and limitations of the search for Quantitative Trait Genes (QTG) playing a role in regulating emotionality. For the past 25 years, we have marched the long journey from emotionality-related behaviors to genes. In this context, our experiences are used to illustrate why and how one should move forward in the molecular understanding of complex psychiatric illnesses. The promise of exploring genetic links between immunological and emotional responses are also discussed. New strategies based on humans, rodents and other animals (such as zebrafish) are also acknowledged, as they are likely to allow substantial progress to be made in the near future.
Collapse
Affiliation(s)
- André Ramos
- Behavior Genetics Laboratory, Department of Cell Biology, Embryology and Genetics, Center of Biological Sciences, Federal University of Santa Catarina, Florianopolis, Brazil
| | - Natalli Granzotto
- Behavior Genetics Laboratory, Department of Cell Biology, Embryology and Genetics, Center of Biological Sciences, Federal University of Santa Catarina, Florianopolis, Brazil
- Graduate Program of Pharmacology, Center of Biological Sciences, Federal University of Santa Catarina, Florianopolis, Brazil
| | - Rafael Kremer
- Behavior Genetics Laboratory, Department of Cell Biology, Embryology and Genetics, Center of Biological Sciences, Federal University of Santa Catarina, Florianopolis, Brazil
- Graduate Program of Developmental and Cellular Biology, Center of Biological Sciences, Federal University of Santa Catarina, Florianopolis, Brazil
| | - Ariela Maína Boeder
- Behavior Genetics Laboratory, Department of Cell Biology, Embryology and Genetics, Center of Biological Sciences, Federal University of Santa Catarina, Florianopolis, Brazil
- Graduate Program of Pharmacology, Center of Biological Sciences, Federal University of Santa Catarina, Florianopolis, Brazil
| | - Julia Fernandez Puñal de Araújo
- Behavior Genetics Laboratory, Department of Cell Biology, Embryology and Genetics, Center of Biological Sciences, Federal University of Santa Catarina, Florianopolis, Brazil
- Graduate Program of Developmental and Cellular Biology, Center of Biological Sciences, Federal University of Santa Catarina, Florianopolis, Brazil
| | - Aline Guimarães Pereira
- Behavior Genetics Laboratory, Department of Cell Biology, Embryology and Genetics, Center of Biological Sciences, Federal University of Santa Catarina, Florianopolis, Brazil
- Graduate Program of Developmental and Cellular Biology, Center of Biological Sciences, Federal University of Santa Catarina, Florianopolis, Brazil
| | - Geison Souza Izídio
- Behavior Genetics Laboratory, Department of Cell Biology, Embryology and Genetics, Center of Biological Sciences, Federal University of Santa Catarina, Florianopolis, Brazil
- Graduate Program of Pharmacology, Center of Biological Sciences, Federal University of Santa Catarina, Florianopolis, Brazil
- Graduate Program of Developmental and Cellular Biology, Center of Biological Sciences, Federal University of Santa Catarina, Florianopolis, Brazil
| |
Collapse
|
4
|
Dürrwald R, Kolodziejek J, Oh DY, Herzog S, Liebermann H, Osterrieder N, Nowotny N. Vaccination against Borna Disease: Overview, Vaccine Virus Characterization and Investigation of Live and Inactivated Vaccines. Viruses 2022; 14:2706. [PMID: 36560710 PMCID: PMC9788498 DOI: 10.3390/v14122706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 11/24/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022] Open
Abstract
(1) Background: Vaccination of horses and sheep against Borna disease (BD) was common in endemic areas of Germany in the 20th century but was abandoned in the early 1990s. The recent occurrence of fatal cases of human encephalitis due to Borna disease virus 1 (BoDV-1) has rekindled the interest in vaccination. (2) Methods: The full genomes of the BD live vaccine viruses "Dessau" and "Giessen" were sequenced and analyzed for the first time. All vaccination experiments followed a proof-of-concept approach. Dose-titration infection experiments were performed in rabbits, based on both cell culture- and brain-derived viruses at various doses. Inactivated vaccines against BD were produced from concentrated cell culture supernatants and investigated in rabbits and horses. The BoDV-1 live vaccine "Dessau" was administered to horses and antibody profiles were determined. (3) Results: The BD live vaccine viruses "Dessau" and "Giessen" belong to clusters 3 and 4 of BoDV-1. Whereas the "Giessen" virus does not differ substantially from field viruses, the "Dessau" virus shows striking differences in the M gene and the N-terminal part of the G gene. Rabbits infected with high doses of cell-cultured virus developed neutralizing antibodies and were protected from disease, whereas rabbits infected with low doses of cell-cultured virus, or with brain-derived virus did not. Inactivated vaccines were administered to rabbits and horses, following pre-defined vaccination schemes consisting of three vaccine doses of either adjuvanted or nonadjuvanted inactivated virus. Their immunogenicity and protective efficacy were compared to the BD live vaccine "Dessau". Seventy per cent of horses vaccinated with the BD live vaccine "Dessau" developed neutralizing antibodies after vaccination. (4) Conclusion: Despite a complex evasion of immunological responses by bornaviruses, some vaccination approaches can protect against clinical disease. For optimal effectiveness, vaccines should be administered at high doses, following vaccination schemes consisting of three vaccine doses as basic immunization. Further investigations are necessary in order to investigate and improve protection against infection and to avoid side effects.
Collapse
Affiliation(s)
- Ralf Dürrwald
- Unit 17: Influenza and Other Viruses of the Respiratory Tract, Department of Infectious Diseases, Robert Koch Institute, Seestraße 10, 13353 Berlin, Germany
| | - Jolanta Kolodziejek
- Institute of Virology, University of Veterinary Medicine Vienna, 1210 Vienna, Austria
| | - Djin-Ye Oh
- Unit 17: Influenza and Other Viruses of the Respiratory Tract, Department of Infectious Diseases, Robert Koch Institute, Seestraße 10, 13353 Berlin, Germany
| | - Sibylle Herzog
- Institute of Virology, Justus-Liebig-University Giessen, 35392 Giessen, Germany
| | - Heinrich Liebermann
- retd., former Institute of Microbiology and Infectious Diseases, Faculty of Veterinary Medicine, University of Leipzig, 04103 Leipzig, Germany
| | | | - Norbert Nowotny
- Institute of Virology, University of Veterinary Medicine Vienna, 1210 Vienna, Austria
- Department of Basic Medical Sciences, College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai P.O. Box 505055, United Arab Emirates
| |
Collapse
|
5
|
Butler R, Bradford D, Rodgers KE. Analysis of shared underlying mechanism in neurodegenerative disease. Front Aging Neurosci 2022; 14:1006089. [PMID: 36523957 PMCID: PMC9745190 DOI: 10.3389/fnagi.2022.1006089] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 11/08/2022] [Indexed: 08/27/2023] Open
Abstract
In this review, the relationship between bioenergetics, mitochondrial dysfunction, and inflammation will be and how they contribute to neurodegeneration, specifically in Alzheimer's disease (AD), amyotrophic lateral sclerosis (ALS), and multiple sclerosis (MS) will be reviewed. Long-term changes in mitochondrial function, autophagy dysfunction, and immune activation are commonalities shared across these age-related disorders. Genetic risk factors for these diseases support an autophagy-immune connection in the underlying pathophysiology. Critical areas of deeper evaluation in these bioenergetic processes may lead to potential therapeutics with efficacy across multiple neurodegenerative diseases.
Collapse
Affiliation(s)
| | | | - Kathleen E. Rodgers
- Department of Medical Pharmacology, Center for Innovation in Brain Science, University of Arizona College of Medicine, Tucson, AZ, United States
| |
Collapse
|
6
|
Boucher T, Liang S, Brown AM. Advancing basic and translational research to deepen understanding of the molecular immune-mediated mechanisms regulating long-term persistence of HIV-1 in microglia in the adult human brain. J Leukoc Biol 2022; 112:1223-1231. [PMID: 35612272 PMCID: PMC9613482 DOI: 10.1002/jlb.1mr0422-620r] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 04/22/2022] [Indexed: 12/30/2022] Open
Abstract
Knowledge about the diversity microglia (MG) type and function in the rodent and human brain has advanced significantly in the last few years. Nevertheless, we have known for 40 years that MG, monocytes, and macrophages in the brain play crucial roles in the pathogenesis of the HIV-1 in all tissues. HIV enters and spreads in the brain early, long before the initiation of antiviral therapy. As a result, many people with HIV continue to experience neurologic and neuropsychiatric comorbid conditions collectively known as HIV-associated neurocognitive disorder (HAND). HIV pathogenic sequelae in the CNS pose a challenge for cure strategies. Detailed understanding at a mechanistic level of how low-level and latent HIV-1 infection in MG negatively impacts neuroglial function has remained somewhat elusive. Direct rigorous in vivo experimental validation that the virus can integrate into MG and assume a latent but reactivatable state has remained constrained. However, there is much excitement that human in vitro models for MG can now help close the gap. This review will provide a brief background to place the role of MG in the ongoing neurologic complications of HIV infection of the CNS, then focus on the use and refinement of human postmitotic monocyte-derived MG-like cells and how they are being applied to advance research on HIV persistence and proinflammatory signaling in the CNS. Critically, an understanding of myeloid plasticity and heterogeneity and rigorous attention to all aspects of cell handling is essential for reproducibility. Summary Sentence: This review focuses on human postmitotic monocyte-derived microglia-like cells as tools to advance research on HIV persistence and neuroinflammatory signaling.
Collapse
Affiliation(s)
- Thomas Boucher
- Department of NeurologyJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Shijun Liang
- Department of NeurologyJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Amanda M. Brown
- Department of NeurologyJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| |
Collapse
|
7
|
Mills WA, Coburn MA, Eyo UB. The emergence of the calvarial hematopoietic niche in health and disease. Immunol Rev 2022; 311:26-38. [PMID: 35880587 PMCID: PMC9489662 DOI: 10.1111/imr.13120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The diploë region of skull has recently been discovered to act as a myeloid cell reservoir to the underlying meninges. The presence of ossified vascular channels traversing the inner skull of cortex provides a passageway for the cells to traffic from the niche, and CNS-derived antigens traveling through cerebrospinal fluid in a perivascular manner reaches the niche to signal myeloid cell egress. This review will highlight the recent findings establishing this burgeoning field along with the known role this niche plays in CNS aging and disease. It will further highlight the anatomical routes and physiological properties of the vascular structures these cells use for trafficking, spanning from skull to brain parenchyma.
Collapse
Affiliation(s)
- William A. Mills
- Brain, Immunology, and Glia CenterUniversity of VirginiaCharlottesvilleVirginiaUSA,Department of NeuroscienceUniversity of VirginiaCharlottesvilleVirginiaUSA,Robert M. Berne Cardiovascular Research CenterUniversity of VirginiaCharlottesvilleVirginiaUSA
| | - Morgan A Coburn
- Brain, Immunology, and Glia CenterUniversity of VirginiaCharlottesvilleVirginiaUSA,Department of NeuroscienceUniversity of VirginiaCharlottesvilleVirginiaUSA,Robert M. Berne Cardiovascular Research CenterUniversity of VirginiaCharlottesvilleVirginiaUSA
| | - Ukpong B. Eyo
- Brain, Immunology, and Glia CenterUniversity of VirginiaCharlottesvilleVirginiaUSA,Department of NeuroscienceUniversity of VirginiaCharlottesvilleVirginiaUSA,Robert M. Berne Cardiovascular Research CenterUniversity of VirginiaCharlottesvilleVirginiaUSA
| |
Collapse
|
8
|
Bierhansl L, Hartung HP, Aktas O, Ruck T, Roden M, Meuth SG. Thinking outside the box: non-canonical targets in multiple sclerosis. Nat Rev Drug Discov 2022; 21:578-600. [PMID: 35668103 PMCID: PMC9169033 DOI: 10.1038/s41573-022-00477-5] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/22/2022] [Indexed: 12/11/2022]
Abstract
Multiple sclerosis (MS) is an immune-mediated disease of the central nervous system that causes demyelination, axonal degeneration and astrogliosis, resulting in progressive neurological disability. Fuelled by an evolving understanding of MS immunopathogenesis, the range of available immunotherapies for clinical use has expanded over the past two decades. However, MS remains an incurable disease and even targeted immunotherapies often fail to control insidious disease progression, indicating the need for new and exceptional therapeutic options beyond the established immunological landscape. In this Review, we highlight such non-canonical targets in preclinical MS research with a focus on five highly promising areas: oligodendrocytes; the blood-brain barrier; metabolites and cellular metabolism; the coagulation system; and tolerance induction. Recent findings in these areas may guide the field towards novel targets for future therapeutic approaches in MS.
Collapse
Affiliation(s)
- Laura Bierhansl
- Department of Neurology, Institute of Translational Neurology, University Hospital Münster, Münster, Germany
| | - Hans-Peter Hartung
- Department of Neurology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Brain and Mind Centre, University of Sydney, Sydney, NSW, Australia
- Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Orhan Aktas
- Department of Neurology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Tobias Ruck
- Department of Neurology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Michael Roden
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Department of Endocrinology and Diabetology, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
- German Center of Diabetes Research, Partner Düsseldorf, Neuherberg, Germany
| | - Sven G Meuth
- Department of Neurology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.
| |
Collapse
|
9
|
Mogensen FLH, Delle C, Nedergaard M. The Glymphatic System (En)during Inflammation. Int J Mol Sci 2021; 22:7491. [PMID: 34299111 PMCID: PMC8305763 DOI: 10.3390/ijms22147491] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 07/04/2021] [Accepted: 07/08/2021] [Indexed: 01/15/2023] Open
Abstract
The glymphatic system is a fluid-transport system that accesses all regions of the brain. It facilitates the exchange of cerebrospinal fluid and interstitial fluid and clears waste from the metabolically active brain. Astrocytic endfeet and their dense expression of the aquaporin-4 water channels promote fluid exchange between the perivascular spaces and the neuropil. Cerebrospinal and interstitial fluids are together transported back to the vascular compartment by meningeal and cervical lymphatic vessels. Multiple lines of work show that neurological diseases in general impair glymphatic fluid transport. Insofar as the glymphatic system plays a pseudo-lymphatic role in the central nervous system, it is poised to play a role in neuroinflammation. In this review, we discuss how the association of the glymphatic system with the meningeal lymphatic vessel calls for a renewal of established concepts on the CNS as an immune-privileged site. We also discuss potential approaches to target the glymphatic system to combat neuroinflammation.
Collapse
Affiliation(s)
- Frida Lind-Holm Mogensen
- Center for Translational Neuromedicine, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark; (F.L.-H.M.); (C.D.)
| | - Christine Delle
- Center for Translational Neuromedicine, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark; (F.L.-H.M.); (C.D.)
| | - Maiken Nedergaard
- Center for Translational Neuromedicine, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark; (F.L.-H.M.); (C.D.)
- Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, NY 14642, USA
| |
Collapse
|
10
|
Kirby L, Castelo-Branco G. Crossing boundaries: Interplay between the immune system and oligodendrocyte lineage cells. Semin Cell Dev Biol 2020; 116:45-52. [PMID: 33162336 DOI: 10.1016/j.semcdb.2020.10.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 09/12/2020] [Accepted: 10/26/2020] [Indexed: 01/20/2023]
Abstract
Oligodendrocytes and their progenitors are glial cells in the central nervous system, which have been mainly implicated with the homeostatic roles of axonal myelin ensheathment but serve as targets of the peripheral immune system attack in the context of diseases like multiple sclerosis. This view of oligodendroglia as passive bystanders with no immunological properties was first challenged in the 1980s when it was reported that the cytokine interferon γ could induce the gene expression of the major histocompatibility complexes (MHC) class I and II. While the physiological role of this induction was controversial for decades to follow, recent studies suggest that oligodendroglia survey their environment, respond to a larger array of cues and can indeed exert immunomodulatory functions, which are particularly relevant in the context of neurodegeneration and demyelinating diseases. The alternative functionality of oligodendroglia not only regulates immune cell responses, but also hinders remyelination, and might thereby be key to understanding MS disease pathology and promoting regeneration after immune-mediated demyelination.
Collapse
Affiliation(s)
- Leslie Kirby
- Laboratory of Molecular Neurobiology, Department Medical Biochemistry and Biophysics, Karolinska Institutet, Biomedicum, 17177 Stockholm, Sweden
| | - Gonçalo Castelo-Branco
- Laboratory of Molecular Neurobiology, Department Medical Biochemistry and Biophysics, Karolinska Institutet, Biomedicum, 17177 Stockholm, Sweden; Ming Wai Lau Centre for Reparative Medicine, Stockholm Node, Karolinska Institutet, 17177 Stockholm, Sweden.
| |
Collapse
|
11
|
Alzheimer's Disease and Specialized Pro-Resolving Lipid Mediators: Do MaR1, RvD1, and NPD1 Show Promise for Prevention and Treatment? Int J Mol Sci 2020; 21:ijms21165783. [PMID: 32806612 PMCID: PMC7460933 DOI: 10.3390/ijms21165783] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 07/30/2020] [Accepted: 08/10/2020] [Indexed: 12/17/2022] Open
Abstract
Alzheimer's disease (AD) is a common neurodegenerative disease and a major contributor to progressive cognitive impairment in an aging society. As the pathophysiology of AD involves chronic neuroinflammation, the resolution of inflammation and the group of lipid mediators that actively regulate it-i.e., specialized pro-resolving lipid mediators (SPMs)-attracted attention in recent years as therapeutic targets. This review focuses on the following three specific SPMs and summarizes their relationships to AD, as they were shown to effectively address and reduce the risk of AD-related neuroinflammation: maresin 1 (MaR1), resolvin D1 (RvD1), and neuroprotectin D1 (NPD1). These three SPMs are metabolites of docosahexaenoic acid (DHA), which is contained in fish oils and is thus easily available to the public. They are expected to become incorporated into promising avenues for preventing and treating AD in the future.
Collapse
|
12
|
Araman C, 't Hart BA. Neurodegeneration meets immunology - A chemical biology perspective. Bioorg Med Chem 2019; 27:1911-1924. [PMID: 30910473 DOI: 10.1016/j.bmc.2019.03.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 03/14/2019] [Accepted: 03/19/2019] [Indexed: 11/16/2022]
Affiliation(s)
- C Araman
- Leiden Institute of Chemistry and the Institute for Chemical Immunology, Leiden University, Leiden, The Netherlands.
| | - B A 't Hart
- University of Groningen, Department of Biomedical Sciences of Cells and Systems, University Medical Centre, Groningen, The Netherlands; Department Anatomy and Neuroscience, Free University Medical Center (VUmc), Amsterdam, The Netherlands.
| |
Collapse
|
13
|
Sarkar SN, Russell AE, Engler-Chiurazzi EB, Porter KN, Simpkins JW. MicroRNAs and the Genetic Nexus of Brain Aging, Neuroinflammation, Neurodegeneration, and Brain Trauma. Aging Dis 2019; 10:329-352. [PMID: 31011481 PMCID: PMC6457055 DOI: 10.14336/ad.2018.0409] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Accepted: 04/09/2018] [Indexed: 12/12/2022] Open
Abstract
Aging is a complex and integrated gradual deterioration of cellular activities in specific organs of the body, which is associated with increased mortality. This deterioration is the primary risk factor for major human pathologies, including cancer, diabetes, cardiovascular disorders, neurovascular disorders, and neurodegenerative diseases. There are nine tentative hallmarks of aging. In addition, several of these hallmarks are increasingly being associated with acute brain injury conditions. In this review, we consider the genes and their functional pathways involved in brain aging as a means of developing new strategies for therapies targeted to the neuropathological processes themselves, but also as targets for many age-related brain diseases. A single microRNA (miR), which is a short, non-coding RNA species, has the potential for targeting many genes simultaneously and, like practically all other cellular processes, genes associated with many features of brain aging and injury are regulated by miRs. We highlight how certain miRs can mediate deregulation of genes involved in neuroinflammation, acute neuronal injury and chronic neurodegenerative diseases. Finally, we review the recent progress in the development of effective strategies to block specific miR functions and discuss future approaches with the prediction that anti-miR drugs may soon be used in the clinic.
Collapse
Affiliation(s)
- Saumyendra N Sarkar
- Center for Basic and Translational Stroke Research, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV 26506, USA
| | - Ashley E Russell
- Center for Basic and Translational Stroke Research, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV 26506, USA
| | - Elizabeth B Engler-Chiurazzi
- Center for Basic and Translational Stroke Research, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV 26506, USA
| | - Keyana N Porter
- Center for Basic and Translational Stroke Research, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV 26506, USA
| | - James W Simpkins
- Center for Basic and Translational Stroke Research, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV 26506, USA
| |
Collapse
|
14
|
Congdon KL, Sanchez-Perez LA, Sampson JH. Effective effectors: How T cells access and infiltrate the central nervous system. Pharmacol Ther 2018; 197:52-60. [PMID: 30557632 DOI: 10.1016/j.pharmthera.2018.12.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Several Phase II and III clinical trials have demonstrated that immunotherapy can induce objective responses in otherwise refractory malignancies in tumors outside the central nervous system. In large part, effector T cells mediate much of the antitumor efficacy in these trials, and potent antitumor T cells can be generated through vaccination, immune checkpoint blockade, adoptive transfer, and genetic manipulation. However, activated T cells must still traffic to, infiltrate, and persist within tumor in order to mediate tumor lysis. These requirements for efficacy pose unique challenges for brain tumor immunotherapy, due to specific anatomical barriers and populations of specialized immune cells within the central nervous system that function to constrain immunity. Both autoimmune and infectious diseases of the central nervous system provide a wealth of information on how T cells can successfully migrate to the central nervous system and then engender sustained immune responses. In this review, we will examine the commonalities in the efferent arm of immunity to the brain for autoimmunity, infection, and tumor immunotherapy to identify key factors underlying potent immune responses.
Collapse
Affiliation(s)
- Kendra L Congdon
- Duke Brain Tumor Immunotherapy Program, Department of Neurosurgery, Duke University Medical Center, Durham, NC 27710, United States; The Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham, NC 27710, United States; Department of Neurosurgery, Duke University School of Medicine, Durham, NC 27710, United States
| | - Luis A Sanchez-Perez
- Duke Brain Tumor Immunotherapy Program, Department of Neurosurgery, Duke University Medical Center, Durham, NC 27710, United States; The Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham, NC 27710, United States; Department of Neurosurgery, Duke University School of Medicine, Durham, NC 27710, United States
| | - John H Sampson
- Duke Brain Tumor Immunotherapy Program, Department of Neurosurgery, Duke University Medical Center, Durham, NC 27710, United States; The Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham, NC 27710, United States; Department of Neurosurgery, Duke University School of Medicine, Durham, NC 27710, United States; Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC 27710, United States; Department of Pathology, Duke University School of Medicine, Durham, NC 27710, United States.
| |
Collapse
|
15
|
Fragkoudis R, Dixon-Ballany CM, Zagrajek AK, Kedzierski L, Fazakerley JK. Following Acute Encephalitis, Semliki Forest Virus is Undetectable in the Brain by Infectivity Assays but Functional Virus RNA Capable of Generating Infectious Virus Persists for Life. Viruses 2018; 10:v10050273. [PMID: 29783708 PMCID: PMC5977266 DOI: 10.3390/v10050273] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 05/14/2018] [Accepted: 05/17/2018] [Indexed: 12/24/2022] Open
Abstract
Alphaviruses are mosquito-transmitted RNA viruses which generally cause acute disease including mild febrile illness, rash, arthralgia, myalgia and more severely, encephalitis. In the mouse, peripheral infection with Semliki Forest virus (SFV) results in encephalitis. With non-virulent strains, infectious virus is detectable in the brain, by standard infectivity assays, for around ten days. As we have shown previously, in severe combined immunodeficient (SCID) mice, infectious virus is detectable for months in the brain. Here we show that in MHC-II-/- mice, with no functional CD4 T-cells, infectious virus is also detectable in the brain for long periods. In contrast, in the brains of CD8-/- mice, virus RNA persists but infectious virus is not detectable. In SCID mice infected with SFV, repeated intraperitoneal administration of anti-SFV immune serum rapidly reduced the titer of infectious virus in the brain to undetectable, however virus RNA persisted. Repeated intraperitoneal passive transfer of immune serum resulted in maintenance of brain virus RNA, with no detectable infectious virus, for several weeks. When passive antibody transfer was stopped, antibody levels declined and infectious virus was again detectable in the brain. In aged immunocompetent mice, previously infected with SFV, immunosuppression of antibody responses many months after initial infection also resulted in renewed ability to detect infectious virus in the brain. In summary, antiviral antibodies control and determine whether infectious virus is detectable in the brain but immune responses cannot clear this infection from the brain. Functional virus RNA capable of generating infectious virus persists and if antibody levels decline, infectious virus is again detectable.
Collapse
MESH Headings
- Animals
- Antibodies, Viral/blood
- Antibodies, Viral/immunology
- Antibodies, Viral/therapeutic use
- Brain/immunology
- Brain/virology
- Cell Line
- Cricetinae
- Cyclophosphamide/pharmacology
- Encephalitis, Viral/immunology
- Encephalitis, Viral/virology
- Immune Sera/immunology
- Immune Sera/isolation & purification
- Immunity, Cellular/drug effects
- Immunosuppressive Agents/pharmacology
- Mice
- Mice, Inbred Strains
- Mice, SCID
- RNA, Viral/genetics
- RNA, Viral/immunology
- Semliki forest virus/growth & development
- Semliki forest virus/immunology
- Semliki forest virus/physiology
- T-Lymphocytes/immunology
- Viral Plaque Assay
Collapse
Affiliation(s)
- Rennos Fragkoudis
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, College of Medicine & Veterinary Medicine, University of Edinburgh, Edinburgh, Midlothian EH25 9RG, UK.
- The School of Veterinary Medicine and Science, The University of Nottingham, Sutton Bonington Campus, Leicestershire LE12 5RD, UK.
| | - Catherine M Dixon-Ballany
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, College of Medicine & Veterinary Medicine, University of Edinburgh, Edinburgh, Midlothian EH25 9RG, UK.
| | - Adrian K Zagrajek
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, College of Medicine & Veterinary Medicine, University of Edinburgh, Edinburgh, Midlothian EH25 9RG, UK.
| | - Lukasz Kedzierski
- Department of Microbiology and Immunology, Faculty of Medicine, Dentistry and Health Sciences at The Peter Doherty Institute for Infection and Immunity and the Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, 792 Elizabeth Street, Melbourne 3000, Australia.
| | - John K Fazakerley
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, College of Medicine & Veterinary Medicine, University of Edinburgh, Edinburgh, Midlothian EH25 9RG, UK.
- Department of Microbiology and Immunology, Faculty of Medicine, Dentistry and Health Sciences at The Peter Doherty Institute for Infection and Immunity and the Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, 792 Elizabeth Street, Melbourne 3000, Australia.
| |
Collapse
|
16
|
Barington L, Wanke F, Niss Arfelt K, Holst PJ, Kurschus FC, Rosenkilde MM. EBI2 in splenic and local immune responses and in autoimmunity. J Leukoc Biol 2018; 104:313-322. [DOI: 10.1002/jlb.2vmr1217-510r] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 03/15/2018] [Accepted: 03/16/2018] [Indexed: 12/13/2022] Open
Affiliation(s)
- L. Barington
- Department of Biomedical Sciences; University of Copenhagen; Copenhagen Denmark
| | - F. Wanke
- Institute for Molecular Medicine; University Medical Center of the Johannes Gutenberg-University Mainz; Mainz Germany
| | - K. Niss Arfelt
- Department of Biomedical Sciences; University of Copenhagen; Copenhagen Denmark
| | - P. J. Holst
- Department of Immunology and Microbiology; University of Copenhagen; Copenhagen Denmark
| | - F. C. Kurschus
- Institute for Molecular Medicine; University Medical Center of the Johannes Gutenberg-University Mainz; Mainz Germany
| | - M. M. Rosenkilde
- Department of Biomedical Sciences; University of Copenhagen; Copenhagen Denmark
| |
Collapse
|
17
|
Mackie P, Lebowitz J, Saadatpour L, Nickoloff E, Gaskill P, Khoshbouei H. The dopamine transporter: An unrecognized nexus for dysfunctional peripheral immunity and signaling in Parkinson's Disease. Brain Behav Immun 2018; 70:21-35. [PMID: 29551693 PMCID: PMC5953824 DOI: 10.1016/j.bbi.2018.03.020] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 03/13/2018] [Accepted: 03/14/2018] [Indexed: 02/06/2023] Open
Abstract
The second-most common neurodegenerative disease, Parkinson's Disease (PD) has three hallmarks: dysfunctional dopamine transmission due, at least in part, to dopamine neuron degeneration; intracellular inclusions of α-synuclein aggregates; and neuroinflammation. The origin and interplay of these features remains a puzzle, as does the underlying mechanism of PD pathogenesis and progression. When viewed in the context of neuroimmunology, dopamine also plays a role in regulating peripheral immune cells. Intriguingly, plasma dopamine levels are altered in PD, suggesting collateral dysregulation of peripheral dopamine transmission. The dopamine transporter (DAT), the main regulator of dopaminergic tone in the CNS, is known to exist in lymphocytes and monocytes/macrophages, but little is known about peripheral DAT biology or how DAT regulates the dopaminergic tone, much less how peripheral DAT alters immune function. Our review is guided by the hypothesis that dysfunctional peripheral dopamine signaling might be linked to the dysfunctional immune responses in PD and thereby suggests a potential bidirectional communication between central and peripheral dopamine systems. This review seeks to foster new perspectives concerning PD pathogenesis and progression.
Collapse
Affiliation(s)
- Phillip Mackie
- University of Florida College of Medicine, Department of Neuroscience, Gainesville, FL 32611, United States
| | - Joe Lebowitz
- University of Florida College of Medicine, Department of Neuroscience, Gainesville, FL 32611, United States
| | - Leila Saadatpour
- University of Florida College of Medicine, Department of Neuroscience, Gainesville, FL 32611, United States
| | - Emily Nickoloff
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA 19102, United States
| | - Peter Gaskill
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA 19102, United States
| | - Habibeh Khoshbouei
- University of Florida College of Medicine, Department of Neuroscience, Gainesville, FL 32611, United States.
| |
Collapse
|
18
|
The role of catecholamines in HIV neuropathogenesis. Brain Res 2018; 1702:54-73. [PMID: 29705605 DOI: 10.1016/j.brainres.2018.04.030] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 04/21/2018] [Accepted: 04/24/2018] [Indexed: 12/21/2022]
Abstract
The success of anti-retroviral therapy has improved the quality of life and lifespan of HIV + individuals, transforming HIV infection into a chronic condition. These improvements have come with a cost, as chronic HIV infection and long-term therapy have resulted in the emergence of a number of new pathologies. This includes a variety of the neuropathological and neurocognitive effects collectively known as HIVassociated neurocognitive disorders (HAND) or NeuroHIV. These effects persist even in the absence of viral replication, suggesting that they are mediated the long-term changes in the CNS induced by HIV infection rather than by active replication. Among these effects are significant changes in catecholaminergic neurotransmission, especially in dopaminergic brain regions. In HIV-infected individuals not treated with ARV show prominent neuropathology is common in dopamine-rich brain regions and altered autonomic nervous system activity. Even infected individuals on therapy, there is significant dopaminergic neuropathology, and elevated stress and norepinephrine levels correlate with a decreased effectiveness of antiretroviral drugs. As catecholamines function as immunomodulatory factors, the resultant dysregulation of catecholaminergic tone could substantially alter the development of HIVassociated neuroinflammation and neuropathology. In this review, we discuss the role of catecholamines in the etiology of HIV neuropathogenesis. Providing a comprehensive examination of what is known about these molecules in the context of HIV-associated disease demonstrates the importance of further studies in this area, and may open the door to new therapeutic strategies that specifically ameliorate the effects of catecholaminergic dysregulation on NeuroHIV.
Collapse
|
19
|
Abstract
Human T cell leukemia virus type 1 (HTLV-1), also known as human T lymphotropic virus type 1, was the first exogenous human retrovirus discovered. Unlike the distantly related lentivirus HIV-1, HTLV-1 causes disease in only 5-10% of infected people, depending on their ethnic origin. But whereas HIV-1 infection and the consequent diseases can be efficiently contained in most cases by antiretroviral drug treatment, there is no satisfactory treatment for the malignant or inflammatory diseases caused by HTLV-1. The purpose of the present article is to review recent advances in the understanding of the mechanisms by which the virus persists in vivo and causes disabling or fatal diseases.
Collapse
Affiliation(s)
- Charles R M Bangham
- Division of Infectious Diseases, Faculty of Medicine, Imperial College, London W2 1PG, United Kingdom;
| |
Collapse
|
20
|
Visualizing context-dependent calcium signaling in encephalitogenic T cells in vivo by two-photon microscopy. Proc Natl Acad Sci U S A 2017; 114:E6381-E6389. [PMID: 28716943 DOI: 10.1073/pnas.1701806114] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In experimental autoimmune encephalitis (EAE), autoimmune T cells are activated in the periphery before they home to the CNS. On their way, the T cells pass through a series of different cellular milieus where they receive signals that instruct them to invade their target tissues. These signals involve interaction with the surrounding stroma cells, in the presence or absence of autoantigens. To portray the serial signaling events, we studied a T-cell-mediated model of EAE combining in vivo two-photon microscopy with two different activation reporters, the FRET-based calcium biosensor Twitch1 and fluorescent NFAT. In vitro activated T cells first settle in secondary (2°) lymphatic tissues (e.g., the spleen) where, in the absence of autoantigen, they establish transient contacts with stroma cells as indicated by sporadic short-lived calcium spikes. The T cells then exit the spleen for the CNS where they first roll and crawl along the luminal surface of leptomeningeal vessels without showing calcium activity. Having crossed the blood-brain barrier, the T cells scan the leptomeningeal space for autoantigen-presenting cells (APCs). Sustained contacts result in long-lasting calcium activity and NFAT translocation, a measure of full T-cell activation. This process is sensitive to anti-MHC class II antibodies. Importantly, the capacity to activate T cells is not a general property of all leptomeningeal phagocytes, but varies between individual APCs. Our results identify distinct checkpoints of T-cell activation, controlling the capacity of myelin-specific T cells to invade and attack the CNS. These processes may be valuable therapeutic targets.
Collapse
|
21
|
Bakay RA, Boyer KL, Freed CR, Ansari AA. Immunological Responses to Injury and Grafting in the Central Nervous System of Nonhuman Primates. Cell Transplant 2017; 7:109-20. [PMID: 9588593 DOI: 10.1177/096368979800700206] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Allogeneic transplantation for the therapy of human Parkinson's disease is being considered as a viable approach at several clinical centers worldwide. As an attempt to understand the basic biology of central nervous system (CNS) transplantation, our laboratory has developed an experimental nonhuman primate model for human Parkinson's disease and carried out preliminary studies directed at evaluating the potential pathology at the graft site. In addition, studies have been conducted to examine whether such transplantation procedures lead to specific and/or nonspecific immunologic sensitization of the host or results in generalized immunosuppression. Groups of rhesus macaques (Macaca mulatta) were either controls operated (n = 6), autografted with adrenal medullary and peripheral nerve tissue (n = 3), or allografted with fetal mesencephalic tissue (n = 6). Immunohistological studies demonstrated the presence of mononuclear cell infiltrates as early as 1 wk and up to 1 yr postoperatively, although the frequency of the infiltrating cells declined with time. The infiltrates consisted of variable numbers of cells which express CD2+, CD3+, CD4+, CD8+, CD19+, CD22+, CD25+, and CD68+. There appeared to be no difference in the frequency, kinetics, or phenotype of the infiltrating cells in operative controls compared with recipients of auto- or allografts. Tissue sections obtained postoperatively showed low levels of major histocompatibility complex (MHC) Class I antigens and no detectable level of MHC-Class II antigens in neural tissue. A small aliquot of tissue from the operative site was placed in vitro with media containing interleukin-2 (IL-2), which led to the exudation and growth of mononuclear cells that were predominantly CD4+ cells. Phenotypic studies of peripheral blood mononuclear cells (PBMC) from operative controls, auto- and allograft recipient monkeys performed at varying time periods postoperatively failed to show differences in the frequencies of subsets of T-cells, B-cells, NK-cells, or monocytes. Studies on aliquots of the same PBMC failed to show major functional differences in NK-cells, LAK cells, or response to polyclonal mitogens. Finally, recipients of allogeneic mesencephalic grafts failed to show evidence of donor-specific humoral or cellular sensitization. These data indicate that transplantation of autograft adrenal or allograft fetal mesencephalic tissues in the CNS of nonhuman primate did not induce detectable donor-specific sensitization nor nonspecific immunosuppression.
Collapse
Affiliation(s)
- R A Bakay
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, GA, USA
| | | | | | | |
Collapse
|
22
|
Klein RS, Hunter CA. Protective and Pathological Immunity during Central Nervous System Infections. Immunity 2017; 46:891-909. [PMID: 28636958 PMCID: PMC5662000 DOI: 10.1016/j.immuni.2017.06.012] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 06/05/2017] [Accepted: 06/05/2017] [Indexed: 02/08/2023]
Abstract
The concept of immune privilege of the central nervous system (CNS) has dominated the study of inflammatory processes in the brain. However, clinically relevant models have highlighted that innate pathways limit pathogen invasion of the CNS and adaptive immunity mediates control of many neural infections. As protective responses can result in bystander damage, there are regulatory mechanisms that balance protective and pathological inflammation, but these mechanisms might also allow microbial persistence. The focus of this review is to consider the host-pathogen interactions that influence neurotropic infections and to highlight advances in our understanding of innate and adaptive mechanisms of resistance as key determinants of the outcome of CNS infection. Advances in these areas have broadened our comprehension of how the immune system functions in the brain and can readily overcome immune privilege.
Collapse
Affiliation(s)
- Robyn S Klein
- Departments of Medicine, Pathology and Immunology, Neuroscience, Washington University School of Medicine, St. Louis, MO 63110, USA.
| | - Christopher A Hunter
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
23
|
Lassmann H, Bradl M. Multiple sclerosis: experimental models and reality. Acta Neuropathol 2017; 133:223-244. [PMID: 27766432 PMCID: PMC5250666 DOI: 10.1007/s00401-016-1631-4] [Citation(s) in RCA: 351] [Impact Index Per Article: 43.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 10/05/2016] [Accepted: 10/06/2016] [Indexed: 01/01/2023]
Abstract
One of the most frequent statements, provided in different variations in the introduction of experimental studies on multiple sclerosis (MS), is that "Multiple sclerosis is a demyelinating autoimmune disease and experimental autoimmune encephalomyelitis (EAE) is a suitable model to study its pathogenesis". However, so far, no single experimental model covers the entire spectrum of the clinical, pathological, or immunological features of the disease. Many different models are available, which proved to be highly useful for studying different aspects of inflammation, demyelination, remyelination, and neurodegeneration in the central nervous system. However, the relevance of results from such models for MS pathogenesis has to be critically validated. Current EAE models are mainly based on inflammation, induced by auto-reactive CD4+ T-cells, and these models reflect important aspects of MS. However, pathological data and results from clinical trials in MS indicate that CD8+ T-cells and B-lymphocytes may play an important role in propagating inflammation and tissue damage in established MS. Viral models may reflect key features of MS-like inflammatory demyelination, but are difficult to use due to their very complex pathogenesis, involving direct virus-induced and immune-mediated mechanisms. Furthermore, evidence for a role of viruses in MS pathogenesis is indirect and limited, and an MS-specific virus infection has not been identified so far. Toxic models are highly useful to unravel mechanisms of de- and remyelination, but do not reflect other important aspects of MS pathology and pathogenesis. For all these reasons, it is important to select the right experimental model to answer specific questions in MS research.
Collapse
Affiliation(s)
- Hans Lassmann
- Center for Brain Research, Medical University of Vienna, Spitalgasse 4, 1090, Vienna, Austria.
| | - Monika Bradl
- Center for Brain Research, Medical University of Vienna, Spitalgasse 4, 1090, Vienna, Austria
| |
Collapse
|
24
|
Franck S, Paterka M, Birkenstock J, Zipp F, Siffrin V, Witsch E. Phenotype of Antigen Unexperienced T H Cells in the Inflamed Central Nervous System in Experimental Autoimmune Encephalomyelitis. J Neuroimmune Pharmacol 2016; 12:305-313. [PMID: 27832402 DOI: 10.1007/s11481-016-9718-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 10/28/2016] [Indexed: 10/20/2022]
Abstract
Multiple sclerosis is a chronic, disseminated inflammation of the central nervous system which is thought to be driven by autoimmune T cells. Genetic association studies in multiple sclerosis and a large number of studies in the animal model of the disease support a role for effector/memory T helper cells. However, the mechanisms underlying relapses, remission and chronic progression in multiple sclerosis or the animal model experimental autoimmune encephalomyelitis, are not clear. In particular, there is only scarce information on the role of central nervous system-invading naive T helper cells in these processes. By applying two-photon laser scanning microscopy we could show in vivo that antigen unexperienced T helper cells migrated into the deep parenchyma of the inflamed central nervous system in experimental autoimmune encephalomyelitis, independent of their antigen specificity. Using flow cytometric analyses of central nervous system-derived lymphocytes we found that only antigen-specific, formerly naive T helper cells became activated during inflammation of the central nervous system encountering their corresponding antigen.
Collapse
Affiliation(s)
- Sophia Franck
- Department of Neurology, Focus Program Translational Neuroscience (FTN) and Immunotherapy (FZI), Rhine-Main Neuroscience Network (rmn2), University Medical Center of the Johannes Gutenberg University, Langenbeckstrasse 1, Building 708, 55131, Mainz, Germany
| | - Magdalena Paterka
- Department of Neurology, Focus Program Translational Neuroscience (FTN) and Immunotherapy (FZI), Rhine-Main Neuroscience Network (rmn2), University Medical Center of the Johannes Gutenberg University, Langenbeckstrasse 1, Building 708, 55131, Mainz, Germany
| | - Jerome Birkenstock
- Department of Neurology, Focus Program Translational Neuroscience (FTN) and Immunotherapy (FZI), Rhine-Main Neuroscience Network (rmn2), University Medical Center of the Johannes Gutenberg University, Langenbeckstrasse 1, Building 708, 55131, Mainz, Germany
| | - Frauke Zipp
- Department of Neurology, Focus Program Translational Neuroscience (FTN) and Immunotherapy (FZI), Rhine-Main Neuroscience Network (rmn2), University Medical Center of the Johannes Gutenberg University, Langenbeckstrasse 1, Building 708, 55131, Mainz, Germany
| | - Volker Siffrin
- Department of Neurology, Focus Program Translational Neuroscience (FTN) and Immunotherapy (FZI), Rhine-Main Neuroscience Network (rmn2), University Medical Center of the Johannes Gutenberg University, Langenbeckstrasse 1, Building 708, 55131, Mainz, Germany
| | - Esther Witsch
- Department of Neurology, Focus Program Translational Neuroscience (FTN) and Immunotherapy (FZI), Rhine-Main Neuroscience Network (rmn2), University Medical Center of the Johannes Gutenberg University, Langenbeckstrasse 1, Building 708, 55131, Mainz, Germany.
| |
Collapse
|
25
|
Abstract
Death ligands induce apoptosis, which is a cell suicide program leading mainly to selective elimination of an organism's useless cells. Importantly, the dying cell is an active participant in its own demise (“cellular suicide”). Under physiological conditions, apoptosis is most often found during normal cell turnover and tissue homeostasis, embryogenesis, induction and maintenance of immune tolerance, development of the nervous system, and endocrine-dependent tissue atrophy. However, apoptotic processes have also been suggested to contribute to the pathology of the autoimmune demyelinating disease multiple sclerosis (MS) and its animal model, experimental autoimmune encephalomyelitis. Here, apoptosis plays a double role. On one hand, impaired apoptosis may result in increased numbers or persistence of activated myelinspecific T cells. On the other hand, local tissue damage involves apoptosis of oligodendrocytes and neurons, leading to the clinical symptoms. In this article, an overview is given of the current knowledge of the roles of apoptosis-mediating and immune regulatory death ligands of the tumor necrosis factor (TNF) family (TNF, lymphotoxin-beta, OX40L [CD134L], CD154 [CD40L], CD95L, CD70 [CD27L], CD153 [CD30L], 4-1BBL [CD137L], TRAIL, TWEAK, BAFF, GITRL) in the pathogenesis of MS and of their implications for related therapeutic strategies.
Collapse
Affiliation(s)
- Orhan Aktas
- Institute of Neuroimmunology, Clinical and Experimental Neuroimmunology, Charité--Universitätsmedizin Berlin, Germany
| | | | | |
Collapse
|
26
|
Autoantibody-boosted T-cell reactivation in the target organ triggers manifestation of autoimmune CNS disease. Proc Natl Acad Sci U S A 2016; 113:3323-8. [PMID: 26957602 DOI: 10.1073/pnas.1519608113] [Citation(s) in RCA: 96] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Multiple sclerosis (MS) is caused by T cells that are reactive for brain antigens. In experimental autoimmune encephalomyelitis, the animal model for MS, myelin-reactive T cells initiate the autoimmune process when entering the nervous tissue and become reactivated upon local encounter of their cognate CNS antigen. Thereby, the strength of the T-cellular reactivation process within the CNS tissue is crucial for the manifestation and the severity of the clinical disease. Recently, B cells were found to participate in the pathogenesis of CNS autoimmunity, with several diverse underlying mechanisms being under discussion. We here report that B cells play an important role in promoting the initiation process of CNS autoimmunity. Myelin-specific antibodies produced by autoreactive B cells after activation in the periphery diffused into the CNS together with the first invading pathogenic T cells. The antibodies accumulated in resident antigen-presenting phagocytes and significantly enhanced the activation of the incoming effector T cells. The ensuing strong blood-brain barrier disruption and immune cell recruitment resulted in rapid manifestation of clinical disease. Therefore, myelin oligodendrocyte glycoprotein (MOG)-specific autoantibodies can initiate disease bouts by cooperating with the autoreactive T cells in helping them to recognize their autoantigen and become efficiently reactivated within the immune-deprived nervous tissue.
Collapse
|
27
|
Immune Responses to Viruses in the CNS. ENCYCLOPEDIA OF IMMUNOBIOLOGY 2016. [PMCID: PMC7151986 DOI: 10.1016/b978-0-12-374279-7.14022-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
For recovery from infection, the immune response in the central nervous system (CNS) must eliminate or control virus replication without destroying nonrenewable, essential cells. Thus, upon intracellular virus detection, the infected cell must initiate clearance pathways without triggering neuronal cell death. As a result, the inflammatory response must be tightly regulated and unique mechanisms contribute to the immune response in the CNS. Early restriction of virus replication is accomplished by the innate immune response upon activation of pattern recognition receptors in resident cells. Infiltrating immune cells enter from the periphery to clear virus. Antibodies and interferon-γ are primary contributors to noncytolytic clearance of virus in the CNS. Lymphocytes are retained in the CNS after the acute phase of infection presumably to block reactivation of virus replication.
Collapse
|
28
|
Bradl M, Lassmann H. Neurologic autoimmunity: mechanisms revealed by animal models. HANDBOOK OF CLINICAL NEUROLOGY 2016; 133:121-43. [PMID: 27112675 DOI: 10.1016/b978-0-444-63432-0.00008-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Over the last decade, neurologic autoimmunity has become a major consideration in the diagnosis and management of patients with many neurologic presentations. The nature of the associated antibodies and their targets has led to appreciation of the importance of the accessibility of the target antigen to antibodies, and a partial understanding of the different mechanisms that can follow antibody binding. This chapter will first describe the basic principles of autoimmune inflammation and tissue damage in the central and peripheral nervous system, and will then demonstrate what has been learnt about neurologic autoimmunity from circumstantial clinical evidence and from passive, active, and occasionally spontaneous or genetic animal models. It will cover neurologic autoimmune diseases ranging from disorders of neuromuscular transmission, peripheral and ganglionic neuropathy, to diseases of the central nervous system, where autoantibodies are either pathogenic and cause destruction or changes in function of their targets, where they are harmless bystanders of T-cell-mediated tissue damage, or are not involved at all. Finally, this chapter will summarize the relevance of current animal models for studying the different neurologic autoimmune diseases, and it will identify aspects where future animal models need to be improved to better reflect the disease reality experienced by affected patients, e.g., the chronicity or the relapsing/remitting nature of their disease.
Collapse
Affiliation(s)
- Monika Bradl
- Department of Neuroimmunology, Center for Brain Research, Medical University Vienna, Vienna, Austria.
| | - Hans Lassmann
- Department of Neuroimmunology, Center for Brain Research, Medical University Vienna, Vienna, Austria
| |
Collapse
|
29
|
Smith R, Myers K, Ravits J, Bowser R. Amyotrophic lateral sclerosis: Is the spinal fluid pathway involved in seeding and spread? Med Hypotheses 2015. [PMID: 26220261 DOI: 10.1016/j.mehy.2015.07.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disorder manifested primarily by loss of upper and lower motor neurons. Current explanations for disease progression invoke regional spread attributed to the transfer of pathogenic factors among physically contiguous neurons. However, this explanation incompletely explains certain clinical and in vitro data. Considering this, we propose that the cerebrospinal fluid (CSF) pathway is likely to be a key vector for seeding local and distal disease. Subsequent disease progression would be expected to occur independently via either axonal or CSF transmission. If one accepts the hypothesis that the CSF pathway is involved in ALS progression, it follows that the choroid plexus (CP) might well be a driver of the disease process. In support of this, we briefly review the anatomical and physiological features of the CSF pathway and the choroid plexus responsible for secreting CSF. In addition, we draw attention to the interface of the CP and CSF with the immune system. We then summarize both clinical and cell culture research that supports a key role of the CSF in the establishment and inter-neuronal spread of ALS, and which suggest directions for translational research.
Collapse
Affiliation(s)
- Richard Smith
- Center for Neurologic Study, 7590 Fay Ave., Suite 517, La Jolla, CA 92037, United States.
| | - Kathleen Myers
- Center for Neurologic Study, 7590 Fay Ave., Suite 517, La Jolla, CA 92037, United States
| | - John Ravits
- University of California San Diego School of Medicine, Dept. of Neurosciences, 9500 Gilman Dr. #0624, La Jolla, CA 92093, United States
| | - Robert Bowser
- Barrow Neurological Institute, Gregory W. Fulton ALS and Neuromuscular Research Center, 350 West Thomas Rd., Phoenix, AZ 85013, United States
| |
Collapse
|
30
|
Kleine TO. Cellular immune surveillance of central nervous system bypasses blood-brain barrier and blood-cerebrospinal-fluid barrier: Revealed with the New Marburg cerebrospinal-fluid model in healthy humans. Cytometry A 2015; 87:227-43. [DOI: 10.1002/cyto.a.22589] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Accepted: 10/21/2014] [Indexed: 01/12/2023]
Affiliation(s)
- Tilmann O. Kleine
- Department of Laboratory Medicine and Molecular Diagnostics of the University Hospital Marburg. Dependance: Cerebrospinal-Fluid References Labor, Baldingerstraße; 35043 Marburg Germany
| |
Collapse
|
31
|
Huber AK, Duncker PC, Irani DN. Immune responses to non-tumor antigens in the central nervous system. Front Oncol 2014; 4:328. [PMID: 25431758 PMCID: PMC4230036 DOI: 10.3389/fonc.2014.00328] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Accepted: 10/30/2014] [Indexed: 12/16/2022] Open
Abstract
The central nervous system (CNS), once viewed as an immune-privileged site protected by the blood-brain barrier (BBB), is now known to be a dynamic immunological environment through which immune cells migrate to prevent and respond to events such as localized infection. During these responses, endogenous glial cells, including astrocytes and microglia, become highly reactive and may secrete inflammatory mediators that regulate BBB permeability and recruit additional circulating immune cells. Here, we discuss the various roles played by astrocytes, microglia, and infiltrating immune cells during host immunity to non-tumor antigens in the CNS, focusing first on bacterial and viral infections, and then turning to responses directed against self-antigens in the setting of CNS autoimmunity.
Collapse
Affiliation(s)
- Amanda K Huber
- Department of Neurology, University of Michigan Medical School , Ann Arbor, MI , USA
| | - Patrick C Duncker
- Department of Neurology, University of Michigan Medical School , Ann Arbor, MI , USA
| | - David N Irani
- Department of Neurology, University of Michigan Medical School , Ann Arbor, MI , USA
| |
Collapse
|
32
|
Flügel A, Schläger C, Lühder F, Odoardi F. Autoimmune disease in the brain--how to spot the culprits and how to keep them in check. J Neurol Sci 2014; 311 Suppl 1:S3-11. [PMID: 22206764 DOI: 10.1016/s0022-510x(11)70002-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Current concepts attribute an early and central role for auto-aggressive, myelin-specific T-lymphocytes in the pathogenesis of multiple sclerosis. This view emerged from immunological and pathological findings in experimental autoimmune encephalitis, an animal model characterised by pathological lesions closely resembling the ones found in multiple sclerosis. Furthermore, therapeutic strategies targeting the functions of these encephalitogenic T cells which attenuate their pathogenicity such as glatiramer acetate or anti-VLA4 antibody treatments represent proven approaches in multiple sclerosis. Nonetheless, all therapies evaluated to date either insufficiently dampen down inflammation or completely block immune processes. For this reason, there is a need to identify new therapeutic targets. We have employed live intravital two-photon microscopy to learn more about the behaviour of T cells during the preclinical phase of EAE, when T cells acquire the properties required to invade their target organ. Furthermore, we were able to identify an unexpected locomotive behaviour of T cells at the blood-brain barrier, which occurs immediately before diapedesis and the induction of paralytic disease. Such studies might open new avenues for the treatment of CNS autoimmune diseases. Multiple sclerosis is considered to be an autoimmune disease in which self-reactive T cells enter the central nervous system (CNS) and create an inflammatory milieu that destroys myelin and neurons. Immunomodulatory strategies for the treatment of multiple sclerosis target this process by attempting to inactivate these auto-aggressive T cells. However, so far, these strategies have failed to extinguish disease activity completely. For this reason, there is a need to understand in more detail the mechanisms by which T cells become encephalitogenic, how they enter the nervous system, and what the signals are that guide them along this path. If these processes could be better understood, it may be possible to design more effective and specific therapies for multiple sclerosis. This article will give a brief overview about our recent findings obtained using intravital imaging of autoaggressive effector T cells in an experimental model of multiple sclerosis. This new technological approach might help to fill some gaps in the understanding of autoimmune pathogenesis of multiple sclerosis.
Collapse
Affiliation(s)
- Alexander Flügel
- Institute for Multiple Sclerosis Research, Department of Neuroimmunology, Gemeinnützige Hertie-Stiftung and University Medical Centre Göttingen, Göttingen, Germany
| | | | | | | |
Collapse
|
33
|
Lassmann H. CNS neuroimmunology seen by a neuropathologist. Rev Neurol (Paris) 2014; 170:561-3. [DOI: 10.1016/j.neurol.2014.07.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Accepted: 07/25/2014] [Indexed: 12/24/2022]
|
34
|
Pathology of multiple sclerosis and related inflammatory demyelinating diseases. HANDBOOK OF CLINICAL NEUROLOGY 2014; 122:15-58. [PMID: 24507512 DOI: 10.1016/b978-0-444-52001-2.00002-9] [Citation(s) in RCA: 204] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
This article provides a comprehensive overview of the pathology of multiple sclerosis (MS), including recent insights into its molecular neuropathology and immunology. It shows that all clinical manifestations of relapsing and progressive MS display the same basic features of pathology, such as chronic inflammation, demyelination in the white and gray matter, and diffuse neurodegeneration within the entire central nervous system. However, the individual components of the pathological spectrum vary quantitatively between early relapsing and late progressive MS. Widespread confluent and plaque-like demyelination with oligodendrocyte destruction is the unique pathological hallmark of the disease, but axonal injury and neurodegeneration are additionally present and in part extensive. Remyelination of existing lesions may occur in MS brains; it is extensive in a subset of patients, while it fails in others. Active tissue injury in MS is always associated with inflammation, consistent with T-cell and macrophage infiltration and microglia activation. Recent data suggest that oxidative injury and subsequent mitochondrial damage play a major pathogenetic role in neurodegeneration. Finally we discuss similarities and differences of the pathology between classical MS and other inflammatory demyelinating diseases, such as neuromyelitis optica, concentric sclerosis, or acute disseminated encephalomyelitis.
Collapse
|
35
|
Abramowski P, Steinbach K, Zander AR, Martin R. Immunomodulatory effects of the ether phospholipid edelfosine in experimental autoimmune encephalomyelitis. J Neuroimmunol 2014; 274:111-24. [PMID: 25086877 DOI: 10.1016/j.jneuroim.2014.07.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Revised: 07/11/2014] [Accepted: 07/14/2014] [Indexed: 01/24/2023]
Abstract
The 2-lysophosphatidylcholine analog edelfosine induces apoptosis in highly proliferating cells, e.g. activated immune cells. We examined mechanisms of action of edelfosine on immune functions in experimental autoimmune encephalomyelitis, a well-accepted animal model for multiple sclerosis. We observed activated caspase-3 expression in lymphoid organs and the central nervous system; however, edelfosine did not induce global apoptosis. Edelfosine improved the disease course and led to reduced frequencies of CD4(+) T cells infiltrating into the central nervous system. Our data suggest edelfosine as an interesting treatment candidate for multiple sclerosis.
Collapse
Affiliation(s)
- Pierre Abramowski
- Institute for Neuroimmunology and Clinical MS Research (inims), Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf, Falkenried 94, 20251 Hamburg, Germany; Research Department Cell and Gene Therapy, Clinic for Stem Cell Transplantation, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany
| | - Karin Steinbach
- Institute for Neuroimmunology and Clinical MS Research (inims), Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf, Falkenried 94, 20251 Hamburg, Germany; Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, 1 Rue Michel Servet, 1211 Geneva, Switzerland
| | - Axel R Zander
- Department for Stem Cell Transplantation, University Cancer Center Hamburg (UCCH), Martinistr. 52, 20246 Hamburg, Germany
| | - Roland Martin
- Institute for Neuroimmunology and Clinical MS Research (inims), Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf, Falkenried 94, 20251 Hamburg, Germany; Neuroimmunology and MS Research (nims), Department of Neurology, University Hospital Zurich, Frauenklinikstrasse 26, 8091 Zurich, Switzerland.
| |
Collapse
|
36
|
Terashima T, Kojima H, Urabe H, Yamakawa I, Ogawa N, Kawai H, Chan L, Maegawa H. Stem cell factor-activated bone marrow ameliorates amyotrophic lateral sclerosis by promoting protective microglial migration. J Neurosci Res 2014; 92:856-69. [PMID: 24936617 PMCID: PMC4061499 DOI: 10.1002/jnr.23368] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a progressive disease associated with motor neuron death. Several experimental treatments, including cell therapy using hematopoietic or neuronal stem cells, have been tested in ALS animal models, but therapeutic benefits have been modest. Here we used a new therapeutic strategy, bone marrow transplantation (BMT) with stem cell factor (SCF)- or FMS-like tyrosine kinase 3 (flt3)-activated bone marrow (BM) cells for the treatment of hSOD1(G93A) transgenic mice. Motor function and survival showed greater improvement in the SCF group than in the group receiving BM cells that had not been activated (BMT alone group), although no improvement was shown in the flt3 group. In addition, larger numbers of BM-derived cells that expressed the microglia marker Iba1 migrated to the spinal cords of recipient mice compared with the BMT alone group. Moreover, after SCF activation, but not flt3 activation or no activation, the migrating microglia expressed glutamate transporter-1 (GLT-1). In spinal cords in the SCF group, inflammatory cytokines tumor necrosis factor-α and interleukin-1β were suppressed and the neuroprotective molecule insulin-like growth factor-1 increased relative to nontreatment hSOD1(G93A) transgenic mice. Therefore, SCF activation changed the character of the migrating donor BM cells, which resulted in neuroprotective effects. These studies have identified SCF-activated BM cells as a potential new therapeutic agent for the treatment of ALS.
Collapse
Affiliation(s)
- Tomoya Terashima
- Department of Medicine, Shiga University of Medical Science, Seta, Otsu, Shiga, Japan
| | - Hideto Kojima
- Stem Cell Biology and Regenerative Medicine, Shiga University of Medical Science, Seta, Otsu, Shiga, Japan
| | - Hiroshi Urabe
- Department of Medicine, Shiga University of Medical Science, Seta, Otsu, Shiga, Japan
| | - Isamu Yamakawa
- Department of Medicine, Shiga University of Medical Science, Seta, Otsu, Shiga, Japan
| | - Nobuhiro Ogawa
- Department of Medicine, Shiga University of Medical Science, Seta, Otsu, Shiga, Japan
| | - Hiromichi Kawai
- Department of Medicine, Shiga University of Medical Science, Seta, Otsu, Shiga, Japan
| | - Lawrence Chan
- Departments of Medicine and Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas
| | - Hiroshi Maegawa
- Department of Medicine, Shiga University of Medical Science, Seta, Otsu, Shiga, Japan
| |
Collapse
|
37
|
Abstract
The introduction of new immunomodulatory therapies such as, interferon-beta, glatiramer acetate (Copaxone, Teva Pharmaceutical Industries) and mitoxantrone (Ralenova, Wyeth Pharma; Novantrone, Immunex Corp.) has considerably improved the therapeutic options for patients with multiple sclerosis. These agents have been shown to reduce relapse rate, slow down progression of disability and prevent the accumulation of magnetic resonance imaging lesion load in clinically definite multiple sclerosis. Moreover, two formulations of interferon-beta delayed conversion into clinically definite multiple sclerosis in patients with clinically isolated syndromes suggestive of multiple sclerosis. Since axonal damage leading to irreversible neurological disability is already present early at the onset of the disease, immunomodulatory therapy should start as soon as possible. This article reviews the arguments for the early initiation of therapy and provides an overview of clinical studies dealing with the early treatment of multiple sclerosis.
Collapse
Affiliation(s)
- Peter Flachenecker
- Department of Neurology and Clinical Research Group for Neuroimmunology, Julius-Maximilians-Universität Würzburg, Germany.
| |
Collapse
|
38
|
Hartung HP, Aktas O, Menge T, Kieseier BC. Immune regulation of multiple sclerosis. HANDBOOK OF CLINICAL NEUROLOGY 2014; 122:3-14. [PMID: 24507511 DOI: 10.1016/b978-0-444-52001-2.00001-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Multiple sclerosis (MS) is considered a prototype inflammatory autoimmune disorder of the central nervous system (CNS). The etiology of this disease remains unknown, but an interplay between as yet unidentified environmental factors and susceptibility genes appears most likely. In consequence, these factors trigger a cascade, involving an inflammatory response within the CNS that results in demyelination, oligodendrocyte death, axonal damage, gliosis, and neurodegeneration. How these complex traits translate into the clinical presentation of the disease is a focus of ongoing research. The central hypothesis is that T lymphocytes with receptors for CNS myelin components are driving the disease. The initial activation of autoreactive lymphocytes is thought to take place in the systemic lymphoid organs, most likely through molecular mimickry or nonspecifically through bystander activation. These autoreactive lymphocytes can migrate to the CNS where they become reactivated upon encountering their target antigen, initiating an autoimmune inflammatory attack. This ultimately leads to demyelination and axonal damage. This chapter focuses on the role of T and B lymphocytes in the immunopathogenesis of MS.
Collapse
Affiliation(s)
- Hans-Peter Hartung
- Department of Neurology, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany.
| | - Orhan Aktas
- Department of Neurology, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany
| | - Til Menge
- Department of Neurology, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany
| | - Bernd C Kieseier
- Department of Neurology, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany
| |
Collapse
|
39
|
Miljković D, Spasojević I. Multiple sclerosis: molecular mechanisms and therapeutic opportunities. Antioxid Redox Signal 2013; 19:2286-334. [PMID: 23473637 PMCID: PMC3869544 DOI: 10.1089/ars.2012.5068] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2012] [Revised: 02/09/2012] [Accepted: 03/09/2013] [Indexed: 12/15/2022]
Abstract
The pathophysiology of multiple sclerosis (MS) involves several components: redox, inflammatory/autoimmune, vascular, and neurodegenerative. All of them are supported by the intertwined lines of evidence, and none of them should be written off. However, the exact mechanisms of MS initiation, its development, and progression are still elusive, despite the impressive pace by which the data on MS are accumulating. In this review, we will try to integrate the current facts and concepts, focusing on the role of redox changes and various reactive species in MS. Knowing the schedule of initial changes in pathogenic factors and the key turning points, as well as understanding the redox processes involved in MS pathogenesis is the way to enable MS prevention, early treatment, and the development of therapies that target specific pathophysiological components of the heterogeneous mechanisms of MS, which could alleviate the symptoms and hopefully stop MS. Pertinent to this, we will outline (i) redox processes involved in MS initiation; (ii) the role of reactive species in inflammation; (iii) prooxidative changes responsible for neurodegeneration; and (iv) the potential of antioxidative therapy.
Collapse
Affiliation(s)
- Djordje Miljković
- Department of Immunology, Institute for Biological Research “Siniša Stanković,” University of Belgrade, Belgrade, Serbia
| | - Ivan Spasojević
- Life Sciences Department, Institute for Multidisciplinary Research, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
40
|
Olsson T. Role of cytokines in multiple sclerosis and experimental autoimmune encephalomyelitis. Eur J Neurol 2013; 1:7-19. [PMID: 24283424 DOI: 10.1111/j.1468-1331.1994.tb00045.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- T Olsson
- Division of Neurology, Department of Clinical Neuroscience and Family Medicine, Karolinska Institute, Huddinge Hospital, S-141 86 Huddinge, Sweden
| |
Collapse
|
41
|
Sosa RA, Murphey C, Ji N, Cardona AE, Forsthuber TG. The kinetics of myelin antigen uptake by myeloid cells in the central nervous system during experimental autoimmune encephalomyelitis. THE JOURNAL OF IMMUNOLOGY 2013; 191:5848-57. [PMID: 24227784 DOI: 10.4049/jimmunol.1300771] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Induction of experimental autoimmune encephalomyelitis (EAE) in susceptible animals requires reactivation of encephalitogenic CD4(+) T cells by APCs in the CNS. However, it has remained unresolved from where APCs in the CNS acquire myelin Ag for T cell activation and under which conditions, that is, whether only during EAE or also in the naive CNS. In this study, we investigated the kinetics of myelin Ag uptake by CNS APCs during EAE and in the naive CNS. Our results show that during EAE CX3CR1(+)CD11b(+) microglia were the first APCs in the CNS to contain myelin Ag upon induction of disease, albeit in very small numbers. Dendritic cells (DCs) arrived in the CNS in sizable numbers significantly later (day 5 postimmunization), without detectable myelin Ag, but acquired it by day 7 postimmunization. Furthermore, a sharp increase in neuroantigen-containing DCs coincided with the onset of EAE symptoms. Importantly, in naive mice a low but consistent number of microglia contained myelin Ag, suggesting release by oligodendrocytes under steady state conditions. Although microglia isolated from naive brain and spinal cord did not elicit a strong CD4(+) T cell response in vitro, myelin Ag-containing microglia may still play a local role in modulating encephalitogenic CD4(+) T cell responses in early EAE prior to the arrival of other professional APCs, such as DCs. Finally, newly arriving DCs in the CNS not yet loaded with myelin Ag before the onset of EAE may be a potential therapeutic target.
Collapse
Affiliation(s)
- Rebecca A Sosa
- Department of Biology, University of Texas at San Antonio, San Antonio, TX 78249
| | | | | | | | | |
Collapse
|
42
|
Cravens PD, Kieseier BC, Hussain R, Herndon E, Arellano B, Ben LH, Timmons BC, Castro-Rojas C, Hartung HP, Hemmer B, Weber MS, Zamvil SS, Stüve O. The neonatal CNS is not conducive for encephalitogenic Th1 T cells and B cells during experimental autoimmune encephalomyelitis. J Neuroinflammation 2013; 10:67. [PMID: 23705890 PMCID: PMC3679999 DOI: 10.1186/1742-2094-10-67] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Accepted: 05/06/2013] [Indexed: 01/07/2023] Open
Abstract
Multiple sclerosis (MS) is thought to be a CD4+ T cell mediated autoimmune demyelinating disease of the central nervous system (CNS) that is rarely diagnosed during infancy. Cellular and molecular mechanisms that confer disease resistance in this age group are unknown. We tested the hypothesis that a differential composition of immune cells within the CNS modulates age-associated susceptibility to CNS autoimmune disease. C57BL/6 mice younger than eight weeks were resistant to experimental autoimmune encephalomyelitis (EAE) following active immunization with myelin oligodendrocyte glycoprotein (MOG) peptide (p) 35-55. Neonates also developed milder EAE after transfer of adult encephalitogenic T cells primed by adult or neonate antigen presenting cells (APC). There was a significant increase in CD45+ hematopoietic immune cells and CD45+ high side scatter granulocytes in the CNS of adults, but not in neonates. Within the CD45+ immune cell compartment of adults, the accumulation of CD4+ T cells, Gr-1+ and Gr-1- monocytes and CD11c+ dendritic cells (DC) was identified. A significantly greater percentage of CD19+ B cells in the adult CNS expressed MHC II than neonate CNS B cells. Only in the adult CNS could IFNγ transcripts be detected 10 days post immunization for EAE. IFNγ is highly expressed by adult donor CD4+ T cells that are adoptively transferred but not by transferred neonate donor cells. In contrast, IL-17 transcripts could not be detected in adult or neonate CNS in this EAE model, and neither adult nor neonate donor CD4+ T cells expressed IL-17 at the time of adoptive transfer.
Collapse
Affiliation(s)
- Petra D Cravens
- Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center at Dallas, Dallas, TX, 75390-9036, USA
| | - Bernd C Kieseier
- Department of Neurology, Heinrich Heine University Düsseldorf, Düsseldorf, 40225, Germany
| | - Rehana Hussain
- Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center at Dallas, Dallas, TX, 75390-9036, USA
| | - Emily Herndon
- Department of Pathology, University of Texas Southwestern Medical Center at Dallas, Dallas, TX, 75390, USA
| | - Benjamine Arellano
- Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center at Dallas, Dallas, TX, 75390-9036, USA
| | - Li-Hong Ben
- Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center at Dallas, Dallas, TX, 75390-9036, USA
| | - Brenda C Timmons
- Hamon Center for Therapeutic Oncology, University of Texas Southwestern Medical Center at Dallas, Dallas, TX, 75390, USA
| | - Cyd Castro-Rojas
- Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center at Dallas, Dallas, TX, 75390-9036, USA
| | - Hans-Peter Hartung
- Department of Neurology, Heinrich Heine University Düsseldorf, Düsseldorf, 40225, Germany
| | - Bernhard Hemmer
- Department of Neurology, Klinikum rechts der Isar, Technische Universität München, München, 81675, Germany
| | - Martin S Weber
- Department of Neurology, Klinikum rechts der Isar, Technische Universität München, München, 81675, Germany
- Department of Neurology, University Medical Center, Georg August University, Göttingen, 37075, Germany
- Department of Neuropathology, University Medical Center, Georg August University, Göttingen, 37975, Germany
| | - Scott S Zamvil
- Department of Neurology, University of California, San Francisco, CA, 94143, USA
- Program in Immunology, University of California, San Francisco, CA, 94143, USA
| | - Olaf Stüve
- Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center at Dallas, Dallas, TX, 75390-9036, USA
- Department of Neurology, Heinrich Heine University Düsseldorf, Düsseldorf, 40225, Germany
- Department of Neurology, Klinikum rechts der Isar, Technische Universität München, München, 81675, Germany
- Neurology Section, VA North Texas Health Care System, Medical Service, 4500 South Lancaster Rd, Dallas, TX, 75216, USA
| |
Collapse
|
43
|
McPherson RC, Anderton SM. Adaptive immune responses in CNS autoimmune disease: mechanisms and therapeutic opportunities. J Neuroimmune Pharmacol 2013; 8:774-90. [PMID: 23568718 DOI: 10.1007/s11481-013-9453-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Accepted: 03/13/2013] [Indexed: 01/20/2023]
Abstract
The processes underlying autoimmune CNS inflammation are complex, but key roles for autoimmune lymphocytes seem inevitable, based on clinical investigations in multiple sclerosis (MS) and related diseases such as neuromyelitis optica, together with the known pathogenic activity of T cells in experimental autoimmune encephalomyelitis (EAE) models. Despite intense investigation, the details of etiopathology in these diseases have been elusive. Here we describe recent advances in the rodent models that begin to allow a map of pathogenic and protective immunity to be drawn. This map might illuminate previous successful and unsuccessful therapeutic strategies targeting particular pathways, whilst also providing better opportunities for the future, leading to tailored intervention based on understanding the quality of each individual's autoimmune response.
Collapse
Affiliation(s)
- Rhoanne C McPherson
- Centre for Inflammation Research and Centre for Multiple Sclerosis Research, Queen's Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | | |
Collapse
|
44
|
Abstract
Multiple sclerosis (MS) is a chronic inflammatory demyelinating disease of the central nervous system (CNS) and the pathogenesis leading to demyelination includes 3 major processes. The first step is establishment of autoimmunity to CNS myelin components, with molecular mimicry between a portion of the infectious agents and that of myelin, which is an important feature. The second step is entry of immune cells into the CNS via the blood-brain barrier (BBB). Activated T cells can easily cross the BBB using surface LFA-1 and VLA-4 as ligands to ICAM-1 and VCAM-1, respectively, which are expressed on endothelial cells in the CNS. As the third step, immune reactions occur within the CNS when activated T cells encounter specific antigens presented by microglia. Of the helper T cells re-stimulated by autoantigens, Th1 cells producing interferon-γ and Th17 cells secreting interleukin-17 play major roles in propagating inflammation, while Th2 cells producing IL-4, and regulatory T cells secreting IL-10 and TGF-β suppress pathological processes. Final demyelination is rendered either by macrophages recruited from the bloodstream across the BBB, or by TNF-α and nitric oxide, which are secreted by Th1 cells and macrophages, and toxic to CNS myelin.
Collapse
Affiliation(s)
- Makoto Matsui
- Department of Neurology, Kanazawa Medical University
| |
Collapse
|
45
|
Kawakami N, Bartholomäus I, Pesic M, Mues M. An autoimmunity odyssey: how autoreactive T cells infiltrate into the CNS. Immunol Rev 2012; 248:140-55. [PMID: 22725959 DOI: 10.1111/j.1600-065x.2012.01133.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Experimental autoimmune encephalomyelitis (EAE) is a widely used animal model of multiple sclerosis (MS), a human autoimmune disease. To explore how EAE and ultimately MS is induced, autoantigen-specific T cells were established, were labeled with fluorescent protein by retroviral gene transfer, and were tracked in vivo after adoptive transfer. Intravital imaging with two-photon microscopy was used to record the entire entry process of autoreactive T cells into the CNS: a small number of T cells first appear in the CNS leptomeninges before onset of EAE, and crawl on the intraluminal surface of blood vessels, which is integrin α4 and αL dependent. After extravasation, the T cells continue into the perivascular space, meeting local antigen-presenting cells (APCs), which present endogenous antigens. This interaction activates the T cells and guides them to penetrate the CNS parenchyma. As the local APCs in the CNS are not saturated with endogenous antigens, exogenous antigens stimulate the autoreactive T cells more strongly and, as a result, exacerbate the clinical outcome. Currently, we are attempting to visualize T-cell activation in vivo in both rat T-cell-mediated EAE and mouse spontaneous EAE models.
Collapse
Affiliation(s)
- Naoto Kawakami
- Institute of Clinical Neuroimmunology, Ludwig Maximilians University, München, Germany.
| | | | | | | |
Collapse
|
46
|
T cells become licensed in the lung to enter the central nervous system. Nature 2012; 488:675-9. [PMID: 22914092 DOI: 10.1038/nature11337] [Citation(s) in RCA: 312] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2012] [Accepted: 06/19/2012] [Indexed: 02/07/2023]
Abstract
The blood–brain barrier (BBB) and the environment of the central nervous system (CNS) guard the nervous tissue from peripheral immune cells. In the autoimmune disease multiple sclerosis, myelin-reactive T-cell blasts are thought to transgress the BBB and create a pro-inflammatory environment in the CNS, thereby making possible a second autoimmune attack that starts from the leptomeningeal vessels and progresses into the parenchyma. Using a Lewis rat model of experimental autoimmune encephalomyelitis, we show here that contrary to the expectations of this concept, T-cell blasts do not efficiently enter the CNS and are not required to prepare the BBB for immune-cell recruitment. Instead, intravenously transferred T-cell blasts gain the capacity to enter the CNS after residing transiently within the lung tissues. Inside the lung tissues, they move along and within the airways to bronchus-associated lymphoid tissues and lung-draining mediastinal lymph nodes before they enter the blood circulation from where they reach the CNS. Effector T cells transferred directly into the airways showed a similar migratory pattern and retained their full pathogenicity. On their way the T cells fundamentally reprogrammed their gene-expression profile, characterized by downregulation of their activation program and upregulation of cellular locomotion molecules together with chemokine and adhesion receptors. The adhesion receptors include ninjurin 1, which participates in T-cell intravascular crawling on cerebral blood vessels. We detected that the lung constitutes a niche not only for activated T cells but also for resting myelin-reactive memory T cells. After local stimulation in the lung, these cells strongly proliferate and, after assuming migratory properties, enter the CNS and induce paralytic disease. The lung could therefore contribute to the activation of potentially autoaggressive T cells and their transition to a migratory mode as a prerequisite to entering their target tissues and inducing autoimmune disease.
Collapse
|
47
|
Mullen KM, Gocke AR, Allie R, Ntranos A, Grishkan IV, Pardo C, Calabresi PA. Expression of CCR7 and CD45RA in CD4+ and CD8+ subsets in cerebrospinal fluid of 134 patients with inflammatory and non-inflammatory neurological diseases. J Neuroimmunol 2012; 249:86-92. [PMID: 22633193 DOI: 10.1016/j.jneuroim.2012.04.017] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2012] [Revised: 04/21/2012] [Accepted: 04/25/2012] [Indexed: 10/28/2022]
Abstract
We investigated CD45RA and CCR7 expression in CD4+ and CD8+ subsets of cerebrospinal fluid (CSF) lymphocytes, both immediately ex vivo and after stimulation, from 134 patients with a variety of inflammatory and non-inflammatory neurological diseases. Most inflammatory diseases had a higher CD4+:CD8+ ratio and higher percentage of effector memory T cells (T(EM)) than non-inflammatory controls, excluding active infection. Moreover, we found that patients with highly elevated cell counts in the CSF tended to have a lower percentage of central memory T cells (T(CM)) than patients with low or absent pleocytosis, with a concomitant increase in T(EM). We also found that samples with elevated IgG index or presence of oligoclonal bands had a significantly higher CD4+:CD8+ ratio than normal samples, consistent with increased CD4+ help for intrathecal IgG synthesis by B cells.
Collapse
Affiliation(s)
- Katherine M Mullen
- Johns Hopkins School of Medicine, Department of Neurology, 600 N. Wolfe St., Baltimore, MD 21287, United States
| | | | | | | | | | | | | |
Collapse
|
48
|
Wraith DC, Nicholson LB. The adaptive immune system in diseases of the central nervous system. J Clin Invest 2012; 122:1172-9. [PMID: 22466659 DOI: 10.1172/jci58648] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Tissues of the CNS, such as the brain, optic nerves, and spinal cord, may be affected by a range of insults including genetic, autoimmune, infectious, or neurodegenerative diseases and cancer. The immune system is involved in the pathogenesis of many of these, either by causing tissue damage or alternatively by responding to disease and contributing to repair. It is clearly vital that cells of the immune system patrol the CNS and protect against infection. However, in contrast to other tissues, damage caused by immune pathology in the CNS can be irreparable. The nervous and immune systems have, therefore, coevolved to permit effective immune surveillance while limiting immune pathology. Here we will consider aspects of adaptive immunity in the CNS and the retina, both in the context of protection from infection as well as cancer and autoimmunity, while focusing on immune responses that compromise health and lead to significant morbidity.
Collapse
Affiliation(s)
- David C Wraith
- School of Clinical Sciences, University of Bristol, Bristol, United Kingdom.
| | | |
Collapse
|
49
|
Pellegatta S, Cuppini L, Finocchiaro G. Brain cancer immunoediting: novel examples provided by immunotherapy of malignant gliomas. Expert Rev Anticancer Ther 2012; 11:1759-74. [PMID: 22050025 DOI: 10.1586/era.11.102] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
A number of studies in murine models have suggested that the immune system may edit different tumors by forcing their expression profiles so that they escape immune reactions and proliferate. Glioblastoma (GB), the most frequent and aggressive primary brain tumor, provides a good example of this, thanks to the production of numerous immunosuppressive molecules (with TGF-β being of paramount importance), downregulation of the MHC complex and deregulation of the potential for antigen presentation by the surrounding microglia. Given that surgery, radiotherapy and chemotherapy with available protocols have limited effects on the survival of GB patients, different immunotherapy strategies have been developed, based on the use of dendritic cells, antibodies and peptide vaccination. Presently, bevacizumab, a humanized anti-VEGF antibody, provides the most successful example for immune-based treatment of GB, however, its action is limited in time, as the often tumor relapses due to still undefined immunoediting mechanisms. Altered function of EGF receptor-driven pathways is common in GB and is most frequently due to the presence of a deleted form named EGFRvIII, providing a unique cancer epitope that has been targeted by immunotherapy. A recent trial of GB immunotherapy based on vaccination with the EGFRvIII peptide has shown clinical benefit: interestingly most GBs at relapse were negative for EGFRvIII expression, a relevant, direct example of cancer immunoediting. Investigations on the mechanisms of GB immunoediting will lead to an increased understanding of the biology of this malignancy and hopefully provide novel therapeutic targets.
Collapse
Affiliation(s)
- Serena Pellegatta
- Fondazione I.R.C.C.S Istituto Neurologico C. Besta, Via Celoria 11, 20133 Milan, Italy
| | | | | |
Collapse
|
50
|
Wekerle H, Flügel A, Fugger L, Schett G, Serreze D. Autoimmunity's next top models. Nat Med 2012; 18:66-70. [PMID: 22227675 DOI: 10.1038/nm.2635] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Hartmut Wekerle
- Department of Neuroimmunology, Max Planck Institute of Neurobiology, Munich, Germany.
| | | | | | | | | |
Collapse
|