1
|
Macías-Cortés E. Understanding Why Homeopathic Medicines are Used for Menopause: Searching for Insights into Neuroendocrine Features. HOMEOPATHY 2024; 113:54-66. [PMID: 37399836 DOI: 10.1055/s-0043-1769734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2023]
Abstract
BACKGROUND Menopause is a physiological event that marks the end of a woman's reproductive stage in life. Vasomotor symptoms and changes in mood are among its most important effects. Homeopathy has been used for many years in treating menopausal complaints, though clinical and pre-clinical research in this field is limited. Homeopathy often bases its prescription on neuropsychiatric symptoms, but it is unknown if homeopathic medicines (HMs) exert a neuroendocrine effect that causes an improvement in vasomotor symptoms and mood during menopause. OBJECTIVES The study's objectives were to address the pathophysiological changes of menopause that could help in the understanding of the possible effect of HMs at a neuroendocrine level, to review the current evidence for two of the most frequently prescribed HMs for menopause (Lachesis mutus and Sepia officinalis), and to discuss the future directions of research in this field. METHODS An extensive literature search for the pathophysiologic events of menopause and depression, as well as for the current evidence for HMs in menopause and depression, was performed. RESULTS Neuroendocrine changes are involved in the pathophysiology of vasomotor symptoms and changes in mood during menopause. Gonadal hormones modulate neurotransmitter systems. Both play a role in mood disorders and temperature regulation. It has been demonstrated that Gelsemium sempervirens, Ignatia amara and Chamomilla matricaria exert anxiolytic effects in rodent models. Lachesis mutus and Sepia officinalis are frequently prescribed for important neuropsychiatric and vasomotor symptoms. Dopamine, a neurotransmitter involved in mood, is among the constituents of the ink of the common cuttlefish, Sepia officinalis. CONCLUSION Based on all the pathophysiologic events of menopause and the improvement in menopausal complaints that certain HMs show in daily practice, these medicines might have a direct or indirect neuroendocrine effect in the body, possibly triggered via an as-yet unidentified biological mechanism. Many unanswered questions in this field require further pre-clinical and clinical research.
Collapse
Affiliation(s)
- Emma Macías-Cortés
- Outpatient Homeopathy Service, Hospital Juárez de México, Secretaría de Salud, Mexico City, Mexico
| |
Collapse
|
2
|
Ramos-Rosales D, Méndez-Hernández E, Salas-Pacheco J, Salas-Leal A, Urtiz-Estrada N, Barraza-Salas M. Differential Expression of HTR2A and MAOA Genes in the Prefrontal Cortex and Hypothalamus of Suicide Victims from Mexican Population. Neurosci Lett 2022; 778:136611. [DOI: 10.1016/j.neulet.2022.136611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 03/23/2022] [Accepted: 03/28/2022] [Indexed: 11/16/2022]
|
3
|
Linares-Saldana R, Kim W, Bolar NA, Zhang H, Koch-Bojalad BA, Yoon S, Shah PP, Karnay A, Park DS, Luppino JM, Nguyen SC, Padmanabhan A, Smith CL, Poleshko A, Wang Q, Li L, Srivastava D, Vahedi G, Eom GH, Blobel GA, Joyce EF, Jain R. BRD4 orchestrates genome folding to promote neural crest differentiation. Nat Genet 2021; 53:1480-1492. [PMID: 34611363 PMCID: PMC8500624 DOI: 10.1038/s41588-021-00934-8] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 08/06/2021] [Indexed: 02/08/2023]
Abstract
Higher-order chromatin structure regulates gene expression, and mutations in proteins mediating genome folding underlie developmental disorders known as cohesinopathies. However, the relationship between three-dimensional genome organization and embryonic development remains unclear. Here we define a role for bromodomain-containing protein 4 (BRD4) in genome folding, and leverage it to understand the importance of genome folding in neural crest progenitor differentiation. Brd4 deletion in neural crest results in cohesinopathy-like phenotypes. BRD4 interacts with NIPBL, a cohesin agonist, and BRD4 depletion or loss of the BRD4-NIPBL interaction reduces NIPBL occupancy, suggesting that BRD4 stabilizes NIPBL on chromatin. Chromatin interaction mapping and imaging experiments demonstrate that BRD4 depletion results in compromised genome folding and loop extrusion. Finally, mutation of individual BRD4 amino acids that mediate an interaction with NIPBL impedes neural crest differentiation into smooth muscle. Remarkably, loss of WAPL, a cohesin antagonist, rescues attenuated smooth muscle differentiation resulting from BRD4 loss. Collectively, our data reveal that BRD4 choreographs genome folding and illustrates the relevance of balancing cohesin activity for progenitor differentiation.
Collapse
Affiliation(s)
- Ricardo Linares-Saldana
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Cell and Developmental Biology, Department of Medicine, Institute of Regenerative Medicine, Penn Cardiovascular Institute, University of Pennsylvania, Philadelphia, PA, USA
- Penn Epigenetics Institute, University of Pennsylvania, Philadelphia, PA, USA
| | - Wonho Kim
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Cell and Developmental Biology, Department of Medicine, Institute of Regenerative Medicine, Penn Cardiovascular Institute, University of Pennsylvania, Philadelphia, PA, USA
- Penn Epigenetics Institute, University of Pennsylvania, Philadelphia, PA, USA
| | - Nikhita A Bolar
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Cell and Developmental Biology, Department of Medicine, Institute of Regenerative Medicine, Penn Cardiovascular Institute, University of Pennsylvania, Philadelphia, PA, USA
- Penn Epigenetics Institute, University of Pennsylvania, Philadelphia, PA, USA
| | - Haoyue Zhang
- Institute of Molecular Physiology, Shenzhen Bay Laboratory, Shenzhen, China
- Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Bailey A Koch-Bojalad
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Cell and Developmental Biology, Department of Medicine, Institute of Regenerative Medicine, Penn Cardiovascular Institute, University of Pennsylvania, Philadelphia, PA, USA
- Penn Epigenetics Institute, University of Pennsylvania, Philadelphia, PA, USA
| | - Sora Yoon
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Penn Epigenetics Institute, University of Pennsylvania, Philadelphia, PA, USA
- Department of Genetics, University of Pennsylvania, Philadelphia, PA, USA
- Institute for Immunology, Epigenetics Institute, Institute for Diabetes, Obesity and Metabolism, University of Pennsylvania, Philadelphia, PA, USA
| | - Parisha P Shah
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Cell and Developmental Biology, Department of Medicine, Institute of Regenerative Medicine, Penn Cardiovascular Institute, University of Pennsylvania, Philadelphia, PA, USA
- Penn Epigenetics Institute, University of Pennsylvania, Philadelphia, PA, USA
| | - Ashley Karnay
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Cell and Developmental Biology, Department of Medicine, Institute of Regenerative Medicine, Penn Cardiovascular Institute, University of Pennsylvania, Philadelphia, PA, USA
- Penn Epigenetics Institute, University of Pennsylvania, Philadelphia, PA, USA
| | - Daniel S Park
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Penn Epigenetics Institute, University of Pennsylvania, Philadelphia, PA, USA
- Department of Genetics, University of Pennsylvania, Philadelphia, PA, USA
| | - Jennifer M Luppino
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Penn Epigenetics Institute, University of Pennsylvania, Philadelphia, PA, USA
- Department of Genetics, University of Pennsylvania, Philadelphia, PA, USA
| | - Son C Nguyen
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Penn Epigenetics Institute, University of Pennsylvania, Philadelphia, PA, USA
- Department of Genetics, University of Pennsylvania, Philadelphia, PA, USA
| | - Arun Padmanabhan
- Gladstone Institute of Cardiovascular Disease, San Francisco, CA, USA
- Division of Cardiology, Department of Medicine, University of California, San Francisco, CA, USA
| | - Cheryl L Smith
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Cell and Developmental Biology, Department of Medicine, Institute of Regenerative Medicine, Penn Cardiovascular Institute, University of Pennsylvania, Philadelphia, PA, USA
- Penn Epigenetics Institute, University of Pennsylvania, Philadelphia, PA, USA
| | - Andrey Poleshko
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Cell and Developmental Biology, Department of Medicine, Institute of Regenerative Medicine, Penn Cardiovascular Institute, University of Pennsylvania, Philadelphia, PA, USA
- Penn Epigenetics Institute, University of Pennsylvania, Philadelphia, PA, USA
| | - Qiaohong Wang
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Cell and Developmental Biology, Department of Medicine, Institute of Regenerative Medicine, Penn Cardiovascular Institute, University of Pennsylvania, Philadelphia, PA, USA
- Penn Epigenetics Institute, University of Pennsylvania, Philadelphia, PA, USA
| | - Li Li
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Cell and Developmental Biology, Department of Medicine, Institute of Regenerative Medicine, Penn Cardiovascular Institute, University of Pennsylvania, Philadelphia, PA, USA
- Penn Epigenetics Institute, University of Pennsylvania, Philadelphia, PA, USA
| | - Deepak Srivastava
- Gladstone Institute of Cardiovascular Disease, San Francisco, CA, USA
- Roddenberry Stem Cell Center at the Gladstone Institutes, Departments of Pediatrics and Biochemistry & Biophysics, University of California San Francisco, San Francisco, CA, USA
| | - Golnaz Vahedi
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Penn Epigenetics Institute, University of Pennsylvania, Philadelphia, PA, USA
- Department of Genetics, University of Pennsylvania, Philadelphia, PA, USA
- Institute for Immunology, Epigenetics Institute, Institute for Diabetes, Obesity and Metabolism, University of Pennsylvania, Philadelphia, PA, USA
- Abramson Family Cancer Center, University of Pennsylvania, Philadelphia, PA, USA
| | - Gwang Hyeon Eom
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Cell and Developmental Biology, Department of Medicine, Institute of Regenerative Medicine, Penn Cardiovascular Institute, University of Pennsylvania, Philadelphia, PA, USA
- Penn Epigenetics Institute, University of Pennsylvania, Philadelphia, PA, USA
- Department of Pharmacology, Chonnam National University Medical School, Hwasun, Republic of Korea
| | - Gerd A Blobel
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Penn Epigenetics Institute, University of Pennsylvania, Philadelphia, PA, USA
- Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Eric F Joyce
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Penn Epigenetics Institute, University of Pennsylvania, Philadelphia, PA, USA
- Department of Genetics, University of Pennsylvania, Philadelphia, PA, USA
| | - Rajan Jain
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Department of Cell and Developmental Biology, Department of Medicine, Institute of Regenerative Medicine, Penn Cardiovascular Institute, University of Pennsylvania, Philadelphia, PA, USA.
- Penn Epigenetics Institute, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
4
|
Castagnola E, Garg R, Rastogi SK, Cohen-Karni T, Cui XT. 3D fuzzy graphene microelectrode array for dopamine sensing at sub-cellular spatial resolution. Biosens Bioelectron 2021; 191:113440. [PMID: 34171734 DOI: 10.1016/j.bios.2021.113440] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 05/28/2021] [Accepted: 06/13/2021] [Indexed: 02/07/2023]
Abstract
The development of a high sensitivity real-time sensor for multi-site detection of dopamine (DA) with high spatial and temporal resolution is of fundamental importance to study the complex spatial and temporal pattern of DA dynamics in the brain, thus improving the understanding and treatments of neurological and neuropsychiatric disorders. In response to this need, here we present high surface area out-of-plane grown three-dimensional (3D) fuzzy graphene (3DFG) microelectrode arrays (MEAs) for highly selective, sensitive, and stable DA electrochemical sensing. 3DFG microelectrodes present a remarkable sensitivity to DA (2.12 ± 0.05 nA/nM, with LOD of 364.44 ± 8.65 pM), the highest reported for nanocarbon MEAs using Fast Scan Cyclic Voltammetry (FSCV). The high surface area of 3DFG allows for miniaturization of electrode down to 2 × 2 μm2, without compromising the electrochemical performance. Moreover, 3DFG MEAs are electrochemically stable under 7.2 million scans of continuous FSCV cycling, present exceptional selectivity over the most common interferents in vitro with minimum fouling by electrochemical byproducts and can discriminate DA and serotonin (5-HT) in response to the injection of their 50:50 mixture. These results highlight the potential of 3DFG MEAs as a promising platform for FSCV based multi-site detection of DA with high sensitivity, selectivity, and spatial resolution.
Collapse
Affiliation(s)
- Elisa Castagnola
- Department of Bioengineering, University of Pittsburgh, 3501 Fifth Ave. Pittsburgh, PA 15260 Pittsburgh, PA, USA
| | - Raghav Garg
- Department of Materials Science and Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA, 15213, USA
| | - Sahil K Rastogi
- Department of Biomedical Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA, 15213, USA
| | - Tzahi Cohen-Karni
- Department of Materials Science and Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA, 15213, USA; Department of Biomedical Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA, 15213, USA; McGowan Institute for Regenerative Medicine, University of Pittsburgh, 450 Technology Drive Pittsburgh, PA, 15219-3110, USA.
| | - Xinyan Tracy Cui
- Department of Bioengineering, University of Pittsburgh, 3501 Fifth Ave. Pittsburgh, PA 15260 Pittsburgh, PA, USA; McGowan Institute for Regenerative Medicine, University of Pittsburgh, 450 Technology Drive Pittsburgh, PA, 15219-3110, USA; Center for Neural Basis of Cognition, University of Pittsburgh, 4400 Fifth Ave, Pittsburgh, PA 15213, Pittsburgh, PA, 15261, USA.
| |
Collapse
|
5
|
Ibuchi K, Nagayama T. Opposing effects of dopamine on agonistic behaviour in crayfish. J Exp Biol 2021; 224:269155. [PMID: 34128529 DOI: 10.1242/jeb.242057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 04/29/2021] [Indexed: 01/27/2023]
Abstract
The effects of dopamine on the agonistic behaviour of crayfish were analysed. When dopamine concentrations of 1 μmol l-1 were injected into large crayfish, individuals were beaten by smaller opponents, despite their physical advantage. Injection of 10 μmol l-1 dopamine into small animals increased their rate of winning against larger opponents. Injection of a D1 receptor antagonist prohibited the onset of a 'loser' effect in subordinate animals, suggesting that the inhibitory effect of dopamine on larger animals is mediated by D1 receptors. Similarly, injection of a D2 receptor antagonist prohibited the onset of a 'winner' effect in dominant animals, suggesting that the facilitating effect of dopamine on small animals is mediated by D2 receptors. Since the inhibitory effect of 1 μmol l-1 dopamine was similar to that seen with 1 μmol l-1 octopamine and the facilitating effect of 10 μmol l-1 dopamine was similar to that of 1 μmol l-1 serotonin, functional interactions among dopamine, octopamine and serotonin were analyzed by co-injection of amines with their receptor antagonists in various combinations. The inhibitory effect of 1 μmol l-1 dopamine disappeared when administered with D1 receptor antagonist, but remained when combined with octopamine receptor antagonist. Octopamine effects disappeared when administered with either D1 receptor antagonist or octopamine receptor antagonist, suggesting that the dopamine system is downstream of octopamine. The facilitating effect of 10 μmol l-1 dopamine disappeared when combined with serotonin 5HT1 receptor antagonist or D2 receptor antagonist. Serotonin effects also disappeared when combined with D2 receptor antagonist, suggesting that dopamine and serotonin activate each other through parallel pathways.
Collapse
Affiliation(s)
- Kengo Ibuchi
- Division of Biology, Graduate School of Science and Engineering, Yamagata University, 990-8560 Yamagata, Japan
| | - Toshiki Nagayama
- Department of Biology, Faculty of Science, Yamagata University, 990-8560 Yamagata, Japan
| |
Collapse
|
6
|
Jansch C, Ziegler GC, Forero A, Gredy S, Wäldchen S, Vitale MR, Svirin E, Zöller JEM, Waider J, Günther K, Edenhofer F, Sauer M, Wischmeyer E, Lesch KP. Serotonin-specific neurons differentiated from human iPSCs form distinct subtypes with synaptic protein assembly. J Neural Transm (Vienna) 2021; 128:225-241. [PMID: 33560471 PMCID: PMC7914246 DOI: 10.1007/s00702-021-02303-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 01/10/2021] [Indexed: 02/06/2023]
Abstract
Human induced pluripotent stem cells (hiPSCs) have revolutionized the generation of experimental disease models, but the development of protocols for the differentiation of functionally active neuronal subtypes with defined specification is still in its infancy. While dysfunction of the brain serotonin (5-HT) system has been implicated in the etiology of various neuropsychiatric disorders, investigation of functional human 5-HT specific neurons in vitro has been restricted by technical limitations. We describe an efficient generation of functionally active neurons from hiPSCs displaying 5-HT specification by modification of a previously reported protocol. Furthermore, 5-HT specific neurons were characterized using high-end fluorescence imaging including super-resolution microscopy in combination with electrophysiological techniques. Differentiated hiPSCs synthesize 5-HT, express specific markers, such as tryptophan hydroxylase 2 and 5-HT transporter, and exhibit an electrophysiological signature characteristic of serotonergic neurons, with spontaneous rhythmic activities, broad action potentials and large afterhyperpolarization potentials. 5-HT specific neurons form synapses reflected by the expression of pre- and postsynaptic proteins, such as Bassoon and Homer. The distribution pattern of Bassoon, a marker of the active zone along the soma and extensions of neurons, indicates functionality via volume transmission. Among the high percentage of 5-HT specific neurons (~ 42%), a subpopulation of CDH13 + cells presumably designates dorsal raphe neurons. hiPSC-derived 5-HT specific neuronal cell cultures reflect the heterogeneous nature of dorsal and median raphe nuclei and may facilitate examining the association of serotonergic neuron subpopulations with neuropsychiatric disorders.
Collapse
Affiliation(s)
- Charline Jansch
- Division of Molecular Psychiatry, Center of Mental Health, University of Würzburg, Margarete-Höppel-Platz 1, 97080, Würzburg, Germany
| | - Georg C Ziegler
- Division of Molecular Psychiatry, Center of Mental Health, University of Würzburg, Margarete-Höppel-Platz 1, 97080, Würzburg, Germany.
- Department of Psychiatry, Psychosomatics and Psychotherapy, Center of Mental Health, University of Würzburg, Würzburg, Germany.
| | - Andrea Forero
- Division of Molecular Psychiatry, Center of Mental Health, University of Würzburg, Margarete-Höppel-Platz 1, 97080, Würzburg, Germany
| | - Sina Gredy
- Institute of Physiology, Molecular Electrophysiology, University of Würzburg, Würzburg, Germany
- Laboratory of Psychiatric Neurobiology, Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Sina Wäldchen
- Department of Biotechnology and Biophysics, Biocenter, University of Würzburg, Würzburg, Germany
| | - Maria Rosaria Vitale
- Division of Molecular Psychiatry, Center of Mental Health, University of Würzburg, Margarete-Höppel-Platz 1, 97080, Würzburg, Germany
- Laboratory of Psychiatric Neurobiology, Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Evgeniy Svirin
- Division of Molecular Psychiatry, Center of Mental Health, University of Würzburg, Margarete-Höppel-Platz 1, 97080, Würzburg, Germany
- Laboratory of Psychiatric Neurobiology, Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Johanna E M Zöller
- Division of Molecular Psychiatry, Center of Mental Health, University of Würzburg, Margarete-Höppel-Platz 1, 97080, Würzburg, Germany
- Department of Translational Neuroscience, School for Mental Health and Neuroscience (MHeNS), Maastricht University, Maastricht, The Netherlands
| | - Jonas Waider
- Division of Molecular Psychiatry, Center of Mental Health, University of Würzburg, Margarete-Höppel-Platz 1, 97080, Würzburg, Germany
| | - Katharina Günther
- Department of Genomics, Stem Cell Biology and Regenerative Medicine, Institute of Molecular Biology and CMBI, Leopold-Franzens-University Innsbruck, Innsbruck, Austria
- Institute of Molecular Regenerative Medicine, SCI-TReCS, Paracelsus Medical University, Salzburg, Austria
| | - Frank Edenhofer
- Department of Genomics, Stem Cell Biology and Regenerative Medicine, Institute of Molecular Biology and CMBI, Leopold-Franzens-University Innsbruck, Innsbruck, Austria
| | - Markus Sauer
- Department of Biotechnology and Biophysics, Biocenter, University of Würzburg, Würzburg, Germany
| | - Erhard Wischmeyer
- Division of Molecular Psychiatry, Center of Mental Health, University of Würzburg, Margarete-Höppel-Platz 1, 97080, Würzburg, Germany
- Institute of Physiology, Molecular Electrophysiology, University of Würzburg, Würzburg, Germany
| | - Klaus-Peter Lesch
- Division of Molecular Psychiatry, Center of Mental Health, University of Würzburg, Margarete-Höppel-Platz 1, 97080, Würzburg, Germany.
- Laboratory of Psychiatric Neurobiology, Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Moscow, Russia.
- Department of Translational Neuroscience, School for Mental Health and Neuroscience (MHeNS), Maastricht University, Maastricht, The Netherlands.
| |
Collapse
|
7
|
Big Lessons from Tiny Flies: Drosophila melanogaster as a Model to Explore Dysfunction of Dopaminergic and Serotonergic Neurotransmitter Systems. Int J Mol Sci 2018; 19:ijms19061788. [PMID: 29914172 PMCID: PMC6032372 DOI: 10.3390/ijms19061788] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 06/11/2018] [Accepted: 06/13/2018] [Indexed: 12/31/2022] Open
Abstract
The brain of Drosophila melanogaster is comprised of some 100,000 neurons, 127 and 80 of which are dopaminergic and serotonergic, respectively. Their activity regulates behavioral functions equivalent to those in mammals, e.g., motor activity, reward and aversion, memory formation, feeding, sexual appetite, etc. Mammalian dopaminergic and serotonergic neurons are known to be heterogeneous. They differ in their projections and in their gene expression profile. A sophisticated genetic tool box is available, which allows for targeting virtually any gene with amazing precision in Drosophila melanogaster. Similarly, Drosophila genes can be replaced by their human orthologs including disease-associated alleles. Finally, genetic manipulation can be restricted to single fly neurons. This has allowed for addressing the role of individual neurons in circuits, which determine attraction and aversion, sleep and arousal, odor preference, etc. Flies harboring mutated human orthologs provide models which can be interrogated to understand the effect of the mutant protein on cell fate and neuronal connectivity. These models are also useful for proof-of-concept studies to examine the corrective action of therapeutic strategies. Finally, experiments in Drosophila can be readily scaled up to an extent, which allows for drug screening with reasonably high throughput.
Collapse
|
8
|
Niens J, Reh F, Çoban B, Cichewicz K, Eckardt J, Liu YT, Hirsh J, Riemensperger TD. Dopamine Modulates Serotonin Innervation in the Drosophila Brain. Front Syst Neurosci 2017; 11:76. [PMID: 29085286 PMCID: PMC5650618 DOI: 10.3389/fnsys.2017.00076] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 09/28/2017] [Indexed: 11/13/2022] Open
Abstract
Parkinson’s disease (PD) results from a progressive degeneration of the dopaminergic nigrostriatal system leading to a decline in movement control, with resting tremor, rigidity and postural instability. Several aspects of PD can be modeled in the fruit fly, Drosophila melanogaster, including α-synuclein-induced degeneration of dopaminergic neurons, or dopamine (DA) loss by genetic elimination of neural DA synthesis. Defective behaviors in this latter model can be ameliorated by feeding the DA precursor L-DOPA, analogous to the treatment paradigm for PD. Secondary complication from L-DOPA treatment in PD patients are associated with ectopic synthesis of DA in serotonin (5-HT)-releasing neurons, leading to DA/5-HT imbalance. Here we examined the neuro-anatomical adaptations resulting from imbalanced DA/5-HT signaling in Drosophila mutants lacking neural DA. We find that, similar to rodent models of PD, lack of DA leads to increased 5-HT levels and arborizations in specific brain regions. Conversely, increased DA levels by L-DOPA feeding leads to reduced connectivity of 5-HT neurons to their target neurons in the mushroom body (MB). The observed alterations of 5-HT neuron plasticity indicate that loss of DA signaling is not solely responsible for the behavioral disorders observed in Drosophila models of PD, but rather a combination of the latter with alterations of 5-HT circuitry.
Collapse
Affiliation(s)
- Janna Niens
- Molecular Neurobiology of Behavior, Johann-Friedrich-Blumenbach-Institute for Zoology and Anthropology, University of Göttingen, Göttingen, Germany
| | - Fabienne Reh
- Molecular Neurobiology of Behavior, Johann-Friedrich-Blumenbach-Institute for Zoology and Anthropology, University of Göttingen, Göttingen, Germany
| | - Büşra Çoban
- Molecular Neurobiology of Behavior, Johann-Friedrich-Blumenbach-Institute for Zoology and Anthropology, University of Göttingen, Göttingen, Germany
| | - Karol Cichewicz
- Department of Biology, University of Virginia, Charlottesville, VA, United States
| | - Julia Eckardt
- Molecular Neurobiology of Behavior, Johann-Friedrich-Blumenbach-Institute for Zoology and Anthropology, University of Göttingen, Göttingen, Germany
| | - Yi-Ting Liu
- Department of Biology, University of Virginia, Charlottesville, VA, United States
| | - Jay Hirsh
- Department of Biology, University of Virginia, Charlottesville, VA, United States
| | - Thomas D Riemensperger
- Molecular Neurobiology of Behavior, Johann-Friedrich-Blumenbach-Institute for Zoology and Anthropology, University of Göttingen, Göttingen, Germany
| |
Collapse
|
9
|
Hai A, Cai LX, Lee T, Lelyveld VS, Jasanoff A. Molecular fMRI of Serotonin Transport. Neuron 2016; 92:754-765. [PMID: 27773583 DOI: 10.1016/j.neuron.2016.09.048] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Revised: 06/29/2016] [Accepted: 09/20/2016] [Indexed: 01/03/2023]
Abstract
Reuptake of neurotransmitters from the brain interstitium shapes chemical signaling processes and is disrupted in several pathologies. Serotonin reuptake in particular is important for mood regulation and is inhibited by first-line drugs for treatment of depression. Here we introduce a molecular-level fMRI technique for micron-scale mapping of serotonin transport in live animals. Intracranial injection of an MRI-detectable serotonin sensor complexed with serotonin, together with serial imaging and compartmental analysis, permits neurotransmitter transport to be quantified as serotonin dissociates from the probe. Application of this strategy to much of the striatum and surrounding areas reveals widespread nonsaturating serotonin removal with maximal rates in the lateral septum. The serotonin reuptake inhibitor fluoxetine selectively suppresses serotonin removal in septal subregions, whereas both fluoxetine and a dopamine transporter blocker depress reuptake in striatum. These results highlight promiscuous pharmacological influences on the serotonergic system and demonstrate the utility of molecular fMRI for characterization of neurochemical dynamics.
Collapse
Affiliation(s)
- Aviad Hai
- Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Lili X Cai
- Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Taekwan Lee
- Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Victor S Lelyveld
- Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Alan Jasanoff
- Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA; Department of Brain & Cognitive Sciences, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA; Department of Nuclear Science & Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA.
| |
Collapse
|
10
|
Identified Serotonin-Releasing Neurons Induce Behavioral Quiescence and Suppress Mating in Drosophila. J Neurosci 2016; 35:12792-812. [PMID: 26377467 DOI: 10.1523/jneurosci.1638-15.2015] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
UNLABELLED Animals show different levels of activity that are reflected in sensory responsiveness and endogenously generated behaviors. Biogenic amines have been determined to be causal factors for these states of arousal. It is well established that, in Drosophila, dopamine and octopamine promote increased arousal. However, little is known about factors that regulate arousal negatively and induce states of quiescence. Moreover, it remains unclear whether global, diffuse modulatory systems comprehensively affecting brain activity determine general states of arousal. Alternatively, individual aminergic neurons might selectively modulate the animals' activity in a distinct behavioral context. Here, we show that artificially activating large populations of serotonin-releasing neurons induces behavioral quiescence and inhibits feeding and mating. We systematically narrowed down a role of serotonin in inhibiting endogenously generated locomotor activity to neurons located in the posterior medial protocerebrum. We identified neurons of this cell cluster that suppress mating, but not feeding behavior. These results suggest that serotonin does not uniformly act as global, negative modulator of general arousal. Rather, distinct serotoninergic neurons can act as inhibitory modulators of specific behaviors. SIGNIFICANCE STATEMENT An animal's responsiveness to external stimuli and its various types of endogenously generated, motivated behavior are highly dynamic and change between states of high activity and states of low activity. It remains unclear whether these states are mediated by unitary modulatory systems globally affecting brain activity, or whether distinct neurons modulate specific neuronal circuits underlying particular types of behavior. Using the model organism Drosophila melanogaster, we find that activating large proportions of serotonin-releasing neurons induces behavioral quiescence. Moreover, distinct serotonin-releasing neurons that we genetically isolated and identified negatively affect aspects of mating behavior, but not food uptake. This demonstrates that individual serotoninergic neurons can modulate distinct types of behavior selectively.
Collapse
|
11
|
Fortin GM, Bourque MJ, Mendez JA, Leo D, Nordenankar K, Birgner C, Arvidsson E, Rymar VV, Bérubé-Carrière N, Claveau AM, Descarries L, Sadikot AF, Wallén-Mackenzie Å, Trudeau LÉ. Glutamate corelease promotes growth and survival of midbrain dopamine neurons. J Neurosci 2012; 32:17477-91. [PMID: 23197738 PMCID: PMC6621856 DOI: 10.1523/jneurosci.1939-12.2012] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2012] [Revised: 10/10/2012] [Accepted: 10/16/2012] [Indexed: 01/09/2023] Open
Abstract
Recent studies have proposed that glutamate corelease by mesostriatal dopamine (DA) neurons regulates behavioral activation by psychostimulants. How and when glutamate release by DA neurons might play this role remains unclear. Considering evidence for early expression of the type 2 vesicular glutamate transporter in mesencephalic DA neurons, we hypothesized that this cophenotype is particularly important during development. Using a conditional gene knock-out approach to selectively disrupt the Vglut2 gene in mouse DA neurons, we obtained in vitro and in vivo evidence for reduced growth and survival of mesencephalic DA neurons, associated with a decrease in the density of DA innervation in the nucleus accumbens, reduced activity-dependent DA release, and impaired motor behavior. These findings provide strong evidence for a functional role of the glutamatergic cophenotype in the development of mesencephalic DA neurons, opening new perspectives into the pathophysiology of neurodegenerative disorders involving the mesostriatal DA system.
Collapse
Affiliation(s)
- Guillaume M Fortin
- Department of Pharmacology, and Groupe de Recherche sur le Système Nerveux Central, Faculty of Medicine, Université de Montréal, Montréal, Québec, Canada H3C 3J7
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Mattsson C, Andreasson T, Waters N, Sonesson C. Systematic in vivo screening of a series of 1-propyl-4-arylpiperidines against dopaminergic and serotonergic properties in rat brain: a scaffold-jumping approach. J Med Chem 2012; 55:9735-50. [PMID: 23043306 DOI: 10.1021/jm300975f] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A series of 1-propyl-4-arylpiperidines were synthesized and their effects on the dopaminergic and serotonergic systems tested in vivo and in vitro. Scaffold jumping among five- and six-membered bicyclic aryl rings attached to the piperidine ring had a marked impact on these effects. Potent and selective dopamine D(2) receptor antagonists were generated from 3-indoles, 3-benzoisoxazoles, 3-benzimidazol-2-one, and 3-benzothiophenes. In contrast, 3-benzofuran was a potent and selective inhibitor of monoamine oxidase (MAO) A. The effects of the synthesized compounds on 3,4-dihydroxyphenylacetic acid (DOPAC) levels correlated very well with their affinity for dopamine D(2) receptors and MAO A. In the 4-arylpiperidine series, the most promising compound for development was the 6-chloro-3-(1-propyl-4-piperidyl)-1H-benzimidazol-2-one (19), which displayed typical dopamine D(2) receptor antagonist properties in vivo but produced only a partial reduction on spontaneous locomotor activity. This indicates that the compound may have a lower propensity to induce parkinsonism in patients.
Collapse
Affiliation(s)
- Cecilia Mattsson
- NeuroSearch Sweden AB, Arvid Wallgrens Backe 20, SE-413 46 Gothenburg, Sweden
| | | | | | | |
Collapse
|
13
|
An SJ, Kim DS. Alterations in serotonin receptors and transporter immunoreactivities in the hippocampus in the rat unilateral hypoxic-induced epilepsy model. Cell Mol Neurobiol 2011; 31:1245-55. [PMID: 21681557 DOI: 10.1007/s10571-011-9726-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2011] [Accepted: 06/06/2011] [Indexed: 11/26/2022]
Abstract
Unilateral hypoxic-ischemia results in the frequent occurrence of interictal spikes, and occasionally sustained ictal discharges accompanied by a reduction in paired-pulse inhibition within the non-lesioned dentate gyrus. To elucidate the roles of serotonin (5-hydroxytryptamine [5-HT]) in an epileptogenic insult, we investigated the changes in 5-HT receptors and serotonin transporter (5-HTT) immunoreactivities within the lesioned and contralateral hippocampus following unilateral hypoxic-ischemia. During epileptogenic periods following hypoxic-ischemia, both 5-HT(1A) and 5HT(1B) receptor immunoreactivities were decreased within the lesioned and the non-lesioned hippocampus. However, 5-HTT immunoreactivity was transiently increased within the hippocampus bilaterally. These findings indicate that alteration of the 5-HT system results in a "diaschisis" pattern, and may contribute to neuronal death and the development of emotional disorders in epileptic patients accompanied by psychological stress.
Collapse
MESH Headings
- Animals
- Disease Models, Animal
- Epilepsy/physiopathology
- Hippocampus/physiology
- Hippocampus/physiopathology
- Humans
- Male
- Rats
- Rats, Sprague-Dawley
- Receptor, Serotonin, 5-HT1A/genetics
- Receptor, Serotonin, 5-HT1A/metabolism
- Receptor, Serotonin, 5-HT1B/genetics
- Receptor, Serotonin, 5-HT1B/metabolism
- Serotonin Plasma Membrane Transport Proteins/genetics
- Serotonin Plasma Membrane Transport Proteins/metabolism
- Stress, Psychological
Collapse
Affiliation(s)
- Sung-Jin An
- Department of Anatomy and Neurobiology, College of Medicine, Hallym University, Chunchon, Kangwon-Do 200-702, Republic of Korea
| | | |
Collapse
|
14
|
Iravani MM, Jenner P. Mechanisms underlying the onset and expression of levodopa-induced dyskinesia and their pharmacological manipulation. J Neural Transm (Vienna) 2011; 118:1661-90. [DOI: 10.1007/s00702-011-0698-2] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2011] [Accepted: 08/06/2011] [Indexed: 12/18/2022]
|
15
|
Abstract
Various data from scientific research studies conducted over the past three decades suggest that central neurotransmitters play a key role in the modulation of aggression in all mammalian species, including humans. Specific neurotransmitter systems involved in mammalian aggression include serotonin, dopamine, norepinephrine, GABA, and neuropeptides such as vasopressin and oxytocin. Neurotransmitters not only help to execute basic behavioral components but also serve to modulate these preexisting behavioral states by amplifying or reducing their effects. This chapter reviews the currently available data to present a contemporary view of how central neurotransmitters influence the vulnerability for aggressive behavior and/or initiation of aggressive behavior in social situations. Data reviewed in this chapter include emoiric information from neurochemical, pharmaco-challenge, molecular genetic and neuroimaging studies.
Collapse
Affiliation(s)
- Rachel Yanowitch
- Clinical Neuroscience Research Unit, Department of Psychiatry, The University of Chicago Pritzker School of Medicine, Chicago, Illinois, USA
| | | |
Collapse
|
16
|
Seo D, Patrick CJ, Kennealy PJ. Role of Serotonin and Dopamine System Interactions in the Neurobiology of Impulsive Aggression and its Comorbidity with other Clinical Disorders. AGGRESSION AND VIOLENT BEHAVIOR 2008; 13:383-395. [PMID: 19802333 PMCID: PMC2612120 DOI: 10.1016/j.avb.2008.06.003] [Citation(s) in RCA: 259] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Impulsive aggression is characterized by an inability to regulate affect as well as aggressive impulses, and is highly comorbid with other mental disorders including depression, suicidal behavior, and substance abuse. In an effort to elucidate the neurobiological underpinnings of impulsive aggression and to help account for its connections with these other disorders, this paper reviews relevant biochemical, brain imaging, and genetic studies. The review suggests that dysfunctional interactions between serotonin and dopamine systems in the prefrontal cortex may be an important mechanism underlying the link between impulsive aggression and its comorbid disorders. Specifically, serotonin hypofunction may represent a biochemical trait that predisposes individuals to impulsive aggression, with dopamine hyperfunction contributing in an additive fashion to the serotonergic deficit. The current paper proposes a modified diathesis-stress model of impulsive aggression in which the underlying biological diathesis may be deficient serotonergic function in the ventral prefrontal cortex. This underlying disposition can be manifested behaviorally as impulsive aggression towards oneself and others, and as depression under precipitating life stressors. Substance abuse associated with impulsive aggression is understood in the context of dopamine dysregulation resulting from serotonergic deficiency. Also discussed are future research directions in the neurobiology of impulsive aggression and its comorbid disorders.
Collapse
Affiliation(s)
- Dongju Seo
- Department of Psychology, University of Minnesota, Twin Cities
| | | | | |
Collapse
|
17
|
Winstanley CA, Theobald DEH, Dalley JW, Cardinal RN, Robbins TW. Double Dissociation between Serotonergic and Dopaminergic Modulation of Medial Prefrontal and Orbitofrontal Cortex during a Test of Impulsive Choice. Cereb Cortex 2005; 16:106-14. [PMID: 15829733 DOI: 10.1093/cercor/bhi088] [Citation(s) in RCA: 210] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Dysregulation of the prefrontal cortex (PFC) has been implicated in impulse control disorders, including attention deficit hyperactivity disorder. A growing body of evidence suggests that impulsivity is non-unitary in nature, and recent data indicate that the ventral and dorsal regions of the PFC are differentially involved in distinct aspects of impulsive behaviour, findings which may reflect differences in the monoaminergic regulation of these regions. In the current experiment, levels of dopamine, serotonin and their metabolites were measured in the medial PFC (n = 12) and orbitofrontal cortex (OFC) (n = 19) of rats using in vivo microdialysis during the delay-discounting model of impulsive choice, where impulsivity is defined as selection of small immediate over larger delayed rewards. Yoked groups were also dialysed to control for instrumental responding and reward delivery. Significant increases in 5-hydroxytryptamine efflux were observed in the mPFC, but not in the OFC, during task performance but not under yoked control conditions. In the OFC, 3,4-di-hydroxy-phenylocetic acid (DOPAC) levels increased in animals performing the task but not in yoked animals, whereas mPFC DOPAC levels increased in all subjects. These data suggest a double dissociation between serotonergic and dopaminergic modulation of impulsive decision-making within distinct areas of frontal cortex.
Collapse
Affiliation(s)
- Catharine A Winstanley
- Department of Experimental Psychology, University of Cambridge, Downing Site, Cambridge, CB2 3EB, UK.
| | | | | | | | | |
Collapse
|
18
|
Fernandez-Espejo E, Caraballo I, Rodriguez de Fonseca F, Ferrer B, El Banoua F, Flores JA, Galan-Rodriguez B. Experimental parkinsonism alters anandamide precursor synthesis, and functional deficits are improved by AM404: a modulator of endocannabinoid function. Neuropsychopharmacology 2004; 29:1134-42. [PMID: 15010694 DOI: 10.1038/sj.npp.1300407] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Modulation of the endocannabinoid system might be useful in treating Parkinson's disease. Here, we show that systemic administration of N-(4-hydroxyphenyl)-arachidonamide (AM404), a cannabinoid modulator that enhances anandamide (AEA) availability in the biophase, exerts antiparkinsonian effects in 6-hydroxydopamine-lesioned rats. Local injections of AM404 into denervated striata reduced parkinsonian motor asymmetries, these effects being associated with the reduction of D2 dopamine receptor function together with a positive modulation of 5-HT(1B) serotonin receptor function. Stimulation of striatal 5-HT(1B) receptors alone was observed to ameliorate parkinsonian deficits, supporting the fact that AM404 exerts antiparkinsonian effects likely through stimulation of striatal 5-HT(1B) serotonin receptor function. Hence, modulation of cannabinoid function leading to enhancement of AEA in the biophase might be of therapeutic value in the control of symptoms of Parkinson's disease. On the other hand, reduced levels of N-acyl-transferase (AEA precursor synthesizing enzyme), without changes in fatty acid amidohydrolase (AEA degradative enzyme), were detected in denervated striata in comparison with intact striata. This finding reveals the presence of a homeostatic striatal mechanism emerging after dopaminergic denervation likely tending to enhance low dopamine tone.
Collapse
|
19
|
Suarez-Roca H, Cubeddu LX. The selective serotonin reuptake inhibitor citalopram induces the storage of serotonin in catecholaminergic terminals. J Pharmacol Exp Ther 2002; 302:174-9. [PMID: 12065714 DOI: 10.1124/jpet.302.1.174] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We investigated whether selective inhibition of serotonin (5-hydroxytryptamine; 5-HT) transporter with citalopram leads to accumulation of 5-HT in catecholaminergic neurons. In the rabbit olfactory tubercle, citalopram (1-10 microM) inhibited [(3)H]5-HT uptake; however, the maximal degree of inhibition achieved was 70%. Addition of nomifensine (1-10 microM) was required for complete inhibition of [(3)H]5-HT uptake. In slices labeled with 0.1 microM [(3)H]5-HT, cold 5-HT (0.03-1 microM) induced a large increase in the efflux (release) of stored [(3)H]5-HT, an effect blocked by coperfusion with 1 microM citalopram. Similar concentrations (0.03-1 microM) of norepinephrine (NE) or dopamine (DA) failed to release [(3)H]5-HT. When labeling with 0.1 microM [(3)H]5-HT was carried out in the presence of citalopram, 1) low concentrations of 5-HT failed to release [(3)H]5-HT; 2) DA and NE were more potent and effective in releasing [(3)H]5-HT than in control slices; 3) coperfusion of NE, DA, or 5-HT with citalopram enhanced the release of [(3)H]5-HT induced by the catecholamines but not by 5-HT; and 4) coperfusion of NE or DA with nomifensine antagonized NE- and DA-evoked [(3)H]5-HT release, with a greater effect on NE than on DA. These results suggest that in the rabbit olfactory tubercle, where there is coexistence of 5-HT, NE, and DA neurons, inhibition of the 5-HT transporter led to accumulation of 5-HT in catecholaminergic terminals. Thus, during treatment with selective serotonin uptake inhibitors (SSRIs), 5-HT may be stored in catecholaminergic neurons acting as a false neurotransmitter and/or affecting the disposition of DA and/or NE. Transmitter relocation may be involved in the antidepressant action of SSRIs.
Collapse
Affiliation(s)
- Heberto Suarez-Roca
- Pharmacology Section, Instituto de Investigaciones Clinicas, School of Medicine, University of Zulia, Maracaibo, Venezuela
| | | |
Collapse
|
20
|
Dziedzicka-Wasylewska M, Rogoz Z, Skuza G, Dlaboga D, Maj J. Effect of repeated treatment with tianeptine and fluoxetine on central dopamine D(2) /D(3) receptors. Behav Pharmacol 2002; 13:127-38. [PMID: 11981225 DOI: 10.1097/00008877-200203000-00004] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Tianeptine (TIA) is an antidepressant drug that has been shown to decrease extracellular serotonin level and reveals no affinity for neurotransmitter receptors. The present study was aimed at determining whether repeated TIA treatment induced any adaptive changes in the central dopamine D(2)/D(3) system (behavioural and biochemical) similar to those reported earlier for tricyclic antidepressants. Experiments were carried out on male Wistar rats. TIA was administered at a dose of 5 and 10 mg/kg once or repeatedly (twice daily for 14 days). Fluoxetine (FLU), used as a reference compound, was also administered at a dose of 10 mg/kg. The results obtained showed that TIA or FLU administered repeatedly increased the hyperlocomotion induced by D-amphetamine and 7-hydroxy-dipropylaminotetralin (7-OH-DPAT). Biochemical study revealed a decrease in the [(3)H]7-OH-DPAT binding sites after acute and repeated treatment with TIA or FLU in the islands of Calleja minor, as well as in the shell part of nucleus accumbens septi. On the other hand, both TIA and FLU administered repeatedly increased the binding of [(3)H]quinpirole (a D(2)/D(3) receptor agonist) in the nucleus caudatus as well as in the core part of the nucleus accumbens septi. Similar effects have been observed when dopamine D(2)/D(3) receptors were visualized with the use of [3H]raclopride, a dopamine D(2)/D(3) receptor antagonist. However, TIA and FLU induced a decrease in the level of mRNA encoding for dopamine D(2) receptors, not only after repeated but also after acute treatment. These results indicate that repeated TIA and FLU administration induces adaptive changes in the dopaminergic D(2)/D(3) system and especially enhances the functional responsiveness of dopamine D(2) and D(3) receptors. However, the question of whether this increased responsiveness is important for clinical antidepressant efficacy remains open.
Collapse
|
21
|
Lucas G, De Deurwaerdère P, Porras G, Spampinato U. Endogenous serotonin enhances the release of dopamine in the striatum only when nigro-striatal dopaminergic transmission is activated. Neuropharmacology 2000; 39:1984-95. [PMID: 10963742 DOI: 10.1016/s0028-3908(00)00020-4] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In this study, we use in vivo microdialysis to investigate the influence of endogenous serotonin (5-HT) on striatal dopamine (DA) and 5-hydroxyidoleacetic acid (5-HIAA) efflux in both basal and activated conditions. The selective serotonin reuptake inhibitors citalopram and fluoxetine were used to mobilize endogenous 5-HT. In halothane-anaesthetized rats, citalopram (5 mg/kg, i.p.), administered either alone or in combination with the 5-HT(1A) receptor antagonist WAY 100635 (0.1 mg/kg, s.c.), while reducing striatal 5-HIAA outflow (-25 and -15%, respectively), had no effect on basal DA output. When locally applied into the striatum, citalopram had no effect at 1 microM concentration, but enhanced DA release after its perfusion at 25 and 100 mircroM concentrations (+27% and +67%, respectively). However, the injection of the neurotoxin 5,7-dihydroxytryptamine into the dorsal raphe nucleus, which markedly depleted 5-HT in the striatum, failed to modify the effect of 25 microM citalopram. In freely-moving rats, the intrastriatal infusion of citalopram or fluoxetine (1 microM each), had no effect on its own, but significantly enhanced the increase in DA outflow induced by the subcutaneous administration of 0.01 mg/kg haloperidol (+31% and +30% for citalopram and fluoxetine, respectively). These findings indicate that, in the striatum, endogenous 5-HT has no influence on DA release under basal conditions, but positively modulates DA outflow when nigro-striatal DA transmission is activated.
Collapse
Affiliation(s)
- G Lucas
- Laboratoire de Neuropsychobiologie des Désadaptations, UMR-CNRS 5541, Université Victor Segalen Bordeaux 2, Boîte Postale 31, 146, rue Léo Saignat, 33076 Bordeaux Cedex, France
| | | | | | | |
Collapse
|
22
|
Nakazato T, Horikawa HP, Akiyama A. The dopamine D2 receptor antagonist sulpiride causes long-lasting serotonin release. Eur J Pharmacol 1998; 363:29-34. [PMID: 9877078 DOI: 10.1016/s0014-2999(98)00796-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The effects of the dopamine D2 receptor antagonist sulpiride on extracellular levels of serotonin (5-hydroxytryptamine, 5-HT) and the 5-HT metabolite 5-hydroxyindoleacetic acid (5-HIAA) were examined by using in vivo voltammetry. Sulpiride (1 or 3 mM, 2 microl over 24 min) was administered to freely moving rats via a cannula implanted in the striatum and 5-hydroxyindole levels were measured by using a carbon fiber voltammetry electrode implanted in the ipsilateral striatum. Six to 8 h after injection, 5-hydroxyindole levels increased 3-fold, peaked 1 to 2 days post-injection, and returned to normal levels within 2 to 4 days. These effects were suppressed by pretreatment with p-chlorophenylalanine. Two days after sulpiride injection, high-performance liquid chromatography of striatal homogenates revealed that although the 5-HT concentration was unchanged, the 5-HIAA concentration was increased significantly. These results suggest that the long-lasting elevation of 5-hydroxyindole concentrations was primarily due to increased 5-HT release.
Collapse
Affiliation(s)
- T Nakazato
- Department of Physiology, Juntendo University School of Medicine, Tokyo, Japan.
| | | | | |
Collapse
|