1
|
Ferraro L, O'Connor WT, Beggiato S, Tomasini MC, Fuxe K, Tanganelli S, Antonelli T. Striatal NTS1 , dopamine D2 and NMDA receptor regulation of pallidal GABA and glutamate release--a dual-probe microdialysis study in the intranigral 6-hydroxydopamine unilaterally lesioned rat. Eur J Neurosci 2011; 35:207-20. [PMID: 22211865 DOI: 10.1111/j.1460-9568.2011.07949.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The current microdialysis study elucidates a functional interaction between the striatal neurotensin NTS(1) receptor and the striatal dopamine D(2) and N-methyl-d-aspartic acid (NMDA) receptors in the regulation of striatopallidal gamma-aminobutyric acid (GABA) and glutamate levels after an ipsilateral intranigral 6-hydroxydopamine-induced lesion of the ascending dopamine pathways to the striatum. Lateral globus pallidus GABA levels were higher in the lesioned group while no change was observed in striatal GABA and glutamate levels. The 6-hydroxydopamine-induced lesion did not alter the ability of intrastriatal NT (10 nm) to counteract the decrease in pallidal GABA and glutamate levels induced by the dopamine D(2) -like receptor agonist quinpirole (10 μm). A more pronounced increase in the intrastriatal NMDA- (10 μm) induced increase in pallidal GABA levels was observed in the lesioned group while it attenuated the increase in striatal glutamate levels and amplified the increase in pallidal glutamate levels compared with that observed in the controls. NT enhanced the NMDA-induced increase in pallidal GABA and glutamate and striatal glutamate levels; these effects were counteracted by the NTS(1) antagonist SR48692 (100 nm) in both groups. These findings demonstrate an inhibitory striatal dopamine D(2) and an excitatory striatal NMDA receptor regulation of striatopallidal GABA transmission in both groups. These actions are modulated by NT via antagonistic NTS(1) /D(2) and facilitatory NTS(1) /NMDA receptor-receptor interactions, leading to enhanced glutamate drive of the striatopallidal GABA neurons associated with motor inhibition, effects which all are counteracted by SR48692. Thus, NTS(1) antagonists in combination with conventional treatments may provide a novel therapeutic strategy in Parkinson's disease.
Collapse
Affiliation(s)
- Luca Ferraro
- Department of Clinical and Experimental Medicine, Pharmacology Section and LTTA Centre, University of Ferrara, Via Fossato di Mortara 17-19, 44100 Ferrara, Italy.
| | | | | | | | | | | | | |
Collapse
|
2
|
Gruber SHM, Angelucci F, Nomikos GG, Mathé AA. Effects of olanzapine on extracellular concentrations and tissue content of neurotensin in rat brain regions. Eur Neuropsychopharmacol 2011; 21:918-27. [PMID: 21316929 DOI: 10.1016/j.euroneuro.2011.01.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2010] [Revised: 12/25/2010] [Accepted: 01/09/2011] [Indexed: 12/13/2022]
Abstract
We have previously shown that both the psychostimulant d-amphetamine and the antipsychotics haloperidol and risperidone affect extracellular concentrations and tissue content of neurotensin (NT) in distinct brain regions. This study investigated the effects of acute olanzapine (1, 5mg/kg, s.c.) on extracellular NT-like immunoreactivity (-LI) concentrations in the ventral striatum (vSTR) and the medial prefrontal cortex (mPFC), and the effects of acute d-amphetamine (1.5mg/kg, s.c.) on extracellular NT-LI in these brain regions after a 30-day olanzapine (15mg/kg, p.o.) administration in rats. The effects of a 30-day olanzapine (3, 15mg/kg, p.o.) administration and d-amphetamine (1.5mg/kg, s.c.) coadministration during either the last day (acute) or the last 8days (chronic) on NT-LI tissue content in distinct rat brain regions were also studied. Acute olanzapine increased extracellular NT-LI, in both the vSTR and the mPFC. Chronic olanzapine increased and decreased basal extracellular NT-LI in the vSTR and the mPFC, respectively, and abolished the stimulatory effects of acute d-amphetamine on extracellular NT-LI in these brain regions. Chronic olanzapine as well as acute and chronic d-amphetamine affected NT-LI tissue content in a brain region-dependent manner. Chronic olanzapine prevented the effects of acute and chronic d-amphetamine on NT-LI tissue content in certain brain regions. The fact that olanzapine and d-amphetamine affected extracellular NT-LI in the vSTR and mPFC as well as NT-LI tissue content in distinct brain regions further supports the notion that NT plays a role in the therapeutic actions of antipsychotic drugs and possibly also in the pathophysiology of schizophrenia.
Collapse
Affiliation(s)
- Susanne H M Gruber
- Institution of Clinical Neuroscience, Division of Psychiatry, Karolinska Institutet, Huddinge University Hospital, Sweden
| | | | | | | |
Collapse
|
3
|
Antonelli T, Fuxe K, Tomasini MC, Mazzoni E, Agnati LF, Tanganelli S, Ferraro L. Neurotensin receptor mechanisms and its modulation of glutamate transmission in the brain: relevance for neurodegenerative diseases and their treatment. Prog Neurobiol 2007; 83:92-109. [PMID: 17673354 DOI: 10.1016/j.pneurobio.2007.06.006] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2006] [Revised: 05/18/2007] [Accepted: 06/19/2007] [Indexed: 11/30/2022]
Abstract
The extracellular accumulation of glutamate and the excessive activation of glutamate receptors, in particular N-methyl-D-aspartate (NMDA) receptors, have been postulated to contribute to the neuronal cell death associated with chronic neurodegenerative disorders such as Parkinson's disease. Findings are reviewed indicating that the tridecaptide neurotensin (NT) via activation of NT receptor subtype 1 (NTS1) promotes and reinforces endogenous glutamate signalling in discrete brain regions. The increase of striatal, nigral and cortical glutamate outflow by NT and the enhancement of NMDA receptor function by a NTS1/NMDA interaction that involves the activation of protein kinase C may favour the depolarization of NTS1 containing neurons and the entry of calcium. These results strengthen the hypothesis that NT may be involved in the amplification of glutamate-induced neurotoxicity in mesencephalic dopamine and cortical neurons. The mechanisms involved may include also antagonistic NTS1/D2 interactions in the cortico-striatal glutamate terminals and in the nigral DA cell bodies and dendrites as well as in the nigro-striatal DA terminals. The possible increase in NT levels in the basal ganglia under pathological conditions leading to the NTS1 enhancement of glutamate signalling may contribute to the neurodegeneration of the nigro-striatal dopaminergic neurons found in Parkinson's disease, especially in view of the high density of NTS1 receptors in these neurons. The use of selective NTS1 antagonists together with conventional drug treatments could provide a novel therapeutic approach for treatment of Parkinson's disease.
Collapse
Affiliation(s)
- T Antonelli
- Department of Clinical and Experimental Medicine, Section of Pharmacology, University of Ferrara, 44100 Ferrara, Italy
| | | | | | | | | | | | | |
Collapse
|
4
|
Abstract
Neurotensin (NT) is a neuropeptide that, for decades, has been implicated in the biology of schizophrenia. It is closely associated with, and is thought to modulate, dopaminergic and other neurotransmitter systems involved in the pathophysiology of various neuropsychiatric diseases, including schizophrenia. This review outlines the neurochemistry and function of the NT system and the data implicating its role in schizophrenia. The data suggest that NT receptor agonists have the potential to be used as novel therapeutic agents for the treatment of schizophrenia, with the added benefits of (i) not causing weight gain, an adverse effect that is problematic with some of the currently used atypical antipsychotic drugs; and (ii) helping patients to stop smoking, a behaviour that is highly prevalent in those with schizophrenia.
Collapse
Affiliation(s)
- Mona Boules
- Neuropsychopharmacology Laboratory, Mayo Foundation for Medical Education and Research, Mayo Clinic Jacksonville, Florida 32224, USA.
| | | | | | | |
Collapse
|
5
|
Gruber SHM, Nomikos GG, Mathé AA. Effects of acute and subchronic d-amphetamine on ventral striatal concentrations of neurotensin and neuropeptide Y in rats treated with antipsychotic drugs. Eur Neuropsychopharmacol 2006; 16:592-600. [PMID: 16524702 DOI: 10.1016/j.euroneuro.2006.01.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2005] [Accepted: 01/24/2006] [Indexed: 11/17/2022]
Abstract
We have reported that acute d-amphetamine increases extracellular concentrations (efflux) of neurotensin-like immunoreactivity (NT-LI) and neuropeptide Y-LI (NPY-LI) in the ventral striatum (VSTR) of freely moving rats, effects that are abolished by chronic administration of haloperidol and risperidone admixed to food pellets. In this study we further investigated the d-amphetamine effects on NT-LI and NPY-LI efflux in VSTR and their content in selected brain regions. Rats received haloperidol, risperidone or vehicle for 30days and saline or d-amphetamine either on days 22-29 and/or day 30. Seven day d-amphetamine administration decreased basal NT-LI and NPY-LI efflux in vehicle-treated rats; pretreatment with haloperidol counteracted these effects, while pretreatment with risperidone had effect only on NT-LI. Acute d-amphetamine after the seven day d-amphetamine increased NT-LI only. Pretreatment with haloperidol or risperidone abolished the effects of acute d-amphetamine on NT-LI and NPY-LI. Acute and seven day d-amphetamine increased NT-LI and NPY-LI contents in striatum; seven day d-amphetamine also increased NT-LI in frontal and occipital cortex and both NT-LI and NPY-LI in hippocampus. Our results suggest that NT and NPY are involved in both the pathophysiology and the therapeutics of schizophrenia.
Collapse
Affiliation(s)
- Susanne H M Gruber
- Institution of Clinical Neuroscience, Karolinska Institutet, SE-141 52, Huddinge, Sweden
| | | | | |
Collapse
|
6
|
Boules M, Fredrickson P, Richelson E. Neurotensin agonists as an alternative to antipsychotics. Expert Opin Investig Drugs 2006; 14:359-69. [PMID: 15882113 DOI: 10.1517/13543784.14.4.359] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Neurotensin (NT) is a 13 amino acid neuropeptide that is found in the central nervous system and in the gastrointestinal tract. In brain, this peptide is prominently associated anatomically with dopaminergic, as well as other neurotransmitter systems. Based on animal studies, already decades old, researchers have hypothesised that NT receptor agonists will have antipsychotic properties in patients. However, to date no one has obtained a non-peptide NT receptor agonist. Therefore, there has been great interest in obtaining peptide analogues of NT, that, unlike NT resist degradation by peptidases and cross the blood-brain barrier, yet have the pharmacological characteristics of native NT, for therapeutic use in the treatment of schizophrenia, as well as other neuropsychiatric diseases such as Parkinson's disease and addiction to psychostimulants. In this review, we present the rationale for development of NT receptor agonists for treatment of certain central nervous system diseases, as well as a review of those peptide agonists that are in early stages of development.
Collapse
Affiliation(s)
- Mona Boules
- Neuropsychopharmacology Laboratory and Nicotine Dependence Center, Mayo Foundation for Medical Education and Research, 4500 San Pablo Road, Jacksonville, FL 32224, USA
| | | | | |
Collapse
|
7
|
Geisler S, Bérod A, Zahm DS, Rostène W. Brain neurotensin, psychostimulants, and stress--emphasis on neuroanatomical substrates. Peptides 2006; 27:2364-84. [PMID: 16934369 DOI: 10.1016/j.peptides.2006.03.037] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2005] [Accepted: 03/05/2006] [Indexed: 12/29/2022]
Abstract
Neurotensin (NT) is a peptide that is widely distributed throughout the brain. NT is involved in locomotion, reward, stress and pain modulation, and in the pathophysiology of drug addiction and depression. In its first part this review brings together relevant literature about the neuroanatomy of NT and its receptors. The second part focuses on functional-anatomical interactions between NT, the mesotelencephalic dopamine system and structures targeted by dopaminergic projections. Finally, recent data about the actions of NT in processes underlying behavioral sensitization to psychostimulant drugs and the involvement of NT in the regulation of the hypothalamo-pituitary-adrenal gland axis are considered.
Collapse
Affiliation(s)
- Stefanie Geisler
- Department of Pharmacological and Physiological Science, Saint Louis University, School of Medicine, St. Louis, MO 63104, USA
| | | | | | | |
Collapse
|
8
|
Ma J, Ye N, Cohen BM. Typical and atypical antipsychotic drugs target dopamine and cyclic AMP-regulated phosphoprotein, 32 kDa and neurotensin-containing neurons, but not GABAergic interneurons in the shell of nucleus accumbens of ventral striatum. Neuroscience 2006; 141:1469-80. [PMID: 16781818 DOI: 10.1016/j.neuroscience.2006.05.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2005] [Revised: 04/28/2006] [Accepted: 05/01/2006] [Indexed: 11/19/2022]
Abstract
Specific neurons in the brain are the primary targets of the action of antipsychotic drugs. Identification and characterization of the nature of these neurons are important for understanding how antipsychotic drugs produce their effects. In previous studies GABAergic/dynorphinergic neurons were identified as a principal cell target of antipsychotic drugs in the shell of nucleus accumbens. In the present study, we further characterized which subpopulations of GABAergic neurons in this area respond after acute administration of antipsychotic drugs. Rats were treated with the typical antipsychotic haloperidol, or the prototype atypical antipsychotic clozapine and killed two hours after treatment. In appropriate sections of brain, double immunofluorescence labeling was performed with antibodies directed against markers specific to candidate cell types and Fos-like proteins (a marker to identify drug-induced cell activation). We reported here that haloperidol- and clozapine-activated neurons showed the following features: 1) approximately 54-57% of them express dopamine and cyclic AMP-regulated phosphoprotein, 32 kDa (a marker for GABAergic medium spiny projection neurons), 2) they appear rarely to be GABAergic interneurons, marked by the calcium binding proteins, parvalbumin, calretinin or calbindin-D28K, 3) about 84-86% of them express the neuropeptide neurotensin (a neurotransmitter most often associated with projection neurons in the site tested). The results suggest that most of the antipsychotic drug-activated neurons in the shell of nucleus accumbens are likely to be neurotensin containing projection neurons.
Collapse
Affiliation(s)
- J Ma
- Molecular Pharmacology Laboratory, Mailman Research Center, McLean Hospital, 115 Mill Street, Belmont, MA 02478, USA
| | | | | |
Collapse
|
9
|
Abstract
Central administration of neurotensin (NT) results in a variety of neurobehavioral effects which, depending upon the administration site, resemble the effects of antipsychotic drugs (APDs) and psychostimulants. All clinically effective APDs exhibit significant affinities for dopamine D(2) receptors, supporting the hypothesis that an increase in dopaminergic tone contributes to schizophrenic symptoms. Psychostimulants increase extracellular dopamine (DA) levels and chronics administration can produce psychotic symptoms over time. APDs and psychostimulants induce Fos and NT expression in distinct striatal subregions, suggesting that changes in gene expression underlie some of their effects. To gain insight into the functions of NT, we analyzed APD and psychostimulant induction of Fos in NT knockout mice and rats pretreated with the NT antagonist SR 48692. In both NT knockout mice and rats pretreated with SR 48692, haloperidol-induced Fos expression was markedly attenuated in the dorsolateral striatum; amphetamine-induced Fos expression was reduced in the medial striatum. These results indicate that NT is required for the activation of specific subpopulations of striatal neurons in distinct striatal subregions in response to both APDs and psychostimulants. This review integrates these new findings with previous evidence implicating NT in both APD and psychostimulant responses.
Collapse
Affiliation(s)
- Paul R Dobner
- Department of Molecular Genetics and Microbiology, Program in Neuroscience, University of Massachusetts Medical School, 55 Lake Ave. North, Worcester 01655, USA.
| | | | | |
Collapse
|
10
|
Ciproxifan, a histamine H3-receptor antagonist/inverse agonist, potentiates neurochemical and behavioral effects of haloperidol in the rat. J Neurosci 2002. [PMID: 12177222 DOI: 10.1523/jneurosci.22-16-07272.2002] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
By using double in situ hybridization performed with proenkephalin and H3-receptor riboprobes on the same sections from rat brain, we show that histamine H3 receptors are expressed within striatopallidal neurons of the indirect movement pathway. The majority ( approximately 70%) of striatal enkephalin neurons express H3-receptor mRNAs. This important degree of coexpression of proenkephalin and H3-receptor mRNAs prompted us to explore the effect of H3-receptor ligands on the regulation of enkephalin mRNA expression in the striatum. Acute administration of ciproxifan, a H3-receptor antagonist/inverse agonist, did not modify the expression of the neuropeptide by itself but strongly increased the upregulation of its expression induced by haloperidol. This potentiation (1) was suppressed by the administration of (R)-alpha-methylhistamine, a H3-receptor agonist, (2) occurred both in the caudate-putamen and nucleus accumbens, and (3) was also observed with a similar pattern on c-fos and neurotensin mRNA expression. Similarly, whereas it was devoid of any motor effect when used alone, ciproxifan strongly potentiated haloperidol-induced locomotor hypoactivity and catalepsy, two behaviors in which striatal neurons are involved. The strong H3-receptor mRNA expression in enkephalin neurons suggests that the synergistic neurochemical and motor effects of ciproxifan and haloperidol result from direct H3/D2-receptor interactions, leading to an enhanced activation of striatopallidal neurons of the indirect movement pathway. The potentiation of the effects of haloperidol by ciproxifan strengthens the potential interest of H3-receptor antagonists/inverse agonists to improve the symptomatic treatment of schizophrenia.
Collapse
|
11
|
Hiroi N, Martín AB, Grande C, Alberti I, Rivera A, Moratalla R. Molecular dissection of dopamine receptor signaling. J Chem Neuroanat 2002; 23:237-42. [PMID: 12048106 DOI: 10.1016/s0891-0618(02)00010-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The use of genetically engineered mice has provided substantial new insights into the functional organization of the striatum. Increasing evidence suggests that specific genes expressed within the striatum contribute to its functional activity. We studied the dopamine (DA) D1 receptor gene and one of its downstream targets, the transcription factor c-Fos. We have evaluated the functional interaction between the D1 and D2 DA receptor subtypes at the cellular and behavioral levels. Our results show that haloperidol, a DA D2-class receptor antagonist, activates c-Fos predominantly in enkephalin-positive striatal neurons, which project to the globus pallidus and are thought to mediate motor inhibition. Deletion of the DA D1 receptor increased the responsiveness of enkephalin neurons to haloperidol, in that haloperidol-induced increases in c-Fos and catalepsy were enhanced in D1 receptor knockout mice. These results suggest a functionally opposing role of the D1 receptor against the D2 DA-class receptors in the striatum.
Collapse
Affiliation(s)
- Noboru Hiroi
- Departments of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY, USA
| | | | | | | | | | | |
Collapse
|
12
|
Abstract
The completed draft of the human genome sequence has facilitated a revolution in neuroscience research. This sequence information and the development of new technologies used to analyze gene expression on a genomic scale provides a new and powerful means to investigate brain disorders of unknown etiology and to isolate novel drug targets for these disorders. The term functional genomics broadly describes a set of technologies and strategies directed at the problem of determining the function of genes, and understanding how the genome works together to generate whole patterns of biological function. The most powerful of these functional genomics approaches, expression profiling or DNA microarrays, can be used to analyze the expression of thousands of genes simultaneously. The results to date from the application of DNA microarray methods to postmortem diseased human brain tissue, animal models and cell culture models of brain disorders provide an exciting glimpse into the future of this field.
Collapse
Affiliation(s)
- Paul D Shilling
- Department of Psychiatry, University of California at San Diego, and San Diego VA Healthcare System, La Jolla, 92093, USA
| | | |
Collapse
|
13
|
Binder EB, Kinkead B, Owens MJ, Nemeroff CB. The role of neurotensin in the pathophysiology of schizophrenia and the mechanism of action of antipsychotic drugs. Biol Psychiatry 2001; 50:856-72. [PMID: 11743941 DOI: 10.1016/s0006-3223(01)01211-2] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
It has become increasingly clear that schizophrenia does not result from the dysfunction of a single neurotransmitter system, but rather pathologic alterations of several interacting systems. Targeting of neuropeptide neuromodulator systems, capable of concomitantly regulating several transmitter systems, represents a promising approach for the development of increasingly effective and side effect-free antipsychotic drugs. Neurotensin (NT) is a neuropeptide implicated in the pathophysiology of schizophrenia that specifically modulates neurotransmitter systems previously demonstrated to be dysregulated in this disorder. Clinical studies in which cerebrospinal fluid (CSF) NT concentrations have been measured revealed a subset of schizophrenic patients with decreased CSF NT concentrations that are restored by effective antipsychotic drug treatment. Considerable evidence also exists concordant with the involvement of NT systems in the mechanism of action of antipsychotic drugs. The behavioral and biochemical effects of centrally administered NT remarkably resemble those of systemically administered antipsychotic drugs, and antipsychotic drugs increase NT neurotransmission. This concatenation of findings led to the hypothesis that NT functions as an endogenous antipsychotic. Moreover, typical and atypical antipsychotic drugs differentially alter NT neurotransmission in nigrostriatal and mesolimbic dopamine (DA) terminal regions, and these effects are predictive of side effect liability and efficacy, respectively. This review summarizes the evidence in support of a role for the NT system in both the pathophysiology of schizophrenia and the mechanism of action of antipsychotic drugs.
Collapse
Affiliation(s)
- E B Binder
- Max Planck Institute for Psychiatry, Munich, Germany
| | | | | | | |
Collapse
|
14
|
Bazyan AS, Getsova VM, Orlova NV. Haloperidol catalepsy consolidation in the rat as a model of neuromodulatory integration. Neuroscience 2000; 99:279-88. [PMID: 10938433 DOI: 10.1016/s0306-4522(00)00183-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Haloperidol, a non-selective D(2) dopamine antagonist, both in vitro (1 microM) and in vivo (2.5 mg/kg i.p.), induced a long-term potentiation of K(+)-induced Ca(2+)-dependent release of endogenous noradrenaline and dopamine in rat brain cortical slices, by increasing the content of noradrenaline and dopamine known to be controlled by dopamine auto- and heteroreceptors. Haloperidol administration (2.5 mg/kg i.p.) evoked catalepsy and increased the content of noradrenaline and dopamine in the same structures of the brain. Haloperidol catalepsy consolidated without any additional learning and could be retrieved up to two weeks later by placing the animals in the test box. The catalepsy is disordered and retrieved only in the test box. The catalepsy was more intense on day 14 than on day 7. Injection of haloperidol immediately after conditioning evened the reflex retrieval on the following days. Moreover, learning increased the intensity of catalepsy in animals tested on the day of injection. Repeated testing of the reflex on the following days led to specific modifications of catalepsy retrieval. Pre-conditioned rats exhibited maximal catalepsy when tested immediately after being placed in the test box. These results suggest that both the processes of long-term potentiation and catalepsy consolidation are mediated by the same type of receptors, long-term modulation-inducing receptors. Endogenous neuromodulators, acting non-specifically or diffusely via their respective long-term modulation-inducing receptors, can initiate and consolidate generalized states which form the basis for emotional and motivational states.
Collapse
Affiliation(s)
- A S Bazyan
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow, Russia.
| | | | | |
Collapse
|
15
|
Beaudry G, Langlois MC, Weppe I, Rouillard C, Lévesque D. Contrasting patterns and cellular specificity of transcriptional regulation of the nuclear receptor nerve growth factor-inducible B by haloperidol and clozapine in the rat forebrain. J Neurochem 2000; 75:1694-702. [PMID: 10987852 DOI: 10.1046/j.1471-4159.2000.0751694.x] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
This study was designed to investigate the possible involvement of members of the nuclear receptor family of transcription factors in the effects of antipsychotic drugs used in the treatment of schizophrenia. We have identified, using RT-PCR screening, an important modulation of nerve growth factor-inducible B (NGFI-B) mRNA levels by typical and atypical neuroleptics in the rat forebrain. NGFI-B, a member of the nuclear receptor family, can be observed in target structures of dopaminergic pathways. Using in situ hybridization, we also demonstrate that typical and atypical antipsychotics induced contrasting patterns of expression of NGFI-B after both acute and chronic administration. An acute treatment with clozapine or haloperidol induces high NGFI-B mRNA levels in the prefrontal and cingulate cortices and in the nucleus accumbens shell. However, haloperidol, but not clozapine, dramatically increases NGFI-B expression in the dorsolateral striatum. In contrast, chronic treatment with clozapine reduces NGFI-B expression below basal levels in the rat forebrain, whereas haloperidol still induces high NGFI-B mRNA levels in the dorsolateral striatum. Finally, using a double in situ hybridization technique, we show that acute administration of both neuroleptics increases NGFI-B expression in neurotensin-containing neurons in the nucleus accumbens shell, whereas the effects of haloperidol in the dorsolateral striatum are mainly observed in enkephalin-containing neurons. These results are the first demonstration that members of the nuclear receptor family of transcription factors could play an important role in the effects of antipsychotic drugs.
Collapse
Affiliation(s)
- G Beaudry
- Unité de Neuroscience, Centre de Recherche du Centre Hospitalier Universitaire du Québec, and Département de Médecine, Faculté de Médecine, Université Laval, Québec, Canada
| | | | | | | | | |
Collapse
|
16
|
Schuller JJ, Marshall JF. Acute immediate-early gene response to 6-hydroxydopamine infusions into the medial forebrain bundle. Neuroscience 2000; 96:51-8. [PMID: 10683409 DOI: 10.1016/s0306-4522(99)00506-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Although the long-term neurobiological and behavioral effects of nigrostriatal lesions are well characterized, the events occurring soon after injury are not. These acute events can provide insight into the mechanisms underlying long-term adaptations to nigrostriatal lesions. The present experiments examined the basal ganglia immediate-early gene response to infusions of the catecholamine neurotoxin 6-hydroxydopamine into the nigrostriatal pathway in rats. Following 6-hydroxydopamine infusions into the medial forebrain bundle in awake, behaving rats, there was a rapid and transient induction of striatal c-fos and zif/268 messenger RNAs. Both immediate-early genes were maximally induced by 45min post-infusion, and returned to control levels by 1.5h (c-fos) or 3h (zif/268) post-infusion. Double-labeling experiments revealed that striatal c-fos expression occurred preferentially in preproenkephalin-expressing neurons. 6-Hydroxydopamine-induced c-fos messenger RNA was also observed in the substantia nigra pars reticulata and entopeduncular nucleus, but not the globus pallidus, 45 min after medial forebrain bundle 6-hydroxydopamine infusions. Finally, the role of ionotropic striatal glutamate receptors in nigrostriatal injury-induced striatal c-fos was examined by combining medial forebrain bundle 6-hydroxydopamine infusions with intrastriatal glutamate antagonist infusions. Both the N-methyl-D-aspartate antagonist, (+/-)-3-(2-carboxypiperazin-4-yl)-propyl-1-phosphonic acid, and the non-N-methyl-D-aspartate antagonist, 6,7-dinitroquinoxaline-2, 3-dione, blocked striatal induction of c-fos messenger RNA following 6-hydroxydopamine infusions into the medial forebrain bundle. These results provide evidence of rapidly developing, glutamate-dependent molecular responses in the basal ganglia which may contribute to some of the well-described long-term adaptations of this system to nigrostriatal injury.
Collapse
Affiliation(s)
- J J Schuller
- Department of Neurobiology and Behavior, University of California, Irvine 92697-4550, USA
| | | |
Collapse
|
17
|
Ott MC, Costain WJ, Mishra RK, Johnson RL. L-prolyl-l-leucyl-glycinamide and its peptidomimetic analog 3(R)-[(2(S)-pyrrolidylcarbonyl)amino]-2-oxo-1-pyrrolidineacetamide (PAOPA) attenuate haloperidol-induced c-fos expression in the striatum. Peptides 2000; 21:301-8. [PMID: 10764960 DOI: 10.1016/s0196-9781(99)00194-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Acute treatment of rats with haloperidol results in a rapid and transient increase in striatal c-fos mRNA and Fos immunoreactivity. The induction of immediate early genes by haloperidol may be involved in the development of extrapyramidal side effects. L-Prolyl-L-leucyl-glycinamide (PLG, or MIF-1) has been observed to antagonize the development of haloperidol-induced D(2) receptor supersensitivity in rats. We investigated the modulatory effects of PLG on haloperidol-induced c-fos and Fos protein expression in the rat striatum. We report that coadministration of either PLG or the potent analog of PLG, 3(R)-[(2(S)-pyrrolidylcarbonyl)amino]-2-oxo-1-pyrrolidineacetam ide (PAOPA), attenuated haloperidol-induced c-fos and Fos expression. Haloperidol induced [2 mg/kg, intraperitoneally (i.p.)] c-fos and Fos expression by 500% and 100%, respectively. These responses were attenuated by 170% and 75%, respectively, when coadministered with PLG (20 mg/kg, i.p.) or by 79% by PAOPA (10 microg/kg, i.p.).
Collapse
Affiliation(s)
- M C Ott
- Department of Psychiatry and Behavioural Neuroscience, McMaster University, Hamilton, Ontario, Canada.
| | | | | | | |
Collapse
|
18
|
Zahm DS, Williams ES, Krause JE, Welch MA, Grosu DS. Distinct and interactive effects of d-amphetamine and haloperidol on levels of neurotensin and its mRNA in subterritories in the dorsal and ventral striatum of the rat. J Comp Neurol 1998; 400:487-503. [PMID: 9786410 DOI: 10.1002/(sici)1096-9861(19981102)400:4<487::aid-cne4>3.0.co;2-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Striatal tissue concentrations of neurotensin, expression of neurotensin/neuromedin N (NT/N) mRNA, and numbers of neurotensin-immunoreactive neurons are increased by d-amphetamine (amph), which stimulates dopamine release in the striatum, and haloperidol (hal), a dopamine receptor antagonist with high affinity for D2-like receptors. The possibility that the effects of these drugs involve distinct subpopulations of striatal neurons was addressed in this study, in which the relative numbers and distributions of striatal neuron profiles containing neurotensin immunoreactivity and/or NT/N mRNA were compared following administrations of hal, amph, hal and amph co-administered, and vehicle. Fourteen striatal subterritories in caudate-putamen, nucleus accumbens, and olfactory tubercle were evaluated. Amph produced increases in the expression of neurotensin preferentially in the ventromedial and caudodorsal subterritories of the caudate-putamen, the rostrobasal cell cluster and lateral shell of the nucleus accumbens, and the olfactory tubercle. Haloperidol produced increased neurotensin expression in much of dorsal and ventral striatum, most prominently in the rostral, dorsomedial and ventrolateral quadrants of the caudate-putamen, and in the rostrobasal cell cluster, rostral pole, medial and lateral shell of the nucleus accumbens and the olfactory tubercle. The numbers of neurons responding to amph and hal in all subterritories following co-administration of the two drugs were significantly less than the summed numbers responding individually to amph and hal. Furthermore, in the subterritories where immunohistochemically detectable responses elicited by amph exceeded those produced by hal, co-administration of the two drugs resulted in responses comparable to those elicited by hal given alone. It is suggested that some of the reported anti-dopaminergic behavioral effects of basal ganglia neurotensin may be attenuated in conditions of reduced dopamine neurotransmission.
Collapse
Affiliation(s)
- D S Zahm
- Department of Anatomy and Neurobiology, St. Louis University School of Medicine, Missouri 63104, USA.
| | | | | | | | | |
Collapse
|
19
|
Zahm DS, Williams ES, Krause JE. Desensitization and enhancement of neurotensin/neuromedin N mRNA responses in subsets of rat caudate-putamen neurons following multiple administrations of haloperidol. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 1998; 59:196-204. [PMID: 9729381 DOI: 10.1016/s0169-328x(98)00147-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Striatal neurons that respond to blockade of dopamine receptors with altered expression of neurotensin/neuromedin N mRNA were examined. Injections of haloperidol were given to rats at four or 24 h and both four and 24 h prior to sacrifice. Pair-matched controls were injected with equivalent volumes of vehicle at either 4 or 24 h prior to sacrifice. Sections of striatum were processed non-isotopically with a cRNA neurotensin/neuromedin N probe. Massive numbers of neurons exhibited hybridization in the lateral and dorsolateral caudate-putamen at 4 h. At 24 h, hybridized neurons were few in lateral and dorsolateral parts of the caudate-putamen, but more numerous in the dorsomedial and ventrolateral caudate-putamen than in controls. A second injection of haloperidol 4 h prior to sacrifice enhanced the dorsomedial/ventrolateral response, but failed to elicit substantial numbers of lateral and dorsolateral hybrids, as were observed at 4 h after one injection. Resistance of neurotensin expression to a second injection of haloperidol was selective for the lateral and dorsolateral parts of the caudate-putamen and may reflect residual blockade by haloperidol or altered DA receptors or second messengers. Sections subjected to immunohistochemical processing for neurotensin peptide and in situ hybridization with the neurotensin/neuromedin N mRNA probe exhibited numerous neurons in the dorsomedial and ventrolateral quadrants of the caudate-putamen that were double-labeled with immunoperoxidase and hybridization signals. This suggests that peptide synthesis, as opposed to decreased release of peptide, has a role in the accumulation of neurotensin immunoreactivity by dorsomedial and ventrolateral striatal neurons.
Collapse
Affiliation(s)
- D S Zahm
- Departments of Anatomy and Neurobiology, St. Louis University School of Medicine, 1402 S. Grand Blvd., St. Louis, MO 63104, USA.
| | | | | |
Collapse
|
20
|
Chiasson BJ, Hong MG, Robertson HA. Putative roles for the inducible transcription factor c-fos in the central nervous system: studies with antisense oligonucleotides. Neurochem Int 1997; 31:459-75. [PMID: 9246687 DOI: 10.1016/s0197-0186(96)00115-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Although immediate-early genes such as c-fos are widely believed to play an important role in neuroplasticity, there is limited evidence to support involvement in the initiation of molecular events leading to medium- and long-term changes in brain function following a stimulus. Results using techniques such as transgenic knockout of the gene are often difficult to interpret. Antisense oligonucleotide technology offers an alternative. Infusion of antisense oligonucleotide to modify the expression of c-fos in the brain results in dramatic changes in rotation behaviour in animals challenged with psychostimulant drugs such as amphetamine. Similarly, the knockdown of c-fos expression using antisense oligonucleotides can also alter the rate of amygdala kindling in response to electrical stimulation of the brain. While studies using antisense oligonucleotides to knockdown c-fos expression provide evidence that the expression of c-fos plays an important role in regulating neuronal function, the use of antisense nucleotides has limitations and experiments must be very carefully controlled. Many details of antisense oligonucleotide actions remain unknown.
Collapse
Affiliation(s)
- B J Chiasson
- Department of Anatomy and Cell Biology, University of Toronto, Ontario, Canada
| | | | | |
Collapse
|
21
|
Shearman LP, Weaver DR. Haloperidol regulates neurotensin gene expression in striatum of c-fos-deficient mice. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 1997; 47:275-85. [PMID: 9221926 DOI: 10.1016/s0169-328x(97)00058-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The immediate-early gene c-fos has been proposed to play a role in induction of neurotensin/neuromedin N (NT/N) gene expression in the striatum following acute haloperidol (HAL) treatment. We utilized mice with targeted disruption of the c-fos gene to directly test this hypothesis. A robust increase in NT/N gene expression was observed in the dorsolateral striatum (DLSt) in both wild-type (WT) and c-fos-deficient mice 4-6 h after a single injection of HAL (1 or 4 mg/kg) indicating that products of the c-fos gene are not absolutely required for induction of NT/N mRNA. The basal expression of preprotachykinin, preproenkephalin and preprocholecystokinin mRNAs did not differ between WT and c-fos knockout mice. HAL treatment first increased striatal NT/N mRNA on postnatal day (PD) 10. HAL-induced NT/N mRNA levels were significantly lower in c-fos knockout mice than in WT mice on PD 10 and 15. These findings indicate that reliance on c-fos may be greater earlier in development and that redundant molecular pathways can lead to induction of NT/N mRNA in mouse striatum.
Collapse
Affiliation(s)
- L P Shearman
- Massachusetts General Hospital, Department of Pediatrics, Harvard Medical School, Boston 02114, USA
| | | |
Collapse
|
22
|
Melloni RH, Aronin N, DeGennaro LJ, Ferris CF, Harrison RJ. Dde-I restriction endonuclease fragmentation: a novel method of generating cDNA probes for in situ hybridization in brain. J Histochem Cytochem 1997; 45:755-63. [PMID: 9154163 DOI: 10.1177/002215549704500514] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
We present a novel procedure for detection of low- and high-abundance messenger RNAs in the brain by in situ hybridization histochemistry, by using fragmented double-stranded cDNA as molecular probes. The procedure involves digesting the cDNA of interest with the restriction endonuclease from Desulfocibrio desulfuricans (Dde I digestion), followed by random primed labeling, which generates a family of high specific activity cDNA fragments. This procedure is a rapid, straightforward, and reproducible method of obtaining sensitive probes for in situ hybridization and is generally applicable to the analysis of the expression of a large number of genes. Here we report the use of this procedure to prepare probes for the detection of synapsin I, p150Glued, neurotensin, c-fos, and c-jun mRNAs in brain, using both isotopic and non-isotopic labeling methods. Because this procedure does not require complex recombinant DNA manipulations or oligonucleotide design, it should prove useful to the non-molecular biologist examining the expression of genes in the central nervous system.
Collapse
Affiliation(s)
- R H Melloni
- Molecular Neurobiology Laboratory, University of Massachusetts Medical Center, Worcester 01655, USA
| | | | | | | | | |
Collapse
|
23
|
Augood SJ, Westmore K, Emson PC. Phenotypic characterization of neurotensin messenger RNA-expressing cells in the neuroleptic-treated rat striatum: a detailed cellular co-expression study. Neuroscience 1997; 76:763-74. [PMID: 9135049 DOI: 10.1016/s0306-4522(96)00449-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The chemical phenotype of proneurotensin messenger RNA-expressing cells was determined in the acute haloperidol-treated rat striatum using a combination of (35S)-labelled and alkaline phosphatase-labelled oligonucleotides. Cellular sites of proneurotensin messenger RNA expression were visualized simultaneously on tissue sections processed to reveal cellular sites of preproenkephalin A messenger RNA or the dopamine and adenylate cyclase phosphoprotein-32, messenger RNA. The cellular co-expression of preproenkepahlin A (enkephalin) and preprotachykinin (substance P) messenger RNA was also examined within forebrain structures. Cellular sites of enkephalin (substance P) and dopamine and adenylate cyclase phosphoprotein-32 messenger RNAs were visualized using alkaline phosphatase-labelled oligonucleotides whilst sites of substance P and proneurotensin messenger RNA expression were detected using (35S)-labelled oligos. Cellular sites of enkephalin and dopamine and adenylate cyclase phosphoprotein-32 gene expression were identified microscopically by the concentration of purple alkaline phosphatase reaction product within the cell cytoplasm, whereas sites of substance P and proneurotensin gene expression were identified by the dense clustering of silver grains overlying cells. An intense hybridization signal was detected for all three neuropeptide messenger RNAs in the striatum, the nucleus accumbens and septum. Dopamine and adenylate cyclase phosphoprotein-32 messenger RNA was detected within the neostriatum but not within the septum. In all forebrain regions examined, with the exception of the islands of Calleja, the cellular expression of enkephalin messenger RNA and substance P messenger RNA was discordant; the two neuropeptide messenger RNAs were detected essentially in different cells, although in the striatum and nucleus accumbens occasional isolated cells were detected which contained both hybridization signals; dense clusters of silver grains overlay alkaline phosphatase-positive cells, demonstrating clearly that these dual-labelled cells expressed both messenger RNAs. By contrast, the hybridization signals for proneurotensin and enkephalin, and proneurotensin and dopamine and adenylate cyclase phosphoprotein-32 were generally coincident, at least within the neostriatum; most proneurotensin messenger RNA-positive cells expressed enkephalin messenger RNA and were also positive for dopamine and adenylate cyclase phosphoprotein-32 messenger RNA. However, occasional proneurotensin messenger RNA-positive striatal cells were identified that were single-labelled and did not express enkephalin messenger RNA. Within the septal nucleus, enkephalin messenger RNA and substance P messenger RNA were expressed essentially within segregated cell populations. These studies illustrate further the utility of co-expression techniques for investigating the chemical phenotype of cells within the CNS and demonstrate that the distribution of neuropeptide co-expressing cells is different within different brain regions. That several populations of proneurotensin messenger RNA-positive striatal cells may exist, of which one population is sensitive to haloperidol, co-expresses enkephalin messenger RNA and is positive for dopamine and adenylate cyclase phosphoprotein-32 messenger RNA may be of some significance in neuropsychiatric/neurological disorders given that the translated peptide, neurotensin, is known to influence and interact closely with the dopamine systems.
Collapse
Affiliation(s)
- S J Augood
- The Department of Neurobiology, The Babraham Institute, Cambridge, U.K
| | | | | |
Collapse
|
24
|
Zahm DS, Williams ES, Poulad D, Krause JE. Temporal dissociation of neurotensin/neuromedin N mRNA expression in topographically separate subsets of rat striatal neurons following administration of haloperidol. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 1996; 42:71-8. [PMID: 8915582 DOI: 10.1016/s0169-328x(96)00116-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The expression of the neurotensin/neuromedin N gene in the rat caudate-putamen was studied at 7 and 24 h following the administration of haloperidol using a riboprobe and non-isotopic in situ hybridization histochemistry. As has been reported by others, expression of neurotensin/neuromedin N mRNA in the dorsolateral quadrant of the caudate-putamen was undetectable in controls, robust at 7 h and minimally detectable at 24 h following haloperidol administration. In the dorsomedial and ventrolateral quadrants of the caudate-putamen, barely detectable basal expression of neurotensin/neuromedin N mRNA observed in controls was conspicuously enhanced at 24 h following administration of haloperidol both in terms of numbers of hybridized neurons, which were about 200% of control values, and the amount of chromogen accumulated over individual neurons. The data are consistent with at least two subpopulations of caudate-putamen neurons in which neurotensin/neuromedin N mRNA expression is differentially regulated in response to haloperidol administration.
Collapse
Affiliation(s)
- D S Zahm
- Department of Anatomy and Neurobiology, St. Louis University School of Medicine, MO 63104, USA.
| | | | | | | |
Collapse
|
25
|
Brog JS, Zahm DS. Morphologically distinct subpopulations of neurotensin-immunoreactive striatal neurons observed in rat following dopamine depletions and D2 receptor blockade project to the globus pallidus. Neuroscience 1996; 74:805-12. [PMID: 8884776 DOI: 10.1016/0306-4522(96)00166-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
It has been reported in previous studies that perikaryal neurotensin immunoreactivity is largely absent in the rat striatum except following striatal dopamine depletion or blockade of dopamine D2 receptors, after which, however, neurotensin immunoreactivity is elicited in at least two distinct subpopulations of striatal neurons [Zahm D.S. (1992) Neuroscience 46, 335-350]. One subpopulation of such cells (type I), prominent following D2 receptor blockade, is located mainly in the matrix compartment in the rostral, dorsomedial and ventrolateral parts of the striatum, and comprises neurons at the large end of the medium-sized spectrum that exhibit intense neurotensin immunoreactivity in perikarya and proximal dendrites, but rarely display Fos immunoreactivity [Senger B. et al. (1993) Neuroscience 57, 649-660]. A second subpopulation (type II) resides predominantly in the patch (striosome) and matrix compartments in the dorsolateral quadrant of the striatum, and is prominent following administration of reserpine. These neurons are at the small end of the medium size range and exhibit very light neurotensin immunoreactivity, with little staining of dendrites. Fos immunoreactivity is frequently co-localized in striatal neurons that exhibit a type II striatal neurotensin response [Brog J.S. and Zahm D.S. (1995) Neuroscience 65, 71-86]. In the current study, neurotensin immunoreactivity was elicited in striatal neurons by ventral mesencephalic 6-hydroxydopamine lesions or administration of reserpine or haloperidol. Irrespective of which drug was given, retrogradely transported Fluoro-Gold was prominently co-localized with neurotensin-like immunofluorescence in the perikarya of striatal neurons following injections of the retrograde tracer into the globus pallidus. Few double-labeled neurons were observed following administration of any of these drugs and injections of Fluoro-Gold into the substantia nigra. It is concluded that two subpopulations of neurotensin-immunoreactive striatal neurons project predominantly to the globus pallidus and minimally to the substantia nigra.
Collapse
Affiliation(s)
- J S Brog
- Department of Anatomy and Neurobiology, St Louis University School of Medicine, MO 63104, USA
| | | |
Collapse
|
26
|
Kinon BJ, Lieberman JA. Mechanisms of action of atypical antipsychotic drugs: a critical analysis. Psychopharmacology (Berl) 1996; 124:2-34. [PMID: 8935797 DOI: 10.1007/bf02245602] [Citation(s) in RCA: 213] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Various criteria used to define atypical antipsychotic drugs include: 1) decrease, or absence, of the capacity to cause acute extrapyramidal motor side effects (acute EPSE) and tardive dyskinesia (TD); 2) increased therapeutic efficacy reflected by improvement in positive, negative, or cognitive symptoms; 3) and a decrease, or absence, of the capacity to increase prolactin levels. The pharmacologic basis of atypical antipsychotic drug activity has been the target of intensive study since the significance of clozapine was first appreciated. Three notions have been utilized conceptually to explain the distinction between atypical versus typical antipsychotic drugs: 1) dose-response separation between particular pharmacologic functions; 2) anatomic specificity of particular pharmacologic activities; 3) neurotransmitter receptor interactions and pharmacodynamics. These conceptual bases are not mutually exclusive, and the demonstration of limbic versus extrapyramidal motor functional selectivity is apparent within each arbitrary theoretical base. This review discusses salient distinctions predominantly between prototypic atypical and typical antipsychotic drugs such as clozapine and haloperidol, respectively. In addition, areas of common function between atypical and typical antipsychotic drug action may also be crucial to our identification of pathophysiological foci of the different dimensions of schizophrenia, including positive symptoms, negative symptoms, and neurocognitive deficits.
Collapse
Affiliation(s)
- B J Kinon
- Department of Psychiatry, Albert Einstein College of Medicine, Glen Oaks, NY 11004, USA
| | | |
Collapse
|
27
|
Svenningsson P, Johansson B, Fredholm BB. Caffeine-induced expression of c-fos mRNA and NGFI-A mRNA in caudate putamen and in nucleus accumbens are differentially affected by the N-methyl-D-aspartate receptor antagonist MK-801. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 1996; 35:183-9. [PMID: 8717354 DOI: 10.1016/0169-328x(95)00202-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Caffeine (100 mg/kg, i.p.) induces a rapid increase in the expression of mRNA for the immediate early genes (IEGs) c-fos and NGFI-A in rat striatum. We have examined how this response is affected by pretreatment with either the noncompetitive N-methyl-D-aspartate (NMDA) receptor antagonist MK-801 (1 and 3 mg/kg, i.p.), the competitive NMDA receptor antagonist D-CPP (6 mg/kg, i.p.), or the non-selective excitatory amino acid receptor antagonist kynurenic acid (300 mg/kg, i.p). The two NMDA receptor antagonists significantly reduced the caffeine-induced expression of both c-fos mRNA and NGFI-A mRNA in the medial part of the caudate putamen. The effect was less pronounced in the lateral part of the caudate putamen. MK-801 caused an enhancement of c-fos and NGFI-A mRNA expression in nucleus accumbens. Pretreatment with kynurenic acid caused no marked alterations in the caffeine-induced expression of c-fos mRNA and NGFI-A mRNA in any brain region. These findings suggest that glutamatergic transmission via NMDA receptors contributes to the induction of c-fos mRNA and NGFI-A mRNA by caffeine in striatum. In addition we show that MK-801 can either increase or decrease the caffeine effect on IEGs depending on the region studied.
Collapse
Affiliation(s)
- P Svenningsson
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | | | | |
Collapse
|
28
|
Decker KP, Roy-Byrne PP, Merchant KM. Effect of muscimol on haloperidol-induced alteration of neurotensin gene expression in the striatum and nucleus accumbens in the rat. Brain Res 1995; 691:9-17. [PMID: 8590069 DOI: 10.1016/0006-8993(95)00573-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Acute neuroleptic administration increases the expression of neurotensin/neuromedin (NT/N) gene in rat dorsolateral striatum and shell sector of the nucleus accumbens. The purpose of this study was to examine modulation of neuroleptic induction of NT/N and the proto-oncogene c-fos expression by the GABAA agonist muscimol. Adult male Sprague-Dawley rats were treated with saline, haloperidol (1 mg/kg); muscimol (3.2 mg/kg); or haloperidol (1 mg/kg) plus muscimol (3.2 mg/kg). Animals were sacrificed 1 h after drug administration. Expression of NT/N and c-fos mRNA was examined by in situ hybridization using 35S-antisense probes. Muscimol alone had no measurable effect on basal levels of NT/N or c-fos mRNA in either the dorsolateral striatum or the nucleus accumbens. However, co-administration of muscimol with haloperidol reduced haloperidol-induced increases in NT/N as well as c-fos mRNA in the dorsolateral striatum. In contrast, NT/N mRNA expression in accumbal shell induced by haloperidol was not modulated by co-administration of muscimol. These data suggest that GABAA receptors may be involved in regulation of NT/N gene expression in the DLSt, but not in the nucleus accumbens.
Collapse
Affiliation(s)
- K P Decker
- Harborview Medical Center, University of Washington, Seattle 98104, USA
| | | | | |
Collapse
|
29
|
Robertson GS, Tetzlaff W, Bedard A, St-Jean M, Wigle N. C-fos mediates antipsychotic-induced neurotensin gene expression in the rodent striatum. Neuroscience 1995; 67:325-44. [PMID: 7675173 DOI: 10.1016/0306-4522(95)00049-o] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The ubiquitous inducibility of the immediate-early gene c-fos in the central nervous system has led to the search for downstream genes which are regulated by its product, Fos. Recent evidence suggests that c-fos induction by a single injection of the classical antipsychotic haloperidol may contribute to the subsequent increase in neurotensin gene expression in the rodent striatum. Consistent with this proposal, in the present study haloperidol-induced Fos-like immunoreactivity and neurotensin/neuromedin N messenger RNA were found to be expressed by the same population of striatal neurons. Moreover, inhibition of haloperidol-induced c-fos expression by intrastriatal injection of antisense phosphorothioate oligodeoxynucleotides complimentary either to bases 109-126 or 127-144 of c-fos attenuated the subsequent increase in neurotensin/neuromedin N messenger RNA. However, injection of a sense phosphorothioate oligodeoxynucleotide corresponding to bases 127-144 of c-fos did not reduce haloperidol-induced c-fos or neurotensin/neuromedin N expression. Furthermore, constitutive expression of Jun-like immunoreactivity in the striatum was not reduced by either the sense or antisense phosphorothioate oligodeoxynucleotides. Similarly, the sense and antisense phosphorothioate oligodeoxynucleotide failed to reduce proenkephalin messenger RNA, which is located in the same striatal neurons that express haloperidol-induced neurotensin/neuromedin N messenger RNA, which is located in the same striatal neurons that express haloperidol-induced neurotensin/neuromedin N messenger RNA. Lastly, haloperidol-induced increases in nerve growth factor I-A-, JunB- and FosB-like immunoreactivity and fosB messenger RNA were not decreased by intrastriatal injection of either the sense or antisense phosphorothioate oligodeoxynucleotides. These results indicate that the antisense phosphorothioate oligodeoxynucleotides attenuated haloperidol-induced neurotensin/neuromedin N expression by selectively reducing c-fos expression and emphasize the potential importance of immediate-early gene induction in the mechanism of action of this antipsychotic drug.
Collapse
Affiliation(s)
- G S Robertson
- Department of Pharmacology, Faculty of Medicine, University of Ottawa, Ontario, Canada
| | | | | | | | | |
Collapse
|
30
|
Brog JS, Zahm DS. Morphology and Fos immunoreactivity reveal two subpopulations of striatal neurotensin neurons following acute 6-hydroxydopamine lesions and reserpine administration. Neuroscience 1995; 65:71-86. [PMID: 7753409 DOI: 10.1016/0306-4522(94)00460-m] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
It was previously reported that following striatal dopamine depletion or pharmacological blockade of dopamine neurotransmission, neurotensin immunoreactivity is elicited in at least two distinct subpopulations of striatal neurons (Neuroscience Vol. 46, pp. 335-350, 1992). Recently it was shown that Fos immunoreactivity, interpreted as an indicator of enhanced neuronal activity, is appreciably co-localized in only one of the subpopulations of neurotensin-immunoreactive neurons observed following blockade of the dopamine D2 receptor (Neuroscience Vol. 57, pp. 649-660, 1993). In the present study, similar methods were used to determine the degree of co-localization of Fos and neurotensin immunoreactivity in striatal neurons in response to the dopamine-depleting effects of 6-hydroxydopamine lesions and reserpine administration. It was observed that following these treatments, a subpopulation of neurons at the small end of the medium size range exhibited light neurotensin immunoreactivity and frequent co-localization with Fos immunoreactivity. This population was predominant after reserpine administration in the dorsolateral quadrant of the striatum. Another subpopulation comprised larger neurons that exhibited intense neurotensin immunoreactivity in perikarya and proximal processes that was rarely co-localized with Fos immunoreactivity. This type of neuron was observed following all the drug treatments but was present almost to the exclusion of the smaller type of cells three days following ventral midbrain 6-hydroxydopamine lesions, being mainly located in the dorsomedial and ventrolateral portions of the striatum. The present data support the results of the preceding studies in being consistent with the existence of two subpopulations of striatal neurons that accumulate neurotensin following dopamine depletion. The possibility is considered that one subpopulation accumulates neurotensin in response to co-ordinate increases in neuronal activity and neurotensin synthesis, and the other as a result of decreased release.
Collapse
Affiliation(s)
- J S Brog
- Department of Anatomy and Neurobiology, St Louis University School of Medicine, MO 63104, USA
| | | |
Collapse
|