1
|
Luo YY, Ruan CS, Zhao FZ, Yang M, Cui W, Cheng X, Luo XH, Zhang XX, Zhang C. ZBED3 exacerbates hyperglycemia by promoting hepatic gluconeogenesis through CREB signaling. Metabolism 2024; 162:156049. [PMID: 39454821 DOI: 10.1016/j.metabol.2024.156049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/24/2024] [Accepted: 10/17/2024] [Indexed: 10/28/2024]
Abstract
BACKGROUND Elevated hepatic glucose production (HGP) is a prominent manifestation of impaired hepatic glucose metabolism in individuals with diabetes. Increased hepatic gluconeogenesis plays a pivotal role in the dysregulation of hepatic glucose metabolism and contributes significantly to fasting hyperglycemia in diabetes. Previous studies have identified zinc-finger BED domain-containing 3 (ZBED3) as a risk gene for type 2 diabetes (T2DM), and its single nucleotide polymorphism (SNPs) is closely associated with the fasting blood glucose level, suggesting a potential correlation between ZBED3 and the onset of diabetes. This study primarily explores the effect of ZBED3 on hepatic gluconeogenesis and analyzes the relevant signaling pathways that regulate hepatic gluconeogenesis. METHODS The expression level of ZBED3 was assessed in the liver of insulin-resistant (IR)-related disease. RNA-seq and bioinformatics analyses were employed to examine the ZBED3-related pathway that modulated HGP. To investigate the role of ZBED3 in hepatic gluconeogenesis, the expression of ZBED3 was manipulated by upregulation or silencing using adeno-associated virus (AAV) in mouse primary hepatocytes (MPHs) and HHL-5 cells. In vivo, hepatocyte-specific ZBED3 knockout mice were generated. Moreover, AAV8 was employed to achieve hepatocyte-specific overexpression and knockdown of ZBED3 in C57BL/6 and db/db mice. Immunoprecipitation and mass spectrometry (IP-MS) analyses were employed to identify proteins that interacted with ZBED3. Co-immunoprecipitation (co-IP), glutathione S-transferase (GST) - pulldown, and dual-luciferase reporter assays were conducted to further elucidate the underlying mechanism of ZBED3 in regulating hepatic gluconeogenesis. RESULTS The expression of ZBED3 in the liver of IR-related disease models was found to be increased. Under the stimulation of glucagon, ZBED3 promoted the expression of hepatic gluconeogenesis-related genes PGC1A, PCK1, G6PC, thereby increasing HGP. Consistently, the rate of hepatic gluconeogenesis was found to be elevated in mice with hepatocyte-specific overexpression of ZBED3 and decreased in those with ZBED3 knockout. Additionally, the knockdown of ZBED3 in the liver of db/db mice resulted in a reduction in hepatic gluconeogenesis. Moreover, the study revealed that ZBED3 facilitated the nuclear translocation of protein arginine methyltransferases 5 (PRMT5) to influence the regulation of PRMT5-mediated symmetrical dimethylation of arginine (s-DMA) of cyclic adenosine monophosphate (cAMP) response element binding protein (CREB), which in turn affects the phosphorylation of CREB and ultimately promotes HGP. CONCLUSIONS This study indicates that ZBED3 promotes hepatic gluconeogenesis and serves as a critical regulator of the progression of diabetes.
Collapse
Affiliation(s)
- Yuan-Yuan Luo
- Department of Endocrinology, Chongqing University Three Gorges Hospital, Chongqing, China; Chongqing Municipality Clinical Research Center for Endocrinology and Metabolic Diseases, Chongqing University Three Gorges Hospital, Chongqing, China; Department of Endocrinology, the Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Chang-Shun Ruan
- Chongqing Municipality Clinical Research Center for Endocrinology and Metabolic Diseases, Chongqing University Three Gorges Hospital, Chongqing, China; Department of Central Laboratory, Chongqing University Three Gorges Hospital, School of Medicine, Chongqing University, Chongqing, China
| | - Fu-Zhen Zhao
- Department of Endocrinology, Chongqing University Three Gorges Hospital, Chongqing, China; Chongqing Municipality Clinical Research Center for Endocrinology and Metabolic Diseases, Chongqing University Three Gorges Hospital, Chongqing, China; School of Medicine, Chongqing University, Chongqing, China
| | - Min Yang
- Chongqing Municipality Clinical Research Center for Endocrinology and Metabolic Diseases, Chongqing University Three Gorges Hospital, Chongqing, China
| | - Wei Cui
- Department of Central Laboratory, Chongqing University Three Gorges Hospital, School of Medicine, Chongqing University, Chongqing, China
| | - Xi Cheng
- Chongqing Municipality Clinical Research Center for Endocrinology and Metabolic Diseases, Chongqing University Three Gorges Hospital, Chongqing, China; Department of Central Laboratory, Chongqing University Three Gorges Hospital, School of Medicine, Chongqing University, Chongqing, China
| | - Xiao-He Luo
- Chongqing Municipality Clinical Research Center for Endocrinology and Metabolic Diseases, Chongqing University Three Gorges Hospital, Chongqing, China; Department of Central Laboratory, Chongqing University Three Gorges Hospital, School of Medicine, Chongqing University, Chongqing, China.
| | - Xian-Xiang Zhang
- Chongqing Municipality Clinical Research Center for Endocrinology and Metabolic Diseases, Chongqing University Three Gorges Hospital, Chongqing, China.
| | - Cheng Zhang
- Department of Endocrinology, Chongqing University Three Gorges Hospital, Chongqing, China; Chongqing Municipality Clinical Research Center for Endocrinology and Metabolic Diseases, Chongqing University Three Gorges Hospital, Chongqing, China; School of Medicine, Chongqing University, Chongqing, China.
| |
Collapse
|
2
|
Kanbay M, Copur S, Guldan M, Ozbek L, Mallamaci F, Zoccali C. Glucagon and glucagon-like peptide-1 dual agonist therapy: A possible future towards fatty kidney disease. Eur J Clin Invest 2024:e14330. [PMID: 39400355 DOI: 10.1111/eci.14330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 09/24/2024] [Indexed: 10/15/2024]
Abstract
BACKGROUND Obesity is a growing epidemic affecting approximately 40% of the adult population in developed countries with major health consequences and comorbidities, including diabetes mellitus and insulin resistance, metabolically associated fatty liver disease, atherosclerotic cardiovascular and cerebrovascular diseases and chronic kidney disease. Pharmacotherapies targeting significant weight reduction may have beneficial effects on such comorbidities, though such therapeutic options are highly limited. In this narrative review, we aim to evaluate current knowledge regarding dual agonist therapies and potential implications for managing fatty kidney and chronic kidney disease. RESULTS AND CONCLUSION Glucagon-like peptide-1 agonists and sodium-glucose cotransporter-2 inhibitors are two novel classes of glucose-lowering medications with potential implications and beneficiary effects on renal outcomes, including estimated glomerular filtration rate, albuminuria and chronic kidney disease progression. Recently, dual agonist therapies targeting glucagon-like peptide-1 and glucagon receptors, namely survodutide and cotadutide, have been evaluated in managing metabolically associated fatty liver disease, a well-established example of visceral obesity. Fatty kidney is another novel concept implicated in the pathophysiology of chronic kidney disease among patients with visceral obesity.
Collapse
Affiliation(s)
- Mehmet Kanbay
- Department of Internal Medicine, Division of Nephrology, Koc University School of Medicine, Istanbul, Turkey
| | - Sidar Copur
- Department of Internal Medicine, Koç University School of Medicine, Istanbul, Turkey
| | - Mustafa Guldan
- Department of Internal Medicine, Koç University School of Medicine, Istanbul, Turkey
| | - Lasin Ozbek
- Department of Internal Medicine, Koç University School of Medicine, Istanbul, Turkey
| | - Francesca Mallamaci
- Nephrology, Dialysis and Transplantation Unit, Grande Ospedale Metropolitano, Reggio Calabria, Italy
- CNR-IFC, Research Unit of Clinical Epidemiology and Physiopathology of Renal Diseases and Hypertension, Institute of Clinical Physiology, Reggio Calabria, Italy
| | - Carmine Zoccali
- Renal Research Institute, New York, New York, USA
- Institute of Molecular Biology and Genetics (Biogem), Ariano Irpino, Italy
- Associazione Ipertensione Nefrologia Trapianto Renale (IPNET), Grande Ospedale Metropolitano, Reggio Calabria, Italy
| |
Collapse
|
3
|
Harrison SA, Browne SK, Suschak JJ, Tomah S, Gutierrez JA, Yang J, Roberts MS, Harris MS. Effect of pemvidutide, a GLP-1/glucagon dual receptor agonist, on MASLD: A randomized, double-blind, placebo-controlled study. J Hepatol 2024:S0168-8278(24)02362-6. [PMID: 39002641 DOI: 10.1016/j.jhep.2024.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 06/28/2024] [Accepted: 07/02/2024] [Indexed: 07/15/2024]
Abstract
BACKGROUND & AIMS This was a randomized, double-blind, placebo-controlled study to assess the effects of pemvidutide, a glucagon-like peptide-1 (GLP-1)/glucagon dual receptor agonist, on liver fat content (LFC) in individuals with metabolic dysfunction-associated steatotic liver disease (MASLD). METHODS Patients with a BMI ≥28.0 kg/m2 and LFC ≥10% by magnetic resonance imaging-proton density fat fraction were randomized 1:1:1:1 to pemvidutide at 1.2 mg, 1.8 mg, or 2.4 mg, or placebo administered subcutaneously once weekly for 12 weeks. Participants were stratified according to a diagnosis of type 2 diabetes mellitus. The primary efficacy endpoint was relative reduction (%) from baseline in LFC after 12 weeks of treatment. RESULTS Ninety-four patients were randomized and dosed. Median baseline BMI and LFC across the study population were 36.2 kg/m2 and 20.6%; 29% of patients had type 2 diabetes mellitus. At week 12, relative reductions in LFC from baseline were 46.6% (95% CI -63.7 to -29.6), 68.5% (95% CI -84.4 to -52.5), and 57.1% (95% CI -76.1 to -38.1) for the pemvidutide 1.2 mg, 1.8 mg, and 2.4 mg groups, respectively, vs. 4.4% (95% CI -20.2 to 11.3) for the placebo group (p <0.001 vs. placebo, all treatment groups), with 94.4% and 72.2% of patients achieving 30% and 50% reductions in LFC and 55.6% achieving normalization (≤5% LFC) at the 1.8 mg dose. Maximal responses for weight loss (-4.3%; p <0.001), alanine aminotransferase (-13.8 IU/L; p = 0.029), and corrected cT1 (-75.9 ms; p = 0.002) were all observed at the 1.8 mg dose. Pemvidutide was well-tolerated at all doses with no severe or serious adverse events. CONCLUSIONS In patients with MASLD, weekly pemvidutide treatment yielded significant reductions in LFC, markers of hepatic inflammation, and body weight compared to placebo. IMPACT AND IMPLICATIONS Metabolic dysfunction-associated steatotic liver disease, and its progressive form steatohepatitis, are strongly associated with overweight/obesity and it is believed that the excess liver fat associated with obesity is an important driver of these diseases. Glucagon-like peptide-1 receptor (GLP-1R) agonists elicit weight loss through centrally and peripherally mediated effects on appetite. Unlike GLP-1R agonists, glucagon receptor agonists act directly on the liver to stimulate fatty acid oxidation and inhibit lipogenesis, potentially providing a more potent mechanism for liver fat content reduction than weight loss alone. This study demonstrated the ability of once-weekly treatment with pemvidutide, a dual GLP-1R/glucagon receptor agonist, to significantly reduce liver fat content, hepatic inflammatory activity, and body weight, suggesting that pemvidutide may be an effective treatment for both metabolic dysfunction-associated steatohepatitis and obesity. CLINICAL TRIAL NUMBER NCT05006885.
Collapse
Affiliation(s)
- Stephen A Harrison
- Department of Hepatology, University of Oxford, Oxford, UK; Pinnacle Clinical Research, San Antonio, TX, USA
| | | | | | | | - Julio A Gutierrez
- Altimmune, Inc, Gaithersburg, MD, USA; Center for Organ Transplant, Scripps, La Jolla, Ca, USA
| | - Jay Yang
- Altimmune, Inc, Gaithersburg, MD, USA
| | | | | |
Collapse
|
4
|
McFarlin BE, Duffin KL, Konkar A. Incretin and glucagon receptor polypharmacology in chronic kidney disease. Am J Physiol Endocrinol Metab 2024; 326:E747-E766. [PMID: 38477666 PMCID: PMC11551006 DOI: 10.1152/ajpendo.00374.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 03/10/2024] [Indexed: 03/14/2024]
Abstract
Chronic kidney disease is a debilitating condition associated with significant morbidity and mortality. In recent years, the kidney effects of incretin-based therapies, particularly glucagon-like peptide-1 receptor agonists (GLP-1RAs), have garnered substantial interest in the management of type 2 diabetes and obesity. This review delves into the intricate interactions between the kidney, GLP-1RAs, and glucagon, shedding light on their mechanisms of action and potential kidney benefits. Both GLP-1 and glucagon, known for their opposing roles in regulating glucose homeostasis, improve systemic risk factors affecting the kidney, including adiposity, inflammation, oxidative stress, and endothelial function. Additionally, these hormones and their pharmaceutical mimetics may have a direct impact on the kidney. Clinical studies have provided evidence that incretins, including those incorporating glucagon receptor agonism, are likely to exhibit improved kidney outcomes. Although further research is necessary, receptor polypharmacology holds promise for preserving kidney function through eliciting vasodilatory effects, influencing volume and electrolyte handling, and improving systemic risk factors.
Collapse
Affiliation(s)
- Brandon E McFarlin
- Lilly Research Laboratories, Lilly Corporate CenterIndianapolisIndianaUnited States
| | - Kevin L Duffin
- Lilly Research Laboratories, Lilly Corporate CenterIndianapolisIndianaUnited States
| | - Anish Konkar
- Lilly Research Laboratories, Lilly Corporate CenterIndianapolisIndianaUnited States
| |
Collapse
|
5
|
Gutgesell RM, Nogueiras R, Tschöp MH, Müller TD. Dual and Triple Incretin-Based Co-agonists: Novel Therapeutics for Obesity and Diabetes. Diabetes Ther 2024; 15:1069-1084. [PMID: 38573467 PMCID: PMC11043266 DOI: 10.1007/s13300-024-01566-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 03/12/2024] [Indexed: 04/05/2024] Open
Abstract
The discovery of long-acting incretin receptor agonists represents a major stride forward in tackling the dual epidemic of obesity and diabetes. Here we outline the evolution of incretin-based pharmacotherapy, from exendin-4 to the discovery of the multi-incretin hormone receptor agonists that look set to be our next step toward curing diabetes and obesity. We discuss the multiagonists currently in clinical trials and the improvement in efficacy each new generation of these drugs bring. The success of these agents in preclinical models and clinical trials suggests a promising future for multiagonists in the treatment of metabolic diseases, with the most recent glucose-dependent insulinotropic peptide receptor:glucagon-like peptide 1 receptor:glucagon receptor (GIPR:GLP-1R:GCGR) triagonists rivaling the efficacy of bariatric surgery. However, further research is needed to fully understand how these therapies exert their effect on body weight and in the last section we cover open questions about the potential mechanisms of multiagonist drugs, and the understanding of how gut-brain communication can be leveraged to achieve sustained body weight loss without adverse effects.
Collapse
Affiliation(s)
- Robert M Gutgesell
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Munich, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Rubén Nogueiras
- CIBER Physiopathology of Obesity and Nutrition (CIBERobn), ISCIII, Madrid, Spain
- Department of Physiology, CiMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, Spain
| | - Matthias H Tschöp
- Helmholtz Munich, Neuherberg, Germany
- Division of Metabolic Diseases, Department of Medicine, Technical University of Munich, Munich, Germany
| | - Timo D Müller
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Munich, Neuherberg, Germany.
- German Center for Diabetes Research (DZD), Neuherberg, Germany.
- Walther-Straub Institute for Pharmacology and Toxicology, Ludwig-Maximilians University, Munich, Germany.
| |
Collapse
|
6
|
Sanetra AM, Palus-Chramiec K, Chrobok L, Jeczmien-Lazur JS, Klich JD, Lewandowski MH. Proglucagon signalling in the rat Dorsomedial Hypothalamus - Physiology and high-fat diet-mediated alterations. Mol Cell Neurosci 2023; 126:103873. [PMID: 37295578 DOI: 10.1016/j.mcn.2023.103873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/24/2023] [Accepted: 06/06/2023] [Indexed: 06/12/2023] Open
Abstract
A relatively new pharmacological target in obesity treatment has been the preproglucagon (PPG) signalling, predominantly with glucagon-like peptide (GLP) 1 receptor agonists. As far as the PPG role within the digestive system is well recognised, its actions in the brain remain understudied. Here, we investigated PPG signalling in the Dorsomedial Hypothalamus (DMH), a structure involved in feeding regulation and metabolism, using in situ hybridisation, electrophysiology, and immunohistochemistry. Our experiments were performed on animals fed both control, and high-fat diet (HFD), uncovering HFD-mediated alterations. First, sensitivity to exendin-4 (Exn4, a GLP1R agonist) was shown to increase under HFD, with a higher number of responsive neurons. The amplitude of the response to both Exn4 and oxyntomodulin (Oxm) was also altered, diminishing its relationship with the cells' spontaneous firing rate. Not only neuronal sensitivity, but also GLP1 presence, and therefore possibly release, was influenced by HFD. Immunofluorescent labelling of the GLP1 showed changes in its density depending on the metabolic state (fasted/fed), but this effect was eliminated by HFD feeding. Interestingly, these dietary differences were absent after a period of restricted feeding, allowing for an anticipation of the alternating metabolic states, which suggests possible prevention of such outcome.
Collapse
Affiliation(s)
- A M Sanetra
- Department of Neurophysiology and Chronobiology, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Gronostajowa Street 9, 30-387 Krakow, Poland.
| | - K Palus-Chramiec
- Department of Neurophysiology and Chronobiology, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Gronostajowa Street 9, 30-387 Krakow, Poland
| | - L Chrobok
- Department of Neurophysiology and Chronobiology, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Gronostajowa Street 9, 30-387 Krakow, Poland; School of Physiology, Pharmacology, and Neuroscience, University of Bristol, University Walk, Biomedical Sciences Building, Bristol BS8 1TD, UK
| | - J S Jeczmien-Lazur
- Department of Neurophysiology and Chronobiology, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Gronostajowa Street 9, 30-387 Krakow, Poland
| | - J D Klich
- Department of Neurophysiology and Chronobiology, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Gronostajowa Street 9, 30-387 Krakow, Poland; Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Robert-Rössle Street 10, 13125 Berlin, Germany
| | - M H Lewandowski
- Department of Neurophysiology and Chronobiology, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Gronostajowa Street 9, 30-387 Krakow, Poland.
| |
Collapse
|
7
|
Neumann J, Hofmann B, Dhein S, Gergs U. Glucagon and Its Receptors in the Mammalian Heart. Int J Mol Sci 2023; 24:12829. [PMID: 37629010 PMCID: PMC10454195 DOI: 10.3390/ijms241612829] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/25/2023] [Accepted: 08/03/2023] [Indexed: 08/27/2023] Open
Abstract
Glucagon exerts effects on the mammalian heart. These effects include alterations in the force of contraction, beating rate, and changes in the cardiac conduction system axis. The cardiac effects of glucagon vary according to species, region, age, and concomitant disease. Depending on the species and region studied, the contractile effects of glucagon can be robust, modest, or even absent. Glucagon is detected in the mammalian heart and might act with an autocrine or paracrine effect on the cardiac glucagon receptors. The glucagon levels in the blood and glucagon receptor levels in the heart can change with disease or simultaneous drug application. Glucagon might signal via the glucagon receptors but, albeit less potently, glucagon might also signal via glucagon-like-peptide-1-receptors (GLP1-receptors). Glucagon receptors signal in a species- and region-dependent fashion. Small molecules or antibodies act as antagonists to glucagon receptors, which may become an additional treatment option for diabetes mellitus. Hence, a novel review of the role of glucagon and the glucagon receptors in the mammalian heart, with an eye on the mouse and human heart, appears relevant. Mouse hearts are addressed here because they can be easily genetically modified to generate mice that may serve as models for better studying the human glucagon receptor.
Collapse
Affiliation(s)
- Joachim Neumann
- Institute for Pharmacology and Toxicology, Medical Faculty, Martin Luther University Halle-Wittenberg, Magdeburger Straße 4, D-06097 Halle (Saale), Germany;
| | - Britt Hofmann
- Department of Cardiac Surgery, Mid-German Heart Center, University Hospital Halle, Ernst Grube Straße 40, D-06097 Halle (Saale), Germany;
| | - Stefan Dhein
- Rudolf-Boehm Institut für Pharmakologie und Toxikologie, Universität Leipzig, Härtelstraße 16-18, D-04107 Leipzig, Germany;
| | - Ulrich Gergs
- Institute for Pharmacology and Toxicology, Medical Faculty, Martin Luther University Halle-Wittenberg, Magdeburger Straße 4, D-06097 Halle (Saale), Germany;
| |
Collapse
|
8
|
Hope DCD, Tan TMM. Glucagon and energy expenditure; Revisiting amino acid metabolism and implications for weight loss therapy. Peptides 2023; 162:170962. [PMID: 36736539 DOI: 10.1016/j.peptides.2023.170962] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/26/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023]
Abstract
Glucagon receptor (GCGR)-targeted multi-agonists are being developed for the treatment of obesity and metabolic disease. GCGR activity is utilised for its favourable weight loss and metabolic properties, including increased energy expenditure (EE) and hepatic lipid metabolism. GLP1R and GIPR activities are increasingly present in a multi-agonist strategy. Due to the compound effect of increased satiety, reduced food intake and increased energy expenditure, the striking weight loss effects of these multi-agonists has been demonstrated in pre-clinical models of obesity. The precise contribution and mechanism of GCGR activity to enhanced energy expenditure and weight loss in both rodents and humans is not fully understood. In this review, our understanding of glucagon-mediated EE is explored, and an amino acid-centric paradigm contributing to this phenomenon is presented. The current progress of GCGR-targeted multi-agonists in development is also highlighted with a focus on the implications of glucagon-stimulated hypoaminoacidemia.
Collapse
Affiliation(s)
- D C D Hope
- Division of Diabetes, Endocrinology and Metabolism, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, United Kingdom
| | - T M-M Tan
- Division of Diabetes, Endocrinology and Metabolism, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, United Kingdom.
| |
Collapse
|
9
|
Hædersdal S, Andersen A, Knop FK, Vilsbøll T. Revisiting the role of glucagon in health, diabetes mellitus and other metabolic diseases. Nat Rev Endocrinol 2023; 19:321-335. [PMID: 36932176 DOI: 10.1038/s41574-023-00817-4] [Citation(s) in RCA: 48] [Impact Index Per Article: 48.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/17/2023] [Indexed: 03/19/2023]
Abstract
Insulin and glucagon exert opposing effects on glucose metabolism and, consequently, pancreatic islet β-cells and α-cells are considered functional antagonists. The intra-islet hypothesis has previously dominated the understanding of glucagon secretion, stating that insulin acts to inhibit the release of glucagon. By contrast, glucagon is a potent stimulator of insulin secretion and has been used to test β-cell function. Over the past decade, α-cells have received increasing attention due to their ability to stimulate insulin secretion from neighbouring β-cells, and α-cell-β-cell crosstalk has proven central for glucose homeostasis in vivo. Glucagon is not only the counter-regulatory hormone to insulin in glucose metabolism but also glucagon secretion is more susceptible to changes in the plasma concentration of certain amino acids than to changes in plasma concentrations of glucose. Thus, the actions of glucagon also include a central role in amino acid turnover and hepatic fat oxidation. This Review provides insights into glucagon secretion, with a focus on the local paracrine actions on glucagon and the importance of α-cell-β-cell crosstalk. We focus on dysregulated glucagon secretion in obesity, non-alcoholic fatty liver disease and type 2 diabetes mellitus. Lastly, the future potential of targeting hyperglucagonaemia and applying dual and triple receptor agonists with glucagon receptor-activating properties in combination with incretin hormone receptor agonism is discussed.
Collapse
Affiliation(s)
- Sofie Hædersdal
- Clinical Research, Copenhagen University Hospital - Steno Diabetes Center Copenhagen, Herlev, Denmark.
- Center for Clinical Metabolic Research, Copenhagen University Hospital - Herlev and Gentofte, Hellerup, Denmark.
| | - Andreas Andersen
- Clinical Research, Copenhagen University Hospital - Steno Diabetes Center Copenhagen, Herlev, Denmark
- Center for Clinical Metabolic Research, Copenhagen University Hospital - Herlev and Gentofte, Hellerup, Denmark
| | - Filip K Knop
- Clinical Research, Copenhagen University Hospital - Steno Diabetes Center Copenhagen, Herlev, Denmark
- Center for Clinical Metabolic Research, Copenhagen University Hospital - Herlev and Gentofte, Hellerup, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Tina Vilsbøll
- Clinical Research, Copenhagen University Hospital - Steno Diabetes Center Copenhagen, Herlev, Denmark.
- Center for Clinical Metabolic Research, Copenhagen University Hospital - Herlev and Gentofte, Hellerup, Denmark.
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
10
|
Rodgers RL. A reappraisal of the role of cyclic AMP in the physiological action of glucagon. Peptides 2023; 159:170906. [PMID: 36396082 DOI: 10.1016/j.peptides.2022.170906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 11/11/2022] [Accepted: 11/11/2022] [Indexed: 11/16/2022]
Abstract
Effects of the metabolic hormone glucagon can be physiological or supraphysiological, based on agonist concentration and the mediating cellular signal. The threshold concentration (TC) for activating the AC/cAMP signal pathway in liver is ≥ 100 pM. By contrast, mean plasma concentrations are around 20-45 pM, depending on the vascular bed. Accordingly, effects produced at TCs below 100 pM are physiological and mediated by cellular signal pathways other than AC/cAMP. Effects generated at concentrations above 100 pM are supraphysiological, often mediated by simultaneous activation of cAMP-independent and -dependent pathways. Physiological responses, and their established or implicated signal pathways, include stimulation of: glucose mobilization, fatty acid oxidation, and urea synthesis in liver (PLC/IP3/Ca2+/CaM); lipolysis in white and brown adipose tissue and oxygen consumption in brown adipose of the rat but not in humans (PLC/IP3/Ca2+/CaM); renal potassium and phosphate excretion in rodents and GFR in humans (signal undetermined); and glucose utilization in rat heart (PI3K/akt). Supraphysiological responses involve the AC/cAMP pathway and include: enhanced stimulation of glucose mobilization and stimulation of urea synthesis in liver; further stimulation of white and brown adipose lipolysis and thermogenesis in brown adipose tissue; stimulation of renal Cl- transport; and increased rat heart contractility. The AC/cAMP pathway is likely recruited when plasma glucagon rises above 100 pM during periods of elevated metabolic stress and systemic glucose demand, such as in the early neonate or strenuously exercising adult. The current cAMP-centered model should therefore be reconsidered and replaced with one that places more emphasis on cAMP-independent pathways.
Collapse
Affiliation(s)
- Robert L Rodgers
- Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI 02935, USA.
| |
Collapse
|
11
|
Bomholt AB, Johansen CD, Christensen JB, Kjeldsen SAS, Galsgaard KD, Winther-Sørensen M, Serizawa R, Hornum M, Porrini E, Pedersen J, Ørskov C, Gluud LL, Sørensen CM, Holst JJ, Albrechtsen R, Wewer Albrechtsen NJ. Evaluation of commercially available glucagon receptor antibodies and glucagon receptor expression. Commun Biol 2022; 5:1278. [PMID: 36418521 PMCID: PMC9684523 DOI: 10.1038/s42003-022-04242-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Accepted: 11/09/2022] [Indexed: 11/24/2022] Open
Abstract
Glucagon is a major regulator of metabolism and drugs targeting the glucagon receptor (GCGR) are being developed. Insight into tissue and cell-specific expression of the GCGR is important to understand the biology of glucagon and to differentiate between direct and indirect actions of glucagon. However, it has been challenging to localize the GCGR in tissue due to low expression levels and lack of specific methods. Immunohistochemistry has frequently been used for GCGR localization, but antibodies targeting G-protein-coupled-receptors may be inaccurate. We evaluated all currently commercially available GCGR antibodies. The antibody, ab75240 (Antibody no. 11) was found to perform best among the twelve antibodies tested and using this antibody we found expression of the GCGR in the kidney, liver, preadipocytes, pancreas, and heart. Three antibody-independent approaches all confirmed the presence of the GCGR within the pancreas, liver and the kidneys. GCGR expression should be evaluated by both antibody and antibody-independent approaches.
Collapse
Affiliation(s)
- Anna Billeschou Bomholt
- grid.5254.60000 0001 0674 042XDepartment of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Christian Dall Johansen
- grid.5254.60000 0001 0674 042XDepartment of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark ,grid.5254.60000 0001 0674 042XNovo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jens Bager Christensen
- grid.5254.60000 0001 0674 042XDepartment of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Sasha Alexandra Sampson Kjeldsen
- grid.5254.60000 0001 0674 042XDepartment of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark ,grid.5254.60000 0001 0674 042XNovo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Katrine Douglas Galsgaard
- grid.5254.60000 0001 0674 042XDepartment of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark ,grid.5254.60000 0001 0674 042XNovo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Marie Winther-Sørensen
- grid.5254.60000 0001 0674 042XDepartment of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark ,grid.5254.60000 0001 0674 042XNovo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Reza Serizawa
- grid.4973.90000 0004 0646 7373Department of Pathology, Copenhagen University Hospital, Hvidovre, Denmark
| | - Mads Hornum
- grid.475435.4Department of Nephrology, Centre for Cancer and Organ Diseases, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark ,grid.5254.60000 0001 0674 042XDepartment of Clinical Medicine, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Esteban Porrini
- grid.411220.40000 0000 9826 9219Instituto de Tecnologías Biomédicas, University of La Laguna, Research Unit, Hospital Universitario de Canarias, Tenerife, Spain
| | - Jens Pedersen
- grid.5254.60000 0001 0674 042XDepartment of Clinical Medicine, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark ,grid.411900.d0000 0004 0646 8325Department of Internal Medicine, Endocrinology, Copenhagen University Hospital Herlev, Herlev, Denmark
| | - Cathrine Ørskov
- grid.5254.60000 0001 0674 042XDepartment of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Lise Lotte Gluud
- grid.5254.60000 0001 0674 042XDepartment of Clinical Medicine, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark ,grid.4973.90000 0004 0646 7373Gastro Unit, Copenhagen University Hospital, Hvidovre, Denmark
| | - Charlotte Mehlin Sørensen
- grid.5254.60000 0001 0674 042XDepartment of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jens Juul Holst
- grid.5254.60000 0001 0674 042XDepartment of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark ,grid.5254.60000 0001 0674 042XNovo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Reidar Albrechtsen
- grid.5254.60000 0001 0674 042XBiotech Research & Innovation Centre, University of Copenhagen, Copenhagen, Denmark
| | - Nicolai Jacob Wewer Albrechtsen
- grid.5254.60000 0001 0674 042XDepartment of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark ,grid.5254.60000 0001 0674 042XNovo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark ,grid.512917.9Department of Clinical Biochemistry, Bispebjerg and Frederiksberg Hospital, Copenhagen, Denmark
| |
Collapse
|
12
|
Regulation of feeding and therapeutic application of bioactive peptides. Pharmacol Ther 2022; 239:108187. [DOI: 10.1016/j.pharmthera.2022.108187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 03/25/2022] [Accepted: 04/07/2022] [Indexed: 10/18/2022]
|
13
|
Liu Z, Zhang L, Qian C, Zhou Y, Yu Q, Yuan J, Lv Y, Zhang L, Chang X, Li Y, Liu Y. Recurrent hypoglycemia increases hepatic gluconeogenesis without affecting glycogen metabolism or systemic lipolysis in rat. Metabolism 2022; 136:155310. [PMID: 36063868 DOI: 10.1016/j.metabol.2022.155310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 08/29/2022] [Accepted: 08/31/2022] [Indexed: 11/26/2022]
Abstract
INTRODUCTION Recurrent hypoglycemia (RH) impairs secretion of counterregulatory hormones. Whether and how RH affects responses within metabolically important peripheral organs to counterregulatory hormones are poorly understood. OBJECTIVE To study the effects of RH on metabolic pathways associated with glucose counterregulation within liver, white adipose tissue and skeletal muscle. METHODS Using a widely adopted rodent model of 3-day recurrent hypoglycemia, we first checked expression of counterregulatory hormone G-protein coupled receptors (GPCRs), their inhibitory regulators and downstream enzymes catalyzing glycogen metabolism, gluconeogenesis and lipolysis by qPCR and western blot. Then, we examined epinephrine-induced phosphorylation of PKA substrates to validate adrenergic sensitivity in each organ. Next, we measured hepatic and skeletal glycogen content, degree of breakdown by epinephrine and abundance of phosphorylated glycogen phosphorylase under hypoglycemia and that of phosphorylated glycogen synthase during recovery to evaluate glycogen turnover. Further, we performed pyruvate and lactate tolerance tests to assess gluconeogenesis. Additionally, we measured circulating FFA and glycerol to check lipolysis. The abovementioned studies were repeated in streptozotocin-induced diabetic rat model. Finally, we conducted epinephrine tolerance test to investigate systemic glycemic excursions to counterregulatory hormones. Saline-injected rats served as controls. RESULTS RH increased counterregulatory hormone GPCR signaling in liver and epidydimal white adipose tissue (eWAT), but not in skeletal muscle. For glycogen metabolism, RH did not affect total content or epinephrine-stimulated breakdown in liver and skeletal muscle. Although RH decreased expression of phosphorylated glycogen synthase 2, it did not affect hepatic glycogen biosynthesis during recovery from hypoglycemia or after fasting-refeeding. For gluconeogenesis, RH upregulated fructose 1,6-bisphosphatase 1 and monocarboxylic acid transporter 1 that imports lactate as precursor, resulting in a lower blood lactate profile during hypoglycemia. In agreement, RH elevated fasting blood glucose and caused higher glycemic excursions during pyruvate tolerance test. For lipolysis, RH did not affect circulating levels of FFA and glycerol after overnight fasting or upon epinephrine stimulation. Interestingly, RH upregulated the trophic fatty acid transporter FATP1 and glucose transporter GLUT4 to increase lipogenesis in eWAT. These aforementioned changes of gluconeogenesis, lipolysis and lipogenesis were validated in streptozotocin-diabetic rats. Finally, RH increased insulin sensitivity to accelerate glucose disposal, which was attributable to upregulated visceral adipose GLUT4. CONCLUSIONS RH caused metabolic adaptations related to counterregulation within peripheral organs. Specifically, adrenergic signaling was enhanced in liver and visceral fat, but not in skeletal muscle. Glycogen metabolism remained unchanged. Hepatic gluconeogenesis was augmented. Systemic lipolysis was unaffected, but visceral lipogenesis was enhanced. Insulin sensitivity was increased. These findings provided insights into mechanisms underlying clinical problems associated with intensive insulin therapy, such as high gluconeogenic flux and body weight gain.
Collapse
Affiliation(s)
- Zejian Liu
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Lingyu Zhang
- Department of Endocrinology, Sir Run Run Hospital, Nanjing Medical University, Nanjing, Jiangsu 211100, China
| | - Chen Qian
- Department of Endocrinology, Zhangjiagang Hospital Affiliated to Soochow University, Zhangjiagang, Suzhou, Jiangsu 215699, China
| | - Ying Zhou
- Department of Endocrinology, Sir Run Run Hospital, Nanjing Medical University, Nanjing, Jiangsu 211100, China
| | - Qiuyu Yu
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Jiaqi Yuan
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Yunfan Lv
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Leheng Zhang
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Xiaoai Chang
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Yangyang Li
- Department of Endocrinology, Sir Run Run Hospital, Nanjing Medical University, Nanjing, Jiangsu 211100, China.
| | - Yu Liu
- Department of Endocrinology, Sir Run Run Hospital, Nanjing Medical University, Nanjing, Jiangsu 211100, China.
| |
Collapse
|
14
|
Vasileva A, Marx T, Beaudry JL, Stern JH. Glucagon receptor signaling at white adipose tissue does not regulate lipolysis. Am J Physiol Endocrinol Metab 2022; 323:E389-E401. [PMID: 36002172 PMCID: PMC9576180 DOI: 10.1152/ajpendo.00078.2022] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Although the physiological role of glucagon receptor signaling in the liver is well defined, the impact of glucagon receptor (Gcgr) signaling on white adipose tissue (WAT) continues to be debated. Although numerous studies propose that glucagon stimulates WAT lipolysis, we lack evidence that physiological concentrations of glucagon regulate WAT lipolysis. In turn, we performed studies in both wild-type and WAT Gcgr knockout mice to determine if glucagon regulates lipolysis at WAT in the mouse. We assessed the effects of fasting and acute exogenous glucagon administration in wild-type C57BL/6J and GcgrAdipocyte+/+ versus GcgrAdipocyte-/- mice. Using an ex vivo lipolysis protocol, we further examined the direct effects of glucagon on physiologically (fasted) and pharmacologically stimulated lipolysis. We found that adipocyte Gcgr expression did not affect fasting-induced lipolysis or hepatic lipid accumulation in lean or diet-induced obese (DIO) mice. Acute glucagon administration did not affect serum nonesterified fatty acids (NEFA), leptin, or adiponectin concentration, but did increase serum glucose and FGF21, regardless of genotype. Glucagon did not affect ex vivo lipolysis in explants from either GcgrAdipocyte+/+ or GcgrAdipocyte-/- mice. Gcgr expression did not affect fasting-induced or isoproterenol-stimulated lipolysis from WAT explants. Moreover, glucagon receptor signaling at WAT did not affect body weight or glucose homeostasis in lean or DIO mice. Our studies have established that physiological levels of glucagon do not regulate WAT lipolysis, either directly or indirectly. Given that glucagon receptor agonism can improve dyslipidemia and decrease hepatic lipid accumulation, it is critical to understand the tissue-specific effects of glucagon receptor action. Unlike the crucial role of hepatic glucagon receptor signaling in maintaining glucose and lipid homeostasis, we observed no metabolic consequence of WAT glucagon receptor deletion.NEW & NOTEWORTHY It has been postulated that glucagon stimulates lipolysis and fatty acid release from white adipose tissue. We observed no metabolic effects of eliminating or activating glucagon receptor signaling at white adipose tissue.
Collapse
Affiliation(s)
- Anastasiia Vasileva
- Division of Endocrinology, University of Arizona College of Medicine, Tucson, Arizona
| | - Tyler Marx
- Division of Endocrinology, University of Arizona College of Medicine, Tucson, Arizona
| | - Jacqueline L Beaudry
- Department of Nutritional Sciences, University of Toronto, Toronto, Ontario, Canada
| | - Jennifer H Stern
- Division of Endocrinology, University of Arizona College of Medicine, Tucson, Arizona
| |
Collapse
|
15
|
Habegger KM. Cross Talk Between Insulin and Glucagon Receptor Signaling in the Hepatocyte. Diabetes 2022; 71:1842-1851. [PMID: 35657690 PMCID: PMC9450567 DOI: 10.2337/dbi22-0002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 05/19/2022] [Indexed: 11/13/2022]
Abstract
While the consumption of external energy (i.e., feeding) is essential to life, this action induces a temporary disturbance of homeostasis in an animal. A primary example of this effect is found in the regulation of glycemia. In the fasted state, stored energy is released to maintain physiological glycemic levels. Liver glycogen is liberated to glucose, glycerol and (glucogenic) amino acids are used to build new glucose molecules (i.e., gluconeogenesis), and fatty acids are oxidized to fuel long-term energetic demands. This regulation is driven primarily by the counterregulatory hormones epinephrine, growth hormone, cortisol, and glucagon. Conversely, feeding induces a rapid influx of diverse nutrients, including glucose, that disrupt homeostasis. Consistently, a host of hormonal and neural systems under the coordination of insulin are engaged in the transition from fasting to prandial states to reduce this disruption. The ultimate action of these systems is to appropriately store the newly acquired energy and to return to the homeostatic norm. Thus, at first glance it is tempting to assume that glucagon is solely antagonistic regarding the anabolic effects of insulin. We have been intrigued by the role of glucagon in the prandial transition and have attempted to delineate its role as beneficial or inhibitory to glycemic control. The following review highlights this long-known yet poorly understood hormone.
Collapse
Affiliation(s)
- Kirk M. Habegger
- Comprehensive Diabetes Center and Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL
| |
Collapse
|
16
|
Story LH, Wilson LM. New Developments in Glucagon Treatment for Hypoglycemia. Drugs 2022; 82:1179-1191. [PMID: 35932416 DOI: 10.1007/s40265-022-01754-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/19/2022] [Indexed: 11/28/2022]
Abstract
Glucagon is essential for endogenous glucose regulation along with the paired hormone, insulin. Unlike insulin, pharmaceutical use of glucagon has been limited due to the unstable nature of the peptide. Glucagon has the potential to address hypoglycemia as a major limiting factor in the treatment of diabetes, which remains very common in the type 1 and type 2 diabetes. Recent developments are poised to change this paradigm and expand the use of glucagon for people with diabetes. Glucagon emergency kits have major limitations for their use in treating severe hypoglycemia. A complicated reconstitution and injection process often results in incomplete or aborted administration. New preparations include intranasal glucagon with an easy-to-use and needle-free nasal applicator as well as two stable liquid formulations in pre-filled injection devices. These may ease the burden of severe hypoglycemia treatment. The liquid preparations may also have a role in the treatment of non-severe hypoglycemia. Despite potential benefits of expanded use of glucagon, undesirable side effects (nausea, vomiting), cost, and complexity of adding another medication may limit real-world use. Additionally, more long-term safety and outcome data are needed before widespread, frequent use of glucagon is recommended by providers.
Collapse
Affiliation(s)
- LesleAnn Hayward Story
- Division of Endocrinology, Harold Schnitzer Diabetes Health Center, Oregon Health & Science University, Portland, OR, USA
| | - Leah M Wilson
- Division of Endocrinology, Harold Schnitzer Diabetes Health Center, Oregon Health & Science University, Portland, OR, USA.
| |
Collapse
|
17
|
Insights into the Role of Glucagon Receptor Signaling in Metabolic Regulation from Pharmacological Inhibition and Tissue-Specific Knockout Models. Biomedicines 2022; 10:biomedicines10081907. [PMID: 36009454 PMCID: PMC9405517 DOI: 10.3390/biomedicines10081907] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/01/2022] [Accepted: 08/03/2022] [Indexed: 11/16/2022] Open
Abstract
While glucagon has long been recognized as the primary counter hormone to insulin’s actions, it has recently gained recognition as a metabolic regulator with its effects extending beyond control of glycemia. Recently developed models of tissue-specific glucagon receptor knockouts have advanced our understanding of this hormone, providing novel insight into the role it plays within organs as well as its systemic effects. Studies where the pharmacological blockade of the glucagon receptor has been employed have proved similarly valuable in the study of organ-specific and systemic roles of glucagon signaling. Studies carried out employing these tools demonstrate that glucagon indeed plays a role in regulating glycemia, but also in amino acid and lipid metabolism, systemic endocrine, and paracrine function, and in the response to cardiovascular injury. Here, we briefly review recent progress in our understanding of glucagon’s role made through inhibition of glucagon receptor signaling utilizing glucagon receptor antagonists and tissue specific genetic knockout models.
Collapse
|
18
|
Izzi-Engbeaya C, Dhillo WS. Gut hormones and reproduction (Hormones intestinalis et reproduction). ANNALES D'ENDOCRINOLOGIE 2022; 83:254-257. [PMID: 35750201 DOI: 10.1016/j.ando.2022.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Reproduction and metabolism are intricately linked. Gut hormones play key roles in the regulation of body weight and glucose homeostasis, factors that influence the functioning of the hypothalamic-pituitary-gonadal axis and reproductive outcomes. Data from rodent models suggest gut hormones may have direct stimulatory effects on reproductive hormone release. However, the effects of gut hormones on reproductive function in humans is more complex, with possible involvement of direct (e.g. via gut hormone receptor agonism) as well as indirect (e.g. via weight reduction in people with obesity) mechanisms. The use of gut hormone receptor agonists has become an integral part of the management of metabolic diseases (including obesity and type 2 diabetes), with additional indications for their use on the horizon. Future work may identify specific roles for gut hormones receptor agonists in the treatment of reproductive co-morbidities that are increasingly being recognised in people with metabolic diseases.
Collapse
Affiliation(s)
- Chioma Izzi-Engbeaya
- Department of Metabolism, Digestion and Reproduction, Imperial College London, UK; Department of Diabetes and Endocrinology, Imperial College Healthcare NHS Trust, London, UK
| | - Waljit S Dhillo
- Department of Metabolism, Digestion and Reproduction, Imperial College London, UK; Department of Diabetes and Endocrinology, Imperial College Healthcare NHS Trust, London, UK.
| |
Collapse
|
19
|
Webber T, Ronacher K, Conradie-Smit M, Kleynhans L. Interplay Between the Immune and Endocrine Systems in the Lung: Implications for TB Susceptibility. Front Immunol 2022; 13:829355. [PMID: 35273609 PMCID: PMC8901994 DOI: 10.3389/fimmu.2022.829355] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Accepted: 02/02/2022] [Indexed: 12/25/2022] Open
Abstract
The role of the endocrine system on the immune response, especially in the lung, remains poorly understood. Hormones play a crucial role in the development, homeostasis, metabolism, and response to the environment of cells and tissues. Major infectious and metabolic diseases, such as tuberculosis and diabetes, continue to converge, necessitating the development of a clearer understanding of the immune and endocrine interactions that occur in the lung. Research in bacterial respiratory infections is at a critical point, where the limitations in identifying and developing antibiotics is becoming more profound. Hormone receptors on alveolar and immune cells may provide a plethora of targets for host-directed therapy. This review discusses the interactions between the immune and endocrine systems in the lung. We describe hormone receptors currently identified in the lungs, focusing on the effect hormones have on the pulmonary immune response. Altered endocrine responses in the lung affect the balance between pro- and anti-inflammatory immune responses and play a role in the response to infection in the lung. While some hormones, such as leptin, resistin and lipocalin-2 promote pro-inflammatory responses and immune cell infiltration, others including adiponectin and ghrelin reduce inflammation and promote anti-inflammatory cell responses. Furthermore, type 2 diabetes as a major endocrine disease presents with altered immune responses leading to susceptibility to lung infections, such as tuberculosis. A better understanding of these interactions will expand our knowledge of the mechanisms at play in susceptibility to infectious diseases and may reveal opportunities for the development of host-directed therapies.
Collapse
Affiliation(s)
- Tariq Webber
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Katharina Ronacher
- Translational Research Institute, Mater Research Institute - The University of Queensland, Brisbane, QLD, Australia
| | - Marli Conradie-Smit
- Division of Endocrinology, Department of Medicine, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Léanie Kleynhans
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| |
Collapse
|
20
|
Conceição-Furber E, Coskun T, Sloop KW, Samms RJ. Is Glucagon Receptor Activation the Thermogenic Solution for Treating Obesity? Front Endocrinol (Lausanne) 2022; 13:868037. [PMID: 35547006 PMCID: PMC9081793 DOI: 10.3389/fendo.2022.868037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 03/07/2022] [Indexed: 12/19/2022] Open
Abstract
A major challenge of obesity therapy is to sustain clinically relevant weight loss over time. Achieving this goal likely requires both reducing daily caloric intake and increasing caloric expenditure. Over the past decade, advances in pharmaceutical engineering of ligands targeting G protein-coupled receptors have led to the development of highly effective anorectic agents. These include mono-agonists of the GLP-1R and dual GIPR/GLP-1R co-agonists that have demonstrated substantial weight loss in experimental models and in humans. By contrast, currently, there are no medicines available that effectively augment metabolic rate to promote weight loss. Here, we present evidence indicating that activation of the GCGR may provide a solution to this unmet therapeutic need. In adult humans, GCGR agonism increases energy expenditure to a magnitude sufficient for inducing a negative energy balance. In preclinical studies, the glucagon-GCGR system affects key metabolically relevant organs (including the liver and white and brown adipose tissue) to boost whole-body thermogenic capacity and protect from obesity. Further, activation of the GCGR has been shown to augment both the magnitude and duration of weight loss that is achieved by either selective GLP-1R or dual GIPR/GLP-1R agonism in rodents. Based on the accumulation of such findings, we propose that the thermogenic activity of GCGR agonism will also complement other anti-obesity agents that lower body weight by suppressing appetite.
Collapse
|
21
|
Liu M, Zhao P, Uddin MH, Li W, Lin F, Chandrashekar C, Nishiuchi Y, Kajihara Y, Forbes BE, Wootten D, Wade JD, Hossain MA. Chemical Synthesis and Characterization of a Nonfibrillating Glycoglucagon. Bioconjug Chem 2021; 32:2148-2153. [PMID: 34494823 DOI: 10.1021/acs.bioconjchem.1c00419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The current commercially available glucagon formulations for the treatment of severe hypoglycemia must be reconstituted immediately prior to use, owing to the susceptibility of glucagon to fibrillation and aggregation in an aqueous solution. This results in the inconvenience of handling, misuse, and wastage of this drug. To address these issues, we synthesized a glycosylated glucagon analogue in which the 25th residue (Trp) was replaced with a cysteine (Cys) and a Br-disialyloligosaccharide was conjugated at the Cys thiol moiety. The resulting analogue, glycoglucagon, is a highly potent full agonist at the glucagon receptor. Importantly, glycoglucagon exhibits markedly reduced propensity for fibrillation and enhanced thermal and metabolic stability. This novel analogue is thus a valuable lead for producing stable liquid glucagon formulations that will improve patient compliance and minimize wastage.
Collapse
Affiliation(s)
| | - Peishen Zhao
- Monash Institute of Pharmaceutical Sciences, 381 Royal Parade, Parkville, Victoria 3052, Australia
| | - Md Hemayet Uddin
- Melbourne Centre for Nanofabrication, Melbourne, Victoria 3168, Australia
| | | | | | | | - Yuji Nishiuchi
- GlyTech, Inc., 134 Chudoji Minamimachi, Kyoto, 600-8813, Japan
- Graduate School of Science, Tohoku University, Sendai, Miyagi 980-8579, Japan
| | - Yasuhiro Kajihara
- Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043 Japan
| | - Briony E Forbes
- Discipline of Medical Biochemistry, College of Medicine and Public Health, Flinders University, Adelaide, South Australia 5042, Australia
| | - Denise Wootten
- Monash Institute of Pharmaceutical Sciences, 381 Royal Parade, Parkville, Victoria 3052, Australia
| | | | | |
Collapse
|
22
|
Rendell MS. Current and emerging gluconeogenesis inhibitors for the treatment of Type 2 diabetes. Expert Opin Pharmacother 2021; 22:2167-2179. [PMID: 34348528 DOI: 10.1080/14656566.2021.1958779] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
INTRODUCTION In the last several decades, fueled by gene knockout and knockdown techniques, there has been substantial progress in detailing the pathways of gluconeogenesis. A host of molecules have been identified as potential targets for therapeutic intervention. A number of hormones, enzymes and transcription factors participate in gluconeogenesis. Many new agents have come into use to treat diabetes and several of these are in development to suppress gluconeogenesis. AREAS COVERED Herein, the author reviews agents that have been discovered and/or are in development, which control excess gluconeogenesis. The author has used multiple sources including PubMed, the preprint servers MedRxIv, BioRxIv, Research Gate, as well as Google Search and the database of the U.S. Patent and Trademarks Office to find appropriate literature. EXPERT OPINION It is now clear that lipid metabolism and hepatic lipogenesis play a major role in gluconeogenesis and resistance to insulin. Future efforts will focus on the duality of gluconeogenesis and adipose tissue metabolism. The exploration of therapeutic RNA agents will accelerate. The balance of clinical benefit and adverse effects will determine the future of new gluconeogenesis inhibitors.
Collapse
Affiliation(s)
- Marc S Rendell
- The Association of Diabetes Investigators, Newport Coast, California, United States.,The Rose Salter Medical Research Foundation, Newport Coast, California, United States
| |
Collapse
|
23
|
Zekri Y, Flamant F, Gauthier K. Central vs. Peripheral Action of Thyroid Hormone in Adaptive Thermogenesis: A Burning Topic. Cells 2021; 10:1327. [PMID: 34071979 PMCID: PMC8229489 DOI: 10.3390/cells10061327] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/18/2021] [Accepted: 05/25/2021] [Indexed: 12/12/2022] Open
Abstract
Thyroid hormones (TH) contribute to the control of adaptive thermogenesis, which is associated with both higher energy expenditure and lower body mass index. While it was clearly established that TH act directly in the target tissues to fulfill its metabolic activities, some studies have rather suggested that TH act in the hypothalamus to control these processes. This paradigm shift has subjected the topic to intense debates. This review aims to recapitulate how TH control adaptive thermogenesis and to what extent the brain is involved in this process. This is of crucial importance for the design of new pharmacological agents that would take advantage of the TH metabolic properties.
Collapse
Affiliation(s)
- Yanis Zekri
- Institut de Génomique Fonctionnelle de Lyon, Univ Lyon, CNRS UMR 5242, INRAE USC 1370 École Normale Supérieure de Lyon, Université Claude Bernard Lyon 1, 46 allée d’Italie, 69007 Lyon, France; (F.F.); (K.G.)
| | | | | |
Collapse
|
24
|
Lafferty RA, O’Harte FPM, Irwin N, Gault VA, Flatt PR. Proglucagon-Derived Peptides as Therapeutics. Front Endocrinol (Lausanne) 2021; 12:689678. [PMID: 34093449 PMCID: PMC8171296 DOI: 10.3389/fendo.2021.689678] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 05/05/2021] [Indexed: 12/12/2022] Open
Abstract
Initially discovered as an impurity in insulin preparations, our understanding of the hyperglycaemic hormone glucagon has evolved markedly over subsequent decades. With description of the precursor proglucagon, we now appreciate that glucagon was just the first proglucagon-derived peptide (PGDP) to be characterised. Other bioactive members of the PGDP family include glucagon-like peptides -1 and -2 (GLP-1 and GLP-2), oxyntomodulin (OXM), glicentin and glicentin-related pancreatic peptide (GRPP), with these being produced via tissue-specific processing of proglucagon by the prohormone convertase (PC) enzymes, PC1/3 and PC2. PGDP peptides exert unique physiological effects that influence metabolism and energy regulation, which has witnessed several of them exploited in the form of long-acting, enzymatically resistant analogues for treatment of various pathologies. As such, intramuscular glucagon is well established in rescue of hypoglycaemia, while GLP-2 analogues are indicated in the management of short bowel syndrome. Furthermore, since approval of the first GLP-1 mimetic for the management of Type 2 diabetes mellitus (T2DM) in 2005, GLP-1 therapeutics have become a mainstay of T2DM management due to multifaceted and sustainable improvements in glycaemia, appetite control and weight loss. More recently, longer-acting PGDP therapeutics have been developed, while newfound benefits on cardioprotection, bone health, renal and liver function and cognition have been uncovered. In the present article, we discuss the physiology of PGDP peptides and their therapeutic applications, with a focus on successful design of analogues including dual and triple PGDP receptor agonists currently in clinical development.
Collapse
Affiliation(s)
| | | | | | - Victor A. Gault
- School of Biomedical Sciences, Ulster University, Coleraine, United Kingdom
| | | |
Collapse
|
25
|
Zeigerer A, Sekar R, Kleinert M, Nason S, Habegger KM, Müller TD. Glucagon's Metabolic Action in Health and Disease. Compr Physiol 2021; 11:1759-1783. [PMID: 33792899 PMCID: PMC8513137 DOI: 10.1002/cphy.c200013] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Discovered almost simultaneously with insulin, glucagon is a pleiotropic hormone with metabolic action that goes far beyond its classical role to increase blood glucose. Albeit best known for its ability to directly act on the liver to increase de novo glucose production and to inhibit glycogen breakdown, glucagon lowers body weight by decreasing food intake and by increasing metabolic rate. Glucagon further promotes lipolysis and lipid oxidation and has positive chronotropic and inotropic effects in the heart. Interestingly, recent decades have witnessed a remarkable renaissance of glucagon's biology with the acknowledgment that glucagon has pharmacological value beyond its classical use as rescue medication to treat severe hypoglycemia. In this article, we summarize the multifaceted nature of glucagon with a special focus on its hepatic action and discuss the pharmacological potential of either agonizing or antagonizing the glucagon receptor for health and disease. © 2021 American Physiological Society. Compr Physiol 11:1759-1783, 2021.
Collapse
Affiliation(s)
- Anja Zeigerer
- Institute for Diabetes and Cancer, Helmholtz Center Munich, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Revathi Sekar
- Institute for Diabetes and Cancer, Helmholtz Center Munich, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Maximilian Kleinert
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- Institute for Diabetes and Obesity, Helmholtz Center Munich, Neuherberg, Germany
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Shelly Nason
- Comprehensive Diabetes Center, Department of Medicine - Endocrinology, Diabetes & Metabolism, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Kirk M. Habegger
- Comprehensive Diabetes Center, Department of Medicine - Endocrinology, Diabetes & Metabolism, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Timo D. Müller
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- Institute for Diabetes and Obesity, Helmholtz Center Munich, Neuherberg, Germany
- Department of Pharmacology, Experimental Therapy and Toxicology, Institute of Experimental and Clinical Pharmacology and Pharmacogenomics, Eberhard Karls University Hospitals and Clinics, Tübingen, Germany
| |
Collapse
|
26
|
Schalla MA, Taché Y, Stengel A. Neuroendocrine Peptides of the Gut and Their Role in the Regulation of Food Intake. Compr Physiol 2021; 11:1679-1730. [PMID: 33792904 DOI: 10.1002/cphy.c200007] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The regulation of food intake encompasses complex interplays between the gut and the brain. Among them, the gastrointestinal tract releases different peptides that communicate the metabolic state to specific nuclei in the hindbrain and the hypothalamus. The present overview gives emphasis on seven peptides that are produced by and secreted from specialized enteroendocrine cells along the gastrointestinal tract in relation with the nutritional status. These established modulators of feeding are ghrelin and nesfatin-1 secreted from gastric X/A-like cells, cholecystokinin (CCK) secreted from duodenal I-cells, glucagon-like peptide 1 (GLP-1), oxyntomodulin, and peptide YY (PYY) secreted from intestinal L-cells and uroguanylin (UGN) released from enterochromaffin (EC) cells. © 2021 American Physiological Society. Compr Physiol 11:1679-1730, 2021.
Collapse
Affiliation(s)
- Martha A Schalla
- Charité Center for Internal Medicine and Dermatology, Department for Psychosomatic Medicine, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Yvette Taché
- Vatche and Tamar Manoukian Division of Digestive Diseases, Department of Medicine, CURE: Digestive Diseases Research Center, David Geffen School of Medicine, UCLA, Los Angeles, California, USA.,VA Greater Los Angeles Healthcare System, Los Angeles, California, USA
| | - Andreas Stengel
- Charité Center for Internal Medicine and Dermatology, Department for Psychosomatic Medicine, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany.,Department of Psychosomatic Medicine and Psychotherapy, Medical University Hospital Tübingen, Tübingen, Germany
| |
Collapse
|
27
|
Ookawara M, Matsuda K, Watanabe M, Moritoh Y. The GPR40 Full Agonist SCO-267 Improves Liver Parameters in a Mouse Model of Nonalcoholic Fatty Liver Disease without Affecting Glucose or Body Weight. J Pharmacol Exp Ther 2020; 375:21-27. [PMID: 32719069 DOI: 10.1124/jpet.120.000046] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Accepted: 07/21/2020] [Indexed: 12/14/2022] Open
Abstract
Full agonism of G-protein-coupled receptor 40 (GPR40)/free fatty acid 1 receptor improves glycemic control in diabetic rodents. However, the effects of GPR40 full agonism on liver parameters are largely unknown. In the present study, we examined the effects of a GPR40 full agonist, SCO-267, on liver parameters in a nondiabetic mouse model with early-stage nonalcoholic fatty liver disease (NAFLD). SCO-267 was orally administered to mice, which were fed a choline-deficient, l-amino acid-defined, high-fat diet (CDAHFD), a mouse model for NAFLD. An oral dose of SCO-267 increased levels of circulating glucagon and glucagon-like peptide-1 in CDAHFD-fed mice. In a chronic-dose experiment, effects of SCO-267 were compared with those of a dipeptidyl peptidase-4 inhibitor (alogliptin) and a sodium glucose cotransporter 2 inhibitor (dapagliflozin). SCO-267 decreased liver triglyceride content, weight, collagen content, and plasma alanine aminotransferase (ALT) levels without affecting food intake or glucose levels in CDAHFD-fed mice. Furthermore, SCO-267 decreased levels of liver thiobarbituric acid reactive substances (TBARS), markers of oxidative stress. Alogliptin and dapagliflozin had no effect on liver weight or levels of triglyceride, collagen, plasma ALT, and liver TBARS. SCO-267 elevated mRNA levels of molecules with roles in mitochondrial function and β-oxidation while inhibiting those with roles in lipogenesis, inflammation, reactive oxygen species generation, and fibrosis in the liver, all of which were less evident with alogliptin and dapagliflozin. This is the first study to show that the GPR40 full agonist SCO-267 improves liver parameters without affecting glucose or body weight in a mouse model of NAFLD. SIGNIFICANCE STATEMENT: Full agonism of GPR40/free fatty acid 1 receptor signaling stimulates islet and gut hormone secretions. The present study is the first to show the treatment effects of GPR40 full agonism on liver parameters in a mouse model for nonalcoholic fatty liver disease.
Collapse
|
28
|
Cheng C, Jabri S, Taoka BM, Sinz CJ. Small molecule glucagon receptor antagonists: an updated patent review (2015–2019). Expert Opin Ther Pat 2020; 30:509-526. [DOI: 10.1080/13543776.2020.1769600] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Chen Cheng
- Merck & Co., Inc, South San Francisco, California, USA (MSD)
| | - Salman Jabri
- Merck & Co., Inc, South San Francisco, California, USA (MSD)
| | - Brandon M Taoka
- Merck & Co., Inc, South San Francisco, California, USA (MSD)
| | - Christopher J Sinz
- Merck & Co., Inc, South San Francisco, California, USA (MSD)
- Current Address: Maze Therapeutics, South San Francisco, California, USA
| |
Collapse
|
29
|
Stemmer K, Finan B, DiMarchi RD, Tschöp MH, Müller TD. Insights into incretin-based therapies for treatment of diabetic dyslipidemia. Adv Drug Deliv Rev 2020; 159:34-53. [PMID: 32485206 DOI: 10.1016/j.addr.2020.05.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 05/09/2020] [Accepted: 05/23/2020] [Indexed: 02/07/2023]
Abstract
Derangements in triglyceride and cholesterol metabolism (dyslipidemia) are major risk factors for the development of cardiovascular diseases in obese and type-2 diabetic (T2D) patients. An emerging class of glucagon-like peptide-1 (GLP-1) analogues and next generation peptide dual-agonists such as GLP-1/glucagon or GLP-1/GIP could provide effective therapeutic options for T2D patients. In addition to their role in glucose and energy homeostasis, GLP-1, GIP and glucagon serve as regulators of lipid metabolism. This review summarizes the current knowledge in GLP-1, glucagon and GIP effects on lipid and lipoprotein metabolism and frames the emerging therapeutic benefits of GLP-1 analogs and GLP-1-based multiagonists as add-on treatment options for diabetes associated dyslipidemia.
Collapse
|
30
|
Ceddia RP, Collins S. A compendium of G-protein-coupled receptors and cyclic nucleotide regulation of adipose tissue metabolism and energy expenditure. Clin Sci (Lond) 2020; 134:473-512. [PMID: 32149342 PMCID: PMC9137350 DOI: 10.1042/cs20190579] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 02/17/2020] [Accepted: 02/24/2020] [Indexed: 12/15/2022]
Abstract
With the ever-increasing burden of obesity and Type 2 diabetes, it is generally acknowledged that there remains a need for developing new therapeutics. One potential mechanism to combat obesity is to raise energy expenditure via increasing the amount of uncoupled respiration from the mitochondria-rich brown and beige adipocytes. With the recent appreciation of thermogenic adipocytes in humans, much effort is being made to elucidate the signaling pathways that regulate the browning of adipose tissue. In this review, we focus on the ligand-receptor signaling pathways that influence the cyclic nucleotides, cAMP and cGMP, in adipocytes. We chose to focus on G-protein-coupled receptor (GPCR), guanylyl cyclase and phosphodiesterase regulation of adipocytes because they are the targets of a large proportion of all currently available therapeutics. Furthermore, there is a large overlap in their signaling pathways, as signaling events that raise cAMP or cGMP generally increase adipocyte lipolysis and cause changes that are commonly referred to as browning: increasing mitochondrial biogenesis, uncoupling protein 1 (UCP1) expression and respiration.
Collapse
Affiliation(s)
- Ryan P Ceddia
- Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, U.S.A
| | - Sheila Collins
- Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, U.S.A
| |
Collapse
|
31
|
Pereira MJ, Thombare K, Sarsenbayeva A, Kamble PG, Almby K, Lundqvist M, Eriksson JW. Direct effects of glucagon on glucose uptake and lipolysis in human adipocytes. Mol Cell Endocrinol 2020; 503:110696. [PMID: 31891768 DOI: 10.1016/j.mce.2019.110696] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 11/25/2019] [Accepted: 12/27/2019] [Indexed: 12/14/2022]
Abstract
We aim to investigate the expression of the glucagon receptor (GCGR) in human adipose tissue, and the impact of glucagon in glucose uptake and lipolysis in human adipocytes. GCGR gene expression in human subcutaneous and visceral adipose tissue was demonstrated, albeit at low levels and with an inter-individual variation. Furthermore, GCGR expression was not significantly different between subjects with T2D and matched controls, and we found no significant association with BMI. Glucagon only at a supra-physiological concentration (10-100 nM) significantly increased basal and insulin-stimulated glucose uptake by up to 1.5-fold. Also, glucagon (0.01 and 1 nM) dose-dependently increased basal and isoproterenol-stimulated lipolysis up to 3.7- and 1.7-fold, respectively, compared to control. In addition, glucagon did not change insulin sensitivity to stimulate glucose uptake or inhibit lipolysis. In conclusion, we show that the GCGR gene is expressed at low levels in human adipose tissue, and glucagon at high concentrations can increase both glucose uptake and lipolysis in human adipocytes. Taken together, our data suggest that glucagon at physiological levels has minor direct effects on the regulation of adipocyte metabolism, but does not antagonize the insulin effect to stimulate glucose uptake and inhibit lipolysis in human adipocytes.
Collapse
Affiliation(s)
- Maria J Pereira
- Department of Medical Sciences, Clinical Diabetes and Metabolism, Uppsala University, Uppsala, Sweden.
| | - Ketan Thombare
- Department of Medical Sciences, Clinical Diabetes and Metabolism, Uppsala University, Uppsala, Sweden
| | - Assel Sarsenbayeva
- Department of Medical Sciences, Clinical Diabetes and Metabolism, Uppsala University, Uppsala, Sweden
| | - Prasad G Kamble
- Department of Medical Sciences, Clinical Diabetes and Metabolism, Uppsala University, Uppsala, Sweden
| | - Kristina Almby
- Department of Medical Sciences, Clinical Diabetes and Metabolism, Uppsala University, Uppsala, Sweden
| | - Martin Lundqvist
- Department of Medical Sciences, Clinical Diabetes and Metabolism, Uppsala University, Uppsala, Sweden
| | - Jan W Eriksson
- Department of Medical Sciences, Clinical Diabetes and Metabolism, Uppsala University, Uppsala, Sweden
| |
Collapse
|
32
|
Global Transcriptomic Analysis of Zebrafish Glucagon Receptor Mutant Reveals Its Regulated Metabolic Network. Int J Mol Sci 2020; 21:ijms21030724. [PMID: 31979106 PMCID: PMC7037442 DOI: 10.3390/ijms21030724] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 12/23/2019] [Accepted: 01/20/2020] [Indexed: 12/18/2022] Open
Abstract
The glucagon receptor (GCGR) is a G-protein-coupled receptor (GPCR) that mediates the activity of glucagon. Disruption of GCGR results in many metabolic alterations, including increased glucose tolerance, decreased adiposity, hypoglycemia, and pancreatic α-cell hyperplasia. To better understand the global transcriptomic changes resulting from GCGR deficiency, we performed whole-organism RNA sequencing analysis in wild type and gcgr-deficient zebrafish. We found that the expression of 1645 genes changes more than two-fold among mutants. Most of these genes are related to metabolism of carbohydrates, lipids, and amino acids. Genes related to fatty acid β-oxidation, amino acid catabolism, and ureagenesis are often downregulated. Among gcrgr-deficient zebrafish, we experimentally confirmed increases in lipid accumulation in the liver and whole-body glucose uptake, as well as a modest decrease in total amino acid content. These results provide new information about the global metabolic network that GCGR signaling regulates in addition to a better understanding of the receptor’s physiological functions.
Collapse
|
33
|
Beaudry JL, Drucker DJ. Proglucagon-Derived Peptides, Glucose-Dependent Insulinotropic Polypeptide, and Dipeptidyl Peptidase-4-Mechanisms of Action in Adipose Tissue. Endocrinology 2020; 161:5648010. [PMID: 31782955 DOI: 10.1210/endocr/bqz029] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Revised: 11/22/2019] [Accepted: 11/26/2019] [Indexed: 12/14/2022]
Abstract
Proglucagon-derived peptides (PGDPs) and related gut hormones exemplified by glucose-dependent insulinotropic polypeptide (GIP) regulate energy disposal and storage through actions on metabolically sensitive organs, including adipose tissue. The actions of glucagon, glucagon-like peptide (GLP)-1, GLP-2, GIP, and their rate-limiting enzyme dipeptidyl peptidase-4, include direct and indirect regulation of islet hormone secretion, food intake, body weight, all contributing to control of white and brown adipose tissue activity. Moreover, agents mimicking actions of these peptides are in use for the therapy of metabolic disorders with disordered energy homeostasis such as diabetes, obesity, and intestinal failure. Here we highlight current concepts and mechanisms for direct and indirect actions of these peptides on adipose tissue depots. The available data highlight the importance of indirect peptide actions for control of adipose tissue biology, consistent with the very low level of endogenous peptide receptor expression within white and brown adipose tissue depots. Finally, we discuss limitations and challenges for the interpretation of available experimental observations, coupled to identification of enduring concepts supported by more robust evidence.
Collapse
Affiliation(s)
- Jacqueline L Beaudry
- Department of Medicine, Lunenfeld-Tanenbaum Research Institute, Mt. Sinai Hospital, University of Toronto, Toronto ON, Canada
| | - Daniel J Drucker
- Department of Medicine, Lunenfeld-Tanenbaum Research Institute, Mt. Sinai Hospital, University of Toronto, Toronto ON, Canada
| |
Collapse
|
34
|
Glucagon Control on Food Intake and Energy Balance. Int J Mol Sci 2019; 20:ijms20163905. [PMID: 31405212 PMCID: PMC6719123 DOI: 10.3390/ijms20163905] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 07/24/2019] [Accepted: 08/08/2019] [Indexed: 12/17/2022] Open
Abstract
Glucagon exerts pleiotropic actions on energy balance and has emerged as an attractive target for the treatment of diabetes and obesity in the last few years. Glucagon reduces body weight and adiposity by suppression of appetite and by modulation of lipid metabolism. Moreover, this hormone promotes weight loss by activation of energy expenditure and thermogenesis. In this review, we cover these metabolic actions elicited by glucagon beyond its canonical regulation of glucose metabolism. In addition, we discuss recent developments of therapeutic approaches in the treatment of obesity and diabetes by dual- and tri-agonist molecules based on combinations of glucagon with other peptides. New strategies using these unimolecular polyagonists targeting the glucagon receptor (GCGR), have become successful approaches to evaluate the multifaceted nature of glucagon signaling in energy balance and metabolic syndrome.
Collapse
|
35
|
Rose F, Bloom S, Tan T. Novel approaches to anti-obesity drug discovery with gut hormones over the past 10 years. Expert Opin Drug Discov 2019; 14:1151-1159. [DOI: 10.1080/17460441.2019.1646243] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Frances Rose
- Division of Diabetes, Endocrinology and Metabolism, Imperial College London, London, UK
| | - Stephen Bloom
- Department of Investigative Medicine, Imperial College London, London, UK
| | - Tricia Tan
- Department of Investigative Medicine, Imperial College London, London, UK
| |
Collapse
|
36
|
González-García I, Milbank E, Diéguez C, López M, Contreras C. Glucagon, GLP-1 and Thermogenesis. Int J Mol Sci 2019; 20:ijms20143445. [PMID: 31337027 PMCID: PMC6678955 DOI: 10.3390/ijms20143445] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 07/09/2019] [Accepted: 07/10/2019] [Indexed: 12/15/2022] Open
Abstract
Brown adipose tissue (BAT) thermogenesis is a conserved mechanism to maintain body temperature in mammals. However, since BAT contribution to energy expenditure can represent a relevant modulator of metabolic homeostasis, many studies have focused on the nervous system and endocrine factors that control the activity of this tissue. There is long-established evidence that the counter-regulatory hormone glucagon negatively influences energy balance, enhances satiety, and increases energy expenditure. Despite compelling evidence showing that glucagon has direct action on BAT thermogenesis, recent findings are questioning this conventional attribute of glucagon action. Glucagon like peptide-1 (GLP-1) is an incretin secreted by the intestinal tract which strongly decreases feeding, and, furthermore, improves metabolic parameters associated with obesity and diabetes. Therefore, GLP-1 receptors (GLP-1-R) have emerged as a promising target in the treatment of metabolic disorders. In this short review, we will summarize the latest evidence in this regard, as well as the current therapeutic glucagon- and GLP-1-based approaches to treating obesity.
Collapse
Affiliation(s)
- Ismael González-García
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), 85764 Neuherberg, Germany.
| | - Edward Milbank
- Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), University of Santiago de Compostela-Instituto de Investigación Sanitaria, 15782 Santiago de Compostela, Spain
- Centro de Investigación Biomédica en Red, Fisiopatología de la Obesidad y Nutrición (CIBERobn), 15706 Santiago de Compostela, Spain
| | - Carlos Diéguez
- Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), University of Santiago de Compostela-Instituto de Investigación Sanitaria, 15782 Santiago de Compostela, Spain
- Centro de Investigación Biomédica en Red, Fisiopatología de la Obesidad y Nutrición (CIBERobn), 15706 Santiago de Compostela, Spain
| | - Miguel López
- Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), University of Santiago de Compostela-Instituto de Investigación Sanitaria, 15782 Santiago de Compostela, Spain
- Centro de Investigación Biomédica en Red, Fisiopatología de la Obesidad y Nutrición (CIBERobn), 15706 Santiago de Compostela, Spain
| | - Cristina Contreras
- Department of Physiology, Pharmacy School, Complutense University of Madrid, 28040 Madrid, Spain.
| |
Collapse
|
37
|
Janah L, Kjeldsen S, Galsgaard KD, Winther-Sørensen M, Stojanovska E, Pedersen J, Knop FK, Holst JJ, Wewer Albrechtsen NJ. Glucagon Receptor Signaling and Glucagon Resistance. Int J Mol Sci 2019; 20:E3314. [PMID: 31284506 PMCID: PMC6651628 DOI: 10.3390/ijms20133314] [Citation(s) in RCA: 108] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 06/28/2019] [Accepted: 07/03/2019] [Indexed: 02/08/2023] Open
Abstract
Hundred years after the discovery of glucagon, its biology remains enigmatic. Accurate measurement of glucagon has been essential for uncovering its pathological hypersecretion that underlies various metabolic diseases including not only diabetes and liver diseases but also cancers (glucagonomas). The suggested key role of glucagon in the development of diabetes has been termed the bihormonal hypothesis. However, studying tissue-specific knockout of the glucagon receptor has revealed that the physiological role of glucagon may extend beyond blood-glucose regulation. Decades ago, animal and human studies reported an important role of glucagon in amino acid metabolism through ureagenesis. Using modern technologies such as metabolomic profiling, knowledge about the effects of glucagon on amino acid metabolism has been expanded and the mechanisms involved further delineated. Glucagon receptor antagonists have indirectly put focus on glucagon's potential role in lipid metabolism, as individuals treated with these antagonists showed dyslipidemia and increased hepatic fat. One emerging field in glucagon biology now seems to include the concept of hepatic glucagon resistance. Here, we discuss the roles of glucagon in glucose homeostasis, amino acid metabolism, and lipid metabolism and present speculations on the molecular pathways causing and associating with postulated hepatic glucagon resistance.
Collapse
Affiliation(s)
- Lina Janah
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Sasha Kjeldsen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Katrine D Galsgaard
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Marie Winther-Sørensen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Elena Stojanovska
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Jens Pedersen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
- Department of Cardiology, Nephrology and Endocrinology, Nordsjællands Hospital Hillerød, University of Copenhagen, 3400 Hillerød, Denmark
| | - Filip K Knop
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, 2900 Hellerup, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
- Steno Diabetes Center Copenhagen, 2820 Gentofte, Denmark
| | - Jens J Holst
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Nicolai J Wewer Albrechtsen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark.
- Department of Clinical Biochemistry, Rigshospitalet, 2100 Copenhagen, Denmark.
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2100 Copenhagen, Denmark.
| |
Collapse
|
38
|
Ueno H, Ito R, Abe SI, Ookawara M, Miyashita H, Ogino H, Miyamoto Y, Yoshihara T, Kobayashi A, Tsujihata Y, Takeuchi K, Watanabe M, Yamada Y, Maekawa T, Nishigaki N, Moritoh Y. SCO-267, a GPR40 Full Agonist, Improves Glycemic and Body Weight Control in Rat Models of Diabetes and Obesity. J Pharmacol Exp Ther 2019; 370:172-181. [DOI: 10.1124/jpet.118.255885] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Accepted: 04/01/2019] [Indexed: 12/14/2022] Open
|
39
|
Ojha A, Ojha U, Mohammed R, Chandrashekar A, Ojha H. Current perspective on the role of insulin and glucagon in the pathogenesis and treatment of type 2 diabetes mellitus. Clin Pharmacol 2019; 11:57-65. [PMID: 31191043 PMCID: PMC6515536 DOI: 10.2147/cpaa.s202614] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 03/28/2019] [Indexed: 01/17/2023] Open
Abstract
According to the World Health Organization, 422 million adults worldwide live with diabetes mellitus (DM), a significant portion of whom have type 2 diabetes. The discovery of insulin as a key regulator of glucose metabolism has revolutionized our understanding of DM and provided several therapeutic avenues. Most studies have so far predominantly focused on the role of insulin in type 2 diabetes. However, the balance between insulin and glucagon is essential in ensuring glucose homeostasis. In this review, we begin by evaluating the principal differences between insulin and glucagon with regard to their mechanism and control of their secretion. Next, we discuss their mode of action and effects on metabolism. We further explore how the two hormones impact the natural history of type 2 diabetes. Finally, we outline how current and emerging pharmacological agents attempt to exploit the properties of insulin and glucagon to benefit patients with type 2 diabetes.
Collapse
Affiliation(s)
- Ashutosh Ojha
- Shobhaben Pratapbhai Patel School Of Pharmacy & Technology Management, SVKM's Narsee Monjee Institute of Management Studies, Mumbai, India
| | - Utkarsh Ojha
- Faculty of Medicine, Imperial College London, London, UK
| | - Raihan Mohammed
- Department of Medicine, University of Cambridge, Cambridge, UK
| | | | - Harsh Ojha
- Department of Life Sciences, University of Warwick, Coventry, UK
| |
Collapse
|
40
|
Alexiadou K, Anyiam O, Tan T. Cracking the combination: Gut hormones for the treatment of obesity and diabetes. J Neuroendocrinol 2019; 31:e12664. [PMID: 30466162 PMCID: PMC6563152 DOI: 10.1111/jne.12664] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 11/11/2018] [Accepted: 11/17/2018] [Indexed: 12/21/2022]
Abstract
Obesity and type 2 diabetes are a veritable global pandemic. There is an imperative to develop new therapies for these conditions that can be delivered at scale to patients, which deliver effective and titratable weight loss, amelioration of diabetes, prevention of diabetic complications and improvements in cardiovascular health. Although agents based on glucagon-like peptide-1 (GLP-1) are now in routine use for diabetes and obesity, the limited efficacy of such drugs means that newer agents are required. By combining the effects of GLP-1 with other gut and metabolic hormones such as glucagon (GCG), oxyntomodulin, glucose-dependent insulinotropic peptide (GIP) and peptide YY (PYY), we may obtain improved weight loss, increased energy expenditure and improved metabolic profiles. Drugs based on dual agonism of GLP1R/GCGR and GLP1R/GIPR are being actively developed in clinical trials. Triple agonism, for example with GLPR1/GCGR/GIPR unimolecular agonists or using GLP-1/oxyntomodulin/PYY, is also being explored. Multi-agonist drugs seem set to deliver the next generation of therapies for diabetes and obesity soon.
Collapse
Affiliation(s)
| | - Oluwaseun Anyiam
- Section of Investigative MedicineImperial College LondonLondonUK
| | - Tricia Tan
- Section of Investigative MedicineImperial College LondonLondonUK
| |
Collapse
|
41
|
Galsgaard KD, Pedersen J, Knop FK, Holst JJ, Wewer Albrechtsen NJ. Glucagon Receptor Signaling and Lipid Metabolism. Front Physiol 2019; 10:413. [PMID: 31068828 PMCID: PMC6491692 DOI: 10.3389/fphys.2019.00413] [Citation(s) in RCA: 112] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Accepted: 03/26/2019] [Indexed: 01/04/2023] Open
Abstract
Glucagon is secreted from the pancreatic alpha cells upon hypoglycemia and stimulates hepatic glucose production. Type 2 diabetes is associated with dysregulated glucagon secretion, and increased glucagon concentrations contribute to the diabetic hyperglycemia. Antagonists of the glucagon receptor have been considered as glucose-lowering therapy in type 2 diabetes patients, but their clinical applicability has been questioned because of reports of therapy-induced increments in liver fat content and increased plasma concentrations of low-density lipoprotein. Conversely, in animal models, increased glucagon receptor signaling has been linked to improved lipid metabolism. Glucagon acts primarily on the liver and by regulating hepatic lipid metabolism glucagon may reduce hepatic lipid accumulation and decrease hepatic lipid secretion. Regarding whole-body lipid metabolism, it is controversial to what extent glucagon influences lipolysis in adipose tissue, particularly in humans. Glucagon receptor agonists combined with glucagon-like peptide 1 receptor agonists (dual agonists) improve dyslipidemia and reduce hepatic steatosis. Collectively, emerging data support an essential role of glucagon for lipid metabolism.
Collapse
Affiliation(s)
- Katrine D Galsgaard
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jens Pedersen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Department of Cardiology, Nephrology and Endocrinology, Nordsjællands Hospital Hillerød, University of Copenhagen, Hillerød, Denmark
| | - Filip K Knop
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Clinical Metabolic Physiology, Steno Diabetes Center Copenhagen, Gentofte Hospital, Hellerup, Denmark.,Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jens J Holst
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Nicolai J Wewer Albrechtsen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Department of Clinical Biochemistry, Rigshospitalet, Copenhagen, Denmark.,Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
42
|
Quiñones M, Fernø J, Diéguez C, Nogueiras R, Al-Massadi O. Exciting advances in GPCR-based drugs discovery for treating metabolic disease and future perspectives. Expert Opin Drug Discov 2019; 14:421-431. [PMID: 30821530 DOI: 10.1080/17460441.2019.1583642] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Current pharmacological therapies that target single receptors have limited efficacy for the treatment of diabetes and obesity. Novel approaches with hybrid peptides that activate more than one receptor at once to generate beneficial effects through synergistic effects have shown promising results. Several unimolecular dual and tri-agonists, mainly associated with GPCR like GLP-1/GCG/GIP receptors, have shown exceptional efficacy in preclinical models, and are currently being evaluated in clinical trials to investigate their safety and beneficial effects in humans. Areas covered: Herein, the authors review the development of drugs used in the treatment of metabolic disease, from single agonists to the new generation of tri-agonist peptides and compile the latest knowledge available on GPCR-based drug discovery. The authors also provide the reader with their expert perspectives on this exciting area of drug development. Expert opinion: The co-agonists that have been clinically tested so far have been well tolerated and reduce body weight as well as fasting glucose levels in patients with Type 2 Diabetes Mellitus to a higher degree than single agonists alone. The promising data collected so far now warrant large scale randomized clinical trials to assess whether a unimolecular polypharmacy-based approach could translate into safe and efficacious treatments for obesity and its comorbidities.
Collapse
Affiliation(s)
- Mar Quiñones
- a Department of Physiology, CIMUS , University of Santiago de Compostela-Instituto de Investigación Sanitaria , Santiago de Compostela , Spain.,b CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn) , Madrid , Spain
| | - Johan Fernø
- c Hormone Laboratory , Haukeland University Hospital , Bergen , Norway
| | - Carlos Diéguez
- a Department of Physiology, CIMUS , University of Santiago de Compostela-Instituto de Investigación Sanitaria , Santiago de Compostela , Spain.,b CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn) , Madrid , Spain
| | - Ruben Nogueiras
- a Department of Physiology, CIMUS , University of Santiago de Compostela-Instituto de Investigación Sanitaria , Santiago de Compostela , Spain.,b CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn) , Madrid , Spain
| | - Omar Al-Massadi
- d Neurotransmission et signalisation laboratoire , Inserm UMR-S 839 , Paris , France.,e Faculté des Sciences et d'Ingénierie , Sorbonne Université , Paris , France.,f Institut du Fer a Moulin , Paris , France
| |
Collapse
|
43
|
Beaudry JL, Kaur KD, Varin EM, Baggio LL, Cao X, Mulvihill EE, Stern JH, Campbell JE, Scherer PE, Drucker DJ. The brown adipose tissue glucagon receptor is functional but not essential for control of energy homeostasis in mice. Mol Metab 2019; 22:37-48. [PMID: 30772257 PMCID: PMC6437632 DOI: 10.1016/j.molmet.2019.01.011] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 01/28/2019] [Accepted: 01/29/2019] [Indexed: 02/02/2023] Open
Abstract
Objective Administration of glucagon (GCG) or GCG-containing co-agonists reduces body weight and increases energy expenditure. These actions appear to be transduced by multiple direct and indirect GCG receptor (GCGR)-dependent mechanisms. Although the canonical GCGR is expressed in brown adipose tissue (BAT) the importance of BAT GCGR activity for the physiological control of body weight, or the response to GCG agonism, has not been defined. Methods We studied the mechanisms linking GCG action to acute increases in oxygen consumption using wildtype (WT), Ucp1−/− and Fgf21−/− mice. The importance of basal GCGR expression within the Myf5+ domain for control of body weight, adiposity, glucose and lipid metabolism, food intake, and energy expenditure was examined in GcgrBAT−/− mice housed at room temperature or 4 °C, fed a regular chow diet (RCD) or after a prolonged exposure to high fat diet (HFD). Results Acute GCG administration induced lipolysis and increased the expression of thermogenic genes in BAT cells, whereas knockdown of Gcgr reduced expression of genes related to thermogenesis. GCG increased energy expenditure (measured by oxygen consumption) both in vivo in WT mice and ex vivo in BAT and liver explants. GCG also increased acute energy expenditure in Ucp1−/− mice, but these actions were partially blunted in Ffg21−/− mice. However, acute GCG administration also robustly increased oxygen consumption in GcgrBAT−/− mice. Moreover, body weight, glycemia, lipid metabolism, body temperature, food intake, activity, energy expenditure and adipose tissue gene expression profiles were normal in GcgrBAT−/− mice, either on RCD or HFD, whether studied at room temperature, or chronically housed at 4 °C. Conclusions Exogenous GCG increases oxygen consumption in mice, also evident both in liver and BAT explants ex vivo, through UCP1-independent, FGF21-dependent pathways. Nevertheless, GCGR signaling within BAT is not physiologically essential for control of body weight, whole body energy expenditure, glucose homeostasis, or the adaptive metabolic response to cold or prolonged exposure to an energy dense diet. A functional glucagon receptor is expressed in brown adipose tissue and BAT cells. Glucagon increases energy expenditure in mice, as well as in liver and BAT. Glucagon increases whole body energy expenditure through FGF21-dependent and BAT glucagon receptor-independent pathways. Loss of the BAT glucagon receptor does not impair glucose or energy homeostasis in mice.
Collapse
Affiliation(s)
- Jacqueline L Beaudry
- Lunenfeld-Tanenbaum Research Institute, Mt. Sinai Hospital, Toronto, Ontario, Canada
| | - Kiran Deep Kaur
- Lunenfeld-Tanenbaum Research Institute, Mt. Sinai Hospital, Toronto, Ontario, Canada
| | - Elodie M Varin
- Lunenfeld-Tanenbaum Research Institute, Mt. Sinai Hospital, Toronto, Ontario, Canada
| | - Laurie L Baggio
- Lunenfeld-Tanenbaum Research Institute, Mt. Sinai Hospital, Toronto, Ontario, Canada
| | - Xiemin Cao
- Lunenfeld-Tanenbaum Research Institute, Mt. Sinai Hospital, Toronto, Ontario, Canada
| | - Erin E Mulvihill
- Lunenfeld-Tanenbaum Research Institute, Mt. Sinai Hospital, Toronto, Ontario, Canada
| | - Jennifer H Stern
- Touchstone Diabetes Center, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, USA
| | - Jonathan E Campbell
- Lunenfeld-Tanenbaum Research Institute, Mt. Sinai Hospital, Toronto, Ontario, Canada
| | - Phillip E Scherer
- Touchstone Diabetes Center, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, USA
| | - Daniel J Drucker
- Lunenfeld-Tanenbaum Research Institute, Mt. Sinai Hospital, Toronto, Ontario, Canada; Department of Medicine, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
44
|
Bankir L, Bouby N, Speth RC, Velho G, Crambert G. Glucagon revisited: Coordinated actions on the liver and kidney. Diabetes Res Clin Pract 2018; 146:119-129. [PMID: 30339786 DOI: 10.1016/j.diabres.2018.10.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 10/10/2018] [Indexed: 01/22/2023]
Abstract
Glucagon secretion is stimulated by a low plasma glucose concentration. By activating glycogenolysis and gluconeogenesis in the liver, glucagon contributes to maintain a normal glycemia. Glucagon secretion is also stimulated by the intake of proteins, and glucagon contributes to amino acid metabolism and nitrogen excretion. Amino acids are used for gluconeogenesis and ureagenesis, two metabolic pathways that are closely associated. Intriguingly, cyclic AMP, the second messenger of glucagon action in the liver, is released into the bloodstream becoming an extracellular messenger. These effects depend not only on glucagon itself but on the actual glucagon/insulin ratio because insulin counteracts glucagon action on the liver. This review revisits the role of glucagon in nitrogen metabolism and in disposal of nitrogen wastes. This role involves coordinated actions of glucagon on the liver and kidney. Glucagon influences the transport of fluid and solutes in the distal tubule and collecting duct, and extracellular cAMP influences proximal tubule reabsorption. These combined effects increase the fractional excretion of urea, sodium, potassium and phosphates. Moreover, the simultaneous actions of glucagon and extracellular cAMP are responsible, at least in part, for the protein-induced rise in glomerular filtration rate that contributes to a more efficient excretion of protein-derived end products.
Collapse
Affiliation(s)
- Lise Bankir
- Sorbonne Université, UPMC Univ Paris 06, INSERM, Université Paris Descartes, Sorbonne Paris Cité, UMRS 1138, Centre de Recherche des Cordeliers, F-75006 Paris, France.
| | - Nadine Bouby
- Sorbonne Université, UPMC Univ Paris 06, INSERM, Université Paris Descartes, Sorbonne Paris Cité, UMRS 1138, Centre de Recherche des Cordeliers, F-75006 Paris, France
| | - Robert C Speth
- Department of Pharmaceutical Sciences, College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL, USA; Department of Pharmacology and Physiology, College of Medicine, Georgetown University, Washington, DC, USA
| | - Gilberto Velho
- Sorbonne Université, UPMC Univ Paris 06, INSERM, Université Paris Descartes, Sorbonne Paris Cité, UMRS 1138, Centre de Recherche des Cordeliers, F-75006 Paris, France
| | - Gilles Crambert
- Sorbonne Université, UPMC Univ Paris 06, INSERM, Université Paris Descartes, Sorbonne Paris Cité, UMRS 1138, Centre de Recherche des Cordeliers, F-75006 Paris, France; CNRS ERL 8228, Centre de Recherche des Cordeliers, Laboratoire de Métabolisme et Physiologie Rénale, F-75006 Paris, France
| |
Collapse
|
45
|
Optimization of peptide-based polyagonists for treatment of diabetes and obesity. Bioorg Med Chem 2018; 26:2873-2881. [DOI: 10.1016/j.bmc.2017.10.047] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 10/31/2017] [Indexed: 12/28/2022]
|
46
|
Velázquez-Villegas LA, Tovar-Palacio C, Palacios-González B, Torres N, Tovar AR, Díaz-Villaseñor A. Recycling of glucagon receptor to plasma membrane increases in adipocytes of obese rats by soy protein; implications for glucagon resistance. Mol Nutr Food Res 2017; 61. [DOI: 10.1002/mnfr.201700116] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 05/24/2017] [Accepted: 06/14/2017] [Indexed: 12/31/2022]
Affiliation(s)
- Laura A. Velázquez-Villegas
- Departmento de Fisiología de la Nutrición; Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán; Mexico City Mexico
| | - Claudia Tovar-Palacio
- Departmento de Nefrología y Metabolismo Mineral; Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán; Mexico City Mexico
| | - Berenice Palacios-González
- Departmento de Fisiología de la Nutrición; Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán; Mexico City Mexico
| | - Nimbe Torres
- Departmento de Fisiología de la Nutrición; Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán; Mexico City Mexico
| | - Armando R. Tovar
- Departmento de Fisiología de la Nutrición; Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán; Mexico City Mexico
| | - Andrea Díaz-Villaseñor
- Departmento de Fisiología de la Nutrición; Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán; Mexico City Mexico
- Departmento de Medicina Genómica y Toxicología Ambiental; Instituto de Investigaciones Biomédicas; Universidad Nacional Autónoma de México; Mexico City Mexico
| |
Collapse
|
47
|
Müller TD, Finan B, Clemmensen C, DiMarchi RD, Tschöp MH. The New Biology and Pharmacology of Glucagon. Physiol Rev 2017; 97:721-766. [PMID: 28275047 DOI: 10.1152/physrev.00025.2016] [Citation(s) in RCA: 230] [Impact Index Per Article: 32.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
In the last two decades we have witnessed sizable progress in defining the role of gastrointestinal signals in the control of glucose and energy homeostasis. Specifically, the molecular basis of the huge metabolic benefits in bariatric surgery is emerging while novel incretin-based medicines based on endogenous hormones such as glucagon-like peptide 1 and pancreas-derived amylin are improving diabetes management. These and related developments have fostered the discovery of novel insights into endocrine control of systemic metabolism, and in particular a deeper understanding of the importance of communication across vital organs, and specifically the gut-brain-pancreas-liver network. Paradoxically, the pancreatic peptide glucagon has reemerged in this period among a plethora of newly identified metabolic macromolecules, and new data complement and challenge its historical position as a gut hormone involved in metabolic control. The synthesis of glucagon analogs that are biophysically stable and soluble in aqueous solutions has promoted biological study that has enriched our understanding of glucagon biology and ironically recruited glucagon agonism as a central element to lower body weight in the treatment of metabolic disease. This review summarizes the extensive historical record and the more recent provocative direction that integrates the prominent role of glucagon in glucose elevation with its under-acknowledged effects on lipids, body weight, and vascular health that have implications for the pathophysiology of metabolic diseases, and the emergence of precision medicines to treat metabolic diseases.
Collapse
Affiliation(s)
- T D Müller
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany; German Center for Diabetes Research, Neuherberg, Germany; Department of Chemistry, Indiana University, Bloomington, Indiana; Division of Metabolic Diseases, Technische Universität München, Munich, Germany
| | - B Finan
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany; German Center for Diabetes Research, Neuherberg, Germany; Department of Chemistry, Indiana University, Bloomington, Indiana; Division of Metabolic Diseases, Technische Universität München, Munich, Germany
| | - C Clemmensen
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany; German Center for Diabetes Research, Neuherberg, Germany; Department of Chemistry, Indiana University, Bloomington, Indiana; Division of Metabolic Diseases, Technische Universität München, Munich, Germany
| | - R D DiMarchi
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany; German Center for Diabetes Research, Neuherberg, Germany; Department of Chemistry, Indiana University, Bloomington, Indiana; Division of Metabolic Diseases, Technische Universität München, Munich, Germany
| | - M H Tschöp
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany; German Center for Diabetes Research, Neuherberg, Germany; Department of Chemistry, Indiana University, Bloomington, Indiana; Division of Metabolic Diseases, Technische Universität München, Munich, Germany
| |
Collapse
|
48
|
Pujadas G, Drucker DJ. Vascular Biology of Glucagon Receptor Superfamily Peptides: Mechanistic and Clinical Relevance. Endocr Rev 2016; 37:554-583. [PMID: 27732058 DOI: 10.1210/er.2016-1078] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Regulatory peptides produced in islet and gut endocrine cells, including glucagon, glucagon-like peptide-1 (GLP-1), GLP-2, and glucose-dependent insulinotropic polypeptide, exert actions with considerable metabolic importance and translational relevance. Although the clinical development of GLP-1 receptor agonists and dipeptidyl peptidase-4 inhibitors has fostered research into how these hormones act on the normal and diseased heart, less is known about the actions of these peptides on blood vessels. Here we review the effects of these peptide hormones on normal blood vessels and highlight their vascular actions in the setting of experimental and clinical vascular injury. The cellular localization and signal transduction properties of the receptors for glucagon, GLP-1, GLP-2, and glucose-dependent insulinotropic polypeptide are discussed, with emphasis on endothelial cells and vascular smooth muscle cells. The actions of these peptides on the control of blood flow, blood pressure, angiogenesis, atherosclerosis, and vascular inflammation are reviewed with a focus on elucidating direct and indirect mechanisms of action. How these peptides traverse the blood-brain barrier is highlighted, with relevance to the use of GLP-1 receptor agonists to treat obesity and neurodegenerative disorders. Wherever possible, we compare actions identified in cell lines and primary cell culture with data from preclinical studies and, when available, results of human investigation, including studies in subjects with diabetes, obesity, and cardiovascular disease. Throughout the review, we discuss pitfalls, limitations, and challenges of the existing literature and highlight areas of controversy and uncertainty. The increasing use of peptide-based therapies for the treatment of diabetes and obesity underscores the importance of understanding the vascular biology of peptide hormone action.
Collapse
Affiliation(s)
- Gemma Pujadas
- Department of Medicine, Lunenfeld-Tanenbaum Research Institute, Mt. Sinai Hospital, University of Toronto, Toronto, ON M5G 1X5, Canada
| | - Daniel J Drucker
- Department of Medicine, Lunenfeld-Tanenbaum Research Institute, Mt. Sinai Hospital, University of Toronto, Toronto, ON M5G 1X5, Canada
| |
Collapse
|
49
|
Bankir L, Bouby N, Blondeau B, Crambert G. Glucagon actions on the kidney revisited: possible role in potassium homeostasis. Am J Physiol Renal Physiol 2016; 311:F469-86. [DOI: 10.1152/ajprenal.00560.2015] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 03/31/2016] [Indexed: 12/25/2022] Open
Abstract
It is now recognized that the metabolic disorders observed in diabetes are not, or not only due to the lack of insulin or insulin resistance, but also to elevated glucagon secretion. Accordingly, selective glucagon receptor antagonists are now proposed as a novel strategy for the treatment of diabetes. However, besides its metabolic actions, glucagon also influences kidney function. The glucagon receptor is expressed in the thick ascending limb, distal tubule, and collecting duct, and glucagon regulates the transepithelial transport of several solutes in these nephron segments. Moreover, it also influences solute transport in the proximal tubule, possibly by an indirect mechanism. This review summarizes the knowledge accumulated over the last 30 years about the influence of glucagon on the renal handling of electrolytes and urea. It also describes a possible novel role of glucagon in the short-term regulation of potassium homeostasis. Several original findings suggest that pancreatic α-cells may express a “potassium sensor” sensitive to changes in plasma K concentration and could respond by adapting glucagon secretion that, in turn, would regulate urinary K excretion. By their combined actions, glucagon and insulin, working in a combinatory mode, could ensure an independent regulation of both plasma glucose and plasma K concentrations. The results and hypotheses reviewed here suggest that the use of glucagon receptor antagonists for the treatment of diabetes should take into account their potential consequences on electrolyte handling by the kidney.
Collapse
Affiliation(s)
- Lise Bankir
- INSERM UMRS 1138, Centre de Recherche des Cordeliers, Paris, France
- Université Pierre et Marie Curie, Paris, France; and
| | - Nadine Bouby
- INSERM UMRS 1138, Centre de Recherche des Cordeliers, Paris, France
- Université Pierre et Marie Curie, Paris, France; and
- Université Paris-Descartes, Paris, France
| | - Bertrand Blondeau
- INSERM UMRS 1138, Centre de Recherche des Cordeliers, Paris, France
- Université Pierre et Marie Curie, Paris, France; and
| | - Gilles Crambert
- INSERM UMRS 1138, Centre de Recherche des Cordeliers, Paris, France
- Université Pierre et Marie Curie, Paris, France; and
| |
Collapse
|
50
|
Cegla J, Troke RC, Jones B, Tharakan G, Kenkre J, McCullough KA, Lim CT, Parvizi N, Hussein M, Chambers ES, Minnion J, Cuenco J, Ghatei MA, Meeran K, Tan TM, Bloom SR. Coinfusion of low-dose GLP-1 and glucagon in man results in a reduction in food intake. Diabetes 2014; 63:3711-20. [PMID: 24939425 DOI: 10.2337/db14-0242] [Citation(s) in RCA: 113] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Obesity is a growing epidemic, and current medical therapies have proven inadequate. Endogenous satiety hormones provide an attractive target for the development of drugs that aim to cause effective weight loss with minimal side effects. Both glucagon and GLP-1 reduce appetite and cause weight loss. Additionally, glucagon increases energy expenditure. We hypothesized that the combination of both peptides, administered at doses that are individually subanorectic, would reduce appetite, while GLP-1 would protect against the hyperglycemic effect of glucagon. In this double-blind crossover study, subanorectic doses of each peptide alone, both peptides in combination, or placebo was infused into 13 human volunteers for 120 min. An ad libitum meal was provided after 90 min, and calorie intake determined. Resting energy expenditure was measured by indirect calorimetry at baseline and during infusion. Glucagon or GLP-1, given individually at subanorectic doses, did not significantly reduce food intake. Coinfusion at the same doses led to a significant reduction in food intake of 13%. Furthermore, the addition of GLP-1 protected against glucagon-induced hyperglycemia, and an increase in energy expenditure of 53 kcal/day was seen on coinfusion. These observations support the concept of GLP-1 and glucagon dual agonism as a possible treatment for obesity and diabetes.
Collapse
Affiliation(s)
- Jaimini Cegla
- Section of Investigative Medicine, Imperial College London, London, U.K
| | - Rachel C Troke
- Section of Investigative Medicine, Imperial College London, London, U.K
| | - Ben Jones
- Section of Investigative Medicine, Imperial College London, London, U.K
| | - George Tharakan
- Section of Investigative Medicine, Imperial College London, London, U.K
| | - Julia Kenkre
- Section of Investigative Medicine, Imperial College London, London, U.K
| | | | - Chung Thong Lim
- Section of Investigative Medicine, Imperial College London, London, U.K
| | - Nassim Parvizi
- Section of Investigative Medicine, Imperial College London, London, U.K
| | - Mohamed Hussein
- Section of Investigative Medicine, Imperial College London, London, U.K
| | - Edward S Chambers
- Section of Investigative Medicine, Imperial College London, London, U.K
| | - James Minnion
- Section of Investigative Medicine, Imperial College London, London, U.K
| | - Joyceline Cuenco
- Section of Investigative Medicine, Imperial College London, London, U.K
| | - Mohammad A Ghatei
- Section of Investigative Medicine, Imperial College London, London, U.K
| | - Karim Meeran
- Section of Investigative Medicine, Imperial College London, London, U.K
| | - Tricia M Tan
- Section of Investigative Medicine, Imperial College London, London, U.K
| | - Stephen R Bloom
- Section of Investigative Medicine, Imperial College London, London, U.K.
| |
Collapse
|