1
|
Cavalcante JS, Riciopo PM, Pereira AFM, Jeronimo BC, Angstmam DG, Pôssas FC, de Andrade Filho A, Cerni FA, Pucca MB, Ferreira Junior RS. Clinical complications in envenoming by Apis honeybee stings: insights into mechanisms, diagnosis, and pharmacological interventions. Front Immunol 2024; 15:1437413. [PMID: 39359723 PMCID: PMC11445026 DOI: 10.3389/fimmu.2024.1437413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 08/20/2024] [Indexed: 10/04/2024] Open
Abstract
Envenoming resulting from Apis honeybee stings pose a neglected public health concern, with clinical complications ranging from mild local reactions to severe systemic manifestations. This review explores the mechanisms underlying envenoming by honeybee sting, discusses diagnostic approaches, and reviews current pharmacological interventions. This section explores the diverse clinical presentations of honeybee envenoming, including allergic and non-allergic reactions, emphasizing the need for accurate diagnosis to guide appropriate medical management. Mechanistic insights into the honeybee venom's impact on physiological systems, including the immune and cardiovascular systems, are provided to enhance understanding of the complexities of honeybee sting envenoming. Additionally, the article evaluates emerging diagnostic technologies and therapeutic strategies, providing a critical analysis of their potential contributions to improved patient outcomes. This article aims to provide current knowledge for healthcare professionals to effectively manage honeybee sting envenoming, thereby improving patient care and treatment outcomes.
Collapse
Affiliation(s)
- Joeliton S Cavalcante
- Graduate Program in Tropical Diseases, Botucatu Medical School (FMB), São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| | - Pedro Marques Riciopo
- Department of Bioprocess and Biotechnology, School of Agriculture, Agronomic Sciences School, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| | - Ana Flávia Marques Pereira
- Center for the Study of Venoms and Venomous Animals of UNESP (CEVAP), São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| | - Bruna Cristina Jeronimo
- Center for the Study of Venoms and Venomous Animals of UNESP (CEVAP), São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| | - Davi Gomes Angstmam
- Graduate Program in Tropical Diseases, Botucatu Medical School (FMB), São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| | - Felipe Carvalhaes Pôssas
- Minas Gerais Toxicological Information and Assistance Center, João XXIII Hospital, Belo Horizonte, Minas Gerais, Brazil
| | - Adebal de Andrade Filho
- Minas Gerais Toxicological Information and Assistance Center, João XXIII Hospital, Belo Horizonte, Minas Gerais, Brazil
| | - Felipe A Cerni
- Graduate Program in Tropical Medicine of the State University of Amazonas, Manaus, Amazonas, Brazil
| | - Manuela B Pucca
- Center for the Study of Venoms and Venomous Animals of UNESP (CEVAP), São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| | - Rui Seabra Ferreira Junior
- Graduate Program in Tropical Diseases, Botucatu Medical School (FMB), São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
- Center for the Study of Venoms and Venomous Animals of UNESP (CEVAP), São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
- Center for Translational Science and Development of Biopharmaceuticals FAPESP/CEVAP-UNESP, Botucatu, São Paulo, Brazil
| |
Collapse
|
2
|
Chary PS, Shaikh S, Rajana N, Bhavana V, Mehra NK. Unlocking nature's arsenal: Nanotechnology for targeted delivery of venom toxins in cancer therapy. BIOMATERIALS ADVANCES 2024; 162:213903. [PMID: 38824828 DOI: 10.1016/j.bioadv.2024.213903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 04/24/2024] [Accepted: 05/19/2024] [Indexed: 06/04/2024]
Abstract
AIM The aim of the present review is to shed light on the nanotechnological approaches adopted to overcome the shortcomings associated with the delivery of venom peptides which possess inherent anti-cancer properties. BACKGROUND Venom peptides although have been reported to demonstrate anti-cancer effects, they suffer from several disadvantages such as in vivo instability, off-target adverse effects, limited drug loading and low bioavailability. This review presents a comprehensive compilation of different classes of nanocarriers while underscoring their advantages, disadvantages and potential to carry such peptide molecules for in vivo delivery. It also discusses various nanotechnological aspects such as methods of fabrication, analytical tools to assess these nanoparticulate formulations, modulation of nanocarrier polymer properties to enhance loading capacity, stability and improve their suitability to carry toxic peptide drugs. CONCLUSION Nanotechnological approaches bear great potential in delivering venom peptide-based molecules as anticancer agents by enhancing their bioavailability, stability, efficacy as well as offering a spatiotemporal delivery approach. However, the challenges associated with toxicity and biocompatibility of nanocarriers must be duly addressed. PERSPECTIVES The everlasting quest for new breakthroughs for safer delivery of venom peptides in human subjects is fuelled by unmet clinical needs in the current landscape of chemotherapy. In addition, exhaustive efforts are required in obtaining and purifying the venom peptides followed by designing and optimizing scale up technologies.
Collapse
Affiliation(s)
- Padakanti Sandeep Chary
- Pharmaceutical Nanotechnology Research Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Samia Shaikh
- Pharmaceutical Nanotechnology Research Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Naveen Rajana
- Pharmaceutical Nanotechnology Research Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Valamla Bhavana
- Pharmaceutical Nanotechnology Research Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Neelesh Kumar Mehra
- Pharmaceutical Nanotechnology Research Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India.
| |
Collapse
|
3
|
Abd El-Aziz AH, El-Kasrawy NI, Abd El-Hack ME, Swelum AA, Suliman G, Tufarelli V, Abo Ghanima MM. Impact of bee venom supplement on productive performance, health status and economics of weaned male rabbits: Considering breed and dosage factors. J Anim Physiol Anim Nutr (Berl) 2024; 108:792-805. [PMID: 38311831 DOI: 10.1111/jpn.13931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 10/30/2023] [Accepted: 01/18/2024] [Indexed: 02/06/2024]
Abstract
The objectives of the present study were to investigate the potential effects of purified bee venom (BV) on various aspects of growth, carcass, antioxidant, intestinal bacterial count and economic considerations in rabbits. A total of 240 male rabbits, comprising two distinct breeds (V-Line and New Zealand White [NZW]), 5 weeks old, with an average live body weight (BW) of 680 ± 20 g, were randomly divided into six groups, each containing 30 rabbits. Each group had five replicates, with six rabbits in each replicate. The allocation of animals to the groups followed a fully factorial design, incorporating two factors: breed (V-Line and NZW) and four levels of purified BV derived from Apis Mellifera. The control group (G1) received a basal diet without additives. The other three groups (G2, G3 and G4) received the basal diet with BV supplementation in their drinking water at 0.5, 1 and 2 mg/L respectively. The study results indicated that NZW rabbits significantly enhanced feed conversion ratio while maintaining consistent carcass attributes compared to the V-Line breed. Despite variations in growth parameters being less pronounced, the supplementation of BV at levels of 1-2 mg/L demonstrated significant improvements in various other parameters. Notably, the interaction between the BV supplement and the breed factor (p < 0.001) yielded notable distinctions in most production metrics, encompassing BW, weight gain, feed conversion, carcass attributes and blood parameters. Increasing levels of BV supplementation, particularly at 1 mg/L, led to substantial improvements in serum and tissue metabolites. Moreover, the levels of total bacterial count and Escherichia coli in the jejunum and colon were significantly diminished, while the population of Lactobacilli in the colon was augmented (p < 0.001) in rabbits from both breeds receiving BV supplementation (1-2 mg/L) compared to the control group. The results underscore the potential of the BV supplement to enhance final weights, bolster antioxidant status and mitigate the presence of pathogenic bacteria, thereby contributing to enhanced economic efficiency in rabbits. Further inquiries are warranted to comprehensively investigate BV supplementation's potential advantages and limitations across different breeds and dosage levels.
Collapse
Affiliation(s)
- Ayman H Abd El-Aziz
- Animal Husbandry and Animal Wealth Development Department, Faculty of Veterinary Medicine, Damanhour University, Damanhour, Egypt
| | - Nagwa I El-Kasrawy
- Animal Husbandry and Animal Wealth Development Department, Faculty of Veterinary Medicine, Damanhour University, Damanhour, Egypt
| | | | - Ayman A Swelum
- Department of Animal Production, College of Food and Agriculture Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Gamaleldin Suliman
- Department of Animal Production, College of Food and Agriculture Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Vincenzo Tufarelli
- Department of Precision and Regenerative Medicine and Jonian Area (DiMePRe-J), Section of Veterinary Science and Animal Production, University of Bari Aldo Moro, Valenzano, Italy
| | - Mahmoud M Abo Ghanima
- Animal Husbandry and Animal Wealth Development Department, Faculty of Veterinary Medicine, Damanhour University, Damanhour, Egypt
| |
Collapse
|
4
|
Ahmed MBM, El-ssayad MF, Yousef SY, Salem SH. Bee venom: A potential natural alternative to conventional preservatives for prolonging the shelf-life of soft cheese 'Talaga'. Heliyon 2024; 10:e28968. [PMID: 38601605 PMCID: PMC11004823 DOI: 10.1016/j.heliyon.2024.e28968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 03/27/2024] [Accepted: 03/27/2024] [Indexed: 04/12/2024] Open
Abstract
The study aims to explore bee venom (honey-BV) as a potential natural preservative for "Tallaga" soft cheese. Characterization of the active compounds in honey-BV was conducted via chromatographic analyses. Antimicrobial efficacy against pathogenic bacteria and fungi was evaluated, and minimum inhibitory concentration (MIC) was determined. Subsequently, honey-BV was applied to Tallaga cheese at 15 mg/g concentrations. The main active ingredients identified in bee venom were apamin (2%) and melittin (48.7%). Both concentrations of bee venom (100 and 200 mg/mL) exhibited significant antifungal and antibacterial properties against tested organisms, with MIC values varied from 0.2 to 0.5 mg/mL for bacteria to 3-13 mg/mL for fungi. Application of honey-BV in Tallaga cheese resulted in complete elimination of Staphylococcal populations after 2 weeks of cold storage, with no detectable growth of molds or yeasts throughout the storage period. Additionally, a steady decrease in aerobic plate count was observed over time. In summary, honey-BV holds promise as a natural preservative for soft cheese, however, more investigation is required to optimize the concentration for economic viability, taking into account health benefits and safety considerations.
Collapse
Affiliation(s)
- Mohamed Bedair M. Ahmed
- Department of Food Toxicology and Contaminants, National Research Centre, 33 El-Bohouth St., P.O. Box: 12622, Dokki, Cairo, Egypt
| | - Mohamed Fathy El-ssayad
- Dairy Sciences Department, National Research Centre, 33 El-Bohouth St., P.O. Box: 12622, Dokki, Cairo, Egypt
| | | | - Salah H. Salem
- Department of Food Toxicology and Contaminants, National Research Centre, 33 El-Bohouth St., P.O. Box: 12622, Dokki, Cairo, Egypt
| |
Collapse
|
5
|
Zhang M, Wu YE, Jiang M, Hong W. Cortical regulation of helping behaviour towards others in pain. Nature 2024; 626:136-144. [PMID: 38267578 PMCID: PMC10925558 DOI: 10.1038/s41586-023-06973-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 12/13/2023] [Indexed: 01/26/2024]
Abstract
Humans and animals exhibit various forms of prosocial helping behaviour towards others in need1-3. Although previous research has investigated how individuals may perceive others' states4,5, the neural mechanisms of how they respond to others' needs and goals with helping behaviour remain largely unknown. Here we show that mice engage in a form of helping behaviour towards other individuals experiencing physical pain and injury-they exhibit allolicking (social licking) behaviour specifically towards the injury site, which aids the recipients in coping with pain. Using microendoscopic imaging, we found that single-neuron and ensemble activity in the anterior cingulate cortex (ACC) encodes others' state of pain and that this representation is different from that of general stress in others. Furthermore, functional manipulations demonstrate a causal role of the ACC in bidirectionally controlling targeted allolicking. Notably, this behaviour is represented in a population code in the ACC that differs from that of general allogrooming, a distinct type of prosocial behaviour elicited by others' emotional stress. These findings advance our understanding of the neural coding and regulation of helping behaviour.
Collapse
Affiliation(s)
- Mingmin Zhang
- Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Ye Emily Wu
- Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Mengping Jiang
- Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Weizhe Hong
- Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA.
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA.
- Department of Bioengineering, Samueli School of Engineering, University of California, Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
6
|
Gu H, An HJ, Gwon MG, Bae S, Leem J, Lee SJ, Han SM, Zouboulis CC, Park KK. Bee Venom and Its Major Component Melittin Attenuated Cutibacterium acnes- and IGF-1-Induced Acne Vulgaris via Inactivation of Akt/mTOR/SREBP Signaling Pathway. Int J Mol Sci 2022; 23:ijms23063152. [PMID: 35328573 PMCID: PMC8953527 DOI: 10.3390/ijms23063152] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/07/2022] [Accepted: 03/09/2022] [Indexed: 01/27/2023] Open
Abstract
Acne vulgaris is the most common disease of the pilosebaceous unit. The pathogenesis of this disease is complex, involving increased sebum production and perifollicular inflammation. Understanding the factors that regulate sebum production is important in identifying novel therapeutic targets for the treatment of acne. Bee Venom (BV) and melittin have multiple effects including antibacterial, antiviral, and anti-inflammatory activities in various cell types. However, the anti-lipogenic mechanisms of BV and melittin have not been elucidated. We investigated the effects of BV and melittin in models of Insulin-like growth factor-1 (IGF-1) or Cutibacterium acnes (C. acnes)-induced lipogenic skin disease. C. acnes or IGF-1 increased the expression of sterol regulatory element-binding protein-1 (SREBP-1) and proliferator-activated receptor gamma (PPAR-γ), transcription factors that regulate numerous genes involved in lipid biosynthesis through the protein kinase B (Akt)/mammalian target of rapamycin (mTOR)/SREBP signaling pathway. In this study using a C. acnes or IGF-1 stimulated lipogenic disease model, BV and melittin inhibited the increased expression of lipogenic and pro-inflammatory factor through the blockade of the Akt/mTOR/SREBP signaling pathway. This study suggests for the first time that BV and melittin could be developed as potential natural anti-acne agents with anti-lipogenesis, anti-inflammatory, and anti-C. acnes activity.
Collapse
Affiliation(s)
- Hyemin Gu
- Department of Pathology, School of Medicine, Catholic University of Daegu, Gyeongsan 42472, Korea; (H.G.); (H.-J.A.); (M.-G.G.); (S.B.); (S.-J.L.)
| | - Hyun-Jin An
- Department of Pathology, School of Medicine, Catholic University of Daegu, Gyeongsan 42472, Korea; (H.G.); (H.-J.A.); (M.-G.G.); (S.B.); (S.-J.L.)
| | - Mi-Gyeong Gwon
- Department of Pathology, School of Medicine, Catholic University of Daegu, Gyeongsan 42472, Korea; (H.G.); (H.-J.A.); (M.-G.G.); (S.B.); (S.-J.L.)
| | - Seongjae Bae
- Department of Pathology, School of Medicine, Catholic University of Daegu, Gyeongsan 42472, Korea; (H.G.); (H.-J.A.); (M.-G.G.); (S.B.); (S.-J.L.)
| | - Jaechan Leem
- Department of Immunology, School of Medicine, Catholic University of Daegu, Gyeongsan 42472, Korea;
| | - Sun-Jae Lee
- Department of Pathology, School of Medicine, Catholic University of Daegu, Gyeongsan 42472, Korea; (H.G.); (H.-J.A.); (M.-G.G.); (S.B.); (S.-J.L.)
| | - Sang-Mi Han
- Department of Agricultural Biology, National Academy of Agricultural Science, RDA, Wanju 54875, Korea;
| | - Christos C. Zouboulis
- Departments of Dermatology, Venereology, Allergology and Immunology, Dessau Medical Center, Brandenburg Medical School Theodor Fontane, Faculty of Health Sciences Brandenburg, Auenweg 38, 06847 Dessau, Germany;
| | - Kwan-Kyu Park
- Department of Pathology, School of Medicine, Catholic University of Daegu, Gyeongsan 42472, Korea; (H.G.); (H.-J.A.); (M.-G.G.); (S.B.); (S.-J.L.)
- Correspondence: ; Tel.: +82-53-650-4149
| |
Collapse
|
7
|
Noradrenergic innervations of the medial prefrontal cortex mediate empathy for pain in rats via the α1 and β receptors. Behav Brain Res 2022; 426:113828. [DOI: 10.1016/j.bbr.2022.113828] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 03/01/2022] [Accepted: 03/02/2022] [Indexed: 12/26/2022]
|
8
|
Sarhan M, El-Bitar AMH, Hotta H. Potent virucidal activity of honeybee "Apis mellifera" venom against Hepatitis C Virus. Toxicon 2020; 188:55-64. [PMID: 33068557 DOI: 10.1016/j.toxicon.2020.10.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 09/29/2020] [Accepted: 10/13/2020] [Indexed: 02/06/2023]
Abstract
Hepatitis C virus (HCV) is a global viral widespread without an available vaccine to prevent infection. HCV infection can cause serious liver diseases such as hepatocellular carcinoma (HCC). Current treatment of HCV infection depends on the FDA approved direct-acting antivirals (DAAs) which have side effects and expensive. Thus, development of a novel, more efficient, along with affordable pricing anti-HCV agents is still required. The purpose of the present study is to evaluate the antiviral effects of bee venom (BV) from the honeybee Apis mellifera on the HCV replication life cycle. The crude venom and its components were examined for their anti-HCV activities using Huh7it-1 cultured cells and the JFH1 strain of HCV genotype 2a. Results revealed that BV inhibited HCV infection with 50% inhibitory concentration (IC50) of 0.05 ng/ml, while the 50% cytotoxic concentration (CC50) being 20,000 ng/ml. The venom directly blocked HCV/cell entry by acting on virus particles in a dose dependent manner, whereas no interference on the host cells. Furthermore, venom showed no inhibitory effect on HCV replication and release. Interestingly, none of the main BV components including the mast cell degranulating peptide (MCD), mpamin, or the small peptides melittin (MLT) showed anti-HCV activity up to 5 μg/ml. In conclusion, these results suggest that BV has a direct virucidal activity against HCV and may exert its antiviral effect through a non-common peptide(s) or toxin complex within the crude venom. Therefore, the crude BV can be considered as a promising candidate for characterization and development of new and natural anti-HCV therapeutic agents.
Collapse
Affiliation(s)
- Moustafa Sarhan
- Molecular biology lab., Zoology Department, Faculty of Science, Al-Azhar University, Assiut, Egypt; Department of Microbiology, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-Cho, Chuo-Ku, Kobe, 650-0017, Japan.
| | - Alaa M H El-Bitar
- Molecular biology lab., Zoology Department, Faculty of Science, Al-Azhar University, Assiut, Egypt; Department of Microbiology, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-Cho, Chuo-Ku, Kobe, 650-0017, Japan.
| | - Hak Hotta
- Department of Microbiology, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-Cho, Chuo-Ku, Kobe, 650-0017, Japan; Department of International Health, Kobe University Graduate School of Health Sciences, 7-10-2 Tomogaoka, Suma-Ku, Kobe, 654-0142, Japan; Faculty of Clinical Nutrition and Dietetics, Konan Women's University, 6-2-23 Morikita-machi, Higashinada-Ku, Kobe, 658-0001, Japan.
| |
Collapse
|
9
|
Yam MF, Loh YC, Oo CW, Basir R. Overview of Neurological Mechanism of Pain Profile Used for Animal "Pain-Like" Behavioral Study with Proposed Analgesic Pathways. Int J Mol Sci 2020; 21:ijms21124355. [PMID: 32575378 PMCID: PMC7352401 DOI: 10.3390/ijms21124355] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 05/06/2020] [Accepted: 05/11/2020] [Indexed: 12/16/2022] Open
Abstract
Pain is the most common sensation installed in us naturally which plays a vital role in defending us against severe harm. This neurological mechanism pathway has been one of the most complex and comprehensive topics but there has never been an elaborate justification of the types of analgesics that used to reduce the pain sensation through which specific pathways. Of course, there have been some answers to curbing of pain which is a lifesaver in numerous situations-chronic and acute pain conditions alike. This has been explored by scientists using pain-like behavioral study methodologies in non-anesthetized animals since decades ago to characterize the analgesic profile such as centrally or peripherally acting drugs and allowing for the development of analgesics. However, widely the methodology is being practiced such as the tail flick/Hargreaves test and Von Frey/Randall-Selitto tests which are stimulus-evoked nociception studies, and there has rarely been a complete review of all these methodologies, their benefits and its downside coupled with the mechanism of the action that is involved. Thus, this review solely focused on the complete protocol that is being adapted in each behavioral study methods induced by different phlogogenic agents, the different assessment methods used for phasic, tonic and inflammatory pain studies and the proposed mechanism of action underlying each behavioral study methodology for analgesic drug profiling. It is our belief that this review could significantly provide a concise idea and improve our scientists' understanding towards pain management in future research.
Collapse
Affiliation(s)
- Mun Fei Yam
- Department of Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia
- Department of Pharmacology, School of Pharmaceutical Sciences, Universiti Sains Malaysia, Minden 11800, Malaysia;
| | - Yean Chun Loh
- Department of Organic Chemistry, School of Chemical Sciences, Universiti Sains Malaysia, Minden 11800, Malaysia;
- Correspondence: (Y.C.L.); (R.B.); Tel.: +60-46536018 (Y.C.L.); +60-389472448 (R.B.)
| | - Chuan Wei Oo
- Department of Organic Chemistry, School of Chemical Sciences, Universiti Sains Malaysia, Minden 11800, Malaysia;
| | - Rusliza Basir
- Department of Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia
- Correspondence: (Y.C.L.); (R.B.); Tel.: +60-46536018 (Y.C.L.); +60-389472448 (R.B.)
| |
Collapse
|
10
|
Zhou G, Wu J, Xia C, Liu S, Jiang F, Liu Z, Zhou Y, Ji Y. Identifying the toxins in hornet (Vespa basalis) venom that induce rat pain responses. Toxicon 2020; 179:33-41. [DOI: 10.1016/j.toxicon.2020.02.027] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 02/28/2020] [Accepted: 02/29/2020] [Indexed: 12/24/2022]
|
11
|
Anti-Inflammatory Effects of Bee Venom on Phthalic Anhydride-Induced Atopic Dermatitis. JOURNAL OF ACUPUNCTURE RESEARCH 2020. [DOI: 10.13045/jar.2019.00087] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Background: Atopic dermatitis (AD) is a chronic inflammatory condition which can be studied using phthalic anhydride (PA) to induce AD. Anti-inflammatory properties of bee venom (BV) wereinvestigated to determine whether it may be a useful treatment for AD.Methods: AD was induced by applying to pical PA to 8-week-old HR-1 mice (<i>N</i> = 50), then treating with (0.1, 0.25, and 0.5 ?g) or without topical BV. Body weight, ear thickness histology, enzymelinked immune sorbent assay (serum IgE concentrations), Western blot analysis [inducible nitric oxide synthase, cyclooxygenase-2, IκB-α, phospho-IκB-α, c-Jun N-terminal kinase (JNK), phosphoJNK, p38, phospho-p38, extra cellular signal-regulated kinase (ERK), and phospho-ERK], and the pull down assay for immunoblotting (p50), were used to measure inflammatory mediators.Results: PA + BV (0.1, 0.25, and 0.5 μg) significantly decreased ear thickness without altering body weight. IgE concentrations decreased in the PA + BV (0.5 ?g)-treated groups compared with PAtreatment. Tumor necrosis factor-α, interleukin-1β, inducible nitric oxide synthase, cyclooxygenase-2, phospho-IκB-α, phospho-JNK, p38, phospho-p38, and phospho-ERK, all decreased following treatment with PA + BV compared with the PA-treatment alone. p50 was upregulated in the PA + BV-treated groups compared with the PA-treated group. Furthermore, the number of mast cells decreased in the PA + BV-treated groups compared with the PA-treated group. Epidermal thickness was significantly lower in the PA + BV-treated group compared with PA treatment alone.Conclusion: BV maybe a useful anti-inflammatory treatment for AD.
Collapse
|
12
|
Extending Metabolomic Studies of Apis mellifera Venom: LC-MS-Based Targeted Analysis of Organic Acids. Toxins (Basel) 2019; 12:toxins12010014. [PMID: 31905643 PMCID: PMC7020594 DOI: 10.3390/toxins12010014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 12/20/2019] [Accepted: 12/26/2019] [Indexed: 01/21/2023] Open
Abstract
Organic acids are important active small molecules present in venoms and toxins, which have not been fully explored yet. The aim of the study was the determination of organic acids in honeybee venom (HBV) samples by using liquid chromatography-tandem mass spectrometry (LC-MS/MS). Two protocols for sample preparation were employed. A solid-phase extraction was used for the determination of malonic acid, fumaric acid, glutaric acid, and kynurenic acid. A dilute-and-shoot method was optimal for: citric acid, malic acid, and succinic acid. Chromatographic separation was performed using a Synergi Hydro-RP column. Detection was performed on a triple-quadrupole mass spectrometer operating in multiple reaction monitoring mode. Among the analytes, glutaric acid and kynurenic acid were present in HBV samples in the lowest concentrations, whereas citric acid was the most abundant acid in each sample, and accounted for an average of 86 mg/g (8.6%) of the venom dry weight. Organic acids were discussed in terms of function. This is the first study in the available literature that provides specific data on the content of organic acids in HBV using a validated quantitative method.
Collapse
|
13
|
Zhang H, Han G, Litscher G. Traditional Acupuncture Meets Modern Nanotechnology: Opportunities and Perspectives. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2019; 2019:2146167. [PMID: 31379954 PMCID: PMC6662443 DOI: 10.1155/2019/2146167] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 06/23/2019] [Indexed: 01/17/2023]
Abstract
Acupuncture is an ancient method in traditional Chinese medicine (TCM). Usually acupuncture needles are inserted into the body to achieve therapeutic effects. However, there are still some challenges to achieve consensuses. What is the essence or anatomy of acupuncture meridians? How does acupuncture work? How to improve acupuncture clinical therapeutic effect? These questions may be addressed by highlighting recent developments in innovative nanotechnology. The aim of this review is to elucidate the possible applications and future potential of nanotechnology in acupuncture. Nanoparticles are promising for imaging and it may gain a better understanding of the essence of meridian. Nanotechnology enables nanochips/nanosensors providing new solutions in detection reactive molecules in vivo and in real time. The connections and changing of these molecules with needle stimulation will allow insight into the mechanisms of acupuncture. Acupuncture combined with nano-TCM could provide a great potential in some type of characteristic acupuncture therapies improvement. By virtue of nanotechnology, the acupuncture needles could be innovated as multifunction toolbox. Acupuncture needles could be considered as a method for controlled drug delivery. The nanoparticulated photothermal, magnetothermal, photodynamic agents could also be filled on the surface of needle.
Collapse
Affiliation(s)
- He Zhang
- Department of Respiration, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
- TCM Research Center Graz, Research Unit of Biomedical Engineering in Anesthesia and Intensive Care Medicine and Research Unit for Complementary and Integrative Laser Medicine, Medical University of Graz, 8036 Graz, Austria
| | - Gang Han
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Gerhard Litscher
- Department of Respiration, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
- TCM Research Center Graz, Research Unit of Biomedical Engineering in Anesthesia and Intensive Care Medicine and Research Unit for Complementary and Integrative Laser Medicine, Medical University of Graz, 8036 Graz, Austria
| |
Collapse
|
14
|
Bee Venom Alleviates Atopic Dermatitis Symptoms through the Upregulation of Decay-Accelerating Factor (DAF/CD55). Toxins (Basel) 2019; 11:toxins11050239. [PMID: 31027358 PMCID: PMC6562486 DOI: 10.3390/toxins11050239] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 04/21/2019] [Accepted: 04/24/2019] [Indexed: 01/26/2023] Open
Abstract
Bee venom (BV)—a complex mixture of peptides and toxic proteins including phospholipase A2 and melittin—promotes blood clotting. In this study, we investigated the anti-atopic properties of BV and the mechanism associated with its regulation of the complement system. BV treatment upregulated the mRNA and protein levels of CD55 in THP-1 cells. Further experiments revealed that the phosphorylation of ERK was associated with upregulation of CD55. A complement-dependent cytotoxicity assay and a bacteria-killing assay showed that BV inactivated the complement system through the induction of CD55. The serum levels of C3 convertase (C3C) and Membrane attack complex (MAC) increased, while CD55 decreased in mice with AD-like lesions from DNCB treatment. However, the levels were inverted when the AD-like mice were treated with BV using subcutaneous injection, and we observed that the AD symptoms were alleviated. BV is often used to treat AD but its mechanism has not been elucidated. Here, we suggest that BV alleviates AD through the inactivation of the complement system, especially by the induction of CD55.
Collapse
|
15
|
An H, Kim J, Kim W, Gwon M, Gu HM, Jeon MJ, Han S, Pak SC, Lee C, Park IS, Park K. Therapeutic effects of bee venom and its major component, melittin, on atopic dermatitis in vivo and in vitro. Br J Pharmacol 2018; 175:4310-4324. [PMID: 30187459 PMCID: PMC6240132 DOI: 10.1111/bph.14487] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2017] [Revised: 07/22/2018] [Accepted: 07/27/2018] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND AND PURPOSE Atopic dermatitis (AD) is a multifactorial skin condition with complex interactions of innate and adaptive immune responses. There are several existing therapies for AD, including topical glucocorticosteroids, emollients, phototherapies, calcineurin inhibitors and immunosuppressants, such as cyclosporine A. Although these therapies reduce inflammation, they also cause serious side effects. Therefore, it is necessary to develop new therapeutic approaches for AD treatment without side effects. There are several studies on natural materials or toxins, such as herbs, ginseng extract and snake venom, for AD treatment. However, treatment of AD with bee venom and its major component, melittin has rarely been studied. EXPERIMENTAL APPROACH Effects of bee venom and melittin were studied in a model of AD in vivo induced by 1-chloro-2,4-dinitrobenzene (DNCB) in female Balb/c mice and in cultures of human keratinocytes, stimulated by TNF-α/IFN-γ. The potential pharmacological effects of bee venom and melittin on these in vivo and in vitro AD-like skin disease models were studied. KEY RESULTS Bee venom and melittin exhibited potent anti-atopic activities, shown by decreased AD-like skin lesions, induced by DNCB in mice. In vitro studies using TNF-α/IFN-γ-stimulated human keratinocytes showed that bee venom and melittin inhibited the increased expression of chemokines, such as CCL17 and CCL22, and pro-inflammatory cytokines, including IL-1β, IL-6 and IFN-γ, through the blockade of the NF-κB and STAT signalling pathways. CONCLUSIONS AND IMPLICATIONS Our results suggest that bee venom and melittin would be suitable for epicutaneous application, as topical administration is often appropriate for the treatment of AD.
Collapse
Affiliation(s)
- Hyun‐Jin An
- Department of Pathology, College of MedicineCatholic University of DaeguDaeguKorea
| | - Jung‐Yeon Kim
- Department of Pathology, College of MedicineCatholic University of DaeguDaeguKorea
| | - Woon‐Hae Kim
- Department of Pathology, College of MedicineCatholic University of DaeguDaeguKorea
| | - Mi‐Gyeong Gwon
- Department of Pathology, College of MedicineCatholic University of DaeguDaeguKorea
| | - Hye Min Gu
- Department of Pathology, College of MedicineCatholic University of DaeguDaeguKorea
| | - Min Ji Jeon
- Department of Pathology, College of MedicineCatholic University of DaeguDaeguKorea
| | - Sang‐Mi Han
- Department of Agricultural BiologyNational Academy of Agricultural ScienceJeonju‐siKorea
| | - Sok Cheon Pak
- School of Biomedical SciencesCharles Sturt UniversityBathurstNSWAustralia
| | - Chong‐Kee Lee
- Department of Immunology, College of MedicineCatholic University of DaeguDaeguKorea
| | - In Sook Park
- Department of Oral and Maxillofacial Surgery, Department of Dentistry, College of MedicineCatholic University of DaeguDaeguKorea
| | - Kwan‐Kyu Park
- Department of Pathology, College of MedicineCatholic University of DaeguDaeguKorea
| |
Collapse
|
16
|
Jung GB, Huh JE, Lee HJ, Kim D, Lee GJ, Park HK, Lee JD. Anti-cancer effect of bee venom on human MDA-MB-231 breast cancer cells using Raman spectroscopy. BIOMEDICAL OPTICS EXPRESS 2018; 9:5703-5718. [PMID: 30460157 PMCID: PMC6238932 DOI: 10.1364/boe.9.005703] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 10/16/2018] [Accepted: 10/16/2018] [Indexed: 05/08/2023]
Abstract
We demonstrated the apoptotic effect of bee venom (BV) on human MDA-MB-231 breast cancer cells using Raman spectroscopy and principal component analysis (PCA). Biochemical changes in cancer cells were monitored following BV treatment; the results for different concentrations and treatment durations differed markedly. Significantly decreased Raman vibrations for DNA and proteins were observed for cells treated with 3.0 µg/mL BV for 48 h compared with those of control cells. These results suggest denaturation and degradation of proteins and DNA fragmentation (all cell death-related processes). The Raman spectroscopy results agreed with those of atomic force microscopy and conventional biological tests such as viability, TUNEL, and western blot assays. Therefore, Raman spectroscopy, with PCA, provides a noninvasive, label-free tool for assessment of cellular changes on the anti-cancer effect of BV.
Collapse
Affiliation(s)
- Gyeong Bok Jung
- Department of Physics Education, Chosun University, Gwangju, 61452, South Korea
- These authors contributed equally to this work
| | - Jeong-Eun Huh
- East-west Bone & Joint Research Institute, Kyung Hee University, 149, Sangil-dong, Gangdong-gu, Seoul, South Korea
- These authors contributed equally to this work
| | - Hyo-Jung Lee
- College of Korean Medicine, Kyung Hee University, 1, Hoegi-dong, Dongdaemun-gu, Seoul, South Korea
| | - Dohyun Kim
- Department of Industrial and Management Engineering, Myongji University, Gyeonggi-do 17058, South Korea
| | - Gi-Ja Lee
- Department of Biomedical Engineering College of Medicine, Kyung Hee University, Seoul 02447, South Korea
| | - Hun-Kuk Park
- Department of Biomedical Engineering College of Medicine, Kyung Hee University, Seoul 02447, South Korea
| | - Jae-Dong Lee
- Department of Acupuncture and Moxibustion, College of Korean Medicine, Kyung Hee University, 1, Hoegi-dong, Dongdaemun-gu, Seoul, South Korea
| |
Collapse
|
17
|
Baek H, Jang HI, Jeon HN, Bae H. Comparison of Administration Routes on the Protective Effects of Bee Venom Phospholipase A2 in a Mouse Model of Parkinson's Disease. Front Aging Neurosci 2018; 10:179. [PMID: 29942256 PMCID: PMC6004420 DOI: 10.3389/fnagi.2018.00179] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 05/24/2018] [Indexed: 01/29/2023] Open
Abstract
Parkinson’s disease (PD) is the second most common neurodegenerative disorder worldwide. Progressive loss of dopaminergic neurons in the substantia nigra (SN) and their synaptic terminal connections in the striatum are main characterizations of PD. Although many efforts have been made to develop therapeutics, no treatment has been proven effective. We previously demonstrated that bvPLA2 can protect dopaminergic neurons by modulating neuroinflammatory responses in an MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine)-induced mouse model of PD. The cellular basis for the neuroprotective response of bvPLA2 was the induction of CD4+CD25+ regulatory T cells (Tregs), a population known to suppress immune activation and maintain homeostasis and tolerance to self-antigen. The aim of the present study was to investigate the effects of different routes of bvPLA2 administration in a PD mouse model. Neurobehavioral assessment revealed progressive deterioration in locomotor functions of the MPTP group compared with the control group. However, such functions were improved following subcutaneous (s.c.) bvPLA2 administration. The results showed that the s.c. route of bvPLA2 administration contributed to the induction of Treg cells and the reduction of Th1 and Th17 populations, demonstrating that the neuroprotective effects were associated with reduced tyrosine hydroxylase (TH)-positive dopaminergic neurons and microglia. These results suggested that the s.c. bvPLA2 injection could be beneficial for treating aspects of PD.
Collapse
Affiliation(s)
- Hyunjung Baek
- Department of Physiology, College of Korean Medicine, Kyung Hee University, Seoul, South Korea
| | - Hyun Il Jang
- Department of Physiology, College of Korean Medicine, Kyung Hee University, Seoul, South Korea
| | - Hat Nim Jeon
- Department of Physiology, College of Korean Medicine, Kyung Hee University, Seoul, South Korea
| | - Hyunsu Bae
- Department of Physiology, College of Korean Medicine, Kyung Hee University, Seoul, South Korea
| |
Collapse
|
18
|
dos Santos-Pinto JRA, Perez-Riverol A, Lasa AM, Palma MS. Diversity of peptidic and proteinaceous toxins from social Hymenoptera venoms. Toxicon 2018; 148:172-196. [DOI: 10.1016/j.toxicon.2018.04.029] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 04/24/2018] [Accepted: 04/25/2018] [Indexed: 12/20/2022]
|
19
|
Zhang S, Liu Y, Ye Y, Wang XR, Lin LT, Xiao LY, Zhou P, Shi GX, Liu CZ. Bee venom therapy: Potential mechanisms and therapeutic applications. Toxicon 2018; 148:64-73. [PMID: 29654868 DOI: 10.1016/j.toxicon.2018.04.012] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 03/15/2018] [Accepted: 04/10/2018] [Indexed: 01/09/2023]
Abstract
Bee venom is a very complex mixture of natural products extracted from honey bee which contains various pharmaceutical properties such as peptides, enzymes, biologically active amines and nonpeptide components. The use of bee venom into the specific points is so called bee venom therapy, which is widely used as a complementary and alternative therapy for 3000 years. A growing number of evidence has demonstrated the anti-inflammation, the anti-apoptosis, the anti-fibrosis and the anti-arthrosclerosis effects of bee venom therapy. With these pharmaceutical characteristics, bee venom therapy has also been used as the therapeutic method in treating rheumatoid arthritis, amyotrophic lateral sclerosis, Parkinson's disease, Alzheimer's disease, liver fibrosis, atherosclerosis, pain and others. Although widely used, several cases still reported that bee venom therapy might cause some adverse effects, such as local itching or swelling. In this review, we summarize its potential mechanisms, therapeutic applications, and discuss its existing problems.
Collapse
Affiliation(s)
- Shuai Zhang
- Department of Acupuncture and Moxibustion, Beijing Hospital of Traditional Chinese Medicine Affiliated to Capital Medical University, 23 Meishuguanhou Street, Dongcheng District, Beijing 100010, China
| | - Yi Liu
- Department of Acupuncture and Moxibustion, Beijing Hospital of Traditional Chinese Medicine Affiliated to Capital Medical University, 23 Meishuguanhou Street, Dongcheng District, Beijing 100010, China
| | - Yang Ye
- Department of Acupuncture and Moxibustion, Dongfang Hospital, Beijing University of Chinese Medicine, No. 6 Fangxingyuan 1st Block, Fengtai District, Beijing, 100078, China
| | - Xue-Rui Wang
- Department of Acupuncture and Moxibustion, Dongfang Hospital, Beijing University of Chinese Medicine, No. 6 Fangxingyuan 1st Block, Fengtai District, Beijing, 100078, China
| | - Li-Ting Lin
- Department of Acupuncture and Moxibustion, Beijing Hospital of Traditional Chinese Medicine Affiliated to Capital Medical University, 23 Meishuguanhou Street, Dongcheng District, Beijing 100010, China
| | - Ling-Yong Xiao
- Department of Acupuncture and Moxibustion, Dongfang Hospital, Beijing University of Chinese Medicine, No. 6 Fangxingyuan 1st Block, Fengtai District, Beijing, 100078, China
| | - Ping Zhou
- Department of Acupuncture and Moxibustion, Beijing Hospital of Traditional Chinese Medicine Affiliated to Capital Medical University, 23 Meishuguanhou Street, Dongcheng District, Beijing 100010, China
| | - Guang-Xia Shi
- Department of Acupuncture and Moxibustion, Beijing Hospital of Traditional Chinese Medicine Affiliated to Capital Medical University, 23 Meishuguanhou Street, Dongcheng District, Beijing 100010, China
| | - Cun-Zhi Liu
- Department of Acupuncture and Moxibustion, Dongfang Hospital, Beijing University of Chinese Medicine, No. 6 Fangxingyuan 1st Block, Fengtai District, Beijing, 100078, China.
| |
Collapse
|
20
|
Moga MA, Dimienescu OG, Arvătescu CA, Ifteni P, Pleş L. Anticancer Activity of Toxins from Bee and Snake Venom-An Overview on Ovarian Cancer. Molecules 2018; 23:E692. [PMID: 29562696 PMCID: PMC6017821 DOI: 10.3390/molecules23030692] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Revised: 03/11/2018] [Accepted: 03/14/2018] [Indexed: 11/16/2022] Open
Abstract
Cancer represents the disease of the millennium, a major problem in public health. The proliferation of tumor cells, angiogenesis, and the relationship between the cancer cells and the components of the extracellular matrix are important in the events of carcinogenesis, and these pathways are being used as targets for new anticancer treatments. Various venoms and their toxins have shown possible anticancer effects on human cancer cell lines, providing new perspectives in drug development. In this review, we observed the effects of natural toxins from bee and snake venom and the mechanisms through which they can inhibit the growth and proliferation of cancer cells. We also researched how several types of natural molecules from venom can sensitize ovarian cancer cells to conventional chemotherapy, with many toxins being helpful for developing new anticancer drugs. This approach could improve the efficiency of standard therapies and could allow the administration of decreased doses of chemotherapy. Natural toxins from bee and snake venom could become potential candidates for the future treatment of different types of cancer. It is important to continue these studies concerning therapeutic drugs from natural resource and, more importantly, to investigate their mechanism of action on cancer cells.
Collapse
Affiliation(s)
- Marius Alexandru Moga
- Department of Medical and Surgical Specialties, Faculty of Medicine, Transilvania University of Brasov, Brasov 500019, Romania.
| | - Oana Gabriela Dimienescu
- Department of Medical and Surgical Specialties, Faculty of Medicine, Transilvania University of Brasov, Brasov 500019, Romania.
| | - Cristian Andrei Arvătescu
- Department of Medical and Surgical Specialties, Faculty of Medicine, Transilvania University of Brasov, Brasov 500019, Romania.
| | - Petru Ifteni
- Department of Medical and Surgical Specialties, Faculty of Medicine, Transilvania University of Brasov, Brasov 500019, Romania.
| | - Liana Pleş
- Clinical Department of Obstetrics and Gynecology, The Carol Davila University of Medicine and Pharmacy, Bucharest 020021, Romania.
| |
Collapse
|
21
|
Kang YM, Chung KS, Kook IH, Kook YB, Bae H, Lee M, An HJ. Inhibitory effects of bee venom on mast cell-mediated allergic inflammatory responses. Int J Mol Med 2018. [PMID: 29532852 DOI: 10.3892/ijmm.2018.3558] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Although bee venom (BV) is a toxin that causes bee stings to be painful, it has been widely used clinically for the treatment of certain immune‑associated diseases. BV has been used traditionally for the treatment of chronic inflammatory diseases. In this regard, the present study analyzed the effect of BV on the regulation of inflammatory mediator production by mast cells and their allergic inflammatory responses in an animal model. HMC‑1 cells were treated with BV prior to stimulation with phorbol‑12‑myristate 13‑acetate plus calcium ionophore A23187 (PMACI). The production of allergy‑associated pro‑inflammatory mediators was examined, and the underlying mechanisms were investigated. Furthermore, to investigate whether BV exhibits anti‑inflammatory effects associated with anti‑allergic effects in vivo, a compound 48/80‑induced anaphylaxis model was used. BV inhibited histamine release, mRNA expression and production of cytokines in the PMACI‑stimulated HMC‑1 cells. Furthermore, the inhibitory effects of BV on mitogen‑activated protein kinase (MAPK), MAPK kinase, signal transducer and activator of transcription 3 (STAT3) and Akt were demonstrated. The present study also investigated the ability of BV to inhibit compound 48/80‑induced systemic anaphylaxis in vivo. BV protected the mice against compound 48/80‑induced anaphylactic‑associated mortality. Furthermore, BV suppressed the mRNA expression levels of pro‑inflammatory cytokines, and suppressed the activation of MAPK and STAT3 in this model. These results provide novel insights into the possible role of BV as a modulator for mast cell‑mediated allergic inflammatory disorders.
Collapse
Affiliation(s)
- Yun-Mi Kang
- Department of Pharmacology, College of Korean Medicine, Sangji University, Wonju, Gangwon‑do 26339, Republic of Korea
| | - Kyung-Sook Chung
- Catholic Precision Medicine Research Center, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - In-Hoon Kook
- Department of Pharmacology, College of Korean Medicine, Sangji University, Wonju, Gangwon‑do 26339, Republic of Korea
| | - Yoon-Bum Kook
- Department of Prescription, College of Korean Medicine, Sangji University, Wonju, Gangwon‑do 26339, Republic of Korea
| | - Hyunsu Bae
- Department of Physiology, College of Korean Medicine, Kyung Hee University, Dongdaemoon‑Gu, Seoul 02447, Republic of Korea
| | - Minho Lee
- Catholic Precision Medicine Research Center, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Hyo-Jin An
- Department of Pharmacology, College of Korean Medicine, Sangji University, Wonju, Gangwon‑do 26339, Republic of Korea
| |
Collapse
|
22
|
Somwongin S, Chantawannakul P, Chaiyana W. Antioxidant activity and irritation property of venoms from Apis species. Toxicon 2018; 145:32-39. [PMID: 29499244 DOI: 10.1016/j.toxicon.2018.02.049] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2017] [Revised: 01/28/2018] [Accepted: 02/26/2018] [Indexed: 01/31/2023]
Abstract
Pharmacological effects of bee venom has been reported, however, it has been restricted to the bee venom collected from European honey bee (Apis mellifera). The aim of the present study was to compare the antioxidant activities and irritation properties of venoms collected from four different Apis species in Thailand, which includes Apis cerena (Asian cavity nesting honeybee), Apis florea (dwarf honeybee), Apis dorsata (giant honeybee), and A. mellifera. Melittin content of each bee venom extracts was investigated by using high-performance liquid chromatography. Ferric reducing antioxidant power, 2, 2'-azinobis (3-ethylbenzothiazoline-6-sulfonic acid), and 1, 1-diphenyl-2-picrylhydrazyl assay were used to determine the antioxidant activity, whereas, hen's egg test chorioallantoic membrane assay was used to determine the irritation property of each bee venom extracts. Melittin was the major constituent in all bee venom extracts. The melittin content in A. dorsata, A. mellifera, A. florea, and A. cerena were 95.8 ± 3.2%, 76.5 ± 1.9%, 66.3 ± 8.6%, and 56.8 ± 1.8%, respectively. Bee venom extract from A. dorsata possessed the highest antioxidant activity with the inhibition of 41.1 ± 2.2% against DPPH, Trolox equivalent antioxidant capacity of 10.21 ± 0.74 mM Trolox/mg and equivalent concentration (EC1) of 0.35 ± 0.02 mM FeSO4/mg. Bee venom extract from A. mellifera exhibited the highest irritation, followed by A. cerena, A. dorsata, and A. florea, respectively. Melittin was the compound responsible for the irritation property of bee venom extracts since it could induce severe irritation (irritation score was 13.7 ± 0.5, at the concentration of 2 mg/ml). The extract from A. dorsata which possessed the highest antioxidant activity showed no irritation up to the concentration of 0.1 mg/ml. Therefore, bee venom extract from A. dorsata at the concentration not more than 0.1 mg/ml would be suggested for using as cosmetic ingredients since it possessed the highest antioxidant activity with no irritation. This study is the first report to compare the bee venom extracts from different Apis species and display their potential application of bee venom extracts in cosmetic products.
Collapse
Affiliation(s)
- Suvimol Somwongin
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Panuwan Chantawannakul
- Bee Protection Laboratory, Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, 50200, Thailand; International College of Digital Innovation, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Wantida Chaiyana
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai, 50200, Thailand; Research Center of Pharmaceutical Nanotechnology, Chiang Mai University, Chiang Mai, 50200, Thailand.
| |
Collapse
|
23
|
Cheon SY, Chung KS, Roh SS, Cha YY, An HJ. Bee Venom Suppresses the Differentiation of Preadipocytes and High Fat Diet-Induced Obesity by Inhibiting Adipogenesis. Toxins (Basel) 2017; 10:toxins10010009. [PMID: 29295544 PMCID: PMC5793096 DOI: 10.3390/toxins10010009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 12/21/2017] [Accepted: 12/21/2017] [Indexed: 02/07/2023] Open
Abstract
Bee venom (BV) has been widely used in the treatment of certain immune-related diseases. It has been used for pain relief and in the treatment of chronic inflammatory diseases. Despite its extensive use, there is little documented evidence to demonstrate its medicinal utility against obesity. In this study, we demonstrated the inhibitory effects of BV on adipocyte differentiation in 3T3-L1 cells and on a high fat diet (HFD)-induced obesity mouse model through the inhibition of adipogenesis. BV inhibited lipid accumulation, visualized by Oil Red O staining, without cytotoxicity in the 3T3-L1 cells. Male C57BL/6 mice were fed either a HFD or a control diet for 8 weeks, and BV (0.1 mg/kg or 1 mg/kg) or saline was injected during the last 4 weeks. BV-treated mice showed a reduced body weight gain. BV was shown to inhibit adipogenesis by downregulating the expression of the transcription factors CCAAT/enhancer-binding proteins (C/EBPs) and the peroxisome proliferator-activated receptor gamma (PPARγ), using RT-qPCR and Western blotting. BV induced the phosphorylation of AMP-activated kinase (AMPK) and acetyl-CoA carboxylase (ACC) in the cell line and in obese mice. These findings demonstrate that BV mediates anti-obesity/differentiation effects by suppressing obesity-related transcription factors.
Collapse
Affiliation(s)
- Se-Yun Cheon
- Department of Pharmacology, College of Korean Medicine, Sang-ji University, Wonju-si, Gangwon-do 26339, Korea.
| | - Kyung-Sook Chung
- Catholic Precision Medicine Research Center, College of Medicine, The Catholic University of Korea, 222, Banpo-daero, Seocho-gu, Seoul 06591, Korea.
| | - Seong-Soo Roh
- Department of Herbology, College of Korean Medicine, Daegu Hanny University, Suseong-gu, Deagu 42158, Korea.
| | - Yun-Yeop Cha
- Department of Rehabilitation Medicine of Korean Medicine and Neuropsychiatry, College of Korean Medicine, Sang-ji University, Wonju-si, Gangwon-do 26339, Korea.
| | - Hyo-Jin An
- Department of Pharmacology, College of Korean Medicine, Sang-ji University, Wonju-si, Gangwon-do 26339, Korea.
| |
Collapse
|
24
|
Li L, Wu Y, Bai Z, Hu Y, Li W. Blockade of NMDA receptors decreased spinal microglia activation in bee venom induced acute inflammatory pain in rats. Neurol Res 2017; 39:271-280. [DOI: 10.1080/01616412.2017.1281198] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Li Li
- Central Laboratory, Department of Science and Technology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yongfang Wu
- Department of Pathophysiology, Hebei Medical University, Shijiazhuang, China
| | - Zhifeng Bai
- Department of Pediatrics, Xingtai Medical College, Xingtai, China
| | - Yuyan Hu
- Department of Pathophysiology, Hebei Medical University, Shijiazhuang, China
| | - Wenbin Li
- Department of Pathophysiology, Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
25
|
|
26
|
Inhibitory effects of bee venom and its components against viruses in vitro and in vivo. J Microbiol 2016; 54:853-866. [PMID: 27888461 PMCID: PMC7091203 DOI: 10.1007/s12275-016-6376-1] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Revised: 09/13/2016] [Accepted: 10/04/2016] [Indexed: 11/10/2022]
Abstract
Bee venom (BV) from honey bee (Apis Melifera L.) contains at least 18 pharmacologically active components including melittin (MLT), phospholipase A2 (PLA2), and apamin etc. BV is safe for human treatments dose dependently and proven to possess different healing properties including antibacterial and antiparasitidal properties. Nevertheless, antiviral properties of BV have not well investigated. Hence, we identified the potential antiviral properties of BV and its component against a broad panel of viruses. Co-incubation of non-cytotoxic amounts of BV and MLT, the main component of BV, significantly inhibited the replication of enveloped viruses such as Influenza A virus (PR8), Vesicular Stomatitis Virus (VSV), Respiratory Syncytial Virus (RSV), and Herpes Simplex Virus (HSV). Additionally, BV and MLT also inhibited the replication of non-enveloped viruses such as Enterovirus-71 (EV-71) and Coxsackie Virus (H3). Such antiviral properties were mainly explained by virucidal mechanism. Moreover, MLT protected mice which were challenged with lethal doses of pathogenic influenza A H1N1 viruses. Therefore, these results provides the evidence that BV and MLT could be a potential source as a promising antiviral agent, especially to develop as a broad spectrum antiviral agent.
Collapse
|
27
|
Gastrodin protects against chronic inflammatory pain by inhibiting spinal synaptic potentiation. Sci Rep 2016; 6:37251. [PMID: 27853254 PMCID: PMC5112517 DOI: 10.1038/srep37251] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 10/26/2016] [Indexed: 12/15/2022] Open
Abstract
Tissue injury is known to produce inflammation and pain. Synaptic potentiation between peripheral nociceptors and spinal lamina I neurons has been proposed to serve as a trigger for chronic inflammatory pain. Gastrodin is a main bioactive constituent of the traditional Chinese herbal medicine Gastrodia elata Blume, which has been widely used as an analgesic since ancient times. However, its underlying cellular mechanisms have remained elusive. The present study demonstrated for the first time that gastrodin exhibits an analgesic effect at the spinal level on spontaneous pain, mechanical and thermal pain hypersensitivity induced by peripheral inflammation, which is not dependent on opioid receptors and without tolerance. This analgesia by gastrodin is at least in part mediated by depressing spinal synaptic potentiation via blockade of acid-sensing ion channels. Further studies with miniature EPSCs and paired-pulse ratio analysis revealed the presynaptic origin of the action of gastrodin, which involves a decrease in transmitter release probability. In contrast, neither basal nociception nor basal synaptic transmission was altered. This study revealed a dramatic analgesic action of gastrodin on inflammatory pain and uncovered a novel spinal mechanism that could underlie the analgesia by gastrodin, pointing the way to a new analgesic for treating chronic inflammatory pain.
Collapse
|
28
|
Zolfagharian H, Mohajeri M, Babaie M. Bee Venom (Apis Mellifera) an Effective Potential Alternative to Gentamicin for Specific Bacteria Strains: Bee Venom an Effective Potential for Bacteria. J Pharmacopuncture 2016; 19:225-230. [PMID: 27695631 PMCID: PMC5043086 DOI: 10.3831/kpi.2016.19.023] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
OBJECTIVES Mellitine, a major component of bee venom (BV, Apis mellifera), is more active against gram positive than gram negative bacteria. Moreover, BV has been reported to have multiple effects, including antibacterial, antivirus, and anti-inflammation effects, in various types of cells. In addition, wasp venom has been reported to have antibacterial properties. The aim of this study was to evaluate the antibacterial activity of BV against selected gram positive and gram negative bacterial strains of medical importance. METHODS This investigation was set up to evaluate the antibacterial activity of BV against six grams positive and gram negative bacteria, including Staphylococcus aureus (S. aureus), Salmonella typhimurium, Escherichia coli (E. coli) O157:H7, Pseudomonas aeruginosa, Burkholderia mallei and Burkholderia pseudomallei. Three concentrations of crude BV and standard antibiotic (gentamicin) disks as positive controls were tested by using the disc diffusion method. RESULTS BV was found to have a significant antibacterial effect against E. coli, S. aureus, and Salmonella typhyimurium in all three concentrations tested. However, BV had no noticeable effect on other tested bacteria for any of the three doses tested. CONCLUSION The results of the current study indicate that BV inhibits the growth and survival of bacterial strains and that BV can be used as a complementary antimicrobial agent against pathogenic bacteria. BV lacked the effective proteins necessary for it to exhibit antibacterial activity for some specific strains while being very effective against other specific strains. Thus, one may conclude, that Apis mellifera venom may have a specific mechanism that allows it to have an antibacterial effect on certain susceptible bacteria, but that mechanism is not well understood.
Collapse
Affiliation(s)
- Hossein Zolfagharian
- Department of Venomous Animals and Antivenom Production, Razi Vaccine and Serum Research Institute, Karaj, Iran
| | - Mohammad Mohajeri
- Department of Medical Biotechnology, School of Medicine, Mashhad University of medical Science, Mashhad, Iran
| | - Mahdi Babaie
- Young Researchers and Elites Club, Science and Research Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
29
|
An HJ, Kim JY, Kim WH, Han SM, Park KK. The Protective Effect of Melittin on Renal Fibrosis in an Animal Model of Unilateral Ureteral Obstruction. Molecules 2016; 21:molecules21091137. [PMID: 27618890 PMCID: PMC6274242 DOI: 10.3390/molecules21091137] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2016] [Revised: 08/23/2016] [Accepted: 08/24/2016] [Indexed: 01/06/2023] Open
Abstract
Renal fibrosis is the principal pathological process underlying the progression of chronic kidney disease that leads to end-stage renal disease. Melittin is a major component of bee venom, and it has anti-bacterial, anti-viral, and anti-inflammatory properties in various cell types. Thus, this study examined the therapeutic effects of melittin on the progression of renal fibrosis using the unilateral ureteral obstruction (UUO) model. In addition, the effects of melittin on inflammation and fibrosis in renal fibroblast cells were explored using transforming growth factor-β1 (TGF-β1). Histological observation revealed that UUO induced a considerable increase in the number of infiltrated inflammatory cells. However, melittin treatment markedly reduced these reactions compared with untreated UUO mice. The expression levels of inflammatory cytokines and pro-fibrotic genes were significantly reduced in melittin-treated mice compared with UUO mice. Melittin also effectively inhibited fibrosis-related gene expression in renal fibroblasts NRK-49F cells. These findings suggest that melittin attenuates renal fibrosis and reduces inflammatory responses by the suppression of multiple growth factor-mediated pro-fibrotic genes. In conclusion, melittin may be a useful therapeutic agent for the prevention of fibrosis that characterizes the progression of chronic kidney disease.
Collapse
Affiliation(s)
- Hyun-Jin An
- Department of Pathology, College of Medicine, Catholic University of Daegu, 33, Duryugongwon-ro 17-gil, Nam-gu, Daegu 42472, Korea.
| | - Jung-Yeon Kim
- Department of Pathology, College of Medicine, Catholic University of Daegu, 33, Duryugongwon-ro 17-gil, Nam-gu, Daegu 42472, Korea.
| | - Woon-Hae Kim
- Department of Pathology, College of Medicine, Catholic University of Daegu, 33, Duryugongwon-ro 17-gil, Nam-gu, Daegu 42472, Korea.
| | - Sang-Mi Han
- Deparment of Agricultural Biology, National Academy of Agricultural Science, RDA, 300, Nongsaengmyeong-ro, Wansan-gu, Jeonju 54875, Korea.
| | - Kwan-Kyu Park
- Department of Pathology, College of Medicine, Catholic University of Daegu, 33, Duryugongwon-ro 17-gil, Nam-gu, Daegu 42472, Korea.
| |
Collapse
|
30
|
Anti-Inflammatory Activity of Bee Venom in BV2 Microglial Cells: Mediation of MyD88-Dependent NF-κB Signaling Pathway. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2016; 2016:3704764. [PMID: 27563334 PMCID: PMC4987476 DOI: 10.1155/2016/3704764] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Accepted: 06/30/2016] [Indexed: 11/18/2022]
Abstract
Bee venom has long been used as a traditional folk medicine in Korea. It has been reportedly used for the treatment of arthritis, cancer, and inflammation. Although its anti-inflammatory activity in lipopolysaccharide- (LPS-) stimulated inflammatory cells has been reported, the exact mechanism of its anti-inflammatory action has not been fully elucidated. Therefore, the aim of this study was to investigate the anti-inflammatory mechanism of bee venom in BV2 microglial cells. We first investigated whether NO production in LPS-activated BV2 cells was inhibited by bee venom, and further iNOS mRNA and protein expressions were determined. The mRNA and protein levels of proinflammatory cytokines were examined using semiquantitative RT-PCR and immunoblotting, respectively. Moreover, modulation of the transcription factor NF-κB by bee venom was also investigated using a luciferase assay. LPS-induced NO production in BV2 microglial cells was significantly inhibited in a concentration-dependent manner upon pretreatment with bee venom. Bee venom markedly reduced the mRNA expression of COX-2, TNF-α, IL-1β, and IL-6 and suppressed LPS-induced activation of MyD88 and IRAK1 and phosphorylation of TAK1. Moreover, NF-κB translocation by IKKα/β phosphorylation and subsequent IκB-α degradation were also attenuated. Thus, collectively, these results indicate that bee venom exerts its anti-inflammatory activity via the IRAK1/TAK1/NF-κB signaling pathway.
Collapse
|
31
|
Shin D, Lee G, Sohn SH, Park S, Jung KH, Lee JM, Yang J, Cho J, Bae H. Regulatory T Cells Contribute to the Inhibition of Radiation-Induced Acute Lung Inflammation via Bee Venom Phospholipase A₂ in Mice. Toxins (Basel) 2016; 8:toxins8050131. [PMID: 27144583 PMCID: PMC4885046 DOI: 10.3390/toxins8050131] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Revised: 04/23/2016] [Accepted: 04/26/2016] [Indexed: 01/30/2023] Open
Abstract
Bee venom has long been used to treat various inflammatory diseases, such as rheumatoid arthritis and multiple sclerosis. Previously, we reported that bee venom phospholipase A₂ (bvPLA₂) has an anti-inflammatory effect through the induction of regulatory T cells. Radiotherapy is a common anti-cancer method, but often causes adverse effects, such as inflammation. This study was conducted to evaluate the protective effects of bvPLA₂ in radiation-induced acute lung inflammation. Mice were focally irradiated with 75 Gy of X-rays in the lung and administered bvPLA₂ six times after radiation. To evaluate the level of inflammation, the number of immune cells, mRNA level of inflammatory cytokine, and histological changes in the lung were measured. BvPLA₂ treatment reduced the accumulation of immune cells, such as macrophages, neutrophils, lymphocytes, and eosinophils. In addition, bvPLA₂ treatment decreased inflammasome-, chemokine-, cytokine- and fibrosis-related genes' mRNA expression. The histological results also demonstrated the attenuating effect of bvPLA₂ on radiation-induced lung inflammation. Furthermore, regulatory T cell depletion abolished the therapeutic effects of bvPLA₂ in radiation-induced pneumonitis, implicating the anti-inflammatory effects of bvPLA₂ are dependent upon regulatory T cells. These results support the therapeutic potential of bvPLA₂ in radiation pneumonitis and fibrosis treatments.
Collapse
Affiliation(s)
- Dasom Shin
- Department of Physiology, College of Korean Medicine, Kyung Hee University, Seoul 130-701, South Korea.
| | - Gihyun Lee
- Department of Physiology, College of Korean Medicine, Kyung Hee University, Seoul 130-701, South Korea.
| | - Sung-Hwa Sohn
- Department of Radiation Oncology, Yonsei University College of Medicine, Seoul 120-752, South Korea.
| | - Soojin Park
- Department of Physiology, College of Korean Medicine, Kyung Hee University, Seoul 130-701, South Korea.
| | - Kyung-Hwa Jung
- Department of Physiology, College of Korean Medicine, Kyung Hee University, Seoul 130-701, South Korea.
| | - Ji Min Lee
- Department of Radiation Oncology, Yonsei University College of Medicine, Seoul 120-752, South Korea.
| | - Jieun Yang
- Department of Physiology, College of Korean Medicine, Kyung Hee University, Seoul 130-701, South Korea.
| | - Jaeho Cho
- Department of Radiation Oncology, Yonsei University College of Medicine, Seoul 120-752, South Korea.
| | - Hyunsu Bae
- Department of Physiology, College of Korean Medicine, Kyung Hee University, Seoul 130-701, South Korea.
| |
Collapse
|
32
|
Chen J, Guan SM, Sun W, Fu H. Melittin, the Major Pain-Producing Substance of Bee Venom. Neurosci Bull 2016; 32:265-72. [PMID: 26983715 DOI: 10.1007/s12264-016-0024-y] [Citation(s) in RCA: 104] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 01/25/2016] [Indexed: 11/24/2022] Open
Abstract
Melittin is a basic 26-amino-acid polypeptide that constitutes 40-60% of dry honeybee (Apis mellifera) venom. Although much is known about its strong surface activity on lipid membranes, less is known about its pain-producing effects in the nervous system. In this review, we provide lines of accumulating evidence to support the hypothesis that melittin is the major pain-producing substance of bee venom. At the psychophysical and behavioral levels, subcutaneous injection of melittin causes tonic pain sensation and pain-related behaviors in both humans and animals. At the cellular level, melittin activates primary nociceptor cells through direct and indirect effects. On one hand, melittin can selectively open thermal nociceptor transient receptor potential vanilloid receptor channels via phospholipase A2-lipoxygenase/cyclooxygenase metabolites, leading to depolarization of primary nociceptor cells. On the other hand, algogens and inflammatory/pro-inflammatory mediators released from the tissue matrix by melittin's pore-forming effects can activate primary nociceptor cells through both ligand-gated receptor channels and the G-protein-coupled receptor-mediated opening of transient receptor potential canonical channels. Moreover, subcutaneous melittin up-regulates Nav1.8 and Nav1.9 subunits, resulting in the enhancement of tetrodotoxin-resistant Na(+) currents and the generation of long-term action potential firing. These nociceptive responses in the periphery finally activate and sensitize the spinal dorsal horn pain-signaling neurons, resulting in spontaneous nociceptive paw flinches and pain hypersensitivity to thermal and mechanical stimuli. Taken together, it is concluded that melittin is the major pain-producing substance of bee venom, by which peripheral persistent pain and hyperalgesia (or allodynia), primary nociceptive neuronal sensitization, and CNS synaptic plasticity (or metaplasticity) can be readily induced and the molecular and cellular mechanisms underlying naturally-occurring venomous biotoxins can be experimentally unraveled.
Collapse
Affiliation(s)
- Jun Chen
- Institute for Biomedical Sciences of Pain, Tangdu Hospital, The Fourth Military Medical University, Xi'an, 710038, China.
- Key Laboratory of Brain Stress and Behavior, PLA, Xi'an, 710038, China.
- Beijing Institute for Brain Disorders, Beijing, 100069, China.
| | - Su-Min Guan
- School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, China
| | - Wei Sun
- Institute for Biomedical Sciences of Pain, Tangdu Hospital, The Fourth Military Medical University, Xi'an, 710038, China
- Key Laboratory of Brain Stress and Behavior, PLA, Xi'an, 710038, China
| | - Han Fu
- Institute for Biomedical Sciences of Pain, Tangdu Hospital, The Fourth Military Medical University, Xi'an, 710038, China
- Key Laboratory of Brain Stress and Behavior, PLA, Xi'an, 710038, China
| |
Collapse
|
33
|
Li XQ, Li M, Zhou ZH, Liu BJ, Chen HS. Chronic restraint stress exacerbates nociception and inflammatory response induced by bee venom in rats: the role of the P2X7 receptors. Neurol Res 2016; 38:158-65. [PMID: 26900997 DOI: 10.1080/01616412.2015.1135571] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
OBJECTIVE Chronic restraint stress exacerbates pain and inflammation. The present study was designed to evaluate the effect of chronic restraint stress on inflammatory pain induced by subcutaneous injection of bee venom (BV). METHODS First, we investigated: (1) the effect of two-week restraint stress with daily 2 or 8 h on the baseline paw withdrawal mechanical threshold (PWMT), paw withdrawal thermal latency (PWTL) and paw circumference (PC); (2) the effect of chronic stress on the spontaneous paw-flinching reflex (SPFR), decrease in PWM, PWTL and increase in PC of the injected paw induced by BV. RESULTS The results showed that (1) chronic restraint decreased significantly the PWMT and inhibited significantly the increase in PC, but had no effect on PWTL, compared with control group; (2) chronic restraint enhanced significantly BV-induced SPFR and inflammatory swelling of the injected paw. In a second series of experiments, the role of P2X7 receptor (P2X7R) in the enhancement of BV-induced inflammatory pain produced by chronic restraint stress was determined. Systemic pretreatment with P2X7R antagonist completely reversed the decrease in PWMT produced by chronic restraint, inhibited significantly the enhancement of BV-induced inflammatory pain produced by chronic restraint stress. CONCLUSION Taken together, our data indicate that chronic restraint stress-enhanced nociception and inflammation in the BV pain model, possibly involving the P2X7R.
Collapse
Affiliation(s)
- Xiao-Qiu Li
- a Department of Neurology , General Hospital of Shen-Yang Military Area Command , Shen Yang , China
| | - Man Li
- a Department of Neurology , General Hospital of Shen-Yang Military Area Command , Shen Yang , China
| | - Zhong-He Zhou
- a Department of Neurology , General Hospital of Shen-Yang Military Area Command , Shen Yang , China
| | - Bao-Jun Liu
- b Department of Medical Administration , General Hospital of Shen-Yang Military Area Command , Shen Yang , China
| | - Hui-Sheng Chen
- a Department of Neurology , General Hospital of Shen-Yang Military Area Command , Shen Yang , China
| |
Collapse
|
34
|
Lee G, Bae H. Bee Venom Phospholipase A2: Yesterday's Enemy Becomes Today's Friend. Toxins (Basel) 2016; 8:48. [PMID: 26907347 PMCID: PMC4773801 DOI: 10.3390/toxins8020048] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Revised: 01/26/2016] [Accepted: 02/14/2016] [Indexed: 01/09/2023] Open
Abstract
Bee venom therapy has been used to treat immune-related diseases such as arthritis for a long time. Recently, it has revealed that group III secretory phospholipase A2 from bee venom (bee venom group III sPLA2) has in vitro and in vivo immunomodulatory effects. A growing number of reports have demonstrated the therapeutic effects of bee venom group III sPLA2. Notably, new experimental data have shown protective immune responses of bee venom group III sPLA2 against a wide range of diseases including asthma, Parkinson’s disease, and drug-induced organ inflammation. It is critical to evaluate the beneficial and adverse effects of bee venom group III sPLA2 because this enzyme is known to be the major allergen of bee venom that can cause anaphylactic shock. For many decades, efforts have been made to avoid its adverse effects. At high concentrations, exposure to bee venom group III sPLA2 can result in damage to cellular membranes and necrotic cell death. In this review, we summarized the current knowledge about the therapeutic effects of bee venom group III sPLA2 on several immunological diseases and described the detailed mechanisms of bee venom group III sPLA2 in regulating various immune responses and physiopathological changes.
Collapse
Affiliation(s)
- Gihyun Lee
- Department of Physiology, College of Korean Medicine, Kyung Hee University, 1 Hoeki-Dong, Dongdaemoon-gu, Seoul 130-701, Korea.
| | - Hyunsu Bae
- Department of Physiology, College of Korean Medicine, Kyung Hee University, 1 Hoeki-Dong, Dongdaemoon-gu, Seoul 130-701, Korea.
| |
Collapse
|
35
|
McIntyre MK, Clifford JL, Maani CV, Burmeister DM. Progress of clinical practice on the management of burn-associated pain: Lessons from animal models. Burns 2016; 42:1161-72. [PMID: 26906668 DOI: 10.1016/j.burns.2016.01.023] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Revised: 01/05/2016] [Accepted: 01/21/2016] [Indexed: 02/08/2023]
Abstract
Opioid-based analgesics provide the mainstay for attenuating burn pain, but they have a myriad of side effects including respiratory depression, nausea, impaired gastrointestinal motility, sedation, dependence, physiologic tolerance, and opioid-induced hyperalgesia. To test and develop novel analgesics, validated burn-relevant animal models of pain are indispensable. Herein we review such animal models, which are mostly limited to rodent models of burn-induced, inflammatory, and neuropathic pain. The latter two are pain syndromes that provide insight into the pain caused by systemic pro-inflammatory cytokines and direct injury to nerves (e.g., after severe burn), respectively. To date, no single animal model optimally mimics the complex pathophysiology and pain that a human burn patient experiences. No currently available burn-pain model examines effects of pharmacological intervention on wound healing. As cornerstones of pain and wound healing, pro-inflammatory mediators may be utilized for insight into both processes. Moreover, common clinical concerns such as systemic inflammatory response syndrome and multiple organ dysfunction remain unaddressed. For development of analgesics, these aberrations can significantly alter the potential efficacy and/or adverse effects of a prescribed analgesic following burn trauma. We therefore suggest that a multi-model strategy would be the most clinically relevant when evaluating novel analgesics for use in burn patients.
Collapse
Affiliation(s)
- Matthew K McIntyre
- United States Army Institute of Surgical Research, 3650 Chambers Pass, BHT1:Bldg 3610, JBSA Fort Sam Houston, TX 78234-6315, United States.
| | - John L Clifford
- United States Army Institute of Surgical Research, 3650 Chambers Pass, BHT1:Bldg 3610, JBSA Fort Sam Houston, TX 78234-6315, United States.
| | - Christopher V Maani
- Brooke Army Medical Center, Department of Anesthesia and Operative Services, San Antonio Uniformed Services Health Education Consortium (SAUSHEC) Anesthesia Residency Program, 3551 Roger Brooke Drive, JBSA Fort Sam Houston, TX 78234-6315, United States.
| | - David M Burmeister
- United States Army Institute of Surgical Research, 3650 Chambers Pass, BHT1:Bldg 3610, JBSA Fort Sam Houston, TX 78234-6315, United States.
| |
Collapse
|
36
|
Wang Y, Lu YF, Li CL, Sun W, Li Z, Wang RR, He T, Yang F, Yang Y, Wang XL, Guan SM, Chen J. Involvement of Rac1 signalling pathway in the development and maintenance of acute inflammatory pain induced by bee venom injection. Br J Pharmacol 2016; 173:937-50. [PMID: 26700000 DOI: 10.1111/bph.13413] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Revised: 12/10/2015] [Accepted: 12/12/2015] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND AND PURPOSE The Rho GTPase, Rac1, is involved in the pathogenesis of neuropathic pain induced by malformation of dendritic spines in the spinal dorsal horn (sDH) neurons. In the present study, the contribution of spinal Rac1 to peripheral inflammatory pain was studied. EXPERIMENTAL APPROACH Effects of s.c. bee venom (BV) injection on cellular localization of Rac1 in the rat sDH was determined with double labelling immunofluorescence. Activation of Rac1 and its downstream effector p21-activated kinase (PAK), ERKs and p38 MAPK in inflammatory pain states was evaluated with a pull-down assay and Western blotting. The preventive and therapeutic analgesic effects of intrathecal administration of NSC23766, a selective inhibitor of Rac1, on BV-induced spontaneous nociception and pain hypersensitivity were investigated. KEY RESULTS Rac1 labelling was mainly localized within neurons in both the superficial and deep layers of the sDH in rats of naïve, vehicle-treated and inflamed (BV injected) groups. GTP-Rac1-PAK and ERKs/p38 were activated following s.c. BV injection. Post-treatment with intrathecal NSC23766 significantly inhibited GTP-Rac1 activity and phosphorylation of Rac1-PAK, ERKs and p38 MAPK in the sDH. Both pre-treatment and post-treatment with intrathecal NSC23766 dose-dependently attenuated the paw flinches, primary thermal and mechanical hyperalgesia and the mirror-image thermal hyperalgesia induced by BV injection, but without affecting the baseline pain sensitivity and motor coordination. CONCLUSIONS AND IMPLICATIONS The spinal GTP-Rac1-PAK-ERK/p38MAPK signalling pathway is involved in both the development and maintenance of peripheral inflammatory pain and can be used as a potential molecular target for developing a novel therapeutic strategy for clinical pain.
Collapse
Affiliation(s)
- Yan Wang
- Institute for Biomedical Sciences of Pain, Tangdu Hospital, The Fourth Military Medical University, Xi'an, 710038, China.,Institute for Functional Brain Disorders, Tangdu Hospital, The Fourth Military Medical University, Xi'an, 710038, China.,Key Laboratory of Brain Stress and Behavior, PLA, Xi'an, 710038, China
| | - Yun-Fei Lu
- Institute for Biomedical Sciences of Pain, Tangdu Hospital, The Fourth Military Medical University, Xi'an, 710038, China.,Institute for Functional Brain Disorders, Tangdu Hospital, The Fourth Military Medical University, Xi'an, 710038, China.,Key Laboratory of Brain Stress and Behavior, PLA, Xi'an, 710038, China
| | - Chun-Li Li
- Institute for Biomedical Sciences of Pain, Tangdu Hospital, The Fourth Military Medical University, Xi'an, 710038, China.,Institute for Functional Brain Disorders, Tangdu Hospital, The Fourth Military Medical University, Xi'an, 710038, China.,Key Laboratory of Brain Stress and Behavior, PLA, Xi'an, 710038, China
| | - Wei Sun
- Institute for Biomedical Sciences of Pain, Tangdu Hospital, The Fourth Military Medical University, Xi'an, 710038, China.,Institute for Functional Brain Disorders, Tangdu Hospital, The Fourth Military Medical University, Xi'an, 710038, China.,Key Laboratory of Brain Stress and Behavior, PLA, Xi'an, 710038, China
| | - Zhen Li
- Institute for Biomedical Sciences of Pain, Tangdu Hospital, The Fourth Military Medical University, Xi'an, 710038, China.,Institute for Functional Brain Disorders, Tangdu Hospital, The Fourth Military Medical University, Xi'an, 710038, China.,Key Laboratory of Brain Stress and Behavior, PLA, Xi'an, 710038, China
| | - Rui-Rui Wang
- Institute for Biomedical Sciences of Pain, Tangdu Hospital, The Fourth Military Medical University, Xi'an, 710038, China.,Institute for Functional Brain Disorders, Tangdu Hospital, The Fourth Military Medical University, Xi'an, 710038, China.,Key Laboratory of Brain Stress and Behavior, PLA, Xi'an, 710038, China
| | - Ting He
- Institute for Biomedical Sciences of Pain, Tangdu Hospital, The Fourth Military Medical University, Xi'an, 710038, China.,Institute for Functional Brain Disorders, Tangdu Hospital, The Fourth Military Medical University, Xi'an, 710038, China.,Key Laboratory of Brain Stress and Behavior, PLA, Xi'an, 710038, China
| | - Fan Yang
- Institute for Biomedical Sciences of Pain, Tangdu Hospital, The Fourth Military Medical University, Xi'an, 710038, China.,Institute for Functional Brain Disorders, Tangdu Hospital, The Fourth Military Medical University, Xi'an, 710038, China.,Key Laboratory of Brain Stress and Behavior, PLA, Xi'an, 710038, China
| | - Yan Yang
- Institute for Biomedical Sciences of Pain, Tangdu Hospital, The Fourth Military Medical University, Xi'an, 710038, China.,Institute for Functional Brain Disorders, Tangdu Hospital, The Fourth Military Medical University, Xi'an, 710038, China.,Key Laboratory of Brain Stress and Behavior, PLA, Xi'an, 710038, China
| | - Xiao-Liang Wang
- Institute for Biomedical Sciences of Pain, Tangdu Hospital, The Fourth Military Medical University, Xi'an, 710038, China.,Institute for Functional Brain Disorders, Tangdu Hospital, The Fourth Military Medical University, Xi'an, 710038, China.,Key Laboratory of Brain Stress and Behavior, PLA, Xi'an, 710038, China
| | - Su-Min Guan
- School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, China
| | - Jun Chen
- Institute for Biomedical Sciences of Pain, Tangdu Hospital, The Fourth Military Medical University, Xi'an, 710038, China.,Institute for Functional Brain Disorders, Tangdu Hospital, The Fourth Military Medical University, Xi'an, 710038, China.,Key Laboratory of Brain Stress and Behavior, PLA, Xi'an, 710038, China.,Beijing Institute for Brain Disorders, Beijing, 100069, China
| |
Collapse
|
37
|
Sur B, Lee B, Yeom M, Hong JH, Kwon S, Kim ST, Lee HS, Park HJ, Lee H, Hahm DH. Bee venom acupuncture alleviates trimellitic anhydride-induced atopic dermatitis-like skin lesions in mice. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2016; 16:38. [PMID: 26825274 PMCID: PMC4731956 DOI: 10.1186/s12906-016-1019-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Accepted: 01/27/2016] [Indexed: 12/22/2022]
Abstract
BACKGROUND Bee venom acupuncture (BVA), a novel type of acupuncture therapy in which purified bee venom is injected into the specific acupuncture point on the diseased part of the body, is used primarily for relieving pain and other musculoskeletal symptoms. In the present study, therapeutic potential of BVA to improve atopic dermatitis, a representative allergic dysfunction, was evaluated in the mouse model of trimellitic anhydride (TMA)-induced skin impairment. METHODS Mice were treated with 5% TMA on the dorsal flank for sensitization and subsequently treated with 2% TMA on the dorsum of both ears for an additional 12 days after a 3-day interval. From the 7(th) day of 2% TMA treatment, bilateral subcutaneous injection of BV (BV, 0.3 mg/kg) was performed daily at BL40 acupuncture points (located behind the knee) 1 h before 2% TMA treatment for 5 days. RESULTS BVA treatment markedly inhibited the expression levels of both T helper cell type 1 (Th1) and Th2 cytokines in ear skin and lymph nodes of TMA-treated mice. Clinical features of AD-like symptoms such as ear skin symptom severity and thickness, inflammation, and lymph node weight were significantly alleviated by BV treatment. BV treatment also inhibited the proliferation and infiltration of T cells, the production of Th1 and Th2 cytokines, and the synthesis of interleukin (IL)-4 and immunoglobulin E (IgE)-typical allergic Th2 responses in blood. The inhibitory effect of BVA was more pronounced at BL40 acupoint than non-acupuncture point located at the base of the tail. CONCLUSIONS These results indicate that BV injection at specific acupuncture points effectively alleviates AD-like skin lesions by inhibiting inflammatory and allergic responses in a TMA-induced contact hypersensitivity mouse model.
Collapse
Affiliation(s)
- Bongjun Sur
- Acupuncture and Meridian Science Research Center, College of Korean Medicine, Kyung Hee University, Hoegi-ding, Dongdaemoon-gu, Seoul, 130-701, Republic of Korea
| | - Bombi Lee
- Acupuncture and Meridian Science Research Center, College of Korean Medicine, Kyung Hee University, Hoegi-ding, Dongdaemoon-gu, Seoul, 130-701, Republic of Korea
| | - Mijung Yeom
- Acupuncture and Meridian Science Research Center, College of Korean Medicine, Kyung Hee University, Hoegi-ding, Dongdaemoon-gu, Seoul, 130-701, Republic of Korea
| | - Ju-Hee Hong
- Acupuncture and Meridian Science Research Center, College of Korean Medicine, Kyung Hee University, Hoegi-ding, Dongdaemoon-gu, Seoul, 130-701, Republic of Korea
| | - Sunoh Kwon
- Acupuncture and Meridian Science Research Center, College of Korean Medicine, Kyung Hee University, Hoegi-ding, Dongdaemoon-gu, Seoul, 130-701, Republic of Korea
| | - Seung-Tae Kim
- Division of Meridian and Structural Medicine, School of Korean Medicine, Pusan National University, Yangsan, 628-870, Republic of Korea
| | - Hyang Sook Lee
- Acupuncture and Meridian Science Research Center, College of Korean Medicine, Kyung Hee University, Hoegi-ding, Dongdaemoon-gu, Seoul, 130-701, Republic of Korea
- The Graduate School of Basic Science of Korean Medicine, College of Korean Medicine, Kyung Hee University, Seoul, 130-701, Republic of Korea
| | - Hi-Joon Park
- Acupuncture and Meridian Science Research Center, College of Korean Medicine, Kyung Hee University, Hoegi-ding, Dongdaemoon-gu, Seoul, 130-701, Republic of Korea
- The Graduate School of Basic Science of Korean Medicine, College of Korean Medicine, Kyung Hee University, Seoul, 130-701, Republic of Korea
| | - Hyejung Lee
- Acupuncture and Meridian Science Research Center, College of Korean Medicine, Kyung Hee University, Hoegi-ding, Dongdaemoon-gu, Seoul, 130-701, Republic of Korea
- The Graduate School of Basic Science of Korean Medicine, College of Korean Medicine, Kyung Hee University, Seoul, 130-701, Republic of Korea
| | - Dae-Hyun Hahm
- Acupuncture and Meridian Science Research Center, College of Korean Medicine, Kyung Hee University, Hoegi-ding, Dongdaemoon-gu, Seoul, 130-701, Republic of Korea.
- The Graduate School of Basic Science of Korean Medicine, College of Korean Medicine, Kyung Hee University, Seoul, 130-701, Republic of Korea.
| |
Collapse
|
38
|
Antibacterial Activity and Antibiotic-Enhancing Effects of Honeybee Venom against Methicillin-Resistant Staphylococcus aureus. Molecules 2016; 21:79. [PMID: 26771592 PMCID: PMC6273778 DOI: 10.3390/molecules21010079] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2015] [Revised: 01/04/2016] [Accepted: 01/08/2016] [Indexed: 01/23/2023] Open
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA), along with other antibiotic resistant bacteria, has become a significant social and clinical problem. There is thus an urgent need to develop naturally bioactive compounds as alternatives to the few antibiotics that remain effective. Here we assessed the in vitro activities of bee venom (BV), alone or in combination with ampicillin, penicillin, gentamicin or vancomycin, on growth of MRSA strains. The antimicrobial activity of BV against MRSA strains was investigated using minimum inhibitory concentrations (MIC), minimum bactericidal concentrations (MBC) and a time-kill assay. Expression of atl which encodes murein hydrolase, a peptidoglycan-degrading enzyme involved in cell separation, was measured by reverse transcription-polymerase chain reaction. The MICs of BV were 0.085 µg/mL and 0.11 µg/mL against MRSA CCARM 3366 and MRSA CCARM 3708, respectively. The MBC of BV against MRSA 3366 was 0.106 µg/mL and that against MRSA 3708 was 0.14 µg/mL. The bactericidal activity of BV corresponded to a decrease of at least 3 log CFU/g cells. The combination of BV with ampicillin or penicillin yielded an inhibitory concentration index ranging from 0.631 to 1.002, indicating a partial and indifferent synergistic effect. Compared to ampicillin or penicillin, both MRSA strains were more susceptible to the combination of BV with gentamicin or vancomycin. The expression of atl gene was increased in MRSA 3366 treated with BV. These results suggest that BV exhibited antibacterial activity and antibiotic-enhancing effects against MRSA strains. The atl gene was increased in MRSA exposed to BV, suggesting that cell division was interrupted. BV warrants further investigation as a natural antimicrobial agent and synergist of antibiotic activity.
Collapse
|
39
|
Galdiero E, Maselli V, Falanga A, Gesuele R, Galdiero S, Fulgione D, Guida M. Integrated analysis of the ecotoxicological and genotoxic effects of the antimicrobial peptide melittin on Daphnia magna and Pseudokirchneriella subcapitata. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2015; 203:145-152. [PMID: 25884346 DOI: 10.1016/j.envpol.2015.03.046] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Revised: 03/23/2015] [Accepted: 03/29/2015] [Indexed: 06/04/2023]
Abstract
Melittin is a major constituent of the bee venom of Apis mellifera with a broad spectrum of activities. Melittin therapeutical potential is subject to its toxicity and the assessment of ecotoxicity and genotoxicity is of particular interest for therapeutic use. Here we analyzed the biological effects of melittin on two aquatic species, which are representative of two different levels of the aquatic trophic chain: the invertebrate Daphnia magna and the unicellular microalgae Pseudokirchneriella subcapitata. The attention was focused on the determination of: i) ecotoxicity; ii) genotoxicity; iii) antigenotoxicity. Our main finding is that melittin is detrimental to D. magna reproduction and its sub-lethal concentrations create an accumulation dependent on exposition times and a negative effect on DNA. We also observed that melittin significantly delayed time to first eggs. Moreover, results showed that melittin exerted its toxic and genotoxic effects in both species, being a bit more aggressive towards P. subcapitata.
Collapse
Affiliation(s)
- Emilia Galdiero
- Department of Biology, University of Naples "Federico II", Via Cinthia Complesso Monte Sant'Angelo, 80134, Naples, Italy.
| | - Valeria Maselli
- Department of Biology, University of Naples "Federico II", Via Cinthia Complesso Monte Sant'Angelo, 80134, Naples, Italy
| | - Annarita Falanga
- Department of Pharmacy, University of Naples "Federico II", Via Mezzocannone 16, 80134, Naples, Italy; DFM Scarl, University of Naples "Federico II", Via Mezzocannone 16, 80134, Naples, Italy
| | - Renato Gesuele
- Department of Biology, University of Naples "Federico II", Via Cinthia Complesso Monte Sant'Angelo, 80134, Naples, Italy
| | - Stefania Galdiero
- Department of Pharmacy, University of Naples "Federico II", Via Mezzocannone 16, 80134, Naples, Italy
| | - Domenico Fulgione
- Department of Biology, University of Naples "Federico II", Via Cinthia Complesso Monte Sant'Angelo, 80134, Naples, Italy
| | - Marco Guida
- Department of Biology, University of Naples "Federico II", Via Cinthia Complesso Monte Sant'Angelo, 80134, Naples, Italy
| |
Collapse
|
40
|
Gajski G, Čimbora-Zovko T, Rak S, Rožman M, Osmak M, Garaj-Vrhovac V. Combined antitumor effects of bee venom and cisplatin on human cervical and laryngeal carcinoma cells and their drug resistant sublines. J Appl Toxicol 2015; 34:1332-41. [PMID: 25493319 DOI: 10.1002/jat.2959] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
In the present study, we investigated the possible combined anticancer ability of bee venom (BV) and cisplatin towards two pairs of tumour cell lines: parental cervical carcinoma HeLa cells and their cisplatin-resistant HeLa CK subline,as well as laryngeal carcinoma HEp-2 cells and their cisplatin-resistant CK2 subline. Additionally, we identified several peptides of BV in the BV sample used in the course of the study and determined the exact concentration of MEL. BV applied alone in concentrations of 30 to 60 μg ml(–1) displayed dose-dependent cytotoxicity against all cell lines tested. Cisplatin-resistant cervical carcinoma cells were more sensitive to BV than their parental cell lines (IC(50) values were 52.50 μg ml(–1) for HeLa vs.47.64 μg ml(–1) for HeLa CK cells), whereas opposite results were obtained for cisplatin-resistant laryngeal carcinoma cells (IC(50) values were 51.98 μg ml(–1) for HEp-2 vs. > 60.00 μg ml(–1) for CK2 cells). Treatment with BV alone induced a necrotic type of cell death, as shown by characteristic morphological features, fast staining with ethidium-bromide and a lack of cleavage of apoptotic marker poly (ADP-ribose) polymerase (PARP) on Western blot. Combined treatment of BV and cisplatin induced an additive and/or weak synergistic effect towards tested cell lines, suggesting that BV could enhance the killing effect of selected cells when combined with cisplatin. Therefore, a greater anticancer effect could be triggered if BV was used in the course of chemotherapy. Our results suggest that combined treatment with BV could be useful from the point of minimizing the cisplatin concentration during chemotherapy, consequently reducing and/or postponing the development of cisplatin resistance.
Collapse
|
41
|
Cai M, Choi SM, Yang EJ. The effects of bee venom acupuncture on the central nervous system and muscle in an animal hSOD1G93A mutant. Toxins (Basel) 2015; 7:846-58. [PMID: 25781653 PMCID: PMC4379529 DOI: 10.3390/toxins7030846] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Revised: 02/17/2015] [Accepted: 03/03/2015] [Indexed: 12/13/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is caused by the degeneration of lower and upper motor neurons, leading to muscle paralysis and respiratory failure. However, there is no effective drug or therapy to treat ALS. Complementary and alternative medicine (CAM), including acupuncture, pharmacopuncture, herbal medicine, and massage is popular due to the significant limitations of conventional therapy. Bee venom acupuncture (BVA), also known as one of pharmacopunctures, has been used in Oriental medicine to treat inflammatory diseases. The purpose of this study is to investigate the effect of BVA on the central nervous system (CNS) and muscle in symptomatic hSOD1G93A transgenic mice, an animal model of ALS. Our findings show that BVA at ST36 enhanced motor function and decreased motor neuron death in the spinal cord compared to that observed in hSOD1G93A transgenic mice injected intraperitoneally (i.p.) with BV. Furthermore, BV treatment at ST36 eliminated signaling downstream of inflammatory proteins such as TLR4 in the spinal cords of symptomatic hSOD1G93A transgenic mice. However, i.p. treatment with BV reduced the levels of TNF-α and Bcl-2 expression in the muscle hSOD1G93A transgenic mice. Taken together, our findings suggest that BV pharmacopuncture into certain acupoints may act as a chemical stimulant to activate those acupoints and subsequently engage the endogenous immune modulatory system in the CNS in an animal model of ALS.
Collapse
Affiliation(s)
- MuDan Cai
- Department of KM Fundamental Research, Korea Institute of Oriental Medicine, 483 Expo-ro, Daejeon, Yuseong-gu 305-811, Korea.
| | - Sun-Mi Choi
- Executive Director of R&D, Korea Institute of Oriental Medicine, 483 Expo-ro, Daejeon, Yuseong-gu 305-811, Korea.
| | - Eun Jin Yang
- Department of KM Fundamental Research, Korea Institute of Oriental Medicine, 483 Expo-ro, Daejeon, Yuseong-gu 305-811, Korea.
| |
Collapse
|
42
|
Nipate SS, Hurali PB, Ghaisas MM. Evaluation of anti-inflammatory, anti-nociceptive, and anti-arthritic activities of IndianApis dorsatabee venom in experimental animals: biochemical, histological, and radiological assessment. Immunopharmacol Immunotoxicol 2015; 37:171-84. [DOI: 10.3109/08923973.2015.1009996] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
43
|
Koh WU, Choi SS, Lee JH, Lee SH, Lee SK, Lee YK, Leem JG, Song JG, Shin JW. Perineural pretreatment of bee venom attenuated the development of allodynia in the spinal nerve ligation injured neuropathic pain model; an experimental study. Altern Ther Health Med 2014; 14:431. [PMID: 25366818 PMCID: PMC4246472 DOI: 10.1186/1472-6882-14-431] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Accepted: 10/28/2014] [Indexed: 12/01/2022]
Abstract
Background Diluted bee venom (BV) is known to have anti-nociceptive and anti-inflammatory effects. We therefore assessed whether perineural bee venom pretreatment could attenuate the development of neuropathic pain in the spinal nerve ligation injured animal model. Methods Neuropathic pain was surgically induced in 30 male Sprague Dawley rats by ligation of the L5 and L6 spinal nerves, with 10 rats each treated with saline and 0.05 and 0.1 mg BV. Behavioral testing for mechanical, cold, and thermal allodynia was conducted on postoperative days 3 to 29. Three rats in each group and 9 sham operated rats were sacrificed on day 9, and the expression of transient receptor potential vanilloid type 1 (TRPV1), ankyrin type 1 (TRPA1), and melastatin type 8 (TRPM8) receptors in the ipsilateral L5 dorsal root ganglion was analyzed. Results The perineural administration of BV to the spinal nerves attenuated the development of mechanical, thermal, and cold allodynia, and the BV pretreatment reduced the expression of TRPV1, TRPA1, TRPM8 and c − Fos in the ipsilateral dorsal root ganglion. Conclusion The current study demonstrates that the perineural pretreatment with diluted bee venom before the induction of spinal nerve ligation significantly suppresses the development of neuropathic pain. Furthermore, this bee venom induced suppression was strongly related with the involvement of transient receptor potential family members.
Collapse
|
44
|
Han SM, Kim JM, Pak SC. Anti-melanogenic properties of honeybee (Apis melliferaL.) venom in α-MSH-stimulated B16F1 cells. FOOD AGR IMMUNOL 2014. [DOI: 10.1080/09540105.2014.950202] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|
45
|
Abstract
Melittin is a major active component of bee venom, and it exhibits strong biological activity. Recent reports have demonstrated that melittin has anti-tumor effects on many kinds of tumor cells through direct interaction with cell transduction mediators and influencing cellular signaling pathways, induction of apoptotic or necrotic cell death, and inhibition of growth and proliferationin vivo or in vitro. Nanotechnology and genetic engineering provide technical support to the safe and targeted delivery of melittin to the body. This review summarizes recent findings on the anti-tumor potential of melittin in tumors of different types.
Collapse
|
46
|
Mourelle D, Brigatte P, Bringanti LDB, De Souza BM, Arcuri HA, Gomes PC, Baptista-Saidemberg NB, Ruggiero Neto J, Palma MS. Hyperalgesic and edematogenic effects of Secapin-2, a peptide isolated from Africanized honeybee (Apis mellifera) venom. Peptides 2014; 59:42-52. [PMID: 25017240 DOI: 10.1016/j.peptides.2014.07.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Revised: 07/01/2014] [Accepted: 07/02/2014] [Indexed: 11/20/2022]
Abstract
Honeybee stings are a severe public health problem. Bee venom contains a series of active components, including enzymes, peptides, and biogenic amines. The local reactions observed after envenoming include a typical inflammatory response and pain. Honeybee venom contains some well-known polycationic peptides, such as Melittin, Apamin, MCD peptide, Cardiopep, and Tertiapin. Secapin in honeybee venom was described 38 years ago, yet almost nothing is known about its action. A novel, variant form of this peptide was isolated from the venom of Africanized honeybees (Apis mellifera). This novel peptide, named Secapin-2, is 25 amino acid residues long. Conformational analyses using circular dichroism and molecular dynamics simulations revealed a secondary structure rich in strands and turns, stabilized by an intramolecular disulfide bridge. Biological assays indicated that Secapin-2 did not induce hemolysis, mast cell degranulation or chemotactic activities. However, Secapin-2 caused potent dose-related hyperalgesic and edematogenic responses in experimental animals. To evaluate the roles of prostanoids and lipid mediators in the hyperalgesia and edema induced by this peptide, Indomethacin and Zileuton were used to inhibit the cyclooxygenase and lipoxygenase pathways, respectively. The results showed that Zileuton partially blocked the hyperalgesia induced by Secapin-2 and decreased the edematogenic response. In contrast, Indomethacin did not interfere with these phenomena. Zafirlukast, a leukotriene receptor antagonist, blocked the Secapin-2 induced hyperalgesia and edematogenic response. These results indicate that Secapin-2 induces inflammation and pain through the lipoxygenase pathway in both phenomena.
Collapse
Affiliation(s)
- D Mourelle
- CEIS/Dept. Biology, Institute of Biosciences of Rio Claro, São Paulo State University (UNESP), Rio Claro, SP, Brazil
| | - P Brigatte
- CEIS/Dept. Biology, Institute of Biosciences of Rio Claro, São Paulo State University (UNESP), Rio Claro, SP, Brazil
| | - L D B Bringanti
- CEIS/Dept. Biology, Institute of Biosciences of Rio Claro, São Paulo State University (UNESP), Rio Claro, SP, Brazil
| | - B M De Souza
- CEIS/Dept. Biology, Institute of Biosciences of Rio Claro, São Paulo State University (UNESP), Rio Claro, SP, Brazil
| | - H A Arcuri
- CEIS/Dept. Biology, Institute of Biosciences of Rio Claro, São Paulo State University (UNESP), Rio Claro, SP, Brazil
| | - P C Gomes
- CEIS/Dept. Biology, Institute of Biosciences of Rio Claro, São Paulo State University (UNESP), Rio Claro, SP, Brazil
| | - N B Baptista-Saidemberg
- Department of Anatomy, Cell Biology and Physiology and Biophysics, Institute of Biology, State University of Campinas, Brazil
| | - J Ruggiero Neto
- Department of Physics/IBILCE, São Paulo State University (UNESP), São José do Rio Prêto, SP, Brazil
| | - M S Palma
- CEIS/Dept. Biology, Institute of Biosciences of Rio Claro, São Paulo State University (UNESP), Rio Claro, SP, Brazil.
| |
Collapse
|
47
|
Li L, Luo R, Fan P, Guo Y, Wang HS, Ma SJ, Zhao Y. Role of peripheral purinoceptors in the development of bee venom-induced nociception: a behavioural and electrophysiological study in rats. Clin Exp Pharmacol Physiol 2014; 41:902-10. [PMID: 25115823 DOI: 10.1111/1440-1681.12293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Revised: 06/18/2014] [Accepted: 07/29/2014] [Indexed: 11/29/2022]
Abstract
Colocalization of purinergic P2X and P2Y receptors in dorsal root ganglion sensory neurons implies that these receptors play an integrative role in the nociceptive transmission process under inflammatory conditions. In the present study, behavioural and in vivo electrophysiological methods were used to examine the peripheral role of P2 receptors in the persistent nociceptive responses induced by subcutaneous bee venom injection (2 mg/mL) in. Sprague-Dawley rats Local pretreatment with the wide-spectrum P2 receptor antagonist pyridoxalphosphate-6-azophenyl-2',4'-disulphonic acid (PPADS; 1 mmol/L, 50 μL) 10 min prior to s.c. bee venom injection significantly suppressed the duration of spontaneous nociceptive lifting/licking behaviour, inhibited mechanical hyperalgesia and decreased the firing of spinal dorsal horn wide dynamic range neurons in response to bee venom, without affecting primary thermal and mirror-image hyperalgesia. The localized antinociceptive action of PPADS was not due to a systemic effect, because application of the same dose of PPADS to the contralateral side was not effective. The results suggest that activation of peripheral P2 receptors is involved in the induction of nociceptive responses, mechanical hyperalgesia and the excitation of sensory spinal neurons.
Collapse
Affiliation(s)
- Li Li
- Department of Physiology and Pathophysiology, School of Medicine, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | | | | | | | | | | | | |
Collapse
|
48
|
Lee WR, Kim KH, An HJ, Kim JY, Han SM, Lee KG, Park KK. Protective effect of melittin against inflammation and apoptosis on Propionibacterium acnes-induced human THP-1 monocytic cell. Eur J Pharmacol 2014; 740:218-26. [PMID: 25062791 DOI: 10.1016/j.ejphar.2014.06.058] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Revised: 06/24/2014] [Accepted: 06/26/2014] [Indexed: 10/25/2022]
Abstract
Melittin is a cationic, hemolytic peptide that is the main toxic component in the venom of the honey bee (Apis mellifera). It has been used in treatment of various chronic inflammatory diseases. However, the cellular mechanism and the anti-apoptotic effect of melittin in Propionibactierium acnes (P. acnes)-induced THP-1 cells have not been explored. In the present study, we investigated the anti-inflammatory and anti-apoptotic mechanism by examining the effect of melittin on P. acnes-induced THP-1 monocytic cells. THP-1 monocytic cells were stimulated by heat-killed P. acnes in the presence of melittin. The expression levels of pro-inflammatory cytokines, NF-κB signaling, caspase family, and PARP signaling were measured by ELISA or Western blot analysis. The number of apoptotic cells and changes of cell morphology were examined using fluorescence microscopy and flow cytometry. Heat-killed P. acnes increased the secretion of pro-inflammatory cytokines and cleavage of caspase-3 and -8 in heat-killed P. acnes-induced THP-1 cells. However, treatment with melittin inhibited the pro-inflammatory cytokines and cleavage of the caspase-3 and -8. Moreover, the cleaved PARP appeared after 8h of heat-killed P. acnes treatment and its cleavage was reduced by melittin treatment. These results demonstrate that 1.0×10(7) CFU/ml of heat-killed P. acnes induces THP-1 cell apoptosis and secretion of inflammatory cytokines. Also, administration of melittin significantly decreases the expression of various inflammatory cytokines in heat-killed P. acnes-treated THP-1 monocytic cells. In particular, melittin exerts anti-apoptotic effects against 1.0×10(7) CFU/ml of heat-killed P. acnes injury to THP-1 cells.
Collapse
Affiliation(s)
- Woo-Ram Lee
- Department of Pathology, School of Medicine, College of Medicine, Catholic University of Daegu, 3056-6, Daemyung-4-Dong, Nam-gu, Daegu 705-718, South Korea
| | - Kyung-Hyun Kim
- Department of Pathology, School of Medicine, College of Medicine, Catholic University of Daegu, 3056-6, Daemyung-4-Dong, Nam-gu, Daegu 705-718, South Korea
| | - Hyun-Jin An
- Department of Pathology, School of Medicine, College of Medicine, Catholic University of Daegu, 3056-6, Daemyung-4-Dong, Nam-gu, Daegu 705-718, South Korea
| | - Jung-Yeon Kim
- Department of Pathology, School of Medicine, College of Medicine, Catholic University of Daegu, 3056-6, Daemyung-4-Dong, Nam-gu, Daegu 705-718, South Korea
| | - Sang-Mi Han
- Department of Agricultural Biology, National Institute of Agricultural Science and Technology, Suwon, South Korea
| | - Kwang-Gil Lee
- Department of Agricultural Biology, National Institute of Agricultural Science and Technology, Suwon, South Korea
| | - Kwan-Kyu Park
- Department of Pathology, School of Medicine, College of Medicine, Catholic University of Daegu, 3056-6, Daemyung-4-Dong, Nam-gu, Daegu 705-718, South Korea.
| |
Collapse
|
49
|
Li Z, Lu YF, Li CL, Wang Y, Sun W, He T, Chen XF, Wang XL, Chen J. Social interaction with a cagemate in pain facilitates subsequent spinal nociception via activation of the medial prefrontal cortex in rats. Pain 2014; 155:1253-1261. [DOI: 10.1016/j.pain.2014.03.019] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Revised: 03/26/2014] [Accepted: 03/26/2014] [Indexed: 12/30/2022]
|
50
|
The inhibitory effect of somatostatin receptor activation on bee venom-evoked nociceptive behavior and pCREB expression in rats. BIOMED RESEARCH INTERNATIONAL 2014; 2014:251785. [PMID: 24895558 PMCID: PMC4033427 DOI: 10.1155/2014/251785] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Revised: 03/31/2014] [Accepted: 04/14/2014] [Indexed: 12/27/2022]
Abstract
The present study examined nociceptive behaviors and the expression of phosphorylated cAMP response element-binding protein (pCREB) in the dorsal horn of the lumbar spinal cord and the dorsal root ganglion (DRG) evoked by bee venom (BV). The effect of intraplantar preapplication of the somatostatin analog octreotide on nociceptive behaviors and pCREB expression was also examined. Subcutaneous injection of BV into the rat unilateral hindpaw pad induced significant spontaneous nociceptive behaviors, primary mechanical allodynia, primary thermal hyperalgesia, and mirror-thermal hyperalgesia, as well as an increase in pCREB expression in the lumbar spinal dorsal horn and DRG. Octreotide pretreatment significantly attenuated the BV-induced lifting/licking response and mechanical allodynia. Local injection of octreotide also significantly reduced pCREB expression in the lumbar spinal dorsal horn and DRG. Furthermore, pretreatment with cyclosomatostatin, a somatostatin receptor antagonist, reversed the octreotide-induced inhibition of the lifting/licking response, mechanical allodynia, and the expression of pCREB. These results suggest that BV can induce nociceptive responses and somatostatin receptors are involved in mediating the antinociception, which provides new evidence for peripheral analgesic action of somatostatin in an inflammatory pain state.
Collapse
|