1
|
Gianni G, Pasqualetti M. Wiring and Volume Transmission: An Overview of the Dual Modality for Serotonin Neurotransmission. ACS Chem Neurosci 2023; 14:4093-4104. [PMID: 37966717 DOI: 10.1021/acschemneuro.3c00648] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2023] Open
Abstract
Serotonin is a neurotransmitter involved in the modulation of a multitude of physiological and behavioral processes. In spite of the relatively reduced number of serotonin-producing neurons present in the mammalian CNS, a complex long-range projection system provides profuse innervation to the whole brain. Heterogeneity of serotonin receptors, grouped in seven families, and their spatiotemporal expression pattern account for its widespread impact. Although neuronal communication occurs primarily at tiny gaps called synapses, wiring transmission, another mechanism based on extrasynaptic diffusion of neuroactive molecules and referred to as volume transmission, has been described. While wiring transmission is a rapid and specific one-to-one modality of communication, volume transmission is a broader and slower mode in which a single element can simultaneously act on several different targets in a one-to-many mode. Some experimental evidence regarding ultrastructural features, extrasynaptic localization of receptors and transporters, and serotonin-glia interactions collected over the past four decades supports the existence of a serotonergic system of a dual modality of neurotransmission, in which wiring and volume transmission coexist. To date, in spite of the radical difference in the two modalities, limited information is available on the way they are coordinated to mediate the specific activities in which serotonin participates. Understanding how wiring and volume transmission modalities contribute to serotonergic neurotransmission is of utmost relevance for the comprehension of serotonin functions in both physiological and pathological conditions.
Collapse
Affiliation(s)
- Giulia Gianni
- Unit of Cell and Developmental Biology, Department of Biology, University of Pisa, 56127 Pisa, Italy
| | - Massimo Pasqualetti
- Unit of Cell and Developmental Biology, Department of Biology, University of Pisa, 56127 Pisa, Italy
- Center for Neuroscience and Cognitive Systems @UniTn, Istituto Italiano di Tecnologia, 38068 Rovereto, Italy
- Centro per l'Integrazione della Strumentazione Scientifica dell'Università di Pisa (CISUP), 56126 Pisa, Italy
| |
Collapse
|
2
|
Pardridge WM. The Isolated Brain Microvessel: A Versatile Experimental Model of the Blood-Brain Barrier. Front Physiol 2020; 11:398. [PMID: 32457645 PMCID: PMC7221163 DOI: 10.3389/fphys.2020.00398] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Accepted: 04/02/2020] [Indexed: 12/12/2022] Open
Abstract
A versatile experimental model for the investigation of the blood-brain barrier (BBB), including the neuro-vascular unit, is the isolated brain microvessel preparation. Brain microvessels are primarily comprised of endothelial cells, but also include pericytes, pre-capillary arteriolar smooth muscle cells, astrocyte foot processes, and occasional nerve endings. These microvessels can be isolated from brain with a 3 h procedure, and the microvessels are free of brain parenchyma. Brain microvessels have been isolated from fresh animal brain, fresh human brain obtained at neurosurgery, as well as fresh or frozen autopsy human brain. Brain microvessels are the starting point for isolation of brain microvessel RNA, which then enables the production of BBB cDNA libraries and a genomics analysis of the brain microvasculature. Brain microvessels, combined with quantitative targeted absolute proteomics, allow for the quantitation of specific transporters or receptors expressed at the brain microvasculature. Brain microvessels, combined with specific antibodies and immune labeling of isolated capillaries, allow for the cellular location of proteins expressed within the neuro-vascular unit. Isolated brain microvessels can be used as an “in vitro” preparation of the BBB for the study of the kinetic parameters of BBB carrier-mediated transport (CMT) systems, or for the determination of dissociation constants of peptide binding to BBB receptor-mediated transport (RMT) systems expressed at either the animal or the human BBB. This review will discuss how the isolated brain microvessel model system has advanced our understanding of the organization and functional properties of the BBB, and highlight recent renewed interest in this 50 year old model of the BBB.
Collapse
Affiliation(s)
- William M Pardridge
- Department of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
3
|
Theodorakis PE, Müller EA, Craster RV, Matar OK. Physical insights into the blood-brain barrier translocation mechanisms. Phys Biol 2017; 14:041001. [PMID: 28586313 DOI: 10.1088/1478-3975/aa708a] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The number of individuals suffering from diseases of the central nervous system (CNS) is growing with an aging population. While candidate drugs for many of these diseases are available, most of these pharmaceutical agents cannot reach the brain rendering most of the drug therapies that target the CNS inefficient. The reason is the blood-brain barrier (BBB), a complex and dynamic interface that controls the influx and efflux of substances through a number of different translocation mechanisms. Here, we present these mechanisms providing, also, the necessary background related to the morphology and various characteristics of the BBB. Moreover, we discuss various numerical and simulation approaches used to study the BBB, and possible future directions based on multi-scale methods. We anticipate that this review will motivate multi-disciplinary research on the BBB aiming at the design of effective drug therapies.
Collapse
|
4
|
Ragan CM, Harding KM, Lonstein JS. Associations among within-litter differences in early mothering received and later emotional behaviors, mothering, and cortical tryptophan hydroxylase-2 expression in female laboratory rats. Horm Behav 2016; 77:62-71. [PMID: 26219576 PMCID: PMC7005883 DOI: 10.1016/j.yhbeh.2015.07.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Revised: 07/20/2015] [Accepted: 07/22/2015] [Indexed: 12/25/2022]
Abstract
This article is part of a Special Issue "Parental Care". The effects of differential maternal care received on offspring phenotype in rodents has been extensively studied between litters, but the consequences of differential mothering within litters on offspring neurobehavioral development have been rarely examined. We here investigated how variability in maternal care received among female rat siblings (measured four times daily on postnatal days 4, 6, 8, and 10) relates to the siblings' later emotional and maternal behaviors. As previously reported, we found that some female pups received up to three times more maternal licking bouts compared to their sisters; this difference was positively correlated with the pups' body weights. The number of maternal licking bouts that females received was negatively correlated with their later neophobic behaviors in an open field during periadolescence, but positively correlated with their anxiety-related behavior in an elevated plus maze during adulthood. Licking received was also positively correlated with females' later likelihood to retrieve pups in a maternal sensitization paradigm. In addition, females' neophobia during adolescence and anxiety-related behavior during adulthood predicted some aspects of both postpartum and sensitized maternal responsiveness. Medial prefrontal cortex expression of tryptophan hydroxylase-2 (TPH2; enzyme necessary for serotonin synthesis) was negatively associated with early maternal licking received. Interestingly, cortical TPH2 was positively associated with the maternal responsiveness of sensitized virgins but negatively associated with it in postpartum females. These results indicate that within-litter differences in maternal care received is an often neglected, but important, contributor to individual differences in offspring socioemotional behaviors as well as to the cortical serotonin neurochemistry that may influence these behaviors.
Collapse
Affiliation(s)
- Christina M Ragan
- Department of Psychology and Neuroscience Program, Michigan State University, 108 Giltner Hall, East Lansing, MI 48824, USA.
| | - Kaitlyn M Harding
- Department of Psychology and Neuroscience Program, Michigan State University, 108 Giltner Hall, East Lansing, MI 48824, USA
| | - Joseph S Lonstein
- Department of Psychology and Neuroscience Program, Michigan State University, 108 Giltner Hall, East Lansing, MI 48824, USA
| |
Collapse
|
5
|
Abstract
The blood-brain barrier (BBB) is a microvascular unit which selectively regulates the permeability of drugs to the brain. With the rise in CNS drug targets and diseases, there is a need to be able to accurately predict a priori which compounds in a company database should be pursued for favorable properties. In this review, we will explore the different computational tools available today, as well as underpin these to the experimental methods used to determine BBB permeability. These include in vitro models and the in vivo models that yield the dataset we use to generate predictive models. Understanding of how these models were experimentally derived determines our accurate and predicted use for determining a balance between activity and BBB distribution.
Collapse
|
6
|
Baron EP. Headache, cerebral aneurysms, and the use of triptans and ergot derivatives. Headache 2015; 55:739-47. [PMID: 25903747 DOI: 10.1111/head.12562] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/24/2015] [Indexed: 01/02/2023]
Abstract
BACKGROUND Uncertainty exists regarding the correlation between unruptured cerebral aneurysms and their role in headache etiology. It is also unclear whether surgical endovascular treatment may improve or worsen the headache, and if there are predictable factors for headache outcome such as pre-existing headache features, aneurysm characteristics, or other medical history. There is debate regarding safe treatment of migraine in patients with aneurysms, both before and after endovascular treatments. Particularly, there is hesitancy to use the triptans and ergot derivatives such as dihydroergotamine because of their vasoconstrictive effects and concern for adverse events related to the aneurysm such as aneurysmal instability and rupture. OBJECTIVE To review the literature regarding the anatomy, pathophysiology, and association between headache, untreated vs surgically treated aneurysms, and the use of triptans and ergot derivatives for migraine treatment in this setting. CONCLUSION Associations between some headaches and aneurysms may exist. Some chronic headaches may respond to surgical aneurysm repair while others may worsen. These associations are undefined by current literature because of variable results, study methods, and limited data. Prospective studies are needed which incorporate pre- and post-procedure headache character and diagnosis, aneurysm characteristics, type of aneurysm repair, associated risk factors for worsening post-procedure headache, and ultimately combining all of these data to better predict headache outcome following surgical aneurysm treatment. Lastly, the caution and avoidance of triptan and ergot derivative use for migraine in the setting of aneurysm is not supported by the current evidence, and much of this concern may be excessive and unwarranted, although more evidence confirming safety is needed.
Collapse
Affiliation(s)
- Eric P Baron
- Department of Neurology, Cleveland Clinic Neurological Institute, Center for Headache and Pain, Cleveland, OH, USA
| |
Collapse
|
7
|
Shi L, Zeng M, Fu BM. Temporal effects of vascular endothelial growth factor and 3,5-cyclic monophosphate on blood-brain barrier solute permeability in vivo. J Neurosci Res 2014; 92:1678-89. [PMID: 25066133 DOI: 10.1002/jnr.23457] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Revised: 06/11/2014] [Accepted: 07/03/2014] [Indexed: 12/11/2022]
Abstract
To test the hypothesis that vascular endothelial growth factor (VEGF) can transiently increase the blood-brain barrier permeability, P, as for peripheral microvessels and that the elevation of 3,5-cyclic monophosphate (cAMP) levels can inhibit the VEGF-induced acute hyperpermeability, we employed multiphoton microscopy to quantify the cerebral microvessel permeability P to various-sized solutes under VEGF and cAMP treatments. The cerebral microcirculation was observed through a section of frontoparietal bone thinned with a microgrinder. Fluorescein (MW 376Da), fluorescein isothioyanate-dextran-20k (FITC-Dex-20k), FITC-Dex-70k, or Alexa Fluor 488-IgG in 1% bovine serum albumin mammalian Ringer's solution was injected into the cerebral circulation via the ipsilateral carotid artery with a syringe pump. Simultaneously, temporal images were collected from the brain parenchyma ∼100-200 μm below the pia mater. P was determined from the rate of tissue solute accumulation around individual microvessels. Exposure to 1 nM VEGF transiently increased P to 2.2, 10.5, 9.8, and 12.8 times control values, for fluorescein, Dex-20k, Dex-70k, and IgG, respectively, within 30 sec, and all returned to control levels within 2 min. After 20 min of pretreatment with 2 mM of the cAMP analog 8-bromo-cAMP, the initial increase by 1 nM VEGF was completely abolished in P of all solutes. The response pattern of P to VEGF and cAMP and the ratios of the peak to control values for rat cerebral microvessels are similar to those for rat mesenteric (peripheral) microvessels, except that the ratios are higher in P of cerebral microvessels for the intermediate and large solutes. These results imply a new approach for delivering large therapeutic agents to the brain.
Collapse
Affiliation(s)
- Lingyan Shi
- Department of Biomedical Engineering, The City College of the City University of New York, New York, New York
| | | | | |
Collapse
|
8
|
Kreft M, Lukšič M, Zorec TM, Prebil M, Zorec R. Diffusion of D-glucose measured in the cytosol of a single astrocyte. Cell Mol Life Sci 2013; 70:1483-92. [PMID: 23224430 PMCID: PMC11113596 DOI: 10.1007/s00018-012-1219-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2012] [Revised: 11/18/2012] [Accepted: 11/22/2012] [Indexed: 01/26/2023]
Abstract
Astrocytes interact with neurons and endothelial cells and may mediate exchange of metabolites between capillaries and nerve terminals. In the present study, we investigated intracellular glucose diffusion in purified astrocytes after local glucose uptake. We used a fluorescence resonance energy transfer (FRET)-based nano sensor to monitor the time dependence of the intracellular glucose concentration at specific positions within the cell. We observed a delay in onset and kinetics in regions away from the glucose uptake compared with the region where we locally super-fused astrocytes with the D-glucose-rich solution. We propose a mathematical model of glucose diffusion in astrocytes. The analysis showed that after gradual uptake of glucose, the locally increased intracellular glucose concentration is rapidly spread throughout the cytosol with an apparent diffusion coefficient (D app) of (2.38 ± 0.41) × 10(-10) m(2) s(-1) (at 22-24 °C). Considering that the diffusion coefficient of D-glucose in water is D = 6.7 × 10(-10) m(2) s(-1) (at 24 °C), D app determined in astrocytes indicates that the cytosolic tortuosity, which hinders glucose molecules, is approximately three times higher than in aqueous solution. We conclude that the value of D app for glucose measured in purified rat astrocytes is consistent with the view that cytosolic diffusion may allow glucose and glucose metabolites to traverse from the endothelial cells at the blood-brain barrier to neurons and neighboring astrocytes.
Collapse
Affiliation(s)
- Marko Kreft
- LN-MCP, Faculty of Medicine, Institute of Pathophysiology, University of Ljubljana, Zaloška cesta 4, 1000, Ljubljana, Slovenia.
| | | | | | | | | |
Collapse
|
9
|
Basic mechanisms of migraine and its acute treatment. Pharmacol Ther 2012; 136:319-33. [DOI: 10.1016/j.pharmthera.2012.08.011] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2012] [Accepted: 08/13/2012] [Indexed: 12/27/2022]
|
10
|
Hasegawa S, Fikre-Merid M, Diksic M. 5-HT2A receptor antagonist M100907 reduces serotonin synthesis: an autoradiographic study. Brain Res Bull 2012; 87:44-9. [PMID: 22056993 PMCID: PMC3653840 DOI: 10.1016/j.brainresbull.2011.10.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2011] [Accepted: 10/19/2011] [Indexed: 11/16/2022]
Abstract
The effects of the administration of the serotonin (5-HT)(2A) antagonist, M100907, on 5-HT synthesis rates, were evaluated using the α-[(14)C]methyl-l-tryptophan (α-MTrp) autoradiographic method. In the treatment study, M100907 (10mg/kg) was injected intraperitoneally 30 min before the α-MTrp injection (30 μCi over 2 min). A single dose of M100907 caused a significant decrease in the synthesis in the anterior olfactory nucleus, accumbens nucleus, frontal cortex, sensory-motor cortex, cingulate cortex, medial caudate-putamen, dorsal thalamus, substantia nigra, inferior collicus, raphe magnus nucleus, superior olive, and raphe pallidus nucleus. These data suggest that the terminal 5-HT(2A) receptors are involved in the regulation of 5-HT synthesis in the entire brain. Further, 5-HT synthesis is likely regulated by the 5-HT(2A) antagonistic property of M100907 in the cortices, anterior olfactory nucleus, caudate putamen, and nucleus accumbens.
Collapse
Affiliation(s)
| | - Maraki Fikre-Merid
- Cone Neurosurgical Research Laboratory, Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, 3801 University Street, Montreal, Quebec, Canada H3A 2B4
| | - Mirko Diksic
- Cone Neurosurgical Research Laboratory, Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, 3801 University Street, Montreal, Quebec, Canada H3A 2B4
| |
Collapse
|
11
|
Li G, Fu BM. An electrodiffusion model for the blood-brain barrier permeability to charged molecules. J Biomech Eng 2011; 133:021002. [PMID: 21280874 DOI: 10.1115/1.4003309] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The endothelial surface glycocalyx layer (SGL) and the basement membrane (BM) are two important components of the blood-brain barrier (BBB). They provide large resistance to solute transport across the BBB in addition to the tight junctions in the cleft between adjacent endothelial cells. Due to their glycosaminoglycan compositions, they carry negative charge under physiological conditions. To investigate the charge effect of the SGL and BM on the BBB permeability to charged solutes, we developed an electrodiffusion model for the transport of charged molecules across the BBB. In this model, constant charge densities were assumed in the SGL and in the BM. Both electrostatic and steric interaction and exclusion to charged molecules were considered within the SGL and the BM and at their interfaces with noncharged regions of the BBB. On the basis of permeability data for the positively charged ribonuclease (+4,radius=2.01 nm) and negatively charged α-lactalbumin (-10,radius=2.08 nm) measured in intact rat mesenteric and pial microvessels, our model predicted that the charge density in both SGL and BM would be ∼30 mEq/L, which is comparable to that in the SGL of mesenteric microvessels. Interestingly, our model also revealed that due to the largest concentration drop in the BM, there is a region with a higher concentration of negatively charged α-lactalbumin in the uncharged inter-endothelial cleft, although the concentration of α-lactalbumin is always lower than that of positively charged ribonuclease and that of a neutral solute in the charged SGL and BM.
Collapse
Affiliation(s)
- Guanglei Li
- Department of Biomedical Engineering, The City College of the City University of New York, 160 Convent Avenue, New York, NY 10031, USA
| | | |
Collapse
|
12
|
Abstract
Astrocytes are glial cells, which play a significant role in a number of processes, including the brain energy metabolism. Their anatomical position between blood vessels and neurons make them an interface for effective glucose uptake from blood. After entering astrocytes, glucose can be involved in different metabolic pathways, e.g. in glycogen production. Glycogen in the brain is localized mainly in astrocytes and is an important energy source in hypoxic conditions and normal brain functioning. The portion of glucose metabolized into glycogen molecules in astrocytes is as high as 40%. It is thought that the release of gliotransmitters (such as glutamate, neuroactive peptides and ATP) into the extracellular space by regulated exocytosis supports a significant part of communication between astrocytes and neurons. On the other hand, neurotransmitter action on astrocytes has a significant role in brain energy metabolism. Therefore, understanding the astrocytes energy metabolism may help understanding neuron-astrocyte interactions.
Collapse
Affiliation(s)
- Mateja Prebil
- Laboratory of Neuroendocrinology and Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Slovenia
| | | | | | | |
Collapse
|
13
|
Cid-Pellitero ED, GarzÓN M. Hypocretin1/OrexinA-containing axons innervate locus coeruleus neurons that project to the Rat medial prefrontal cortex. Implication in the sleep-wakefulness cycle and cortical activation. Synapse 2011; 65:843-57. [DOI: 10.1002/syn.20912] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2010] [Accepted: 01/09/2010] [Indexed: 12/31/2022]
|
14
|
Adori C, Low P, Andó RD, Gutknecht L, Pap D, Truszka F, Takács J, Kovács GG, Lesch KP, Bagdy G. Ultrastructural characterization of tryptophan hydroxylase 2-specific cortical serotonergic fibers and dorsal raphe neuronal cell bodies after MDMA treatment in rat. Psychopharmacology (Berl) 2011; 213:377-91. [PMID: 21052985 DOI: 10.1007/s00213-010-2041-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2010] [Accepted: 09/29/2010] [Indexed: 11/28/2022]
Abstract
RATIONALE 3,4-Methylenedioxymethamphetamine (MDMA, "ecstasy") is a widely used recreational drug known to cause selective long-term serotonergic damage. OBJECTIVES The aim of this study was to characterize the ultrastructure of serotonergic pericarya and proximal neurites in the dorsal raphe nucleus as well as the ultrastructure of serotonergic axons in the frontal cortex of adolescent Dark Agouti rats 3 days after treatment with 15 mg/kg i.p. MDMA. METHODS Light microscopic immunohistochemistry and pre-embedding immunoelectron microscopy with a novel tryptophan hydroxylase-2 (Tph2) specific antibody, as a marker of serotonergic structures. RESULTS Light microscopic analysis showed reduced serotonergic axon density and aberrant swollen varicosities in the frontal cortex of MDMA-treated animals. According to the electron microscopic analysis, Tph2 exhibited diffuse cytoplasmic immunolocalization in dorsal raphe neuronal cell bodies. The ultrastructural-morphometric analysis of these cell bodies did not indicate pathological changes or significant alteration in the cross-sectional areal density of any examined organelles. Proximal serotonergic neurites in the dorsal raphe exhibited no ultrastructural alteration. However, in the frontal cortex among intact fibers, numerous serotonergic axons with destructed microtubules were found. Most of their mitochondria were intact, albeit some injured axons also contained degenerating mitochondria; moreover, a few of them comprised confluent membrane whorls only. CONCLUSIONS Our treatment protocol does not lead to ultrastructural alteration in the serotonergic dorsal raphe cell bodies and in their proximal neurites but causes impairment in cortical serotonergic axons. In these, the main ultrastructural alteration is the destruction of microtubules although a smaller portion of these axons probably undergo an irreversible damage.
Collapse
Affiliation(s)
- Csaba Adori
- Department of Pharmacodynamics, Semmelweis University, Budapest, Hungary
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Li G, Yuan W, Fu BM. A model for the blood-brain barrier permeability to water and small solutes. J Biomech 2011; 43:2133-40. [PMID: 20434157 DOI: 10.1016/j.jbiomech.2010.03.047] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2009] [Revised: 03/27/2010] [Accepted: 03/31/2010] [Indexed: 10/19/2022]
Abstract
The blood-brain barrier (BBB) has unique structures in order to protect the central nervous system. In addition to the tight junction of the microvessel endothelium, there is a uniform and narrow matrix-like basement membrane (BM) sandwiched between the vessel wall and the astrocyte foot processes ensheathing the cerebral microvessel. To understand the mechanism by which these structural components modulate permeability of the BBB, we developed a mathematical model for water and solute transport across the BBB. The fluid flow in the cleft regions of the BBB were approximated by the Poiseuille flow while those in the endothelial surface glycocalyx layer (SGL) and BM were approximated by the Darcy and Brinkman flows, respectively. Diffusion equations in each region were solved for the solute transport. The anatomical parameters were obtained from electron microscopy studies in the literature. Our model predicts that compared to the peripheral microvessels with endothelium only, the BM and the wrapping astrocytes can reduce hydraulic conductivity (L(p)) of the BBB and the permeability to sodium fluorescein (P(NaF)) by up to 6-fold when the fiber density in the BM is the same as that in the SGL. Even when the SGL and the tight junctions of the endothelium are compromised, the BM and astrocyte foot processes can still maintain the low L(p) and P(NaF) of the BBB. Our model predictions indicate that the BM and astrocytes of the BBB provide a great protection to the CNS under both physiological and pathological conditions.
Collapse
Affiliation(s)
- Guanglei Li
- Department of Biomedical Engineering, The City College of the City University of New York, NY, USA
| | | | | |
Collapse
|
16
|
Descarries L, Riad M, Parent M. Ultrastructure of the Serotonin Innervation in the Mammalian Central Nervous System. HANDBOOK OF BEHAVIORAL NEUROSCIENCE 2010. [DOI: 10.1016/s1569-7339(10)70072-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
17
|
Affiliation(s)
- Quentin J Pittman
- Department of Physiology and Biophysics, Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada T2N 4N1.
| | | |
Collapse
|
18
|
Imhof A, Kövari E, von Gunten A, Gold G, Rivara CB, Herrmann FR, Hof PR, Bouras C, Giannakopoulos P. Morphological substrates of cognitive decline in nonagenarians and centenarians: a new paradigm? J Neurol Sci 2007; 257:72-9. [PMID: 17303173 DOI: 10.1016/j.jns.2007.01.025] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Brain aging is characterized by the formation of neurofibrillary tangles (NFT) and senile plaques (SP) in both cognitively intact individuals and patients with Alzheimer's disease (AD). The ubiquitous presence of these lesions and the steady increase of the prevalence of dementia up to 85 years have strongly supported a continuum between normal brain aging and AD. In this context, the study of nonagenarians and centenarians could provide key informations about the characteristics of extreme aging. We provide here a detailed review of currently available neuropathological data in very old individuals and critically discuss the patterns of NFT, SP and neuronal loss distribution as a function of age. In younger cohorts, NFTs are usually restricted to hippocampal formation, whereas clinical signs of dementia appear when temporal neocortex is involved. SPs would not be a specific marker of cognitive impairment as no correlation was found between their quantitative distribution and AD severity. The low rate of AD lesions even in severe AD as well as the weakness of clinicopathological correlations reported in the oldest-old indicate that AD pathology is not a mandatory phenomenon of increasing chronological age. Our recent stereological observations of hippocampal microvasculature in oldest-old cases challenge the traditional lesional model by revealing that mean capillary diameters is an important structural determinant of cognition in this age group.
Collapse
Affiliation(s)
- Anouk Imhof
- Department of Psychiatry, HUG, Belle-Idée, University of Geneva School of Medicine, Geneva, Switzerland
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Abstract
Molecular biological investigations into the brain capillary endothelium and microvasculature, which forms the blood-brain barrier (BBB) in vivo, can provide the platform for the discovery and the molecular cloning of BBB-specific genes. Novel BBB genes can be discovered with either a genomics-based approach such as subtractive suppressive hybridization, or a proteomics approach using subtractive antibody expression cloning. BBB-specific genes are disproportionately transporter genes encoding either for carrier-mediated transporters, active efflux transporters, or receptor-mediated transporters. The discovery of new BBB transporters can lead to the development of new approaches to brain drug delivery using endogenous brain endothelial transporters.
Collapse
Affiliation(s)
- William M Pardridge
- Department of Medicine, UCLA, Warren Hall 13-164, 900 Veteran Avenue, Los Angeles, CA 90024, USA.
| |
Collapse
|
20
|
Bouras C, Kövari E, Herrmann FR, Rivara CB, Bailey TL, von Gunten A, Hof PR, Giannakopoulos P. Stereologic Analysis of Microvascular Morphology in the Elderly. J Neuropathol Exp Neurol 2006; 65:235-44. [PMID: 16651885 DOI: 10.1097/01.jnen.0000203077.53080.2c] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
The presence of microvascular changes has been documented both in brain aging and Alzheimer disease (AD), although the relationship between the morphometry of brain capillaries and cognitive impairment is still unknown. We performed an analysis of capillary morphometric parameters and AD-related pathology in 19 elderly individuals with variable degrees of cognitive decline. Cognitive status was assessed prospectively using the Clinical Dementia Rating (CDR) scale. Total capillary lengths and numbers as well as mean length-weighted diameter, total neurofibrillary tangle (NFT) and neuron numbers, and amyloid volume were estimated in entorhinal cortex and the CA1 field. Total capillary numbers and mean diameters explained almost 40% of the neuron number variability in both the CA1 and entorhinal cortex. Total capillary length and numbers in the CA1 and entorhinal cortex did not predict cognitive status. Mean capillary diameters in the CA1 and entorhinal cortex were significantly related to CDR scores, explaining 18.5% and 31.1% of the cognitive variability, respectively. This relationship persisted after controlling for NFT and neuron numbers in multivariate regression models. Consistent with the growing interest about microvascular pathology in brain aging, the present data indicate that changes in capillary morphometric parameters may represent independent predictors of AD-related neuronal depletion and cognitive decline.
Collapse
Affiliation(s)
- Constantin Bouras
- Departments of Psychiatry, HUG Belle-Idée, University of Geneva School of Medicine, Switzerland.
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Sykes PA, Condron BG. Development and sensitivity to serotonin of Drosophila serotonergic varicosities in the central nervous system. Dev Biol 2005; 286:207-16. [PMID: 16122730 PMCID: PMC2896038 DOI: 10.1016/j.ydbio.2005.07.025] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2004] [Revised: 07/18/2005] [Accepted: 07/20/2005] [Indexed: 10/25/2022]
Abstract
Serotonin is a classical small-molecule neurotransmitter with known effects on developmental processes. Previous studies have shown a developmental role for serotonin in the fly peripheral nervous system. In this study, we show that serotonin can modulate the development of serotonergic varicosities within the fly central nervous system. We have developed a system to examine the development of serotonergic varicosities in the larval CNS. We use this method to describe the normal serotonergic development in the A7 abdominal ganglion. From first to third instar larvae, the volume of the neuropil and number of serotonergic varicosities increase substantially while the varicosity density remains relatively constant. We hypothesize that serotonin is an autoregulator for serotonergic varicosity density. We tested the sensitivity of serotonergic varicosities to serotonin by adding neurotransmitter at various stages to isolated larval ventral nerve cords. Addition of excess exogenous serotonin decreases native varicosity density in older larvae, and these acute effects are reversible. The effects of serotonin appear to be selective for serotonergic varicosities, as dopaminergic and corazonergic varicosities remain qualitatively intact following serotonin application.
Collapse
Affiliation(s)
- Paul A. Sykes
- University of Virginia Medical Scientist Training Program, Charlottesville, VA 22903, USA
- Department of Biology, University of Virginia, Gilmer Hall 071, Box 400328, Charlottesville, VA 22903, USA
| | - Barry G. Condron
- Department of Biology, University of Virginia, Gilmer Hall 071, Box 400328, Charlottesville, VA 22903, USA
- Corresponding author. Fax: +1 434 243 5315. (B.G. Condron)
| |
Collapse
|
22
|
Lehmann K, Butz M, Teuchert-Noodt G. Offer and demand: proliferation and survival of neurons in the dentate gyrus. Eur J Neurosci 2005; 21:3205-16. [PMID: 16026459 DOI: 10.1111/j.1460-9568.2005.04156.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The proliferation and survival of new cells in the dentate gyrus of mammals is a complex process that is subject to numerous influences, presenting a confusing picture. We suggest regarding these processes on the level of small networks, which can be simulated in silico and which illustrate in a nutshell the influences that proliferating cells exert on plasticity and the conditions they require for survival. Beyond the insights gained by this consideration, we review the available literature on factors that regulate cell proliferation and neurogenesis in the dentate gyrus in vivo. It turns out that the rate of cell proliferation and excitatory afferents via the perforant path interactively determine cell survival, such that the best network stability is achieved when either of the two is increased whereas concurrent activation of the two factors lowers cell survival rates. Consequently, the mitotic activity is regulated by systemic parameters in compliance with the hippocampal network's requirements. The resulting neurogenesis, in contrast, depends on local factors, i.e. the activity flow within the network. In the process of cell differentiation and survival, each cell's spectrum of afferent and efferent connections decides whether it will integrate into the network or undergo apoptosis, and it is the current neuronal activity which determines the synaptic spectrum. We believe that this framework will help explain the biology of dentate cell proliferation and provide a basis for future research hypotheses.
Collapse
Affiliation(s)
- Konrad Lehmann
- Department Neuroanatomy, Fac. Biology, University of Bielefeld, PO Box 100131, 33501 Bielefeld, Germany.
| | | | | |
Collapse
|
23
|
Edvinsson L, Uddman R. Neurobiology in primary headaches. ACTA ACUST UNITED AC 2004; 48:438-56. [PMID: 15914251 DOI: 10.1016/j.brainresrev.2004.09.007] [Citation(s) in RCA: 175] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2004] [Revised: 08/17/2004] [Accepted: 09/08/2004] [Indexed: 11/23/2022]
Abstract
Primary headaches such as migraine and cluster headache are neurovascular disorders. Migraine is a painful, incapacitating disease that affects a large portion of the adult population with a substantial economic burden on society. The disorder is characterised by recurrent unilateral headaches, usually accompanied by nausea, vomiting, photophobia and/or phonophobia. A number of hypothesis have emerged to explain the specific causes of migraine. Current theories suggest that the initiation of a migraine attack involves a primary central nervous system (CNS) event. It has been suggested that a mutation in a calcium gene channel renders the individual more sensitive to environmental factors, resulting in a wave of cortical spreading depression when the attack is initiated. Genetically, migraine is a complex familial disorder in which the severity and the susceptibility of individuals are most likely governed by several genes that vary between families. Genom wide scans have been performed in migraine with susceptibility regions on several chromosomes some are associated with altered calcium channel function. With positron emission tomography (PET), a migraine active region has been pointed out in the brainstem. In cluster headache, PET studies have implicated a specific active locus in the posterior hypothalamus. Both migraine and cluster headache involve activation of the trigeminovascular system. In support, there is a clear association between the head pain and the release of the neuropeptide calcitonin gene-related peptide (CGRP) from the trigeminovascular system. In cluster headache there is, in addition, release of the parasympathetic neuropeptide vasoactive intestinal peptide (VIP) that is coupled to facial vasomotor symptoms. Triptan administration, activating the 5-HT(1B/1D) receptors, causes the headache to subside and the levels of neuropeptides to normalise, in part through presynaptic inhibition of the cranial sensory nerves. These data suggest a central role for sensory and parasympathetic mechanisms in the pathophysiology of primary headaches. The positive clinical trial with a CGRP receptor antagonist offers a new promising way of treatment.
Collapse
Affiliation(s)
- Lars Edvinsson
- Department of Internal Medicine, University Hospital, S-221 85 Lund, Sweden.
| | | |
Collapse
|
24
|
Chang YC, Stins MF, McCaffery MJ, Miller GF, Pare DR, Dam T, Paul-Satyaseela M, Kim KS, Kwon-Chung KJ, Paul-Satyasee M. Cryptococcal yeast cells invade the central nervous system via transcellular penetration of the blood-brain barrier. Infect Immun 2004; 72:4985-95. [PMID: 15321990 PMCID: PMC517459 DOI: 10.1128/iai.72.9.4985-4995.2004] [Citation(s) in RCA: 192] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cryptococcal meningoencephalitis develops as a result of hematogenous dissemination of inhaled Cryptococcus neoformans from the lung to the brain. The mechanism(s) by which C. neoformans crosses the blood-brain barrier (BBB) is a key unresolved issue in cryptococcosis. We used both an in vivo mouse model and an in vitro model of the human BBB to investigate the cryptococcal association with and traversal of the BBB. Exposure of human brain microvascular endothelial cells (HBMEC) to C. neoformans triggered the formation of microvillus-like membrane protrusions within 15 to 30 min. Yeast cells of C. neoformans adhered to and were internalized by the HBMEC, and they crossed the HBMEC monolayers via a transcellular pathway without affecting the monolayer integrity. The histopathology of mouse brains obtained after intravenous injection of C. neoformans showed that the yeast cells either were associated with endothelial cells or escaped from the brain capillary vessels into the neuropil by 3 h. C. neoformans was found in the brain parenchyma away from the vessels by 22 h. Association of C. neoformans with the choroid plexus, however, was not detected during up to 10 days of observation. Our findings indicate that C. neoformans cells invade the central nervous system by transcellular crossing of the endothelium of the BBB.
Collapse
Affiliation(s)
- Yun C Chang
- Molecular Microbiology Section, Laboratory of Clinical Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Feinstein DL, Heneka MT, Gavrilyuk V, Dello Russo C, Weinberg G, Galea E. Noradrenergic regulation of inflammatory gene expression in brain. Neurochem Int 2002; 41:357-65. [PMID: 12176079 DOI: 10.1016/s0197-0186(02)00049-9] [Citation(s) in RCA: 181] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
It is now well accepted that inflammatory events contribute to the pathogenesis of numerous neurological disorders, including multiple sclerosis (MS), Alzheimer's disease (AD), Parkinson's disease, and AID's dementia. Whereas inflammation in the periphery is subject to rapid down regulation by increases in anti-inflammatory molecules and the presence of scavenging soluble cytokine receptors, the presence of an intact blood-brain barrier may limit a similar autoregulation from occurring in brain. Mechanisms intrinsic to the brain may provide additional immunomodulatory functions, and whose dysregulation could contribute to increased inflammation in disease. The findings that noradrenaline (NA) reduces cytokine expression in microglial, astroglial, and brain endothelial cells in vitro, and that modification of the noradrenergic signaling system occurs in some brain diseases having an inflammatory component, suggests that NA could act as an endogenous immunomodulator in brain. Furthermore, accumulating studies indicate that modification of the noradrenergic signaling system occurs in some neurodiseases. In this article, we will briefly review the evidence that NA can modulate inflammatory gene expression in vitro, summarize data supporting a similar immunomodulatory role in brain, and present recent data implicating a role for NA in attenuating the cortical inflammatory response to beta amyloid protein.
Collapse
|
26
|
Abstract
Functional imaging methods exploit the relationship between neuronal activity, energy demand and cerebral blood flow to functionally map the brain. Despite the increasing use of these imaging tools in basic and clinical neuroscience, the neurobiological processes underlying the imaging signals remain unclear. Recently, interest has been focused on uncovering the signals that trigger the metabolic and vascular changes accompanying variations in neuronal activity. Advances in this field have demonstrated that release of the major excitatory neurotransmitter glutamate initiates diverse signaling processes between neurons and astrocytes, and that this signaling could be crucial for the occurrence of brain imaging signals. In this article we review the hypothesis that glutamate represents a common trigger for both neurometabolic and neurovascular coupling.
Collapse
Affiliation(s)
- Gilles Bonvento
- CEA CNRS URA 2210, Service Hospitalier Frédéric Joliot 4, place du Général Leclerc, 91401 Orsay Cedex, France.
| | | | | |
Collapse
|
27
|
Løkkegaard A, Nyengaard JR, West MJ. Stereological estimates of number and length of capillaries in subdivisions of the human hippocampal region. Hippocampus 2002; 11:726-40. [PMID: 11811667 DOI: 10.1002/hipo.1088] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The hippocampal formation is a neuroanatomically well-defined region of the brain involved in memory processes. In view of the functional importance of the region and its involvement in a number of brain pathologies, including Alzheimer's disease and temporal lobe epilepsy, a quantitative description of its vascular supply represents an important first step in evaluating the involvement of vascular changes in these phenomena. Unbiased estimates of the length and connectivity of the vascular supply of brain regions have not been described previously. The total number, total length, and distribution of the diameters of capillaries were estimated in the five major subdivisions of the hippocampal formation (fascia dentata, hilus, CA3-2, CA1, and subiculum) in 5 normal males, 52-84 years of age. These estimates were used to derive several other structural parameters. Both the primary and the derived parameters were used to make inter- and intra-individual comparisons. For each of the five major subdivisions from each individual, the volume was estimated using the Cavalieri principle. The total capillary length was estimated on 3-microm-thick plastic isotropic uniform random sections. Using a topological definition of a capillary unit and the optical disector, total capillary number was estimated in 40-microm-thick plastic sections. Length-and number-weighted three-dimensional diameter distributions were obtained from the thin and thick plastic sections, respectively. In each subdivision the total length of capillaries was correlated with previously obtained data on the number of neurons in the same subdivisions of the same individuals. Intersubdivisional differences were observed, in that the hilus of the dentate gyrus had fewer capillaries per unit volume than the other four subdivisions. Interindividual comparisons indicate that the interindividual variances are of a magnitude suitable for sensitive group comparisons. The design-based stereological methods that were used in the analyses can provide a basis for a new unbiased approach to the estimation of vascular parameters in well-defined regions of the brain.
Collapse
Affiliation(s)
- A Løkkegaard
- Stereological Research Laboratory, Institute for Experimental Clinical Research, University of Aarhus, Denmark.
| | | | | |
Collapse
|
28
|
Maisky VA, Oleshko NN, Bazilyuk OV, Talanov SA, Sagach VF, Appenzeller O. Fos and nitric oxide synthase in rat brain with chronic mesostriatal dopamine deficiency: effects of nitroglycerin and hypoxia. Parkinsonism Relat Disord 2002; 8:261-70. [PMID: 12039421 DOI: 10.1016/s1353-8020(01)00030-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We found sustained proto-oncogene c-fos expression in neurons of the lateral and medial neostriatum and suppression of this expression in nitric oxide synthase (NOS)-containing cells within the islands of Calleja after lesions of the dopaminergic mesostriatal system induced by 6-hydroxydopamine. Systemic administration of nitroglycerin (NTG) or mild hypoxia resulted in a decreased of c-fos expression in the dorsolateral part of the denervated neostriatum. However, in other brain structures NTG or mild hypoxia evoked sustained c-fos expression in NOS-containing neurons and in the sources catecholaminergic projections involved in the control of cardiovascular function. We propose that the administration of NTG, an NO donor, or hypoxia partially attenuate the consequences of an excessively increased glutamate level in the denervated neostriatum which are manifest in high level of c-fos expression.
Collapse
Affiliation(s)
- V A Maisky
- Department of Circulation Physiology, Institute of Physiology, National Academy of Sciences of Ukraine, 4 Bogomoletz str., Kyiv, 01024, Ukraine.
| | | | | | | | | | | |
Collapse
|
29
|
Welch KM, Nagesh V, Aurora SK, Gelman N. Periaqueductal gray matter dysfunction in migraine: cause or the burden of illness? Headache 2001; 41:629-37. [PMID: 11554950 DOI: 10.1046/j.1526-4610.2001.041007629.x] [Citation(s) in RCA: 422] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
OBJECTIVE The periaqueductal gray matter (PAG) is at the center of a powerful descending antinociceptive neuronal network. We studied iron homeostasis in the PAG as an indicator of function in patients with episodic migraine (EM) between attacks and patients with chronic daily headache (CDH) during headache. High-resolution magnetic resonance techniques were used to map the transverse relaxation rates R2, R2*, and R2' in the PAG, red nucleus (RN), and substantia nigra (SN). R2' is a measure of non-heme iron in tissues. METHODS Seventeen patients diagnosed with EM with and without aura, 17 patients diagnosed with CDH and medication overuse, and 17 normal adults (N) were imaged with a 3.0-tesla magnetic resonance imaging system. For each subject, mean values of the relaxation rates, R2 (1/T2), R2* (1/T2*), and R2' (R2* - R2) were obtained for the PAG, RN, and SN. R2, R2*, and R2' values of the EM, CDH, and N groups were compared using analysis of variance, Student t test, and correlation analysis. RESULTS In the PAG, there was a significant increase in mean R2' and R2* values in both the EM and CDH groups (P<.05) compared with the N group, but no significant difference in these values was demonstrated between the EM and CDH groups, or between those with migraine with or without aura in the EM group. Positive correlations were found for duration of illness with R2' in the EM and CDH groups. A decrease in mean R2' and R2* values also was observed in the RN and SN of the CDH group compared with the N and EM groups (P<.05), explained best by flow activation due to head pain. CONCLUSIONS Iron homeostasis in the PAG was selectively, persistently, and progressively impaired in the EM and CDH groups, possibly caused by repeated migraine attacks. These results support and emphasize the role of the PAG as a possible "generator" of migraine attacks, potentially by dysfunctional control of the trigeminovascular nociceptive system.
Collapse
Affiliation(s)
- K M Welch
- Department of Neurology, University of Kansas Medical Center, Kansas City, KS 66160-7300, USA
| | | | | | | |
Collapse
|
30
|
Abstract
The claustrum is reciprocally and topographically connected with all functional areas of the cerebral cortex. Different cortical areas differ in the source, density, and laminar distribution of serotonergic innervation, with visual cortex receiving an especially rich serotonergic innervation. We asked if there were likewise differences in serotonergic innervation in different regions of the claustrum. We analyzed 50-microm coronal sections through the claustrum of the macaque monkey processed using standard immunohistochemical techniques and an antibody to serotonin. We found labeled fibers throughout the dorsal-ventral and anterior-posterior extent of the claustrum. A few fibers were relatively straight and lacked varicosities. Most fibers had varicosities; the size, shape, and spacing of varicosities varied among fibers and even along a single fiber. Some stained fibers partially encircled cells, and varicosities were seen in close apposition to the cell bodies. There was a major difference between dorsal and ventral claustrum in the pattern of stained fibers. In the ventral, visual, claustrum, stained segments of axons were short and randomly arranged relative to each other, and there were many stained puncta. In the more dorsal, nonvisual claustrum, many fibers ran in a dorsal-ventral direction, along the long axis of the claustrum, and could be followed for long distances.
Collapse
Affiliation(s)
- J S Baizer
- Department of Physiology and Biophysics, University at Buffalo, School of Medicine and Biomedical Sciences, State University of New York, Buffalo, NY 14214, USA.
| |
Collapse
|
31
|
Descarries L, Mechawar N. Ultrastructural evidence for diffuse transmission by monoamine and acetylcholine neurons of the central nervous system. PROGRESS IN BRAIN RESEARCH 2001; 125:27-47. [PMID: 11098652 DOI: 10.1016/s0079-6123(00)25005-x] [Citation(s) in RCA: 165] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Affiliation(s)
- L Descarries
- Département de pathologie, Centre de recherche en sciences neurologiques, Faculté de médecine, Université de Montréal, Canada.
| | | |
Collapse
|
32
|
Balyasnikova IV, Pelligrino DA, Greenwood J, Adamson P, Dragon S, Raza H, Galea E. Cyclic adenosine monophosphate regulates the expression of the intercellular adhesion molecule and the inducible nitric oxide synthase in brain endothelial cells. J Cereb Blood Flow Metab 2000; 20:688-99. [PMID: 10779013 DOI: 10.1097/00004647-200004000-00006] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The authors studied whether cyclic AMP (cAMP), a widespread regulator of inflammation, modulates the cytokine-mediated expression of the intercellular adhesion molecule, intercellular adhesion molecule-1 (ICAM-1), and the inflammatory nitric oxide synthase 2 (NOS-2), in primary and immortalized brain endothelial cell cultures (GP8.3 cell line). When measured by enzyme-linked immunosorbent assay (ELISA), ICAM-1 was constitutively expressed and was up-regulated twofold by interleukin-1beta, with no effect of interferon-gamma. The NOS-2 activity, assessed by nitrite accumulation, was absent from untreated cultures but was induced by interleukin-1beta and interferon-gamma acting synergistically. Stimulation of cAMP-dependent pathways with forskolin or dibutyryl cAMP decreased ICAM-1 protein expression, whereas it increased NOS-2 protein expression. For both ICAM-1 and NOS-2, mRNA expression correlated with protein expression. Blockade of NOS activity with L-N-monomethylargiuine (L-NMMA) did not alter ICAM-1 expression, indicating that the nitric oxide released by NOS-2 did not cause the down-regulation of ICAM-1. Analysis of NFKB activation indicated that cAMP acted through a mechanism other than inhibition of nuclear translocation of NFKB. The authors conclude that cAMP modulates the expression of proinflammatory molecules in brain endothelium. This suggests that inflammatory processes at the blood-brain barrier in vivo may be regulated by perivascular neurotransmitters via cAMP.
Collapse
Affiliation(s)
- I V Balyasnikova
- Department of Anesthesiology, College of Medicine, University of Illinois at Chicago, USA
| | | | | | | | | | | | | |
Collapse
|
33
|
McBean DE, Ritchie IM, Olverman HJ, Kelly PA. Effects of the specific serotonin reuptake inhibitor, citalopram, upon local cerebral blood flow and glucose utilisation in the rat. Brain Res 1999; 847:80-4. [PMID: 10564738 DOI: 10.1016/s0006-8993(99)02033-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The effects of the potent selective 5-HT reuptake blocking agent, citalopram (10 mg/kg, i.v.), on local cerebral blood flow (lCBF) and local cerebral metabolic rate of glucose (lCMRglu) were measured using [14C]iodoantipyrine (IAP) and [14C]2-deoxyglucose (2-DG) autoradiography, respectively. Significant decreases in lCBF were observed in nine of the 27 brain areas analysed, with significant decreases in lCMRglu observed in 17 areas. While decreases in blood flow were observed, it cannot be concluded that these were in fact the result of a direct action of 5-HT upon serotonergic receptors in cerebrovascular smooth muscle, since the dynamic relationship between flow and metabolism remains largely intact. The reductions in lCBF may be explained entirely by the secondary effects of depressed cerebral metabolic demand induced by citalopram which would, once again, question the role of specifically perivascular serotonergic nerve activity in the tonic control of cerebral blood flow.
Collapse
Affiliation(s)
- D E McBean
- Faculty of Health Sciences, Queen Margaret University College, Clerwood Terrace, Edinburgh, UK.
| | | | | | | |
Collapse
|
34
|
Yu PL, Fujimura M, Okumiya K, Kinoshita M, Hasegawa H, Fujimiya M. Immunohistochemical localization of tryptophan hydroxylase in the human and rat gastrointestinal tracts. J Comp Neurol 1999; 411:654-65. [PMID: 10421874 DOI: 10.1002/(sici)1096-9861(19990906)411:4<654::aid-cne9>3.0.co;2-h] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Because few previous studies have shown the immunohistochemical localization of tryptophan 5-hydroxylase (TPH) in the gastrointestinal tract, we developed a specific antibody against TPH purified from mouse mastocytoma P-815 and stained human and rat gastrointestinal tracts. The specificity of the antibody was examined by Western blotting and by immunohistochemistry in brain sections. Human ileum and colon specimens, rat stomach, duodenum, jejunum, ileum and colon specimens, with and without colchicine treatment were prepared for immunohistochemistry. Immunoelectron microscopic double staining of TPH and serotonin/chromogranin A and immunofluorescence double staining of TPH and serotonin were performed to identify the cell types. Epithelial enterochromaffin (EC) cells, mast cells in the lamina propria and submucosa, and varicose fibers in the submucosa and muscle layer showed positive immunoreactivity in all segments examined from human and normal rat specimens. In colchicine-treated rat specimens, nerve cell bodies in the myenteric plexus were stained. Because the antibody does not cross react with tyrosine hydroxylase as defined in Western blotting or brain sections, these positive structures may contain TPH. The present results show evidence that EC cells, mast cells, and nerve cell bodies and fibers in the gastrointestinal tracts of both the human and the rat contain TPH and therefore may have the ability to synthesize serotonin from tryptophan.
Collapse
Affiliation(s)
- P L Yu
- Department of Surgery, Shiga University of Medical Science, Seta, Otsu, Shiga 520-21, Japan
| | | | | | | | | | | |
Collapse
|
35
|
Cohen Z, Bouchelet I, Olivier A, Villemure JG, Ball R, Stanimirovic DB, Hamel E. Multiple microvascular and astroglial 5-hydroxytryptamine receptor subtypes in human brain: molecular and pharmacologic characterization. J Cereb Blood Flow Metab 1999; 19:908-17. [PMID: 10458598 DOI: 10.1097/00004647-199908000-00010] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Physiologic and anatomic evidence suggest that 5-hydroxytryptamine (5-HT) neurons regulate local cerebral blood flow and blood-brain barrier permeability. To evaluate the possibility that some of these effects occur directly on the blood vessels, molecular and/or pharmacologic approaches were used to assess the presence of 5-HT receptors in human brain microvascular fractions, endothelial and smooth muscle cell cultures, as well as in astroglial cells which intimately associate with intraparenchymal blood vessels. Isolated microvessels and capillaries consistently expressed messages for the h5-HT1B, h5-HT1D, 5-HT1F, 5-HT2A but not 5-HT7 receptors. When their distribution within the vessel wall was studied in more detail, it was found that capillary endothelial cells exhibited mRNA for the h5-HT1D and for the 5-HT7 receptors whereas microvascular smooth muscle cells, in addition to h5-HT1D and 5-HT7, also showed polymerase chain reaction products for h5-HT1B receptors. Expression of 5-HT1F and 5-HT2A receptor mRNAs was never detected in any of the microvascular cell cultures. In contrast, messages for all 5-HT receptors tested were detected in human brain astrocytes with a predominance of the 5-HT2A and 5-HT7 subtypes. In all cultures, sumatriptan inhibited (35-58%, P < .05) the forskolin-stimulated production of cyclic AMP, an effect blocked by the 5-HT1B/1D receptor antagonists GR127935 and GR55562. In contrast, 5-carboxamidotryptamine induced strong increases (> or = 400%, P < .005) in basal cyclic AMP levels that were abolished by mesulergine, a nonselective 5-HT7 receptor antagonist. Only astroglial cells showed a ketanserin-sensitive increase (177%, P < .05) in IP3 formation when exposed to 5-HT. These results show that specific populations of functional 5-HT receptors are differentially distributed within the various cellular compartments of the human cortical microvascular bed, and that human brain astroglial cells are endowed with multiple 5-HT receptors. These findings emphasize the complex interactions between brain serotonergic pathways and non-neuronal cells within the CNS and, further, they raise the possibility that some of these receptors may be activated by antimigraine compounds such as brain penetrant triptan derivatives.
Collapse
Affiliation(s)
- Z Cohen
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, Montréal, Québec, Canada
| | | | | | | | | | | | | |
Collapse
|
36
|
Lynch CD, Cooney PT, Bennett SA, Thornton PL, Khan AS, Ingram RL, Sonntag WE. Effects of moderate caloric restriction on cortical microvascular density and local cerebral blood flow in aged rats. Neurobiol Aging 1999; 20:191-200. [PMID: 10537028 DOI: 10.1016/s0197-4580(99)00032-9] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The present study was designed to assess the impact of moderate caloric restriction (60% of ad libitum fed animals) on cerebral vascular density and local cerebral blood flow. Vascular density was assessed in male Brown-Norway rats from 7-35 months of age using a cranial window technique. Arteriolar density, arteriole-arteriole anastomoses, and venular density decreased with age and these effects were attenuated by moderate caloric restriction. Analysis of local cerebral blood using [14C]iodoantipyrine indicated that basal blood flow decreased with age in CA1, CA3 and dentate gyrus of hippocampus; similar trends were evident in cingulate, retrosplenal, and motor cortex. Basal blood flow was increased in all brain regions of moderate caloric restricted old animals (compared to old ad libitum fed animals) and no differences were observed between ad libitum fed young and caloric restricted older animals. In response to a CO2 challenge to maximally dilate vessels, blood flow increased in young and old ad libitum fed animals, but a similar increase was not observed in caloric restricted old animals. We conclude that a decrease in cerebral vasculature is an important contributing factor in the reduction in blood flow with age. Nevertheless, vessels from young and old animals have the capacity to dilate in response to a CO2 challenge and, after CO2, no differences are observed between the two age-groups. These results are consistent with the hypothesis that aged animals fail to adequately regulate local cerebral blood flow in response to physiological stimuli. Moderate caloric restriction increases microvascular density and cerebral blood flow in aged animals but tissues exhibit little or no increase in blood flow in response to CO2 challenge. The cause of this deficient response may indicate that vessels are maximally dilated in aged calorically restricted animals or that they fail to exhibit normal regulatory control.
Collapse
Affiliation(s)
- C D Lynch
- Department of Physiology and Pharmacology, Wake Forest University, School of Medicine, Winston-Salem, NC 27157-1083, USA
| | | | | | | | | | | | | |
Collapse
|
37
|
Simpson KL, Fisher TM, Waterhouse BD, Lin RC. Projection patterns from the raphe nuclear complex to the ependymal wall of the ventricular system in the rat. J Comp Neurol 1998; 399:61-72. [PMID: 9725701 DOI: 10.1002/(sici)1096-9861(19980914)399:1<61::aid-cne5>3.0.co;2-8] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The goal of the present study was to characterize the anatomical and neurochemical relationships that the raphe nuclear complex maintains with respect to lateralized and centralized components of the ventricular system. From this investigation, we 1) determined the ipsilateral vs. contralateral distribution of raphe efferents to the ependymal wall of the lateral ventricle, 2) assessed the degree of collateralization of individual ependymal projection neurons to other sites along the ventricular path, 3) compared the topography of raphe neurons that project to the ventricular lining as well as the lumen of the fourth and lateral ventricles, and 4) evaluated the neurochemical identity of raphe neurons that innervate the ventricular system. After tracer injections into the lateral ventricle, labeled cells were distributed evenly on both sides of the midline in the dorsomedial subregion of the intermediate dorsal raphe nucleus. Further rostrally, labeled cells were clustered bilaterally above the medial longitudinal fasciculi and extended into the median raphe nucleus. Injections that involved the ependymal wall of the lateral ventricle resulted in prominent ipsilateral labeling within the dorsal raphe nucleus, just ventral to the cerebral aqueduct. Most of the labeled cells in this latter group had collateral projections to other sites along the ventricular path. Most of the ventricle projection cells contained serotonin but not nicotinamide adenine dinucleotide phosphate diaphorase. These findings indicate that the raphe nuclear complex is topographically organized with respect to the ventricular system. Selected subsets of serotoninergic dorsal raphe neurons may influence discrete segments of the ventricular system independently as well as coordinate functions throughout the system through axon collaterals to other sites along the ventricular neuraxis.
Collapse
Affiliation(s)
- K L Simpson
- Department of Neurobiology and Anatomy, Allegheny University of the Health Sciences, Philadelphia, Pennsylvania 19129, USA
| | | | | | | |
Collapse
|
38
|
Krimer LS, Muly EC, Williams GV, Goldman-Rakic PS. Dopaminergic regulation of cerebral cortical microcirculation. Nat Neurosci 1998; 1:286-9. [PMID: 10195161 DOI: 10.1038/1099] [Citation(s) in RCA: 242] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Functional variations in cerebral cortical activity are accompanied by local changes in blood flow, but the mechanisms underlying this physiological coupling are not well understood. Here we report that dopamine, a neurotransmitter normally associated with neuromodulatory actions, may directly affect local cortical blood flow. Using light and electron-microscopic immunocytochemistry, we show that dopaminergic axons innervate the intraparenchymal microvessels. We also provide evidence in an in vitro slice preparation that dopamine produces vasomotor responses in the cortical vasculature. These anatomical and physiological observations reveal a previously unknown source of regulation of the microvasculature by dopamine. The findings may be relevant to the mechanisms underlying changes in blood flow observed in circulatory and neuropsychiatric disorders.
Collapse
Affiliation(s)
- L S Krimer
- Section of Neurobiology, Yale University School of Medicine, New Haven, Connecticut 06510, USA
| | | | | | | |
Collapse
|
39
|
Galea E, Golanov EV, Feinstein DL, Kobylarz KA, Glickstein SB, Reis DJ. Cerebellar stimulation reduces inducible nitric oxide synthase expression and protects brain from ischemia. THE AMERICAN JOURNAL OF PHYSIOLOGY 1998; 274:H2035-45. [PMID: 9841530 DOI: 10.1152/ajpheart.1998.274.6.h2035] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A focal infarction produced by occlusion of the middle cerebral artery (MCAO) in spontaneously hypertensive rats induced expression of inducible nitric oxide synthase (iNOS) mRNA, measured by competitive reverse transcription-polymerase chain reaction. The mRNA appeared simultaneously in the ischemic core and penumbra at 8 h, peaked between 14 and 24 h, and disappeared by 48 h. At 24 h, inducible nitric oxide synthase (iNOS)-like immunoreactivity was present in the endothelium of cerebral microvessels and in scattered cells, probably representing leukocytes or activated microglia. Electrical stimulation of the cerebellar fastigial nucleus (FN) for 1 h, 48 h before MCAO, reduced infarct volumes by 45% by decreasing cellular death in the ischemic penumbra. It also reduced by >90% the expression of iNOS mRNA and protein in the penumbra, but not core, and decreased by 44% the iNOS enzyme activity. We conclude that excitation of neuronal networks represented in the cerebellum elicits a conditioned central neurogenic neuroprotection associated with the downregulation of iNOS mRNA and protein. This neuroimmune interaction may, by blocking the expression of iNOS, contribute to neuroprotection.
Collapse
Affiliation(s)
- E Galea
- Division of Neurobiology, Department of Neurology and Neuroscience, Cornell University Medical College, New York, New York 10021, USA.
| | | | | | | | | | | |
Collapse
|
40
|
Kacem K, Lacombe P, Seylaz J, Bonvento G. Structural organization of the perivascular astrocyte endfeet and their relationship with the endothelial glucose transporter: A confocal microscopy study. Glia 1998. [DOI: 10.1002/(sici)1098-1136(199805)23:1<1::aid-glia1>3.0.co;2-b] [Citation(s) in RCA: 235] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
41
|
Abounader R, Hamel E. Associations between neuropeptide Y nerve terminals and intraparenchymal microvessels in rat and human cerebral cortex. J Comp Neurol 1997. [DOI: 10.1002/(sici)1096-9861(19971124)388:3<444::aid-cne7>3.0.co;2-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
42
|
Bonvento G, Borredon J, Seylaz J, Lacombe P. Cerebrovascular consequences of altering serotonergic transmission in conscious rat. Brain Res 1997; 767:208-13. [PMID: 9367249 DOI: 10.1016/s0006-8993(97)00577-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Many therapeutic strategies aim at altering serotonin brain levels. However, serotonin (5-HT) is known to influence the cerebral circulation. The purpose of this study was to determine the effects of acutely decreasing intracerebral serotonin release upon cerebral blood flow and cerebrovascular reactivity to hypercapnia in conscious rats. To this end, (1) we analyzed the time-course of cortical blood flow changes measured with laser-Doppler flowmetry following injection of 0.1 mg kg(-1) 8-OHDPAT (5-HT1A agonist), and (2) we evaluated the cerebrovascular reactivity to hypercapnia using a quantitative multiregional diffusible tracer technique 5 and 60 min following 8-OHDPAT administration. 8-OHDPAT induced a rapid and transient increase in cortical blood flow (+34%) that was prevented totally by WAY100135 (5-HT1A antagonist) pre-treatment. Five min following 8-OHDPAT administration, the cerebrovascular responsiveness to hypercapnia was increased significantly in striatum (+27%) and fronto-parietal cortex (+61%). This result is consistent with a vasoconstrictor role of the serotonergic system that becomes manifest during hyperemic conditions.
Collapse
Affiliation(s)
- G Bonvento
- Laboratoire de Recherches Cérébrovasculaires, CNRS UA 641, Université Paris 7, France.
| | | | | | | |
Collapse
|
43
|
Cohen Z, Molinatti G, Hamel E. Astroglial and vascular interactions of noradrenaline terminals in the rat cerebral cortex. J Cereb Blood Flow Metab 1997; 17:894-904. [PMID: 9290587 DOI: 10.1097/00004647-199708000-00008] [Citation(s) in RCA: 158] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Noradrenaline (NA) has been shown to influence astrocytic and vascular functions related to brain homeostasis, metabolism, local blood flow, and blood-brain barrier permeability. In the current study, we investigate the possible associations that exist between NA-immunoreactive nerve terminals and astrocytes and intraparenchymal blood vessels in the rat frontoparietal cortex, both at the light and electron microscopic levels. As a second step, we sought to determine whether the NA innervation around intracortical microvessels arises from peripheral or central structures by means of injections of N-(2-chloroethyl-N-ethyl-2-bromobenzylamine) (DSP-4), a neurotoxin that specifically destroys NA neurons from the locus ceruleus. At the light microscopic level, 6.8% of all NA-immunoreactive nerve terminals in the frontoparietal cortex were associated with vascular walls, and this perivascular noradrenergic input, together with that of the cerebral cortex, almost completely disappeared after DSP-4 administration. When analyzed at the ultrastructural level in control rats, NA terminals in the neuropil had a mean surface area of 0.53 +/- 0.03 micron2 and were rarely junctional (synaptic incidence close to 7%). Perivascular terminals (located within a 3-micron perimeter from the vessel basal lamina) counted at the electron microscopic level represented 8.8% of the total NA terminals in the cortical tissue. They were smaller (0.29 +/- 0.01 micron2, P < 0.05) than their neuronal counterparts and were located, on average, 1.34 +/- 0.08 microns away from intracortical blood vessels, which consisted mostly of capillaries (65%). None of the perivascular NA terminals engaged in junctional contacts with surrounding neuronal or vascular elements. The primary targets of both neuronal and perivascular NA nerve terminals consisted of dendrites, nerve terminals, astrocytes, and axons, whereas in the immediate vicinity (0.25 micron or less) of the microvessels, astrocytic processes represented the major target. The results of the current study show that penetrating arteries and intracortical microvessels receive a central NA input, albeit parasynaptic in its interaction, originating from the locus ceruleus. Particularly, they point to frequent appositions between both neuronal and perivascular NA terminals and astroglial cells and their processes. Such NA neuronal-glial and neuronal-glial-vascular associations could be of significance in the regulation of local metabolic and vascular functions under normal and pathologic situations.
Collapse
Affiliation(s)
- Z Cohen
- Laboratory of Cerebrovascular Research, Montreal Neurological Institute, McGill University, Québec, Canada
| | | | | |
Collapse
|
44
|
Moukhles H, Bosler O, Bolam JP, Vallée A, Umbriaco D, Geffard M, Doucet G. Quantitative and morphometric data indicate precise cellular interactions between serotonin terminals and postsynaptic targets in rat substantia nigra. Neuroscience 1997; 76:1159-71. [PMID: 9027876 DOI: 10.1016/s0306-4522(96)00452-6] [Citation(s) in RCA: 112] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
We have quantified the density of serotonin axonal varicosities, their synaptic incidence and their distribution among potential targets in the pars reticulata and pars compacta of the rat substantia nigra. Serotonin axonal varicosities, counted at the light microscopic level following in vitro [3H]serotonin uptake and autoradiography, amounted to 9 x 10(6)/mm3 in the pars reticulata and 6 x 10(6)/mm3 in the pars compacta, among the densest serotonin innervations in brain. As determined at the electron microscopic level following immunolabelling for serotonin, virtually all serotonin varicosities in the pars reticulata and 50% of those in the pars compacta formed a synapse, essentially with dendrites. The combination of serotonin immunocytochemistry with tyrosine hydroxylase immunolabelling of dopamine neurons reveals that 20% of the serotonin synaptic contacts in the pars reticulata are on dopamine dendrites and 6% are on a type of unlabelled dendrite characterized by its peculiarly high cytoplasmic content of microtubules. The comparison of the diameter of the dendritic profiles that were in synaptic contact with serotonin-immunoreactive varicosities with the diameter of all other dendritic profiles of the same type suggests that serotoninergic varicosities innervate dopamine dendrites uniformly along their length, whereas they tend to contact microtubule-filled dendrites in more proximal regions and the other, unidentified dendrites in more distal regions. Furthermore, the size of the serotonin-immunoreactive varicosities and of their synaptic junctions is significantly smaller on dopamine dendrites and larger on microtubule-filled dendrites than on other, unidentified dendrites, indicating that the nature of the postsynaptic target is an important determinant of synaptic dimensions. These data should help to clarify the role of serotonin in the nigral control of motor functions. They indicate that this dense serotonin input to the substantia nigra is very precisely organized, acting through both "non-junctional" and "junctional" modes of neurotransmission in the pars compacta, which projects to the neostriatum and the limbic system, whereas the predominant mode of serotonin transmission appears to be of the "junctional" type in the pars reticulata, where serotonin can finely control the motor output of the basal ganglia by acting on the GABA projection neurons either directly or through the local release of dopamine by dopaminergic dendrites. The data also raise the possibility that the postsynaptic targets have trophic retrograde influences on serotoninergic terminals.
Collapse
Affiliation(s)
- H Moukhles
- Département de pathologie, Faculté de médecine, Université de Montréal, Québec, Canada
| | | | | | | | | | | | | |
Collapse
|
45
|
Abstract
Manipulation of brainstem serotonin (5-HT) raphe neurons induces significant alterations in local cerebral metabolism and perfusion. The vascular consequences of intracerebrally released 5-HT point to a major vasoconstrictor role, resulting in cerebral blood flow (CBF) decreases in several brain regions such as the neocortex. However, vasodilatations, as well as changes in blood-brain barrier (BBB) permeability, which are blocked by 5-HT receptor antagonists also can be observed. A lack of relationship between the changes in flow and metabolism indicates uncoupling between the two variables and is suggestive of a direct neurogenic control by brain intrinsic 5-HT neurons on the microvascular bed. In line with these functional data are the close associations that exist between 5-HT neurons and the microarterioles, capillaries and perivascular astrocytes of various regions but more intimately and/or more frequently so in those where CBF is altered significantly following manipulation of 5-HT neurons. The ability of the microvascular bed to respond directly to intracerebrally released 5-HT is underscored by the expression of distinct 5-HT receptors in the various cellular compartments of the microvascular bed. Thus, it appears that while some 5-HT-mediated microvascular functions involve directly the blood vessel wall, others would be relayed through the perivascular astrocyte. The strategic localization of perivascular astrocytes and the different 5-HT receptors that they harbor strongly emphasize their putative pivotal role in transmitting information between 5-HT neurons and microvessels. It is concluded that the cerebral circulation has full capacity to adequately and locally adapt brain perfusion to changes in central 5-HT neurotransmission either directly or indirectly via the neuronal-astrocytic-vascular tripartite functional unit. Dysfunctions in these neurovascular interactions might result in perfusion deficits and might be involved in specific pathological conditions.
Collapse
Affiliation(s)
- Z Cohen
- Laboratory of Cerebrovascular Research, Montréal Neurological Institute, McGill University, Québec, Canada
| | | | | | | |
Collapse
|
46
|
Lebrand C, Cases O, Adelbrecht C, Doye A, Alvarez C, El Mestikawy S, Seif I, Gaspar P. Transient uptake and storage of serotonin in developing thalamic neurons. Neuron 1996; 17:823-35. [PMID: 8938116 DOI: 10.1016/s0896-6273(00)80215-9] [Citation(s) in RCA: 259] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Serotonin (5-HT) has been shown to affect the development and patterning of the mouse barrelfield. We show that the dense transient 5-HT innervation of the somatosensory, visual, and auditory cortices originates in the thalamus rather than in the raphe: 5-HT is detected in thalamocortical fibers and most 5-HT cortical labeling disappears after thalamic lesions. Thalamic neurons do not synthesize 5-HT but take up exogenous 5-HT through 5-HT high affinity uptake sites located on thalamocortical axons and terminals. 3H-5-HT injected into the cortex is retrogradely transported to thalamic neurons. In situ hybridization shows a transient expression of the genes encoding the serotonin transporter and the vesicular monoamine transporter in thalamic sensory neurons. In these glutamatergic neurons, internalized 5-HT might thus be stored and used as a "borrowed transmitter" for extraneuronal signaling or could exert an intraneuronal control on thalamic maturation.
Collapse
Affiliation(s)
- C Lebrand
- INSERM U106, IFR des Neurosciences, Hôpital de la Salpêtrière, Paris,France
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Smiley JF, Goldman-Rakic PS. Serotonergic axons in monkey prefrontal cerebral cortex synapse predominantly on interneurons as demonstrated by serial section electron microscopy. J Comp Neurol 1996; 367:431-43. [PMID: 8698902 DOI: 10.1002/(sici)1096-9861(19960408)367:3<431::aid-cne8>3.0.co;2-6] [Citation(s) in RCA: 132] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Anatomical approaches were used to describe the distribution, appearance, and synaptic interactions of serotonin (5-HT)-immunoreactive axons in monkey prefrontal cortex. A plexus of 5-HT axons was found throughout the gray matter, with an especially high density in layer I and a slight increase in layer IV. They were strikingly heterogeneous, with a gradient of morphologies ranging from fine and nonvaricose to highly varicose or thick and nonvaricose. Electron microscopy showed that both varicose and nonvaricose axons were typically filled with clear vesicles and less abundant dense core vesicles. A serial section analysis of 5-HT varicosities in layers I, III, and V showed consistent results across layers. Only about 23% of labeled varicosities formed identifiable synapses. These synapses were consistently asymmetric and were 2-5 serial sections (or 0.08-0.38 mu) in diameter. Targets of identified 5-HT synapses were dendritic shafts with the exception of one cell soma. Followed in serial sections, postsynaptic dendrites typically had morphological features of interneurons, i.e. they lacked spines, had a high density of synaptic inputs, and often had a varicose morphology. Only 8% of postsynaptic shafts were classified as pyramidal dendrites. This is in striking contrast to our previous study in this cortex of dopamine axons, which synapsed predominantly on pyramidal dendrites. These are the first results to indicate that interneurons are the major recipient of identifiable 5-HT synapses in the monkey prefrontal cortex.
Collapse
Affiliation(s)
- J F Smiley
- Section of Neurobiology, Yale School of Medicine, New Haven, Connecticut 06510 USA
| | | |
Collapse
|