1
|
Goodman SR, Johnson D, Youngentob SL, Kakhniashvili D. The Spectrinome: The Interactome of a Scaffold Protein Creating Nuclear and Cytoplasmic Connectivity and Function. Exp Biol Med (Maywood) 2019; 244:1273-1302. [PMID: 31483159 DOI: 10.1177/1535370219867269] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
We provide a review of Spectrin isoform function in the cytoplasm, the nucleus, the cell surface, and in intracellular signaling. We then discuss the importance of Spectrin’s E2/E3 chimeric ubiquitin conjugating and ligating activity in maintaining cellular homeostasis. Finally we present spectrin isoform subunit specific human diseases. We have created the Spectrinome, from the Human Proteome, Human Reactome and Human Atlas data and demonstrated how it can be a useful tool in visualizing and understanding spectrins myriad of cellular functions.Impact statementSpectrin was for the first 12 years after its discovery thought to be found only in erythrocytes. In 1981, Goodman and colleagues1found that spectrin-like molecules were ubiquitously found in non-erythroid cells leading to a great multitude of publications over the next thirty eight years. The discovery of multiple spectrin isoforms found associated with every cellular compartment, and representing 2-3% of cellular protein, has brought us to today’s understanding that spectrin is a scaffolding protein, with its own E2/E3 chimeric ubiquitin conjugating ligating activity that is involved in virtually every cellular function. We cover the history, localized functions of spectrin isoforms, human diseases caused by mutations, and provide the spectrinome: a useful tool for understanding the myriad of functions for one of the most important proteins in all eukaryotic cells.
Collapse
Affiliation(s)
- Steven R Goodman
- Department of Pediatrics, Memphis Institute of Regenerative Medicine, The University of Tennessee Health Science Center, Memphis, TN 38103
| | - Daniel Johnson
- Department of Pediatrics, Memphis Institute of Regenerative Medicine, The University of Tennessee Health Science Center, Memphis, TN 38103
| | - Steven L Youngentob
- Department of Anatomy and Neurobiology, Memphis Institute of Regenerative Medicine, The University of Tennessee Health Science Center, Memphis, TN 38103
| | - David Kakhniashvili
- Department of Pediatrics, Memphis Institute of Regenerative Medicine, The University of Tennessee Health Science Center, Memphis, TN 38103
| |
Collapse
|
2
|
Garcia-Caballero A, Gandini MA, Huang S, Chen L, Souza IA, Dang YL, Stutts MJ, Zamponi GW. Cav3.2 calcium channel interactions with the epithelial sodium channel ENaC. Mol Brain 2019; 12:12. [PMID: 30736831 PMCID: PMC6368719 DOI: 10.1186/s13041-019-0433-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 02/04/2019] [Indexed: 11/10/2022] Open
Abstract
This study describes the functional interaction between Cav3.2 calcium channels and the Epithelial Sodium Channel (ENaC). β-ENaC subunits showed overlapping expression with endogenous Cav3.2 calcium channels in the thalamus and hypothalamus as detected by immunostaining. Moreover, β- and γ-ENaC subunits could be co-immunoprecipitated with Cav3.2 calcium channels from brain lysates, dorsal horn and lumbar dorsal root ganglia. Mutation of a cluster of lysines present in the intracellular N-terminus region of β-ENaC (K4R/ K5R/ K9R/ K16R/ K23R) reduced interactions with Cav3.2 calcium channels. Αβγ-ENaC channels enhanced Cav3.2 calcium channel trafficking to the plasma membrane in tsA-201 cells. This effect was reciprocal such that Cav3.2 channel expression also enhanced β-ENaC trafficking to the cell surface. T-type current density was increased when fully assembled αβγ-ENaC channels were transiently expressed in CAD cells, a neuronal derived cell line. Altogether, these findings reveal ENaC as an interactor and potential regulator of Cav3.2 calcium channels expressed in neuronal tissues.
Collapse
Affiliation(s)
- Agustin Garcia-Caballero
- Molecular Neuroscience, Department of Physiology and Pharmacology, Hotchkiss Brain Institute and Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, 3330 Hospital Dr. NW, Calgary, T2N 4N1, Canada
| | - Maria A Gandini
- Molecular Neuroscience, Department of Physiology and Pharmacology, Hotchkiss Brain Institute and Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, 3330 Hospital Dr. NW, Calgary, T2N 4N1, Canada
| | - Shuo Huang
- Molecular Neuroscience, Department of Physiology and Pharmacology, Hotchkiss Brain Institute and Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, 3330 Hospital Dr. NW, Calgary, T2N 4N1, Canada
| | - Lina Chen
- Molecular Neuroscience, Department of Physiology and Pharmacology, Hotchkiss Brain Institute and Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, 3330 Hospital Dr. NW, Calgary, T2N 4N1, Canada
| | - Ivana A Souza
- Molecular Neuroscience, Department of Physiology and Pharmacology, Hotchkiss Brain Institute and Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, 3330 Hospital Dr. NW, Calgary, T2N 4N1, Canada
| | - Yan L Dang
- Cystic Fibrosis Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - M Jackson Stutts
- Cystic Fibrosis Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Gerald W Zamponi
- Molecular Neuroscience, Department of Physiology and Pharmacology, Hotchkiss Brain Institute and Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, 3330 Hospital Dr. NW, Calgary, T2N 4N1, Canada.
| |
Collapse
|
3
|
Derbala MH, Guo AS, Mohler PJ, Smith SA. The role of βII spectrin in cardiac health and disease. Life Sci 2017; 192:278-285. [PMID: 29128512 DOI: 10.1016/j.lfs.2017.11.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2017] [Revised: 11/02/2017] [Accepted: 11/07/2017] [Indexed: 02/07/2023]
Abstract
Spectrins are large, flexible proteins comprised of α-β dimers that are connected head-to-head to form the canonical heterotetrameric spectrin structure. Spectrins were initially believed to be exclusively found in human erythrocytic membrane and are highly conserved among different species. βII spectrin, the most common isoform of non-erythrocytic spectrin, is found in all nucleated cells and forms larger macromolecular complexes with ankyrins and actins. Not only is βII spectrin a central cytoskeletal scaffolding protein involved in preserving cell structure but it has also emerged as a critical protein required for distinct physiologic functions such as posttranslational localization of crucial membrane proteins and signal transduction. In the heart, βII spectrin plays a vital role in maintaining normal cardiac membrane excitability and proper cardiac development during embryogenesis. Mutations in βII spectrin genes have been strongly linked with the development of serious cardiac disorders such as congenital arrhythmias, heart failure, and possibly sudden cardiac death. This review focuses on our current knowledge of the role βII spectrin plays in the cardiovascular system in health and disease and the potential future clinical implications.
Collapse
Affiliation(s)
- Mohamed H Derbala
- Dorothy M. Davis Heart and Lung Research Institute, Wexner Medical Center, The Ohio State University, Columbus, OH, USA.
| | - Aaron S Guo
- Dorothy M. Davis Heart and Lung Research Institute, Wexner Medical Center, The Ohio State University, Columbus, OH, USA
| | - Peter J Mohler
- Dorothy M. Davis Heart and Lung Research Institute, Wexner Medical Center, The Ohio State University, Columbus, OH, USA; Department of Internal Medicine (Division of Cardiology), The Ohio State University College of Medicine, Columbus, OH, USA; Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH, USA
| | - Sakima A Smith
- Dorothy M. Davis Heart and Lung Research Institute, Wexner Medical Center, The Ohio State University, Columbus, OH, USA; Department of Internal Medicine (Division of Cardiology), The Ohio State University College of Medicine, Columbus, OH, USA
| |
Collapse
|
4
|
Abstract
In this minireview, we cover the discovery of the human erythrocyte α spectrin E2/E3 ubiquitin conjugating/ligating enzymatic activity and the specific cysteines involved. We then discuss the consequences when this activity is partially inhibited in sickle cell disease and the possibility that the same attenuation is occurring in multiple organ dysfunction syndrome. We finish by discussing the reasons for believing that nonerythroid α spectrin isoforms (I and II) also have this activity and the importance of testing this hypothesis. If correct, this would suggest that the nonerythroid spectrin isoforms play a major role in protein ubiquitination in all cell types. This would open new fields in experimental biology focused on uncovering the impact that this enzymatic activity has upon protein-protein interactions, protein turnover, cellular signaling, and many other functions impacted by spectrin, including DNA repair.
Collapse
Affiliation(s)
- Steven R Goodman
- Department of Biochemistry and Molecular Biology, Department of Pediatrics, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Rachel Petrofes Chapa
- Department of Medical Physiology, College of Medicine, Texas A&M Health Science Center, College Station, TX 77843, USA
| | - Warren E Zimmer
- Department of Medical Physiology, College of Medicine, Texas A&M Health Science Center, College Station, TX 77843, USA
| |
Collapse
|
5
|
Duffy KR, Crowder NA, LeDue EE. Investigation of cytoskeleton proteins in neurons of the cat lateral geniculate nucleus. J Comp Neurol 2011; 520:186-99. [DOI: 10.1002/cne.22727] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
6
|
Ohler S, Hakeda-Suzuki S, Suzuki T. Hts, the Drosophila homologue of Adducin, physically interacts with the transmembrane receptor Golden goal to guide photoreceptor axons. Dev Dyn 2011; 240:135-48. [PMID: 21128303 DOI: 10.1002/dvdy.22515] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Neurons steer their axons towards their proper targets during development. Molecularly, a number of guidance receptors have been identified. The transmembrane protein Golden goal (Gogo) was reported previously to guide photoreceptor (R) axons in the Drosophila visual system. Here, we show that Hts, the Drosophila homologue of Adducin, physically interacts with Gogo's cytoplasmic domain via its head-neck domain. hts null mutants show similar defects in R axon guidance as do gogo mutants. Rescue experiments suggest that the C-terminal tail but not the MARCKS homology domain of Hts is required. Overexpression of either gogo or hts causes abnormally thick swellings of R8 axons in the medulla, but if both are co-overexpressed, R8 axons appear normal and the amount of excessive Hts is reduced. Our results fit with a model where Gogo both positively and negatively regulates Hts that affects the Actin-Spectrin cytoskeleton in growth cone filopodia, thereby guiding R axons.
Collapse
Affiliation(s)
- Stephan Ohler
- Max Planck Institute of Neurobiology, Martinsried, Germany
| | | | | |
Collapse
|
7
|
Abstract
Ca2+ store depletion activates both Ca2+ selective and non-selective currents in endothelial cells. Recently, considerable progress has been made in understanding the molecular make-up and regulation of an endothelial cell thapsigargin-activated Ca2+ selective current, I(SOC). Indeed, I(SOC) is a relatively small inward Ca2+ current that exhibits an approximate +40mV reversal potential and is strongly inwardly rectifying. This current is sensitive to organization of the actin-based cytoskeleton. Transient receptor potential (TRP) proteins 1 and 4 (TRPC1 and TRPC4, respectively) each contribute to the molecular basis of I(SOC), although it is TRPC4 that appears to be tethered to the cytoskeleton through a dynamic interaction with protein 4.1. Activation of I(SOC) requires association between protein 4.1 and the actin-based cytoskeleton (mediated through spectrin), suggesting protein 4.1 mediates the physical communication between Ca2+ store depletion and channel activation. Thus, at present findings indicate a TRPC4-protein 4.1 physical linkage regulates I(SOC) activation following Ca2+ store depletion.
Collapse
Affiliation(s)
- Donna L Cioffi
- Department of Pharmacology, Center for Lung Biology, University of South Alabama College of Medicine, Mobile, AL 36688, USA
| | | | | |
Collapse
|
8
|
Barakat-Walter I, Riederer BM. Brain Spectrins 240/235 and 240/235E: Differential Expression During Development of Chicken Dorsal Root Ganglia in vivo and in vitro. Eur J Neurosci 2002; 3:431-440. [PMID: 12106182 DOI: 10.1111/j.1460-9568.1991.tb00830.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Brain spectrin, a membrane-related cytoskeletal protein, exists as two isoforms. Brain spectrin 240/235 is localized preferentially in the perikaryon and axon of neuronal cells and brain spectrin 240/235E is found essentially in the neuronal soma and dendrites and in glia (Riederer et al., 1986, J. Cell Biol., 102, 2088 - 2097). The sensory neurons in dorsal root ganglia, devoid of any dendrites, make a good tool to investigate such differential expression of spectrin isoforms. In this study expression and localization of both brain spectrin isoforms were analysed during early chicken dorsal root ganglia development in vivo and in culture. Both isoforms appeared at embryonic day 6. Brain spectrin 240/235 exhibited a transient increase during embryonic development and was first expressed in ventrolateral neurons. In ganglion cells in situ and in culture this spectrin type showed a somato - axonal distribution pattern. In contrast, brain spectrin 240/235E slightly increased between E6 and E15 and remained practically unchanged. It was localized mainly in smaller neurons of the mediodorsal area as punctate staining in the cytoplasm, was restricted exclusively to the ganglion cell perikarya and was absent from axons both in situ and in culture. This study suggests that brain spectrin 240/235 may contribute towards outgrowth, elongation and maintenance of axonal processes and that brain spectrin 240/235E seems to be exclusively involved in the stabilization of the cytoarchitecture of cell bodies in a selected population of ganglion cells.
Collapse
|
9
|
Mishra L, Cai T, Yu P, Monga SP, Mishra B. Elf3 encodes a novel 200-kD beta-spectrin: role in liver development. Oncogene 1999; 18:353-64. [PMID: 9927192 DOI: 10.1038/sj.onc.1202313] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
beta-spectrins are crucial for the maintenance of cell shape, the establishment of cell polarity, and the formation of distinct membrane domains. Our strategy for identifying genes important for hepatocyte polarity has been to utilize subtractive hybridization of early embryonic mouse cDNA liver libraries. As a result, we have cloned three isoforms of a novel beta-spectrin elf (embryonic liver beta-fodrin), and here we report the analysis of elf3, the longest isoform (8172 nt). ELF3 comprises 2154 residues with an overall similarity of 89.0% and 95.3% to mouse beta-spectrin (betaSpIIsigma1) at the nucleotide and amino acid level, respectively. ELF3 is characterized by an actin-binding domain, a long repeat domain, and a short regulatory domain remarkable for the absence of a PH domain. Linkage analysis reveals that elf3 maps to mouse chromosome 11 between D11Bir6 and D11Xrf477, a different chromosomal locus from that of the other four spectrin genes. Northern blot analysis utilizing an elf3 3'-UTR probe demonstrates an abundant 9.0-kb transcript in brain, liver, and heart tissues. Western blot with a polyclonal antibody against ELF identifies a 200 kD protein in mouse liver, brain, kidney, and heart tissues. Immunohistochemical studies demonstrate ELF labeling of the basolateral or sinusoidal membranes surface as well as a granular cytoplasmic pattern in hepatocytes. Antisense studies utilizing cultured liver explants show a vital role of elf3 in hepatocyte differentiation and intrahepatic bile duct formation. The differential expression, tissue localization, and functional studies demonstrate the importance of elf3 in modulating interactions between various components of the cytoskeleton proteins controlling liver and bile duct development.
Collapse
Affiliation(s)
- L Mishra
- Laboratory of Developmental Molecular Biology, Department of Veterans Affairs, Washington, DC 20422, USA
| | | | | | | | | |
Collapse
|
10
|
Gelot A, Moreau J, Khrestchatisky M, Ben Ari Y, Pollard H. Developmental change of alpha-spectrin mRNA in the rat brain. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 1994; 81:240-6. [PMID: 7813045 DOI: 10.1016/0165-3806(94)90310-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Spectrin is a cytoskeletal protein considered to be a major component of intracellular cohesion. Using an in situ hybridization approach, we have investigated the developmental expression of the mRNA encoding the alpha-subunit of rat brain spectrins, from birth to adulthood. alpha-Subunit mRNA is detectable at birth, in brain areas with perinatal neurogenesis, such as the cerebral cortex, hippocampus, thalamus, and olfactory bulb. alpha-Brain-spectrin mRNA increases gradually during the first postnatal days to reach a plateau between the second and the third week of life. In the young adult brain, the level of alpha-brain spectrin mRNA decreased globally. This spacio-temporal distribution argues for the involvement of the mRNA in the synthesis of both the erythroid and non-erythroid brain spectrin isoforms. We have focused our attention on the hippocampal formation and the cerebellum. In both regions, in situ hybridization signal variations are superimposable with neuronal maturation gradients. This pattern of variation, coupled with the known interaction of brain spectrins with other cytoskeletal proteins, agrees with the notion that brain spectrins may be involved in neuronal differentiation by way of the cytoskeletal lattice organization.
Collapse
Affiliation(s)
- A Gelot
- INSERM, Unité 29, Hopital de Port-Royal, Paris, France
| | | | | | | | | |
Collapse
|
11
|
Isayama T, Goodman SR, Zagon IS. Localization of spectrin isoforms in the adult mouse heart. Cell Tissue Res 1993; 274:127-33. [PMID: 8242701 DOI: 10.1007/bf00327993] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The distribution of two isoforms of spectrin in the adult mouse heart was investigated by Western blotting and immunocytochemistry by use of monospecific antibodies to erythrocyte spectrin and nonerythroid brain spectrin (240/235). Western blotting revealed proteins analogous to both isoforms of alpha-spectrin in adult heart. Light-microscopic immunocytochemistry indicated that erythroid spectrin was distributed throughout the myocardium, with immunofluorescence localized to plasma membranes, Z-lines, and intercalated discs. Antibodies to brain spectrin (240/235) exhibited staining throughout the heart, with a generally diffuse distribution except for the prominent immunoreactivity associated with the intercalated discs. Nonerythroid spectrin immunofluorescence was detected in the endothelial cells of the endocardium and the mesothelial cell lining of the epicardium. Erythrocyte spectrin was not detected in the endocardium or the epicardium. The identification and localization of spectrin isoforms in the mammalian heart suggest the importance of spectrin proteins in the structural integrity and proper function of cardiac cells and tissues. This is the first demonstration of two different alpha-spectrin subunits in the mammalian heart.
Collapse
Affiliation(s)
- T Isayama
- Department of Neuroscience and Anatomy, Pennsylvania State University, Milton S. Hershey Medical Center, Hershey 17033
| | | | | |
Collapse
|
12
|
Abstract
By using a 125I-calmodulin overlay assay, three major high-affinity calmodulin-binding proteins, showing apparent molecular masses of 135, 60, and 50 kDa, have been detected in purified nuclear fractions isolated from rat neurons. It has been shown that after extraction of the nuclei with nucleases and high salt, all these proteins remain strongly associated with the nuclear matrix. The 60- and 50-kDa proteins have been previously identified as subunits of the calmodulin-dependent protein kinase II. We report here the immunoblot identification of the 135-kDa calmodulin-binding protein as myosin light chain kinase. We also show that the calmodulin-dependent protein phosphatase calcineurin is present in the neuronal nuclei and associated with the nuclear matrix. The nuclear localization of both calcineurin and myosin light chain kinase has been confirmed by immunocytochemical studies.
Collapse
Affiliation(s)
- M J Pujol
- Departamento de Biología Celular, Universidad de Barcelona, Spain
| | | | | | | | | |
Collapse
|
13
|
Bachs O, Agell N, Carafoli E. Calcium and calmodulin function in the cell nucleus. BIOCHIMICA ET BIOPHYSICA ACTA 1992; 1113:259-70. [PMID: 1510999 DOI: 10.1016/0304-4157(92)90041-8] [Citation(s) in RCA: 132] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- O Bachs
- Department of Cell Biology, University of Barcelona, Spain
| | | | | |
Collapse
|
14
|
Affiliation(s)
- T Tsumoto
- Department of Neurophysiology, Osaka University Medical School, Suita City, Japan
| |
Collapse
|
15
|
Vendrell M, Aligué R, Bachs O, Seratosa J. Presence of calmodulin and calmodulin-binding proteins in the nuclei of brain cells. J Neurochem 1991; 57:622-8. [PMID: 2072106 DOI: 10.1111/j.1471-4159.1991.tb03793.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The nuclear calmodulin levels have been measured in rat neurons and glial cells. The values are 1.0 and 1.1 micrograms/mg of protein, respectively. These levels are about threefold higher than those in the nuclei of rat liver cells. We have also investigated the presence of several calmodulin-binding proteins in the nuclei of both brain cellular types. As similarly observed in the nuclei of liver cells, we detected the presence of alpha-spectrin and a 62-kDa calmodulin-binding protein (p62) in the nuclei of neurons and glial cells by immunoblotting and immunocytochemical methods. Both proteins are enriched in the purified nuclear matrix samples from both cellular types. In contrast to that occurring in rat hepatocytes, we have not been able to detect, by immunoblotting methods, caldesmon in the nuclear matrices of neurons and glial cells. The immunocytochemical studies suggest, however, that caldesmon can be present in the nuclei but in a fraction distinct from the nuclear matrices.
Collapse
Affiliation(s)
- M Vendrell
- Departmento de Farmacología y Toxicología, CSIC, Barcelona, Spain
| | | | | | | |
Collapse
|
16
|
Lynch G, Seubert P. Links between long-term potentiation and neuropathology. An hypothesis involving calcium-activated proteases. Ann N Y Acad Sci 1989; 568:171-80. [PMID: 2560897 DOI: 10.1111/j.1749-6632.1989.tb12505.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- G Lynch
- Center for the Neurobiology of Learning and Memory, University of California, Irvine 92717
| | | |
Collapse
|
17
|
Hargreaves AJ, Yusta B, Avila J, Hesketh JE, Aranda A, Pascual A. Sodium butyrate induces major morphological changes in C6 glioma cells that are correlated with increased synthesis of a spectrin-like protein. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 1989; 45:291-5. [PMID: 2653664 DOI: 10.1016/0165-3806(89)90047-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Butyrate induced flattening and development of cell processes in rat glioma (C6) cells and this change was correlated with an increase in the synthesis of a polypeptide doublet with an apparent molecular weight of about 200 kDa. Blot analysis revealed that at least one of these polypeptides was a spectrin-like protein. Indirect immunofluorescence studies with the spectrin antiserum indicated that the antigen was present in the cell bodies, and also in the cell processes. Thus fodrin may be one the major targets for the action of butyrate on C6 cells.
Collapse
Affiliation(s)
- A J Hargreaves
- Unidad de Endocrinologia Experimental, Instituto de Investigaciones Biomedicas, Madrid, Spain
| | | | | | | | | | | |
Collapse
|
18
|
Coleman TR, Fishkind DJ, Mooseker MS, Morrow JS. Functional diversity among spectrin isoforms. CELL MOTILITY AND THE CYTOSKELETON 1989; 12:225-47. [PMID: 2655937 DOI: 10.1002/cm.970120405] [Citation(s) in RCA: 103] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The purpose of this review on spectrin is to examine the functional properties of this ubiquitous family of membrane skeletal proteins. Major topics include spectrin-membrane linkages, spectrin-filament linkages, the subcellular localization of spectrins in various cell types and a discussion of major functional differences between erythroid and nonerythroid spectrins. This includes a summary of studies from our own laboratories on the functional and structural comparison of avian spectrin isoforms which are comprised of a common alpha subunit and a tissue-specific beta subunit. Consequently, the observed differences among these spectrins can be assigned to differences in the properties of the beta subunits.
Collapse
Affiliation(s)
- T R Coleman
- Department of Biology, Yale University, New Haven, CT 06511-8112
| | | | | | | |
Collapse
|
19
|
Tsumoto T, Sato H, Sobue K. Immunohistochemical localization of a membrane-associated, 4.1-like protein in the rat visual cortex during postnatal development. J Comp Neurol 1988; 271:30-43. [PMID: 3385010 DOI: 10.1002/cne.902710105] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Expression and localization of a membrane-associated protein, an analog of erythrocyte protein 4.1, in the visual cortex were immunohistochemically studied in the rat, ranging in age from newborn to adult. In the adult, dendrites and somas of layer V pyramidal cells were stained by the antiprotein 4.1 antibody. In most of these immunoreactive neurons, the plasma membrane seemed to be preferentially stained. Neurons located in layers II and III of the cortex were only faintly stained, and those in layers IV and VI were not stained. At birth, the immunoreactivity was already present in pyramidal cells located in the upper part of the cortical subplate. Immature neurons located in the cortical plate were not stained by the antibody, suggesting that the 4.1-like protein is expressed only in the neurons that have differentiated or are differentiating. At postnatal days 2-8, immunoreactive neurons were dramatically increased in layers V and VI and intense labeling was seen at the apical dendrites of layer V pyramidal cells. Most of the stained processes of these and other neurons showed a sign of rapid dendritic growth, i.e., growth cones and filopidia. At days 10-17, the basal dendrites of pyramidal cells in layers II and III became detectable, although still slender. At days 20-37, these dendrites in layers II, III, and V became intensely immunoreactive, and dendritic spines were visualized by the antibody. Throughout all the ages, axons of neurons and neuroglia were not stained by the antibody. Also, most of the neurons in layer IV of the cortex were not immunoreactive. These results suggest that the 4.1-like protein is abundantly expressed in growing parts of the dendrites and spines. A hypothesis that this protein may play a role in synaptic plasticity in the developing visual cortex is discussed.
Collapse
Affiliation(s)
- T Tsumoto
- Department of Neuophysiology, Osaka University Medical School, Japan
| | | | | |
Collapse
|
20
|
Goodman SR, Krebs KE, Whitfield CF, Riederer BM, Zagon IS. Spectrin and related molecules. CRC CRITICAL REVIEWS IN BIOCHEMISTRY 1988; 23:171-234. [PMID: 3048888 DOI: 10.3109/10409238809088319] [Citation(s) in RCA: 124] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
This review begins with a complete discussion of the erythrocyte spectrin membrane skeleton. Particular attention is given to our current knowledge of the structure of the RBC spectrin molecule, its synthesis, assembly, and turnover, and its interactions with spectrin-binding proteins (ankyrin, protein 4.1, and actin). We then give a historical account of the discovery of nonerythroid spectrin. Since the chicken intestinal form of spectrin (TW260/240) and the brain form of spectrin (fodrin) are the best characterized of the nonerythroid spectrins, we compare these molecules to RBC spectrin. Studies establishing the existence of two brain spectrin isoforms are discussed, including a description of the location of these spectrin isoforms at the light- and electron-microscope level of resolution; a comparison of their structure and interactions with spectrin-binding proteins (ankyrin, actin, synapsin I, amelin, and calmodulin); a description of their expression during brain development; and hypotheses concerning their potential roles in axonal transport and synaptic transmission.
Collapse
Affiliation(s)
- S R Goodman
- Cell and Molecular Biology Center, Milton S. Hershey Medical Center, Pennsylvania State University
| | | | | | | | | |
Collapse
|
21
|
Riederer BM, Goodman SR. Immunological detection of high molecular weight proteins by gel and blot overlay. Brain Res Bull 1987; 19:715-22. [PMID: 3326648 DOI: 10.1016/0361-9230(87)90059-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The sensitivity and specificity of the gel overlay and western blot methods of immunodetection are compared for spectrins, typical high molecular weight proteins. The gel overlay method is more sensitive and specific for the immunodetection of brain spectrin (240/235) and rbc spectrin. As the western blot technique will remain the method of choice for many applications because of its relative speed, we discuss methods for optimizing its sensitivity and selectivity.
Collapse
Affiliation(s)
- B M Riederer
- Department of Physiology, Milton S. Hershey Medical Center, Pennsylvania State University, Hershey 17033
| | | |
Collapse
|
22
|
Kimura F, Tsumoto T, Sobue K. Postnatal development of immunohistochemically localized spectrin-like protein (calspectin or fodrin) in the rat visual cortex: its excessive expression in developing cortical neurons. JOURNAL OF NEUROCYTOLOGY 1987; 16:649-65. [PMID: 3694236 DOI: 10.1007/bf01637657] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Postnatal development of the expression and localization of a membrane-associated cytoskeletal protein, calspectin (fodrin or brain spectrin), in the visual cortex, was immunohistochemically studied in newborn to adult rats, by using an anti-calspectin antibody. At birth, calspectin-immunoreactivity was already present at the plasma membrane and in the cytoplasm of neurons which were mostly pyramidal cells located in the upper part of the cortical subplate. Immature neurons located in the cortical plate were not stained by the antibody, suggesting that calspectin is expressed only in neurons which have differentiated or are differentiating. At postnatal days 2 to 7, immunoreactive neurons were dramatically increased in layers V and VI and very intense labelling was seen in the apical dendrites of layer V pyramidal cells. Most of the stained processes of these and other neurons showed signs of rapid dendritic growth, i.e. non-terminal as well as terminal growth cones and filopodia. At days 10 to 17, dendrites of pyramidal cells in layers II and III became clearly detectable, although still slender. At days 24 to 34, the basal dendrites of pyramidal cells in layers II, III and V became intensely immunoreactive and dendritic spines were visualized by the antibody. In the adult, however, the calspectin immunoreactivity became very weak and spines were not recognizable. At all the ages, axons and neuroglia were unstained. Also, most of the neurons in layer IV of the cortex were not immunoreactive. These results suggest that calspectin is most abundantly expressed in growing parts of the dendrites and spines. A hypothesis that calspectin may play a role in synaptic plasticity in the developing visual cortex is discussed.
Collapse
Affiliation(s)
- F Kimura
- Department of Neurophysiology, Osaka University Medical School, Japan
| | | | | |
Collapse
|
23
|
Wang CY, Walsh MP, Wang JH. Effect of phosphorylation by cyclic AMP-dependent protein kinase on the smooth muscle actomyosin Mg2+-ATPase stimulatory activity of fodrin. J Biol Chem 1987. [DOI: 10.1016/s0021-9258(18)47854-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
24
|
Pollerberg GE, Burridge K, Krebs KE, Goodman SR, Schachner M. The 180-kD component of the neural cell adhesion molecule N-CAM is involved in cell-cell contacts and cytoskeleton-membrane interactions. Cell Tissue Res 1987; 250:227-36. [PMID: 3308110 DOI: 10.1007/bf00214676] [Citation(s) in RCA: 250] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
N-CAM180, the molecular form of the three neural cell adhesion molecules (N-CAM) with the largest cytoplasmic domain, is accumulated at sites of cell-cell contact (cell bodies, neurites, growth cones) in cultures of neuroblastoma and cerebellum. At these sites the cytoskeleton-membrane linker protein brain spectrin and actin are also accumulated. Brain spectrin copurifies with N-CAM180 by immunoaffinity chromatography and binds specifically to N-CAM180 but not to N-CAM140 or N-CAM120 in a solid-phase binding test. These observations indicate an association of N-CAM180 with the cytoskeleton in vivo. This association may underlie the reduced lateral mobility of N-CAM180 in the surface membrane compared to N-CAM140 (Pollerberg et al. 1986). Together with the fact that N-CAM180 is only expressed after termination of neuron migration in vivo (Persohn and Schachner, unpublished) these results suggest a role for N-CAM180 in stabilization of cell contacts.
Collapse
Affiliation(s)
- G E Pollerberg
- Department of Neurobiology, University of Heidelberg, Federal Republic of Germany
| | | | | | | | | |
Collapse
|
25
|
Krebs KE, Zagon IS, Goodman SR. Amelin and synapsin I are 4.1 related spectrin binding proteins in brain. Brain Res Bull 1987; 18:793-8. [PMID: 3113675 DOI: 10.1016/0361-9230(87)90218-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
How do synaptic vesicles move towards the presynaptic plasma membrane, fuse with that membrane, and release their contents during synaptic transmission? The answers to these questions at the molecular level are just beginning to be understood. Synapsin I is a neuron specific phosphoprotein that is associated with the cytoplasmic surface of synaptic vesicles. During synaptic transmission, the translocation of the synaptic vesicles to the presynaptic membrane of the neuron is thought to be mediated through changes in the phosphorylation state of synapsin I. It has been suggested that synapsin I is a spectrin binding protein related to the erythrocyte cytoskeletal protein 4.1, which binds to the terminal ends of the erythrocyte spectrin tetramer. The interaction of synapsin I (through brain spectrin) with the neuronal cytoskeleton may be essential for regulating the movement of synaptic vesicles towards the presynaptic plasma membrane. In addition, we have identified another protein in brain that is immunologically and structurally more closely related to erythrocyte 4.1 than is synapsin I. This protein, termed amelin, is localized in the cell body and dendrites of the neuron, whereas synapsin I is found exclusively in the synaptic terminals, suggesting that there is a family of erythrocyte 4.1 related proteins present in brain with distinct subcellular distribution and functions.
Collapse
|
26
|
Abstract
At least 2 distinct spectrin subtypes, brain spectrin(240/235) and brain spectrin(240/235E), are contained in the mammalian brain. Evidence that these subtypes are differentially expressed during mouse brain development is reviewed. Brain spectrin(240/235) is detected in fetal brain tissues, and increases 2-fold to adult levels. This subtype is enriched in the cortical cytoplasm of germinative neural cells, and is also associated with fibers resembling axons in the fetus. Brain spectrin(240/235E), a brain subtype specifically detected with antibodies to red blood cell spectrin, is below the limits of detection in the fetal and neonatal brain rapidly increases in concentration during the second postnatal week. Brain spectrin(240/235E) is found in the cell body and dendrites of differentiating neurons and glial cells, but is not expressed in mitotic cells. This subtype is especially prominent in granules cells of the cerebellum and dentate gyrus. The potential function of these spectrin subtypes during neuro-ontogeny is discussed.
Collapse
|
27
|
|
28
|
Abstract
This chapter discusses the possibility that proteolytic digestion of cytoskeletal proteins, in particular spectrin, is part of the mechanisms through which physiological activity elicits structural and chemical changes in brain synapses. Recent work from several laboratories has produced a description of the initial events that trigger the long-term potentiation (LTP) of synaptic responses that appears in hippocampus after brief episodes of high frequency electrical stimulation. A likely sequence is as follows: suppression of IPSPs, prolongation of EPSPs, activation of N-methyl-D-aspartate (NMDA) receptors, influx of calcium into target cells. After briefly describing the evidence for this triggering sequence, the review takes up the question of what types of calcium sensitive chemistries are available to synaptic region that could produce functional changes lasting for weeks (i.e., for LTP). It is argued that the partial degradation of spectrin by a calcium-activated protease (calpain) provides a mechanism of this type. Spectrin is a substrate for calpain and both it and a breakdown product comparable to that produced by calpain are found in postsynaptic densities. Moreover, there is substantial evidence that spectrin regulates the surface chemistry and morphology of cells and thus its partial degradation would be expected to produce pronounced and persistent modifications in synapses. To reinforce this point, the review discusses recent findings suggesting that calpain mediated proteolysis of spectrin and other cytoskeletal proteins produces substantial changes in the shape of blood-borne cells and the distribution of their surface receptors.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
|
29
|
Anderson J, Morrow J. The interaction of calmodulin with human erythrocyte spectrin. Inhibition of protein 4.1-stimulated actin binding. J Biol Chem 1987. [DOI: 10.1016/s0021-9258(18)45579-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
30
|
Potschka M. Universal calibration of gel permeation chromatography and determination of molecular shape in solution. Anal Biochem 1987; 162:47-64. [PMID: 3605596 DOI: 10.1016/0003-2697(87)90009-1] [Citation(s) in RCA: 103] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Gel permeation chromatography (GPC) has become a routine technique for both biology and polymer chemistry. By comparison our theoretical perception of the separation principle of GPC is still immature and conflicting and so is the assessment of the analytical informational content of this method. In order to discriminate between the various parameters that might influence GPC and thus to decide among the numerous propositions of calibration, several odd biopolymers (tropomyosin, spectrin, DNA, tobacco mosaic virus, alpha-actinin, ovomucoid) were selected. They were characterized by analytical ultracentrifugation as well as quasielastic light scattering, and they were compared to globular proteins including icosahedral viruses (tomato bushy stunt virus, turnip yellow mosaic virus, Q beta, MS2) on several different HPLC column matrices. The results demonstrate that the universal calibration principle of GPC is the viscosity radius, i.e., the molecular volume times a shape function which is defined by the intrinsic viscosity. Alternate propositions such as molecular weight, second virial coefficient, diffusion coefficient (Stokes radius), radius of gyration, mean linear projected length, contour length, and related measures seem to be excluded on the basis of the evidence presented. These results help to focus the physical picture which seems to govern GPC. Finally it is demonstrated that GPC is a versatile and unique tool with which to characterize molecular shape and dynamics in solution.
Collapse
|
31
|
Coleman TR, Harris AS, Mische SM, Mooseker MS, Morrow JS. Beta spectrin bestows protein 4.1 sensitivity on spectrin-actin interactions. J Cell Biol 1987; 104:519-26. [PMID: 3818791 PMCID: PMC2114562 DOI: 10.1083/jcb.104.3.519] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The ability of protein 4.1 to stimulate the binding of spectrin to F-actin has been compared by cosedimentation analysis for three avian (erythrocyte, brain, and brush border) and two mammalian (erythrocyte and brain) spectrin isoforms. Human erythroid protein 4.1 stimulated actin binding of all spectrins except the brush border isoform (TW 260/240). These results suggested that the beta subunit determined the protein 4.1 sensitivity of the heterodimer, since all avian alpha subunits are encoded by a single gene. Tissue-specific posttranslational modification of the alpha subunit was excluded by examining the properties of hybrid spectrins composed of the purified alpha subunit from avian erythrocyte or brush border spectrin and the beta subunit of human erythrocyte spectrin. A hybrid composed of avian brush border alpha and human erythroid beta spectrin ran on nondenaturing gels as a discrete band, migrating near human erythroid spectrin tetramers. The actin-binding activity of this hybrid was stimulated by protein 4.1, while either chain alone was devoid of activity. Therefore, although both subunits were required for actin binding, the sensitivity of the spectrin-actin interaction to protein 4.1 is a property uniquely bestowed on the heterodimer by the beta subunit. The singular insensitivity of brush border spectrin to stimulation by erythroid protein 4.1 was also consistent with the absence of proteins in avian intestinal epithelial cells which were immunoreactive with polyclonal antisera sensitive to all of the known avian and human erythroid 4.1 isoforms.
Collapse
|
32
|
Ishimura K, Senda T, Kitajima K, Fujita H, Fujio Y, Sobue K. Immunocytochemical localization of calspectin (a non-erythroid spectrin-like protein) in thyroid glands of normal and TSH-treated rats. HISTOCHEMISTRY 1987; 86:537-9. [PMID: 3301749 DOI: 10.1007/bf00489544] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The localization of calspectin (fodrin, a non-erythroid spectrin-like protein), which is known to bind calmodulin and F-actin, was detected in the thyroid gland of normal and TSH-treated rats by means of light-microscopic immunocytochemistry. Calspectin was demonstrated in the cytoplasm of the follicle epithelial cells especially along the baso-lateral plasma membrane in normal rats. In TSH-treated animals, in addition to the baso-lateral plasma membrane region, the apical plasma membrane region of the follicle epithelial cells also showed positive reaction to the immunostaining. These results suggest that calspectin, in conjugation with calmodulin and actin, play a role in the secretory activities including reabsorption activity of colloid of the follicle epithelial cell.
Collapse
|
33
|
Nixon RA, Lewis SE. Phosphorylation and dephosphorylation of neurofilament proteins in retinal ganglion cell neurons in vivo. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1987; 221:167-86. [PMID: 3124528 DOI: 10.1007/978-1-4684-7618-7_13] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- R A Nixon
- Ralph Lowell Laboratories, McLean Hospital, Belmont, MA 02178
| | | |
Collapse
|
34
|
Seubert P, Baudry M, Dudek S, Lynch G. Calmodulin stimulates the degradation of brain spectrin by calpain. Synapse 1987; 1:20-4. [PMID: 2850618 DOI: 10.1002/syn.890010105] [Citation(s) in RCA: 80] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Brain spectrin has been shown to be a preferential substrate of calcium-dependent proteases (Baudry, Bundman, Smith, and Lynch: Science 212:937-938, 1981) and a major calmodulin-binding protein (Kakiuchi, Sobue, and Fujita: FEBS Lett. 132:144-148, 1981). Since calmodulin, spectrin, and a proteolytically derived spectrin fragment are all components of isolated postsynaptic density preparations (Grab, Berzins, Cohen, and Siekevitz: J. Biol. Chem. 254:8690-8696, 1979; Carlin, Bartelt, and Siekevitz: J. Cell Biol. 96:443-448, 1983), we investigated the functional role of calmodulin binding to brain spectrin with respect to its susceptibility to digestion by proteases. We report that calmodulin's interaction with brain spectrin results in a marked acceleration of the rate of spectrin degradation by calcium-dependent proteases (calpains I and II), but not by chymotrypsin. The cleavage of erythrocyte spectrin (which lacks a high-affinity calmodulin binding site) by calpain I is unaffected by the presence of calmodulin. The stimulatory effect of calmodulin is blocked by trifluoperazine, a calmodulin antagonist, which by itself does not modify brain spectrin proteolysis by calcium-dependent proteases. These results suggest a novel role for calmodulin in neuronal function--namely, a synergistic interaction with calcium-dependent proteases in the regulation of cytoskeletal integrity.
Collapse
Affiliation(s)
- P Seubert
- Center for the Neurobiology of Learning and Memory, University of California, Irvine 92717
| | | | | | | |
Collapse
|
35
|
Baudry M, Seubert P, Lynch G. A possible second messenger system for the production of long-term changes in synapses. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1987; 221:291-311. [PMID: 2893523 DOI: 10.1007/978-1-4684-7618-7_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- M Baudry
- Center for the Neurobiology of Learning and Memory, University of California, Irvine 92717
| | | | | |
Collapse
|
36
|
Pollerberg GE, Schachner M, Davoust J. Differentiation state-dependent surface mobilities of two forms of the neural cell adhesion molecule. Nature 1986; 324:462-5. [PMID: 3537809 DOI: 10.1038/324462a0] [Citation(s) in RCA: 215] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The neural cell adhesion molecule (N-CAM) has been implicated in morphogenetic events during formation of the nervous system. Three forms of N-CAM exist, all glycoprotein chains, of relative molecular masses 180,000 (180K), 140K and 120K (N-CAM180, N-CAM140 and N-CAM120) which are differentially expressed on neural cell types and during development. The three chains are thought to carry similar if not identical amino-acid sequences on their extracellular amino-terminal domains, but differ in the length of their carboxy-terminal cytoplasmic region. They occur in highly sialylated embryonic and less sialylated adult forms. N-CAM180 is selectively expressed in more differentiated neural cells and may play a role in the stabilization of cell contacts. To investigate this, we have studied in the surface membrane of a mouse neuroblastoma cell line N2A the lateral mobility of the two predominant forms of N-CAM, N-CAM180 and N-CAM140, as a function of differentiation. Here we report that as judged by fringe pattern photobleaching, the surface mobility of N-CAM140 is higher than that of N-CAM180, suggesting an association of N-CAM180 with the cytoskeleton or other stabilizing factors. We also show that brain spectrin, a membrane-cytoskeleton linker protein, binds only to N-CAM180. The immobilization of N-CAM in differentiated N2A cells is achieved by a shift in expression from N-CAM140 to N-CAM180.
Collapse
|
37
|
LeVine H, Sahyoun NE. Involvement of fodrin-binding proteins in the structure of the neuronal postsynaptic density and regulation by phosphorylation. Biochem Biophys Res Commun 1986; 138:59-65. [PMID: 2943277 DOI: 10.1016/0006-291x(86)90246-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Novel polypeptides with Mr values about 140,000 bind fodrin and spectrin and are enriched in the postsynaptic density (PSD) compared to other tissues or subcellular fractions. 125I-fodrin binding to these polypeptides is competed for by unlabeled spectrin. These polypeptides are distinct from ankyrin and its proteolytic fragments and from band 4.1 which also bind fodrin. Phosphorylation of PSDs by the endogenous calmodulin-dependent protein kinase markedly reduces 125I-fodrin binding to the transblotted preparation. Such an event may play a regulatory role in governing protein-protein interactions among elements of the PSD.
Collapse
|
38
|
|
39
|
Markham JA, Fifková E. Actin filament organization within dendrites and dendritic spines during development. Brain Res 1986; 392:263-9. [PMID: 3708380 DOI: 10.1016/0165-3806(86)90253-1] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The myosin S-1 subfragment was used to label actin filaments in the developing rat brain. The results show actin filaments present throughout the dendritic region with highest concentrations within growth cones and regions of spine development. Between 6 and 25 days postnatal, spines became more complex and actin filaments within them increased in number and formed a complex network. The observed organization of actin supports the hypothesis that actin has a role in the protrusion of spines from the dendrite during development.
Collapse
|
40
|
Riederer BM, Zagon IS, Goodman SR. Brain spectrin(240/235) and brain spectrin(240/235E): two distinct spectrin subtypes with different locations within mammalian neural cells. J Biophys Biochem Cytol 1986; 102:2088-97. [PMID: 3519621 PMCID: PMC2114251 DOI: 10.1083/jcb.102.6.2088] [Citation(s) in RCA: 197] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Adult mouse brain contains at least two distinct spectrin subtypes, both consisting of 240-kD and 235-kD subunits. Brain spectrin(240/235) is found in neuronal axons, but not dendrites, when immunohistochemistry is performed with antibody raised against brain spectrin isolated from enriched synaptic/axonal membranes. A second spectrin subtype, brain spectrin(240/235E), is exclusively recognized by red blood cell spectrin antibody. Brain spectrin(240/235E) is confined to neuronal cell bodies and dendrites, and some glial cells, but is not present in axons or presynaptic terminals.
Collapse
|
41
|
Abstract
Mouse neuroblastoma cells express a spectrin-related molecule containing 240 kDal (kiloDalton) and 235 kDal subunits in a 1:1 ratio. The 240 kDal and 235 kDal subunits are nearly identical to the alpha and beta subunits respectively of brain spectrin by two dimensional chymotryptic peptide mapping analysis. The neuroblastoma cells do not express a measureable quantity of a red blood cell (rbc)-type spectrin molecule. Neuroblastoma spectrin has been localized throughout the cell body, and neurites of these cells by indirect immunofluorescence studies. As neuroblastoma cells are homogeneous, neuron-like, available in large quantity, and synthesize a single variant of spectrin which is closely related to brain spectrin(240/235), it is the best available model system for the study of the synthesis, assembly and turnover of a neuronal spectrin subtype.
Collapse
|