1
|
Mares-Guia MAMDM, Furtado MC, Chalhoub FLL, Portugal MD, de Oliveira Coelho JMC, de Filippis AMB, Naveca FG. Coinfection with Canine Distemper Virus and Yellow Fever Virus in a Neotropical Primate in Brazil. Viruses 2024; 16:1670. [PMID: 39599785 PMCID: PMC11598961 DOI: 10.3390/v16111670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/17/2024] [Accepted: 10/22/2024] [Indexed: 11/29/2024] Open
Abstract
We describe a natural coinfection with canine distemper virus (CDV) and yellow fever virus in a free-ranging neotropical primate of the genus Callithrix, found dead in the northeastern region of Brazil. The laboratory diagnosis included histopathology, immunohistochemistry, rRT-PCR, and phylogenetic analyses. The CDV sequences from this primate in Brazil represent a divergent lineage in Rio Grande do Norte, closely related to genotypes EU1/South America 1 and South America 2. To our knowledge, this is the first report of natural coinfection by CDV and yellow fever virus in a neotropical primate, underscoring the need to further investigate the circulation of this virus in Brazilian nonhuman primates and its potential implications for wildlife conservation.
Collapse
Affiliation(s)
| | - Marina Carvalho Furtado
- Anatomic Pathology Service, Evandro Chagas National Institute of Infectious Diseases, Oswaldo Cruz Foundation, Rio de Janeiro 21040-900, Brazil; (M.C.F.)
| | | | - Maria Dulce Portugal
- Anatomic Pathology Service, Evandro Chagas National Institute of Infectious Diseases, Oswaldo Cruz Foundation, Rio de Janeiro 21040-900, Brazil; (M.C.F.)
| | | | | | - Felipe Gomes Naveca
- Arbovirus and Hemorrhagic Virus Laboratory, Oswaldo Cruz Institute, Rio de Janeiro 21040-360, Brazil;
- Leonidas and Maria Deane Institute, Fiocruz, Manaus 69057-070, Brazil
| |
Collapse
|
2
|
Glišić D, Kuručki M, Ćirović D, Šolaja S, Mirčeta J, Milićević V. Molecular analysis of canine distemper virus H gene in the golden jackal (Canis aureus) population from Serbia. BMC Vet Res 2024; 20:426. [PMID: 39306660 PMCID: PMC11415988 DOI: 10.1186/s12917-024-04284-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 09/12/2024] [Indexed: 09/25/2024] Open
Abstract
Canine distemper virus (CDV) is a highly contagious and often fatal disease affecting wild and domesticated carnivores. The virus is a single-stranded RNA virus from the genus Morbillivirus and the family Paramyxoviridae. While domestic dogs are the most common hosts, the virus poses a significant threat to endangered wildlife due to its broad host range. This study aimed to characterize the CDV Haemagglutinin (H) gene in golden jackals and explore the molecular evolution of the virus in an underrepresented host. A total of 88 brain samples from hunted golden jackals were tested for the presence of CDV viral nucleic acid, and the H gene of positive samples was amplified and sequenced using the Sanger method. Phylogenetic analysis, conducted using maximum likelihood methods, revealed that all Serbian sequences clustered within the Arctic lineage. Notably, the analysis identified a tyrosine (Y) at position 549 of the H protein, a mutation commonly associated with wildlife hosts, instead of the histidine (H) typically found in domestic strains. Additionally, a mutation at position 310 was observed, which could potentially affect the protein's function and virus-host interactions. These findings provide valuable insights into the genetic diversity and evolutionary dynamics of CDV in golden jackals, with broader implications for understanding the virus's adaptability to different hosts. Further research is needed to investigate the functional impact of these mutations, particularly their role in vaccine efficacy and disease transmission across wildlife and domestic species.
Collapse
Affiliation(s)
- Dimitrije Glišić
- Department of Virology, Institute of Veterinary Medicine of Serbia, Janisa Janulisa 14, Belgrade, 11000, Belgrade, Serbia.
| | - Milica Kuručki
- Faculty of Biology, University of Belgrade, Studentski trg 16, Belgrade, 11000, Serbia
| | - Duško Ćirović
- Faculty of Biology, University of Belgrade, Studentski trg 16, Belgrade, 11000, Serbia
| | - Sofija Šolaja
- Department of Virology, Institute of Veterinary Medicine of Serbia, Janisa Janulisa 14, Belgrade, 11000, Belgrade, Serbia
| | - Jovan Mirčeta
- Public company Vojvodinašume, Preradovićeva 2, Petrovaradin, Novi Sad, 21131, Serbia
| | - Vesna Milićević
- Department of Virology, Institute of Veterinary Medicine of Serbia, Janisa Janulisa 14, Belgrade, 11000, Belgrade, Serbia
| |
Collapse
|
3
|
Liu L, Wang J, Li R, Wu J, Zhao Y, Yan F, Wang T, Gao Y, Zhao Z, Feng N, Xia X. A Bacterium-like Particle Vaccine Displaying Envelope Proteins of Canine Distemper Virus Can Induce Immune Responses in Mice and Dogs. Viruses 2024; 16:549. [PMID: 38675892 PMCID: PMC11055036 DOI: 10.3390/v16040549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/22/2024] [Accepted: 03/26/2024] [Indexed: 04/28/2024] Open
Abstract
Canine distemper virus (CDV) can cause fatal infections in giant pandas. Vaccination is crucial to prevent CDV infection in giant pandas. In this study, two bacterium-like particle vaccines F3-GEM and H4-GEM displaying the trimeric F protein or tetrameric H protein of CDV were constructed based on the Gram-positive enhanced-matrix protein anchor (GEM-PA) surface display system. Electron microscopy and Western blot results revealed that the F or H protein was successfully anchored on the surface of GEM particles. Furthermore, one more bacterium-like particle vaccine F3 and H4-GEM was also designed, a mixture consisting of F3-GEM and H4-GEM at a ratio of 1:1. To evaluate the effect of the three vaccines, mice were immunized with F3-GEM, H4-GEM or F3 and H4-GEM. It was found that the level of IgG-specific antibodies and neutralizing antibodies in the F3 and H4-GEM group was higher than the other two groups. Additionally, F3 and H4-GEM also increased the secretion of Th1-related and Th2-related cytokines. Moreover, F3 and H4-GEM induce IgG and neutralizing antibodies' response in dogs. Conclusions: In summary, F3 and H4-GEM can provoke better immune responses to CDV in mice and dogs. The bacterium-like particle vaccine F3 and H4-GEM might be a potential vaccine candidate for giant pandas against CDV infection.
Collapse
Affiliation(s)
- Lina Liu
- College of Veterinary Medicine, Jilin University, Changchun 130000, China;
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China; (R.L.); (J.W.); (Y.Z.); (F.Y.); (T.W.); (Y.G.); (Z.Z.)
| | - Jianzhong Wang
- College of Veterinary Medicine, Jilin Agricultural University, Changchun 130122, China;
| | - Ranran Li
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China; (R.L.); (J.W.); (Y.Z.); (F.Y.); (T.W.); (Y.G.); (Z.Z.)
- College of Veterinary Medicine, Jilin Agricultural University, Changchun 130122, China;
| | - Jianzhao Wu
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China; (R.L.); (J.W.); (Y.Z.); (F.Y.); (T.W.); (Y.G.); (Z.Z.)
- College of Veterinary Medicine, Jilin Agricultural University, Changchun 130122, China;
| | - Yongkun Zhao
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China; (R.L.); (J.W.); (Y.Z.); (F.Y.); (T.W.); (Y.G.); (Z.Z.)
| | - Feihu Yan
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China; (R.L.); (J.W.); (Y.Z.); (F.Y.); (T.W.); (Y.G.); (Z.Z.)
| | - Tiecheng Wang
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China; (R.L.); (J.W.); (Y.Z.); (F.Y.); (T.W.); (Y.G.); (Z.Z.)
| | - Yuwei Gao
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China; (R.L.); (J.W.); (Y.Z.); (F.Y.); (T.W.); (Y.G.); (Z.Z.)
| | - Zongzheng Zhao
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China; (R.L.); (J.W.); (Y.Z.); (F.Y.); (T.W.); (Y.G.); (Z.Z.)
| | - Na Feng
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China; (R.L.); (J.W.); (Y.Z.); (F.Y.); (T.W.); (Y.G.); (Z.Z.)
- College of Veterinary Medicine, Jilin Agricultural University, Changchun 130122, China;
| | - Xianzhu Xia
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China; (R.L.); (J.W.); (Y.Z.); (F.Y.); (T.W.); (Y.G.); (Z.Z.)
- College of Veterinary Medicine, Jilin Agricultural University, Changchun 130122, China;
| |
Collapse
|
4
|
Huang J, Cortey M, Darwich L, Griffin J, Obón E, Molina R, Martín M. Study of Canine Distemper Virus Presence in Catalonia's Wild Carnivores through H Gene Amplification and Sequencing. Animals (Basel) 2024; 14:436. [PMID: 38338078 PMCID: PMC10854788 DOI: 10.3390/ani14030436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 01/22/2024] [Accepted: 01/25/2024] [Indexed: 02/12/2024] Open
Abstract
Canine distemper virus (CDV) is recognised worldwide as an important pathogen in both domestic and wild carnivores. Few data are available on its impact and spread on the wildlife/wildlife-domestic animal-environment interface. This study, aimed at developing a conservation-oriented control strategy, analysed 89 sick or deceased animals from 2019 to 2023 at the Wildlife Rehabilitation Centre in Torreferrussa. RT-PCR and sequencing of the partial H gene were used to detect and analyse CDV in tissues. The total positive percentage was 20.22% (18/89), comprising 13 red foxes (44.8%), 4 European badgers (28.6%), and 1 American mink (4.5%), while 24 Eurasian otters tested negative. Phylogenetic analysis indicated that all of the CDV strains belong to the European lineage. Geographically distant individuals and different species shared the same viral strain, suggesting a strong capacity of CDV for interspecies and long-distance transmission. This calls for further research, particularly focusing on potential impacts of CDV on endangered carnivores.
Collapse
Affiliation(s)
- Junhao Huang
- Department of Animal Health and Anatomy, Autonomous University of Barcelona (UAB), 08193 Cerdanyola del Vallès, Spain; (J.H.); (M.C.); (L.D.); (J.G.)
| | - Martí Cortey
- Department of Animal Health and Anatomy, Autonomous University of Barcelona (UAB), 08193 Cerdanyola del Vallès, Spain; (J.H.); (M.C.); (L.D.); (J.G.)
| | - Laila Darwich
- Department of Animal Health and Anatomy, Autonomous University of Barcelona (UAB), 08193 Cerdanyola del Vallès, Spain; (J.H.); (M.C.); (L.D.); (J.G.)
| | - Jenna Griffin
- Department of Animal Health and Anatomy, Autonomous University of Barcelona (UAB), 08193 Cerdanyola del Vallès, Spain; (J.H.); (M.C.); (L.D.); (J.G.)
| | - Elena Obón
- Torreferrussa Wildlife Rehabilitation Centre, Catalan Wildlife Service-Forestal Catalana S.A., 08130 Santa Perpètua de Mogoda, Spain;
| | - Rafael Molina
- Torreferrussa Wildlife Rehabilitation Centre, Catalan Wildlife Service-Forestal Catalana S.A., 08130 Santa Perpètua de Mogoda, Spain;
| | - Margarita Martín
- Department of Animal Health and Anatomy, Autonomous University of Barcelona (UAB), 08193 Cerdanyola del Vallès, Spain; (J.H.); (M.C.); (L.D.); (J.G.)
| |
Collapse
|
5
|
Stelitano D, La Frazia S, Ambrosino A, Zannella C, Tay D, Iovane V, Montagnaro S, De Filippis A, Santoro MG, Porotto M, Galdiero M. Antiviral activity of nitazoxanide against Morbillivirus infections. J Virus Erad 2023; 9:100353. [PMID: 38028567 PMCID: PMC10679774 DOI: 10.1016/j.jve.2023.100353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 09/04/2023] [Accepted: 11/01/2023] [Indexed: 12/01/2023] Open
Abstract
The measles virus (MeV) and canine distemper virus (CDV) belong to the genus Morbillivirus of the Paramyxoviridae family. They are enveloped viruses harboring a non-segmented negative-sense RNA. Morbilliviruses are extremely contagious and transmitted through infectious aerosol droplets. Both MeV and CDV may cause respiratory infections and fatal encephalitis, although a high incidence of brain infections is unique to CDV. Despite the availability of a safe and effective vaccine against these viruses, in recent years we are witnessing a strong resurgence of Morbillivirus infection. Measles still kills more than 100,000 people each year, and CDV causes widespread outbreaks, especially among wild animals, including non-human primates. No drugs are currently approved for MeV and CDV. Therefore, the identification of effective antiviral agents represents an unmet medical need. Here, we have investigated the potential antiviral properties of nitazoxanide (NTZ) against MeV and CDV. Antiviral activity was explored with live virus and cell-based assays. NTZ is a thiazolide that is approved by the FDA as an antiprotozoal agent for the treatment of Giardia intestinalis and Cryptosporidium parvum. Further, nitazoxanide and its metabolite tizoxanide have recently emerged as broad-spectrum antiviral agents. We found that NTZ blocks the MeV and CDV replication, acting at the post-entry level. Moreover, we showed that NTZ affects the function of the viral fusion protein (F), impairing viral spread. Our results indicate that NTZ should be further explored as a therapeutic option in measles and canine distemper virus treatment.
Collapse
Affiliation(s)
- Debora Stelitano
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, via Santa Maria di Costantinopoli 16, 80138, Naples, Italy
- Department of Pediatrics, Columbia University Vagelos College of Physicians and Surgeons, 701 West 168th st, 10032, New York, NY, USA
- Center for Host–Pathogen Interaction, Columbia University Vagelos College of Physicians and Surgeons, 701 West 168th st, 10032, New York, NY, USA
| | - Simone La Frazia
- Department of Biology, University of Rome Tor Vergata, Via della Ricerca Scientifica 1, 00133, Rome, Italy
| | - Annalisa Ambrosino
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, via Santa Maria di Costantinopoli 16, 80138, Naples, Italy
| | - Carla Zannella
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, via Santa Maria di Costantinopoli 16, 80138, Naples, Italy
| | - Daniel Tay
- Department of Pediatrics, Columbia University Vagelos College of Physicians and Surgeons, 701 West 168th st, 10032, New York, NY, USA
- Center for Host–Pathogen Interaction, Columbia University Vagelos College of Physicians and Surgeons, 701 West 168th st, 10032, New York, NY, USA
| | - Valentina Iovane
- Department of Agriculture Sciences, University of Naples “Federico II”, Via Università, 100-Portici, 80055, Naples, Italy
| | - Serena Montagnaro
- Department of Veterinary Medicine and Animal Production, University of Naples “Federico II”, via Federico Delpino 1, 80137, Naples, Italy
| | - Anna De Filippis
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, via Santa Maria di Costantinopoli 16, 80138, Naples, Italy
| | - Maria Gabriella Santoro
- Department of Biology, University of Rome Tor Vergata, Via della Ricerca Scientifica 1, 00133, Rome, Italy
- Institute of Translational Pharmacology, CNR, Via Fosso del Cavaliere 100, 00133, Rome, Italy
| | - Matteo Porotto
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, via Santa Maria di Costantinopoli 16, 80138, Naples, Italy
- Department of Pediatrics, Columbia University Vagelos College of Physicians and Surgeons, 701 West 168th st, 10032, New York, NY, USA
- Center for Host–Pathogen Interaction, Columbia University Vagelos College of Physicians and Surgeons, 701 West 168th st, 10032, New York, NY, USA
| | - Massimiliano Galdiero
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, via Santa Maria di Costantinopoli 16, 80138, Naples, Italy
- Virology and Microbiology Unit, University Hospital “Luigi Vanvitelli”, via Santa Maria di Costantinopoli 16, 80138, Naples, Italy
| |
Collapse
|
6
|
Ikegame S, Carmichael JC, Wells H, Furler O'Brien RL, Acklin JA, Chiu HP, Oguntuyo KY, Cox RM, Patel AR, Kowdle S, Stevens CS, Eckley M, Zhan S, Lim JK, Veit EC, Evans MJ, Hashiguchi T, Durigon E, Schountz T, Epstein JH, Plemper RK, Daszak P, Anthony SJ, Lee B. Metagenomics-enabled reverse-genetics assembly and characterization of myotis bat morbillivirus. Nat Microbiol 2023; 8:1108-1122. [PMID: 37142773 PMCID: PMC11089651 DOI: 10.1038/s41564-023-01380-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 04/06/2023] [Indexed: 05/06/2023]
Abstract
Morbilliviruses are among the most contagious viral pathogens of mammals. Although previous metagenomic surveys have identified morbillivirus sequences in bats, full-length morbilliviruses from bats are limited. Here we characterize the myotis bat morbillivirus (MBaMV) from a bat surveillance programme in Brazil, whose full genome was recently published. We demonstrate that the fusion and receptor binding protein of MBaMV utilize bat CD150 and not human CD150, as an entry receptor in a mammalian cell line. Using reverse genetics, we produced a clone of MBaMV that infected Vero cells expressing bat CD150. Electron microscopy of MBaMV-infected cells revealed budding of pleomorphic virions, a characteristic morbillivirus feature. MBaMV replication reached 103-105 plaque-forming units ml-1 in human epithelial cell lines and was dependent on nectin-4. Infection of human macrophages also occurred, albeit 2-10-fold less efficiently than measles virus. Importantly, MBaMV is restricted by cross-neutralizing human sera elicited by measles, mumps and rubella vaccination and is inhibited by orally bioavailable polymerase inhibitors in vitro. MBaMV-encoded P/V genes did not antagonize human interferon induction. Finally, we show that MBaMV does not cause disease in Jamaican fruit bats. We conclude that, while zoonotic spillover into humans may theoretically be plausible, MBaMV replication would probably be controlled by the human immune system.
Collapse
Affiliation(s)
- Satoshi Ikegame
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jillian C Carmichael
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Heather Wells
- Department of Ecology, Evolution and Environmental Biology, Columbia University, New York, NY, USA
| | - Robert L Furler O'Brien
- Department of Medicine, Division of Infectious Diseases, Weill Cornell Medicine, New York, NY, USA
| | - Joshua A Acklin
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Hsin-Ping Chiu
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Robert M Cox
- Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, USA
| | - Aum R Patel
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Shreyas Kowdle
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Christian S Stevens
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Miles Eckley
- Center for Vector-borne Infectious Diseases Department of Microbiology, Immunology and Pathology College of Veterinary Medicine Colorado State University, Fort Collins, CO, USA
| | - Shijun Zhan
- Center for Vector-borne Infectious Diseases Department of Microbiology, Immunology and Pathology College of Veterinary Medicine Colorado State University, Fort Collins, CO, USA
| | - Jean K Lim
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ethan C Veit
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Matthew J Evans
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Takao Hashiguchi
- Laboratory of Medical Virology, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Edison Durigon
- Departamento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Tony Schountz
- Center for Vector-borne Infectious Diseases Department of Microbiology, Immunology and Pathology College of Veterinary Medicine Colorado State University, Fort Collins, CO, USA
| | | | - Richard K Plemper
- Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, USA
| | | | - Simon J Anthony
- Department of Pathology, Microbiology, and Immunology, UC Davis School of Veterinary Medicine, Davis, CA, USA
| | - Benhur Lee
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
7
|
Ohta E. Pathologic characteristics of infectious diseases in macaque monkeys used in biomedical and toxicologic studies. J Toxicol Pathol 2023; 36:95-122. [PMID: 37101957 PMCID: PMC10123295 DOI: 10.1293/tox.2022-0089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 01/16/2023] [Indexed: 04/28/2023] Open
Abstract
Nonhuman primates (NHPs), which have many advantages in scientific research and are often the only relevant animals to use in assessing the safety profiles and biological or pharmacological effects of drug candidates, including biologics. In scientific or developmental experiments, the immune systems of animals can be spontaneously compromised possibly due to background infection, experimental procedure-associated stress, poor physical condition, or intended or unintended mechanisms of action of test articles. Under these circumstances, background, incidental, or opportunistic infections can seriously can significantly complicate the interpretation of research results and findings and consequently affect experimental conclusions. Pathologists and toxicologists must understand the clinical manifestations and pathologic features of infectious diseases and the effects of these diseases on animal physiology and experimental results in addition to the spectrum of infectious diseases in healthy NHP colonies. This review provides an overview of the clinical and pathologic characteristics of common viral, bacterial, fungal, and parasitic infectious diseases in NHPs, especially macaque monkeys, as well as methods for definitive diagnosis of these diseases. Opportunistic infections that can occur in the laboratory setting have also been addressed in this review with examples of cases of infection disease manifestation that was observed or influenced during safety assessment studies or under experimental conditions.
Collapse
Affiliation(s)
- Etsuko Ohta
- Global Drug Safety, Eisai Co., Ltd., 5-1-3 Tokodai,
Tsukuba-shi, Ibaraki 300-2635, Japan
- *Corresponding author: E Ohta (e-mail: )
| |
Collapse
|
8
|
Dogadov DI, Kyuregyan KK, Goncharenko AM, Mikhailov MI. Measles in non-human primates. J Med Primatol 2023; 52:135-143. [PMID: 36440505 DOI: 10.1111/jmp.12630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/07/2022] [Accepted: 11/17/2022] [Indexed: 11/29/2022]
Abstract
It is six decades since the measles vaccine was first introduced, and yet we continue to see frequent outbreaks of this disease occurring all over the world. Many non-human primate (NHP) species, including apes, are susceptible to the measles virus. Spontaneous measles outbreaks have been described in a number of zoos and primate centers worldwide. Research into the spontaneous and experimental infection of laboratory primates with measles represents an invaluable source of information regarding the biology and pathogenesis of this virus and continues to be an irreplaceable and unique tool for testing vaccines and treatments. The purpose of this literature review is to summarize and analyze published data on the circulation of the measles virus among free-living synanthropic and captive primate populations, as well as the results of experiments that have modeled this infection in NHPs.
Collapse
Affiliation(s)
- Dmitriy I Dogadov
- Research Institute of Medical Primatology of the Ministry of Education and Science of Russia, Sochi, Russia
| | - Karen K Kyuregyan
- I.I. Mechnikov Research Institute of Vaccines and Sera, Moscow, Russia.,Russian Medical Academy of Continuous Professional Education of the Ministry of Health of Russia, Moscow, Russia
| | - Alexandra M Goncharenko
- Research Institute of Medical Primatology of the Ministry of Education and Science of Russia, Sochi, Russia
| | - Mikhail I Mikhailov
- I.I. Mechnikov Research Institute of Vaccines and Sera, Moscow, Russia.,Russian Medical Academy of Continuous Professional Education of the Ministry of Health of Russia, Moscow, Russia
| |
Collapse
|
9
|
Alfano F, Lanave G, Lucibelli MG, Miletti G, D’Alessio N, Gallo A, Auriemma C, Amoroso MG, Lucente MS, De Carlo E, Martella V, Decaro N, Fusco G. Canine Distemper Virus in Autochtonous and Imported Dogs, Southern Italy (2014–2021). Animals (Basel) 2022; 12:ani12202852. [PMID: 36290237 PMCID: PMC9597831 DOI: 10.3390/ani12202852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 10/13/2022] [Accepted: 10/14/2022] [Indexed: 11/29/2022] Open
Abstract
Simple Summary In the period 2014–2021, the circulation of CDV in dogs of Southern Italy was investigated. In this time span a reduction in the circulation of CDV was observed, with a higher frequency of detection of the pathogen in imported dogs (18.4%) compared to stray (7.4%) and household (3.9%) animals. These results underline the effectiveness of the prophylaxis strategy on autochthonous dogs as well as the importance of continuous surveillance of CDV, especially in imported dogs. Abstract This study aims to investigate the presence of canine distemper virus (CDV) infection in 949 autochthonous or illegally imported dogs from Southern Italy, over a period of eight years (2014–2021). CDV RNA was detected in 6.8% (65/949) of the animals tested, with no detection of CDV in dogs sampled in 2020–2021. The frequency of CDV detection was higher in imported dogs (19/103, 18.3%) with respect to stray (27/365, 7.4%) and household dogs (19/481, 3.9%). On sequence and phylogenetic analyses of selected strains, the analyzed viruses belonged to the Arctic clade, which has already been reported in Italy and in Europe. The results of our study may suggest a reduction of CDV circulation in Southern Italy, while at the same time highlighting the need for strict controls on dog importation, in order to prevent the introduction of viruses from endemic countries.
Collapse
Affiliation(s)
- Flora Alfano
- Dipartimento Coordinamento di Sanità Animale, Istituto Zooprofilattico Sperimentale del Mezzogiorno, 80055 Portici, NA, Italy
- Correspondence: ; Tel.: +39-0817865441
| | - Gianvito Lanave
- Dipartimento di Medicina Veterinaria, Università degli Studi di Bari, 70121 Valenzano, BA, Italy
| | - Maria Gabriella Lucibelli
- Dipartimento Coordinamento di Sanità Animale, Istituto Zooprofilattico Sperimentale del Mezzogiorno, 80055 Portici, NA, Italy
| | - Gianluca Miletti
- Dipartimento Coordinamento di Sanità Animale, Istituto Zooprofilattico Sperimentale del Mezzogiorno, 80055 Portici, NA, Italy
| | - Nicola D’Alessio
- Dipartimento Coordinamento di Sanità Animale, Istituto Zooprofilattico Sperimentale del Mezzogiorno, 80055 Portici, NA, Italy
| | - Amalia Gallo
- Dipartimento Coordinamento di Sanità Animale, Istituto Zooprofilattico Sperimentale del Mezzogiorno, 80055 Portici, NA, Italy
| | - Clementina Auriemma
- Dipartimento Coordinamento di Sanità Animale, Istituto Zooprofilattico Sperimentale del Mezzogiorno, 80055 Portici, NA, Italy
| | - Maria Grazia Amoroso
- Dipartimento Coordinamento di Sanità Animale, Istituto Zooprofilattico Sperimentale del Mezzogiorno, 80055 Portici, NA, Italy
| | - Maria Stella Lucente
- Dipartimento di Medicina Veterinaria, Università degli Studi di Bari, 70121 Valenzano, BA, Italy
| | - Esterina De Carlo
- Dipartimento Coordinamento di Sanità Animale, Istituto Zooprofilattico Sperimentale del Mezzogiorno, 80055 Portici, NA, Italy
| | - Vito Martella
- Dipartimento di Medicina Veterinaria, Università degli Studi di Bari, 70121 Valenzano, BA, Italy
| | - Nicola Decaro
- Dipartimento di Medicina Veterinaria, Università degli Studi di Bari, 70121 Valenzano, BA, Italy
| | - Giovanna Fusco
- Dipartimento Coordinamento di Sanità Animale, Istituto Zooprofilattico Sperimentale del Mezzogiorno, 80055 Portici, NA, Italy
| |
Collapse
|
10
|
Karki M, Rajak KK, Singh RP. Canine morbillivirus (CDV): a review on current status, emergence and the diagnostics. Virusdisease 2022; 33:309-321. [PMID: 36039286 PMCID: PMC9403230 DOI: 10.1007/s13337-022-00779-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 07/15/2022] [Indexed: 11/12/2022] Open
Abstract
The increasing host range of canine morbillivirus (CDV) affecting important wildlife species such as Lions, Leopard, and Red Pandas has raised the concern. Canine distemper is a pathogen of dogs affecting the respiratory, gastrointestinal, and nervous systems. Seventeen lineages of CDV are reported, and the eighteenth lineage was proposed in 2019 from India. Marked genomic differences in the genome of wild-type virus and vaccine strain are also reported.The variations at the epitope level can be differentiated using specific monoclonal antibodies in neutralization tests. Keeping in mind the current status of the emergence of CDV, genetic and molecular study of circulating strains of the specific geographical region are the essential components of the disease control strategy. New target-based diagnostics and vaccines are in need to counter the effects of the emerging virus population. Control of CDV is necessary to save the endangered, vulnerable, and many other wildlife species to maintain balance in the ecological system. This review provides an overview on emergence reported in CDV, diagnostics developed till today, and a perspective on the disease control strategy, keeping wildlife in consideration.
Collapse
|
11
|
Canine Morbillivirus from Colombian Lineage Exhibits In Silico and In Vitro Potential to Infect Human Cells. Pathogens 2021; 10:pathogens10091199. [PMID: 34578231 PMCID: PMC8471232 DOI: 10.3390/pathogens10091199] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 09/09/2021] [Accepted: 09/14/2021] [Indexed: 11/17/2022] Open
Abstract
Canine morbillivirus (CDV) is a viral agent that infects domestic dogs and a vast array of wildlife species. It belongs to the Paramyxoviridae family, genus Morbillivirus, which is shared with the Measles virus (MeV). Both viruses employ orthologous cellular receptors, SLAM in mononuclear cells and Nectin-4 in epithelial cells, to enter the cells. Although CDV and MeV hemagglutinin (H) have similar functions in viral pathogenesis and cell tropism, the potential interaction of CDV-H protein with human cellular receptors is still uncertain. Considering that CDV is classified as a multi-host pathogen, the potential risk of CDV transmission to humans has not been fully discarded. In this study, we aimed to evaluate both in silico and in vitro, whether there is a cross-species transmission potential from CDV to humans. To accomplish this, the CDV-H protein belonging to the Colombian lineage was modelled. After model validations, molecular docking and molecular dynamics simulations were carried out between Colombian CDV-H protein and canine and human cellular receptors to determine different aspects of the protein-protein interactions. Moreover, cell lines expressing orthologous cellular receptors, with both reference and wild-type CDV strains, were conducted to determine the CDV cross-species transmission potential from an in vitro model. This in silico and in vitro approach suggests the possibility that CDV interacts with ortholog human SLAM (hSLAM) and human Nectin-4 receptors to infect human cell lines, which could imply a potential cross-species transmission of CDV from dogs to humans.
Collapse
|
12
|
Sylvatic Canine Morbillivirus in Captive Panthera Highlights Viral Promiscuity and the Need for Better Prevention Strategies. Pathogens 2021; 10:pathogens10050544. [PMID: 33946447 PMCID: PMC8147164 DOI: 10.3390/pathogens10050544] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 04/21/2021] [Accepted: 04/28/2021] [Indexed: 12/29/2022] Open
Abstract
Canine Distemper Virus (CDV) is a multi-host morbillivirus that infects virtually all Carnivora and a few non-human primates. Here we describe a CDV outbreak in an exotic felid rescue center that led to the death of eight felids in the genus Panthera. Similar to domestic dogs and in contrast to previously described CDV cases in Panthera, severe pneumonia was the primary lesion and no viral antigens or CDV-like lesions were detected in the central nervous system. Four tigers succumbed to opportunistic infections. Viral hemagglutinin (H)-gene sequence was up to 99% similar to strains circulating contemporaneously in regional wildlife. CDV lesions in raccoons and skunk were primarily encephalitis. A few affected felids had at least one previous vaccination for CDV, while most felids at the center were vaccinated during the outbreak. Panthera sharing a fence or enclosure with infected conspecifics had significantly higher chances of getting sick or dying, suggesting tiger-tiger spread was more likely than recurrent spillover. Prior vaccination was incomplete and likely not protective. This outbreak highlights the need for further understanding of CDV epidemiology for species conservation and public health.
Collapse
|
13
|
Trogu T, Canziani S, Salvato S, Bianchi A, Bertoletti I, Gibelli LR, Alborali GL, Barbieri I, Gaffuri A, Sala G, Sozzi E, Lelli D, Lavazza A, Moreno A. Canine Distemper Outbreaks in Wild Carnivores in Northern Italy. Viruses 2021; 13:v13010099. [PMID: 33450828 PMCID: PMC7828270 DOI: 10.3390/v13010099] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Revised: 01/08/2021] [Accepted: 01/11/2021] [Indexed: 12/02/2022] Open
Abstract
Canine distemper (CD) is a fatal, highly contagious disease of wild and domestic carnivores. In the Alpine territory, several outbreaks have occurred in the past few decades within wild populations. This study investigated the presence of canine distemper virus (CDV) infections in wild carnivores in Lombardy, relating to the different circulating genotypes. From 2018 to 2020, foxes, badgers, and martens collected during passive surveillance were subjected to necropsy and histological examination, showing classical signs and microscopic lesions related to CDV. Pools of viscera from each animal were analysed by molecular methods and immunoelectron microscopy. Total prevalences of 39.7%, 52.6%, and 14.3% were recorded in foxes, badgers, and stone martens, respectively. A phylogenetic analysis showed that the sequences obtained belonged to the European 1 lineage and were divided into two different clades (a and b) according to the geographical conformation of alpine valleys included in the study. Clade a was related to the European outbreaks originating from Germany in 2006–2010, while clade b was closely related to the CDV sequences originating from northeastern Italy during the 2011–2018 epidemic wave. Our results suggest that CDV is currently well adapted to wild carnivores, mostly circulating with subclinical manifestations and without severe impact on the dynamics of these populations.
Collapse
|
14
|
Abstract
Humans are infected with paramyxoviruses of different genera early in life, which induce cytotoxic T cells that may recognize conserved epitopes. This raises the question of whether cross-reactive T cells induced by antecedent paramyxovirus infections provide partial protection against highly lethal zoonotic Nipah virus infections. By characterizing a measles virus-specific but paramyxovirus cross-reactive human T cell clone, we discovered a highly conserved HLA-B*1501-restricted T cell epitope in the fusion protein. Using peptides, tetramers, and single cell sorting, we isolated a parainfluenza virus-specific T cell clone from a healthy adult and showed that both clones cleared Nipah virus-infected cells. We identified multiple conserved hot spots in paramyxovirus proteomes that contain other potentially cross-reactive epitopes. Our data suggest that, depending on HLA haplotype and history of paramyxovirus exposures, humans may have cross-reactive T cells that provide protection against Nipah virus. The effect of preferential boosting of these cross-reactive epitopes needs to be further studied in light of paramyxovirus vaccination studies.IMPORTANCE Humans encounter multiple paramyxoviruses early in life. This study shows that infection with common paramyxoviruses can induce T cells cross-reactive with the highly pathogenic Nipah virus. This demonstrates that the combination of paramyxovirus infection history and HLA haplotype affects immunity to phylogenetically related zoonotic paramyxoviruses.
Collapse
|
15
|
Genetic Adaptations, Biases, and Evolutionary Analysis of Canine Distemper Virus Asia-4 Lineage in a Fatal Outbreak of Wild-Caught Civets in Thailand. Viruses 2020; 12:v12040361. [PMID: 32224857 PMCID: PMC7232145 DOI: 10.3390/v12040361] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 03/24/2020] [Indexed: 01/07/2023] Open
Abstract
Canine morbillivirus (CDV) is a serious pathogen that can cause fatal systemic disease in a wide range of domestic and wildlife carnivores. Outbreaks of CDV in wildlife species lead to questions regarding the dispersal of the CDV origin. In the present study, we identified a fatal CDV outbreak in caged wild-caught civets in Thailand. Full-length genetic analysis revealed that CDV from the Asia-4 lineage served as the likely causative agent, which was supported by the viral localization in tissues. Evolutionary analysis based on the CDV hemagglutinin (H) gene revealed that the present civet CDV has co-evolved with CDV strains in dogs in Thailand since about 2014. The codon usage pattern of the CDV H gene revealed that the CDV genome has a selective bias of an A/U-ended codon preference. Furthermore, the codon usage pattern of the CDV Asia-4 strain from potential hosts revealed that the usage pattern was related more to the codon usage of civets than of dogs. This finding may indicate the possibility that the discovered CDV had initially adapted its virulence to infect civets. Therefore, the CDV Asia-4 strain might pose a potential risk to civets. Further epidemiological, evolutionary, and codon usage pattern analyses of other CDV-susceptible hosts are required.
Collapse
|
16
|
Kennedy JM, Earle JP, Omar S, Abdullah H, Nielsen O, Roelke-Parker ME, Cosby SL. Canine and Phocine Distemper Viruses: Global Spread and Genetic Basis of Jumping Species Barriers. Viruses 2019; 11:E944. [PMID: 31615092 PMCID: PMC6833027 DOI: 10.3390/v11100944] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 09/23/2019] [Accepted: 09/30/2019] [Indexed: 02/06/2023] Open
Abstract
Canine distemper virus (CDV) and phocine distemper (PDV) are closely-related members of the Paramyxoviridae family, genus morbillivirus, in the order Mononegavirales. CDV has a broad host range among carnivores. PDV is thought to be derived from CDV through contact between terrestrial carnivores and seals. PDV has caused extensive mortality in Atlantic seals and other marine mammals, and more recently has spread to the North Pacific Ocean. CDV also infects marine carnivores, and there is evidence of morbillivirus infection of seals and other species in Antarctica. Recently, CDV has spread to felines and other wildlife species in the Serengeti and South Africa. Some CDV vaccines may also have caused wildlife disease. Changes in the virus haemagglutinin (H) protein, particularly the signaling lymphocyte activation molecule (SLAM) receptor binding site, correlate with adaptation to non-canine hosts. Differences in the phosphoprotein (P) gene sequences between disease and non-disease causing CDV strains may relate to pathogenicity in domestic dogs and wildlife. Of most concern are reports of CDV infection and disease in non-human primates raising the possibility of zoonosis. In this article we review the global occurrence of CDV and PDV, and present both historical and genetic information relating to these viruses crossing species barriers.
Collapse
Affiliation(s)
- Judith M. Kennedy
- Wellcome Wolfson Institute for Experimental Medicine, Queen’s University, Belfast BT9 7BL, UK; (J.M.K.); (S.O.); (H.A.)
| | - J.A. Philip Earle
- Wellcome Wolfson Institute for Experimental Medicine, Queen’s University, Belfast BT9 7BL, UK; (J.M.K.); (S.O.); (H.A.)
| | - Shadia Omar
- Wellcome Wolfson Institute for Experimental Medicine, Queen’s University, Belfast BT9 7BL, UK; (J.M.K.); (S.O.); (H.A.)
| | - Hani’ah Abdullah
- Wellcome Wolfson Institute for Experimental Medicine, Queen’s University, Belfast BT9 7BL, UK; (J.M.K.); (S.O.); (H.A.)
| | - Ole Nielsen
- Department of Fisheries and Oceans Canada, Winnipeg, Manitoba R3T 2N6, Canada;
| | | | - S. Louise Cosby
- Wellcome Wolfson Institute for Experimental Medicine, Queen’s University, Belfast BT9 7BL, UK; (J.M.K.); (S.O.); (H.A.)
- Virology Branch, Veterinary Sciences Division, Agri-Food and Biosciences Institute, Belfast BT4 3SD, UK
| |
Collapse
|
17
|
Quintero-Gil C, Rendon-Marin S, Martinez-Gutierrez M, Ruiz-Saenz J. Origin of Canine Distemper Virus: Consolidating Evidence to Understand Potential Zoonoses. Front Microbiol 2019; 10:1982. [PMID: 31555226 PMCID: PMC6722215 DOI: 10.3389/fmicb.2019.01982] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 08/12/2019] [Indexed: 11/15/2022] Open
Affiliation(s)
- Carolina Quintero-Gil
- Grupo de Investigación en Ciencias Animales-GRICA, Universidad Cooperativa de Colombia, Bucaramanga, Colombia
| | - Santiago Rendon-Marin
- Grupo de Investigación en Ciencias Animales-GRICA, Universidad Cooperativa de Colombia, Bucaramanga, Colombia
| | - Marlen Martinez-Gutierrez
- Grupo de Investigación en Ciencias Animales-GRICA, Universidad Cooperativa de Colombia, Bucaramanga, Colombia.,Infettare, Facultad de Medicina, Universidad Cooperativa de Colombia, Medellín, Colombia
| | - Julian Ruiz-Saenz
- Grupo de Investigación en Ciencias Animales-GRICA, Universidad Cooperativa de Colombia, Bucaramanga, Colombia.,Asociación Colombiana de Virología, Bogotá, Colombia
| |
Collapse
|
18
|
Ohishi K, Maruyama T, Seki F, Takeda M. Marine Morbilliviruses: Diversity and Interaction with Signaling Lymphocyte Activation Molecules. Viruses 2019; 11:E606. [PMID: 31277275 PMCID: PMC6669707 DOI: 10.3390/v11070606] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 06/27/2019] [Accepted: 06/29/2019] [Indexed: 01/08/2023] Open
Abstract
Epidemiological reports of phocine distemper virus (PDV) and cetacean morbillivirus (CeMV) have accumulated since their discovery nearly 30 years ago. In this review, we focus on the interaction between these marine morbilliviruses and their major cellular receptor, the signaling lymphocyte activation molecule (SLAM). The three-dimensional crystal structure and homology models of SLAMs have demonstrated that 35 residues are important for binding to the morbillivirus hemagglutinin (H) protein and contribute to viral tropism. These 35 residues are essentially conserved among pinnipeds and highly conserved among the Caniformia, suggesting that PDV can infect these animals, but are less conserved among cetaceans. Because CeMV can infect various cetacean species, including toothed and baleen whales, the CeMV-H protein is postulated to have broader specificity to accommodate more divergent SLAM interfaces and may enable the virus to infect seals. In silico analysis of viral H protein and SLAM indicates that each residue of the H protein interacts with multiple residues of SLAM and vice versa. The integration of epidemiological, virological, structural, and computational studies should provide deeper insight into host specificity and switching of marine morbilliviruses.
Collapse
Affiliation(s)
- Kazue Ohishi
- Faculty of Engineering, Tokyo Polytechnic University, 1583, Iiyama, Atsugi, Kanagawa 243-0297, Japan.
| | - Tadashi Maruyama
- School of Marine Biosciences, Kitasato University, 1-15-1, Kitazato, Minami, Sagamihara, Kanagawa 252-0373, Japan
| | - Fumio Seki
- Department of Virology III, National Institute of Infectious Diseases, 4-7-1, Gakuen, Musashimurayama, Tokyo 208-0011, Japan
| | - Makoto Takeda
- Department of Virology III, National Institute of Infectious Diseases, 4-7-1, Gakuen, Musashimurayama, Tokyo 208-0011, Japan
| |
Collapse
|
19
|
Duque-Valencia J, Sarute N, Olarte-Castillo XA, Ruíz-Sáenz J. Evolution and Interspecies Transmission of Canine Distemper Virus-An Outlook of the Diverse Evolutionary Landscapes of a Multi-Host Virus. Viruses 2019; 11:v11070582. [PMID: 31247987 PMCID: PMC6669529 DOI: 10.3390/v11070582] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 05/13/2019] [Accepted: 05/18/2019] [Indexed: 12/17/2022] Open
Abstract
Canine distemper virus (CDV) is a worldwide distributed virus which belongs to the genus Morbillivirus within the Paramyxoviridae family. CDV spreads through the lymphatic, epithelial, and nervous systems of domestic dogs and wildlife, in at least six orders and over 20 families of mammals. Due to the high morbidity and mortality rates and broad host range, understanding the epidemiology of CDV is not only important for its control in domestic animals, but also for the development of reliable wildlife conservation strategies. The present review aims to give an outlook of the multiple evolutionary landscapes and factors involved in the transmission of CDV by including epidemiological data from multiple species in urban, wild and peri-urban settings, not only in domestic animal populations but at the wildlife interface. It is clear that different epidemiological scenarios can lead to the presence of CDV in wildlife even in the absence of infection in domestic populations, highlighting the role of CDV in different domestic or wild species without clinical signs of disease mainly acting as reservoirs (peridomestic and mesocarnivores) that are often found in peridomestic habits triggering CDV epidemics. Another scenario is driven by mutations, which generate genetic variation on which random drift and natural selection can act, shaping the genetic structure of CDV populations leading to some fitness compensations between hosts and driving the evolution of specialist and generalist traits in CDV populations. In this scenario, the highly variable protein hemagglutinin (H) determines the cellular and host tropism by binding to signaling lymphocytic activation molecule (SLAM) and nectin-4 receptors of the host; however, the multiple evolutionary events that may have facilitated CDV adaptation to different hosts must be evaluated by complete genome sequencing. This review is focused on the study of CDV interspecies transmission by examining molecular and epidemiological reports based on sequences of the hemagglutinin gene and the growing body of studies of the complete genome; emphasizing the importance of long-term multidisciplinary research that tracks CDV in the presence or absence of clinical signs in wild species, and helping to implement strategies to mitigate the infection. Integrated research incorporating the experience of wildlife managers, behavioral and conservation biologists, veterinarians, virologists, and immunologists (among other scientific areas) and the inclusion of several wild and domestic species is essential for understanding the intricate epidemiological dynamics of CDV in its multiple host infections.
Collapse
Affiliation(s)
- July Duque-Valencia
- Grupo de Investigación en Ciencias Animales-GRICA, Facultad de Medicina Veterinaria y Zootecnia, Universidad Cooperativa de Colombia, sede Medellín 050012, Colombia
| | - Nicolás Sarute
- Sección Genética Evolutiva, Facultad de Ciencias, Universidad de la Republica, Montevideo 11200, Uruguay
- Department of Microbiology and Immunology, UIC College of Medicine, Chicago, IL 60612, USA
| | - Ximena A Olarte-Castillo
- Facultad de Ciencias Exactas, Naturales y Agropecuarias. Universidad de Santander (UDES), sede Bucaramanga 680002, Colombia
| | - Julián Ruíz-Sáenz
- Grupo de Investigación en Ciencias Animales-GRICA, Facultad de Medicina Veterinaria y Zootecnia, Universidad Cooperativa de Colombia, sede Medellín 050012, Colombia.
| |
Collapse
|
20
|
Christe KL, Salyards GW, Houghton SD, Ardeshir A, Yee JL. Modified Dose Efficacy Trial of a Canine Distemper-Measles Vaccine for Use in Rhesus Macaques ( Macaca mulatta). JOURNAL OF THE AMERICAN ASSOCIATION FOR LABORATORY ANIMAL SCIENCE : JAALAS 2019; 58:397-405. [PMID: 30922419 PMCID: PMC6526495 DOI: 10.30802/aalas-jaalas-18-000091] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 09/26/2018] [Accepted: 10/29/2018] [Indexed: 12/31/2022]
Abstract
Measles virus causes a highly infectious disease in NHP. Clinical signs range from asymptomatic to fatal, although measles virus is most well-known for its characteristic generalized maculopapular rash. Along with appropriate quarantine practices, restricted human access, and appropriate personal protective equipment, vaccines are used to combat the risk of infection. The canine distemper-measles vaccine (CDMV), administered at the manufacturer's standard dose (1.0 mL IM), has been shown to be effective against clinical measles disease in rhesus macaques (Macaca mulatta). The goal of the current study was to test whether doses smaller than the manufacturer's recommended dose stimulated adequate antibody production to protect against infection. We hypothesized that either 0.25 or 0.5 mL IM of CDMV would stimulate antibody production comparable to the manufacturer's recommended dose. We found that the 0.25-mL dose was less effective at inducing antibodies than either the standard (1.0 mL) or 0.5-mL dose, which both yielded similar titers. The primary implication of this study informs balancing resource allocation and providing efficacious immunity. By using half the manufacturer-recommended dose, the 50% cost reduction may provide sufficient monetary incentive to implement, maintain, or modify measles vaccination programs at NHP facilities.
Collapse
Affiliation(s)
- Kari L Christe
- California National Primate Research Center, University of California, Davis, Davis, California; Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California, Davis, Davis, California;,
| | - Gregory W Salyards
- California National Primate Research Center, University of California, Davis, Davis, California
| | - Serena D Houghton
- Pathogen Assay Laboratory, California National Primate Research Center, University of California, Davis, Davis, California
| | - Amir Ardeshir
- California National Primate Research Center, University of California, Davis, Davis, California
| | - JoAnn L Yee
- Pathogen Assay Laboratory, California National Primate Research Center, University of California, Davis, Davis, California
| |
Collapse
|
21
|
Lunardi M, Darold GM, Amude AM, Headley SA, Sonne L, Yamauchi KCI, Boabaid FM, Alfieri AF, Alfieri AA. Canine distemper virus active infection in order Pilosa, family Myrmecophagidae, species Tamandua tetradactyla. Vet Microbiol 2018; 220:7-11. [PMID: 29885804 DOI: 10.1016/j.vetmic.2018.04.030] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 04/20/2018] [Accepted: 04/23/2018] [Indexed: 02/01/2023]
Abstract
Canine distemper virus (CDV) is a highly contagious disease pathogen which causes disease in the domestic dog and species classified in the Canidae, Procyonidae, Mustelidae, Hyaenidae, Ursidae, Viveridae, Felidae, Tayassuidae, and Cercopithecidae families. A combined strategy that involved the direct sequencing of amplicons from genes coding for nucleocapsid, large polymerase, and hemagglutinin proteins of CDV, as well as the pathological findings and the immunohistochemical detection of viral nucleocapsid protein in diverse tissues, confirmed the participation of CDV in the development of a neurological disease in a southern tamandua (Tamandua tetradactyla) from Midwestern Brazil. Phylogenetic analysis based on the hemagglutinin gene sequences revealed that the strain from this study grouped with isolates from the Europe 1/South America 1 lineage. The specific polymorphisms at the SLAM receptor-binding site of the hemagglutinin gene, previously linked to disease emergence in novel hosts, were not detected in this genome. These findings represent the first description of CDV-induced infection in the Tamandua tetradactyla and extend the distribution of this infection to include members of the family Myrmecophagidae, order Pilosa.
Collapse
Affiliation(s)
- Michele Lunardi
- Laboratory of Veterinary Microbiology, Universidade de Cuiabá, 3100 Ave Beira Rio, 78065-900, Cuiabá, MT, Brazil.
| | - Gabriela Molinari Darold
- Laboratory of Veterinary Microbiology, Universidade de Cuiabá, 3100 Ave Beira Rio, 78065-900, Cuiabá, MT, Brazil
| | - Alexandre Mendes Amude
- Department of Small Animal Medicine, Veterinary Teaching Hospital, Universidade de Cuiabá, 3100 Ave Beira Rio, 78065-900, Cuiabá, MT, Brazil
| | - Selwyn Arlington Headley
- Laboratory of Animal Pathology, Department of Veterinary Preventive Medicine, Universidade Estadual de Londrina, Celso Garcia Cid Road, PR 445 Km 380, 86051-990, Londrina, PR, Brazil
| | - Luciana Sonne
- Department of Veterinary Pathology, Universidade Federal do Rio Grande do Sul, 9090 Ave Bento Gonçalves, 90650-001, Porto Alegre, RS, Brazil
| | - Kelly Cristiane Ito Yamauchi
- Department of Small Animal Medicine, Veterinary Teaching Hospital, Universidade de Cuiabá, 3100 Ave Beira Rio, 78065-900, Cuiabá, MT, Brazil
| | - Fabiana Marques Boabaid
- Laboratory of Veterinary Pathology, Universidade de Cuiabá, 3100 Ave Beira Rio, 78065-900, Cuiaba, MT, Brazil
| | - Alice Fernandes Alfieri
- Laboratory of Animal Virology, Department of Veterinary Preventive Medicine, Universidade Estadual de Londrina, Celso Garcia Cid Road, PR 445 Km 380, 86051-990, Londrina, PR, Brazil
| | - Amauri Alcindo Alfieri
- Laboratory of Animal Virology, Department of Veterinary Preventive Medicine, Universidade Estadual de Londrina, Celso Garcia Cid Road, PR 445 Km 380, 86051-990, Londrina, PR, Brazil
| |
Collapse
|
22
|
Cosby SL, Weir L. Measles vaccination: Threat from related veterinary viruses and need for continued vaccination post measles eradication. Hum Vaccin Immunother 2018; 14:229-233. [PMID: 29173050 PMCID: PMC5791572 DOI: 10.1080/21645515.2017.1403677] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 11/03/2017] [Indexed: 12/15/2022] Open
Abstract
Measles virus (MV) is the only human virus within the morbillivirus genus of the Paramyxoviridae. The veterinary members are canine distemper virus (CDV), peste des petits ruminants virus (PPRV), Rinderpest Virus (RPV) as well as the marine morbilliviruses phocine distemper virus (PDV), dolphin morbillivirus (DMV) and porpoise morbillivirus (PMV). Morbilliviruses have a severe impact on humans and animal species. They confer diseases which have contributed to morbidity and mortality of the population on a global scale. There is substantial evidence from both natural and experimental infections that morbilliviruses can readily cross species barriers. Of most concern with regard to zoonosis is the more recently reported fatal infection of primates in Japan and China with strains of CDV which have adapted to this host. The close genetic relationship, shared cell entry receptors and similar pathogenesis between the morbilliviruses highlights the potential consequences of complete withdrawal of MV vaccination after eradication. Therefore, it would be prudent to continue the current MV vaccination. Ultimately development of novel, safe vaccines which have higher efficacy against the veterinary morbilliviruses is a priority. These would to protect the human population long term against the threat of zoonosis by these veterinary viruses.
Collapse
Affiliation(s)
- Sara Louise Cosby
- Agri-Food and Biosciences Institute, Veterinary Sciences Division, Stormont, Belfast, UK
- Queen's University Belfast, Centre for Experimental Medicine, Belfast, UK
| | - Leanne Weir
- Queen's University Belfast, Centre for Experimental Medicine, Belfast, UK
| |
Collapse
|
23
|
Zhang H, Shan F, Zhou X, Li B, Zhai JQ, Zou SZ, Wu MF, Chen W, Zhai SL, Luo ML. Outbreak and genotyping of canine distemper virus in captive Siberian tigers and red pandas. Sci Rep 2017; 7:8132. [PMID: 28811626 PMCID: PMC5557937 DOI: 10.1038/s41598-017-08462-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Accepted: 06/07/2017] [Indexed: 11/29/2022] Open
Abstract
In this study, four canine distemper virus (CDV) strains were isolated from captive Siberian tigers (Panthera tigris altaica) and red pandas (Ailurus fulgens) during two separate CDV outbreaks in a zoo in Guangdong province, China. Sequence alignment and phylogenetic analyses based on the full-length hemagglutinin (H) and fusion (F) genes showed that they were closely identical to genotype Asia-1. Prior to confirmation of CDV in Siberian tigers, to control spread of the disease, a live attenuated combination CDV vaccine was used among almost all carnivore animals except for red pandas in which another recombinant combination CDV vaccine was used. However, about two months later, CDV re-emerged and caused the death among red pandas. Based on the vaccination records, the live combination vaccine could be considered an ideal weapon against CDV in zoo carnivore animals. Although the recombinant combination CDV vaccine was safe for red pandas, its protection effectiveness remains to be further investigated. Moreover, according to the outbreak interval time and sequence characterization, we suspected that stray cats circulating in the zoo were the intermediate host, which contributed to CDV spread from stray dogs to zoo animals. This study revealed the importance of vaccination and biosecurity for zoo animals.
Collapse
Affiliation(s)
- He Zhang
- Guangdong Provincial Key Laboratory of Prevention and Control for Severe Clinical Animal Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Fen Shan
- Guangzhou Zoo, Guangzhou, 510070, China
| | - Xia Zhou
- Guangdong Provincial Key Laboratory of Prevention and Control for Severe Clinical Animal Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Bing Li
- Guangdong Provincial Key Laboratory of Prevention and Control for Severe Clinical Animal Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Jun-Qiong Zhai
- Guangdong Provincial Key Laboratory of Prevention and Control for Severe Clinical Animal Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Shu-Zhan Zou
- Guangdong Provincial Key Laboratory of Prevention and Control for Severe Clinical Animal Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Meng-Fan Wu
- Guangdong Provincial Key Laboratory of Prevention and Control for Severe Clinical Animal Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Wu Chen
- Guangzhou Zoo, Guangzhou, 510070, China.
| | - Shao-Lun Zhai
- Animal Disease Diagnostic Center, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China.
| | - Man-Lin Luo
- Guangdong Provincial Key Laboratory of Prevention and Control for Severe Clinical Animal Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
24
|
Thibault PA, Watkinson RE, Moreira-Soto A, Drexler JF, Lee B. Zoonotic Potential of Emerging Paramyxoviruses: Knowns and Unknowns. Adv Virus Res 2017; 98:1-55. [PMID: 28433050 PMCID: PMC5894875 DOI: 10.1016/bs.aivir.2016.12.001] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The risk of spillover of enzootic paramyxoviruses and the susceptibility of recipient human and domestic animal populations are defined by a broad collection of ecological and molecular factors that interact in ways that are not yet fully understood. Nipah and Hendra viruses were the first highly lethal zoonotic paramyxoviruses discovered in modern times, but other paramyxoviruses from multiple genera are present in bats and other reservoirs that have unknown potential to spillover into humans. We outline our current understanding of paramyxovirus reservoir hosts and the ecological factors that may drive spillover, and we explore the molecular barriers to spillover that emergent paramyxoviruses may encounter. By outlining what is known about enzootic paramyxovirus receptor usage, mechanisms of innate immune evasion, and other host-specific interactions, we highlight the breadth of unexplored avenues that may be important in understanding paramyxovirus emergence.
Collapse
Affiliation(s)
| | - Ruth E Watkinson
- Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | | | - Jan F Drexler
- Institute of Virology, University of Bonn Medical Centre, Bonn, Germany; German Centre for Infection Research (DZIF), Partner Site Bonn-Cologne, Bonn, Germany
| | - Benhur Lee
- Icahn School of Medicine at Mount Sinai, New York, NY, United States.
| |
Collapse
|
25
|
Feng N, Liu Y, Wang J, Xu W, Li T, Wang T, Wang L, Yu Y, Wang H, Zhao Y, Yang S, Gao Y, Hu G, Xia X. Canine distemper virus isolated from a monkey efficiently replicates on Vero cells expressing non-human primate SLAM receptors but not human SLAM receptor. BMC Vet Res 2016; 12:160. [PMID: 27484638 PMCID: PMC4971657 DOI: 10.1186/s12917-016-0757-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Accepted: 06/23/2016] [Indexed: 11/20/2022] Open
Abstract
Background In 2008, an outbreak of canine distemper virus (CDV) infection in monkeys was reported in China. We isolated CDV strain (subsequently named Monkey-BJ01-DV) from lung tissue obtained from a rhesus monkey that died in this outbreak. We evaluated the ability of this virus on Vero cells expressing SLAM receptors from dog, monkey and human origin, and analyzed the H gene of Monkey-BJ01-DV with other strains. Results The Monkey-BJ01-DV isolate replicated to the highest titer on Vero cells expressing dog-origin SLAM (105.2±0.2 TCID50/ml) and monkey-origin SLAM (105.4±0.1 TCID50/ml), but achieved markedly lower titers on human-origin SLAM cells (103.3±0.3 TCID50/ml). Phylogenetic analysis of the full-length H gene showed that Monkey-BJ01-DV was highly related to other CDV strains obtained during recent CDV epidemics among species of the Canidae family in China, and these Monkey strains CDV (Monkey-BJ01-DV, CYN07-dV, Monkey-KM-01) possessed a number of amino acid specific substitutions (E276V, Q392R, D435Y and I542F) compared to the H protein of CDV epidemic in other animals at the same period. Conclusions Our results suggested that the monkey origin-CDV-H protein could possess specific substitutions to adapt to the new host. Monkey-BJ01-DV can efficiently use monkey- and dog-origin SLAM to infect and replicate in host cells, but further adaptation may be required for efficient replication in host cells expressing the human SLAM receptor.
Collapse
Affiliation(s)
- Na Feng
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China.,Military Veterinary Research Institute of Academy of Military Medical Sciences, Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun, 130122, China
| | - Yuxiu Liu
- National Research Center for Veterinary Medicine, Luoyang, Henan, 471000, China
| | - Jianzhong Wang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Weiwei Xu
- Military Veterinary Research Institute of Academy of Military Medical Sciences, Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun, 130122, China
| | - Tiansong Li
- College of Chemistry and Biology, Beihua University, Jilin, 132013, China
| | - Tiecheng Wang
- Military Veterinary Research Institute of Academy of Military Medical Sciences, Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun, 130122, China
| | - Lei Wang
- Department of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, 453003, China
| | - Yicong Yu
- Military Veterinary Research Institute of Academy of Military Medical Sciences, Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun, 130122, China
| | - Hualei Wang
- Military Veterinary Research Institute of Academy of Military Medical Sciences, Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun, 130122, China
| | - Yongkun Zhao
- Military Veterinary Research Institute of Academy of Military Medical Sciences, Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun, 130122, China
| | - Songtao Yang
- Military Veterinary Research Institute of Academy of Military Medical Sciences, Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun, 130122, China
| | - Yuwei Gao
- Military Veterinary Research Institute of Academy of Military Medical Sciences, Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun, 130122, China.
| | - Guixue Hu
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China.
| | - Xianzhu Xia
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China. .,Military Veterinary Research Institute of Academy of Military Medical Sciences, Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun, 130122, China. .,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou, 225009, China.
| |
Collapse
|
26
|
Cook SD. REVIEW ■ : The Epidemiology of Multiple Sclerosis: Clues to the Etiology of a Mysterious Disease. Neuroscientist 2016. [DOI: 10.1177/107385849600200312] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The etiology of multiple sclerosis (MS) has not yet been defined. Based on analysis of prevalence, incidence, and migration studies, it is likely that one or more environmental factors, probably infectious in origin, initiates the disease. Canine distemper virus appears to be an attractive candidate in this regard. Because the risk of acquiring MS is greater in multiplex families (particularly in identical twins), certain ethnic and religious groups, and individuals with the human leukocyte antigen DW2, genetic predisposition is an important determinant in disease expression. NEUROSCIENTIST 2:172-180, 1996
Collapse
Affiliation(s)
- Stuart D. Cook
- Department of Neurosciences UMDNJ-New Jersey Medical
School Newark, New Jersey
| |
Collapse
|
27
|
Gilbert M, Soutyrina SV, Seryodkin IV, Sulikhan N, Uphyrkina OV, Goncharuk M, Matthews L, Cleaveland S, Miquelle DG. Canine distemper virus as a threat to wild tigers in Russia and across their range. Integr Zool 2016; 10:329-43. [PMID: 25939829 DOI: 10.1111/1749-4877.12137] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/04/2015] [Indexed: 11/29/2022]
Abstract
Canine distemper virus (CDV) has recently been identified in populations of wild tigers in Russia and India. Tiger populations are generally too small to maintain CDV for long periods, but are at risk of infections arising from more abundant susceptible hosts that constitute a reservoir of infection. Because CDV is an additive mortality factor, it could represent a significant threat to small, isolated tiger populations. In Russia, CDV was associated with the deaths of tigers in 2004 and 2010, and was coincident with a localized decline of tigers in Sikhote-Alin Biosphere Zapovednik (from 25 tigers in 2008 to 9 in 2012). Habitat continuity with surrounding areas likely played an important role in promoting an ongoing recovery. We recommend steps be taken to assess the presence and the impact of CDV in all tiger range states, but should not detract focus away from the primary threats to tigers, which include habitat loss and fragmentation, poaching and retaliatory killing. Research priorities include: (i) recognition and diagnosis of clinical cases of CDV in tigers when they occur; and (ii) collection of baseline data on the health of wild tigers. CDV infection of individual tigers need not imply a conservation threat, and modeling should complement disease surveillance and targeted research to assess the potential impact to tiger populations across the range of ecosystems, population densities and climate extremes occupied by tigers. Describing the role of domestic and wild carnivores as contributors to a local CDV reservoir is an important precursor to considering control measures.
Collapse
Affiliation(s)
- Martin Gilbert
- Wildlife Conservation Society, Bronx, New York, USA.,Boyd Orr Centre for Population and Ecosystem Health, Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | | | - Ivan V Seryodkin
- Pacific Geographical Institute, Far Eastern Branch of the Russian Academy of Sciences, Vladivostok, Russia.,Far Eastern Federal University, Vladivostok, Russia
| | - Nadezhda Sulikhan
- Institute of Biology and Soil Sciences, Far Eastern Branch of the Russian Academy of Sciences, Vladivostok, Russia
| | - Olga V Uphyrkina
- Institute of Biology and Soil Sciences, Far Eastern Branch of the Russian Academy of Sciences, Vladivostok, Russia
| | | | - Louise Matthews
- Boyd Orr Centre for Population and Ecosystem Health, Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Sarah Cleaveland
- Boyd Orr Centre for Population and Ecosystem Health, Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | | |
Collapse
|
28
|
Logan N, McMonagle E, Drew AA, Takahashi E, McDonald M, Baron MD, Gilbert M, Cleaveland S, Haydon DT, Hosie MJ, Willett BJ. Efficient generation of vesicular stomatitis virus (VSV)-pseudotypes bearing morbilliviral glycoproteins and their use in quantifying virus neutralising antibodies. Vaccine 2015; 34:814-22. [PMID: 26706278 PMCID: PMC4742518 DOI: 10.1016/j.vaccine.2015.12.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Revised: 11/20/2015] [Accepted: 12/06/2015] [Indexed: 12/18/2022]
Abstract
Morbillivirus neutralising antibodies are traditionally measured using either plaque reduction neutralisation tests (PRNTs) or live virus microneutralisation tests (micro-NTs). While both test formats provide a reliable assessment of the strength and specificity of the humoral response, they are restricted by the limited number of viral strains that can be studied and often present significant biological safety concerns to the operator. In this study, we describe the adaptation of a replication-defective vesicular stomatitis virus (VSVΔG) based pseudotyping system for the measurement of morbillivirus neutralising antibodies. By expressing the haemagglutinin (H) and fusion (F) proteins of canine distemper virus (CDV) on VSVΔG pseudotypes bearing a luciferase marker gene, neutralising antibody titres could be measured rapidly and with high sensitivity. Further, by exchanging the glycoprotein expression construct, responses against distinct viral strains or species may be measured. Using this technique, we demonstrate cross neutralisation between CDV and peste des petits ruminants virus (PPRV). As an example of the value of the technique, we demonstrate that UK dogs vary in the breadth of immunity induced by CDV vaccination; in some dogs the neutralising response is CDV-specific while, in others, the neutralising response extends to the ruminant morbillivirus PPRV. This technique will facilitate a comprehensive comparison of cross-neutralisation to be conducted across the morbilliviruses.
Collapse
Affiliation(s)
- Nicola Logan
- MRC-University of Glasgow Centre for Virus Research, Garscube Estate, Glasgow G61 1QH, United Kingdom.
| | - Elizabeth McMonagle
- MRC-University of Glasgow Centre for Virus Research, Garscube Estate, Glasgow G61 1QH, United Kingdom.
| | - Angharad A Drew
- MRC-University of Glasgow Centre for Virus Research, Garscube Estate, Glasgow G61 1QH, United Kingdom.
| | - Emi Takahashi
- Royal Veterinary College, University of London, London NW1 0TU, United Kingdom.
| | - Michael McDonald
- Veterinary Diagnostic Services, University of Glasgow, Garscube Estate, Glasgow G61 1QH, United Kingdom.
| | - Michael D Baron
- The Pirbright Institute, Pirbright, Surrey GU24 0NF, United Kingdom.
| | - Martin Gilbert
- Wildlife Conservation Society, Bronx, NY, USA; Boyd Orr Centre for Population and Ecosystem Health, Institute of Biodiversity Animal Health and Comparative Medicine, University of Glasgow, Glasgow G12 8QQ, United Kingdom.
| | - Sarah Cleaveland
- Boyd Orr Centre for Population and Ecosystem Health, Institute of Biodiversity Animal Health and Comparative Medicine, University of Glasgow, Glasgow G12 8QQ, United Kingdom.
| | - Daniel T Haydon
- Boyd Orr Centre for Population and Ecosystem Health, Institute of Biodiversity Animal Health and Comparative Medicine, University of Glasgow, Glasgow G12 8QQ, United Kingdom.
| | - Margaret J Hosie
- MRC-University of Glasgow Centre for Virus Research, Garscube Estate, Glasgow G61 1QH, United Kingdom.
| | - Brian J Willett
- MRC-University of Glasgow Centre for Virus Research, Garscube Estate, Glasgow G61 1QH, United Kingdom.
| |
Collapse
|
29
|
Beineke A, Baumgärtner W, Wohlsein P. Cross-species transmission of canine distemper virus-an update. One Health 2015; 1:49-59. [PMID: 28616465 PMCID: PMC5462633 DOI: 10.1016/j.onehlt.2015.09.002] [Citation(s) in RCA: 126] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Revised: 09/01/2015] [Accepted: 09/02/2015] [Indexed: 01/13/2023] Open
Abstract
Canine distemper virus (CDV) is a pantropic morbillivirus with a worldwide distribution, which causes fatal disease in dogs. Affected animals develop dyspnea, diarrhea, neurological signs and profound immunosuppression. Systemic CDV infection, resembling distemper in domestic dogs, can be found also in wild canids (e.g. wolves, foxes), procyonids (e.g. raccoons, kinkajous), ailurids (e.g. red pandas), ursids (e.g. black bears, giant pandas), mustelids (e.g. ferrets, minks), viverrids (e.g. civets, genets), hyaenids (e.g. spotted hyenas), and large felids (e.g. lions, tigers). Furthermore, besides infection with the closely related phocine distemper virus, seals can become infected by CDV. In some CDV outbreaks including the mass mortalities among Baikal and Caspian seals and large felids in the Serengeti Park, terrestrial carnivores including dogs and wolves have been suspected as vectors for the infectious agent. In addition, lethal infections have been described in non-carnivore species such as peccaries and non-human primates demonstrating the remarkable ability of the pathogen to cross species barriers. Mutations affecting the CDV H protein required for virus attachment to host-cell receptors are associated with virulence and disease emergence in novel host species. The broad and expanding host range of CDV and its maintenance within wildlife reservoir hosts considerably hampers disease eradication.
Collapse
Affiliation(s)
- Andreas Beineke
- Department of Pathology, University of Veterinary Medicine Hannover, Bünteweg 17, D-30559 Hanover, Germany
- Center for Systems Neuroscience, Hanover, Germany
| | - Wolfgang Baumgärtner
- Department of Pathology, University of Veterinary Medicine Hannover, Bünteweg 17, D-30559 Hanover, Germany
- Center for Systems Neuroscience, Hanover, Germany
| | - Peter Wohlsein
- Department of Pathology, University of Veterinary Medicine Hannover, Bünteweg 17, D-30559 Hanover, Germany
| |
Collapse
|
30
|
Suzuki J, Nishio Y, Kameo Y, Terada Y, Kuwata R, Shimoda H, Suzuki K, Maeda K. Canine distemper virus infection among wildlife before and after the epidemic. J Vet Med Sci 2015; 77:1457-63. [PMID: 26074342 PMCID: PMC4667664 DOI: 10.1292/jvms.15-0237] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
In 2007–2008, a canine distemper virus (CDV) epidemic occurred among wild animals in
Wakayama Prefecture, Japan, and many mammals, including the wild boar and deer, were
infected. In this study, CDV prevalence among wild animals was surveyed before and after
the epidemic. At first, an enzyme-linked immunosorbent assay (ELISA) with horseradish
peroxidase-conjugated protein A/G was established to detect CDV antibodies in many
mammalian species. This established ELISA was available for testing dogs, raccoons and
raccoon dogs as well as virus-neutralization test. Next, a serological survey of wild
mammalians was conducted, and it was indicated that many wild mammalians, particularly
raccoons, were infected with CDV during the epidemic, but few were infected before and
after the epidemic. On the other hand, many raccoon dogs died during the epidemic, but CDV
remained prevalent in the remaining population, and a small epidemic occurred in raccoon
dogs in 2012–2013. These results indicated that the epidemic of 2007–2008 may have been
intensified by transmission to raccoons.
Collapse
Affiliation(s)
- Junko Suzuki
- Laboratory of Veterinary Microbiology, Joint Faculty of Veterinary Medicine, Yamaguchi University, 1677-1 Yoshida, Yamaguchi 753-8515, Japan
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Magden ER, Mansfield KG, Simmons JH, Abee CR. Nonhuman Primates. LABORATORY ANIMAL MEDICINE 2015:771-930. [DOI: 10.1016/b978-0-12-409527-4.00017-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
|
32
|
Park ES, Suzuki M, Kimura M, Maruyama K, Mizutani H, Saito R, Kubota N, Furuya T, Mizutani T, Imaoka K, Morikawa S. Identification of a natural recombination in the F and H genes of feline morbillivirus. Virology 2014; 468-470:524-531. [PMID: 25262470 DOI: 10.1016/j.virol.2014.09.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Revised: 07/31/2014] [Accepted: 09/04/2014] [Indexed: 01/11/2023]
Abstract
Feline morbillivirus (FmoPV) has recently been identified in Hong Kong and Japan. FmoPV is considered to belong to the genus Morbillivirus, in the family Paramyxoviridae. In this study, the complete nucleotide sequences of three strains of FmoPV detected in cats in Japan were determined. Among the six genes in FmoPV; N, P/V/C, M, F, H and L, the P gene showed the highest polymorphism in the nucleotide and putative amino acid sequences among the FmoPV strains. There was no geographical association in terms of the FmoPV phylogeny; however, from extensive phylogenetic and recombination analyses, we found that one Japanese FmoPV strain, MiJP003, was a probable recombinant between two virus strains in the independent lineages found in Japan and Hong Kong, respectively. The recombination was considered to have occurred within the F and H genes. Such recombination is thought to be involved in the evolution of FmoPV.
Collapse
Affiliation(s)
- Eun-Sil Park
- Department of Veterinary Science, National Institute of Infectious Diseases, Tokyo 162-8640, Japan
| | - Michio Suzuki
- Department of Veterinary Science, National Institute of Infectious Diseases, Tokyo 162-8640, Japan
| | - Masanobu Kimura
- Department of Veterinary Science, National Institute of Infectious Diseases, Tokyo 162-8640, Japan
| | - Keiji Maruyama
- Tokyo Metropolitan Animal Care and Consultation Center Jounanjima Branch Office, Tokyo 143-0002, Japan
| | - Hiroshi Mizutani
- Tokyo Metropolitan Animal Care and Consultation Center Jounanjima Branch Office, Tokyo 143-0002, Japan
| | - Ryuichi Saito
- Tokyo Metropolitan Animal Care and Consultation Center Jounanjima Branch Office, Tokyo 143-0002, Japan
| | - Nami Kubota
- Tokyo Metropolitan Animal Care and Consultation Center Jounanjima Branch Office, Tokyo 143-0002, Japan
| | - Tetsuya Furuya
- Research and education center for prevention of global infectious diseases of animals, Tokyo University of Agriculture and Technology, Tokyo 183-8509, Japan
| | - Tetsuya Mizutani
- Research and education center for prevention of global infectious diseases of animals, Tokyo University of Agriculture and Technology, Tokyo 183-8509, Japan
| | - Koichi Imaoka
- Department of Veterinary Science, National Institute of Infectious Diseases, Tokyo 162-8640, Japan
| | - Shigeru Morikawa
- Department of Veterinary Science, National Institute of Infectious Diseases, Tokyo 162-8640, Japan.
| |
Collapse
|
33
|
Melia MM, Earle JP, Abdullah H, Reaney K, Tangy F, Cosby SL. Use of SLAM and PVRL4 and identification of pro-HB-EGF as cell entry receptors for wild type phocine distemper virus. PLoS One 2014; 9:e106281. [PMID: 25171206 PMCID: PMC4149546 DOI: 10.1371/journal.pone.0106281] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Accepted: 07/31/2014] [Indexed: 12/13/2022] Open
Abstract
Signalling lymphocyte activation molecule (SLAM) has been identified as an immune cell receptor for the morbilliviruses, measles (MV), canine distemper (CDV), rinderpest and peste des petits ruminants (PPRV) viruses, while CD46 is a receptor for vaccine strains of MV. More recently poliovirus like receptor 4 (PVRL4), also known as nectin 4, has been identified as a receptor for MV, CDV and PPRV on the basolateral surface of polarised epithelial cells. PVRL4 is also up-regulated by MV in human brain endothelial cells. Utilisation of PVRL4 as a receptor by phocine distemper virus (PDV) remains to be demonstrated as well as confirmation of use of SLAM. We have observed that unlike wild type (wt) MV or wtCDV, wtPDV strains replicate in African green monkey kidney Vero cells without prior adaptation, suggesting the use of a further receptor. We therefore examined candidate molecules, glycosaminoglycans (GAG) and the tetraspan proteins, integrin β and the membrane bound form of heparin binding epithelial growth factor (proHB-EGF),for receptor usage by wtPDV in Vero cells. We show that wtPDV replicates in Chinese hamster ovary (CHO) cells expressing SLAM and PVRL4. Similar wtPDV titres are produced in Vero and VeroSLAM cells but more limited fusion occurs in the latter. Infection of Vero cells was not inhibited by anti-CD46 antibody. Removal/disruption of GAG decreased fusion but not the titre of virus. Treatment with anti-integrin β antibody increased rather than decreased infection of Vero cells by wtPDV. However, infection was inhibited by antibody to HB-EGF and the virus replicated in CHO-proHB-EGF cells, indicating use of this molecule as a receptor. Common use of SLAM and PVRL4 by morbilliviruses increases the possibility of cross-species infection. Lack of a requirement for wtPDV adaptation to Vero cells raises the possibility of usage of proHB-EGF as a receptor in vivo but requires further investigation.
Collapse
Affiliation(s)
- Mary M. Melia
- Centre for Infection and Immunity, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, United Kingdom
| | - John Philip Earle
- Centre for Infection and Immunity, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, United Kingdom
| | - Haniah Abdullah
- Centre for Infection and Immunity, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, United Kingdom
| | - Katherine Reaney
- Centre for Infection and Immunity, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, United Kingdom
| | - Frederic Tangy
- Viral Genomics and Vaccination Laboratory, Institut Pasteur, CNRS-URA3015, Paris, France
| | - Sara Louise Cosby
- Centre for Infection and Immunity, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, United Kingdom
| |
Collapse
|
34
|
Delpeut S, Noyce RS, Richardson CD. The tumor-associated marker, PVRL4 (nectin-4), is the epithelial receptor for morbilliviruses. Viruses 2014; 6:2268-86. [PMID: 24892636 PMCID: PMC4074928 DOI: 10.3390/v6062268] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Revised: 05/14/2014] [Accepted: 05/15/2014] [Indexed: 01/25/2023] Open
Abstract
PVRL4 (nectin-4) was recently identified as the epithelial receptor for members of the Morbillivirus genus, including measles virus, canine distemper virus and peste des petits ruminants virus. Here, we describe the role of PVRL4 in morbillivirus pathogenesis and its promising use in cancer therapies. This discovery establishes a new paradigm for the spread of virus from lymphocytes to airway epithelial cells and its subsequent release into the environment. Measles virus vaccine strains have emerged as a promising oncolytic platform for cancer therapy in the last ten years. Given that PVRL4 is a well-known tumor-associated marker for several adenocarcinoma (lung, breast and ovary), the measles virus could potentially be used to specifically target, infect and destroy cancers expressing PVRL4.
Collapse
Affiliation(s)
- Sebastien Delpeut
- The Department of Microbiology and Immunology, Dalhousie University, Halifax, B3H 1X5 NS, Canada.
| | - Ryan S Noyce
- The Department of Microbiology and Immunology, Dalhousie University, Halifax, B3H 1X5 NS, Canada.
| | - Christopher D Richardson
- The Department of Microbiology and Immunology, Dalhousie University, Halifax, B3H 1X5 NS, Canada.
| |
Collapse
|
35
|
Buczkowski H, Muniraju M, Parida S, Banyard AC. Morbillivirus vaccines: recent successes and future hopes. Vaccine 2014; 32:3155-61. [PMID: 24703852 PMCID: PMC7115685 DOI: 10.1016/j.vaccine.2014.03.053] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Revised: 03/05/2014] [Accepted: 03/13/2014] [Indexed: 01/21/2023]
Abstract
Morbilliviruses cause severe disease in both human and animal populations. Morbilliviruses are recognised targets for eradication. Live attenuated vaccines are available for some morbilliviruses. DIVA vaccines may be important for future morbillivirus eradication attempts.
The impact of morbilliviruses on both human and animal populations is well documented in the history of mankind. Indeed, prior to the development of vaccines for these diseases, morbilliviruses plagued both humans and their livestock that were heavily relied upon for food and motor power within communities. Measles virus (MeV) was responsible for the death of millions of people annually across the world and those fortunate enough to escape the disease often faced starvation where their livestock had died following infection with rinderpest virus (RPV) or peste des petits ruminants virus (PPRV). Canine distemper virus has affected dog populations for centuries and in the past few decades appears to have jumped species, now causing disease in a number of non-canid species, some of which are been pushed to the brink of extinction by the virus. During the age of vaccination, the introduction and successful application of vaccines against rinderpest and measles has led to the eradication of the former and the greater control of the latter. Vaccines against PPR and canine distemper have also been generated; however, the diseases still pose a threat to susceptible species. Here we review the currently available vaccines against these four morbilliviruses and discuss the prospects for the development of new generation vaccines.
Collapse
Affiliation(s)
- Hubert Buczkowski
- Animal Health and Veterinary Laboratories Agency, Woodham Lane, Weybridge, Surrey, KT15 3NB, United Kingdom
| | - Murali Muniraju
- The Pirbright Institute, Ash Road, Pirbright, Surrey, GU24 0NF, United Kingdom
| | - Satya Parida
- The Pirbright Institute, Ash Road, Pirbright, Surrey, GU24 0NF, United Kingdom
| | - Ashley C Banyard
- Animal Health and Veterinary Laboratories Agency, Woodham Lane, Weybridge, Surrey, KT15 3NB, United Kingdom.
| |
Collapse
|
36
|
Measles vaccination of nonhuman primates provides partial protection against infection with canine distemper virus. J Virol 2014; 88:4423-33. [PMID: 24501402 DOI: 10.1128/jvi.03676-13] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Measles virus (MV) is being considered for global eradication, which would likely reduce compliance with MV vaccination. As a result, children will grow up without MV-specific immunity, creating a potential niche for closely related animal morbilliviruses such as canine distemper virus (CDV). Natural CDV infection causing clinical signs has never been reported in humans, but recent outbreaks in captive macaques have shown that CDV can cause disease in primates. We studied the virulence and tropism of recombinant CDV expressing enhanced green fluorescent protein in naive and measles-vaccinated cynomolgus macaques. In naive animals CDV caused viremia and fever and predominantly infected CD150(+) lymphocytes and dendritic cells. Virus was reisolated from the upper and lower respiratory tracts, but infection of epithelial or neuronal cells was not detectable at the time points examined, and the infections were self-limiting. This demonstrates that CDV readily infects nonhuman primates but suggests that additional mutations are necessary to achieve full virulence in nonnatural hosts. Partial protection against CDV was observed in measles-vaccinated macaques, as demonstrated by accelerated control of virus replication and limited shedding from the upper respiratory tract. While neither CDV infection nor MV vaccination induced detectable cross-reactive neutralizing antibodies, MV-specific neutralizing antibody levels of MV-vaccinated macaques were boosted by CDV challenge infection, suggesting that cross-reactive VN epitopes exist. Rapid increases in white blood cell counts in MV-vaccinated macaques following CDV challenge suggested that cross-reactive cellular immune responses were also present. This study demonstrates that zoonotic morbillivirus infections can be controlled by measles vaccination. IMPORTANCE Throughout history viral zoonoses have had a substantial impact on human health. Given the drive toward global eradication of measles, it is essential to understand the zoonotic potential of animal morbilliviruses. Morbilliviruses are thought to have evolved from a common ancestral virus that jumped species and adapted to new hosts. Recently, canine distemper virus (CDV), a morbillivirus normally restricted to carnivores, caused disease outbreaks in nonhuman primates. Here, we report that experimental CDV infection of monkeys resulted in fever and leukopenia. The virus replicated to high levels in lymphocytes but did not spread to epithelial cells or the central nervous system. Importantly, like measles virus in macaques, the infections were self-limiting. In measles-vaccinated macaques CDV was cleared more rapidly, resulting in limited virus shedding from the upper respiratory tract. These studies demonstrate that although CDV can readily infect primates, measles immunity is protective, and CDV infection is self-limiting.
Collapse
|
37
|
Sakai K, Yoshikawa T, Seki F, Fukushi S, Tahara M, Nagata N, Ami Y, Mizutani T, Kurane I, Yamaguchi R, Hasegawa H, Saijo M, Komase K, Morikawa S, Takeda M. Canine distemper virus associated with a lethal outbreak in monkeys can readily adapt to use human receptors. J Virol 2013; 87:7170-5. [PMID: 23596291 PMCID: PMC3676118 DOI: 10.1128/jvi.03479-12] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Accepted: 04/04/2013] [Indexed: 02/01/2023] Open
Abstract
A canine distemper virus (CDV) strain, CYN07-dV, associated with a lethal outbreak in monkeys, used human signaling lymphocyte activation molecule as a receptor only poorly but readily adapted to use it following a P541S substitution in the hemagglutinin protein. Since CYN07-dV had an intrinsic ability to use human nectin-4, the adapted virus became able to use both human immune and epithelial cell receptors, as well as monkey and canine ones, suggesting that CDV can potentially infect humans.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Ryoji Yamaguchi
- Department of Veterinary Pathology, Faculty of Agriculture, University of Miyazaki, Miyazaki, Japan
| | | | | | | | - Shigeru Morikawa
- Department of Virology 1,
- Department of Veterinary Science, National Institute of Infectious Diseases, Tokyo, Japan
| | | |
Collapse
|
38
|
Bieringer M, Han JW, Kendl S, Khosravi M, Plattet P, Schneider-Schaulies J. Experimental adaptation of wild-type canine distemper virus (CDV) to the human entry receptor CD150. PLoS One 2013; 8:e57488. [PMID: 23554862 PMCID: PMC3595274 DOI: 10.1371/journal.pone.0057488] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Accepted: 01/22/2013] [Indexed: 11/18/2022] Open
Abstract
Canine distemper virus (CDV), a close relative of measles virus (MV), is widespread and well known for its broad host range. When the goal of measles eradication may be achieved, and when measles vaccination will be stopped, CDV might eventually cross the species barrier to humans and emerge as a new human pathogen. In order to get an impression how fast such alterations may occur, we characterized required adaptive mutations to the human entry receptors CD150 (SLAM) and nectin-4 as first step to infect human target cells. Recombinant wild-type CDV-A75/17(red) adapted quickly to growth in human H358 epithelial cells expressing human nectin-4. Sequencing of the viral attachment proteins (hemagglutinin, H, and fusion protein, F) genes revealed that no adaptive alteration was required to utilize human nectin-4. In contrast, the virus replicated only to low titres (10(2) pfu/ml) in Vero cells expressing human CD150 (Vero-hSLAM). After three passages using these cells virus was adapted to human CD150 and replicated to high titres (10(5) pfu/ml). Sequence analyses revealed that only one amino acid exchange in the H-protein at position 540 Asp→Gly (D540G) was required for functional adaptation to human CD150. Structural modelling suggests that the adaptive mutation D540G in H reflects the sequence alteration from canine to human CD150 at position 70 and 71 from Pro to Leu (P70L) and Gly to Glu (G71E), and compensates for the gain of a negative charge in the human CD150 molecule. Using this model system our data indicate that only a minimal alteration, in this case one adaptive mutation, is required for adaptation of CDV to the human entry receptors, and help to understand the molecular basis why this adaptive mutation occurs.
Collapse
MESH Headings
- Adaptation, Physiological/genetics
- Amino Acid Substitution
- Animals
- Antigens, CD/genetics
- Antigens, CD/metabolism
- Cell Adhesion Molecules/genetics
- Cell Adhesion Molecules/metabolism
- Chlorocebus aethiops
- Communicable Diseases, Emerging/genetics
- Communicable Diseases, Emerging/metabolism
- Communicable Diseases, Emerging/transmission
- Distemper/genetics
- Distemper/metabolism
- Distemper/transmission
- Distemper Virus, Canine/physiology
- Dogs
- Humans
- Mutation, Missense
- Receptors, Cell Surface/genetics
- Receptors, Cell Surface/metabolism
- Signaling Lymphocytic Activation Molecule Family Member 1
- Vero Cells
- Virus Replication
Collapse
Affiliation(s)
- Maria Bieringer
- Institute for Virology and Immunobiology, University of Würzburg, Würzburg, Germany
| | - Jung Woo Han
- Institute for Virology and Immunobiology, University of Würzburg, Würzburg, Germany
| | - Sabine Kendl
- Institute for Virology and Immunobiology, University of Würzburg, Würzburg, Germany
| | - Mojtaba Khosravi
- Department for Clinical Veterinary Medicine, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Philippe Plattet
- Department for Clinical Veterinary Medicine, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | | |
Collapse
|
39
|
Origgi FC, Sattler U, Pilo P, Waldvogel AS. Fatal combined infection with canine distemper virus and orthopoxvirus in a group of Asian marmots (Marmota caudata). Vet Pathol 2013; 50:914-20. [PMID: 23381928 DOI: 10.1177/0300985813476060] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
A fatal combined infection with canine distemper virus (CDV) and orthopoxvirus (OPXV) in Asian marmots (Marmota caudata) is reported in this article. A total of 7 Asian marmots from a small zoological garden in Switzerland were found dead in hibernation during a routine check in the winter of 2011. The marmots died in February 2011. No clinical signs of disease were observed at any time. The viruses were detected in all individuals for which the tissues were available (n = 3). Detection of the viruses was performed by reverse transcription polymerase chain reaction. The most consistent gross lesion was a neck and thorax edema. A necrotizing pharyngitis and a multifocal necrotizing pneumonia were observed histologically. Numerous large intracytoplasmic eosinophilic inclusions were seen in the epithelial cells of the pharynx, of the airways, and in the skin keratinocytes. Brain lesions were limited to mild multifocal gliosis. Phylogenetic analysis revealed that the marmot CDV strain was closely related to the clusters of CDVs detected in Switzerland in wild carnivores during a local outbreak in 2002 and the 2009-2010 nationwide epidemic, suggesting a spillover of this virus from wildlife. The OPXV was most closely related to a strain of cowpoxvirus, a poxvirus species considered endemic in Europe. This is the first reported instance of CDV infection in a rodent species and of a combined CDV and OPXV infection.
Collapse
Affiliation(s)
- F C Origgi
- DVM, PhD, DACVM, DACVP, Centre for Fish and Wildlife Health (FIWI), Institute of Animal Pathology, College of Veterinary Medicine, Vetsuisse Faculty, University of Bern; Laenggassstrasse 122, 3012 Bern, Switzerland.
| | | | | | | |
Collapse
|
40
|
Abstract
Canine distemper virus (CDV) has recently expanded its host range to nonhuman primates. A large CDV outbreak occurred in rhesus monkeys at a breeding farm in Guangxi Province, China, in 2006, followed by another outbreak in rhesus monkeys at an animal center in Beijing in 2008. In 2008 in Japan, a CDV outbreak also occurred in cynomolgus monkeys imported from China. In that outbreak, 46 monkeys died from severe pneumonia during a quarantine period. A CDV strain (CYN07-dV) was isolated in Vero cells expressing dog signaling lymphocyte activation molecule (SLAM). Phylogenic analysis showed that CYN07-dV was closely related to the recent CDV outbreaks in China, suggesting continuing chains of CDV infection in monkeys. In vitro, CYN07-dV uses macaca SLAM and macaca nectin4 as receptors as efficiently as dog SLAM and dog nectin4, respectively. CYN07-dV showed high virulence in experimentally infected cynomolgus monkeys and excreted progeny viruses in oral fluid and feces. These data revealed that some of the CDV strains, like CYN07-dV, have the potential to cause acute systemic infection in monkeys.
Collapse
|
41
|
Abstract
The WHO has set regional elimination goals for measles eradication to be achieved by 2020 or earlier. A major question is whether an opportunity for veterinary virus infection of humans may arise when measles is eradicated and if vaccination is discontinued. Lessons have been learned from animal to human virus transmission i.e., HIV and more recently from severe acute respiratory syndrome and avian influenza virus infections. We are therefore alerted to the risk of zoonosis from the veterinary morbilliviruses. In this review the evidence from viral genomics, animal studies and cell culture experiments will be explored to evaluate the possibility of cross-infection of humans with these viruses.
Collapse
Affiliation(s)
- S Louise Cosby
- Queen’s University, Belfast, School of Medicine, Dentistry & Biomedical Sciences, Centre for Infection & Immunity, 4th Floor, Medical Biology Centre, Lisburn Road, Belfast, BT9 7BL
| |
Collapse
|
42
|
Origgi FC, Plattet P, Sattler U, Robert N, Casaubon J, Mavrot F, Pewsner M, Wu N, Giovannini S, Oevermann A, Stoffel MH, Gaschen V, Segner H, Ryser-Degiorgis MP. Emergence of Canine Distemper Virus Strains With Modified Molecular Signature and Enhanced Neuronal Tropism Leading to High Mortality in Wild Carnivores. Vet Pathol 2012; 49:913-29. [DOI: 10.1177/0300985812436743] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
An ongoing canine distemper epidemic was first detected in Switzerland in the spring of 2009. Compared to previous local canine distemper outbreaks, it was characterized by unusually high morbidity and mortality, rapid spread over the country, and susceptibility of several wild carnivore species. Here, the authors describe the associated pathologic changes and phylogenetic and biological features of a multiple highly virulent canine distemper virus (CDV) strain detected in and/or isolated from red foxes ( Vulpes vulpes), Eurasian badgers ( Meles meles), stone ( Martes foina) and pine ( Martes martes) martens, from a Eurasian lynx ( Lynx lynx), and a domestic dog. The main lesions included interstitial to bronchointerstitial pneumonia and meningopolioencephalitis, whereas demyelination—the classic presentation of CDV infection—was observed in few cases only. In the brain lesions, viral inclusions were mainly in the nuclei of the neurons. Some significant differences in brain and lung lesions were observed between foxes and mustelids. Swiss CDV isolates shared together with a Hungarian CDV strain detected in 2004. In vitro analysis of the hemagglutinin protein from one of the Swiss CDV strains revealed functional and structural differences from that of the reference strain A75/17, with the Swiss strain showing increased surface expression and binding efficiency to the signaling lymphocyte activation molecule (SLAM). These features might be part of a novel molecular signature, which might have contributed to an increase in virus pathogenicity, partially explaining the high morbidity and mortality, the rapid spread, and the large host spectrum observed in this outbreak.
Collapse
Affiliation(s)
- F. C. Origgi
- Centre for Fish and Wildlife Health (FIWI), University of Bern, Bern, Switzerland
| | - P. Plattet
- Department of Clinical Research and Veterinary Public Health, University of Bern, Bern, Switzerland
| | - U. Sattler
- Centre for Fish and Wildlife Health (FIWI), University of Bern, Bern, Switzerland
| | - N. Robert
- Centre for Fish and Wildlife Health (FIWI), University of Bern, Bern, Switzerland
| | - J. Casaubon
- Centre for Fish and Wildlife Health (FIWI), University of Bern, Bern, Switzerland
| | - F. Mavrot
- Centre for Fish and Wildlife Health (FIWI), University of Bern, Bern, Switzerland
| | - M. Pewsner
- Centre for Fish and Wildlife Health (FIWI), University of Bern, Bern, Switzerland
| | - N. Wu
- Centre for Fish and Wildlife Health (FIWI), University of Bern, Bern, Switzerland
| | - S. Giovannini
- Centre for Fish and Wildlife Health (FIWI), University of Bern, Bern, Switzerland
| | - A. Oevermann
- Neurocenter-DCR-VPH, University of Bern, Bern, Switzerland
| | - M. H. Stoffel
- Division of Veterinary Anatomy, Vetsuisse Faculty, University of Bern, Switzerland
| | - V. Gaschen
- Division of Veterinary Anatomy, Vetsuisse Faculty, University of Bern, Switzerland
| | - H. Segner
- Centre for Fish and Wildlife Health (FIWI), University of Bern, Bern, Switzerland
| | | |
Collapse
|
43
|
Nagao Y, Nishio Y, Shiomoda H, Tamaru S, Shimojima M, Goto M, Une Y, Sato A, Ikebe Y, Maeda K. An outbreak of canine distemper virus in tigers (Panthera tigris): possible transmission from wild animals to zoo animals. J Vet Med Sci 2011; 74:699-705. [PMID: 22214864 DOI: 10.1292/jvms.11-0509] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Canine distemper virus (CDV), a morbillivirus that causes one of the most contagious and lethal viral diseases known in canids, has an expanding host range, including wild animals. Since December 2009, several dead or dying wild raccoon dogs (Nyctereutes procyonoides) were found in and around one safari-style zoo in Japan, and CDV was isolated from four of these animals. In the subsequent months (January to February 2010), 12 tigers (Panthera tigris) in the zoo developed respiratory and gastrointestinal diseases, and CDV RNA was detected in fecal samples of the examined tigers. In March 2010, one of the tigers developed a neurological disorder and died; CDV was isolated from the lung of this animal. Sequence analysis of the complete hemagglutinin (H) gene and the signal peptide region of the fusion (F) gene showed high homology among these isolates (99.8-100%), indicating that CDV might have been transmitted from raccoon dog to tiger. In addition, these isolates belonged to genotype Asia-1 and had lower homology (<90%) to the vaccine strain (Onderstepoort). Seropositivity of lions (Panthera leo) in the zoo and wild bears (Ursus thibetanus) captured around this area supported the theory that a CDV epidemic had occurred in many mammal species in and around the zoo. These results indicate a risk of CDV transmission among many animal species, including large felids and endangered species.
Collapse
Affiliation(s)
- Yumiko Nagao
- Laboratory of Veterinary Microbiology, Faculty of Agriculture, Yamaguchi University, 1677-1 Yoshida, Yamaguchi 753-8515, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Qiu W, Zheng Y, Zhang S, Fan Q, Liu H, Zhang F, Wang W, Liao G, Hu R. Canine distemper outbreak in rhesus monkeys, China. Emerg Infect Dis 2011; 17:1541-3. [PMID: 21801646 PMCID: PMC3381540 DOI: 10.3201/eid1708.101153] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Since 2006, canine distemper outbreaks have occurred in rhesus monkeys at a
breeding farm in Guangxi, People’s Republic of China. Approximately
10,000 animals were infected (25%–60% disease incidence); 5%–30%
of infected animals died. The epidemic was controlled by vaccination. Amino acid
sequence analysis of the virus indicated a unique strain.
Collapse
Affiliation(s)
- Wei Qiu
- Center for Disease Control and Prevention, Chengdu Military Region, Kunming, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Abstract
Canine distemper virus (CDV) causes a major disease of domestic dogs that develops as a serious systemic infection in unvaccinated or improperly vaccinated dogs. Domesticated dogs are the main reservoir of CDV, a multihost pathogen. This virus of the genus Morbillivirus in the family Paramyxoviridae occurs in other carnivorous species including all members of the Canidae and Mustelidae families and in some members of the Procyonidae, Hyaenidae, Ursidae, and Viverridae families. Canine distemper also has been reported in the Felidae family and marine mammals. The spread and incidences of CDV epidemics in dogs and wildlife here and worldwide are increasing.
Collapse
Affiliation(s)
- Sanjay Kapil
- Department of Veterinary Pathobiology, Oklahoma Animal Disease Diagnostic Laboratory, Center for Veterinary Health Sciences, Farm and Ridge Road, Stillwater, OK 74078, USA.
| | | |
Collapse
|
46
|
Identification of a new genotype of canine distemper virus circulating in America. Vet Res Commun 2011; 35:381-90. [PMID: 21713437 DOI: 10.1007/s11259-011-9486-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/06/2011] [Indexed: 10/18/2022]
Abstract
Canine Distemper is a highly contagious viral systemic disease that affects a wide variety of terrestrial carnivores. Canine Distemper virus (CDV) appears genetically heterogeneous, markedly in the hemagglutinin protein (H), showing geographic patterns of diversification that are useful to monitor CDV molecular epidemiology. In Mexico the activity of canine distemper remains high in dogs, likely because vaccine prophylaxis coverage in canine population is under the levels required to control effectively the disease. By phylogenetic analysis based on the nucleoprotein (N) and on the H genes, Mexican CDV strains collected between 2007 and 2010 were distinguished into several genovariants, all which constituted a unique group, clearly distinct from field and vaccine strains circulating worldwide, but resembling a CDV strain, 19876, identified in Missouri, USA, 2004, that was genetically unrelated to other North-American CDV strains. Gathering information on the genetic heterogeneity of CDV on a global scale appears pivotal in order to investigate the origin and modalities of introduction of unusual/novel CDV strains, as well as to understand if vaccine breakthroughs or disease epidemics may be somewhat related to genetic/antigenic or biological differences between field and vaccine strains.
Collapse
|
47
|
Chen J, Liang X, Chen PF. Canine distemper virus utilizes different receptors to infect chicken embryo fibroblasts and vero cells. Virol Sin 2011; 26:139-45. [PMID: 21468937 DOI: 10.1007/s12250-011-3176-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2010] [Accepted: 02/15/2011] [Indexed: 11/28/2022] Open
Abstract
Inducing animal viruses to adapt to chicken embryos or chicken embryo fibroblasts (CEF) is a common method to develop attenuated live vaccines with full security. Canine distemper virus (CDV) also does this, but the mechanisms and particular receptors remain unclear. Virus overlay protein blot assays were carried out on CEF membrane proteins, which were extracted respectively with a Mem-PER™ kit, a radioimmunoprecipitation assay buffer or a modified co-immunoprecipitation method, and revealed a common 57 kDa positive band that differed from the 42-kDa positive band in Vero cells and also from those receptors reported in lymphocytes and 293 cells, indicating a receptor diversity of CDV and the possibility of the 57-kDa protein acting as a receptor that is involved in adaptive infection of CDV Kunming strain to CEF.
Collapse
Affiliation(s)
- Jun Chen
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | | | | |
Collapse
|
48
|
Sun Z, Li A, Ye H, Shi Y, Hu Z, Zeng L. Natural infection with canine distemper virus in hand-feeding Rhesus monkeys in China. Vet Microbiol 2010; 141:374-8. [DOI: 10.1016/j.vetmic.2009.09.024] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2009] [Revised: 09/28/2009] [Accepted: 09/22/2009] [Indexed: 10/20/2022]
|
49
|
Beineke A, Puff C, Seehusen F, Baumgärtner W. Pathogenesis and immunopathology of systemic and nervous canine distemper. Vet Immunol Immunopathol 2008; 127:1-18. [PMID: 19019458 DOI: 10.1016/j.vetimm.2008.09.023] [Citation(s) in RCA: 192] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2008] [Revised: 09/17/2008] [Accepted: 09/18/2008] [Indexed: 10/21/2022]
Abstract
Canine distemper is a worldwide occurring infectious disease of dogs, caused by a morbillivirus, closely related to measles and rinderpest virus. The natural host range comprises predominantly carnivores. Canine distemper virus (CDV), an enveloped, negative-sense RNA virus, infects different cell types, including epithelial, mesenchymal, neuroendocrine and hematopoietic cells of various organs and tissues. CDV infection of dogs is characterized by a systemic and/or nervous clinical course and viral persistence in selected organs including the central nervous system (CNS) and lymphoid tissue. Main manifestations include respiratory and gastrointestinal signs, immunosuppression and demyelinating leukoencephalomyelitis (DL). Impaired immune function, associated with depletion of lymphoid organs, consists of a viremia-associated loss of lymphocytes, especially of CD4+ T cells, due to lymphoid cell apoptosis in the early phase. After clearance of the virus from the peripheral blood an assumed diminished antigen presentation and altered lymphocyte maturation cause an ongoing immunosuppression despite repopulation of lymphoid organs. The early phase of DL is a sequel of a direct virus-mediated damage and infiltrating CD8+ cytotoxic T cells associated with an up-regulation of pro-inflammatory cytokines such as interleukin (IL)-6, IL-8, tumor necrosis factor (TNF)-alpha and IL-12 and a lacking response of immunomodulatory cytokines such as IL-10 and transforming growth factor (TGF)-beta. A CD4+-mediated delayed type hypersensitivity and cytotoxic CD8+ T cells contribute to myelin loss in the chronic phase. Additionally, up-regulation of interferon-gamma and IL-1 may occur in advanced lesions. Moreover, an altered balance between matrix metalloproteinases and their inhibitors seems to play a pivotal role for the pathogenesis of DL. Summarized, DL represents a biphasic disease process consisting of an initial direct virus-mediated process and immune-mediated plaque progression. Immunosuppression is due to early virus-mediated lymphocytolysis followed by still poorly understood mechanisms affecting antigen presentation and lymphocyte maturation.
Collapse
Affiliation(s)
- A Beineke
- Department of Pathology, University of Veterinary Medicine, Hannover, Germany
| | | | | | | |
Collapse
|
50
|
Martella V, Elia G, Buonavoglia C. Canine distemper virus. Vet Clin North Am Small Anim Pract 2008; 38:787-97, vii-viii. [PMID: 18501278 DOI: 10.1016/j.cvsm.2008.02.007] [Citation(s) in RCA: 137] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Vaccine-based prophylaxis has greatly helped to keep distemper disease under control. Notwithstanding, the incidence of canine distemper virus (CDV)-related disease in canine populations throughout the world seems to have increased in the past decades, and several episodes of CDV disease in vaccinated animals have been reported, with nation-wide proportions in some cases. Increasing surveillance should be pivotal to identify new CDV variants and to understand the dynamics of CDV epidemiology. In addition, it is important to evaluate whether the efficacy of the vaccine against these new strains may somehow be affected.
Collapse
Affiliation(s)
- Vito Martella
- Department of Animal Health and Wellbeing, Faculty of Veterinary Medicine, University of Bari, Strada per Casamassima km 3, 70010 Valenzano, Bari, Italy
| | | | | |
Collapse
|