1
|
Raz N, Daugherty A, Khatib D, Dahle C, Rajan U, Zajac‐Benitez C, Stanley J. Mapping Age Differences in Brain Energy Metabolites and Metabolic Markers of Cellular Membrane Production and Degradation With 31P Magnetic Resonance Spectroscopy. Hum Brain Mapp 2024; 45:e70039. [PMID: 39391993 PMCID: PMC11467684 DOI: 10.1002/hbm.70039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 09/16/2024] [Accepted: 09/23/2024] [Indexed: 10/12/2024] Open
Abstract
Using Phosphorus Magnetic Resonance Spectroscopy (31P MRS), we examined five metabolites associated with brain energy cycle, and cellular membrane production and degradation in 11 brain regions of 48 children (age 6-15), and 80 middle-aged and older adults (age 52-87). Levels of phosphomonoesters (PMEs) and phosphodiesters (PDEs), gamma plus alpha adenosine triphosphate (γαATP), phosphocreatine (PCr) and inorganic phosphate (Pi), were residualized on the total amplitude value. PMEs were greater in children compared to adults, whereas PDEs showed the opposite age difference. Higher γαATP and lower Pi were found in children compared to adults. The age group differences were particularly salient in the association cortices and anterior white matter. Among children, age correlated negatively with PMEs and positively with PDEs in association cortices. Compared to children, adults had lower intracellular pH. The results suggest reduction in membrane synthesis and increase in membrane degradation in adolescents and to a greater degree in adults compared to younger children. Concomitant reduction in γαATP and increase in Pi are consistent with reduced energy consumption in adolescents and further drop in middle-aged and older adults, although it is impossible to distinguish declines in energy supply from reduced demand due to shrinking neuropil, without longitudinal studies.
Collapse
Affiliation(s)
- Naftali Raz
- Department of PsychologyStony Brook UniversityStony BrookNew YorkUSA
- Center for Lifespan PsychologyMax Planck Institute for Human DevelopmentBerlinGermany
| | - Ana M. Daugherty
- Department of Psychology, and the Institute of GerontologyWayne State UniversityDetroitMichiganUSA
| | - Dalal Khatib
- Department of Psychiatry and Behavioral NeurosciencesWayne State UniversityDetroitMichiganUSA
| | - Cheryl L. Dahle
- Institute of GerontologyWayne State UniversityDetroitMichiganUSA
| | - Usha Rajan
- Department of Psychiatry and Behavioral NeurosciencesWayne State UniversityDetroitMichiganUSA
| | - Caroline Zajac‐Benitez
- Department of Psychiatry and Behavioral NeurosciencesWayne State UniversityDetroitMichiganUSA
| | - Jeffrey A. Stanley
- Department of Psychiatry and Behavioral NeurosciencesWayne State UniversityDetroitMichiganUSA
| |
Collapse
|
2
|
Laukka JJ, Kain KM, Rathnam AS, Sohi J, Khatib D, Kamholz J, Stanley JA. Altered high-energy phosphate and membrane metabolism in Pelizaeus–Merzbacher disease using phosphorus magnetic resonance spectroscopy. Brain Commun 2022; 4:fcac202. [PMID: 36003325 PMCID: PMC9396944 DOI: 10.1093/braincomms/fcac202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 06/06/2022] [Accepted: 08/04/2022] [Indexed: 11/14/2022] Open
Abstract
Pelizaeus–Merzbacher disease is an X-linked recessive leucodystrophy of the central nervous system caused by mutations affecting the major myelin protein, proteolipid protein 1. The extent of the altered in vivo neurochemistry of protein, proteolipid protein 1 duplications, the most common form of Pelizaeus–Merzbacher disease, is, however, poorly understood. Phosphorus magnetic resonance spectroscopy is the only in vivo technique that can assess the biochemistry associated with high-energy phosphate and membrane phospholipid metabolism across different cortical, subcortical and white matter areas. In this cross-sectional study, whole-brain, multi-voxel phosphorus magnetic resonance spectroscopy was acquired at 3 T on 14 patients with Pelizaeus–Merzbacher disease with protein, proteolipid protein 1 duplications and 23 healthy controls (all males). Anabolic and catabolic levels of membrane phospholipids (phosphocholine and phosphoethanolamine, and glycerophosphoethanolamine and glycerophosphocholine, respectively), as well as phosphocreatine, inorganic orthophosphate and adenosine triphosphate levels relative to the total phosphorus magnetic resonance spectroscopy signal from 12 different cortical and subcortical areas were compared between the two groups. Independent of brain area, phosphocholine, glycerophosphoethanolamine and inorganic orthophosphate levels were significantly lower (P = 0.0025, P < 0.0001 and P = 0.0002) and phosphocreatine levels were significantly higher (P < 0.0001) in Pelizaeus–Merzbacher disease patients compared with controls. Additionally, there was a significant group-by-brain area interaction for phosphocreatine with post-hoc analyses demonstrating significantly higher phosphocreatine levels in patients with Pelizaeus–Merzbacher disease compared with controls across multiple brain areas (anterior and posterior white matter, superior parietal lobe, posterior cingulate cortex, hippocampus, occipital cortex, striatum and thalamus; all P ≤ 0.0042). Phosphoethanolamine, glycerophosphoethanolamine and adenosine triphosphate levels were not significantly different between groups. For the first-time, widespread alterations in phosphorus magnetic resonance spectroscopy metabolite levels of Pelizaeus–Merzbacher disease patients are being reported. Specifically, increased high-energy phosphate storage levels of phosphocreatine concomitant with decreased inorganic orthophosphate across multiple areas suggest a widespread reduction in the high-energy phosphate utilization in Pelizaeus–Merzbacher disease, and the membrane phospholipid metabolite deficits suggest a widespread degradation in the neuropil content/maintenance of patients with Pelizaeus–Merzbacher disease which includes axons, dendrites and astrocytes within cortex and the myelin microstructure and oligodendrocytes within white matter. These results provide greater insight into the neuropathology of Pelizaeus–Merzbacher disease both in terms of energy expenditure and membrane phospholipid metabolites. Future longitudinal studies are warranted to investigate the utility of phosphorus magnetic resonance spectroscopy as surrogate biomarkers in monitoring treatment intervention for Pelizaeus–Merzbacher disease.
Collapse
Affiliation(s)
- Jeremy J Laukka
- Department of Medical Education, University of Toledo College of Medicine and Life Sciences , Toledo, OH , USA
- Department of Neurology, University of Toledo College of Medicine and Life Sciences , Toledo, OH , USA
| | - Kevin M Kain
- College of Osteopathic Medicine, Kansas City University , Kansas City, MO , USA
| | | | - Jasloveleen Sohi
- Department of Neurology, Center for Molecular Medicine and Genetics, Wayne State University School of Medicine , MI , USA
| | - Dalal Khatib
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine , Detroit, MI , USA
| | - John Kamholz
- Department of Neurology, Center for Molecular Medicine and Genetics, Wayne State University School of Medicine , MI , USA
- Department of Neurology, University of Iowa Carver College of Medicine , Iowa City, IA , USA
| | - Jeffrey A Stanley
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine , Detroit, MI , USA
| |
Collapse
|
3
|
Liu Y, Ouyang P, Zheng Y, Mi L, Zhao J, Ning Y, Guo W. A Selective Review of the Excitatory-Inhibitory Imbalance in Schizophrenia: Underlying Biology, Genetics, Microcircuits, and Symptoms. Front Cell Dev Biol 2021; 9:664535. [PMID: 34746116 PMCID: PMC8567014 DOI: 10.3389/fcell.2021.664535] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 09/27/2021] [Indexed: 12/29/2022] Open
Abstract
Schizophrenia is a chronic disorder characterized by specific positive and negative primary symptoms, social behavior disturbances and cognitive deficits (e.g., impairment in working memory and cognitive flexibility). Mounting evidence suggests that altered excitability and inhibition at the molecular, cellular, circuit and network level might be the basis for the pathophysiology of neurodevelopmental and neuropsychiatric disorders such as schizophrenia. In the past decades, human and animal studies have identified that glutamate and gamma-aminobutyric acid (GABA) neurotransmissions are critically involved in several cognitive progresses, including learning and memory. The purpose of this review is, by analyzing emerging findings relating to the balance of excitatory and inhibitory, ranging from animal models of schizophrenia to clinical studies in patients with early onset, first-episode or chronic schizophrenia, to discuss how the excitatory-inhibitory imbalance may relate to the pathophysiology of disease phenotypes such as cognitive deficits and negative symptoms, and highlight directions for appropriate therapeutic strategies.
Collapse
Affiliation(s)
- Yi Liu
- National Clinical Research Center on Mental Disorders and Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, China.,Department of Psychiatry, The Affiliated Brain Hospital, Guangzhou Medical University, Guangzhou, China
| | - Pan Ouyang
- National Clinical Research Center on Mental Disorders and Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Yingjun Zheng
- Department of Psychiatry, The Affiliated Brain Hospital, Guangzhou Medical University, Guangzhou, China
| | - Lin Mi
- Department of Psychiatry, The Affiliated Brain Hospital, Guangzhou Medical University, Guangzhou, China
| | - Jingping Zhao
- National Clinical Research Center on Mental Disorders and Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Yuping Ning
- Department of Psychiatry, The Affiliated Brain Hospital, Guangzhou Medical University, Guangzhou, China.,The First School of Clinical Medical University, Guangzhou, China
| | - Wenbin Guo
- National Clinical Research Center on Mental Disorders and Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
4
|
Decreased Brain pH and Pathophysiology in Schizophrenia. Int J Mol Sci 2021; 22:ijms22168358. [PMID: 34445065 PMCID: PMC8395078 DOI: 10.3390/ijms22168358] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 07/30/2021] [Accepted: 07/30/2021] [Indexed: 12/26/2022] Open
Abstract
Postmortem studies reveal that the brain pH in schizophrenia patients is lower than normal. The exact cause of this low pH is unclear, but increased lactate levels due to abnormal energy metabolism appear to be involved. Schizophrenia patients display distinct changes in mitochondria number, morphology, and function, and such changes promote anaerobic glycolysis, elevating lactate levels. pH can affect neuronal activity as H+ binds to numerous proteins in the nervous system and alters the structure and function of the bound proteins. There is growing evidence of pH change associated with cognition, emotion, and psychotic behaviors. Brain has delicate pH regulatory mechanisms to maintain normal pH in neurons/glia and extracellular fluid, and a change in these mechanisms can affect, or be affected by, neuronal activities associated with schizophrenia. In this review, we discuss the current understanding of the cause and effect of decreased brain pH in schizophrenia based on postmortem human brains, animal models, and cellular studies. The topic includes the factors causing decreased brain pH in schizophrenia, mitochondria dysfunction leading to altered energy metabolism, and pH effects on the pathophysiology of schizophrenia. We also review the acid/base transporters regulating pH in the nervous system and discuss the potential contribution of the major transporters, sodium hydrogen exchangers (NHEs), and sodium-coupled bicarbonate transporters (NCBTs), to schizophrenia.
Collapse
|
5
|
Haszto CS, Stanley JA, Iyengar S, Prasad KM. Regionally Distinct Alterations in Membrane Phospholipid Metabolism in Schizophrenia: A Meta-analysis of Phosphorus Magnetic Resonance Spectroscopy Studies. BIOLOGICAL PSYCHIATRY: COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2019; 5:264-280. [PMID: 31748123 DOI: 10.1016/j.bpsc.2019.09.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 09/12/2019] [Accepted: 09/13/2019] [Indexed: 12/21/2022]
Abstract
BACKGROUND Existing data on altered membrane phospholipid metabolism in schizophrenia are diverse. We conducted a meta-analysis of studies of phosphorus magnetic resonance spectroscopy, a noninvasive imaging approach that can assess molecular biochemistry of cortex by measuring phosphomonoester (PME) and phosphodiester (PDE) levels, which can provide evidence of altered biochemical processes involved in neuropil membrane expansion and contraction in schizophrenia. METHODS We analyzed PME and PDE data in the frontal and temporal lobes in subjects with schizophrenia from 24 peer-reviewed publications using the MAVIS package in R by building random- and fixed-effects models. Heterogeneity of effect sizes, effects of publication bias, and file drawer analysis were also assessed. RESULTS Subjects with schizophrenia showed lower PME levels in the frontal regions (p = .008) and elevated PDE levels in the temporal regions (p < .001) with significant heterogeneity. We noted significant publication bias and file drawer effect for frontal PME and PDE and temporal PDE levels, but not for temporal PME levels. Fail-safe analysis estimated that a high number of negative studies were required to provide nonsignificant results. CONCLUSIONS Despite methodological differences, these phosphorus magnetic resonance spectroscopy studies demonstrate regionally specific imbalance in membrane phospholipid metabolism related to neuropil in subjects with schizophrenia compared with control subjects reflecting neuropil contraction. Specifically, decreased PME levels in the frontal regions and elevated PDE levels in the temporal regions provide evidence of decreased synthesis and increased degradation of neuropil membrane, respectively. Notwithstanding significant heterogeneity and publication bias, a large number of negative studies are required to render the results of this meta-analysis nonsignificant. These findings warrant further postmortem and animal studies.
Collapse
Affiliation(s)
- Connor S Haszto
- Kenneth Dietrich School of Arts and Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania; Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Jeffrey A Stanley
- Department of Psychiatry and Behavioral Neuroscience, Wayne State University School of Medicine, Detroit, Michigan
| | - Satish Iyengar
- Department of Statistics, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Konasale M Prasad
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania; Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania; Veterans Affairs Pittsburgh Health System, Pittsburgh, Pennsylvania.
| |
Collapse
|
6
|
Ghosh S, Dyer RA, Beasley CL. Evidence for altered cell membrane lipid composition in postmortem prefrontal white matter in bipolar disorder and schizophrenia. J Psychiatr Res 2017; 95:135-142. [PMID: 28843843 DOI: 10.1016/j.jpsychires.2017.08.009] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Revised: 07/24/2017] [Accepted: 08/09/2017] [Indexed: 11/30/2022]
Abstract
Brain imaging suggests that white matter abnormalities, including compromised white matter integrity in the frontal lobe, are shared across bipolar disorder (BD) and schizophrenia (SCZ). However, the precise molecular and cellular correlates remain to be elucidated. Given evidence for widespread alterations in cell membrane lipid composition in both disorders, we sought to investigate whether lipid composition is disturbed in frontal white matter in SCZ and BD. The phospholipids phosphatidylethanolamine (PE) and phosphatidylcholine (PC) were quantified in white matter adjacent to the dorsolateral prefrontal cortex in subjects with BD (n = 34), SCZ (n = 35), and non-psychiatric controls (n = 35) using high-pressure liquid chromatography. Individual fatty acid species and plasmalogens were then quantified separately in PE and PC fractions by gas liquid chromatography. PC was significantly lower in the BD group, compared to controls. The fatty acids PE22:0, PE24:1 and PE20:2n6 were higher, and PC20:4n6, PE22:5n6 and PC22:5n6 lower in the BD group, relative to the control group. PE22:1 was higher and PC20:3n6, PE22:5n6 and PC22:5n6 lower in the SCZ group, compared to the control group. These data provide evidence for altered lipid composition in white matter in both BD and SCZ. Changes in white matter lipid composition could ultimately contribute to dysfunction of frontal white matter circuits in SCZ and BD.
Collapse
Affiliation(s)
- Sanjoy Ghosh
- Department of Biology, Irving K. Barber School of Arts & Sciences, University of British Columbia-Okanagan, Kelowna, British Columbia, Canada
| | - Roger A Dyer
- Nutrition and Metabolism Research Program, BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada
| | - Clare L Beasley
- Department of Psychiatry, University of British Columbia, Vancouver, British Columbia, Canada.
| |
Collapse
|
7
|
Sanacora G, Rothman D, Krystal JH. Applications of Magnetic Resonance Spectroscopy to Psychiatry. Neuroscientist 2016. [DOI: 10.1177/107385849900500316] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The inaccessibility of the human brain to biochemical studies has historically challenged the ability of in vestigators to elucidate the pathophysiology of psychiatric syndromes. Magnetic resonance spectroscopy (MRS) now provides a noninvasive means of assessing neurochemistry in vivo. Since the first application of the technique to the study of the human brain, many new advances have been made. This new technology broadens the applications of the MRS. The major principles of the technique and compounds currently available for study are discussed in this article. A brief review of current and future applications of the technology to the field of psychiatry are discussed. NEUROSCIENTIST 5:192-196, 1999
Collapse
Affiliation(s)
- Gerard Sanacora
- Departments of Psychiatry and Internal Medicine Yale
University School of Medicine New Haven, Connecticut
| | - Douglas Rothman
- Departments of Psychiatry and Internal Medicine Yale
University School of Medicine New Haven, Connecticut
| | - John H. Krystal
- Departments of Psychiatry and Internal Medicine Yale
University School of Medicine New Haven, Connecticut
| |
Collapse
|
8
|
Smesny S, Gussew A, Biesel NJ, Schack S, Walther M, Rzanny R, Milleit B, Gaser C, Sobanski T, Schultz CC, Amminger P, Hipler UC, Sauer H, Reichenbach JR. Glutamatergic dysfunction linked to energy and membrane lipid metabolism in frontal and anterior cingulate cortices of never treated first-episode schizophrenia patients. Schizophr Res 2015; 168:322-9. [PMID: 26255566 DOI: 10.1016/j.schres.2015.07.013] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2015] [Revised: 06/10/2015] [Accepted: 07/06/2015] [Indexed: 12/22/2022]
Abstract
BACKGROUND Glutamatergic dysfunction and altered membrane lipid and energy metabolism have been repeatedly demonstrated in the frontal/prefrontal and anterior cingulate cortex (ACC) in schizophrenia. Though having been already studied in animals, the presumed link between glutamatergic function and structural plasticity has not been investigated directly in the human brain yet. We measured glutamate (Glu), focal energy metabolism, and membrane phospholipid turnover to investigate main pathologies in those key brain regions of schizophrenia. METHODS (1)H- and (31)P-Chemical Shift Imaging (CSI) was combined in a single session to assess Glu and markers of energy (PCr, ATP) and membrane lipid (PME, PDE) metabolism in 31 neuroleptic-naïve first acute onset psychosis patients and 31 matched healthy controls. Multivariate analyses of covariance were used to assess disease effects on Glu and to investigate the impact of Glu alterations on phospholipid and energy metabolites. RESULTS Glu levels of patients were increased in the frontal and prefrontal cortex bilaterally and in the ACC. Higher Glu was associated with increased left frontal/prefrontal PME and right frontal/prefrontal PDE in patients, which was not observed in healthy controls. In contrast, higher Glu levels were associated with lower PCr or ATP values in the frontal/prefrontal cortex bilaterally and in the right ACC of controls. This was not observed in the right ACC and left frontal/prefrontal cortex of patients. CONCLUSION Frontal glutamatergic hyperactivity is disconnected from physiologically regulated energy metabolism and is associated with increased membrane breakdown in right and increased membrane restoration in left frontal and prefrontal cortical regions. As indicated by previous findings, this pathology is likely dynamic during the course of first acute illness and possibly associated with negative symptoms and cognitive impairment. Our findings underline the importance of further research on neuroprotective treatment options during the early acute or even better for the ultra-high risk state of psychotic illness.
Collapse
Affiliation(s)
- Stefan Smesny
- Department of Psychiatry, Jena University Hospital, Philosophenweg 3, D-07743 Jena, Germany.
| | - Alexander Gussew
- Medical Physics Group, Department of Diagnostic and Interventional Radiology, Jena University Hospital, Philosophenweg 3, D-07740 Jena, Germany
| | - Natalie Joan Biesel
- Department of Psychiatry, Jena University Hospital, Philosophenweg 3, D-07743 Jena, Germany
| | - Stephan Schack
- Department of Psychiatry, Jena University Hospital, Philosophenweg 3, D-07743 Jena, Germany
| | - Mario Walther
- Institute of Medical Statistics, Computer Sciences and Documentation (IMSID), Jena University Hospital, Friedrich-Schiller University Jena, Bachstraße 18, D-07743 Jena, Germany
| | - Reinhard Rzanny
- Medical Physics Group, Department of Diagnostic and Interventional Radiology, Jena University Hospital, Philosophenweg 3, D-07740 Jena, Germany
| | - Berko Milleit
- Department of Psychiatry, Jena University Hospital, Philosophenweg 3, D-07743 Jena, Germany; Department of Psychiatry, Thüringen-Kliniken "Georgius Agricola" GmbH Rainweg 68, D-07318 Saalfeld/Saale, Germany
| | - Christian Gaser
- Department of Psychiatry, Jena University Hospital, Philosophenweg 3, D-07743 Jena, Germany
| | - Thomas Sobanski
- Department of Psychiatry, Thüringen-Kliniken "Georgius Agricola" GmbH Rainweg 68, D-07318 Saalfeld/Saale, Germany
| | - Carl Christoph Schultz
- Department of Psychiatry, Jena University Hospital, Philosophenweg 3, D-07743 Jena, Germany
| | - Paul Amminger
- Department of Child and Adolescent Psychiatry, Medical University Vienna, Währingergürtel 18-20, A-1090 Vienna, Austria; Orygen Youth Health Research Centre, The University of Melbourne, Locked Bag 10, 35 Poplar Road Parkville, Victoria 3052, Melbourne, Australia
| | - Uta-Christina Hipler
- Department of Dermatology, Jena University Hospital, Erfurter Straße 35, D-07743 Jena, Germany
| | - Heinrich Sauer
- Department of Psychiatry, Jena University Hospital, Philosophenweg 3, D-07743 Jena, Germany
| | - Jürgen R Reichenbach
- Medical Physics Group, Department of Diagnostic and Interventional Radiology, Jena University Hospital, Philosophenweg 3, D-07740 Jena, Germany
| |
Collapse
|
9
|
Yuksel C, Tegin C, O'Connor L, Du F, Ahat E, Cohen BM, Ongur D. Phosphorus magnetic resonance spectroscopy studies in schizophrenia. J Psychiatr Res 2015; 68:157-66. [PMID: 26228415 DOI: 10.1016/j.jpsychires.2015.06.014] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Revised: 06/15/2015] [Accepted: 06/18/2015] [Indexed: 12/26/2022]
Abstract
Phosphorus magnetic resonance spectroscopy ((31)P MRS) allows in vivo quantification of phosphorus metabolites that are considered to be related to membrane turnover and energy metabolism. In schizophrenia (SZ), (31)P MRS studies found several abnormalities in different brain regions suggesting that alterations in these pathways may be contributing to the pathophysiology. In this paper, we systematically reviewed the (31)P MRS studies in SZ published to date by taking patient characteristics, medication status and brain regions into account. Publications written in English were searched on http://www.ncbi.nlm.nih.gov/pubmed/, by using the keywords 'phosphomonoester', 'phosphodiester', 'ATP', 'phosphocreatine', 'phosphocholine', 'phosphoethanolamine','glycerophosphocholine', 'glycerophosphoethanolamine', 'pH', 'schizophrenia', and 'MRS'. Studies that measured (31)P metabolites in SZ patients were included. This search identified 52 studies. Reduced PME and elevated PDE reported in earlier studies were not replicated in several subsequent studies. One relatively consistent pattern was a decrease in PDE in chronic patients in the subcortical structures. There were no consistent patterns for the comparison of energy related phosphorus metabolites between patients and controls. Also, no consistent pattern emerged in studies seeking relationship between (31)P metabolites and antipsychotic use and other clinical variables. Despite emerging patterns, methodological heterogeneities and shortcomings in this literature likely obscure consistent patterns among studies. We conclude with recommendations to improve study designs and (31)P MRS methods in future studies. We also stress the significance of probing into the dynamic changes in energy metabolism, as this approach reveals abnormalities that are not visible to steady-state measurements.
Collapse
Affiliation(s)
- Cagri Yuksel
- McLean Hospital, 115 Mill Street, Belmont, MA, USA; Harvard Medical School, 25 Shattuck Street, Boston, MA, USA.
| | - Cuneyt Tegin
- University of Louisville, Department of Psychiatry, 323 E. Chestnut Street, Louisville, KY, USA.
| | | | - Fei Du
- McLean Hospital, 115 Mill Street, Belmont, MA, USA; Harvard Medical School, 25 Shattuck Street, Boston, MA, USA.
| | - Ezgi Ahat
- Istanbul University, Cerrahpasa School of Medicine. Kocamustafapaşa Cad. No:53, Istanbul, Turkey.
| | - Bruce M Cohen
- McLean Hospital, 115 Mill Street, Belmont, MA, USA; Harvard Medical School, 25 Shattuck Street, Boston, MA, USA.
| | - Dost Ongur
- McLean Hospital, 115 Mill Street, Belmont, MA, USA; Harvard Medical School, 25 Shattuck Street, Boston, MA, USA.
| |
Collapse
|
10
|
Fournier M, Ferrari C, Baumann PS, Polari A, Monin A, Bellier-Teichmann T, Wulff J, Pappan KL, Cuenod M, Conus P, Do KQ. Impaired metabolic reactivity to oxidative stress in early psychosis patients. Schizophr Bull 2014; 40:973-83. [PMID: 24687046 PMCID: PMC4133680 DOI: 10.1093/schbul/sbu053] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Because increasing evidence point to the convergence of environmental and genetic risk factors to drive redox dysregulation in schizophrenia, we aim to clarify whether the metabolic anomalies associated with early psychosis reflect an adaptation to oxidative stress. Metabolomic profiling was performed to characterize the response to oxidative stress in fibroblasts from control individuals (n = 20) and early psychosis patients (n = 30), and in all, 282 metabolites were identified. In addition to the expected redox/antioxidant response, oxidative stress induced a decrease of lysolipid levels in fibroblasts from healthy controls that were largely muted in fibroblasts from patients. Most notably, fibroblasts from patients showed disrupted extracellular matrix- and arginine-related metabolism after oxidative stress, indicating impairments beyond the redox system. Plasma membrane and extracellular matrix, 2 regulators of neuronal activity and plasticity, appeared as particularly susceptible to oxidative stress and thus provide novel mechanistic insights for pathophysiological understanding of early stages of psychosis. Statistically, antipsychotic medication at the time of biopsy was not accounting for these anomalies in the metabolism of patients' fibroblasts, indicating that they might be intrinsic to the disease. Although these results are preliminary and should be confirmed in a larger group of patients, they nevertheless indicate that the metabolic signature of reactivity to oxidative stress may provide reliable early markers of psychosis. Developing protective measures aimed at normalizing the disrupted pathways should prevent the pathological consequences of environmental stressors.
Collapse
Affiliation(s)
- Margot Fournier
- Department of Psychiatry, Unit for Research in Schizophrenia, Center for Psychiatric Neuroscience, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Carina Ferrari
- Department of Psychiatry, Unit for Research in Schizophrenia, Center for Psychiatric Neuroscience, Lausanne University Hospital (CHUV), Lausanne, Switzerland;,Department of Psychiatry, Service of General Psychiatry, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Philipp S. Baumann
- Department of Psychiatry, Unit for Research in Schizophrenia, Center for Psychiatric Neuroscience, Lausanne University Hospital (CHUV), Lausanne, Switzerland;,Department of Psychiatry, Service of General Psychiatry, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Andrea Polari
- Department of Psychiatry, Unit for Research in Schizophrenia, Center for Psychiatric Neuroscience, Lausanne University Hospital (CHUV), Lausanne, Switzerland;,Department of Psychiatry, Service of General Psychiatry, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Aline Monin
- Department of Psychiatry, Unit for Research in Schizophrenia, Center for Psychiatric Neuroscience, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Tanja Bellier-Teichmann
- Department of Psychiatry, Unit for Research in Schizophrenia, Center for Psychiatric Neuroscience, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | | | | | - Michel Cuenod
- Department of Psychiatry, Unit for Research in Schizophrenia, Center for Psychiatric Neuroscience, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Philippe Conus
- Department of Psychiatry, Service of General Psychiatry, Lausanne University Hospital (CHUV), Lausanne, Switzerland;,These authors contributed equally to this work
| | - Kim Q. Do
- Department of Psychiatry, Unit for Research in Schizophrenia, Center for Psychiatric Neuroscience, Lausanne University Hospital (CHUV), Lausanne, Switzerland;,These authors contributed equally to this work
| |
Collapse
|
11
|
Taha AY, Cheon Y, Ma K, Rapoport SI, Rao JS. Altered fatty acid concentrations in prefrontal cortex of schizophrenic patients. J Psychiatr Res 2013; 47:636-43. [PMID: 23428160 PMCID: PMC3620602 DOI: 10.1016/j.jpsychires.2013.01.016] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2012] [Revised: 01/15/2013] [Accepted: 01/18/2013] [Indexed: 12/12/2022]
Abstract
BACKGROUND Disturbances in prefrontal cortex phospholipid and fatty acid composition have been reported in patients with schizophrenia (SCZ), often as an incomplete lipid profile or a percent of total lipid concentration. In this study, we quantified absolute concentrations (nmol/g wet weight) and fractional concentrations (i.e. percent of total fatty acids) of several lipid classes and their constituent fatty acids in postmortem prefrontal cortex of SCZ patients (n = 10) and age-matched controls (n = 10). METHODS Lipids were extracted, fractionated with thin layer chromatography and assayed. RESULTS Mean total lipid, phospholipid, individual phospholipids, plasmalogen, triglyceride and cholesteryl ester concentrations did not differ significantly between the groups. Compared to controls, SCZ brains showed significant increases in several monounsaturated and polyunsaturated fatty acid absolute concentrations in cholesteryl ester. Significant increases or decreases occurred in palmitoleic, linoleic, γ-linolenic and n-3 docosapentaenoic acid absolute concentrations in total lipids, triglycerides or phospholipids. Changes in fractional concentrations did not consistently reflect absolute concentration changes. CONCLUSION These findings suggest disturbed prefrontal cortex fatty acid absolute concentrations, particularly within cholesteryl esters, as a pathological aspect of schizophrenia.
Collapse
Affiliation(s)
- Ameer Y Taha
- Brain Physiology and Metabolism Section, Laboratory of Neuroscience, National Institute on Aging, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | | | | | | |
Collapse
|
12
|
Progressive membrane phospholipid changes in first episode schizophrenia with high field magnetic resonance spectroscopy. Psychiatry Res 2012; 201:25-33. [PMID: 22284150 DOI: 10.1016/j.pscychresns.2011.06.017] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2010] [Revised: 06/24/2011] [Accepted: 06/29/2011] [Indexed: 12/22/2022]
Abstract
Patients with a first episode of schizophrenia generally have increased phospholipid membrane breakdown products within the brain, while findings in chronic patients have been inconsistent. In this study we examine progressive changes in phosphorus membrane metabolites in the same patient group through the early years of schizophrenia in brain regions associated with the disease. Sixteen never-treated and medicated first episode schizophrenic patients were assessed at 10 months and 52 months after diagnosis. Sixteen matched volunteers were assessed at baseline and after 35 months. Phospholipid membrane metabolism was assessed with phosphorous magnetic resonance spectroscopy in the thalamus, cerebellum, hippocampus, anterior/posterior cingulate, prefrontal cortex, parieto-occipital cortex, superior temporal gyrus and temporal pole. At 10 months, glycerophosphocholine was increased in the anterior cingulate in patients as compared to controls. Glycerophosphocholine was decreased in the anterior cingulate and increased in the posterior cingulate and left superior temporal gyrus; glycerophosphoethanolamine was decreased in the left thalamus and increased in the left hippocampus within patients over time. At 52 months, compared to controls phosphocholine was increased in the left thalamus and glycerophosphoethanolamine was increased in the left hippocampus. These results imply a gradual inclusion of brain regions in schizophrenia where an initial increase, followed by a decrease in phospholipid membrane metabolites was observed. This pattern, observed in the early years of schizophrenia, is consistent with excitotoxic neural membrane breakdown in these regions.
Collapse
|
13
|
Yao JK, Keshavan MS. Antioxidants, redox signaling, and pathophysiology in schizophrenia: an integrative view. Antioxid Redox Signal 2011; 15:2011-35. [PMID: 21126177 PMCID: PMC3159108 DOI: 10.1089/ars.2010.3603] [Citation(s) in RCA: 214] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2010] [Revised: 11/26/2010] [Accepted: 12/02/2010] [Indexed: 12/19/2022]
Abstract
Schizophrenia (SZ) is a brain disorder that has been intensively studied for over a century; yet, its etiology and multifactorial pathophysiology remain a puzzle. However, significant advances have been made in identifying numerous abnormalities in key biochemical systems. One among these is the antioxidant defense system (AODS) and redox signaling. This review summarizes the findings to date in human studies. The evidence can be broadly clustered into three major themes: perturbations in AODS, relationships between AODS alterations and other systems (i.e., membrane structure, immune function, and neurotransmission), and clinical implications. These domains of AODS have been examined in samples from both the central nervous system and peripheral tissues. Findings in patients with SZ include decreased nonenzymatic antioxidants, increased lipid peroxides and nitric oxides, and homeostatic imbalance of purine catabolism. Reductions of plasma antioxidant capacity are seen in patients with chronic illness as well as early in the course of SZ. Notably, these data indicate that many AODS alterations are independent of treatment effects. Moreover, there is burgeoning evidence indicating a link among oxidative stress, membrane defects, immune dysfunction, and multineurotransmitter pathologies in SZ. Finally, the body of evidence reviewed herein provides a theoretical rationale for the development of novel treatment approaches.
Collapse
Affiliation(s)
- Jeffrey K Yao
- Medical Research Service, VA Pittsburgh Healthcare System,7180 Highland Drive, Pittsburgh, PA 15206, USA.
| | | |
Collapse
|
14
|
Hayashi-Takagi A, Barker PB, Sawa A. Readdressing synaptic pruning theory for schizophrenia: Combination of brain imaging and cell biology. Commun Integr Biol 2011; 4:211-2. [PMID: 21655443 DOI: 10.4161/cib.4.2.14492] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2010] [Accepted: 12/12/2010] [Indexed: 11/19/2022] Open
Abstract
Disturbance in the synapse has been suggested in the pathology of schizophrenia, especially through examination of autopsied brains from patients with the disease. Nonetheless, it has been unclear whether and how such disturbance is associated with the onset and progression of the disease in young adulthood. Some studies with magnetic resonance spectroscopy (MRS) have suggested that overpruning of dendritic spines may occur in the prodromal and early stages of schizophrenia. In addition, our recent study indicates that DISC1, a promising risk factor for schizophrenia, has a crucial role in the maintenance of the dendritic spine in association with activation of the NMDA-type glutamate receptor.1 Disturbance of spine maintenance can be linked to aberrant synaptic pruning during postnatal brain maturation. Biological studies with genetic models may provide us with an opportunity to validate experimentally the synaptic pruning theory for schizophrenia. An integrative strategy of brain imaging and cell biology may be a promising approach to address a key biological question for mental illnesses.
Collapse
Affiliation(s)
- Akiko Hayashi-Takagi
- Department of Psychiatry; Johns Hopkins University School of Medicine; Baltimore, MD USA
| | | | | |
Collapse
|
15
|
Clay HB, Sillivan S, Konradi C. Mitochondrial dysfunction and pathology in bipolar disorder and schizophrenia. Int J Dev Neurosci 2010; 29:311-24. [PMID: 20833242 DOI: 10.1016/j.ijdevneu.2010.08.007] [Citation(s) in RCA: 289] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2010] [Revised: 08/25/2010] [Accepted: 08/26/2010] [Indexed: 12/20/2022] Open
Abstract
Bipolar disorder (BPD) and schizophrenia (SZ) are severe psychiatric illnesses with a combined prevalence of 4%. A disturbance of energy metabolism is frequently observed in these disorders. Several pieces of evidence point to an underlying dysfunction of mitochondria: (i) decreased mitochondrial respiration; (ii) changes in mitochondrial morphology; (iii) increases in mitochondrial DNA (mtDNA) polymorphisms and in levels of mtDNA mutations; (iv) downregulation of nuclear mRNA molecules and proteins involved in mitochondrial respiration; (v) decreased high-energy phosphates and decreased pH in the brain; and (vi) psychotic and affective symptoms, and cognitive decline in mitochondrial disorders. Furthermore, transgenic mice with mutated mitochondrial DNA polymerase show mood disorder-like phenotypes. In this review, we will discuss the genetic and physiological components of mitochondria and the evidence for mitochondrial abnormalities in BPD and SZ. We will furthermore describe the role of mitochondria during brain development and the effect of current drugs for mental illness on mitochondrial function. Understanding the role of mitochondria, both developmentally as well as in the ailing brain, is of critical importance to elucidate pathophysiological mechanisms in psychiatric disorders.
Collapse
Affiliation(s)
- Hayley B Clay
- Neuroscience Graduate Program, Vanderbilt University, Nashville, TN 37232, USA
| | | | | |
Collapse
|
16
|
Margari F, Presicci A, Petruzzelli MG, Ventura P, Di Cuonzo F, Palma M, Margari L. Very early onset and greater vulnerability in schizophrenia: A clinical and neuroimaging study. Neuropsychiatr Dis Treat 2008; 4:825-30. [PMID: 19043525 PMCID: PMC2536548 DOI: 10.2147/ndt.s2484] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Although schizophrenia has been diagnosed in children, this group of disorders has received too little attention in the clinical and research literature. Preliminary data suggest that early onset schizophrenia (EOS) and very early onset schizophrenia (VEOS) tend to have a worse outcome than adult onset schizophrenia, and seem to be related to a greater familial vulnerability, due to genetic, psychosocial, and environmental factors. Recently, advanced neuroimaging techniques have revealed structural and functional brain abnormalities in some cerebral areas. This paper reports on a case diagnosed as VEOS, with premorbid year-long psychopathological history. The patient showed atypical proton magnetic resonance spectroscopy findings, and normal brain and spine computer tomography and brain magnetic resonance images.
Collapse
Affiliation(s)
- Francesco Margari
- Department of Neurologic and Psychiatry Sciences, Psychiatry Unit, University of Bari Italy
| | | | | | | | | | | | | |
Collapse
|
17
|
Liu Y, Zhang H, Ju G, Zhang X, Xu Q, Liu S, Yu Y, Shi J, Boyle S, Wang Z, Shen Y, Wei J. A study of the PEMT gene in schizophrenia. Neurosci Lett 2007; 424:203-6. [PMID: 17720317 DOI: 10.1016/j.neulet.2007.07.038] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2007] [Revised: 07/10/2007] [Accepted: 07/29/2007] [Indexed: 11/21/2022]
Abstract
The phospholipid hypothesis of schizophrenia is becoming popular because of the findings from the niacin flush test, the treatment with polyunsaturated fatty acids (PUFAs), biochemical studies for the phospholipid metabolism pathway and genetic studies of phospholipase A2. The present study attempted to investigate the gene coding for phosphatidylethanolamine N-methyltransferase (PEMT), which is an important enzyme for the synthesis of membrane phospholipids. We recruited 271 Chinese parent-offspring trios of Han descent and detected 3 single nucleotide polymorphisms (SNPs) at the PEMT locus. The transmission disequilibrium test (TDT) showed allelic association for rs464396 (X2=9.4, P=0.002), but not for the other two. The 2-SNP haplotype analysis showed haplotypic association for both the rs936108-rs464396 haplotypes (X2=25.7, d.f.=3, P=0.00001) and the rs464396-rs4244593 haplotypes (X2=17.3, d.f.=3, P=0.0006). The 3-SNP haplotype analysis also showed a haplotypic association (X2=24.4, d.f.=7, P=0.0006). The present results suggest that the PEMT gene may contribute to the etiology of schizophrenia.
Collapse
Affiliation(s)
- Yang Liu
- Research Center for Neuroscience and MH Radiobiology Research Unit, Jilin University, Changchun 130021, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Smesny S, Rosburg T, Nenadic I, Fenk KP, Kunstmann S, Rzanny R, Volz HP, Sauer H. Metabolic mapping using 2D 31P-MR spectroscopy reveals frontal and thalamic metabolic abnormalities in schizophrenia. Neuroimage 2006; 35:729-37. [PMID: 17276699 DOI: 10.1016/j.neuroimage.2006.12.023] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2006] [Revised: 12/05/2006] [Accepted: 12/06/2006] [Indexed: 10/23/2022] Open
Abstract
(31)Phosphorus magnetic resonance spectroscopy ((31)P-MRS) allows in vivo investigation of cerebral phospholipid and energy metabolism. Using 2D chemical shift imaging, this method can be applied to study multiple brain areas and to assess concentrations of both phospholipids and high-energy phosphates. The purpose of our study was to assess multiregional metabolic profiles in schizophrenia using a 2D-resolved MRS technique, and to assess the intercorrelation of findings. We applied (31)P-MRS chemical shift imaging in 31 schizophrenia patients (12 antipsychotic-naïve first-episode and 19 antipsychotic-free multi-episode patients) and 31 healthy age- and sex-matched controls. Spatially resolved maps were compared for the main metabolites of the (31)P spectrum. Metabolites of phospholipid (PME and PDE) and energy (PCr and Pi) metabolism were significantly reduced in bilateral prefrontal and medial temporal (including hippocampal) brain regions, caudate nucleus, thalamus and anterior cerebellum as compared to controls. Moreover, factor analysis of these changes showed a characteristic spatial pattern of changes, which demonstrates significant associations between alterations of phospholipid and energy metabolism, and between metabolic alterations and severity of symptoms (BPRS total score, but not SANS or SAPS scores). This suggests a pattern of intercorrelated changes of these metabolic markers. Results support the notion of disturbed phospholipid turnover in schizophrenia, probably unrelated to prior pharmacological treatment, and associated with increased energy demand.
Collapse
Affiliation(s)
- Stefan Smesny
- Department of Psychiatry, Friedrich-Schiller-University Jena, Philosophenweg 3, D-07743 Jena, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Mason GF, Krystal JH. MR spectroscopy: its potential role for drug development for the treatment of psychiatric diseases. NMR IN BIOMEDICINE 2006; 19:690-701. [PMID: 16986118 DOI: 10.1002/nbm.1080] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Magnetic resonance spectroscopy (MRS) is likely in the near future to play a key role in the process of drug discovery and evaluation. As the pharmaceutical industry seeks biochemical markers of drug delivery, efficacy and toxicity, this non-invasive technique offers numerous ways to study adults and children repeatedly and without ionizing radiation. In this article, we survey an array of the information that MRS offers about neurochemistry in general and psychiatric disorders and their treatment in particular. We also present growing evidence of glial abnormalities in neuropsychiatric disorders and discuss what MRS is contributing to that line of investigation. The third major direction of this article is the discussion of where MRS techniques are headed and how those new techniques can contribute to studies of mechanisms of psychiatric disease and drug discovery.
Collapse
Affiliation(s)
- Graeme F Mason
- Department of Diagnostic Radiology, Yale University, School of Medicine, 300 Cedar St, New Haven, CT 06520-8043, USA.
| | | |
Collapse
|
20
|
Ross BM, Hughes B, Kish SJ, Warsh JJ. Serum calcium-independent phospholipase A2 activity in bipolar affective disorder. Bipolar Disord 2006; 8:265-70. [PMID: 16696828 DOI: 10.1111/j.1399-5618.2006.00299.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
OBJECTIVE Phospholipases A2 (PLA2) are a family of enzymes involved in membrane phospholipid metabolism and cell signalling. The gene encoding one form, type VI calcium-independent phospholipase A2, is located in a region of DNA that may contain a gene important in the aetiology of psychosis. Moreover, the activity of calcium-independent PLA2 is reported to be elevated in the blood and brain of patients with schizophrenia. In this study we determined whether a similar change takes place in patients with bipolar disorder with and without a history of psychosis. METHODS Serum calcium-independent and -dependent PLA2 activities were determined in 24 patients with bipolar I disorder. RESULTS Serum calcium-independent and -dependent PLA2 activities in bipolar cases did not differ significantly from that in healthy volunteers (HVs). However, calcium-independent PLA2 activity was significantly (p < 0.05) higher in patients with a history of psychosis compared with those with no history of psychosis (by 55%) or to HVs (by 31%). CONCLUSIONS Our data suggest that a subset of bipolar I disorder patients with a history of psychosis have elevated calcium-independent PLA2 activity. Given that this enzyme activity is also increased in schizophrenia, elevated rates of phospholipid turnover mediated by the enzyme could represent a common biochemical feature of psychotic illness.
Collapse
Affiliation(s)
- Brian M Ross
- Northern Ontario School of Medicine, Lakehead University, Thunder Bay, ON, Canada.
| | | | | | | |
Collapse
|
21
|
Tao R, Yu Y, Zhang X, Shi J, Guo Y, Wang C, Han B, Xu Q, Shang H, Zhang X, Xie L, Liu S, Ju G, Shen Y, Wei J. A family based study of the genetic association between the PLA2G4D gene and schizophrenia. Prostaglandins Leukot Essent Fatty Acids 2005; 73:419-22. [PMID: 16213696 DOI: 10.1016/j.plefa.2005.08.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2005] [Accepted: 08/28/2005] [Indexed: 11/23/2022]
Abstract
The present study detected two single nucleotide polymorphisms (SNPs) at the PLA2G4D locus, rs2459692 and rs4924618, to investigate a genetic association between the PLA2G4D gene and schizophrenia. A total of 236 Chinese parent-offspring trios of Han descent were recruited for the genetic analysis. The transmission disequilibrium test (TDT) did not show allelic association either for rs2459692 (chi(2) = 0.217, P = 0.641) or for rs4924618 (chi(2) = 0.663, P = 0.416). To see the combined effect of the PLA2G4D locus with the other three PLA2G4 genes, we applied the above two SNPs as a conditional marker to test the pair-wise combination for a disease association. The conditioning on allele (COA) test revealed a weak association for the rs2459692-PLA2G4A combination (chi(2) = 6.03, df = 2, P = 0.049), the rs2459692-PLA2G4B combination (chi(2) = 7.16, df = 3, P = 0.028) and the rs4924618-PLA2G4C combination (chi(2) = 7.01, df = 2, P = 0.03), whereas the conditioning on genotype (COG) test showed a weak association only for the rs4924618-PLA2G4C combination (chi(2) = 8.52, df = 3, P = 0.036). Because we performed a multi-locus analysis in this study, the weak association shown by the conditional tests could make little biological sense. In conclusion, the PLA2G4D gene may not be involved in a susceptibility to schizophrenia.
Collapse
Affiliation(s)
- Ran Tao
- Jilin University Research Center for Genomic Medicine, School of Public Health, Jilin University, Changchun, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Wei J, Hemmings GP. A study of the combined effect of the CLDN5 locus and the genes for the phospholipid metabolism pathway in schizophrenia. Prostaglandins Leukot Essent Fatty Acids 2005; 73:441-5. [PMID: 16181776 DOI: 10.1016/j.plefa.2005.08.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2005] [Accepted: 08/07/2005] [Indexed: 11/24/2022]
Abstract
The present study attempts to test the combined effect of the CLDN5 gene and those for the phospholipid metabolism pathway, including PTGS1, PTGS2, PLA2G4A and PLA2G4C. We detected five single nucleotide polymorphisms (SNPs) present in these genes among 131 British family trios of schizophrenic patients. The transmission disequilibrium test (TDT) showed that BanI-SNP located in the 5'-flanking region of the PLA2G4A gene was associated with schizophrenia (chi(2) = 5.16, P = 0.023) although the others failed to show such allelic associations. The global P-value was 0.150 for 1000 permutations with the TDT analysis. The conditioning on genotype test, but not on allele test, revealed a strong association for the combination of the CLDN5 gene with the PLA2G4A gene (chi(2) = 10.17, df = 2, P = 0.006). The present results suggest that the PLA2G4A locus may be involved in schizophrenia and its combination with the CLDN5 gene may increase further the risk for the illness.
Collapse
Affiliation(s)
- Jun Wei
- Institute of Biological Psychiatry, Schizophrenia Association of Great Britain, Bryn Hyfryd, The Crescent, Bangor, Gwynedd, UK.
| | | |
Collapse
|
23
|
Yu Y, Tao R, Shi J, Zhang X, Kou C, Guo Y, Zhang X, Lin X, Liu S, Ju G, Xu Q, Shang H, Shen Y, Wei J. A genetic study of two calcium-independent cytosolic PLA2 genes in schizophrenia. Prostaglandins Leukot Essent Fatty Acids 2005; 73:351-4. [PMID: 16115752 DOI: 10.1016/j.plefa.2005.07.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2005] [Revised: 05/31/2005] [Accepted: 07/01/2005] [Indexed: 10/25/2022]
Abstract
The present study detected 9 single nucleotide polymorphisms (SNPs) at the PLA2G4C and PLA2G6 loci among 240 Chinese parent-offspring trios of Han descent. Of these 9 SNPs, 5 showed highly polymorphic in the Chinese population. They were then applied as genetic markers to test the genetic association of these two calcium-independent cytosolic PLA2 genes with schizophrenia. The transmission disequilibrium test (TDT) showed that rs1549637 at the PLA2G4C locus was the only SNP associated with the illness (chi(2) = 5.63, P = 0.018). The global P-value was 0.082 for 1000 permutations with the TDT analysis. Neither the conditional on allele test nor the conditional on genotype test showed a disease association for the combination of these two genes. Because the PLA2G4C association is so weak, this initial finding should be interpreted with caution.
Collapse
Affiliation(s)
- Yaqin Yu
- Jilin University Research Center for Genomic Medicine, School of Public Health, Jilin University, Changchun, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Smesny S, Kinder D, Willhardt I, Rosburg T, Lasch J, Berger G, Sauer H. Increased calcium-independent phospholipase A2 activity in first but not in multiepisode chronic schizophrenia. Biol Psychiatry 2005; 57:399-405. [PMID: 15705356 DOI: 10.1016/j.biopsych.2004.11.018] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2004] [Revised: 08/30/2004] [Accepted: 11/10/2004] [Indexed: 10/25/2022]
Abstract
BACKGROUND Increased activity of calcium independent phospholipase A2 (iPLA2) has repeatedly been found in the serum of unmedicated first-episode schizophrenia patients and assumed to reflect a pertubation of phospholipid metabolism. Previous studies in chronic schizophrenia were less conclusive. To explore whether iPLA2 changes are stage dependent, we investigated serum iPLA2 activity in various stages of schizophrenia. METHODS iPLA2 activity was assessed in the serum of 30 first-episode and 23 multiepisode schizophrenia patients and 53 healthy control subjects matched for age and gender. A fluorimetric assay was applied using the PLA2 specific substrate NBDC6-HPC, thin-layer chromatography of reaction products, and digital image scanning for signal detection. RESULTS Group comparison between first-episode and multiepisode patients and corresponding control groups revealed significantly increased iPLA2 activity only in first-episode patients. Enzyme activity in first-episode patients was also markedly increased, compared with chronic patients. iPLA2 changes observed were irrespective of neuroleptic medication, age, or gender. CONCLUSIONS Our results suggest increased lipid turnover in the acute early phase of schizophrenia that is less obvious in chronic stages. Future longitudinal studies involving iPLA2 activity and phosphorous magnetic resonance spectroscopy need to address the relation between perturbed brain lipid metabolism and iPLA2 increment in the course of schizophrenia.
Collapse
Affiliation(s)
- Stefan Smesny
- Department of Psychiatry, Friedrich-Schiller-University Jena, Jena, USA.
| | | | | | | | | | | | | |
Collapse
|
25
|
Yu YQ, Tao R, Wei J, Xu Q, Liu SZ, Ju GZ, Shi JP, Zhang X, Xie L, Shen Y. No association between the PTGS2/PLA2G4A locus and schizophrenia in a Chinese population. Prostaglandins Leukot Essent Fatty Acids 2004; 71:405-8. [PMID: 15519500 DOI: 10.1016/j.plefa.2004.09.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2004] [Accepted: 09/01/2004] [Indexed: 11/24/2022]
Abstract
The present study was undertaken to replicate an association between the PTGS2/PLA2G4A locus and schizophrenia among a Chinese population. We recruited 168 Chinese parent-offspring trios of Han descent, consisting of fathers, mothers and affected offspring with schizophrenia. Of 3 informative SNPs genotyped, no one showed allelic association with schizophrenia; the haplotype analysis also failed to capture a haplotypic association with the illness. Because the frequencies of alleles and genotypes of SNPs analyzed differ in the Chinese population as compared with a British population that initially showed the genetic association between the PTGS2/PLA2G4A locus and schizophrenia, the ethnic background may be a major reason for poor replication of the initial finding.
Collapse
Affiliation(s)
- Y-Q Yu
- Jilin University Research Center for Genomic Medicine, School of Public Health, Jilin University, Changchun 130021, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Shirayama Y, Yano T, Takahashi K, Takahashi S, Ogino T. In vivo31P NMR spectroscopy shows an increase in glycerophosphorylcholine concentration without alterations in mitochondrial function in the prefrontal cortex of medicated schizophrenic patients at rest. Eur J Neurosci 2004; 20:749-56. [PMID: 15255985 DOI: 10.1111/j.1460-9568.2004.03524.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The (31)P NMR localised method was used to study the metabolism of phospholipid and high energy phosphate in the prefrontal cortex. The spectra were taken from patients with schizophrenia (11 males) receiving neuroleptic medication, and were compared to normal controls (15 males). Their spectral intensities were analysed using a non-linear least-squares method with a prior knowledge of the fixed chemical shifts and linewidths, leading to further resolution into resonances of glycerophosphorylethanolamine (GPE), glycerophosphorylcholine (GPC), phosphorylethanolamine (PE) and phosphorylcholine (PC). The metabolite concentrations were calculated referring to the spectral intensities of phosphate phantoms with known concentrations. T1 values of phantom and cerebrum were estimated from a series of localised inversion recovery spectra to correct for the signal saturation effects. The schizophrenic patients showed an increased concentration of GPC but not GPE, PE or PC. Furthermore, no difference was observed regarding the concentration of high-energy phosphates such as phosphocreatine, inorganic phosphate and ATP. The patients did not show any differences in mitochondrial function such as phosphorylation potential and the ratio of the rate of ATP synthesis. Thus, an increase in GPC concentration in the prefrontal cortex could be characteristic of the pathophysiology of schizophrenia with mild negative symptoms.
Collapse
Affiliation(s)
- Yukihiko Shirayama
- Department of Psychiatry, National Center Hospital for Mental, Nervous and Muscular Disorders, and Department of Biochemistry and Cellular Biology, National Institute of Neuroscience, NCNP, Kodaira, Tokyo, Japan.
| | | | | | | | | |
Collapse
|
27
|
Wei J, Hemmings GP. A study of a genetic association between the PTGS2/PLA2G4A locus and schizophrenia. Prostaglandins Leukot Essent Fatty Acids 2004; 70:413-5. [PMID: 15041036 DOI: 10.1016/j.plefa.2003.12.018] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/18/2003] [Indexed: 10/26/2022]
Abstract
Six single nucleotide polymorphisms (SNPs) present in the PTGS2/PLA2G4A locus were detected among 118 British family trios of schizophrenia patients. The transmission disequilibrium test showed that SNP4 located in the 5'-flanking region of the PLA2G4A gene was associated with schizophrenia and that the haplotype analysis also showed a genetic association between the PTGS2 gene and schizophrenia. Because these two genes are arranged in a head-to-head configuration and separated by just about 149kb of DNA, they may have a combined effect on susceptibility to schizophrenia in some cases.
Collapse
Affiliation(s)
- J Wei
- Institute of Biological Psychiatry, Schizophrenia Association of Great Britain, Bryn Hyfryd, The Crescent Bangor, Gwynedd LL57 2AG, UK.
| | | |
Collapse
|
28
|
Skosnik PD, Yao JK. From membrane phospholipid defects to altered neurotransmission: is arachidonic acid a nexus in the pathophysiology of schizophrenia? Prostaglandins Leukot Essent Fatty Acids 2003; 69:367-84. [PMID: 14623490 DOI: 10.1016/j.plefa.2003.08.008] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Schizophrenia (SZ) is a devastating neuropsychiatric disorder affecting 1% of the general population, and is characterized by symptoms such as delusions, hallucinations, and blunted affect. While many ideas regarding SZ pathogenesis have been put forth, the majority of research has focused on neurotransmitter function, particularly in relation to altered dopamine activity. However, treatments based on this paradigm have met with only modest success, and current medications fail to alleviate symptoms in 30-60% of patients. An alternative idea postulated a quarter of a century ago by Feldberg (Psychol. Med. 6 (1976) 359) and Horrobin (Lancet 1 (1977) 936) involves the theory that SZ is associated in part with phospholipid/fatty acid abnormalities. Since then, it has been repeatedly shown that in both central and peripheral tissue, SZ patients demonstrate increased phospholipid breakdown and decreased levels of various polyunsaturated fatty acids (PUFAs), particularly arachidonic acid (AA). Given the diverse physiological function of membrane phospholipids and PUFAs, an elucidation of their role in SZ pathophysiology may provide novel strategies in the treatment of this disorder. The purpose of this review is to summarize the relevant data on membrane phospholipid/PUFA defects in SZ, the physiological consequence of altered AA signaling, and how they relate to the neurobiological manifestations of SZ and therapeutic outcome.
Collapse
Affiliation(s)
- P D Skosnik
- Department of Psychology, Indiana University, Bloomington, IN, USA
| | | |
Collapse
|
29
|
Reddy R, Keshavan MS. Phosphorus magnetic resonance spectroscopy: its utility in examining the membrane hypothesis of schizophrenia. Prostaglandins Leukot Essent Fatty Acids 2003; 69:401-5. [PMID: 14623493 DOI: 10.1016/j.plefa.2003.08.011] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A novel approach to understanding the pathophysiology of schizophrenia has been the investigation of membrane composition and functional perturbations, referred to as the "Membrane Hypothesis of Schizophrenia." The evidence in support of this hypothesis has been accumulating in findings in patients with schizophrenia of reductions in phospholipids and essential fatty acids various peripheral tissues. Postmortem studies indicate similar reductions in essential fatty acids in the brain. However, the use of magnetic resonance spectroscopy (MRS) has provided an opportunity to examine aspects of membrane biochemistry in vivo in the living brain. MRS is a powerful, albeit complex, noninvasive quantitative imaging tool that offers several advantages over other methods of in vivo biochemical investigations. It has been used extensively in investigating brain biochemistry in schizophrenia. Phosphorus MRS (31P MRS) can provide important information about neuronal membranes, such as levels of phosphomonoesters that reflect the building blocks of neuronal membranes and phosphodiesters that reflect breakdown products. 31P MRS can also provide information about bioenergetics. Studies in patients with chronic schizophrenia as well as at first episode prior to treatment show a variety of alterations in neuronal membrane biochemistry, supportive of the membrane hypothesis of schizophrenia. Below, we will briefly review the principles underlying 31P MRS and findings to date. Magnetic resonance spectroscopy (MRS) is a powerful, albeit complex, imaging tool that permits investigation of brain biochemistry in vivo. It utilizes the magnetic resonance imaging hardware. It offers several advantages over other methods of in vivo biochemical investigations. MRS is noninvasive, there is no radiation exposure, does not require the use of tracer ligands or contrast media. Because of it is relatively benign, repeated measures are possible. It has been used extensively in investigating brain biochemistry in schizophrenia.
Collapse
Affiliation(s)
- Ravinder Reddy
- Department of Psychiatry, Western Psychiatric Institute & Clinic, University of Pittsburgh Medical Center, 3811 O'Hara Street, Pittsburgh, PA 15213, USA.
| | | |
Collapse
|
30
|
Jayakumar PN, Gangadhar BN, Subbakrishna DK, Janakiramaiah N, Srinivas JS, Keshavan MS. Membrane phospholipid abnormalities of basal ganglia in never-treated schizophrenia: a 31P magnetic resonance spectroscopy study. Biol Psychiatry 2003; 54:491-4. [PMID: 12915294 DOI: 10.1016/s0006-3223(02)01829-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND Studies in schizophrenia using in vivo (31)P magnetic resonance spectroscopy (MRS) have mostly focused on the association cortices, including the frontal and temporal lobes. Striatum has also been implicated in schizophrenia, although neuroleptic exposure in the patients is a potential confound limiting interpretation of earlier studies. We examined membrane phospholipid abnormality in the basal ganglia using (31)P MRS in neuroleptic-naive schizophrenia patients. METHODS Never-treated, DSM-IV schizophrenia patients (n=20) and age- and gender-matched healthy control subjects (n=30) underwent in vivo 1-D 31P MRS of both basal ganglia using an image-selected technique on a 1.5-T magnetic resonance imaging scanner. A neuroradiologist blind to clinical data measured the phosphomonoester (PME) and phosphodiester (PDE) from the spectra. RESULTS The schizophrenia patients showed significantly and bilaterally elevated levels of PME/PDE ratios in basal ganglia as compared with control subjects. There were no significant differences in the ratios between the two sides in either patient or control groups. Phosphomonoester/phosphodiester ratio did not correlate with illness duration. Lower Positive and Negative Syndrome Scale scores were associated with lower PME/PDE ratio. CONCLUSIONS The basal ganglia of never-treated schizophrenia patients show features suggestive of reduced breakdown and/or increased synthesis of membrane phospholipids. Lack of correlation between illness duration and the membrane phosphorus moiety ratio may be consistent with a nonprogressive, possibly neurodevelopmental etiopathogenesis.
Collapse
Affiliation(s)
- Perumbava N Jayakumar
- Department of Neuroimaging and Interventional Neuroradiology, National Institute of Mental Health and Neurosciences, Bangalore, India
| | | | | | | | | | | |
Collapse
|
31
|
Hibbeln JR, Makino KK, Martin CE, Dickerson F, Boronow J, Fenton WS. Smoking, gender, and dietary influences on erythrocyte essential fatty acid composition among patients with schizophrenia or schizoaffective disorder. Biol Psychiatry 2003; 53:431-41. [PMID: 12614996 DOI: 10.1016/s0006-3223(02)01549-4] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
BACKGROUND Prior reports of decreased levels of essential fatty acids among schizophrenic patients have generated several hypotheses proposing inherent abnormalities in phospholipid and fatty acid metabolism and have provided the basis for treatment trials; however, these essential fatty acid aberrations may be attributable to uncontrolled factors, such as smoking, rather than abnormalities inherent to schizophrenia. METHODS Erythrocyte fatty acid compositions were quantified in 72 medicated schizophrenic or schizoaffective patients both at baseline and after 16 weeks of supplementation with 3 g/day of either ethyl-eicosapentaenoic acid or placebo. Current smoking status, gender, dietary survey, and Montgomery Asburg Depression Rating Scale, Repeatable Battery for the Assessment of Neuropsychological Status, Abnormal Involuntary Movement Scale, and Positive and Negative Syndrome Scale scores were assessed. RESULTS Schizophrenic patients who smoked had lower baseline erythrocyte docosahexaenoic acid percent (2.98 +/-.7 vs. 3.59 +/- 1.2, p <.005) and eicosapentaenoic acid (EPA) percent (.39 +/-.13 vs. 47 +/-.22, p <.05), compared with nonsmokers, with a significant gender interaction (p <.01) in multivariate analyses of variance. Baseline arachidonic acid did not differ. Smokers reported lower dietary intake (percent total fat) of linolenic acid (F = 10.1, p <.003) compared with nonsmokers. Nonsmoking women reported greater dietary intake of EPA compared with smoking men or nonsmokers of either gender. CONCLUSIONS Smoking status, gender, and dietary intake significantly predicted erythrocyte polyunsaturated fatty acid status among schizophrenic patients. No evidence was found for subgroups of schizophrenia or relationships to specific symptom severity on the basis of erythrocyte fatty acids. Prior reports of abnormalities of essential fatty acid metabolism among schizophrenic patients may have been an artifact of patients' smoking behavior and differences in dietary intake of omega-3 fatty acids.
Collapse
Affiliation(s)
- Joseph R Hibbeln
- Laboratory of Membrane Biochemistry and Biophysics, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, Maryland 20852, USA
| | | | | | | | | | | |
Collapse
|
32
|
Keshavan MS, Stanley JA, Montrose DM, Minshew NJ, Pettegrew JW. Prefrontal membrane phospholipid metabolism of child and adolescent offspring at risk for schizophrenia or schizoaffective disorder: an in vivo 31P MRS study. Mol Psychiatry 2003; 8:316-23, 251. [PMID: 12660804 DOI: 10.1038/sj.mp.4001325] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
In vivo (31)P magnetic resonance spectroscopy ((31)P MRS) studies have shown abnormal membrane phospholipid metabolism in the prefrontal cortex (PF) in the early course of schizophrenia. It is unclear, however, whether these alterations also represent premorbid risk indicators in schizophrenia. In this paper, we report in vivo (31)P MRS data on children and adolescents at high risk (HR) for schizophrenia. In vivo (31)P MRS studies of the PF were conducted on 16 nonpsychotic HR offspring of parents with schizophrenia or schizoaffective disorder, and 37 age-matched healthy comparison (HC) subjects. While 11 of the HR subjects had evidence of Axis I psychopathology (HR-P), five HR subjects had none (HR-NP). We quantified the freely mobile phosphomonoester (PME) and phosphodiester (PDE) levels reflecting membrane phospholipid precursors and breakdown products, respectively, and the relatively broad signal underlying PDE and PME peaks, comprised of less mobile molecules with PDE and PME moieties (eg, synaptic vesicles and phosphorylated proteins). Compared to HC subjects, HR subjects had reductions in freely mobile PME; the differences were accounted for mainly by the HR-P subjects. Additionally, HR-P subjects showed increases in the broad signal underlying the PME and PDE peaks in the PF. To conclude, these data demonstrate new evidence for decreased synthesis of membrane phospholipids and possibly altered content or the molecular environment of synaptic vesicles and/or phosphoproteins in the PF of young offspring at risk for schizophrenia. Follow-up studies are needed to examine the predictive value of these measures for future emergence of schizophrenia in at-risk individuals.
Collapse
Affiliation(s)
- M S Keshavan
- Department of Psychiatry, Western Psychiatric Institute and Clinic, University of Pittsburgh School of Medicine, PA 15213, USA.
| | | | | | | | | |
Collapse
|
33
|
Mahadik SP, Evans DR. Is schizophrenia a metabolic brain disorder? Membrane phospholipid dysregulation and its therapeutic implications. Psychiatr Clin North Am 2003; 26:85-102. [PMID: 12683261 DOI: 10.1016/s0193-953x(02)00033-3] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The dysregulation of membrane phospholipid metabolism exists throughout the body from the onset of psychosis in schizophrenic patients. This dysregulation is primarily due to altered contents of phospholipid bound EPUFAs, AA and DHA. These EPUFAs are highly enriched in the brain and are crucial for brain and behavioral development. A phospholipid metabolic defect may preexist the onset of psychosis, even through early embryonic stages. Because these membrane phospholipids play a crucial role in the membrane receptor-mediated signal transduction of several neuro-transmitters and growth factors, their altered metabolism may contribute to the reported abnormal information processing in schizophrenia. Severity of symptoms seems to correlate with the membrane AA and DHA status, which is influenced by patients' dietary intake and lifestyle. Such a metabolic defect can be prevented, however, and some membrane pathology can be corrected by dietary supplementation with a combination of AA and DHA and antioxidants such as vitamins E and C. In schizophrenia, it may be advisable to provide supplementation at the early stages of illness, when brain has a high degree of plasticity. Finally, at this time, supplementation has to be considered as an augmentation of conventional antipsychotic treatment.
Collapse
|
34
|
Arvindakshan M, Sitasawad S, Debsikdar V, Ghate M, Evans D, Horrobin DF, Bennett C, Ranjekar PK, Mahadik SP. Essential polyunsaturated fatty acid and lipid peroxide levels in never-medicated and medicated schizophrenia patients. Biol Psychiatry 2003; 53:56-64. [PMID: 12513945 DOI: 10.1016/s0006-3223(02)01443-9] [Citation(s) in RCA: 160] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
BACKGROUND Reduced levels of membrane essential polyunsaturated fatty acids (EPUFAs) and increased levels of lipid peroxidation products (thiobarbituric acid reactive substances; TBARS) have been observed in chronic medicated schizophrenics. The relationship of EPUFA and TBARS to psychopathology is unclear, since their levels may be altered differentially by duration of illness and antipsychotic treatment. To minimize these confounds, their levels were compared among never-medicated patients in early illness, medicated patients and control subjects with similar lifestyle and common ethnic background. METHODS RBC membrane EPUFAs, plasma TBARS, and various dimensions of psychopathology were measured using established procedures in never-medicated (n = 20) and medicated (n= 32) schizophrenia patients and in control subjects (n= 45). RESULTS Reduced levels of EPUFAs, particularly arachidonic acid (AA) and docosahexaenoic acid (DHA), were found in never-medicated compared with control subjects; however, the reductions in levels of both AA and DHA were much smaller in medicated versus never-medicated patients; AA levels were similar to levels in control subjects. Only DHA levels were significantly reduced in medicated patients. Lower membrane AA levels were associated with increased levels of plasma TBARS in never-medicated patients. Lower levels of membrane EPUFAs and higher levels of plasma TBARS were associated with the severe symptoms in never-medicated versus medicated patients. CONCLUSIONS Data indicate that reduced EPUFAs and increased TBARS exist in never-medicated patients, and these measures correlate with the severity of psychopathology indicating that the membrane EPUFA status may reflect the outcome of schizophrenia.
Collapse
Affiliation(s)
- Meena Arvindakshan
- Division of Biochemical Sciences, National Chemical Laboratory, Pune, India
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Berger GE, Wood SJ, Pantelis C, Velakoulis D, Wellard RM, McGorry PD. Implications of lipid biology for the pathogenesis of schizophrenia. Aust N Z J Psychiatry 2002; 36:355-66. [PMID: 12060184 DOI: 10.1046/j.1440-1614.2001.01021.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
OBJECTIVE Preclinical and clinical data suggest that lipid biology is integral to brain development and neurodegeneration. Both aspects are proposed as being important in the pathogenesis of schizophrenia. The purpose of this paper is to examine the implications of lipid biology, in particular the role of essential fatty acids (EFA), for schizophrenia. METHODS Medline databases were searched from 1966 to 2001 followed by the cross-checking of references. RESULTS Most studies investigating lipids in schizophrenia described reduced EFA, altered glycerophospholipids and an increased activity of a calcium-independent phospholipase A2 in blood cells and in post-mortem brain tissue. Additionally, in vivo brain phosphorus-31 Magnetic Resonance Spectroscopy (31P-MRS) demonstrated lower phosphomonoesters (implying reduced membrane precursors) in first- and multi-episode patients. In contrast, phosphodiesters were elevated mainly in first-episode patients (implying increased membrane breakdown products), whereas inconclusive results were found in chronic patients. EFA supplementation trials in chronic patient populations with residual symptoms have demonstrated conflicting results. More consistent results were observed in the early and symptomatic stages of illness, especially if EFA with a high proportion of eicosapentaenoic acid was used. CONCLUSION Peripheral blood cell, brain necropsy and 31P-MRS analysis reveal a disturbed lipid biology, suggesting generalized membrane alterations in schizophrenia. 31P-MRS data suggest increased membrane turnover at illness onset and persisting membrane abnormalities in established schizophrenia. Cellular processes regulating membrane lipid metabolism are potential new targets for antipsychotic drugs and might explain the mechanism of action of treatments such as eicosapentaenoic acid.
Collapse
Affiliation(s)
- Gregor E Berger
- Early Psychosis Prevention and Intervention Centre, MH-SKY (EPPIC), Victoria.
| | | | | | | | | | | |
Collapse
|
36
|
Abstract
OBJECTIVE This paper briefly describes neuroimaging using magnetic resonance spectroscopy (MRS) and provides a systematic review of its application to psychiatric disorders. METHOD A literature review (Index Medicus/Medline) was carried out, as well as a review of other relevant papers and data known to the authors. RESULTS Magnetic resonance spectroscopy is a complex and sophisticated neuroimaging technique that allows reliable and reproducible quantification of brain neurochemistry provided its limitations are respected. In some branches of medicine it is already used clinically, for instance, to diagnose tumours and in psychiatry its applications are gradually extending beyond research. Neurochemical changes have been found in a variety of brain regions in dementia, schizophrenia and affective disorders and promising discoveries have also been made in anxiety disorders. CONCLUSION Magnetic resonance spectroscopy is a non-invasive investigative technique that has provided useful insights into the biochemical basis of many neuropsychiatric disorders. It allows direct measurement, in vivo, of medication levels within the brain and has made it possible to track the neurochemical changes that occur as a consequence of disease and ageing or in response to treatment. It is an extremely useful advance in neuroimaging technology and one that will undoubtedly have many clinical uses in the near future.
Collapse
Affiliation(s)
- Gin S Malhi
- Mood Disorders Unit, The Villa, Prince of Wales Hospital, Randwick NSW 2031, Sydney, Australia.
| | | | | | | |
Collapse
|
37
|
Peet M, Brind J, Ramchand CN, Shah S, Vankar GK. Two double-blind placebo-controlled pilot studies of eicosapentaenoic acid in the treatment of schizophrenia. Schizophr Res 2001; 49:243-51. [PMID: 11356585 DOI: 10.1016/s0920-9964(00)00083-9] [Citation(s) in RCA: 225] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Evidence that the metabolism of phospholipids and polyunsaturated fatty acids (PUFA) is abnormal in schizophrenia provided the rationale for intervention studies using PUFA supplementation. An initial open label study indicating efficacy for n-3 PUFA in schizophrenia led to two small double-blind pilot studies. The first study was designed to distinguish between the possible effects of two different n-3 PUFA: eicosapentaenoic acid (EPA) and docohexaenoic acid (DHA). Forty-five schizophrenic patients on stable antipsychotic medication who were still symptomatic were treated with either EPA, DHA or placebo for 3 months. Improvement on EPA measured by the Positive and Negative Syndrome Scale (PANSS) was statistically superior to both DHA and placebo using changes in percentage scores on the total PANSS. EPA was significantly superior to DHA for positive symptoms using ANOVA for repeated measures. In the second placebo-controlled study, EPA was used as a sole treatment, though the use of antipsychotic drugs was still permitted if this was clinically imperative. By the end of the study, all 12 patients on placebo, but only eight out of 14 patients on EPA, were taking antipsychotic drugs. Despite this, patients taking EPA had significantly lower scores on the PANSS rating scale by the end of the study. It is concluded that EPA may represent a new treatment approach to schizophrenia, and this requires investigation by large-scale placebo-controlled trials.
Collapse
Affiliation(s)
- M Peet
- Academic Department of Psychiatry, Northern General Hospital, The Longley Centre, Norwood Grange Drive, S5 7JT, Sheffield, UK.
| | | | | | | | | |
Collapse
|
38
|
Fukuzako H. Neurochemical investigation of the schizophrenic brain by in vivo phosphorus magnetic resonance spectroscopy. World J Biol Psychiatry 2001; 2:70-82. [PMID: 12587188 DOI: 10.3109/15622970109027496] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Abnormal phospholipid metabolisms may play important roles in the pathophysiology of schizophrenia. Phosphorus magnetic resonance spectroscopy (31P-MRS) offers a new method for studying phosphorus-related metabolism in vivo. A decrease in the level of phosphomonoesters (PME) and an increase in the level of phosphodiesters (PDE) has been demonstrated in the prefrontal lobe of neuroleptic-naive schizophrenic patients. Most of the studies in medicated schizophrenic patients have shown decreased PME and/or increased PDE. The decreased PME in the frontal lobe appears to be associated with negative symptoms and poor working memory performance. 1H-decoupled 31P-MRS revealed a reduction in the phosphocholine element of PME and an elevation in the mobile phospholipids of PDE in the prefrontal region of medicated schizophrenic patients. PDE were elevated in the temporal lobes of neuroleptic-naive schizophrenic patients, and this increase was partially normalized by haloperidol administration. Data about the temporal lobes of medicated schizophrenic patients have not been consistent. Except for the reduction in the adenosine triphosphate (ATP) in the basal ganglia and the correlation between the increase in the frontal lobe phosphocreatine (PCr) and negative symptomatology, data related to changes in high-energy phosphates are contradictory. No consensus on the effect of neuroleptics on phosphorus metabolites has been achieved. Methodological problems inherent in 31P-MRS may have contributed to the confusion in understanding available data. Future directions of MRS studies are suggested in the last section of the paper.
Collapse
Affiliation(s)
- H Fukuzako
- Department of Neuropsychiatry, Faculty of Medicine, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima 890-8520, Japan.
| |
Collapse
|
39
|
Mahadik SP, Evans D, Lal H. Oxidative stress and role of antioxidant and omega-3 essential fatty acid supplementation in schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry 2001; 25:463-93. [PMID: 11370992 DOI: 10.1016/s0278-5846(00)00181-0] [Citation(s) in RCA: 148] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
1. Schizophrenia is a major mental disorder that has a lifetime risk of 1% and affects at young age (average age at the onset 24 +/- 4.6 years) in many cultures around the world. The etiology is unknown, the pathophysiology is complex, and most of the patients need treatment and care for the rest of their lives. 2. Cellular oxidative stress is inferred from higher tissue levels of reactive oxygen species (ROS, e.g., O2*-, OH*, OH-, NO* and ONOO--) than its antioxidant defense that cause peroxidative cell injury, i.e., peroxidation of membrane phospholipids, particularly esterified essential polyunsaturated fatty acids (EPUFAS), proteins and DNA. 3. Oxidative stress can lead to global cellular with predominantly neuronal peroxidation, since neurons are enriched in highly susceptible EPUFAs and proteins, and damages DNA is not repaired effectively. 4. Such neuronal peroxidation may affect its function (i.e., membrane transport, loss of mitochondrial energy production, gene expression and therefore receptor-mediated phospholipid-dependent signal transduction) that may explain the altered information processing in schizophrenia. 5. It is possible that the oxidative neuronal injury can be prevented by dietary supplementation of antioxidants (e.g., vitamins E, C and A; beta-carotene, Q-enzyme, flavons, etc.) and that membrane phospholipids can be corrected by dietary supplementation of EPUFAs. 6. It may be that the oxidative stress is lower in populations consuming a low caloric diet rich in antioxidants and EPUFAs, and minimizing smoking and drinking. 7. Oxidative stress exists in schizophrenia based on altered antioxidant enzyme defense, increased lipid peroxidation and reduced levels of EPUFAs. The life style of schizophrenic patients is also prooxidative stress, i.e., heavy smoking, drinking, high caloric intake with no physical activity and treatment with pro-oxidant drugs. 8. The patients in developed countries show higher levels of lipid peroxidation and lower levels of membrane phospholipids as compared to patients in the developing countries. 9. Initial observations on the improved outcome of schizophrenia in patients supplemented with EPUFAs and antioxidants suggest the possible beneficial effects of dietary supplementation. 10. Since the oxidative stress exists at or before the onset of psychosis the use of antioxidants from the very onset of psychosis may reduce the oxidative injury and dramatically improve the outcome of illness.
Collapse
Affiliation(s)
- S P Mahadik
- Department of Psychiatry and Health Behavior, Medical College of Georgia, Augusta, USA.
| | | | | |
Collapse
|
40
|
Stanley JA, Pettegrew JW. Postprocessing method to segregate and quantify the broad components underlying the phosphodiester spectral region of in vivo (31)P brain spectra. Magn Reson Med 2001; 45:390-6. [PMID: 11241695 DOI: 10.1002/1522-2594(200103)45:3<390::aid-mrm1051>3.0.co;2-d] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
In a typical, in vivo (31)P brain spectrum, the phosphomonoester (PME) and phosphodiester (PDE) spectral region not only contains signals from freely mobile PMEs and PDEs (which are anabolic and catabolic products of membrane phospholipids) but also signals of broader underlying lineshapes from less-mobile molecules. In general, either the PME and PDE resonances are quantified as a combined value of freely mobile metabolites plus less-mobile molecules or the broader underlying signal is reduced/eliminated prior to or post data collection. In this study, a postprocessing method that segregates and quantifies the individual contributions of the freely mobile metabolites and the less-mobile molecules is introduced. To demonstrate the precision and accuracy of the method, simulated data and in vivo (31)P brain spectroscopy data of healthy individuals were quantified. The ability to segregate and quantify these various PME and PDE contributions provides additional spectral information and improves the accuracy of the interpretation of (31)P spectroscopy results. Magn Reson Med 45:390-396, 2001.
Collapse
Affiliation(s)
- J A Stanley
- Neurophysics Laboratory, Department of Psychiatry, Western Psychiatric Institute and Clinic, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213, USA.
| | | |
Collapse
|
41
|
Stanley JA, Pettegrew JW, Keshavan MS. Magnetic resonance spectroscopy in schizophrenia: methodological issues and findings--part I. Biol Psychiatry 2000; 48:357-68. [PMID: 10978719 DOI: 10.1016/s0006-3223(00)00949-5] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Our knowledge of the biological basis of schizophrenia has significantly increased with the contribution of in vivo proton and phosphorus magnetic resonance spectroscopy (MRS), a noninvasive tool that can assess the biochemistry from a localized region in the human body. Studies thus far suggest altered membrane phospholipid metabolism at the early stage of illness and reduced N-acetylaspartate, a measure of neuronal volume/viability in chronic schizophrenia. Inconsistencies remain in the literature, in part due to the complexities in the MRS methodology. These complexities of in vivo spectroscopy make it important to understand the issues surrounding the design of spectroscopy protocols to best address hypotheses of interest. This review addresses these issues, including 1) understanding biochemistry and the physiologic significance of metabolites; 2) the influence of acquisition parameters combined with spin-spin and spin-lattice relaxation effects on the MRS signal; 3) the composition of spectral peaks and the degree of overlapping peaks, including the broader underlying peaks; 4) factors affecting the signal-to-noise ratio; 5) the various types of localization schemes; and 6) the objectives to produce accurate and reproducible quantification results. The ability to fully exploit the potentials of in vivo spectroscopy should lead to a protocol best optimized to address the hypotheses of interest.
Collapse
Affiliation(s)
- J A Stanley
- Neurophysics Laboratory, Western Psychiatric Institute and Clinic, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | | | | |
Collapse
|
42
|
Volz HR, Riehemann S, Maurer I, Smesny S, Sommer M, Rzanny R, Holstein W, Czekalla J, Sauer H. Reduced phosphodiesters and high-energy phosphates in the frontal lobe of schizophrenic patients: a (31)P chemical shift spectroscopic-imaging study. Biol Psychiatry 2000; 47:954-61. [PMID: 10838063 DOI: 10.1016/s0006-3223(00)00235-3] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND (31)Phosphorous magnetic resonance spectroscopy has been widely used to evaluate schizophrenic patients in comparison to control subjects, because it allows the investigation of both phospholipid and energy metabolism in vivo; however, the results achieved so far are inconsistent. Chemical shift imaging (CSI) has the advantage that instead of only one or a few preselected voxels the tissue of a whole brain slice can be examined. The aim of the present investigation was to determine whether the results of previous studies of our group, showing that phosphodiesters (PDE) are decreased in the frontal lobe of schizophrenic patients as compared to control subjects, might be confirmed in an independent unmedicated patient sample using the CSI technique. METHODS A carefully selected new cohort including 11 neuroleptic-free schizophrenic patients and 11 age- and gender-matched healthy control subjects was recruited. CSI was applied and an innovative analysis method for CSI data based on a general linear model was used. RESULTS PDE, phosphocreatine, and adenosine triphosphate (ATP) were found to be significantly decreased in the frontal lobe of patients with schizophrenia. CONCLUSIONS Because PDE was decreased in schizophrenic patients, the membrane phospholipid hypothesis of schizophrenia could not be corroborated. Further results indicate decreased ATP production in the frontal lobe of patients with schizophrenia.
Collapse
Affiliation(s)
- H R Volz
- Department of Psychiatry, University of Jena, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Abstract
Previous studies in schizophrenia have shown alterations in membrane phospholipids and polyunsaturated fatty acids. However, these studies have primarily examined peripheral (non-neuronal) cell types. The purpose of the present study was to examine whether the membrane deficits seen in peripheral tissues are also observed in the brain. The caudate was the primary region of interest for this study. Using high-pressure liquid chromatography in conjunction with an evaporative light-scattering detector, we first measured the level of various membrane phospholipids (PL) in schizophrenic (n=11) and control groups with (n=7) and without (n=14) other mental disorders. Polyunsaturated fatty acids (PUFAs) were then determined by capillary gas chromatography. Within groups, there are no significant correlations between membrane PL levels and other collection and demographic parameters including age, postmortem interval, storage time and brain weight. Significantly lower amounts of phosphatidylcholine and phosphatidylethanolamine were found in postmortem brain tissue from schizophrenic patients than in those from control groups, even after accounting for potential confounds. In addition, strong reductions of total PUFAs and saturated fatty acids were found in schizophrenic brains, relative to control brains. Specifically, the reduced PUFAs were largely attributable to decreases in arachidonic acid (AA) and, to a lesser extent, its precursors, linoleic and eicosadienoic acids. There are no significant differences between the control groups with and without other mental disorders. The present findings suggest that deficits identified in peripheral membranes may also be present in the brain from schizophrenic patients. Such a deficit in membrane AA may contribute to the many biological, physiological, and clinical phenomena observed in schizophrenia.
Collapse
Affiliation(s)
- J K Yao
- VA Pittsburgh Healthcare System, Pittsburgh, PA 15206, USA.
| | | | | |
Collapse
|
44
|
Vance AL, Velakoulis D, Maruff P, Wood SJ, Desmond P, Pantelis C. Magnetic resonance spectroscopy and schizophrenia: what have we learnt? Aust N Z J Psychiatry 2000; 34:14-25. [PMID: 11185927 DOI: 10.1046/j.1440-1614.2000.00702.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
OBJECTIVE Magnetic resonance spectroscopy (MRS) has been increasingly used to investigate the in vivo biochemistry of particular regions of the brain in patients with schizophrenia. We review the literature and discuss the theoretical constructs that form the presumed impetus for these studies in light of the current methodological limitations. Future directions are noted. METHOD The available published literature in English formed the basis for this review. RESULTS The results of 31P-MRS have been interpreted as reflecting a relative increase in cell membrane degradation in prefrontal cortical regions at certain phases of schizophrenia. 1H-MRS studies, though less consistent, provide evidence suggestive of a decrease in neuronal cell mass in the hippocampal region, which supports the findings of volumetric studies. Both groups of MRS studies support a neuro-developmental hypothesis of brain dysfunction in schizophrenia. However, current methodological problems limit the reliable interpretation of MRS data. A clear understanding of the methodology and its reliable interpretation is yet to emerge. CONCLUSIONS MRS remains a research instrument that is yet to be fully utilised in schizophrenia research. A few replicated findings are emerging, although the interpretation of these spectroscopic findings needs to be validated.
Collapse
Affiliation(s)
- A L Vance
- Cognitive Neuropsychiatry Unit, Mental Health Research Institute of Victoria, Parkville, Australia.
| | | | | | | | | | | |
Collapse
|
45
|
Fenton WS, Hibbeln J, Knable M. Essential fatty acids, lipid membrane abnormalities, and the diagnosis and treatment of schizophrenia. Biol Psychiatry 2000; 47:8-21. [PMID: 10650444 DOI: 10.1016/s0006-3223(99)00092-x] [Citation(s) in RCA: 218] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Recent research suggests that deficient uptake or excessive breakdown of membrane phospholipids may be associated with schizophrenia. We review available clinical research on abnormalities in membrane fatty acid composition and metabolism in schizophrenia, and therapeutic trials of fatty acid in this disorder. All potentially relevant English-language articles were identified from the medical and psychiatric literature with the aid of computer searches using key words such as lipids, phospholipids, prostaglandins and schizophrenia. All studies which include human subjects are reviewed. Empirical studies related to membrane hypotheses of schizophrenia focus on: 1) assessment of prostaglandins (PG) and their essential fatty acid (EFA) precursors in the tissues of patients with schizophrenia; 2) evaluation of the niacin flush test as a possible diagnostic marker; 3) evaluation of phospholipase enzyme activity; 4) NMR spectroscopy studies of brain phospholipid metabolism; and 5) therapeutic trials of PG precursors for the treatment of schizophrenia. The most consistent clinical findings include red blood cell fatty acid membrane abnormalities, NMR spectroscopy evidence of increased phospholipid turnover and a therapeutic effect of omega-3 fatty acid supplementation of neuroleptic treatment in some schizophrenia patients. Studies of EFA metabolism have proved fruitful for generating and testing novel etiologic hypotheses and new therapeutic agents for schizophrenia. Greater attention to factors that influence tissue EFA levels such as diet, tobacco and alcohol are required to reconcile inconsistent findings. Treatment studies, although promising, require independent replication.
Collapse
Affiliation(s)
- W S Fenton
- Stanley Treatment Programs at Chestnut Lodge, Bethesda (MK), Maryland, USA
| | | | | |
Collapse
|
46
|
Riehemann S, Volz HP, Wenda B, Hübner G, Rössger G, Rzanny R, Sauer H. Frontal lobe in vivo (31)P-MRS reveals gender differences in healthy controls, not in schizophrenics. NMR IN BIOMEDICINE 1999; 12:483-489. [PMID: 10668040 DOI: 10.1002/(sici)1099-1492(199912)12:8<483::aid-nbm589>3.0.co;2-d] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Phosphorus-31 magnetic resonance spectroscopy ((31)P-MRS) has gained much interest in schizophrenia research in recent years since it allows the non-invasive measurement of high-energy phosphates and phospholipids in vivo. However, until now only differences in metabolite concentrations between certain brain areas of schizophrenic patients and healthy controls have been examined. We investigated the influence of gender on the concentrations of different phosphorus compounds. For this purpose, well-defined volumes in the frontal lobe of 32 healthy controls and 51 schizophrenic in-patients were examined with an image selected in vivo spectroscopy (ISIS) sequence on a whole-body scanner at 1.5 T. Healthy females exhibited increased values of inorganic phosphate (P(i)) and decreased values of phosphocreatine (PCr) in comparison to their male counterparts. In schizophrenic patients such gender differences were not present. Thus, the results can be interpreted in the sense that frontal energy demanding processes are enhanced in female compared to male healthy volunteers; schizophrenia seems to reduce these gender differences.
Collapse
Affiliation(s)
- S Riehemann
- Department of Psychiatry, University of Jena, Philosophenweg 3, D-07740 Jena, Germany
| | | | | | | | | | | | | |
Collapse
|
47
|
Potwarka JJ, Drost DJ, Williamson PC, Carr T, Canaran G, Rylett WJ, Neufeld RW. A 1H-decoupled 31P chemical shift imaging study of medicated schizophrenic patients and healthy controls. Biol Psychiatry 1999; 45:687-93. [PMID: 10187998 DOI: 10.1016/s0006-3223(98)00136-x] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
BACKGROUND Current 31P spectroscopy research in schizophrenia has examined phospholipid metabolism by measuring the sum of phosphomonoesters and the sum of phosphodiester-containing molecules. Proton decoupling was implemented to measure the individual phosphomonoester and phosphodiester components. This is the first study employing this technique to examine schizophrenic patients. METHODS Multivoxel two-dimensional chemical shift in vivo phosphorous-31 magnetic resonance spectroscopy with proton decoupling was used to examine a 50-cm3 volume in prefrontal, motor, and parieto-occipital regions in the brain. Eleven chronic medicated schizophrenic patients were compared to 11 healthy controls of comparable gender, education, parental education, and handedness. RESULTS A significant increase in the mobile phospholipid peak area and its full width at half maximum was observed in the medicated schizophrenic patients compared to the healthy controls in the prefrontal region. Inorganic orthophosphate and phosphocholine were lower in the schizophrenic group in the prefrontal region. CONCLUSIONS The increased sum of phosphodiester [mobile phospholipid + glycerol-3-phosphoethanolamine (GPEth) + glycerol-3-phosphocholine (GPCh)] in schizophrenic patients, measured in earlier studies, arises from the phospholipid peak (MP) and not the more mobile phosphodiesters (GPEth, GPCh) as was originally suspected. A decrease in the phosphocholine component of the phosphomonoesters was also observed in the schizophrenic patients. These findings are consistent with an abnormality in membrane metabolism in the prefrontal region in schizophrenics.
Collapse
Affiliation(s)
- J J Potwarka
- Department of Nuclear Medicine and Magnetic Resonance, St. Joseph's Health Centre, London, Ontario, Canada
| | | | | | | | | | | | | |
Collapse
|
48
|
Blüml S, Tan J, Harris K, Adatia N, Karme A, Sproull T, Ross B. Quantitative proton-decoupled 31P MRS of the schizophrenic brain in vivo. J Comput Assist Tomogr 1999; 23:272-5. [PMID: 10096336 DOI: 10.1097/00004728-199903000-00017] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Quantitative proton MR spectroscopy (MRS) and proton-decoupled phosphorus MRS were applied in the parietal cortex of 13 schizophrenic subjects (11 drug-treated and 2 neuroleptic-naive) and 15 normal control subjects. Significantly increased concentrations of glycerophosphorylcholine (1.18 +/- 0.16 vs. 0.93 +/- 0.14 mmol/kg brain; p < 0.001), glycerophosphoethanolomine (0.70 +/- 0.19 vs. 0.59 +/- 0.07 mmol/kg; p < 0.04), and phosphocreatine (3.73 +/- 0.39 vs. 3.41 +/- 0.13 mmol/kg; p < 0.007), but no differences in N-acetylaspartate, total creatine, or myo-inositol, were determined in treated schizophrenic subjects. Identical abnormalities were found in two neuroleptic-naive patients. These results provide new evidence of disordered cerebral membrane and high energy phosphate metabolism in schizophrenia.
Collapse
Affiliation(s)
- S Blüml
- Clinical Magnetic Resonance Spectroscopy Unit, Huntington Medical Research Institutes, Pasadena, CA 91105, USA
| | | | | | | | | | | | | |
Collapse
|
49
|
Kegeles LS, Humaran TJ, Mann JJ. In vivo neurochemistry of the brain in schizophrenia as revealed by magnetic resonance spectroscopy. Biol Psychiatry 1998; 44:382-98. [PMID: 9777167 DOI: 10.1016/s0006-3223(97)00425-3] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Magnetic resonance spectroscopy (MRS), an application of the methods of nuclear magnetic resonance (NMR), is a functional imaging modality that provides a view of localized biochemistry in vivo. A number of studies applying MRS to the neurochemistry of schizophrenia have been reported, which encompass a range of patient populations, states of medication, anatomic regions, nuclear species, and MRS techniques. A brief review of the history and methodology of NMR and MRS is presented. Comparison is made of MRS capabilities with other functional imaging modalities. Aspects of the neurochemistry of schizophrenia relevant to MRS studies are reviewed, as are the reported MRS studies involving patients with schizophrenia. Areas of consistent findings include decreased phosphomonoesters and increased phosphodiesters in frontal lobes, and decreases in the putative neuronal cell marker, N-acetylaspartate, in temporal lobes. Studies of neurotransmitters such as glutamate, gamma-aminobutyric acid, and glutamine have generated inconsistent results. New insights into alterations in neurochemistry in schizophrenia have been provided by MRS. Studies of neurotransmitters have future potential with improvements in field strength and in spectral editing techniques. MRS has the potential to measure brain medication levels and simultaneous effects on neurochemistry. MRS may assist in characterizing high-risk populations, and ultimately guide medication use.
Collapse
Affiliation(s)
- L S Kegeles
- Department of Psychiatry, Columbia University, New York, New York, USA
| | | | | |
Collapse
|
50
|
Volz HP, Rzanny R, Rössger G, Hübner G, Kreitschmann-Andermahr I, Kaiser WA, Sauer H. 31Phosphorus magnetic resonance spectroscopy of the dorsolateral prefrontal region in schizophrenics--a study including 50 patients and 36 controls. Biol Psychiatry 1998; 44:399-404. [PMID: 9777168 DOI: 10.1016/s0006-3223(98)00061-4] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
BACKGROUND In a preliminary study we found decreased phosphodiester (PDE)% values and an increased phosphomonoester (PME)/phosphodiester ratio in the dorsolateral prefrontal region (DLPFR) of 13 chronic schizophrenics vs. 14 controls using 31phosphorus magnetic resonance spectroscopy (31P-MRS). Since these results are in contrast to the findings of other groups, we increased our study group to a total of 50 chronic schizophrenics on stable neuroleptic medication and 36 controls to minimize the possibility of a chance result due to small sample size. METHODS An image-selected in vivo 31P-MRS method on a Philips Gyroscan ACS II scanner working at 1.5 T was used. RESULTS We could confirm our earlier findings of decreased PDE% levels in schizophrenics. Additionally, we found phosphocreatine (PCr)% and PCr/adenosine triphosphate (ATP) to be increased in the schizophrenics. While no association between PME% and PDE% with neuroleptic medication was found, ATP% correlated positively and PCr/ATP negatively with the chlorpromazine equivalent dose. CONCLUSIONS The decreased PDE% levels might be characteristic only for chronic, neuroleptic-treated patients. The finding of altered high-energy phosphate levels can be interpreted as an indication of decreased energy-demanding processes in the DLPFR of the investigated patients compared to controls.
Collapse
Affiliation(s)
- H P Volz
- Psychiatric Department, University of Jena, Germany
| | | | | | | | | | | | | |
Collapse
|