1
|
Zhang H, Wang P, Song Y, Zhao H, Zuo Q, Chen X, Han F, Liu H, Nie Y, Liu M, Guo M, Niu S. The MADS-domain transcription factor DAL10 is a direct target of putative DAL1-mediated age pathway in conifers. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:6462-6475. [PMID: 39082682 DOI: 10.1093/jxb/erae329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 07/29/2024] [Indexed: 11/01/2024]
Abstract
The optimal timing of the transition from vegetative growth to reproductive growth is critical for plant reproductive success, and the underlying regulatory mechanisms have been well studied in angiosperm model species, but relatively little in gymnosperms. DAL1, a MADS domain transcription factor (TF) that shows a conserved age-related expression profile in conifers, may be an age timer. However, how DAL1 mediates the onset of reproductive growth remains poorly understood. Here, we showed that PtDAL1 directly regulates PtDAL10 transcription by binding to its promoter region in vitro. Both in vitro and in Nicotiana benthamiana PtDAL1 forms ternary complexes with PtDAL10 and PtMADS11, two potential candidate regulators of the vegetative to reproductive transition in Chinese pine (Pinus tabuliformis). In new shoots PtDAL10 was progressively induced with age and was also expressed in male and female cones. Overexpression of PtDAL10 rescued the flowering of ft-10 and soc1-1-2 mutants in Arabidopsis. We provide insights into the molecular components associated with PtDAL1, which integrates the vegetative to reproductive phase transition into age-mediated progressive development of the whole plant in conifers.
Collapse
Affiliation(s)
- Hui Zhang
- State Key Laboratory of Efficient Production of Forest Resources, National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, PR China
| | - Peiyi Wang
- State Key Laboratory of Efficient Production of Forest Resources, National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, PR China
| | - Yitong Song
- State Key Laboratory of Efficient Production of Forest Resources, National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, PR China
| | - Huanhuan Zhao
- State Key Laboratory of Efficient Production of Forest Resources, National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, PR China
| | - Quan Zuo
- State Key Laboratory of Efficient Production of Forest Resources, National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, PR China
| | - Xi Chen
- State Key Laboratory of Efficient Production of Forest Resources, National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, PR China
| | - Fangxu Han
- State Key Laboratory of Efficient Production of Forest Resources, National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, PR China
| | - Hongmei Liu
- State Key Laboratory of Efficient Production of Forest Resources, National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, PR China
| | - Yumeng Nie
- State Key Laboratory of Efficient Production of Forest Resources, National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, PR China
| | - Meiqin Liu
- State Key Laboratory of Efficient Production of Forest Resources, National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, PR China
| | - Meina Guo
- State Key Laboratory of Efficient Production of Forest Resources, National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, PR China
| | - Shihui Niu
- State Key Laboratory of Efficient Production of Forest Resources, National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, PR China
| |
Collapse
|
2
|
Sharma S, Kapoor S, Ansari A, Tyagi AK. The general transcription factors (GTFs) of RNA polymerase II and their roles in plant development and stress responses. Crit Rev Biochem Mol Biol 2024:1-43. [PMID: 39361782 DOI: 10.1080/10409238.2024.2408562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 09/03/2024] [Accepted: 09/21/2024] [Indexed: 10/05/2024]
Abstract
In eukaryotes, general transcription factors (GTFs) enable recruitment of RNA polymerase II (RNA Pol II) to core promoters to facilitate initiation of transcription. Extensive research in mammals and yeast has unveiled their significance in basal transcription as well as in diverse biological processes. Unlike mammals and yeast, plant GTFs exhibit remarkable degree of variability and flexibility. This is because plant GTFs and GTF subunits are often encoded by multigene families, introducing complexity to transcriptional regulation at both cellular and biological levels. This review provides insights into the general transcription mechanism, GTF composition, and their cellular functions. It further highlights the involvement of RNA Pol II-related GTFs in plant development and stress responses. Studies reveal that GTFs act as important regulators of gene expression in specific developmental processes and help equip plants with resilience against adverse environmental conditions. Their functions may be direct or mediated through their cofactor nature. The versatility of GTFs in controlling gene expression, and thereby influencing specific traits, adds to the intricate complexity inherent in the plant system.
Collapse
Affiliation(s)
- Shivam Sharma
- Inter-disciplinary Centre for Plant Genomics and Department of Plant Molecular Biology, University of Delhi, New Delhi, India
| | - Sanjay Kapoor
- Inter-disciplinary Centre for Plant Genomics and Department of Plant Molecular Biology, University of Delhi, New Delhi, India
| | - Athar Ansari
- Department of Biological Science, Wayne State University, Detroit, MI, USA
| | - Akhilesh Kumar Tyagi
- Inter-disciplinary Centre for Plant Genomics and Department of Plant Molecular Biology, University of Delhi, New Delhi, India
| |
Collapse
|
3
|
Luo C, Bashir NH, Li Z, Liu C, Shi Y, Chu H. Plant microRNAs regulate the defense response against pathogens. Front Microbiol 2024; 15:1434798. [PMID: 39282567 PMCID: PMC11392801 DOI: 10.3389/fmicb.2024.1434798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Accepted: 08/12/2024] [Indexed: 09/19/2024] Open
Abstract
MicroRNAs (miRNAs) are a class of small non-coding RNAs, typically 20-25 nucleotides in length, that play a crucial role in regulating gene expression post-transcriptionally. They are involved in various biological processes such as plant growth, development, stress response, and hormone signaling pathways. Plants interact with microbes through multiple mechanisms, including mutually beneficial symbiotic relationships and complex defense strategies against pathogen invasions. These defense strategies encompass physical barriers, biochemical defenses, signal recognition and transduction, as well as systemic acquired resistance. MiRNAs play a central role in regulating the plant's innate immune response, activating or suppressing the transcription of specific genes that are directly involved in the plant's defense mechanisms against pathogens. Notably, miRNAs respond to pathogen attacks by modulating the balance of plant hormones such as salicylic acid, jasmonic acid, and ethylene, which are key in activating plant defense mechanisms. Moreover, miRNAs can cross boundaries into fungal and bacterial cells, performing cross-kingdom RNA silencing that enhances the plant's disease resistance. Despite the complex and diverse roles of miRNAs in plant defense, further research into their function in plant-pathogen interactions is essential. This review summarizes the critical role of miRNAs in plant defense against pathogens, which is crucial for elucidating how miRNAs control plant defense mechanisms.
Collapse
Affiliation(s)
- Changxin Luo
- Center for Yunnan Plateau Biological Resources Protection and Utilization, College of Biological Resource and Food Engineering, Qujing Normal University, Qujing, China
| | - Nawaz Haider Bashir
- Center for Yunnan Plateau Biological Resources Protection and Utilization, College of Biological Resource and Food Engineering, Qujing Normal University, Qujing, China
| | - Zhumei Li
- Center for Yunnan Plateau Biological Resources Protection and Utilization, College of Biological Resource and Food Engineering, Qujing Normal University, Qujing, China
| | - Chao Liu
- Center for Yunnan Plateau Biological Resources Protection and Utilization, College of Biological Resource and Food Engineering, Qujing Normal University, Qujing, China
| | - Yumei Shi
- Center for Yunnan Plateau Biological Resources Protection and Utilization, College of Biological Resource and Food Engineering, Qujing Normal University, Qujing, China
| | - Honglong Chu
- Center for Yunnan Plateau Biological Resources Protection and Utilization, College of Biological Resource and Food Engineering, Qujing Normal University, Qujing, China
| |
Collapse
|
4
|
Li Q, Song M, Wang Y, Lu P, Ge W, Zhang K. Unraveling the Molecular Mechanisms by Which the miR171b- SCL6 Module Regulates Maturation in Lilium. Int J Mol Sci 2024; 25:9156. [PMID: 39273108 PMCID: PMC11394818 DOI: 10.3390/ijms25179156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 08/20/2024] [Accepted: 08/21/2024] [Indexed: 09/15/2024] Open
Abstract
Lilium is one of the most widely cultivated ornamental bulbous plants in the world. Although research has shown that variable temperature treatments can accelerate the development process from vegetative to reproductive growth in Lilium, the molecular regulation mechanisms of this development are not clear. In this study, Lbr-miR171b and its target gene, LbrSCL6, were selected and validated using transgenic functional verification, subcellular localization, and transcriptional activation. This study also investigated the differential expression of Lbr-miR171b and LbrSCL6 in two temperature treatment groups (25 °C and 15 °C). Lbr-miR171b expression significantly increased after the temperature change, whereas that of LbrSCL6 exhibited the opposite trend. Through in situ hybridization experiments facilitated by the design of hybridization probes targeting LbrSCL6, a reduction in LbrSCL6 expression was detected following variable temperature treatment at 15 °C. The transgenic overexpression of Lbr-miR171b in plants promoted the phase transition, while LbrSCL6 overexpression induced a delay in the phase transition. In addition, LbrWOX4 interacted with LbrSCL6 in yeast two-hybrid and bimolecular fluorescence complementation assays. In conclusion, these results explain the molecular regulatory mechanisms governing the phase transition in Lilium.
Collapse
Affiliation(s)
- Qing Li
- College of Landscape Architecture, Beijing University of Agriculture, Beijing 102206, China; (Q.L.); (M.S.); (Y.W.); (P.L.)
| | - Meiqi Song
- College of Landscape Architecture, Beijing University of Agriculture, Beijing 102206, China; (Q.L.); (M.S.); (Y.W.); (P.L.)
| | - Yachen Wang
- College of Landscape Architecture, Beijing University of Agriculture, Beijing 102206, China; (Q.L.); (M.S.); (Y.W.); (P.L.)
| | - Ping Lu
- College of Landscape Architecture, Beijing University of Agriculture, Beijing 102206, China; (Q.L.); (M.S.); (Y.W.); (P.L.)
| | - Wei Ge
- College of Landscape Architecture, Beijing University of Agriculture, Beijing 102206, China; (Q.L.); (M.S.); (Y.W.); (P.L.)
- Beijing Laboratory of Urban and Rural Ecological Environment, Beijing 102206, China
| | - Kezhong Zhang
- College of Landscape Architecture, Beijing University of Agriculture, Beijing 102206, China; (Q.L.); (M.S.); (Y.W.); (P.L.)
- Beijing Laboratory of Urban and Rural Ecological Environment, Beijing 102206, China
| |
Collapse
|
5
|
Chen C, Hu Y, Ikeuchi M, Jiao Y, Prasad K, Su YH, Xiao J, Xu L, Yang W, Zhao Z, Zhou W, Zhou Y, Gao J, Wang JW. Plant regeneration in the new era: from molecular mechanisms to biotechnology applications. SCIENCE CHINA. LIFE SCIENCES 2024; 67:1338-1367. [PMID: 38833085 DOI: 10.1007/s11427-024-2581-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 03/26/2024] [Indexed: 06/06/2024]
Abstract
Plants or tissues can be regenerated through various pathways. Like animal regeneration, cell totipotency and pluripotency are the molecular basis of plant regeneration. Detailed systematic studies on Arabidopsis thaliana gradually unravel the fundamental mechanisms and principles underlying plant regeneration. Specifically, plant hormones, cell division, epigenetic remodeling, and transcription factors play crucial roles in reprogramming somatic cells and reestablishing meristematic cells. Recent research on basal non-vascular plants and monocot crops has revealed that plant regeneration differs among species, with various plant species using distinct mechanisms and displaying significant differences in regenerative capacity. Conducting multi-omics studies at the single-cell level, tracking plant regeneration processes in real-time, and deciphering the natural variation in regenerative capacity will ultimately help understand the essence of plant regeneration, improve crop regeneration efficiency, and contribute to future crop design.
Collapse
Affiliation(s)
- Chunli Chen
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China.
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Yuxin Hu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences (CAS), China National Botanical Garden, Beijing, 100093, China.
| | - Momoko Ikeuchi
- Division of Biological Sciences, Graduate School of Science and Technology, Nara Institute of Science and Technology, Nara, 630-0192, Japan.
| | - Yuling Jiao
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, 100871, China.
- Peking-Tsinghua Center for Life Sciences, Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China.
| | - Kalika Prasad
- Indian Institute of Science Education and Research, Pune, 411008, India.
- , Thiruvananthapuram, 695551, India.
| | - Ying Hua Su
- State Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China.
- Sino-German Joint Research Center on Agricultural Biology, Shandong Agricultural University, Tai'an, 271018, China.
| | - Jun Xiao
- Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology (IGDB), CAS, Beijing, 100101, China.
- CAS-JIC Centre of Excellence for Plant and Microbial Science (CEPAMS), IGDB, CAS, Beijing, 100101, China.
| | - Lin Xu
- National Key Laboratory of Plant Molecular Genetics, CEMPS, Institute of Plant Physiology and Ecology (SIPPE), CAS, Shanghai, 200032, China.
| | - Weibing Yang
- National Key Laboratory of Plant Molecular Genetics, CEMPS, Institute of Plant Physiology and Ecology (SIPPE), CAS, Shanghai, 200032, China.
- CEPAMS, SIPPE, CAS, Shanghai, 200032, China.
| | - Zhong Zhao
- Hefei National Laboratory for Physical Sciences at the Microscale, CEMPS, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China.
| | - Wenkun Zhou
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, 100193, China.
| | - Yun Zhou
- Department of Botany and Plant Pathology and Center for Plant Biology, Purdue University, West Lafayette, 47907, USA.
| | - Jian Gao
- National Key Laboratory of Plant Molecular Genetics, CEMPS, Institute of Plant Physiology and Ecology (SIPPE), CAS, Shanghai, 200032, China
| | - Jia-Wei Wang
- National Key Laboratory of Plant Molecular Genetics, CEMPS, Institute of Plant Physiology and Ecology (SIPPE), CAS, Shanghai, 200032, China.
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China.
- Key Laboratory of Plant Carbon Capture, CAS, Shanghai, 200032, China.
- New Cornerstone Science Laboratory, Shanghai, 200032, China.
| |
Collapse
|
6
|
Jia X, Xu S, Wang Y, Jin L, Gao T, Zhang Z, Yang C, Qing Y, Li C, Ma F. Age-dependent changes in leaf size in apple are governed by a cytokinin-integrated module. PLANT PHYSIOLOGY 2024; 195:2406-2427. [PMID: 38588053 DOI: 10.1093/plphys/kiae201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/01/2024] [Accepted: 03/02/2024] [Indexed: 04/10/2024]
Abstract
Plants undergo various age-dependent changes in leaf morphology during juvenile to adult vegetative stage. However, the precise molecular mechanisms governing these changes in apple (Malus domestica) remain unknown. Here, we showed that CYTOKININ OXIDASE/DEHYDROGENASE5 (MdCKX5), an age-dependent gene, encodes a functional CKX enzyme and serves as the common downstream target of SQUAMOSA PROMOTER BINDING PROTEIN-LIKE (SPL) transcription factor MdSPL14 and WRKY transcription factor MdWRKY24 to control the degradation of cytokinin (CK). As the target of mdm-microRNA156a, MdSPL14 interacts with MdWRKY24 to coordinately repress the transcription of MdCKX5 by forming the age-mediated mdm-miR156a-MdSPL14-MdWRKY24 module, which regulates age-dependent changes in CK during the juvenile-to-adult phase transition. We further demonstrated that MdARR6, a type-A ARABIDOPSIS RESPONSE REGULATOR (ARR), is a negative feedback regulator in the CK signaling pathway. Silencing of MdARR6 in apple resulted in large leaves with smaller epidermal cells and a greater number of epidermal cells. Biochemical analysis showed that the mdm-miR156a-MdSPL14-MdWRKY24 module acts as a transcriptional repressor to directly regulate MdARR6 expression, thus controlling the age-dependent changes in leaf size by reducing CK responses. These findings established a link between the age pathway and CK signaling and revealed the molecular mechanism underlying age-dependent changes during the juvenile-to-adult phase transition; our results also provide targets for the genetic improvement of the vegetative phase transition in apple.
Collapse
Affiliation(s)
- Xumei Jia
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100 Shaanxi, China
| | - Shuo Xu
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100 Shaanxi, China
| | - Yuting Wang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100 Shaanxi, China
| | - Lu Jin
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100 Shaanxi, China
| | - Tengteng Gao
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100 Shaanxi, China
| | - Zhijun Zhang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100 Shaanxi, China
| | - Chao Yang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100 Shaanxi, China
| | - Yubin Qing
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100 Shaanxi, China
| | - Chao Li
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100 Shaanxi, China
| | - Fengwang Ma
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100 Shaanxi, China
| |
Collapse
|
7
|
Xing Z, Bi G, Li T, Zhang Q, Knight PR. Effect of Harvest Time on Growth and Bioactive Compounds in Salvia miltiorrhiza. PLANTS (BASEL, SWITZERLAND) 2024; 13:1788. [PMID: 38999628 PMCID: PMC11243644 DOI: 10.3390/plants13131788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/23/2024] [Accepted: 06/26/2024] [Indexed: 07/14/2024]
Abstract
Danshen (Salvia miltiorrhiza) is a perennial medicinal plant belonging to the Lamiaceae family. It is adapted to a wide range of soil pH with the potential to serve as an alternative crop in the United States. To enhance its cultivation and economic viability, it is crucial to develop production practices that maximize bioactive compound yields for danshen. The objective of this study was to investigate the effects of different harvest times on plant growth and subsequent yields of bioactive components of danshen. Three harvest times were selected (60, 120, or 180 days after transplanting [DAT]). In general, plants harvested at 180 DAT had higher plant growth index (PGI), shoot number, shoot weight, root number, maximum root length, maximum root diameter, and root weight compared to plants harvested at 60 or 120 DAT. However, plants harvested at 60 or 120 DAT had higher SPAD (Soil Plant Analysis Development) values. Plants harvested at 120 or 180 DAT had a higher content of tanshinone I, tanshinone IIA, cryptotanshinone, and salvianolic acid B compared to those harvested at 60 DAT. This study provides insights for optimizing the time of harvest of danshen to maximize plant growth and bioactive compound production.
Collapse
Affiliation(s)
- Zhiheng Xing
- Department of Plant and Soil Sciences, Mississippi State University, Starkville, MS 39762, USA
| | - Guihong Bi
- Department of Plant and Soil Sciences, Mississippi State University, Starkville, MS 39762, USA
| | - Tongyin Li
- Department of Plant and Soil Sciences, Mississippi State University, Starkville, MS 39762, USA
| | - Qianwen Zhang
- Department of Plant and Soil Sciences, Mississippi State University, Starkville, MS 39762, USA
| | - Patricia R Knight
- Coastal Research and Extension Center, Mississippi State University, Poplarville, MS 39470, USA
| |
Collapse
|
8
|
Jafari F, Wang B, Wang H, Zou J. Breeding maize of ideal plant architecture for high-density planting tolerance through modulating shade avoidance response and beyond. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024; 66:849-864. [PMID: 38131117 DOI: 10.1111/jipb.13603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/27/2023] [Accepted: 12/14/2023] [Indexed: 12/23/2023]
Abstract
Maize is a major staple crop widely used as food, animal feed, and raw materials in industrial production. High-density planting is a major factor contributing to the continuous increase of maize yield. However, high planting density usually triggers a shade avoidance response and causes increased plant height and ear height, resulting in lodging and yield loss. Reduced plant height and ear height, more erect leaf angle, reduced tassel branch number, earlier flowering, and strong root system architecture are five key morphological traits required for maize adaption to high-density planting. In this review, we summarize recent advances in deciphering the genetic and molecular mechanisms of maize involved in response to high-density planting. We also discuss some strategies for breeding advanced maize cultivars with superior performance under high-density planting conditions.
Collapse
Affiliation(s)
- Fereshteh Jafari
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Baobao Wang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
- National Nanfan Research Institute, CAAS, Sanya, 572025, China
| | - Haiyang Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Junjie Zou
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
- National Nanfan Research Institute, CAAS, Sanya, 572025, China
| |
Collapse
|
9
|
Ma X, Wang J, Su Z, Ma H. Developmentally dependent reprogramming of the Arabidopsis floral transcriptome under sufficient and limited water availability. BMC PLANT BIOLOGY 2024; 24:273. [PMID: 38605371 PMCID: PMC11007919 DOI: 10.1186/s12870-024-04916-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 03/15/2024] [Indexed: 04/13/2024]
Abstract
BACKGROUND Environmental stresses negatively impact reproductive development and yield. Drought stress, in particular, has been examined during Arabidopsis reproductive development at morphological and transcriptomic levels. However, drought-responsive transcriptomic changes at different points in reproductive development remain unclear. Additionally, an investigation of the entire transcriptome at various stages during flower development is of great interest. RESULTS Here, we treat Arabidopsis plants with well-watered and moderately and severely limiting water amounts when the first flowers reach maturity and generate RNA-seq datasets for early, middle, and late phases during flower development at 5, 6, and 7 days following treatment. Under different drought conditions, flowers in different developmental phases display differential sets of drought-responsive genes (DTGs), including those that are enriched in different GO functional categories, such as transcriptional regulation and response to stresses (early phase), lipid storage (middle phase), and pollen and seed development and metabolic processes (late phase). Some gene families have different members induced at different floral phases, suggesting that similar biochemical functions are carried out by distinct members. Developmentally-regulated genes (DVGs) with differential expression among the three floral phases belong to GO terms that are similar between water conditions, such as development and reproduction, metabolism and transport, and signaling and stress response. However, for different water conditions, such similar GO terms correspond to either distinct gene families or different members of a gene family, suggesting that drought affects the expression of distinct families or family members during reproductive development. A further comparison among transcriptomes of tissues collected on different days after treatment identifies differential gene expression, suggesting age-related genes (ARGs) might reflect the changes in the overall plant physiology in addition to drought response and development. CONCLUSION Together, our study provides new insights into global transcriptome reprogramming and candidate genes for drought response, flower development, aging and coordination among these complex biological processes.
Collapse
Affiliation(s)
- Xinwei Ma
- Department of Biology, Pennsylvania State University, University Park, PA, 16802, USA
| | - Jun Wang
- Department of Biology, Pennsylvania State University, University Park, PA, 16802, USA
| | - Zhao Su
- Laboratory of Plant Stress and Development, College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Hong Ma
- Department of Biology, Pennsylvania State University, University Park, PA, 16802, USA.
| |
Collapse
|
10
|
Asadi M, Millar AA. Review: Plant microRNAs in pathogen defense: A panacea or a piece of the puzzle? PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 341:111993. [PMID: 38266718 DOI: 10.1016/j.plantsci.2024.111993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/11/2024] [Accepted: 01/16/2024] [Indexed: 01/26/2024]
Abstract
Plant microRNAs (miRNAs) control key agronomic traits that are associated with their conserved role(s) in development. However, despite a multitude of studies, the utility of miRNAs in plant-pathogen resistance remains less certain. Reviewing the literature identifies three general classes of miRNAs regarding plant pathogen defense. Firstly, a number of evolutionary dynamic 22 nucleotide miRNA families that repress large numbers of plant immunity genes, either directly, or through triggering the biogenesis of secondary siRNAs. However, understanding of their role in defense and of their manipulation to enhance pathogen resistance are still lacking. Secondly, highly conserved miRNAs that indirectly impact disease resistance through their targets that are primarily regulating development or hormone signaling. Any alteration of these miRNAs usually results in pleiotropic impacts, which may alter disease resistance in some plant species, and against some pathogens. Thirdly, are the comparatively diverse and evolutionary dynamic set of non-conserved miRNAs, some of which contribute to pathogen resistance, but whose narrow evolutionary presence will likely restrict their utility. Therefore, reflecting the diverse and evolving nature of plant-pathogen interactions, a complex interplay of plant miRNAs with pathogen responses exists. Any miRNA-based solution for pathogen resistance will likely be highly specific, rather than a general panacea.
Collapse
Affiliation(s)
- Mohsen Asadi
- Department of Biology, Faculty of Sciences, Shahid Bahonar University of Kerman, Kerman, Iran; Department of Agricultural Science, Technical and Vocational University (TVU), Tehran, Iran
| | - Anthony A Millar
- Division of Plant Science, Research School of Biology, The Australian National University, Canberra, Australia; ARC Training Centre for Accelerated Future Crop development, ANU, Canberra, Australia.
| |
Collapse
|
11
|
Cheng YJ, Wang JW, Ye R. Histone dynamics responding to internal and external cues underlying plant development. PLANT PHYSIOLOGY 2024; 194:1980-1997. [PMID: 38124490 DOI: 10.1093/plphys/kiad676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/13/2023] [Accepted: 11/14/2023] [Indexed: 12/23/2023]
Abstract
Plants necessitate a refined coordination of growth and development to effectively respond to external triggers for survival and successful reproduction. This intricate harmonization of plant developmental processes and adaptability hinges on significant alterations within their epigenetic landscapes. In this review, we first delve into recent strides made in comprehending underpinning the dynamics of histones, driven by both internal and external cues. We encapsulate the prevailing working models through which cis/trans elements navigate the acquisition and removal of histone modifications, as well as the substitution of histone variants. As we look ahead, we anticipate that delving deeper into the dynamics of epigenetic regulation at the level of individual cells or specific cell types will significantly enrich our comprehension of how plant development unfolds under the influence of internal and external cues. Such exploration holds the potential to provide unprecedented resolution in understanding the orchestration of plant growth and development.
Collapse
Affiliation(s)
- Ying-Juan Cheng
- College of Horticulture, Nanjing Agriculture University, Nanjing 210095, China
| | - Jia-Wei Wang
- National Key Laboratory of Plant Molecular Genetics (NKLPMG), CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Institute of Plant Physiology and Ecology (SIPPE), Chinese Academy of Sciences (CAS), Shanghai 200032, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
- New Cornerstone Science Laboratory, Shanghai 200032, China
| | - Ruiqiang Ye
- National Key Laboratory of Plant Molecular Genetics (NKLPMG), CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Institute of Plant Physiology and Ecology (SIPPE), Chinese Academy of Sciences (CAS), Shanghai 200032, China
| |
Collapse
|
12
|
Coen E, Prusinkiewicz P. Developmental timing in plants. Nat Commun 2024; 15:2674. [PMID: 38531864 PMCID: PMC10965974 DOI: 10.1038/s41467-024-46941-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 03/13/2024] [Indexed: 03/28/2024] Open
Abstract
Plants exhibit reproducible timing of developmental events at multiple scales, from switches in cell identity to maturation of the whole plant. Control of developmental timing likely evolved for similar reasons that humans invented clocks: to coordinate events. However, whereas clocks are designed to run independently of conditions, plant developmental timing is strongly dependent on growth and environment. Using simplified models to convey key concepts, we review how growth-dependent and inherent timing mechanisms interact with the environment to control cyclical and progressive developmental transitions in plants.
Collapse
Affiliation(s)
- Enrico Coen
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Colney Lane, Norwich, NR4 7UH, UK.
| | - Przemyslaw Prusinkiewicz
- Department of Computer Science, University of Calgary, 2500 University Dr. N.W., Calgary, AB, T2N 1N4, Canada.
| |
Collapse
|
13
|
Sreekanta S, Haaning A, Dobbels A, O'Neill R, Hofstad A, Virdi K, Katagiri F, Stupar RM, Muehlbauer GJ, Lorenz AJ. Variation in shoot architecture traits and their relationship to canopy coverage and light interception in soybean (Glycine max). BMC PLANT BIOLOGY 2024; 24:194. [PMID: 38493116 PMCID: PMC10944616 DOI: 10.1186/s12870-024-04859-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 02/23/2024] [Indexed: 03/18/2024]
Abstract
BACKGROUND In soybeans, faster canopy coverage (CC) is a highly desirable trait but a fully covered canopy is unfavorable to light interception at lower levels in the canopy with most of the incident radiation intercepted at the top of the canopy. Shoot architecture that influences CC is well studied in crops such as maize and wheat, and altering architectural traits has resulted in enhanced yield. However, in soybeans the study of shoot architecture has not been as extensive. RESULTS This study revealed significant differences in CC among the selected soybean accessions. The rate of CC was found to decrease at the beginning of the reproductive stage (R1) followed by an increase during the R2-R3 stages. Most of the accessions in the study achieved maximum rate of CC between R2-R3 stages. We measured Light interception (LI), defined here as the ratio of Photosynthetically Active Radiation (PAR) transmitted through the canopy to the incoming PAR or the radiation above the canopy. LI was found to be significantly correlated with CC parameters, highlighting the relationship between canopy structure and light interception. The study also explored the impact of plant shape on LI and CO2 assimilation. Plant shape was characterized into distinct quantifiable parameters and by modeling the impact of plant shape on LI and CO2 assimilation, we found that plants with broad and flat shapes at the top maybe more photosynthetically efficient at low light levels, while conical shapes were likely more advantageous when light was abundant. Shoot architecture of plants in this study was described in terms of whole plant, branching and leaf-related traits. There was significant variation for the shoot architecture traits between different accessions, displaying high reliability. We found that that several shoot architecture traits such as plant height, and leaf and internode-related traits strongly influenced CC and LI. CONCLUSION In conclusion, this study provides insight into the relationship between soybean shoot architecture, canopy coverage, and light interception. It demonstrates that novel shoot architecture traits we have defined here are genetically variable, impact CC and LI and contribute to our understanding of soybean morphology. Correlations between different architecture traits, CC and LI suggest that it is possible to optimize soybean growth without compromising on light transmission within the soybean canopy. In addition, the study underscores the utility of integrating low-cost 2D phenotyping as a practical and cost-effective alternative to more time-intensive 3D or high-tech low-throughput methods. This approach offers a feasible means of studying basic shoot architecture traits at the field level, facilitating a broader and efficient assessment of plant morphology.
Collapse
Affiliation(s)
- Suma Sreekanta
- Department of Agronomy and Plant Genetics, University of Minnesota, 55108, St. Paul, MN, USA
| | - Allison Haaning
- Department of Agronomy and Plant Genetics, University of Minnesota, 55108, St. Paul, MN, USA
| | - Austin Dobbels
- Department of Agronomy and Plant Genetics, University of Minnesota, 55108, St. Paul, MN, USA
| | - Riley O'Neill
- School of Mathematics, University of Minnesota, 55455, Minneapolis, MN, USA
| | - Anna Hofstad
- Department of Agronomy and Plant Genetics, University of Minnesota, 55108, St. Paul, MN, USA
| | - Kamaldeep Virdi
- Department of Agronomy and Plant Genetics, University of Minnesota, 55108, St. Paul, MN, USA
| | - Fumiaki Katagiri
- Department of Plant and Microbial Biology and Microbial and Plant Genomics Institute, University of Minnesota, 55108, St Paul, MN, USA
| | - Robert M Stupar
- Department of Agronomy and Plant Genetics, University of Minnesota, 55108, St. Paul, MN, USA
| | - Gary J Muehlbauer
- Department of Agronomy and Plant Genetics, University of Minnesota, 55108, St. Paul, MN, USA.
| | - Aaron J Lorenz
- Department of Agronomy and Plant Genetics, University of Minnesota, 55108, St. Paul, MN, USA.
| |
Collapse
|
14
|
Kim JH, Kim MS, Seo YW. Overexpression of a TaATL1 encoding RING-type E3 ligase negatively regulates cell division and flowering time in Arabidopsis thaliana. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 340:111966. [PMID: 38151074 DOI: 10.1016/j.plantsci.2023.111966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 12/21/2023] [Accepted: 12/23/2023] [Indexed: 12/29/2023]
Abstract
The transition of food crops from the vegetative to reproductive stages is an important process that affects the final yield. Despite extensive characterization of E3 ligases in model plants, their roles in wheat development remain unknown. In this study, we elucidated the molecular function of wheat TaATL1 (Arabidopsis thaliana Toxicos EN Levadura), which acts as a negative regulator of flowering time and cell division. TaATL1 amino acid residues contain a RING domain and exist mainly in a beta-turn form. The expression level of TaATL1 was highly reduced during the transition from vegetative to reproductive stages. TaATL1 is localized in the nucleus and exhibits E3 ligase activity. Transgenic Arabidopsis plants, in which the TaATL1 gene is constitutively overexpressed under the control of the cauliflower mosaic virus 35 S promoter, exhibited regulation of cell numbers, thereby influencing both leaf and root growth. Moreover, TaATL1 overexpression plants showed a late-flowering phenotype compared to wild-type (WT) plants. Following transcriptome analysis, it was discovered that 1661 and 901 differentially expressed genes were down- or up- regulated, respectively, in seedling stages between WT and TaATL1 overexpression. TaATL1 transcripts are involved in cell division, flowering, and signaling. Overall, our findings demonstrated that the regulatory mechanism of wheat TaATL1 gene plays a significant role in cell division-mediated flowering in Arabidopsis.
Collapse
Affiliation(s)
- Jae Ho Kim
- Department of Plant Biotechnology, Korea University, Seoul, Republic of Korea; Institute of Animal Molecular Biotechnology, Korea University, Seoul, Republic of Korea
| | - Moon Seok Kim
- Department of Plant Biotechnology, Korea University, Seoul, Republic of Korea; Institute of Life Science and Natural Resources, Korea University, Seoul, Republic of Korea
| | - Yong Weon Seo
- Department of Plant Biotechnology, Korea University, Seoul, Republic of Korea; Ojeong Plant Breeding Research Center, Korea University, Seoul, Republic of Korea.
| |
Collapse
|
15
|
Machado KLDG, Faria DV, Duarte MBS, Silva LAS, de Oliveira TDR, Falcão TCA, Batista DS, Costa MGC, Santa-Catarina C, Silveira V, Romanel E, Otoni WC, Nogueira FTS. Plant age-dependent dynamics of annatto pigment (bixin) biosynthesis in Bixa orellana. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:1390-1406. [PMID: 37975812 DOI: 10.1093/jxb/erad458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 11/15/2023] [Indexed: 11/19/2023]
Abstract
Age affects the production of secondary metabolites, but how developmental cues regulate secondary metabolism remains poorly understood. The achiote tree (Bixa orellana L.) is a source of bixin, an apocarotenoid used in diverse industries worldwide. Understanding how age-dependent mechanisms control bixin biosynthesis is of great interest for plant biology and for economic reasons. Here we overexpressed miRNA156 (miR156) in B. orellana to comprehensively study the effects of the miR156-SQUAMOSA PROMOTER BINDING PROTEIN-LIKE (SPL) module on age-dependent bixin biosynthesis in leaves. Overexpression of miR156 in annatto plants (miR156ox) reduced BoSPL transcript levels, impacted leaf ontogeny, lessened bixin production, and increased abscisic acid levels. Modulation of expression of BoCCD4-4 and BoCCD1, key genes in carotenoid biosynthesis, was associated with diverting the carbon flux from bixin to abscisic acid in miR156ox leaves. Proteomic analyses revealed an overall low accumulation of most secondary metabolite-related enzymes in miR156ox leaves, suggesting that miR156-targeted BoSPLs may be required to activate several secondary metabolic pathways. Our findings suggest that the conserved BomiR156-BoSPL module is deployed to regulate leaf dynamics of bixin biosynthesis, and may create novel opportunities to fine-tune bixin output in B. orellana breeding programs.
Collapse
Affiliation(s)
- Kleiton Lima de Godoy Machado
- Departamento de Biologia Vegetal/Laboratório de Cultura de Tecidos Vegetais/BIOAGRO, Campus Universitário, Universidade Federal de Viçosa, 36570-900, Viçosa, MG, Brazil
| | - Daniele Vidal Faria
- Departamento de Biologia Vegetal/Laboratório de Cultura de Tecidos Vegetais/BIOAGRO, Campus Universitário, Universidade Federal de Viçosa, 36570-900, Viçosa, MG, Brazil
| | - Marcos Bruno Silva Duarte
- Departamento de Biologia Vegetal/Laboratório de Cultura de Tecidos Vegetais/BIOAGRO, Campus Universitário, Universidade Federal de Viçosa, 36570-900, Viçosa, MG, Brazil
| | - Lázara Aline Simões Silva
- Departamento de Biologia Vegetal/Laboratório de Cultura de Tecidos Vegetais/BIOAGRO, Campus Universitário, Universidade Federal de Viçosa, 36570-900, Viçosa, MG, Brazil
| | - Tadeu Dos Reis de Oliveira
- Laboratório de Biologia Celular e Tecidual (LBCT), Centro de Biociências e Biotecnologia (CBB), Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), 28013-602, Campos dos Goytacazes, RJ, Brazil
| | - Thais Castilho Arruda Falcão
- Laboratório de Genômica de Plantas e Bioenergia (PGEMBL), Departamento de Biotecnologia, Escola de Engenharia de Lorena (EEL), Universidade de São Paulo (USP), 12602-810, Lorena, SP, Brazil
| | - Diego Silva Batista
- Departamento de Agricultura, Universidade Federal da Paraíba, Campus III, 58220-000, Bananeiras, PB, Brazil
| | | | - Claudete Santa-Catarina
- Laboratório de Biologia Celular e Tecidual (LBCT), Centro de Biociências e Biotecnologia (CBB), Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), 28013-602, Campos dos Goytacazes, RJ, Brazil
| | - Vanildo Silveira
- Laboratório de Biotecnologia (LBT), CBB-UENF, Campos dos Goytacazes, RJ, Brazil
| | - Elisson Romanel
- Laboratório de Genômica de Plantas e Bioenergia (PGEMBL), Departamento de Biotecnologia, Escola de Engenharia de Lorena (EEL), Universidade de São Paulo (USP), 12602-810, Lorena, SP, Brazil
| | - Wagner Campos Otoni
- Departamento de Biologia Vegetal/Laboratório de Cultura de Tecidos Vegetais/BIOAGRO, Campus Universitário, Universidade Federal de Viçosa, 36570-900, Viçosa, MG, Brazil
| | | |
Collapse
|
16
|
Liu J, Ke M, Sun Y, Niu S, Zhang W, Li Y. Epigenetic regulation and epigenetic memory resetting during plant rejuvenation. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:733-745. [PMID: 37930766 DOI: 10.1093/jxb/erad435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 10/29/2023] [Indexed: 11/07/2023]
Abstract
Reversal of plant developmental status from the mature to the juvenile phase, thus leading to the restoration of the developmental potential, is referred to as plant rejuvenation. It involves multilayer regulation, including resetting gene expression patterns, chromatin remodeling, and histone modifications, eventually resulting in the restoration of juvenile characteristics. Although plants can be successfully rejuvenated using some forestry practices to restore juvenile morphology, physiology, and reproductive capabilities, studies on the epigenetic mechanisms underlying this process are in the nascent stage. This review provides an overview of the plant rejuvenation process and discusses the key epigenetic mechanisms involved in DNA methylation, histone modification, and chromatin remodeling in the process of rejuvenation, as well as the roles of small RNAs in this process. Additionally, we present new inquiries regarding the epigenetic regulation of plant rejuvenation, aiming to advance our understanding of rejuvenation in sexually and asexually propagated plants. Overall, we highlight the importance of epigenetic mechanisms in the regulation of plant rejuvenation, providing valuable insights into the complexity of this process.
Collapse
Affiliation(s)
- Jie Liu
- State Key Laboratory of Tree Genetics and Breeding, Engineering Technology Research Center of Black Locust of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, PR China
| | - Meng Ke
- State Key Laboratory of Tree Genetics and Breeding, Engineering Technology Research Center of Black Locust of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, PR China
| | - Yuhan Sun
- State Key Laboratory of Tree Genetics and Breeding, Engineering Technology Research Center of Black Locust of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, PR China
| | - Shihui Niu
- State Key Laboratory of Tree Genetics and Breeding, Engineering Technology Research Center of Black Locust of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, PR China
| | - Wenli Zhang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, No.1 Weigang, Nanjing, Jiangsu 210095, PR China
| | - Yun Li
- State Key Laboratory of Tree Genetics and Breeding, Engineering Technology Research Center of Black Locust of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, PR China
| |
Collapse
|
17
|
Poethig RS, Fouracre J. Temporal regulation of vegetative phase change in plants. Dev Cell 2024; 59:4-19. [PMID: 38194910 PMCID: PMC10783531 DOI: 10.1016/j.devcel.2023.11.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 10/11/2023] [Accepted: 11/13/2023] [Indexed: 01/11/2024]
Abstract
During their vegetative growth, plants reiteratively produce leaves, buds, and internodes at the apical end of the shoot. The identity of these organs changes as the shoot develops. Some traits change gradually, but others change in a coordinated fashion, allowing shoot development to be divided into discrete juvenile and adult phases. The transition between these phases is called vegetative phase change. Historically, vegetative phase change has been studied because it is thought to be associated with an increase in reproductive competence. However, this is not true for all species; indeed, heterochronic variation in the timing of vegetative phase change and flowering has made important contributions to plant evolution. In this review, we describe the molecular mechanism of vegetative phase change, how the timing of this process is controlled by endogenous and environmental factors, and its ecological and evolutionary significance.
Collapse
Affiliation(s)
- R Scott Poethig
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Jim Fouracre
- School of Biological Sciences, University of Bristol, Bristol BS8 1TQ, UK
| |
Collapse
|
18
|
Zhao B, Wang JW. Perenniality: From model plants to applications in agriculture. MOLECULAR PLANT 2024; 17:141-157. [PMID: 38115580 DOI: 10.1016/j.molp.2023.12.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/04/2023] [Accepted: 12/14/2023] [Indexed: 12/21/2023]
Abstract
To compensate for their sessile nature, plants have evolved sophisticated mechanisms enabling them to adapt to ever-changing environments. One such prominent feature is the evolution of diverse life history strategies, particularly such that annuals reproduce once followed by seasonal death, while perennials live longer by cycling growth seasonally. This intrinsic phenology is primarily genetic and can be altered by environmental factors. Although evolutionary transitions between annual and perennial life history strategies are common, perennials account for most species in nature because they survive well under year-round stresses. This proportion, however, is reversed in agriculture. Hence, perennial crops promise to likewise protect and enhance the resilience of agricultural ecosystems in response to climate change. Despite significant endeavors that have been made to generate perennial crops, progress is slow because of barriers in studying perennials, and many developed species await further improvement. Recent findings in model species have illustrated that simply rewiring existing genetic networks can lead to lifestyle variation. This implies that engineering plant life history strategy can be achieved by manipulating only a few key genes. In this review, we summarize our current understanding of genetic basis of perenniality and discuss major questions and challenges that remain to be addressed.
Collapse
Affiliation(s)
- Bo Zhao
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Institute of Plant Physiology and Ecology (SIPPE), Chinese Academy of Sciences (CAS), Shanghai 200032, China
| | - Jia-Wei Wang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Institute of Plant Physiology and Ecology (SIPPE), Chinese Academy of Sciences (CAS), Shanghai 200032, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China; Key Laboratory of Plant Carbon Capture, CAS, Shanghai 200032, China; New Cornerstone Science Laboratory, Shanghai 200032, China.
| |
Collapse
|
19
|
Hu L, Kvitko B, Severns PM, Yang L. Shoot Maturation Strengthens FLS2-Mediated Resistance to Pseudomonas syringae. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2023; 36:796-804. [PMID: 37638673 PMCID: PMC10989731 DOI: 10.1094/mpmi-02-23-0018-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/29/2023]
Abstract
Temporospatial regulation of immunity components is essential for properly activating plant defense response. Flagellin-sensing 2 (FLS2) is a surface-localized receptor that recognizes bacterial flagellin. The immune function of FLS2 is compromised in early stages of shoot development. However, the underlying mechanism for the age-dependent FLS2 signaling is not clear. Here, we show that the reduced basal immunity of juvenile leaves against Pseudomonas syringae pv. tomato DC3000 is independent of FLS2. The flg22-induced marker gene expression and reactive oxygen species activation were comparable in juvenile and adult stages, but callose deposition was more evident in the adult stage than the juvenile stage. We further demonstrated that microRNA156, a master regulator of plant aging, does not influence the expression of FLS2 and FRK1 (Flg22-induced receptor-like kinase 1) but mildly suppresses callose deposition in juvenile leaves. Our experiments revealed an intrinsic mechanism that regulates the amplitude of FLS2-mediated resistance during aging. [Formula: see text] Copyright © 2023 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Lanxi Hu
- Department of plant pathology, University of Georgia, Athens, GA 30602
| | - Brian Kvitko
- Department of plant pathology, University of Georgia, Athens, GA 30602
| | - Paul M. Severns
- Department of plant pathology, University of Georgia, Athens, GA 30602
| | - Li Yang
- Department of plant pathology, University of Georgia, Athens, GA 30602
| |
Collapse
|
20
|
Zhang K, Wang E, Liu QA, Wang J. High CO2 adaptation mechanisms revealed in the miR156-regulated flowering time pathway. PLoS Comput Biol 2023; 19:e1011738. [PMID: 38117849 PMCID: PMC10775972 DOI: 10.1371/journal.pcbi.1011738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 01/09/2024] [Accepted: 12/03/2023] [Indexed: 12/22/2023] Open
Abstract
Elevated CO2 concentrations have been observed to accelerate flowering time in Arabidopsis through the action of a highly conserved regulatory network controlled by miR156 and miR172. However, the network's robustness to the impact of increasing CO2 concentrations on flowering time remains poorly understood. In this study, we investigate this question by conducting a comprehensive analysis of the global landscape of network dynamics, including quantifying the probabilities associated with juvenile and flowering states and assessing the speed of the transition between them. Our findings reveal that a CO2 concentration range of 400-800ppm only mildly advances flowering time, contrasting with the dramatic changes from 200 to 300ppm. Notably, the feedback regulation of miR156 by squamosal promoter binding protein-like proteins (SPLs) plays a substantial role in mitigating the effects of increasing CO2 on flowering time. Intriguingly, we consistently observe a correlation between delayed flowering time and increased variance in flowering time, and vice versa, suggesting that this might be an intrinsic adaptation mechanism embedded within the network. To gain a deeper understanding of this network's dynamics, we identified the sensitive features within the feedback loops of miR156 SPLs and miR172-APETALA2 family proteins (AP2s), with the latter proving to be the most sensitive. Strikingly, our study underscores the indispensability of all feedback regulations in maintaining both juvenile and adult states as well as the transition time between them. Together, our research provides the first physical basis in plant species, aiding in the elucidation of novel regulatory mechanisms and the robustness of the miRNAs-regulated network in response to increasing CO2, therefore influencing the control of flowering time. Moreover, this study provides a promising strategy for engineering plant flowering time to enhance their adaptation and resilience.
Collapse
Affiliation(s)
- Kun Zhang
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui, P. R. China
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, P.R. China
| | - Erkang Wang
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui, P. R. China
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, P.R. China
| | | | - Jin Wang
- Department of Chemistry and of Physics, Stony Brook University, Stony Brook, New York, United States of America
| |
Collapse
|
21
|
DeMell A, Alvarado V, Scholthof HB. Molecular perspectives on age-related resistance of plants to (viral) pathogens. THE NEW PHYTOLOGIST 2023; 240:80-91. [PMID: 37507820 DOI: 10.1111/nph.19131] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 06/21/2023] [Indexed: 07/30/2023]
Abstract
Age-related resistance to microbe invasion is a commonly accepted concept in plant pathology. However, the impact of such age-dependent interactive phenomena is perhaps not yet sufficiently recognized by the broader plant science community. Toward cataloging an understanding of underlying mechanisms, this review explores recent molecular studies and their relevance to the concept. Examples describe differences in genetic background, transcriptomics, hormonal balances, protein-mediated events, and the contribution by short RNA-controlled gene silencing events. Throughout, recent findings with viral systems are highlighted as an illustration of the complexity of the interactions. It will become apparent that instead of uncovering a unifying explanation, we unveiled only trends. Nevertheless, with a degree of confidence, we propose that the process of plant age-related defenses is actively regulated at multiple levels. The overarching goal of this control for plants is to avoid a constitutive waste of resources, especially at crucial metabolically draining early developmental stages.
Collapse
Affiliation(s)
- April DeMell
- Department of Plant Pathology & Microbiology, Texas A&M University, College Station, TX, 77843, USA
| | - Veria Alvarado
- Department of Plant Pathology & Microbiology, Texas A&M University, College Station, TX, 77843, USA
| | - Herman B Scholthof
- Department of Plant Pathology & Microbiology, Texas A&M University, College Station, TX, 77843, USA
| |
Collapse
|
22
|
Zhao Y, Tu J, Wang H, Xu Y, Wu F. Transcriptomic and targeted metabolomic unravelling the molecular mechanism of sugar metabolism regulating heteroblastic changes in Pinus massoniana seedlings. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 203:108029. [PMID: 37722284 DOI: 10.1016/j.plaphy.2023.108029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 09/01/2023] [Accepted: 09/08/2023] [Indexed: 09/20/2023]
Abstract
Pine seedling leaf characteristics show a distinct transition from primary to secondary needles, known as heteroblastic change. However, the underlying regulatory mechanism is poorly understood. The molecular mechanism of sugar metabolism involved in regulating heteroblastic changes in Pinus massoniana seedlings was investigated via transcriptomics and targeted metabolomics. The results identified 12 kinds of sugar metabolites in the foliage. Three types of sugar accumulated at the highest levels: sucrose, glucose and fructose. Compared to seedlings with only primary needles (PN), the contents of these soluble sugars were lower in seedlings with developing secondary needle buds (SNB). RNA-seq analysis highlighted 1086 DEGs between PN and SNB seedlings, revealing significant enrichment in KEGG pathways including starch and sucrose metabolism, plant hormone signal transduction and amino sugar and nucleic acid sugar metabolism. Combined transcriptomic and metabolomic analysis revealed that HK, MDH, and ATPase could potentially enhance sugar availability by stimulating the glycolytic/TCA cycle and oxidative phosphorylation. These processes may lead to a reduced sugar content in the foliage of SNB seedlings. We also identified 72 transcription factors, among which the expression levels of MYB, WRKY, NAC and C2H2 family genes were closely related to those of DEGs in the sugar metabolism pathway. In addition, we identified alternative splicing (AS) events in one NAC gene leading to two isoforms, PmNAC5L and PmNAC5S. PmNAC5L was significantly upregulated, while PmNAC5S was significantly downregulated in SNB seedlings. Overall, our results provide new insights into how sugar metabolism is involved in regulating heteroblastic changes in pine seedlings.
Collapse
Affiliation(s)
- Yuanxiang Zhao
- Institute for Forest Resources and Environment of Guizhou, Key Laboratory of Forest Cultivation in Plateau Mountain of Guizhou Province, College of Forestry, Guizhou University, Guiyang, 550025, China; College of Forestry, Guizhou University, Guiyang, 550025, China
| | - Jingjing Tu
- Institute for Forest Resources and Environment of Guizhou, Key Laboratory of Forest Cultivation in Plateau Mountain of Guizhou Province, College of Forestry, Guizhou University, Guiyang, 550025, China; College of Forestry, Guizhou University, Guiyang, 550025, China
| | - Haoyun Wang
- Institute for Forest Resources and Environment of Guizhou, Key Laboratory of Forest Cultivation in Plateau Mountain of Guizhou Province, College of Forestry, Guizhou University, Guiyang, 550025, China; College of Forestry, Guizhou University, Guiyang, 550025, China
| | - Yingying Xu
- Institute for Forest Resources and Environment of Guizhou, Key Laboratory of Forest Cultivation in Plateau Mountain of Guizhou Province, College of Forestry, Guizhou University, Guiyang, 550025, China; College of Forestry, Guizhou University, Guiyang, 550025, China
| | - Feng Wu
- Institute for Forest Resources and Environment of Guizhou, Key Laboratory of Forest Cultivation in Plateau Mountain of Guizhou Province, College of Forestry, Guizhou University, Guiyang, 550025, China; College of Forestry, Guizhou University, Guiyang, 550025, China.
| |
Collapse
|
23
|
Sauer M, Zhao J, Park M, Khangura RS, Dilkes BP, Poethig RS. Identification of the Teopod1, Teopod2, and Early Phase Change genes in maize. G3 (BETHESDA, MD.) 2023; 13:jkad179. [PMID: 37548268 PMCID: PMC10542106 DOI: 10.1093/g3journal/jkad179] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 05/26/2023] [Accepted: 08/01/2023] [Indexed: 08/08/2023]
Abstract
Teopod1 (Tp1), Teopod2 (Tp2), and Early phase change (Epc) have profound effects on the timing of vegetative phase change in maize. Gain-of-function mutations in Tp1 and Tp2 delay all known phase-specific vegetative traits, whereas loss-of-function mutations in Epc accelerate vegetative phase change and cause shoot abortion in some genetic backgrounds. Here, we show that Tp1 and Tp2 likely represent cis-acting mutations that cause the overexpression of Zma-miR156j and Zma-miR156h, respectively. Epc is the maize ortholog of HASTY, an Arabidopsis gene that stabilizes miRNAs and promotes their intercellular movement. Consistent with its pleiotropic phenotype and epistatic interaction with Tp1 and Tp2, epc reduces the levels of miR156 and several other miRNAs.
Collapse
Affiliation(s)
- Matt Sauer
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jianfei Zhao
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Meeyeon Park
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Rajdeep S Khangura
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907, USA
| | - Brian P Dilkes
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907, USA
| | - R Scott Poethig
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
24
|
Karami O, Mueller-Roeber B, Rahimi A. The central role of stem cells in determining plant longevity variation. PLANT COMMUNICATIONS 2023; 4:100566. [PMID: 36840355 PMCID: PMC10504568 DOI: 10.1016/j.xplc.2023.100566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 01/10/2023] [Accepted: 02/22/2023] [Indexed: 06/18/2023]
Abstract
Vascular plants display a huge variety of longevity patterns, from a few weeks for several annual species up to thousands of years for some perennial species. Understanding how longevity variation is structured has long been considered a fundamental aspect of the life sciences in view of evolution, species distribution, and adaptation to diverse environments. Unlike animals, whose organs are typically formed during embryogenesis, vascular plants manage to extend their life by continuously producing new tissues and organs in apical and lateral directions via proliferation of stem cells located within specialized tissues called meristems. Stem cells are the main source of plant longevity. Variation in plant longevity is highly dependent on the activity and fate identity of stem cells. Multiple developmental factors determine how stem cells contribute to variation in plant longevity. In this review, we provide an overview of the genetic mechanisms, hormonal signaling, and environmental factors involved in controlling plant longevity through long-term maintenance of stem cell fate identity.
Collapse
Affiliation(s)
- Omid Karami
- Plant Developmental Genetics, Institute of Biology Leiden, Leiden University, Sylviusweg 72, 2333 BE Leiden, the Netherlands.
| | - Bernd Mueller-Roeber
- University of Potsdam, Institute of Biochemistry and Biology, Karl-Liebknecht-Straße 24-25, Haus 20, 14476 Potsdam, Germany
| | - Arezoo Rahimi
- Plant Developmental Genetics, Institute of Biology Leiden, Leiden University, Sylviusweg 72, 2333 BE Leiden, the Netherlands
| |
Collapse
|
25
|
Guo WJ, Pommerrenig B, Neuhaus HE, Keller I. Interaction between sugar transport and plant development. JOURNAL OF PLANT PHYSIOLOGY 2023; 288:154073. [PMID: 37603910 DOI: 10.1016/j.jplph.2023.154073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 08/14/2023] [Accepted: 08/16/2023] [Indexed: 08/23/2023]
Abstract
Endogenous programs and constant interaction with the environment regulate the development of the plant organism and its individual organs. Sugars are necessary building blocks for plant and organ growth and at the same time act as critical integrators of the metabolic state into the developmental program. There is a growing recognition that the specific type of sugar and its subcellular or tissue distribution is sensed and translated to developmental responses. Therefore, the transport of sugars across membranes is a key process in adapting plant organ properties and overall development to the nutritional state of the plant. In this review, we discuss how plants exploit various sugar transporters to signal growth responses, for example, to control the development of sink organs such as roots or fruits. We highlight which sugar transporters are involved in root and shoot growth and branching, how intracellular sugar allocation can regulate senescence, and, for example, control fruit development. We link the important transport processes to downstream signaling cascades and elucidate the factors responsible for the integration of sugar signaling and plant hormone responses.
Collapse
Affiliation(s)
- Woei-Jiun Guo
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan, Taiwan
| | - Benjamin Pommerrenig
- Department of Plant Physiology, University of Kaiserslautern, Erwin Schrödinger Str., 67663, Kaiserslautern, Germany
| | - H Ekkehard Neuhaus
- Department of Plant Physiology, University of Kaiserslautern, Erwin Schrödinger Str., 67663, Kaiserslautern, Germany
| | - Isabel Keller
- Department of Plant Physiology, University of Kaiserslautern, Erwin Schrödinger Str., 67663, Kaiserslautern, Germany.
| |
Collapse
|
26
|
Wang X, Li Q, Zhu H, Song M, Zhang K, Ge W. Molecular mechanisms of miR172a and its target gene LbrTOE3 regulating maturation in Lilium. PLANTA 2023; 258:53. [PMID: 37515607 DOI: 10.1007/s00425-023-04208-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 07/15/2023] [Indexed: 07/31/2023]
Abstract
MAIN CONCLUSION Lbr-miR172a could promote the growth phase transition and shorten maturation in Lilium, while LbrTOE3 inhibited this process and prolonged the growth period. Lilium is an ornamental flower with high economic value for both food and medicinal purposes. However, under natural conditions, Lilium bulbs take a long time and cost more to grow to commercial size. This research was conducted to shorten the maturation time by subjecting Lilium bulbs to alternating temperature treatment. To explore the molecular mechanism of the vegetative phase change (VPC) in Lilium after variable temperature treatment, the key module miR172a-TOE3 was selected based on a combined omics analysis. Gene cloning and transgene functional validation showed that overexpression of Lbr-mir172a promoted a phase change, while overexpression of LbrTOE3 inhibited this process. Subcellular localization and transcriptional activation assays indicated that LbrTOE3 was predominantly localized in the nucleus and showed transcriptional activity. In situ hybridization showed that LbrTOE3 expression was significantly downregulated after alternating temperature treatment. This study elucidates the molecular mechanisms of the phase transition of Lilium and provides a scientific basis for the phase transition in other plants.
Collapse
Affiliation(s)
- Xiaoshan Wang
- College of Landscape Architecture, Beijing University of Agriculture, Beijing, 102206, People's Republic of China
| | - Qing Li
- College of Landscape Architecture, Beijing University of Agriculture, Beijing, 102206, People's Republic of China
| | - Haoran Zhu
- College of Landscape Architecture, Beijing University of Agriculture, Beijing, 102206, People's Republic of China
| | - Meiqi Song
- College of Landscape Architecture, Beijing University of Agriculture, Beijing, 102206, People's Republic of China
| | - Kezhong Zhang
- College of Landscape Architecture, Beijing University of Agriculture, Beijing, 102206, People's Republic of China.
- Beijing Laboratory of Urban and Rural Ecological Environment, Beijing, 102206, People's Republic of China.
| | - Wei Ge
- College of Landscape Architecture, Beijing University of Agriculture, Beijing, 102206, People's Republic of China.
- Beijing Laboratory of Urban and Rural Ecological Environment, Beijing, 102206, People's Republic of China.
| |
Collapse
|
27
|
Wei L, Liu J, Huang J, Wang C, Zhang L, Feng S. Genome-Wide Identification of miR156 and SPL family genes and phenotypic analysis of vegetative phase change in Pepper (Capsicum annuum L.). Gene 2023:147542. [PMID: 37279862 DOI: 10.1016/j.gene.2023.147542] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 05/25/2023] [Accepted: 06/02/2023] [Indexed: 06/08/2023]
Abstract
After germination, plants through two phases of vegetative development - juvenile and adult - before entering the reproductive phase. These phases have varying characteristics and timing across plant species, making it challenging to determine if different vegetative traits correspond to the same or distinct developmental processes. miR156 has been identified as the primary regulator of vegetative phase change in plants, with the miR156-SPLs (SQUAMOSA Promoter Binding Protein-Likes) module playing a crucial role in regulating age-related agronomic traits in various crops. Such traits include disease resistance, optimal plant breeding, and secondary metabolism regulation. However, it is unknown whether miR156-SPLs contribute to the critical agronomic traits of pepper (Capsicum annuum L.). Thus, this study seeks to identify miR156 and SPLs genes in pepper, analyze their evolutionary links with model plants, and confirm their expression patterns using gene expression assays. The study also examines the relationship between miR156 expression levels in two cultivars of pepper and specific traits associated with the juvenile-to-adult transition. The results indicate that leaf shape and the number of leaf veins are correlated to the timing expression of miR156. Our study represents an important resource for identifying age-dependent agronomic traits in pepper and lays the foundation for future systematic regulation of miR156-SPLs to advance pepper development.
Collapse
Affiliation(s)
- Liang Wei
- The Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vege-table, Ministry of Agriculture and Rural Affairs, College of Horticultural Science, Zhejiang A&F University, Hangzhou 311300, Zhejiang, China
| | - Jipeng Liu
- The Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vege-table, Ministry of Agriculture and Rural Affairs, College of Horticultural Science, Zhejiang A&F University, Hangzhou 311300, Zhejiang, China
| | - JiaJie Huang
- The Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vege-table, Ministry of Agriculture and Rural Affairs, College of Horticultural Science, Zhejiang A&F University, Hangzhou 311300, Zhejiang, China
| | - Chenjie Wang
- The Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vege-table, Ministry of Agriculture and Rural Affairs, College of Horticultural Science, Zhejiang A&F University, Hangzhou 311300, Zhejiang, China
| | - Lu Zhang
- Zhejiang Provincial Key Laboratory of Bioremediation of Soil Contamination, Zhejiang A&F University, Hangzhou, China; HainingHigh-Tech Research Institude, Jiaxing, China
| | - Shengjun Feng
- The Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vege-table, Ministry of Agriculture and Rural Affairs, College of Horticultural Science, Zhejiang A&F University, Hangzhou 311300, Zhejiang, China.
| |
Collapse
|
28
|
Krivmane B, Ruņģe KS, Samsone I, Ruņģis DE. Differentially Expressed Conserved Plant Vegetative Phase-Change-Related microRNAs in Mature and Rejuvenated Silver Birch In Vitro Propagated Tissues. PLANTS (BASEL, SWITZERLAND) 2023; 12:1993. [PMID: 37653911 PMCID: PMC10220576 DOI: 10.3390/plants12101993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/08/2023] [Accepted: 05/13/2023] [Indexed: 09/02/2023]
Abstract
In plants, phase change from the juvenile stage to maturity involves physiological and anatomical changes, which are initiated and controlled by evolutionary highly conserved microRNAs. This process is of particular significance for the in vitro propagation of woody plant species, as individuals or tissues that have undergone the transition to vegetative maturity are recalcitrant to propagation. Conserved miRNAs differentially expressed between juvenile (including rejuvenated) and mature silver birch tissues were identified using high-throughput sequencing of small RNA libraries. Expression of some miR156 isoforms was high in juvenile tissues and has been previously reported to regulate phase transitions in a range of species. Additional miRNAs, such as miR394 and miR396, that were previously reported to be highly expressed in juvenile woody plant tissues were also differentially expressed in this study. However, expression of miR172, previously reported to be highly expressed in mature tissues, was low in all sample types in this study. The obtained results will provide insight for further investigation of the molecular mechanisms regulating vegetative phase change in silver birch and other perennial woody plant species, by analysing a wider range of genotypes, tissue types and maturation stages. This knowledge can potentially assist in identification of rejuvenated material at an earlier stage than currently possible, increasing the efficiency of silver birch in vitro propagation.
Collapse
Affiliation(s)
| | | | | | - Dainis Edgars Ruņģis
- Latvian State Forest Research Institute “Silava”, 111 Rīgas st, LV-2169 Salaspils, Latvia (K.S.R.)
| |
Collapse
|
29
|
Szablińska-Piernik J, Lahuta LB. Polar Metabolites Profiling of Wheat Shoots ( Triticum aestivum L.) under Repeated Short-Term Soil Drought and Rewatering. Int J Mol Sci 2023; 24:8429. [PMID: 37176136 PMCID: PMC10179269 DOI: 10.3390/ijms24098429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 05/04/2023] [Accepted: 05/06/2023] [Indexed: 05/15/2023] Open
Abstract
The response of wheat (Triticum aestivum L.) plants to the soil drought at the metabolome level is still not fully explained. In addition, research focuses mainly on single periods of drought, and there is still a lack of data on the response of plants to short-term cyclical periods of drought. The key to this research was to find out whether wheat shoots are able to resume metabolism after the stress subsides and if the reaction to subsequent stress is the same. Gas chromatography coupled with mass spectrometry (GC-MS) is one of the most valuable and fast methods to discover changes in the primary metabolism of plants. The targeted GC-MS analyses of whole shoots of wheat plants exposed (at the juvenile stage of development) to short-term (five days) mild soil drought/rewatering cycles (until the start of shoot wilting) enabled us to identify 32 polar metabolites. The obtained results revealed an accumulation of sugars (sucrose, fructose, glucose, and 1-kestose), proline, and malic acid. During five days of recovery, shoots regained full turgor and continued to grow, and the levels of accumulated metabolites decreased. Similar changes in metabolic profiles were found during the second drought/rewatering cycle. However, the concentrations of glucose, proline, and malic acid were higher after the second drought than after the first one. Additionally, the concentration of total polar metabolites after each plant rewatering was elevated compared to control samples. Although our results confirm the participation of proline in wheat responses to drought, they also highlight the responsiveness of soluble carbohydrate metabolism to stress/recovery.
Collapse
Affiliation(s)
- Joanna Szablińska-Piernik
- Department of Plant Physiology, Genetics and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego Street 1A/103A, 10-719 Olsztyn, Poland
| | - Lesław Bernard Lahuta
- Department of Plant Physiology, Genetics and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego Street 1A/103A, 10-719 Olsztyn, Poland
| |
Collapse
|
30
|
Li F, Yang JJ, Sun ZY, Wang L, Qi LY, A S, Liu YQ, Zhang HM, Dang LF, Wang SJ, Luo CX, Nian WF, O’Conner S, Ju LZ, Quan WP, Li XK, Wang C, Wang DP, You HL, Cheng ZK, Yan J, Tang FC, Yang DC, Xia CW, Gao G, Wang Y, Zhang BC, Zhou YH, Guo X, Xiang SH, Liu H, Peng TB, Su XD, Chen Y, Ouyang Q, Wang DH, Zhang DM, Xu ZH, Hou HW, Bai SN, Li L. Plant-on-chip: Core morphogenesis processes in the tiny plant Wolffia australiana. PNAS NEXUS 2023; 2:pgad141. [PMID: 37181047 PMCID: PMC10169700 DOI: 10.1093/pnasnexus/pgad141] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 04/10/2023] [Accepted: 04/17/2023] [Indexed: 05/16/2023]
Abstract
A plant can be thought of as a colony comprising numerous growth buds, each developing to its own rhythm. Such lack of synchrony impedes efforts to describe core principles of plant morphogenesis, dissect the underlying mechanisms, and identify regulators. Here, we use the minimalist known angiosperm to overcome this challenge and provide a model system for plant morphogenesis. We present a detailed morphological description of the monocot Wolffia australiana, as well as high-quality genome information. Further, we developed the plant-on-chip culture system and demonstrate the application of advanced technologies such as single-nucleus RNA-sequencing, protein structure prediction, and gene editing. We provide proof-of-concept examples that illustrate how W. australiana can decipher the core regulatory mechanisms of plant morphogenesis.
Collapse
Affiliation(s)
- Feng Li
- The High School Affiliated to Renmin University of China, Beijing 100080, China
- Center of Quantitative Biology, Peking University, Beijing 100871, China
- State Key Laboratory of Protein & Plant Gene Research, Peking University, Beijing 100871, China
- College of Life Sciences, Peking University, Beijing 100871, China
| | - Jing-Jing Yang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Zong-Yi Sun
- GrandOmics Biosciences Ltd., Wuhan 430076, China
| | - Lei Wang
- Department of Biological Sciences, Mississippi State University, Mississippi State, MS 39762, USA
| | - Le-Yao Qi
- The High School Affiliated to Renmin University of China, Beijing 100080, China
| | - Sina A
- The High School Affiliated to Renmin University of China, Beijing 100080, China
| | - Yi-Qun Liu
- College of Life Sciences, Peking University, Beijing 100871, China
| | - Hong-Mei Zhang
- College of Life Sciences, Peking University, Beijing 100871, China
| | - Lei-Fan Dang
- College of Life Sciences, Peking University, Beijing 100871, China
| | - Shu-Jing Wang
- Center of Quantitative Biology, Peking University, Beijing 100871, China
| | - Chun-Xiong Luo
- Center of Quantitative Biology, Peking University, Beijing 100871, China
| | - Wei-Feng Nian
- The High School Affiliated to Renmin University of China, Beijing 100080, China
| | - Seth O’Conner
- Department of Biological Sciences, Mississippi State University, Mississippi State, MS 39762, USA
| | - Long-Zhen Ju
- GrandOmics Biosciences Ltd., Wuhan 430076, China
| | | | - Xiao-Kang Li
- GrandOmics Biosciences Ltd., Wuhan 430076, China
| | - Chao Wang
- GrandOmics Biosciences Ltd., Wuhan 430076, China
| | - De-Peng Wang
- GrandOmics Biosciences Ltd., Wuhan 430076, China
| | - Han-Li You
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| | - Zhu-Kuan Cheng
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| | - Jia Yan
- College of Life Sciences, Peking University, Beijing 100871, China
| | - Fu-Chou Tang
- College of Life Sciences, Peking University, Beijing 100871, China
| | - De-Chang Yang
- State Key Laboratory of Protein & Plant Gene Research, Peking University, Beijing 100871, China
- College of Life Sciences, Peking University, Beijing 100871, China
- Biomedical Pioneering Innovative Center (BIOPIC) and Beijing Advanced Innovation Center for Genomics (ICG), Beijing 100871, China
- Center for Bioinformatics (CBI), Peking University, Beijing 100871, China
| | - Chu-Wei Xia
- State Key Laboratory of Protein & Plant Gene Research, Peking University, Beijing 100871, China
- College of Life Sciences, Peking University, Beijing 100871, China
- Biomedical Pioneering Innovative Center (BIOPIC) and Beijing Advanced Innovation Center for Genomics (ICG), Beijing 100871, China
- Center for Bioinformatics (CBI), Peking University, Beijing 100871, China
| | - Ge Gao
- State Key Laboratory of Protein & Plant Gene Research, Peking University, Beijing 100871, China
- College of Life Sciences, Peking University, Beijing 100871, China
- Biomedical Pioneering Innovative Center (BIOPIC) and Beijing Advanced Innovation Center for Genomics (ICG), Beijing 100871, China
- Center for Bioinformatics (CBI), Peking University, Beijing 100871, China
| | - Yan Wang
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| | - Bao-Cai Zhang
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| | - Yi-Hua Zhou
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| | - Xing Guo
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen 518083, China
| | - Sun-Huan Xiang
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen 518083, China
| | - Huan Liu
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen 518083, China
| | - Tian-Bo Peng
- State Key Laboratory of Protein & Plant Gene Research, Peking University, Beijing 100871, China
- College of Life Sciences, Peking University, Beijing 100871, China
| | - Xiao-Dong Su
- State Key Laboratory of Protein & Plant Gene Research, Peking University, Beijing 100871, China
- College of Life Sciences, Peking University, Beijing 100871, China
| | - Yong Chen
- PASTEUR, Département de chimie, École normale supérieure, PSL University, Sorbonne Université, CNRS, 24 rue Lhomond, Paris 75005, France
| | - Qi Ouyang
- Center of Quantitative Biology, Peking University, Beijing 100871, China
- School of Physics, Peking University, Beijing 100871, China
| | - Dong-Hui Wang
- State Key Laboratory of Protein & Plant Gene Research, Peking University, Beijing 100871, China
- College of Life Sciences, Peking University, Beijing 100871, China
| | - Da-Ming Zhang
- Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Zhi-Hong Xu
- State Key Laboratory of Protein & Plant Gene Research, Peking University, Beijing 100871, China
- College of Life Sciences, Peking University, Beijing 100871, China
| | - Hong-Wei Hou
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Shu-Nong Bai
- Center of Quantitative Biology, Peking University, Beijing 100871, China
- State Key Laboratory of Protein & Plant Gene Research, Peking University, Beijing 100871, China
- College of Life Sciences, Peking University, Beijing 100871, China
| | - Ling Li
- Department of Biological Sciences, Mississippi State University, Mississippi State, MS 39762, USA
| |
Collapse
|
31
|
Tang HB, Wang J, Wang L, Shang GD, Xu ZG, Mai YX, Liu YT, Zhang TQ, Wang JW. Anisotropic cell growth at the leaf base promotes age-related changes in leaf shape in Arabidopsis thaliana. THE PLANT CELL 2023; 35:1386-1407. [PMID: 36748203 PMCID: PMC10118278 DOI: 10.1093/plcell/koad031] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 01/19/2023] [Accepted: 01/20/2023] [Indexed: 05/17/2023]
Abstract
Plants undergo extended morphogenesis. The shoot apical meristem (SAM) allows for reiterative development and the formation of new structures throughout the life of the plant. Intriguingly, the SAM produces morphologically different leaves in an age-dependent manner, a phenomenon known as heteroblasty. In Arabidopsis thaliana, the SAM produces small orbicular leaves in the juvenile phase, but gives rise to large elliptical leaves in the adult phase. Previous studies have established that a developmental decline of microRNA156 (miR156) is necessary and sufficient to trigger this leaf shape switch, although the underlying mechanism is poorly understood. Here we show that the gradual increase in miR156-targeted SQUAMOSA PROMOTER BINDING PROTEIN-LIKE transcription factors with age promotes cell growth anisotropy in the abaxial epidermis at the base of the leaf blade, evident by the formation of elongated giant cells. Time-lapse imaging and developmental genetics further revealed that the establishment of adult leaf shape is tightly associated with the longitudinal cell expansion of giant cells, accompanied by a prolonged cell proliferation phase in their vicinity. Our results thus provide a plausible cellular mechanism for heteroblasty in Arabidopsis, and contribute to our understanding of anisotropic growth in plants.
Collapse
Affiliation(s)
- Hong-Bo Tang
- National Key Laboratory of Plant Molecular Genetics (NKLPMG), CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Institute of Plant Physiology and Ecology (SIPPE), Shanghai 200032, China
- University of Chinese Academy of Sciences (UCAS), Shanghai 200032, China
| | - Juan Wang
- School of Statistics and Mathematics, Inner Mongolia University of Finance and Economics, Huhehaote 010070, China
| | - Long Wang
- National Key Laboratory of Plant Molecular Genetics (NKLPMG), CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Institute of Plant Physiology and Ecology (SIPPE), Shanghai 200032, China
| | - Guan-Dong Shang
- National Key Laboratory of Plant Molecular Genetics (NKLPMG), CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Institute of Plant Physiology and Ecology (SIPPE), Shanghai 200032, China
- University of Chinese Academy of Sciences (UCAS), Shanghai 200032, China
| | - Zhou-Geng Xu
- National Key Laboratory of Plant Molecular Genetics (NKLPMG), CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Institute of Plant Physiology and Ecology (SIPPE), Shanghai 200032, China
- University of Chinese Academy of Sciences (UCAS), Shanghai 200032, China
| | - Yan-Xia Mai
- Core Facility Center of CEMPS, Institute of Plant Physiology and Ecology (SIPPE), Shanghai 200032, China
| | - Ye-Tong Liu
- National Key Laboratory of Plant Molecular Genetics (NKLPMG), CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Institute of Plant Physiology and Ecology (SIPPE), Shanghai 200032, China
- Shanghai Normal University, College of Life and Environmental Sciences, Shanghai 200234, China
| | - Tian-Qi Zhang
- National Key Laboratory of Plant Molecular Genetics (NKLPMG), CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Institute of Plant Physiology and Ecology (SIPPE), Shanghai 200032, China
| | - Jia-Wei Wang
- National Key Laboratory of Plant Molecular Genetics (NKLPMG), CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Institute of Plant Physiology and Ecology (SIPPE), Shanghai 200032, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| |
Collapse
|
32
|
Ramírez-Olvera SM, Sandoval-Villa M. Uses, Botanical Characteristics, and Phenological Development of Slender Nightshade ( Solanum nigrescens Mart. and Gal.). PLANTS (BASEL, SWITZERLAND) 2023; 12:1645. [PMID: 37111868 PMCID: PMC10145186 DOI: 10.3390/plants12081645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/08/2023] [Accepted: 04/10/2023] [Indexed: 06/19/2023]
Abstract
Slender nightshade (Solanum nigrescens Mart. and Gal.) is a perennial, herbaceous plant from the Solanaceae family, which is distributed in various environments. The aim of this study was to review the scientific literature and to establish slender nightshade plants under greenhouse conditions in order to record their phenological development. The specialized literature regarding the distribution, botanical characteristics, and uses of such species was analyzed. The phenological development was recorded based on the BBCH (Biologische Bundesanstalt, Bundessortenamt, Chemische Industrie) guide. Slender nightshade seeds were germinated under greenhouse conditions, then transferred to red porous volcano gravel locally known as tezontle in black polyethylene bags and watered with a Steiner nutrient solution. Changes in phenology were monitored and recorded from germination to the ripening of fruit and seeds. Slender nightshade has a wide distribution in Mexico and is used for medicinal and gastronomical purposes, as well as to control pathogens. The phenological development of slender nightshade has seven stages from germination to the ripening of fruit and seeds. Slender nightshade is a poorly studied plant with potential for human consumption. The phenological recording provides a tool for its management and further research as a crop.
Collapse
Affiliation(s)
- Sara Monzerrat Ramírez-Olvera
- Department of Soil Science, College of Postgraduate in Agricultural Sciences, Campus Montecillo, Montecillo 56264, Mexico;
| | | |
Collapse
|
33
|
Sang Q, Fan L, Liu T, Qiu Y, Du J, Mo B, Chen M, Chen X. MicroRNA156 conditions auxin sensitivity to enable growth plasticity in response to environmental changes in Arabidopsis. Nat Commun 2023; 14:1449. [PMID: 36949101 PMCID: PMC10033679 DOI: 10.1038/s41467-023-36774-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 02/14/2023] [Indexed: 03/24/2023] Open
Abstract
MicroRNAs (miRNAs) play diverse roles in plant development, but whether and how miRNAs participate in thermomorphogenesis remain ambiguous. Here we show that HYPONASTIC LEAVES 1 (HYL1)-a key component of miRNA biogenesis-acts downstream of the thermal regulator PHYTOCHROME INTERACTING FACTOR 4 in the temperature-dependent plasticity of hypocotyl growth in Arabidopsis. A hyl1-2 suppressor screen identified a dominant dicer-like1 allele that rescues hyl1-2's defects in miRNA biogenesis and thermoresponsive hypocotyl elongation. Genome-wide miRNA and transcriptome analysis revealed microRNA156 (miR156) and its target SQUAMOSA PROMOTER-BINDING-PROTEIN-LIKE 9 (SPL9) to be critical regulators of thermomorphogenesis. Surprisingly, perturbation of the miR156/SPL9 module disengages seedling responsiveness to warm temperatures by impeding auxin sensitivity. Moreover, miR156-dependent auxin sensitivity also operates in the shade avoidance response at lower temperatures. Thus, these results unveil the miR156/SPL9 module as a previously uncharacterized genetic circuit that enables plant growth plasticity in response to environmental temperature and light changes.
Collapse
Affiliation(s)
- Qing Sang
- Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, China
- Key Laboratory of Optoelectronic Devices and Systems of the Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
- Department of Botany and Plant Sciences, Institute for Integrative Genome Biology, University of California, Riverside, CA, 92521, USA
| | - Lusheng Fan
- Department of Botany and Plant Sciences, Institute for Integrative Genome Biology, University of California, Riverside, CA, 92521, USA
| | - Tianxiang Liu
- Department of Botany and Plant Sciences, Institute for Integrative Genome Biology, University of California, Riverside, CA, 92521, USA
| | - Yongjian Qiu
- Department of Botany and Plant Sciences, Institute for Integrative Genome Biology, University of California, Riverside, CA, 92521, USA
- Department of Biology, University of Mississippi, Oxford, MS, 38677, USA
| | - Juan Du
- Department of Botany and Plant Sciences, Institute for Integrative Genome Biology, University of California, Riverside, CA, 92521, USA
| | - Beixin Mo
- Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, China
- Key Laboratory of Optoelectronic Devices and Systems of the Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Meng Chen
- Department of Botany and Plant Sciences, Institute for Integrative Genome Biology, University of California, Riverside, CA, 92521, USA.
| | - Xuemei Chen
- Department of Botany and Plant Sciences, Institute for Integrative Genome Biology, University of California, Riverside, CA, 92521, USA.
- School of Life Sciences, Peking-Tsinghua Joint Center for Life Sciences, Peking University, Beijing, 100871, China.
| |
Collapse
|
34
|
Bhandari U, Gajurel A, Khadka B, Thapa I, Chand I, Bhatta D, Poudel A, Pandey M, Shrestha S, Shrestha J. Morpho-physiological and biochemical response of rice ( Oryza sativa L.) to drought stress: A review. Heliyon 2023; 9:e13744. [PMID: 36879962 PMCID: PMC9984794 DOI: 10.1016/j.heliyon.2023.e13744] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 01/12/2023] [Accepted: 02/09/2023] [Indexed: 02/16/2023] Open
Abstract
Global food shortages are caused mainly by drought, the primary driver of yield loss in agriculture worldwide. Drought stress negatively impacts the physiological and morphological characteristics of rice (Oryza sativa L.), limiting the plant productivity and hence the economy of global rice production. Physiological changes due to drought stress in rice include constrained cell division and elongation, stomatal closure, loss of turgor adjustment, reduced photosynthesis, and lower yields. Morphological changes include inhibition of seed germination, reduced tillers, early maturity, and reduced biomass. In addition, drought stress leads to a metabolic alteration by increasing the buildup of reactive oxygen species, reactive stress metabolites, antioxidative enzymes, and abscisic acid. Rice tends to combat drought through three major phenomena; tolerance, avoidance, and escape. Several mitigation techniques are introduced and adapted to combat drought stress which includes choosing drought-tolerant cultivars, planting early types, maintaining adequate moisture levels, conventional breeding, molecular maintenance, and creating variants with high-yielding characteristics. This review attempts to evaluate the various morpho-physiological responses of the rice plant to drought, along with drought stress reduction techniques.
Collapse
Affiliation(s)
- Utsav Bhandari
- Institute of Agriculture and Animal Science, Tribhuvan University, Lamjung Campus, Sundarbazar, Lamjung, Nepal
| | - Aakriti Gajurel
- Institute of Agriculture and Animal Science, Tribhuvan University, Lamjung Campus, Sundarbazar, Lamjung, Nepal
| | - Bharat Khadka
- Institute of Agriculture and Animal Science, Tribhuvan University, Lamjung Campus, Sundarbazar, Lamjung, Nepal
| | - Ishwor Thapa
- Institute of Agriculture and Animal Science, Tribhuvan University, Lamjung Campus, Sundarbazar, Lamjung, Nepal
| | - Isha Chand
- Institute of Agriculture and Animal Science, Tribhuvan University, Lamjung Campus, Sundarbazar, Lamjung, Nepal
| | - Dibya Bhatta
- Department of Applied Biosciences, Kyungpook National University, Daegu, 41566, South Korea
| | - Anju Poudel
- Department of Agricultural and Environmental Sciences, Otis L. Floyd Nursery Research Center, Tennessee State University, 472 Cadillac Lane, McMinnville, TN, 37110, USA
| | - Meena Pandey
- Institute of Agriculture and Animal Science, Tribhuvan University, Paklihawa Campus, Bhairahawa, Rupandehi, Nepal
| | - Suraj Shrestha
- Agriculture and Forestry University, Rampur, Chitwan, Nepal
| | - Jiban Shrestha
- Nepal Agricultural Research Council, National Plant Breeding and Genetics Research Centre, Khumaltar, Lalitpur, Nepal
| |
Collapse
|
35
|
Hu L, Kvitko B, Yang L. Shoot maturation strengthens FLS2-mediated resistance to Pseudomonas syringae. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.14.528542. [PMID: 36824838 PMCID: PMC9949054 DOI: 10.1101/2023.02.14.528542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
A temporal-spatial regulation of immunity components is essential for properly activating plant defense response. Flagellin-sensing 2 (FLS2) is a surface-localized receptor that recognizes bacterial flagellin. The immune function of FLS2 is compromised in early stages of shoot development. However, the underlying mechanism for the age-dependent FLS2 signaling is not clear. Here, we show that the reduced basal immunity of juvenile leaves against Pseudomonas syringae pv. tomato DC3000 is independent of FLS2. The flg22-induced marker gene expression and ROS activation were comparable in juvenile and adult stage, but callose deposition was more evident in the adult stage than that of juvenile stage. We further demonstrated that microRNA156, a master regulator of plant aging, suppressed callose deposition in juvenile leaves in response to flg22 but not the expression of FLS2 and FRK1 (Flg22-induced receptor-like kinase 1) . Altogether, we revealed an intrinsic mechanism that regulates the amplitude of FLS2-mediated resistance during aging.
Collapse
|
36
|
Zhao J, Doody E, Poethig RS. Reproductive competence is regulated independently of vegetative phase change in Arabidopsis thaliana. Curr Biol 2023; 33:487-497.e2. [PMID: 36634678 PMCID: PMC9905307 DOI: 10.1016/j.cub.2022.12.029] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/19/2022] [Accepted: 12/12/2022] [Indexed: 01/13/2023]
Abstract
A long-standing question in plant biology is how the acquisition of reproductive competence is related to the juvenile-to-adult vegetative transition. We addressed this question by examining the expression pattern and mutant phenotypes of two families of miRNAs-miR156/miR157 and miR172-that operate in the same pathway and play important roles in these processes. The phenotype of mutants deficient for miR156/miR157, miR172, and all three miRNAs demonstrated that miR156/miR157 regulate the timing of vegetative phase change but have only a minor effect on reproductive competence, whereas miR172 has a minor role in vegetative phase change but has a major effect on reproductive competence. MIR172B is directly downstream of the miR156/SPL module, but temporal variation in the level of miR156 in the shoot apex and leaf-to-leaf variation in miR156 expression in young primordia was not associated with a change in the level of miR172 in these tissues. Additionally, although miR172 levels increase from leaf to leaf later in leaf development, this variation is largely insensitive to changes in the abundance of miR156. Our results indicate that the acquisition of reproductive competence in Arabidopsis is regulated by miR172 through a mechanism that is independent of the vegetative phase change pathway.
Collapse
Affiliation(s)
- Jianfei Zhao
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Erin Doody
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - R Scott Poethig
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
37
|
Navarro-Cartagena S, Micol JL. Is auxin enough? Cytokinins and margin patterning in simple leaves. TRENDS IN PLANT SCIENCE 2023; 28:54-73. [PMID: 36180378 DOI: 10.1016/j.tplants.2022.08.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 08/19/2022] [Accepted: 08/24/2022] [Indexed: 06/16/2023]
Abstract
The interplay between auxin and cytokinins affects facets of plant development as different as ovule formation and lateral root initiation. Moreover, cytokinins favor complexity in the development of Solanum lycopersicum and Cardamine hirsuta compound leaves. Nevertheless, no role has been proposed for cytokinins in patterning the margins of the simple leaves of Arabidopsis thaliana, a process that is assumed to be sufficiently explained by auxin localization. Here, we discuss evidence supporting the hypothesis that cytokinins play a role in simple leaf margin morphogenesis via crosstalk with auxin, as occurs in other plant developmental events. Indeed, mutant or transgenic arabidopsis plants defective in cytokinin biosynthesis or signaling, or with increased cytokinin degradation have leaf margins less serrated than the wild type.
Collapse
Affiliation(s)
- Sergio Navarro-Cartagena
- Instituto de Bioingeniería, Universidad Miguel Hernández, Campus de Elche, 03202 Elche, Alicante, Spain
| | - José Luis Micol
- Instituto de Bioingeniería, Universidad Miguel Hernández, Campus de Elche, 03202 Elche, Alicante, Spain.
| |
Collapse
|
38
|
Daviet B, Fernandez R, Cabrera-Bosquet L, Pradal C, Fournier C. PhenoTrack3D: an automatic high-throughput phenotyping pipeline to track maize organs over time. PLANT METHODS 2022; 18:130. [PMID: 36482291 PMCID: PMC9730636 DOI: 10.1186/s13007-022-00961-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 11/22/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND High-throughput phenotyping platforms allow the study of the form and function of a large number of genotypes subjected to different growing conditions (GxE). A number of image acquisition and processing pipelines have been developed to automate this process, for micro-plots in the field and for individual plants in controlled conditions. Capturing shoot development requires extracting from images both the evolution of the 3D plant architecture as a whole, and a temporal tracking of the growth of its organs. RESULTS We propose PhenoTrack3D, a new pipeline to extract a 3D + t reconstruction of maize. It allows the study of plant architecture and individual organ development over time during the entire growth cycle. The method tracks the development of each organ from a time-series of plants whose organs have already been segmented in 3D using existing methods, such as Phenomenal [Artzet et al. in BioRxiv 1:805739, 2019] which was chosen in this study. First, a novel stem detection method based on deep-learning is used to locate precisely the point of separation between ligulated and growing leaves. Second, a new and original multiple sequence alignment algorithm has been developed to perform the temporal tracking of ligulated leaves, which have a consistent geometry over time and an unambiguous topological position. Finally, growing leaves are back-tracked with a distance-based approach. This pipeline is validated on a challenging dataset of 60 maize hybrids imaged daily from emergence to maturity in the PhenoArch platform (ca. 250,000 images). Stem tip was precisely detected over time (RMSE < 2.1 cm). 97.7% and 85.3% of ligulated and growing leaves respectively were assigned to the correct rank after tracking, on 30 plants × 43 dates. The pipeline allowed to extract various development and architecture traits at organ level, with good correlation to manual observations overall, on random subsets of 10-355 plants. CONCLUSIONS We developed a novel phenotyping method based on sequence alignment and deep-learning. It allows to characterise the development of maize architecture at organ level, automatically and at a high-throughput. It has been validated on hundreds of plants during the entire development cycle, showing its applicability on GxE analyses of large maize datasets.
Collapse
Affiliation(s)
- Benoit Daviet
- LEPSE, Univ Montpellier, INRAE, Institut Agro, Montpellier, France
| | - Romain Fernandez
- CIRAD, UMR AGAP Institut, 34398, Montpellier, France
- CIRAD, INRAE, UMR AGAP Institut, Univ Montpellier, Institut Agro, 34398, Montpellier, France
| | | | - Christophe Pradal
- CIRAD, UMR AGAP Institut, 34398, Montpellier, France.
- CIRAD, INRAE, UMR AGAP Institut, Univ Montpellier, Institut Agro, 34398, Montpellier, France.
- Inria & LIRMM, CNRS, Univ Montpellier, Montpellier, France.
| | | |
Collapse
|
39
|
Cross-Talk between Transcriptome Analysis and Dynamic Changes of Carbohydrates Identifies Stage-Specific Genes during the Flower Bud Differentiation Process of Chinese Cherry ( Prunus pseudocerasus L.). Int J Mol Sci 2022; 23:ijms232415562. [PMID: 36555203 PMCID: PMC9778666 DOI: 10.3390/ijms232415562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/25/2022] [Accepted: 12/06/2022] [Indexed: 12/14/2022] Open
Abstract
Flower bud differentiation is crucial to reproductive success in plants. In the present study, RNA-Seq and nutrients quantification were used to identify the stage-specific genes for flower bud differentiation with buds which characterize the marked change during flower bud formation from a widely grown Chinese cherry (Prunus pseudocerasus L.) cultivar 'Manaohong'. A KEGG enrichment analysis revealed that the sugar metabolism pathways dynamically changed. The gradually decreasing trend in the contents of total sugar, soluble sugar and protein implies that the differentiation was an energy-consuming process. Changes in the contents of D-glucose and sorbitol were conformed with the gene expression trends of bglX and SORD, respectively, which at least partially reflects a key role of the two substances in the transition from physiological to morphological differentiation. Further, the WRKY and SBP families were also significantly differentially expressed during the vegetative-to-reproductive transition. In addition, floral meristem identity genes, e.g., AP1, AP3, PI, AGL6, SEP1, LFY, and UFO demonstrate involvement in the specification of the petal and stamen primordia, and FPF1 might promote the onset of morphological differentiation. Conclusively, the available evidence justifies the involvement of sugar metabolism in the flower bud differentiation of Chinese cherry, and the uncovered candidate genes are beneficial to further elucidate flower bud differentiation in cherries.
Collapse
|
40
|
Spitzer-Rimon B, Shafran-Tomer H, Gottlieb GH, Doron-Faigenboim A, Zemach H, Kamenetsky-Goldstein R, Flaishman M. Non-photoperiodic transition of female cannabis seedlings from juvenile to adult reproductive stage. PLANT REPRODUCTION 2022; 35:265-277. [PMID: 36063227 DOI: 10.1007/s00497-022-00449-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 08/24/2022] [Indexed: 06/15/2023]
Abstract
Vegetative-to-reproductive phase transition in female cannabis seedlings occurs autonomously with the de novo development of single flowers. To ensure successful sexual reproduction, many plant species originating from seedlings undergo juvenile-to-adult transition. This phase transition precedes and enables the vegetative-to-reproductive shift in plants, upon perception of internal and/or external signals such as temperature, photoperiod, metabolite levels, and phytohormones. This study demonstrates that the juvenile seedlings of cannabis gradually shift to the adult vegetative stage, as confirmed by the formation of lobed leaves, and upregulation of the phase-transition genes. In the tested cultivar, the switch to the reproductive stage occurs with the development of a pair of single flowers in the 7th node. Histological analysis indicated that transition to the reproductive stage is accomplished by the de novo establishment of new flower meristems which are not present in a vegetative stage, or as dormant meristems at nodes 4 and 6. Moreover, there were dramatic changes in the transcriptomic profile of flowering-related genes among nodes 4, 6, and 7. Downregulation of flowering repressors and an intense increase in the transcription of phase transition-related genes occur in parallel with an increase in the transcription of flowering integrators and meristem identity genes. These results support and provide molecular evidence for previous findings that cannabis possesses an autonomous flowering mechanism and the transition to reproductive phase is controlled in this plant mainly by internal signals.
Collapse
Affiliation(s)
- Ben Spitzer-Rimon
- Institute of Plant Sciences, Agricultural Research Organization-Volcani, HaMaccabbim Road 68, 7505101, Rishon LeZion, Israel.
| | - Hadas Shafran-Tomer
- Institute of Plant Sciences, Agricultural Research Organization-Volcani, HaMaccabbim Road 68, 7505101, Rishon LeZion, Israel
| | - Gilad H Gottlieb
- Institute of Plant Sciences, Agricultural Research Organization-Volcani, HaMaccabbim Road 68, 7505101, Rishon LeZion, Israel
| | - Adi Doron-Faigenboim
- Institute of Plant Sciences, Agricultural Research Organization-Volcani, HaMaccabbim Road 68, 7505101, Rishon LeZion, Israel
| | - Hanita Zemach
- Institute of Plant Sciences, Agricultural Research Organization-Volcani, HaMaccabbim Road 68, 7505101, Rishon LeZion, Israel
| | - Rina Kamenetsky-Goldstein
- Institute of Plant Sciences, Agricultural Research Organization-Volcani, HaMaccabbim Road 68, 7505101, Rishon LeZion, Israel
| | - Moshe Flaishman
- Institute of Plant Sciences, Agricultural Research Organization-Volcani, HaMaccabbim Road 68, 7505101, Rishon LeZion, Israel
| |
Collapse
|
41
|
Laskowski MJ, Tiley HC, Fang Y, Epstein A, Fu Y, Ramos R, Drummond TJ, Heidstra R, Bhakhri P, Baskin TI, Leyser O. The miR156 juvenility factor and PLETHORA 2 form a regulatory network and influence timing of meristem growth and lateral root emergence. Development 2022; 149:dev199871. [PMID: 36281807 DOI: 10.1242/dev.199871] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 09/20/2022] [Indexed: 06/16/2023]
Abstract
Plants develop throughout their lives: seeds become seedlings that mature and form fruits and seeds. Although the underlying mechanisms that drive these developmental phase transitions have been well elucidated for shoots, the extent to which they affect the root is less clear. However, root anatomy does change as some plants mature; meristems enlarge and radial thickening occurs. Here, in Arabidopsis thaliana, we show that overexpressing miR156A, a gene that promotes the juvenile phase, increased the density of the root system, even in grafted plants in which only the rootstock had the overexpression genotype. In the root, overexpression of miR156A resulted in lower levels of PLETHORA 2, a protein that affects formation of the meristem and elongation zone. Crossing in an extra copy of PLETHORA 2 partially rescued the effects of miR156A overexpression on traits affecting root architecture, including meristem length and the rate of lateral root emergence. Consistent with this, PLETHORA 2 also inhibited the root-tip expression of another miR156 gene, miR156C. We conclude that the system driving phase change in the shoot affects developmental progression in the root, and that PLETHORA 2 participates in this network.
Collapse
Affiliation(s)
| | - Helene C Tiley
- Biology Department, Oberlin College, Oberlin, OH 44074USA
| | - Yiling Fang
- Biology Department, Oberlin College, Oberlin, OH 44074USA
| | - Anabel Epstein
- Biology Department, Oberlin College, Oberlin, OH 44074USA
| | - Yuyang Fu
- Biology Department, Oberlin College, Oberlin, OH 44074USA
| | - Roberto Ramos
- Biology Department, Oberlin College, Oberlin, OH 44074USA
| | | | - Renze Heidstra
- Cluster of Plant Developmental Biology, Laboratory of Molecular Biology, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Priyanka Bhakhri
- Department of Biology, University of Massachusetts, Amherst, MA 01003, USA
| | - Tobias I Baskin
- Department of Biology, University of Massachusetts, Amherst, MA 01003, USA
| | - Ottoline Leyser
- Sainsbury Laboratory, University of Cambridge, Cambridge, CB2 1LR, UK
| |
Collapse
|
42
|
Goldshmidt A, Ziegler T, Zhou D, Brower‐Toland B, Preuss S, Slewinski T. Tuning of meristem maturation rate increases yield in multiple Triticum aestivum cultivars. PLANT DIRECT 2022; 6:e459. [PMID: 36447652 PMCID: PMC9694431 DOI: 10.1002/pld3.459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 01/02/2020] [Accepted: 10/19/2022] [Indexed: 06/16/2023]
Abstract
Breeding programs aim to improve crop yield and environmental stability for enhanced food security. The principal methodology in breeding for stable yield gain relies on the indirect selection of beneficial genetics by yield evaluation across diverse environmental conditions. This methodology requires substantial resources while delivering a slow pace of yield gain and environmental adaptation. Alternative methods are required to accelerate gain and adaptation, becoming even more imperative in a changing climate. New molecular tools and approaches can enable accelerated creation and deployment of multiple alleles of genes identified to control key traits. With the advent of tools that enable breeding by targeted allelic selection, identifying gene targets associated with an improved crop performance ideotype will become crucial. Previous studies have shown that altered photoperiod regimes increase yield in wheat (Triticum aestivum). In the current study, we have employed such treatments to study the resulting yield ideotype in five spring wheat cultivars. We found that the photoperiod treatment creates a yield ideotype arising from delayed spike establishment rates that are accompanied by increased early shoot expression of TARGET OF EAT1 (TaTOE1) genes. Genes identified in this way could be used for ideotype-based improve crop performance through targeted allele creation and selection in relevant environments.
Collapse
Affiliation(s)
- Alexander Goldshmidt
- Bayer Crop ScienceChesterfieldMissouriUSA
- Present address:
The Volcani Agriculture InstituteRishon LeZionIsrael
| | | | | | | | | | | |
Collapse
|
43
|
Hyde PT, Setter TL. Long-day photoperiod and cool temperature induce flowering in cassava: Expression of signaling genes. FRONTIERS IN PLANT SCIENCE 2022; 13:973206. [PMID: 36186068 PMCID: PMC9523484 DOI: 10.3389/fpls.2022.973206] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 08/23/2022] [Indexed: 06/08/2023]
Abstract
Cassava is a staple food crop in the tropics, and is of particular importance in Africa. Recent development of genomic selection technology have improved the speed of cassava breeding; however, cassava flower initiation and development remains a bottleneck. The objectives of the current studies were to elucidate the effect of photoperiod, temperature and their interactions on the time of flowering and flower development in controlled environments, and to use RNA-sequencing to identify transcriptome expression underlying these environmental responses. Compared to a normal tropical day-length of 12 h, increasing the photoperiod by 4 h or decreasing the air temperature from 34/31 to 22°/19°C (day/night) substantially hastened the time to flowering. For both photoperiod and temperature, the environment most favorable for flowering was opposite the one for storage root harvest index. There was a pronounced treatment interaction: at warm day-time temperatures, percent flowering was low, and photoperiod had little effect. In contrast, at cooler temperatures, percent flowering increased, and long-day (LD) photoperiod had a strong effect in hastening flowering. In response to temperature, many differentially expressed genes in the sugar, phase-change, and flowering-time-integrator pathways had expression/flowering patterns in the same direction as in Arabidopsis (positive or negative) even though the effect of temperature on flowering operates in the reverse direction in cassava compared to Arabidopsis. Three trehalose-6-phosphate-synthase-1 (TPS1) genes and four members of the SPL gene family had significantly increased expression at cool temperature, suggesting sugar signaling roles in flower induction. In response to LD photoperiod, regulatory genes were expressed as in Arabidopsis and other LD flowering plants. Several hormone-related genes were expressed in response to both photoperiod and temperature. In summary, these findings provide insight on photoperiod and temperature responses and underlying gene expression that may assist breeding programs to manipulate flowering for more rapid crop improvement.
Collapse
|
44
|
Effects of elevated ultraviolet-B on the floral and leaf characteristics of a medicinal plant Wedelia chinensis (Osbeck) Merr. along with essential oil contents. Trop Ecol 2022. [DOI: 10.1007/s42965-022-00270-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
45
|
Rahimi A, Karami O, Balazadeh S, Offringa R. miR156-independent repression of the ageing pathway by longevity-promoting AHL proteins in Arabidopsis. THE NEW PHYTOLOGIST 2022; 235:2424-2438. [PMID: 35642455 PMCID: PMC9540020 DOI: 10.1111/nph.18292] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 05/25/2022] [Indexed: 05/27/2023]
Abstract
Plants age by developmental phase changes. In Arabidopsis, the juvenile to adult vegetative phase change (VPC) is marked by clear heteroblastic changes in leaves. VPC and the subsequent vegetative to reproductive phase change are promoted by SQUAMOSA PROMOTOR BINDING PROTEIN-LIKE (SPL) transcription factors and repressed by miR156/157 targeting SPL transcripts. By genetic, phenotypic, and gene expression analyses, we studied the role of the longevity-promoting AT-HOOK MOTIF NUCLEAR LOCALIZED 15 (AHL15) and family members in SPL-driven plant ageing. Arabidopsis ahl loss-of-function mutants showed accelerated VPC and flowering, whereas AHL15 overexpression delayed these phase changes. Expression analysis and tissue-specific AHL15 overexpression revealed that AHL15 affects VPC and flowering time directly through its expression in the shoot apical meristem and young leaves, and that AHL15 represses SPL2/9/13/15 gene expression in a miR156/157-independent manner. The juvenile traits of spl loss-of-function mutants appeared to depend on enhanced expression of the AHL15 gene, whereas SPL activity prevented vegetative growth from axillary meristem by repressing AHL15 expression. Our results place AHL15 and close family members together with SPLs in a reciprocal regulatory feedback loop that modulates VPC, flowering time, and axillary meristem development in response to both internal and external signals.
Collapse
Affiliation(s)
- Arezoo Rahimi
- Plant Developmental Genetics, Institute of Biology LeidenLeiden UniversitySylviusweg 722333 BELeidenthe Netherlands
- Plant Molecular Stress Biology, Institute of Biology LeidenLeiden UniversitySylviusweg 722333 BELeidenthe Netherlands
| | - Omid Karami
- Plant Developmental Genetics, Institute of Biology LeidenLeiden UniversitySylviusweg 722333 BELeidenthe Netherlands
| | - Salma Balazadeh
- Plant Molecular Stress Biology, Institute of Biology LeidenLeiden UniversitySylviusweg 722333 BELeidenthe Netherlands
| | - Remko Offringa
- Plant Developmental Genetics, Institute of Biology LeidenLeiden UniversitySylviusweg 722333 BELeidenthe Netherlands
| |
Collapse
|
46
|
Hu T, Manuela D, Hinsch V, Xu M. PICKLE associates with histone deacetylase 9 to mediate vegetative phase change in Arabidopsis. THE NEW PHYTOLOGIST 2022; 235:1070-1081. [PMID: 35460275 PMCID: PMC9324081 DOI: 10.1111/nph.18174] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 04/09/2022] [Indexed: 05/04/2023]
Abstract
The juvenile-to-adult vegetative phase change in flowering plants is mediated by a decrease in miR156 levels. Downregulation of MIR156A/MIR156C, the two major sources of miR156, is accompanied by a decrease in acetylation of histone 3 lysine 27 (H3K27ac) and an increase in trimethylation of H3K27 (H3K27me3) at MIR156A/MIR156C in Arabidopsis. Here, we show that histone deacetylase 9 (HDA9) is recruited to MIR156A/MIR156C during the juvenile phase and associates with the CHD3 chromatin remodeler PICKLE (PKL) to erase H3K27ac at MIR156A/MIR156C. H2Aub and H3K27me3 become enriched at MIR156A/MIR156C, and the recruitment of Polycomb Repressive Complex 2 (PRC2) to MIR156A/MIR156C is partially dependent on the activities of PKL and HDA9. Our results suggest that PKL associates with histone deacetylases to erase H3K27ac and promote PRC1 and PRC2 activities to mediate vegetative phase change and maintain plants in the adult phase after the phase transition.
Collapse
Affiliation(s)
- Tieqiang Hu
- Department of Biological SciencesUniversity of South CarolinaColumbiaSC29208USA
| | - Darren Manuela
- Department of Biological SciencesUniversity of South CarolinaColumbiaSC29208USA
| | - Valerie Hinsch
- Department of Biological SciencesUniversity of South CarolinaColumbiaSC29208USA
| | - Mingli Xu
- Department of Biological SciencesUniversity of South CarolinaColumbiaSC29208USA
| |
Collapse
|
47
|
Zhu X, Sun F, Sang M, Ye M, Bo W, Dong A, Wu R. Genetic Architecture of Heterophylly: Single and Multi-Leaf Genome-Wide Association Mapping in Populus euphratica. FRONTIERS IN PLANT SCIENCE 2022; 13:870876. [PMID: 35783952 PMCID: PMC9240601 DOI: 10.3389/fpls.2022.870876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 05/24/2022] [Indexed: 06/15/2023]
Abstract
Heterophylly is an adaptive strategy used by some plants in response to environmental changes. Due to the lack of representative plants with typical heteromorphic leaves, little is known about the genetic architecture of heterophylly in plants and the genes underlying its control. Here, we investigated the genetic characteristics underlying changes in leaf shape based on the model species, Populus euphratica, which exhibits typical heterophylly. A set of 401,571 single-nucleotide polymorphisms (SNPs) derived from whole-genome sequencing of 860 genotypes were associated with nine leaf traits, which were related to descriptive and shape data using single- and multi-leaf genome-wide association studies (GWAS). Multi-leaf GWAS allows for a more comprehensive understanding of the genetic architecture of heterophylly by considering multiple leaves simultaneously. The single-leaf GWAS detected 140 significant SNPs, whereas the multi-leaf GWAS detected 200 SNP-trait associations. Markers were found across 19 chromosomes, and 21 unique genes were implicated in traits and serve as potential targets for selection. Our results provide novel insights into the genomic architecture of heterophylly, and provide candidate genes for breeding or engineering P. euphratica. Our observations also improve understanding of the intrinsic mechanisms of plant growth, evolution, and adaptation in response to climate change.
Collapse
Affiliation(s)
- Xuli Zhu
- Center for Computational Biology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- National Engineering Laboratory for Tree Breeding, Beijing Forestry University, Beijing, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Beijing Forestry University, Beijing, China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, Beijing, China
| | - Fengshuo Sun
- Center for Computational Biology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Mengmeng Sang
- Institute of Reproductive Medicine, Medical School, Nantong University, Nantong, China
| | - Meixia Ye
- Center for Computational Biology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- National Engineering Laboratory for Tree Breeding, Beijing Forestry University, Beijing, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Beijing Forestry University, Beijing, China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, Beijing, China
| | - Wenhao Bo
- Center for Computational Biology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- National Engineering Laboratory for Tree Breeding, Beijing Forestry University, Beijing, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Beijing Forestry University, Beijing, China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, Beijing, China
| | - Ang Dong
- Center for Computational Biology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Rongling Wu
- Center for Computational Biology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- National Engineering Laboratory for Tree Breeding, Beijing Forestry University, Beijing, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Beijing Forestry University, Beijing, China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, Beijing, China
| |
Collapse
|
48
|
Moraes TS, Immink RGH, Martinelli AP, Angenent GC, van Esse W, Dornelas MC. Passiflora organensis FT/TFL1 gene family and their putative roles in phase transition and floral initiation. PLANT REPRODUCTION 2022; 35:105-126. [PMID: 34748087 DOI: 10.1007/s00497-021-00431-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 10/08/2021] [Indexed: 06/13/2023]
Abstract
Comprehensive analysis of the FT/TFL1 gene family in Passiflora organensis results in understanding how these genes might be involved in the regulation of the typical plant architecture presented by Passiflora species. Passion fruit (Passiflora spp) is an economic tropical fruit crop, but there is hardly any knowledge available about the molecular control of phase transition and flower initiation in this species. The florigen agent FLOWERING LOCUS T (FT) interacts with the bZIP protein FLOWERING LOCUS D (FD) to induce flowering in the model species Arabidopsis thaliana. Current models based on research in rice suggest that this interaction is bridged by 14-3-3 proteins. We identified eight FT/TFL1 family members in Passiflora organensis and characterized them by analyzing their phylogeny, gene structure, expression patterns, protein interactions and putative biological roles by heterologous expression in Arabidopsis. PoFT was highest expressed during the adult vegetative phase and it is supposed to have an important role in flowering induction. In contrast, its paralogs PoTSFs were highest expressed in the reproductive phase. While ectopic expression of PoFT in transgenic Arabidopsis plants induced early flowering and inflorescence determinacy, the ectopic expression of PoTSFa caused a delay in flowering. PoTFL1-like genes were highest expressed during the juvenile phase and their ectopic expression caused delayed flowering in Arabidopsis. Our protein-protein interaction studies indicate that the flowering activation complexes in Passiflora might deviate from the hexameric complex found in the model system rice. Our results provide insights into the potential functions of FT/TFL1 gene family members during floral initiation and their implications in the special plant architecture of Passiflora species, contributing to more detailed studies on the regulation of passion fruit reproduction.
Collapse
Affiliation(s)
- Tatiana S Moraes
- Plant Biotechnology Laboratory, Center for Nuclear Energy in Agriculture, University of São Paulo, Piracicaba, SP, Brazil.
| | - Richard G H Immink
- Cluster of Plant Developmental Biology, Laboratory of Molecular Biology, Wageningen University & Research, Wageningen, The Netherlands
- Bioscience, Wageningen University & Research, Wageningen, The Netherlands
| | - Adriana P Martinelli
- Plant Biotechnology Laboratory, Center for Nuclear Energy in Agriculture, University of São Paulo, Piracicaba, SP, Brazil
| | - Gerco C Angenent
- Cluster of Plant Developmental Biology, Laboratory of Molecular Biology, Wageningen University & Research, Wageningen, The Netherlands
- Bioscience, Wageningen University & Research, Wageningen, The Netherlands
| | - Wilma van Esse
- Cluster of Plant Developmental Biology, Laboratory of Molecular Biology, Wageningen University & Research, Wageningen, The Netherlands
| | - Marcelo C Dornelas
- Department of Plant Biology, Institute of Biology, University of Campinas, Campinas, SP, Brazil
| |
Collapse
|
49
|
Zhang K, Yang Y, Wu J, Liang J, Chen S, Zhang L, Lv H, Yin X, Zhang X, Zhang Y, Zhang L, Zhang Y, Freeling M, Wang X, Cheng F. A cluster of transcripts identifies a transition stage initiating leafy head growth in heading morphotypes of Brassica. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 110:688-706. [PMID: 35118736 PMCID: PMC9314147 DOI: 10.1111/tpj.15695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 01/24/2022] [Accepted: 01/26/2022] [Indexed: 05/10/2023]
Abstract
Leaf heading is an important and economically valuable horticultural trait in many vegetables. The formation of a leafy head is a specialized leaf morphogenesis characterized by the emergence of the enlarged incurving leaves. However, the transcriptional regulation mechanisms underlying the transition to leaf heading remain unclear. We carried out large-scale time-series transcriptome assays covering the major vegetative growth phases of two headingBrassica crops, Chinese cabbage and cabbage, with the non-heading morphotype Taicai as the control. A regulatory transition stage that initiated the heading process is identified, accompanied by a developmental switch from rosette leaf to heading leaf in Chinese cabbages. This transition did not exist in the non-heading control. Moreover, we reveal that the heading transition stage is also conserved in the cabbage clade. Chinese cabbage acquired through domestication a leafy head independently from the origins of heading in other cabbages; phylogenetics supports that the ancestor of all cabbages is non-heading. The launch of the transition stage is closely associated with the ambient temperature. In addition, examination of the biological activities in the transition stage identified the ethylene pathway as particularly active, and we hypothesize that this pathway was targeted for selection for domestication to form the heading trait specifically in Chinese cabbage. In conclusion, our findings on the transcriptome transition that initiated the leaf heading in Chinese cabbage and cabbage provide a new perspective for future studies of leafy head crops.
Collapse
Affiliation(s)
- Kang Zhang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agricultureand Rural Affairs, Sino‐Dutch Joint Laboratory of Horticultural GenomicsBeijingChina
| | - Yinqing Yang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agricultureand Rural Affairs, Sino‐Dutch Joint Laboratory of Horticultural GenomicsBeijingChina
| | - Jian Wu
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agricultureand Rural Affairs, Sino‐Dutch Joint Laboratory of Horticultural GenomicsBeijingChina
| | - Jianli Liang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agricultureand Rural Affairs, Sino‐Dutch Joint Laboratory of Horticultural GenomicsBeijingChina
| | - Shumin Chen
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agricultureand Rural Affairs, Sino‐Dutch Joint Laboratory of Horticultural GenomicsBeijingChina
| | - Lei Zhang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agricultureand Rural Affairs, Sino‐Dutch Joint Laboratory of Horticultural GenomicsBeijingChina
| | - Honghao Lv
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agricultureand Rural Affairs, Sino‐Dutch Joint Laboratory of Horticultural GenomicsBeijingChina
| | - Xiaona Yin
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agricultureand Rural Affairs, Sino‐Dutch Joint Laboratory of Horticultural GenomicsBeijingChina
| | - Xin Zhang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agricultureand Rural Affairs, Sino‐Dutch Joint Laboratory of Horticultural GenomicsBeijingChina
| | - Yiyue Zhang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agricultureand Rural Affairs, Sino‐Dutch Joint Laboratory of Horticultural GenomicsBeijingChina
| | - Lingkui Zhang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agricultureand Rural Affairs, Sino‐Dutch Joint Laboratory of Horticultural GenomicsBeijingChina
| | - Yangyong Zhang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agricultureand Rural Affairs, Sino‐Dutch Joint Laboratory of Horticultural GenomicsBeijingChina
| | - Michael Freeling
- Department of Plant and Microbial BiologyUniversity of California, BerkeleyBerkeleyCAUSA
| | - Xiaowu Wang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agricultureand Rural Affairs, Sino‐Dutch Joint Laboratory of Horticultural GenomicsBeijingChina
| | - Feng Cheng
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agricultureand Rural Affairs, Sino‐Dutch Joint Laboratory of Horticultural GenomicsBeijingChina
| |
Collapse
|
50
|
Hu Y, Zhang H, Qian Q, Lin G, Wang J, Sun J, Li Y, Jang JC, Li W. The Potential Roles of Unique Leaf Structure for the Adaptation of Rheum tanguticum Maxim. ex Balf. in Qinghai-Tibetan Plateau. PLANTS (BASEL, SWITZERLAND) 2022; 11:512. [PMID: 35214845 PMCID: PMC8875413 DOI: 10.3390/plants11040512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 02/08/2022] [Accepted: 02/11/2022] [Indexed: 06/14/2023]
Abstract
Leaves are essential plant organs with numerous variations in shape and size. The leaf size is generally smaller in plants that thrive in areas of higher elevation and lower annual mean temperature. The Qinghai-Tibetan Plateau is situated at an altitude of >4000 m with relatively low annual average temperatures. Most plant species found on the Qinghai-Tibetan Plateau have small leaves, with Rheum tanguticum Maxim. ex Balf. being an exception. Here, we show that the large leaves of R. tanguticum with a unique three-dimensional (3D) shape are potentially an ideal solution for thermoregulation with little energy consumption. With the increase in age, the shape of R. tanguticum leaves changed from a small oval plane to a large palmatipartite 3D shape. Therefore, R. tanguticum is a highly heteroblastic species. The leaf shape change during the transition from the juvenile to the adult phase of the development in R. tanguticum is a striking example of the manifestation of plant phenotypic plasticity. The temperature variation in different parts of the leaf was a distinct character of leaves of over-5-year-old plants. The temperature of single-plane leaves under strong solar radiation could accumulate heat rapidly and resulted in temperatures much higher than the ambient temperature. However, leaves of over-5-year-old plants could lower leaf temperature by avoiding direct exposure to solar radiation and promoting local airflow to prevent serious tissue damage by sunburn. Furthermore, the net photosynthesis rate was correlated with the heterogeneity of the leaf surface temperature. Our results demonstrate that the robust 3D shape of the leaf is a strategy that R. tanguticum has developed evolutionarily to adapt to the strong solar radiation and low temperature on the Qinghai-Tibetan Plateau.
Collapse
Affiliation(s)
- Yanping Hu
- Qinghai Provincial Key Laboratory of Qinghai–Tibet Plateau Biological Resources, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China; (Y.H.); (H.Z.); (Q.Q.); (J.W.); (J.S.)
| | - Huixuan Zhang
- Qinghai Provincial Key Laboratory of Qinghai–Tibet Plateau Biological Resources, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China; (Y.H.); (H.Z.); (Q.Q.); (J.W.); (J.S.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qian Qian
- Qinghai Provincial Key Laboratory of Qinghai–Tibet Plateau Biological Resources, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China; (Y.H.); (H.Z.); (Q.Q.); (J.W.); (J.S.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Gonghua Lin
- School of Life Sciences, Jinggangshan University, Ji’an 343009, China;
| | - Jun Wang
- Qinghai Provincial Key Laboratory of Qinghai–Tibet Plateau Biological Resources, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China; (Y.H.); (H.Z.); (Q.Q.); (J.W.); (J.S.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jing Sun
- Qinghai Provincial Key Laboratory of Qinghai–Tibet Plateau Biological Resources, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China; (Y.H.); (H.Z.); (Q.Q.); (J.W.); (J.S.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yi Li
- Qinghai Provincial Key Laboratory of Qinghai–Tibet Plateau Biological Resources, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China; (Y.H.); (H.Z.); (Q.Q.); (J.W.); (J.S.)
| | - Jyan-Chyun Jang
- Department of Horticulture and Crop Science, The Ohio State University, Columbus, OH 43210, USA
| | - Wenjing Li
- Scientific Research and Popularization Base of Qinghai–Tibet Plateau Biology, Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Xining 810008, China
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China
| |
Collapse
|