1
|
Kumbhar P, Kolekar K, Vishwas S, Shetti P, Kumbar V, Andreoli Pinto TDJ, Paiva-Santos AC, Veiga F, Gupta G, Singh SK, Dua K, Disouza J, Patravale V. Treatment avenues for age-related macular degeneration: Breakthroughs and bottlenecks. Ageing Res Rev 2024; 98:102322. [PMID: 38723753 DOI: 10.1016/j.arr.2024.102322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 05/03/2024] [Accepted: 05/03/2024] [Indexed: 05/23/2024]
Abstract
Age-related macular degeneration (AMD) is a significant factor contributing to serious vision loss in adults above 50. The presence of posterior segment barriers serves as chief roadblocks in the delivery of drugs to treat AMD. The conventional treatment strategies use is limited due to its off-targeted distribution in the eye, shorter drug residence, poor penetration and bioavailability, fatal side effects, etc. The above-mentioned downside necessitates drug delivery using some cutting-edge technology including diverse nanoparticulate systems and microneedles (MNs) which provide the best therapeutic delivery alternative to treat AMD efficiently. Furthermore, cutting-edge treatment modalities including gene therapy and stem cell therapy can control AMD effectively by reducing the boundaries of conventional therapies with a single dose. This review discusses AMD overview, conventional therapies for AMD and their restrictions, repurposed therapeutics and their anti-AMD activity through different mechanisms, and diverse barriers in drug delivery for AMD. Various nanoparticulate-based approaches including polymeric NPs, lipidic NPs, exosomes, active targeted NPs, stimuli-sensitive NPs, cell membrane-coated NPs, inorganic NPs, and MNs are explained. Gene therapy, stem cell therapy, and therapies in clinical trials to treat AMD are also discussed. Further, bottlenecks of cutting-edge (nanoparticulate) technology-based drug delivery are briefed. In a nutshell, cutting-edge technology-based therapies can be an effective way to treat AMD.
Collapse
Affiliation(s)
- Popat Kumbhar
- Department of Pharmaceutics, Tatyasaheb Kore College of Pharmacy, Warananagar, Tal: Panhala, Kolhapur, Maharashtra 416 113, India
| | - Kaustubh Kolekar
- Department of Pharmaceutics, Tatyasaheb Kore College of Pharmacy, Warananagar, Tal: Panhala, Kolhapur, Maharashtra 416 113, India
| | - Sukriti Vishwas
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144 411, India
| | - Priya Shetti
- Dr. Prabhakar Kore Basic Science Research Centre, KLE Academy of Higher Education & Research, Belagavi, India
| | - Vijay Kumbar
- Dr. Prabhakar Kore Basic Science Research Centre, KLE Academy of Higher Education & Research, Belagavi, India.
| | - Terezinha de Jesus Andreoli Pinto
- Department of Pharmacy, Faculty of Pharmaceutical Sciences, University of São Paulo, Professor Lineu Prestes Street, São Paulo 05508-000, Brazil
| | - Ana Cláudia Paiva-Santos
- Department of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Coimbra, Portugal; REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Coimbra, Portugal
| | - Francisco Veiga
- Department of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Coimbra, Portugal; REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Coimbra, Portugal
| | - Guarav Gupta
- Center for Global Health research (CGHR), Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, India; Centre of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144 411, India; Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, NSW 2007, Australia; School of Medical and Life Sciences, Sunway University, 47500 Sunway City, Malaysia
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, NSW 2007, Australia; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - John Disouza
- Department of Pharmaceutics, Tatyasaheb Kore College of Pharmacy, Warananagar, Tal: Panhala, Kolhapur, Maharashtra 416 113, India.
| | - Vandana Patravale
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Matunga, Mumbai, Maharashtra 400019, India.
| |
Collapse
|
2
|
Sethi S, Takashima Y, Nakamura S, Wan L, Honda N, Fujimoto K. Acceleration of the Deamination of Cytosine through Photo-Crosslinking. Curr Issues Mol Biol 2023; 45:4687-4700. [PMID: 37367047 DOI: 10.3390/cimb45060298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/18/2023] [Accepted: 05/26/2023] [Indexed: 06/28/2023] Open
Abstract
Herein, we report the major factor for deamination reaction rate acceleration, i.e., hydrophilicity, by using various 5-substituted target cytosines and by carrying out deamination at high temperatures. Through substitution of the groups at the 5'-position of the cytosine, the effect of hydrophilicity was understood. It was then used to compare the various modifications of the photo-cross-linkable moiety as well as the effect of the counter base of the cytosine to edit both DNA and RNA. Furthermore, we were able to achieve cytosine deamination at 37 °C with a half-life in the order of a few hours.
Collapse
Affiliation(s)
- Siddhant Sethi
- Bioscience, Biotechnology, and Biomedical Engineering Research Area, Japan Advanced Institute of Science and Technology, Asahi-dai 1-1, Ishikawa, Nomi 923-1292, Japan
| | - Yasuharu Takashima
- Bioscience, Biotechnology, and Biomedical Engineering Research Area, Japan Advanced Institute of Science and Technology, Asahi-dai 1-1, Ishikawa, Nomi 923-1292, Japan
| | - Shigetaka Nakamura
- Bioscience, Biotechnology, and Biomedical Engineering Research Area, Japan Advanced Institute of Science and Technology, Asahi-dai 1-1, Ishikawa, Nomi 923-1292, Japan
| | - Licheng Wan
- Bioscience, Biotechnology, and Biomedical Engineering Research Area, Japan Advanced Institute of Science and Technology, Asahi-dai 1-1, Ishikawa, Nomi 923-1292, Japan
| | - Nozomi Honda
- Bioscience, Biotechnology, and Biomedical Engineering Research Area, Japan Advanced Institute of Science and Technology, Asahi-dai 1-1, Ishikawa, Nomi 923-1292, Japan
| | - Kenzo Fujimoto
- Bioscience, Biotechnology, and Biomedical Engineering Research Area, Japan Advanced Institute of Science and Technology, Asahi-dai 1-1, Ishikawa, Nomi 923-1292, Japan
| |
Collapse
|
3
|
Advances in Genetic Editing of the Human Embryo. Am J Ther 2023; 30:e126-e133. [PMID: 36762925 DOI: 10.1097/mjt.0000000000001604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
BACKGROUND Genetic engineering has allowed a major development of research in this field, with specialists attempting to edit the human genome, after the successful editing of the genomes of plants and animals. However, human gene editing technologies are at the center of ethical debates around the world. AREAS OF UNCERTAINTY Ethical concerns about genetic editing of the human embryo raise several issues that can be viewed through the prism of optimism and reluctance leading to a number of recommendations regarding the acceptance of what may soon become a reality. DATA SOURCES A literature search was conducted through PubMed, MEDLINE, Plus, Scopus, and Web of Science (2015-2022) using combinations of keywords, including: human genome or gene editing plus ethics. ETHICS AND THERAPEUTIC ADVANCES Gene therapy is seen by researchers as a way to solve congenital diseases, multifactorial diseases in general or specific diseases such as cystic fibrosis, muscular dystrophy, or can increase resistance to HIV infection. Genome editing technologies, germline gene editing, clustered regularly interspaced short palindromic repeats gene editing technology, technologies such as zinc finger nucleases are not only advanced gene therapies that require solving technical problems, but also techniques that require complex and complete analysis of ethical problems. Genetic engineering raises many ethical concerns such as: safety concerns especially the risk of off-target effects; autonomy of the individual-with the limitation of the future generations to consent for an intervention over their genome; social justice-keeping in mind the costs of the procedures and their availability to the general population. Discussions can go further from questions such as "How can we do this?" to questions such as "Should we do this?" or "Is society ready to accept this technology and is it able to manage it rationally?" CONCLUSIONS The ethics of biomedical research should be based on global dialogue, on the involvement of experts and the public, to achieve a broad social consensus. The fundamental review of the ethics of genetics is a desire and an opportunity of the current period.
Collapse
|
4
|
Han JY, Lee HJ. Genome Editing Mediated by Primordial Germ Cell in Chicken. Methods Mol Biol 2023; 2637:301-312. [PMID: 36773156 DOI: 10.1007/978-1-0716-3016-7_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
Genome editing technology has facilitated the studies on exploring specific gene functions in diverse living organisms. The technology has also contributed to creating high-value livestock in industry fields in terms of enhancing productivity or acquiring disease resistance. Particularly, applying genome editing technologies in avian species has been emphasized in both academic and industrial fields due to their unique developmental patterns as well as application possibilities. To accomplish genome editing in avian species, gene integration into chicken primordial germ cell (PGC) genome using a virus or transposition systems has been widely used, and recently developed programmable genome editing technologies including clustered regularly interspaced short palindromic repeat (CRISPR) and CRISPR-associated (Cas9) systems enable to edit the genetic information precisely for maximizing the application potentials of avian species. In these regards, this chapter will cover the methods for producing genome-edited chickens, particularly by CRISPR/Cas9 technologies allowing targeted gene insertion, gene knockout, and gene tagging.
Collapse
Affiliation(s)
- Jae Yong Han
- Department of Agricultural Biotechnology, College of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea.
| | - Hong Jo Lee
- Division of Animal Sciences, University of Missouri, Columbia, MO, USA
| |
Collapse
|
5
|
Application of Gene Editing Technology in Resistance Breeding of Livestock. LIFE (BASEL, SWITZERLAND) 2022; 12:life12071070. [PMID: 35888158 PMCID: PMC9325061 DOI: 10.3390/life12071070] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 06/27/2022] [Accepted: 07/06/2022] [Indexed: 02/06/2023]
Abstract
As a new genetic engineering technology, gene editing can precisely modify the specific gene sequence of the organism’s genome. In the last 10 years, with the rapid development of gene editing technology, zinc-finger nucleases (ZFNs), transcription activator-like endonucleases (TALENs), and CRISPR/Cas9 systems have been applied to modify endogenous genes in organisms accurately. Now, gene editing technology has been used in mice, zebrafish, pigs, cattle, goats, sheep, rabbits, monkeys, and other species. Breeding for disease-resistance in agricultural animals tends to be a difficult task for traditional breeding, but gene editing technology has made this easier. In this work, we overview the development and application of gene editing technology in the resistance breeding of livestock. Also, we further discuss the prospects and outlooks of gene editing technology in disease-resistance breeding.
Collapse
|
6
|
Goldsmith T, Bondareva A, Webster D, Voigt AL, Su L, Carlson DF, Dobrinski I. Targeted Gene Editing in Porcine Germ Cells. Methods Mol Biol 2022; 2495:245-258. [PMID: 35696037 PMCID: PMC9733455 DOI: 10.1007/978-1-0716-2301-5_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
As the genetic mutations driving human disease are identified, there is an increasing need for a biomedical model that can accurately represent the disease of interest and provide a platform for potential therapeutic testing. Pigs are a better model for human disease than rodents because of their genetic and physiological similarities to humans. However, current methods to generate porcine models are both technically challenging and expensive. Germline genetic modification through gene edited spermatogonia provides an effective alternative to how these models are developed. Here, we report an improved technique of gene editing in spermatogonia of pigs using CRISPR-Cas9 to generate different edits that reflect the genotypes of human diseases.
Collapse
Affiliation(s)
| | - Alla Bondareva
- Dept. of Comparative Biology & Experimental Medicine, Faculty of Veterinary Medicine; and Dept. of Biochemistry & Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | | | - Anna Laura Voigt
- Dept. of Comparative Biology & Experimental Medicine, Faculty of Veterinary Medicine; and Dept. of Biochemistry & Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Lin Su
- Dept. of Comparative Biology & Experimental Medicine, Faculty of Veterinary Medicine; and Dept. of Biochemistry & Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | | | - Ina Dobrinski
- Dept. of Comparative Biology & Experimental Medicine, Faculty of Veterinary Medicine; and Dept. of Biochemistry & Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
7
|
Rasoulinejad SA, Maroufi F. CRISPR-Based Genome Editing as a New Therapeutic Tool in Retinal Diseases. Mol Biotechnol 2021; 63:768-779. [PMID: 34057656 DOI: 10.1007/s12033-021-00345-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 05/19/2021] [Indexed: 12/26/2022]
Abstract
Retinal diseases are the primary reasons for severe visual defects and irreversible blindness. Retinal diseases are also inherited and acquired. Both of them are caused by mutations in genes or disruptions in specific gene expression, which can be treated by gene-editing therapy. Clustered regularly interspaced short palindromic repeats (CRISPR-Cas9) system is a frontier of gene-editing tools with great potential for therapeutic applications in the ophthalmology field to modify abnormal genes and treat the genome or epigenome-related retinal diseases. The CRISPR system is able to edit and trim the gene include deletion, insertion, inhibition, activation, replacing, remodeling, epigenetic alteration, and modify the gene expression. CRISPR-based genome editing techniques have indicated the enormous potential to treat retinal diseases that previous treatment was not available for them. Also, recent CRISPR genome surgery experiments have shown the improvement of patient's vision who suffered from severe visual loss. In this article, we review the applications of the CRISPR-Cas9 system in human or animal models for treating retinal diseases such as retinitis pigmentosa (RP), Leber congenital amaurosis (LCA), age-related macular degeneration (AMD), proliferative diabetic retinopathy (PDR), and proliferative vitreoretinopathy (PVR), then we survey limitations of CRISPR system for clinical therapy.
Collapse
Affiliation(s)
- Seyed Ahmad Rasoulinejad
- Department of Ophthalmology, Ayatollah Rouhani Hospital, Babol University of Medical Sciences, Babol, Iran.
| | - Faezeh Maroufi
- Department of Medical Laboratory Sciences, Faculty of Allied Medicine, Qazvin University of Medical Sciences, Qazvin, Iran
| |
Collapse
|
8
|
The effect of 5-substituent in cytosine to the photochemical C to U transition in DNA strand. Bioorg Med Chem Lett 2021; 35:127812. [PMID: 33486052 DOI: 10.1016/j.bmcl.2021.127812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 01/05/2021] [Accepted: 01/17/2021] [Indexed: 11/21/2022]
Abstract
Nucleobase editing is a powerful tool in genetic disease therapy. We have reported the photochemical transition of cytosine to uracil using an ultrafast DNA photo-cross-linking. In this study, we used cytosine derivatives such as methylcytosine, hydroxymethylcytosine, and trifluoromethylcytosine to evaluate the effect of 5-position substitution of cytosine on deamination. The conversion of cytosine to uracil was the fastest, and the conversion of trifluoromethylcytosine to trifluoromethyluracil was the slowest. The order was correlated with the hydrophilicity of the double strand containing these cytosine derivatives.
Collapse
|
9
|
Gutierrez-Reinoso MA, Aponte PM, Garcia-Herreros M. Genomic Analysis, Progress and Future Perspectives in Dairy Cattle Selection: A Review. Animals (Basel) 2021; 11:599. [PMID: 33668747 PMCID: PMC7996307 DOI: 10.3390/ani11030599] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 11/23/2020] [Accepted: 11/24/2020] [Indexed: 12/16/2022] Open
Abstract
Genomics comprises a set of current and valuable technologies implemented as selection tools in dairy cattle commercial breeding programs. The intensive progeny testing for production and reproductive traits based on genomic breeding values (GEBVs) has been crucial to increasing dairy cattle productivity. The knowledge of key genes and haplotypes, including their regulation mechanisms, as markers for productivity traits, may improve the strategies on the present and future for dairy cattle selection. Genome-wide association studies (GWAS) such as quantitative trait loci (QTL), single nucleotide polymorphisms (SNPs), or single-step genomic best linear unbiased prediction (ssGBLUP) methods have already been included in global dairy programs for the estimation of marker-assisted selection-derived effects. The increase in genetic progress based on genomic predicting accuracy has also contributed to the understanding of genetic effects in dairy cattle offspring. However, the crossing within inbred-lines critically increased homozygosis with accumulated negative effects of inbreeding like a decline in reproductive performance. Thus, inaccurate-biased estimations based on empirical-conventional models of dairy production systems face an increased risk of providing suboptimal results derived from errors in the selection of candidates of high genetic merit-based just on low-heritability phenotypic traits. This extends the generation intervals and increases costs due to the significant reduction of genetic gains. The remarkable progress of genomic prediction increases the accurate selection of superior candidates. The scope of the present review is to summarize and discuss the advances and challenges of genomic tools for dairy cattle selection for optimizing breeding programs and controlling negative inbreeding depression effects on productivity and consequently, achieving economic-effective advances in food production efficiency. Particular attention is given to the potential genomic selection-derived results to facilitate precision management on modern dairy farms, including an overview of novel genome editing methodologies as perspectives toward the future.
Collapse
Affiliation(s)
- Miguel A. Gutierrez-Reinoso
- Facultad de Ciencias Agropecuarias y Recursos Naturales, Carrera de Medicina Veterinaria, Universidad Técnica de Cotopaxi (UTC), Latacunga 05-0150, Ecuador
- Laboratorio de Biotecnología Animal, Departamento de Ciencia Animal, Facultad de Ciencias Veterinarias, Universidad de Concepción (UdeC), Chillán 3780000, Chile
| | - Pedro M. Aponte
- Colegio de Ciencias Biológicas y Ambientales (COCIBA), Universidad San Francisco de Quito (USFQ), Quito 170157, Ecuador
- Campus Cumbayá, Instituto de Investigaciones en Biomedicina “One-health”, Universidad San Francisco de Quito (USFQ), Quito 170157, Ecuador
| | - Manuel Garcia-Herreros
- Instituto Nacional de Investigação Agrária e Veterinária (INIAV), 2005-048 Santarém, Portugal
| |
Collapse
|
10
|
Mueller ML, Cole JB, Connors NK, Johnston DJ, Randhawa IAS, Van Eenennaam AL. Comparison of Gene Editing Versus Conventional Breeding to Introgress the POLLED Allele Into the Tropically Adapted Australian Beef Cattle Population. Front Genet 2021; 12:593154. [PMID: 33643378 PMCID: PMC7905321 DOI: 10.3389/fgene.2021.593154] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Accepted: 01/11/2021] [Indexed: 12/12/2022] Open
Abstract
Dehorning is the process of physically removing horns to protect animals and humans from injury, but the process is costly, unpleasant, and faces increasing public scrutiny. Genetic selection for polled (hornless), which is genetically dominant to horned, is a long-term solution to eliminate the need for dehorning. However, due to the limited number of polled Australian Brahman bulls, the northern Australian beef cattle population remains predominantly horned. The potential to use gene editing to produce high-genetic-merit polled cattle was recently demonstrated. To further explore the concept, this study simulated introgression of the POLLED allele into a tropically adapted Australian beef cattle population via conventional breeding or gene editing (top 1% or 10% of seedstock bulls/year) for 3 polled mating schemes and compared results to baseline selection on genetic merit (Japan Ox selection index, $JapOx) alone, over the course of 20 years. The baseline scenario did not significantly decrease the 20-year HORNED allele frequency (80%), but resulted in one of the fastest rates of genetic gain ($8.00/year). Compared to the baseline, the conventional breeding scenarios where polled bulls were preferentially used for breeding, regardless of their genetic merit, significantly decreased the 20-year HORNED allele frequency (30%), but resulted in a significantly slower rate of genetic gain ($6.70/year, P ≤ 0.05). The mating scheme that required the exclusive use of homozygous polled bulls, resulted in the lowest 20-year HORNED allele frequency (8%), but this conventional breeding scenario resulted in the slowest rate of genetic gain ($5.50/year). The addition of gene editing the top 1% or 10% of seedstock bull calves/year to each conventional breeding scenario resulted in significantly faster rates of genetic gain (up to $8.10/year, P ≤ 0.05). Overall, our study demonstrates that, due to the limited number of polled Australian Brahman bulls, strong selection pressure on polled will be necessary to meaningfully increase the number of polled animals in this population. Moreover, these scenarios illustrate how gene editing could be a tool for accelerating the development of high-genetic-merit homozygous polled sires to mitigate the current trade-off of slower genetic gain associated with decreasing HORNED allele frequency in the Australian Brahman population.
Collapse
Affiliation(s)
- Maci L. Mueller
- Department of Animal Science, University of California, Davis, Davis, CA, United States
| | - John B. Cole
- Animal Genomics and Improvement Laboratory, Agricultural Research Service, United States Department of Agricultural, Beltsville, MD, United States
| | - Natalie K. Connors
- Animal Genetics and Breeding Unit (AGBU), University of New England, Armidale, NSW, Australia
| | - David J. Johnston
- Animal Genetics and Breeding Unit (AGBU), University of New England, Armidale, NSW, Australia
| | | | | |
Collapse
|
11
|
Webster D, Bondareva A, Solin S, Goldsmith T, Su L, Lara NDLEM, Carlson DF, Dobrinski I. Targeted Gene Editing in Porcine Spermatogonia. Front Genet 2021; 11:627673. [PMID: 33584819 PMCID: PMC7876475 DOI: 10.3389/fgene.2020.627673] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 12/31/2020] [Indexed: 01/15/2023] Open
Abstract
To study the pathophysiology of human diseases, develop innovative treatments, and refine approaches for regenerative medicine require appropriate preclinical models. Pigs share physiologic and anatomic characteristics with humans and are genetically more similar to humans than are mice. Genetically modified pigs are essential where rodent models do not mimic the human disease phenotype. The male germline stem cell or spermatogonial stem cell (SSC) is unique; it is the only cell type in an adult male that divides and contributes genes to future generations, making it an ideal target for genetic modification. Here we report that CRISPR/Cas9 ribonucleoprotein (RNP)-mediated gene editing in porcine spermatogonia that include SSCs is significantly more efficient than previously reported editing with TALENs and allows precise gene editing by homology directed repair (HDR). We also established homology-mediated end joining (HMEJ) as a second approach to targeted gene editing to enable introduction of larger transgenes and/or humanizing parts of the pig genome for disease modeling or regenerative medicine. In summary, the approaches established in the current study result in efficient targeted genome editing in porcine germ cells for precise replication of human disease alleles.
Collapse
Affiliation(s)
| | - Alla Bondareva
- Department of Comparative Biology and Experimental Medicine, University of Calgary, Calgary, AB, Canada
| | - Staci Solin
- Recombinetics, Inc., St. Paul, MN, United States
| | | | - Lin Su
- Department of Comparative Biology and Experimental Medicine, University of Calgary, Calgary, AB, Canada
| | | | | | - Ina Dobrinski
- Department of Comparative Biology and Experimental Medicine, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
12
|
Kaiser RA, Carlson DF, Allen KL, Webster DA, VanLith CJ, Nicolas CT, Hillin LG, Yu Y, Kaiser CW, Wahoff WR, Hickey RD, Watson AL, Winn SR, Thöny B, Kern DR, Harding CO, Lillegard JB. Development of a porcine model of phenylketonuria with a humanized R408W mutation for gene editing. PLoS One 2021; 16:e0245831. [PMID: 33493163 PMCID: PMC7833140 DOI: 10.1371/journal.pone.0245831] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 01/08/2021] [Indexed: 12/15/2022] Open
Abstract
Phenylketonuria (PKU) is a metabolic disorder whereby phenylalanine metabolism is deficient due to allelic variations in the gene for phenylalanine hydroxylase (PAH). There is no cure for PKU other than orthotopic liver transplantation, and the standard of care for patients is limited to dietary restrictions and key amino acid supplementation. Therefore, Pah was edited in pig fibroblasts for the generation of PKU clone piglets that harbor a common and severe human mutation, R408W. Additionally, the proximal region to the mutation was further humanized by introducing 5 single nucleotide polymorphisms (SNPs) to allow for development of gene editing machinery that could be translated directly from the pig model to human PKU patients that harbor at least one classic R408W allele. Resulting piglets were hypopigmented (a single Ossabaw piglet) and had low birthweight (all piglets). The piglets had similar levels of PAH expression, but no detectable enzymatic activity, consistent with the human phenotype. The piglets were fragile and required extensive neonatal care to prevent failure to thrive and early demise. Phenylalanine levels rose sharply when dietary Phe was unrestricted but could be rapidly reduced with a low Phe diet. Fibroblasts isolated from R408W piglets show susceptibility to correction using CRISPR or TALEN, with subsequent homology-directed recombination to correct Pah. This pig model of PKU provides a powerful new tool for development of all classes of therapeutic candidates to treat or cure PKU, as well as unique value for proof-of-concept studies for in vivo human gene editing platforms in the context of this humanized PKU allele.
Collapse
Affiliation(s)
- Robert A. Kaiser
- Department of Surgery, Mayo Clinic, Rochester, Minnesota, United States of America
- Midwest Fetal Care Center, Children’s Hospitals and Clinics of Minnesota, Minneapolis, Minnesota, United States of America
| | | | - Kari L. Allen
- Department of Surgery, Mayo Clinic, Rochester, Minnesota, United States of America
| | | | - Caitlin J. VanLith
- Department of Surgery, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Clara T. Nicolas
- Department of Surgery, Mayo Clinic, Rochester, Minnesota, United States of America
- Faculty of Medicine, University of Barcelona, Barcelona, Spain
| | - Lori G. Hillin
- Department of Surgery, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Yue Yu
- Department of Surgery, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Catherine W. Kaiser
- Department of Surgery, Mayo Clinic, Rochester, Minnesota, United States of America
| | - William R. Wahoff
- Department of Surgery, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Raymond D. Hickey
- Department of Surgery, Mayo Clinic, Rochester, Minnesota, United States of America
- Department of Molecular Medicine, Mayo Clinic, Rochester, Minnesota, United States of America
| | | | - Shelley R. Winn
- Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Beat Thöny
- Department of Pediatrics, University of Zurich, Zurich, Switzerland
| | - Douglas R. Kern
- Recombinetics, Inc., St. Paul, Minnesota, United States of America
| | - Cary O. Harding
- Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Joseph B. Lillegard
- Department of Surgery, Mayo Clinic, Rochester, Minnesota, United States of America
- Midwest Fetal Care Center, Children’s Hospitals and Clinics of Minnesota, Minneapolis, Minnesota, United States of America
- Pediatric Surgical Associates, Minneapolis, Minnesota, United States of America
- * E-mail:
| |
Collapse
|
13
|
Wang C, Xia X, Li G, Zhi G, Wu Y, Wang L, Ruan L. Research Progress on CRISPR/Cas9: A Bibliometric Analysis Based on a SCI-Expanded Database. SERIALS REVIEW 2021. [DOI: 10.1080/00987913.2020.1851440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Caihong Wang
- Center for Scientific and Technical Information, China National Rice Research Institute, Hangzhou, China
| | - Xiaodong Xia
- Center for Scientific and Technical Information, China National Rice Research Institute, Hangzhou, China
| | - Guan Li
- Center for Scientific and Technical Information, China National Rice Research Institute, Hangzhou, China
| | - Guiye Zhi
- Center for Scientific and Technical Information, China National Rice Research Institute, Hangzhou, China
| | - Yawen Wu
- Center for Scientific and Technical Information, China National Rice Research Institute, Hangzhou, China
| | | | - Liuqing Ruan
- Center for Scientific and Technical Information, China National Rice Research Institute, Hangzhou, China
| |
Collapse
|
14
|
Devolder K. Genome Editing in Livestock, Complicity, and the Technological Fix Objection. JOURNAL OF AGRICULTURAL & ENVIRONMENTAL ETHICS 2021; 34:16. [PMID: 34720607 PMCID: PMC8550048 DOI: 10.1007/s10806-021-09858-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 04/29/2021] [Indexed: 05/13/2023]
Abstract
Genome editing in livestock could potentially be used in ways that help resolve some of the most urgent and serious global problems pertaining to livestock, including animal suffering, pollution, antimicrobial resistance, and the spread of infectious disease. But despite this potential, some may object to pursuing it, not because genome editing is wrong in and of itself, but because it is the wrong kind of solution to the problems it addresses: it is merely a 'technological fix' to a complex societal problem. Yet though this objection might have wide intuitive appeal, it is often not clear what, exactly, the moral problem is supposed to be. The aim of this paper is to formulate and shed some light on the 'technological fix objection' to genome editing in livestock. I suggest that three concerns may underlie it, make implicit assumptions underlying the concerns explicit, and cast some doubt on several of these assumptions, at least as they apply to the use of genome editing to produce pigs resistant to the Porcine Reproductive and Respiratory Syndrome and hornless dairy cattle. I then suggest that the third, and most important, concern could be framed as a concern about complicity in factory farming. I suggest ways to evaluate this concern, and to reduce or offset any complicity in factory farming. Thinking of genome editing's contribution to factory farming in terms of complicity, may, I suggest, tie it more explicitly and strongly to the wider obligations that come with pursuing it, including the cessation of factory farming, thereby addressing the concern that technological fixes focus only on a narrow problem.
Collapse
Affiliation(s)
- Katrien Devolder
- Oxford Uehiro Centre for Practical Ethics, University of Oxford, Oxford, UK
| |
Collapse
|
15
|
Schuster F, Aldag P, Frenzel A, Hadeler KG, Lucas-Hahn A, Niemann H, Petersen B. CRISPR/Cas12a mediated knock-in of the Polled Celtic variant to produce a polled genotype in dairy cattle. Sci Rep 2020; 10:13570. [PMID: 32782385 PMCID: PMC7419524 DOI: 10.1038/s41598-020-70531-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 06/25/2020] [Indexed: 02/07/2023] Open
Abstract
In modern livestock farming horned cattle pose an increased risk of injury for each other as well as for the farmers. Dehorning without anesthesia is associated with stress and pain for the calves and raises concerns regarding animal welfare. Naturally occurring structural variants causing polledness are known for most beef cattle but are rare within the dairy cattle population. The most common structural variant in beef cattle consists of a 202 base pair insertion-deletion (Polled Celtic variant). For the generation of polled offspring from a horned Holstein-Friesian bull, we isolated the Polled Celtic variant from the genome of an Angus cow and integrated it into the genome of fibroblasts taken from the horned bull using the CRISPR/Cas12a system (formerly Cpf1). Modified fibroblasts served as donor cells for somatic cell nuclear transfer and reconstructed embryos were transferred into synchronized recipients. One resulting pregnancy was terminated on day 90 of gestation for the examination of the fetus. Macroscopic and histological analyses proved a polled phenotype. The remaining pregnancy was carried to term and delivered one calf with a polled phenotype which died shortly after birth. In conclusion, we successfully demonstrated the practical application of CRISPR/Cas12a in farm animal breeding and husbandry.
Collapse
Affiliation(s)
- Felix Schuster
- Institute of Farm Animal Genetics, Friedrich-Loeffler-Institute, Hoeltystrasse 10, 31535, Neustadt am Rübenberge, Germany
| | - Patrick Aldag
- Institute of Farm Animal Genetics, Friedrich-Loeffler-Institute, Hoeltystrasse 10, 31535, Neustadt am Rübenberge, Germany
| | - Antje Frenzel
- Institute of Farm Animal Genetics, Friedrich-Loeffler-Institute, Hoeltystrasse 10, 31535, Neustadt am Rübenberge, Germany
| | - Klaus-Gerd Hadeler
- Institute of Farm Animal Genetics, Friedrich-Loeffler-Institute, Hoeltystrasse 10, 31535, Neustadt am Rübenberge, Germany
| | - Andrea Lucas-Hahn
- Institute of Farm Animal Genetics, Friedrich-Loeffler-Institute, Hoeltystrasse 10, 31535, Neustadt am Rübenberge, Germany
| | - Heiner Niemann
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, 30625, Hannover, Germany
| | - Björn Petersen
- Institute of Farm Animal Genetics, Friedrich-Loeffler-Institute, Hoeltystrasse 10, 31535, Neustadt am Rübenberge, Germany.
| |
Collapse
|
16
|
Iturria-Medina Y, Khan AF, Adewale Q, Shirazi AH. Blood and brain gene expression trajectories mirror neuropathology and clinical deterioration in neurodegeneration. Brain 2020; 143:661-673. [PMID: 31989163 DOI: 10.1093/brain/awz400] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 10/05/2019] [Accepted: 11/04/2019] [Indexed: 12/28/2022] Open
Abstract
Most prevalent neurodegenerative disorders take decades to develop and their early detection is challenged by confounding non-pathological ageing processes. For all neurodegenerative conditions, we continue to lack longitudinal gene expression data covering their large temporal evolution, which hinders the understanding of the underlying dynamic molecular mechanisms. Here, we overcome this key limitation by introducing a novel gene expression contrastive trajectory inference (GE-cTI) method that reveals enriched temporal patterns in a diseased population. Evaluated on 1969 subjects in the spectrum of late-onset Alzheimer's and Huntington's diseases (from ROSMAP, HBTRC and ADNI datasets), this unsupervised machine learning algorithm strongly predicts neuropathological severity (e.g. Braak, amyloid and Vonsattel stages). Furthermore, when applied to in vivo blood samples at baseline (ADNI), it significantly predicts clinical deterioration and conversion to advanced disease stages, supporting the identification of a minimally invasive (blood-based) tool for early clinical screening. This technique also allows the discovery of genes and molecular pathways, in both peripheral and brain tissues, that are highly predictive of disease evolution. Eighty-five to ninety per cent of the most predictive molecular pathways identified in the brain are also top predictors in the blood. These pathways support the importance of studying the peripheral-brain axis, providing further evidence for a key role of vascular structure/functioning and immune system response. The GE-cTI is a promising tool for revealing complex neuropathological mechanisms, with direct implications for implementing personalized dynamic treatments in neurology.
Collapse
Affiliation(s)
- Yasser Iturria-Medina
- McConnell Brain Imaging Center, Montreal Neurological Institute, Montreal, Canada.,Ludmer Centre for NeuroInformatics and Mental Health, Montreal, Canada
| | - Ahmed F Khan
- McConnell Brain Imaging Center, Montreal Neurological Institute, Montreal, Canada.,Ludmer Centre for NeuroInformatics and Mental Health, Montreal, Canada
| | - Quadri Adewale
- McConnell Brain Imaging Center, Montreal Neurological Institute, Montreal, Canada.,Ludmer Centre for NeuroInformatics and Mental Health, Montreal, Canada
| | - Amir H Shirazi
- McConnell Brain Imaging Center, Montreal Neurological Institute, Montreal, Canada.,Ludmer Centre for NeuroInformatics and Mental Health, Montreal, Canada
| | | |
Collapse
|
17
|
Engevik AC, Coutts AW, Kaji I, Rodriguez P, Ongaratto F, Saqui-Salces M, Medida RL, Meyer AR, Kolobova E, Engevik MA, Williams JA, Shub MD, Carlson DF, Melkamu T, Goldenring JR. Editing Myosin VB Gene to Create Porcine Model of Microvillus Inclusion Disease, With Microvillus-Lined Inclusions and Alterations in Sodium Transporters. Gastroenterology 2020; 158:2236-2249.e9. [PMID: 32112796 PMCID: PMC7282982 DOI: 10.1053/j.gastro.2020.02.034] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 02/07/2020] [Accepted: 02/17/2020] [Indexed: 01/04/2023]
Abstract
BACKGROUND & AIMS Microvillus inclusion disease (MVID) is caused by inactivating mutations in the myosin VB gene (MYO5B). MVID is a complex disorder characterized by chronic, watery, life-threatening diarrhea that usually begins in the first hours to days of life. We developed a large animal model of MVID to better understand its pathophysiology. METHODS Pigs were cloned by transfer of chromatin from swine primary fetal fibroblasts, which were edited with TALENs and single-strand oligonucleotide to introduce a P663-L663 substitution in the endogenous swine MYO5B (corresponding to the P660L mutation in human MYO5B, associated with MVID) to fertilized oocytes. We analyzed duodenal tissues from patients with MVID (with the MYO5B P660L mutation) and without (controls), and from pigs using immunohistochemistry. Enteroids were generated from pigs with MYO5B(P663L) and without the substitution (control pigs). RESULTS Duodenal tissues from patients with MVID lacked MYO5B at the base of the apical membrane of intestinal cells; instead MYO5B was intracellular. Intestinal tissues and derived enteroids from MYO5B(P663L) piglets had reduced apical levels and diffuse subapical levels of sodium hydrogen exchanger 3 and SGLT1, which regulate transport of sodium, glucose, and water, compared with tissues from control piglets. However, intestinal tissues and derived enteroids from MYO5B(P663L) piglets maintained CFTR on apical membranes, like tissues from control pigs. Liver tissues from MYO5B(P663L) piglets had alterations in bile salt export pump, a transporter that facilitates bile flow, which is normally expressed in the bile canaliculi in the liver. CONCLUSIONS We developed a large animal model of MVID that has many features of the human disease. Studies of this model could provide information about the functions of MYO5B and MVID pathogenesis, and might lead to new treatments.
Collapse
Affiliation(s)
- Amy C Engevik
- Department of Surgery, Vanderbilt University School of Medicine, Nashville, Tennessee; The Epithelial Biology Center, Vanderbilt University School of Medicine, Nashville, Tennessee.
| | | | - Izumi Kaji
- Department of Surgery, Vanderbilt University School of Medicine, Nashville, Tennessee; The Epithelial Biology Center, Vanderbilt University School of Medicine, Nashville, Tennessee
| | | | | | - Milena Saqui-Salces
- Department of Animal Science, University of Minnesota, Saint Paul, Minnesota
| | - Ramya Lekha Medida
- Department of Animal Science, University of Minnesota, Saint Paul, Minnesota
| | - Anne R Meyer
- Department of Surgery, Vanderbilt University School of Medicine, Nashville, Tennessee; The Epithelial Biology Center, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Elena Kolobova
- Department of Surgery, Vanderbilt University School of Medicine, Nashville, Tennessee; The Epithelial Biology Center, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Melinda A Engevik
- Baylor College of Medicine and Texas Children's Hospital, Houston, Texas
| | - Janice A Williams
- Department of Surgery, Vanderbilt University School of Medicine, Nashville, Tennessee; The Epithelial Biology Center, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Mitchell D Shub
- Phoenix Children's Hospital and University of Arizona College of Medicine-Phoenix, Phoenix, Arizona
| | | | | | - James R Goldenring
- Department of Surgery, Vanderbilt University School of Medicine, Nashville, Tennessee; The Epithelial Biology Center, Vanderbilt University School of Medicine, Nashville, Tennessee; Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee; Nashville Veterans Affairs Medical Center, Nashville, Tennessee
| |
Collapse
|
18
|
Matsunari H, Watanabe M, Hasegawa K, Uchikura A, Nakano K, Umeyama K, Masaki H, Hamanaka S, Yamaguchi T, Nagaya M, Nishinakamura R, Nakauchi H, Nagashima H. Compensation of Disabled Organogeneses in Genetically Modified Pig Fetuses by Blastocyst Complementation. Stem Cell Reports 2020; 14:21-33. [PMID: 31883918 PMCID: PMC6962638 DOI: 10.1016/j.stemcr.2019.11.008] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 11/26/2019] [Accepted: 11/26/2019] [Indexed: 12/26/2022] Open
Abstract
We have previously established a concept of developing exogenic pancreas in a genetically modified pig fetus with an apancreatic trait, thereby proposing the possibility of in vivo generation of functional human organs in xenogenic large animals. In this study, we aimed to demonstrate a further proof-of-concept of the compensation for disabled organogeneses in pig, including pancreatogenesis, nephrogenesis, hepatogenesis, and vasculogenesis. These dysorganogenetic phenotypes could be efficiently induced via genome editing of the cloned pigs. Induced dysorganogenetic traits could also be compensated by allogenic blastocyst complementation, thereby proving the extended concept of organ regeneration from exogenous pluripotent cells in empty niches during various organogeneses. These results suggest that the feasibility of blastocyst complementation using genome-edited cloned embryos permits experimentation toward the in vivo organ generation in pigs from xenogenic pluripotent cells.
Collapse
Affiliation(s)
- Hitomi Matsunari
- Meiji University International Institute for Bio-Resource Research, 1-1-1 Higashimita, Tama-ku, Kawasaki, Kanagawa 214-8571, Japan
| | - Masahito Watanabe
- Meiji University International Institute for Bio-Resource Research, 1-1-1 Higashimita, Tama-ku, Kawasaki, Kanagawa 214-8571, Japan
| | - Koki Hasegawa
- Laboratory of Developmental Engineering, Department of Life Sciences, School of Agriculture, Meiji University, 1-1-1 Higashimita, Tama-ku, Kawasaki, Kanagawa 214-8571, Japan
| | - Ayuko Uchikura
- Laboratory of Developmental Engineering, Department of Life Sciences, School of Agriculture, Meiji University, 1-1-1 Higashimita, Tama-ku, Kawasaki, Kanagawa 214-8571, Japan
| | - Kazuaki Nakano
- Laboratory of Developmental Engineering, Department of Life Sciences, School of Agriculture, Meiji University, 1-1-1 Higashimita, Tama-ku, Kawasaki, Kanagawa 214-8571, Japan
| | - Kazuhiro Umeyama
- Meiji University International Institute for Bio-Resource Research, 1-1-1 Higashimita, Tama-ku, Kawasaki, Kanagawa 214-8571, Japan
| | - Hideki Masaki
- Division of Stem Cell Therapy, Distinguished Professor Unit, Institute of Medical Science, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Sanae Hamanaka
- Division of Stem Cell Therapy, Distinguished Professor Unit, Institute of Medical Science, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Tomoyuki Yamaguchi
- Division of Stem Cell Therapy, Distinguished Professor Unit, Institute of Medical Science, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Masaki Nagaya
- Meiji University International Institute for Bio-Resource Research, 1-1-1 Higashimita, Tama-ku, Kawasaki, Kanagawa 214-8571, Japan
| | - Ryuichi Nishinakamura
- Department of Kidney Development, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, Kumamoto 860-0811, Japan
| | - Hiromitsu Nakauchi
- Institute for Stem Cell Biology and Regenerative Medicine, Department of Genetics, Stanford University School of Medicine, 265 Campus Drive, Stanford, CA 94305, USA; Division of Stem Cell Therapy, Distinguished Professor Unit, Institute of Medical Science, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Hiroshi Nagashima
- Meiji University International Institute for Bio-Resource Research, 1-1-1 Higashimita, Tama-ku, Kawasaki, Kanagawa 214-8571, Japan; Laboratory of Developmental Engineering, Department of Life Sciences, School of Agriculture, Meiji University, 1-1-1 Higashimita, Tama-ku, Kawasaki, Kanagawa 214-8571, Japan.
| |
Collapse
|
19
|
Yunes MC, Teixeira DL, von Keyserlingk MAG, Hötzel MJ. Is gene editing an acceptable alternative to castration in pigs? PLoS One 2019; 14:e0218176. [PMID: 31233520 PMCID: PMC6590801 DOI: 10.1371/journal.pone.0218176] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 05/28/2019] [Indexed: 12/26/2022] Open
Abstract
Male piglets are commonly castrated to eliminate the risk of boar taint. Surgical castration is the commonly used procedure and is known to induce pain. Gene modification targeted at eliminating boar taint in male pigs has been proposed as a possible alternative to surgical castration. The aims of this study were to explore public acceptability of this biotechnology using a mixed methods approach. Quantitative data to assess acceptability of 570 participants from southern Brazil were analysed with multinomial logistic regression models and Spearman correlations; qualitative responses of the reasons provided in support of their position were coded into themes. Just over half of the participants (56%) considered gene modification of male pigs acceptable. Acceptability was lower among participants who grew up in an agricultural environment (ρ = 0.02), but was not influenced by sex, age, religion, urban or rural living, or level of education. Acceptability of gene modification of male pigs as an alternative to surgical castration was positively related to the perception of benefits (r = -0.56, ρ<0.0001) and negatively related to the participant’s perception of risks (r = -0.35, ρ<0.0001). Acceptability was not related to knowledge of basic concepts of genetic biotechnologies (r = 0.06, ρ<0.14), or to awareness of issues related to pig castration or boar taint (r = 0.03, ρ<0.44), both of which were low among participants. Participants that considered gene modification of pigs acceptable justified their position using arguments that it improved animal welfare. In contrast, those that were not in favour were generally opposed to genetic modification. Unforeseen downstream consequences of using genetic modification in this manner was a major concern raised by over 80% of participants. Our findings suggest that perceived animal welfare may encourage public support of gene editing of food animals. However, potential risks of the technology need to be addressed and conveyed to the public, as many participants requested clarification of such risks as a condition for support.
Collapse
Affiliation(s)
- Maria Cristina Yunes
- Laboratório de Etologia Aplicada e Bem-Estar Animal, Departamento de Zootecnia e Desenvolvimento Rural, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Dayane L. Teixeira
- Departamento de Ciencias Animales, Facultad de Agronomía e Ingeniería Forestal, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Marina A. G. von Keyserlingk
- Animal Welfare Program, Faculty of Land and Food Systems, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Maria J. Hötzel
- Laboratório de Etologia Aplicada e Bem-Estar Animal, Departamento de Zootecnia e Desenvolvimento Rural, Universidade Federal de Santa Catarina, Florianópolis, Brazil
- * E-mail:
| |
Collapse
|
20
|
de Graeff N, Jongsma KR, Johnston J, Hartley S, Bredenoord AL. The ethics of genome editing in non-human animals: a systematic review of reasons reported in the academic literature. Philos Trans R Soc Lond B Biol Sci 2019; 374:20180106. [PMID: 30905297 PMCID: PMC6452271 DOI: 10.1098/rstb.2018.0106] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/10/2018] [Indexed: 12/16/2022] Open
Abstract
In recent years, new genome editing technologies have emerged that can edit the genome of non-human animals with progressively increasing efficiency. Despite ongoing academic debate about the ethical implications of these technologies, no comprehensive overview of this debate exists. To address this gap in the literature, we conducted a systematic review of the reasons reported in the academic literature for and against the development and use of genome editing technologies in animals. Most included articles were written by academics from the biomedical or animal sciences. The reported reasons related to seven themes: human health, efficiency, risks and uncertainty, animal welfare, animal dignity, environmental considerations and public acceptability. Our findings illuminate several key considerations about the academic debate, including a low disciplinary diversity in the contributing academics, a scarcity of systematic comparisons of potential consequences of using these technologies, an underrepresentation of animal interests, and a disjunction between the public and academic debate on this topic. As such, this article can be considered a call for a broad range of academics to get increasingly involved in the discussion about genome editing, to incorporate animal interests and systematic comparisons, and to further discuss the aims and methods of public involvement. This article is part of a discussion meeting issue 'The ecology and evolution of prokaryotic CRISPR-Cas adaptive immune systems'.
Collapse
Affiliation(s)
- Nienke de Graeff
- Department of Medical Humanities, Julius Center, University Medical Center Utrecht/Utrecht University, PO Box 85500, Utrecht, GA 3508, The Netherlands
| | - Karin R. Jongsma
- Department of Medical Humanities, Julius Center, University Medical Center Utrecht/Utrecht University, PO Box 85500, Utrecht, GA 3508, The Netherlands
| | - Josephine Johnston
- Research Department, The Hastings Center, 21 Malcolm Gordon Road, Garrison, NY 10524, USA
| | - Sarah Hartley
- The University of Exeter Business School, University of Exeter, Rennes Drive, Exeter EX4 4PU, UK
| | - Annelien L. Bredenoord
- Department of Medical Humanities, Julius Center, University Medical Center Utrecht/Utrecht University, PO Box 85500, Utrecht, GA 3508, The Netherlands
| |
Collapse
|
21
|
Mueller ML, Cole JB, Sonstegard TS, Van Eenennaam AL. Comparison of gene editing versus conventional breeding to introgress the POLLED allele into the US dairy cattle population. J Dairy Sci 2019; 102:4215-4226. [PMID: 30852022 DOI: 10.3168/jds.2018-15892] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 01/21/2019] [Indexed: 12/17/2022]
Abstract
Disbudding and dehorning are commonly used cattle management practices to protect animals and humans from injury. They are unpleasant, costly processes subject to increased public scrutiny as an animal welfare issue. Horns are a recessively inherited trait, so one option to eliminate dehorning is to breed for polled (hornlessness). However, due to the low genetic merit and scarcity of polled dairy sires, this approach has not been widely adopted. In March 2018, only 3 Holstein and 0 Jersey active homozygous polled sires were registered with the National Association of Animal Breeders. Alternatively, gene editing to produce high-genetic-merit polled sires has been proposed. To further explore this concept, introgression of the POLLED allele into both the US Holstein and Jersey cattle populations via conventional breeding or gene editing (top 1% of bulls/year) was simulated for 3 polled mating schemes and compared with baseline selection on lifetime net merit (NM$) alone, over the course of 20 yr. Scenarios were replicated 10 times and the changes in HORNED allele frequency, inbreeding, genetic gain (NM$), and number of unique sires used were calculated. Gene editing decreased the frequency of the HORNED allele to <0.1 after 20 yr, which was as fast or faster than conventional breeding for both breeds. In the mating scheme that required the use of only existing homozygous polled sires, inbreeding reached 17% (Holstein) and 14% (Jersey), compared with less than 7% in the baseline scenarios. However, gene editing in the same mating scheme resulted in significantly less inbreeding, 9% (Holstein) and 8% (Jersey). Also, gene editing resulted in significantly higher NM$ after 20 yr compared with conventional breeding for both breeds. Additionally, the gene editing scenarios of both breeds used a significantly greater number of unique sires compared with either the conventional breeding or baseline scenarios. Overall, our simulations show that, given the current genetic merit of horned and polled dairy sires, the use of conventional breeding methods to decrease the frequency of the HORNED allele will increase inbreeding and slow genetic improvement. Furthermore, this study demonstrates how gene editing could be used to rapidly decrease the frequency of the HORNED allele in US dairy cattle populations while maintaining the rate of genetic gain, constraining inbreeding to acceptable levels, and simultaneously addressing an emerging animal welfare concern.
Collapse
Affiliation(s)
- M L Mueller
- Department of Animal Science, University of California, Davis 95616
| | - J B Cole
- USDA, Agricultural Research Service, Animal Genomics and Improvement Laboratory, Beltsville, MD 20705-2350
| | | | - A L Van Eenennaam
- Department of Animal Science, University of California, Davis 95616.
| |
Collapse
|
22
|
Saha SK, Saikot FK, Rahman MS, Jamal MAHM, Rahman SMK, Islam SMR, Kim KH. Programmable Molecular Scissors: Applications of a New Tool for Genome Editing in Biotech. MOLECULAR THERAPY. NUCLEIC ACIDS 2019; 14:212-238. [PMID: 30641475 PMCID: PMC6330515 DOI: 10.1016/j.omtn.2018.11.016] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 11/23/2018] [Accepted: 11/23/2018] [Indexed: 01/04/2023]
Abstract
Targeted genome editing is an advanced technique that enables precise modification of the nucleic acid sequences in a genome. Genome editing is typically performed using tools, such as molecular scissors, to cut a defined location in a specific gene. Genome editing has impacted various fields of biotechnology, such as agriculture; biopharmaceutical production; studies on the structure, regulation, and function of the genome; and the creation of transgenic organisms and cell lines. Although genome editing is used frequently, it has several limitations. Here, we provide an overview of well-studied genome-editing nucleases, including single-stranded oligodeoxynucleotides (ssODNs), transcription activator-like effector nucleases (TALENs), zinc-finger nucleases (ZFNs), and CRISPR-Cas9 RNA-guided nucleases (CRISPR-Cas9). To this end, we describe the progress toward editable nuclease-based therapies and discuss the minimization of off-target mutagenesis. Future prospects of this challenging scientific field are also discussed.
Collapse
Affiliation(s)
- Subbroto Kumar Saha
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, 120 Neungdong-Ro, Seoul 05029, Republic of Korea.
| | - Forhad Karim Saikot
- Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology, Jashore 7408, Bangladesh
| | - Md Shahedur Rahman
- Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology, Jashore 7408, Bangladesh
| | | | - S M Khaledur Rahman
- Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology, Jashore 7408, Bangladesh
| | - S M Riazul Islam
- Department of Computer Science and Engineering, Sejong University, 209 Neungdong-ro, Gwangjin-gu, Seoul 05006, South Korea
| | - Ki-Hyun Kim
- Department of Civil & Environmental Engineering, Hanyang University, 222 Wangsimni-Ro, Seoul 04763, Republic of Korea.
| |
Collapse
|
23
|
CRISPR/Cas and recombinase-based human-to-pig orthotopic gene exchange for xenotransplantation. J Surg Res 2018; 229:28-40. [DOI: 10.1016/j.jss.2018.03.051] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 02/13/2018] [Accepted: 03/20/2018] [Indexed: 12/12/2022]
|
24
|
Sethi S, Nakamura S, Fujimoto K. Study of Photochemical Cytosine to Uracil Transition via Ultrafast Photo-Cross-Linking Using Vinylcarbazole Derivatives in Duplex DNA. Molecules 2018; 23:molecules23040828. [PMID: 29617316 PMCID: PMC6017022 DOI: 10.3390/molecules23040828] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 03/30/2018] [Accepted: 04/02/2018] [Indexed: 12/14/2022] Open
Abstract
Gene therapies, including genome editing, RNAi, anti-sense technology and chemical DNA editing are becoming major methods for the treatment of genetic disorders. Techniques like CRISPR-Cas9, zinc finger nuclease (ZFN) and transcription activator-like effector-based nuclease (TALEN) are a few such enzymatic techniques. Most enzymatic genome editing techniques have their disadvantages. Thus, non-enzymatic and non-invasive technologies for nucleic acid editing has been reported in this study which might possess some advantages over the older methods of DNA manipulation. 3-cyanovinyl carbazole (CNVK) based nucleic acid editing takes advantage of photo-cross-linking between a target pyrimidine and the CNVK to afford deamination of cytosine and convert it to uracil. This method previously required the use of high temperatures but, in this study, it has been optimized to take place at physiological conditions. Different counter bases (inosine, guanine and cytosine) complementary to the target cytosine were used, along with derivatives of CNVK (NH2VK and OHVK) to afford the deamination at physiological conditions.
Collapse
Affiliation(s)
- Siddhant Sethi
- Department of Advanced Science and Technology, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa 923-1211, Japan.
| | - Shigetaka Nakamura
- Department of Advanced Science and Technology, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa 923-1211, Japan.
| | - Kenzo Fujimoto
- Department of Advanced Science and Technology, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa 923-1211, Japan.
| |
Collapse
|
25
|
Wang X, Niu Y, Zhou J, Zhu H, Ma B, Yu H, Yan H, Hua J, Huang X, Qu L, Chen Y. CRISPR/Cas9-mediatedMSTNdisruption and heritable mutagenesis in goats causes increased body mass. Anim Genet 2018; 49:43-51. [DOI: 10.1111/age.12626] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/09/2017] [Indexed: 12/16/2022]
Affiliation(s)
- X. Wang
- College of Animal Science and Technology; Northwest A&F University; Yangling 712100 China
| | - Y. Niu
- College of Animal Science and Technology; Northwest A&F University; Yangling 712100 China
| | - J. Zhou
- School of Life Science and Technology; ShanghaiTech University; Shanghai 201210 China
| | - H. Zhu
- Shaanxi Provincial Engineering and Technology Research Center of Cashmere Goats; Yulin 719000 China
- Life Science Research Center; Yulin University; Yulin 719000 China
| | - B. Ma
- College of Veterinary Medicine; Shaanxi Centre of Stem Cells Engineering & Technology; Northwest A&F University; Yangling 712100 China
| | - H. Yu
- Shaanxi Provincial Engineering and Technology Research Center of Cashmere Goats; Yulin 719000 China
- Life Science Research Center; Yulin University; Yulin 719000 China
| | - H. Yan
- College of Animal Science and Technology; Northwest A&F University; Yangling 712100 China
- Shaanxi Provincial Engineering and Technology Research Center of Cashmere Goats; Yulin 719000 China
- Life Science Research Center; Yulin University; Yulin 719000 China
| | - J. Hua
- College of Veterinary Medicine; Shaanxi Centre of Stem Cells Engineering & Technology; Northwest A&F University; Yangling 712100 China
| | - X. Huang
- School of Life Science and Technology; ShanghaiTech University; Shanghai 201210 China
| | - L. Qu
- Shaanxi Provincial Engineering and Technology Research Center of Cashmere Goats; Yulin 719000 China
- Life Science Research Center; Yulin University; Yulin 719000 China
| | - Y. Chen
- College of Animal Science and Technology; Northwest A&F University; Yangling 712100 China
| |
Collapse
|
26
|
Khan MHU, Khan SU, Muhammad A, Hu L, Yang Y, Fan C. Induced mutation and epigenetics modification in plants for crop improvement by targeting CRISPR/Cas9 technology. J Cell Physiol 2018; 233:4578-4594. [PMID: 29194606 DOI: 10.1002/jcp.26299] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 11/28/2017] [Indexed: 12/26/2022]
Abstract
Clustered regularly interspaced palindromic repeats associated protein Cas9 (CRISPR-Cas9), originally an adaptive immunity system of prokaryotes, is revolutionizing genome editing technologies with minimal off-targets in the present era. The CRISPR/Cas9 is now highly emergent, advanced, and highly specific tool for genome engineering. The technology is widely used to animal and plant genomes to achieve desirable results. The present review will encompass how CRISPR-Cas9 is revealing its beneficial role in characterizing plant genetic functions, genomic rearrangement, how it advances the site-specific mutagenesis, and epigenetics modification in plants to improve the yield of field crops with minimal side-effects. The possible pitfalls of using and designing CRISPR-Cas9 for plant genome editing are also discussed for its more appropriate applications in plant biology. Therefore, CRISPR/Cas9 system has multiple benefits that mostly scientists select for genome editing in several biological systems.
Collapse
Affiliation(s)
| | - Shahid U Khan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Ali Muhammad
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Limin Hu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Yang Yang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Chuchuan Fan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
27
|
|
28
|
Ikeda M, Matsuyama S, Akagi S, Ohkoshi K, Nakamura S, Minabe S, Kimura K, Hosoe M. Correction of a Disease Mutation using CRISPR/Cas9-assisted Genome Editing in Japanese Black Cattle. Sci Rep 2017; 7:17827. [PMID: 29259316 PMCID: PMC5736618 DOI: 10.1038/s41598-017-17968-w] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 12/04/2017] [Indexed: 12/20/2022] Open
Abstract
Isoleucyl-tRNA synthetase (IARS) syndrome is a recessive disease of Japanese Black cattle caused by a single nucleotide substitution. To repair the mutated IARS gene, we designed clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) to create a double-strand break near the mutation site. CRISPR/Cas9 and donor DNA that contained a synonymous codon for the correct amino acid and an Aequorea coerulescens Green Fluorescent Protein (AcGFP) cassette with a piggyBac transposase recognition site at both ends were introduced into bovine fetal fibroblast (BFF) cells isolated from a homozygous mutant calf. Recombinant cells were enriched on the basis of expression of AcGFP, and two cell lines that contained the repaired allele were subcloned. We generated somatic cell nuclear transfer (SCNT) embryos from the repaired cells and transferred 22 blastocysts to recipient cows. In total, five viable fetuses were retrieved at Days 34 and 36. PiggyBac transposase mRNA was introduced into BFF cells isolated from cloned foetuses and AcGFP-negative cells were used for second round of cloning. We transferred nine SCNT embryos to recipient cows and retrieved two fetuses at Day 34. Fetal genomic DNA analysis showed correct repair of the IARS mutation without any additional DNA footprint.
Collapse
Affiliation(s)
- Mitsumi Ikeda
- Institute of Agrobiological Sciences, NARO, Ikenodai 2, Tsukuba, Ibaraki, 305-8602, Japan
| | - Shuichi Matsuyama
- Institute of Livestock and Grassland Science, NARO, Senbonmatsu 768, Nasushiobara, Tochigi, 329-2793, Japan
| | - Satoshi Akagi
- Institute of Livestock and Grassland Science, NARO, Ikenodai 2, Tsukuba, Ibaraki, 305-0901, Japan
| | - Katsuhiro Ohkoshi
- Institute of Agrobiological Sciences, NARO, Ikenodai 2, Tsukuba, Ibaraki, 305-8602, Japan
| | - Sho Nakamura
- Institute of Livestock and Grassland Science, NARO, Senbonmatsu 768, Nasushiobara, Tochigi, 329-2793, Japan
| | - Shiori Minabe
- Institute of Livestock and Grassland Science, NARO, Senbonmatsu 768, Nasushiobara, Tochigi, 329-2793, Japan
| | - Koji Kimura
- Okayama University Graduate School of Environmental and Life Science, Tsushima-Naka 1-1-1, Kita-ku, Okayama, 700-8530, Japan
| | - Misa Hosoe
- Institute of Agrobiological Sciences, NARO, Ikenodai 2, Tsukuba, Ibaraki, 305-8602, Japan.
| |
Collapse
|
29
|
Genome editing for disease resistance in livestock. Emerg Top Life Sci 2017; 1:209-219. [DOI: 10.1042/etls20170032] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 10/02/2017] [Accepted: 10/04/2017] [Indexed: 12/12/2022]
Abstract
One of the major burdens on the livestock industry is loss of animals and decrease in production efficiency due to disease. Advances in sequencing technology and genome-editing techniques provide the unique opportunity to generate animals with improved traits. In this review we discuss the techniques currently applied to genetic manipulation of livestock species and the efforts in making animals disease resistant or resilient.
Collapse
|
30
|
Lamas-Toranzo I, Guerrero-Sánchez J, Miralles-Bover H, Alegre-Cid G, Pericuesta E, Bermejo-Álvarez P. CRISPR is knocking on barn door. Reprod Domest Anim 2017; 52 Suppl 4:39-47. [DOI: 10.1111/rda.13047] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
| | | | | | - G Alegre-Cid
- Departamento de Reproducción Animal; INIA; Madrid Spain
| | - E Pericuesta
- Departamento de Reproducción Animal; INIA; Madrid Spain
| | | |
Collapse
|
31
|
Stem cells and genome editing: approaches to tissue regeneration and regenerative medicine. J Hum Genet 2017; 63:165-178. [PMID: 29192237 DOI: 10.1038/s10038-017-0348-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 08/20/2017] [Accepted: 08/21/2017] [Indexed: 12/20/2022]
Abstract
Understanding the basis of regeneration of each tissue and organ, and incorporating this knowledge into clinical treatments for degenerative tissues and organs in patients, are major goals for researchers in regenerative biology. Here we provide an overview of current work, from high-regeneration animal models, to stem cell-based culture models, transplantation technologies, large-animal chimeric models, and programmable nuclease-based genome-editing technologies. Three-dimensional culture generating organoids, which represents intact tissue/organ identity including cell fate and morphology are getting more general approaches in the fields by taking advantage of embryonic stem cells, induced pluripotent stem cells and adult stem cells. The organoid culture system potentially has profound impact on the field of regenerative medicine. We also emphasize that the large animal model, in particular pig model would be a hope to manufacture humanized organs in in vivo empty (vacant) niche, which now potentially allows not only appropriate cell fate identity but nearly the same property as human organs in size. Therefore, integrative and collaborative researches across different fields might be critical to the aims needed in clinical trial.
Collapse
|
32
|
Sethi S, Ooe M, Sakamoto T, Fujimoto K. Effect of nucleobase change on cytosine deamination through DNA photo-cross-linking reaction via 3-cyanovinylcarbazole nucleoside. MOLECULAR BIOSYSTEMS 2017; 13:1152-1156. [PMID: 28453010 DOI: 10.1039/c7mb00082k] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Photo-chemical deamination of cytosine using 3-cyanovinylcarbazole nucleoside (CNVK) mediated photo-cross-linking is a technique for site-directed mutagenesis. Using this technique in vivo requires the elimination of a high-temperature incubation step; instead, incubation should be carried out under physiological conditions. To improve the reactivity of CNVK mediated photo-cross-link induced deamination of cytosine under physiological conditions, an evaluation of base pairing in cytosine was carried out with respect to its deamination. Guanine was replaced with 4 different counter bases (inosine, 2-aminopurine, 5-nitroindole, and nebularine), showing distinct hydrogen bonding patterns with target cytosine, which was incorporated at the -1 position with respect to CNVK in the CNVK-modified photo-responsive oligodeoxyribonucleotides to ascertain the role of hydrogen bonding in deamination under physiological conditions. Among the counter bases, inosine showed the highest acceleration towards the photo-induced deamination reaction.
Collapse
Affiliation(s)
- Siddhant Sethi
- School of Materials Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa 923-1292, Japan.
| | - Minako Ooe
- School of Materials Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa 923-1292, Japan.
| | - Takashi Sakamoto
- School of Materials Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa 923-1292, Japan.
| | - Kenzo Fujimoto
- School of Materials Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa 923-1292, Japan.
| |
Collapse
|
33
|
Doetschman T, Georgieva T. Gene Editing With CRISPR/Cas9 RNA-Directed Nuclease. Circ Res 2017; 120:876-894. [DOI: 10.1161/circresaha.116.309727] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 01/30/2017] [Accepted: 02/06/2017] [Indexed: 12/22/2022]
Abstract
Genetic engineering of model organisms and cultured cells has for decades provided important insights into the mechanisms underlying cardiovascular development and disease. In the past few years the development of several nuclease systems has broadened the range of model/cell systems that can be engineered. Of these, the CRISPR (clustered regularly interspersed short palindromic repeats)/Cas9 (CRISPR-associated protein 9) system has become the favorite for its ease of application. Here we will review this RNA-guided nuclease system for gene editing with respect to its usefulness for cardiovascular studies and with an eye toward potential therapy. Studies on its off-target activity, along with approaches to minimize this activity will be given. The advantages of gene editing versus gene targeting in embryonic stem cells, including the breadth of species and cell types to which it is applicable, will be discussed. We will also cover its use in iPSC for research and possible therapeutic purposes; and we will review its use in muscular dystrophy studies where considerable progress has been made toward dystrophin correction in mice. The CRISPR/Ca9s system is also being used for high-throughput screening of genes, gene regulatory regions, and long noncoding RNAs. In addition, the CRISPR system is being used for nongene-editing purposes such as activation and inhibition of gene expression, as well as for fluorescence tagging of chromosomal regions and individual mRNAs to track their cellular location. Finally, an approach to circumvent the inability of post-mitotic cells to support homologous recombination-based gene editing will be presented. In conclusion, applications of the CRISPR/Cas system are expanding at a breath-taking pace and are revolutionizing approaches to gain a better understanding of human diseases.
Collapse
Affiliation(s)
- Thomas Doetschman
- From the BIO5 Institute (T.D., T.G.) and Department of Cellular and Molecular Medicine (T.D.), University of Arizona, Tucson
| | - Teodora Georgieva
- From the BIO5 Institute (T.D., T.G.) and Department of Cellular and Molecular Medicine (T.D.), University of Arizona, Tucson
| |
Collapse
|
34
|
Wiggans GR, Cole JB, Hubbard SM, Sonstegard TS. Genomic Selection in Dairy Cattle: The USDA Experience. Annu Rev Anim Biosci 2016; 5:309-327. [PMID: 27860491 DOI: 10.1146/annurev-animal-021815-111422] [Citation(s) in RCA: 188] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Genomic selection has revolutionized dairy cattle breeding. Since 2000, assays have been developed to genotype large numbers of single-nucleotide polymorphisms (SNPs) at relatively low cost. The first commercial SNP genotyping chip was released with a set of 54,001 SNPs in December 2007. Over 15,000 genotypes were used to determine which SNPs should be used in genomic evaluation of US dairy cattle. Official USDA genomic evaluations were first released in January 2009 for Holsteins and Jerseys, in August 2009 for Brown Swiss, in April 2013 for Ayrshires, and in April 2016 for Guernseys. Producers have accepted genomic evaluations as accurate indications of a bull's eventual daughter-based evaluation. The integration of DNA marker technology and genomics into the traditional evaluation system has doubled the rate of genetic progress for traits of economic importance, decreased generation interval, increased selection accuracy, reduced previous costs of progeny testing, and allowed identification of recessive lethals.
Collapse
Affiliation(s)
- George R Wiggans
- Animal Genomics and Improvement Laboratory, Agricultural Research Service, US Department of Agriculture, Beltsville, Maryland 20705-2350; , ,
| | - John B Cole
- Animal Genomics and Improvement Laboratory, Agricultural Research Service, US Department of Agriculture, Beltsville, Maryland 20705-2350; , ,
| | - Suzanne M Hubbard
- Animal Genomics and Improvement Laboratory, Agricultural Research Service, US Department of Agriculture, Beltsville, Maryland 20705-2350; , ,
| | | |
Collapse
|
35
|
Abstract
DNA transposons are defined segments of DNA that are able to move from one genomic location to another. Movement is facilitated by one or more proteins, called the transposase, typically encoded by the mobile element itself. Here, we first provide an overview of the classification of such mobile elements in a variety of organisms. From a mechanistic perspective, we have focused on one particular group of DNA transposons that encode a transposase with a DD(E/D) catalytic domain that is topologically similar to RNase H. For these, a number of three-dimensional structures of transpososomes (transposase-nucleic acid complexes) are available, and we use these to describe the basics of their mechanisms. The DD(E/D) group, in addition to being the largest and most common among all DNA transposases, is the one whose members have been used for a wide variety of genomic applications. Therefore, a second focus of the article is to provide a nonexhaustive overview of transposon applications. Although several non-transposon-based approaches to site-directed genome modifications have emerged in the past decade, transposon-based applications are highly relevant when integration specificity is not sought. In fact, for many applications, the almost-perfect randomness and high frequency of integration make transposon-based approaches indispensable.
Collapse
Affiliation(s)
- Alison B. Hickman
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Fred Dyda
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, United States
| |
Collapse
|
36
|
Yu HH, Zhao H, Qing YB, Pan WR, Jia BY, Zhao HY, Huang XX, Wei HJ. Porcine Zygote Injection with Cas9/sgRNA Results in DMD-Modified Pig with Muscle Dystrophy. Int J Mol Sci 2016; 17:E1668. [PMID: 27735844 PMCID: PMC5085701 DOI: 10.3390/ijms17101668] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 09/21/2016] [Accepted: 09/23/2016] [Indexed: 12/16/2022] Open
Abstract
Dystrophinopathy, including Duchenne muscle dystrophy (DMD) and Becker muscle dystrophy (BMD) is an incurable X-linked hereditary muscle dystrophy caused by a mutation in the DMD gene in coding dystrophin. Advances in further understanding DMD/BMD for therapy are expected. Studies on mdx mice and dogs with muscle dystrophy provide limited insight into DMD disease mechanisms and therapeutic testing because of the different pathological manifestations. Miniature pigs share similar physiology and anatomy with humans and are thus an excellent animal model of human disease. Here, we successfully achieved precise DMD targeting in Chinese Diannan miniature pigs by co-injecting zygotes with Cas9 mRNA and sgRNA targeting DMD. Two piglets were obtained after embryo transfer, one of piglets was identified as DMD-modified individual via traditional cloning, sequencing and T7EN1 cleavage assay. An examination of targeting rates in the DMD-modified piglet revealed that sgRNA:Cas9-mediated on-target mosaic mutations were 70% and 60% of dystrophin alleles in skeletal and smooth muscle, respectively. Meanwhile, no detectable off-target mutations were found, highlighting the high specificity of genetic modification using CRISPR/Cas9. The DMD-modified piglet exhibited degenerative and disordered phenotypes in skeletal and cardiac muscle, and declining thickness of smooth muscle in the stomach and intestine. In conclusion, we successfully generated myopathy animal model by modifying the DMD via CRISPR/Cas9 system in a miniature pig.
Collapse
MESH Headings
- Alleles
- Animals
- Base Sequence
- CRISPR-Cas Systems/genetics
- Disease Models, Animal
- Dystrophin/genetics
- Dystrophin/metabolism
- Embryo Transfer
- Genotype
- Immunohistochemistry
- Microscopy, Fluorescence
- Muscle, Skeletal/metabolism
- Muscle, Smooth/metabolism
- Muscular Dystrophy, Duchenne/metabolism
- Muscular Dystrophy, Duchenne/pathology
- Mutation
- Phenotype
- RNA, Guide, CRISPR-Cas Systems/genetics
- RNA, Guide, CRISPR-Cas Systems/metabolism
- RNA, Messenger/metabolism
- Sequence Analysis, DNA
- Swine
- Swine, Miniature
- Zygote/metabolism
Collapse
Affiliation(s)
- Hong-Hao Yu
- School of Life Science and Technology, ShanghaiTech University, 100 Haike Rd., Pudong New Area, Shanghai 201210, China.
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China.
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China.
- Research Center of Life Science, Yulin University, Yulin 719000, China.
| | - Heng Zhao
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China.
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China.
| | - Yu-Bo Qing
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China.
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China.
| | - Wei-Rong Pan
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China.
| | - Bao-Yu Jia
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China.
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China.
| | - Hong-Ye Zhao
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China.
| | - Xing-Xu Huang
- School of Life Science and Technology, ShanghaiTech University, 100 Haike Rd., Pudong New Area, Shanghai 201210, China.
| | - Hong-Jiang Wei
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China.
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China.
| |
Collapse
|
37
|
Choi YJ, Lee K, Park WJ, Kwon DN, Park C, Do JT, Song H, Cho SK, Park KW, Brown AN, Samuel MS, Murphy CN, Prather RS, Kim JH. Partial loss of interleukin 2 receptor gamma function in pigs provides mechanistic insights for the study of human immunodeficiency syndrome. Oncotarget 2016; 7:50914-50926. [PMID: 27463006 PMCID: PMC5239447 DOI: 10.18632/oncotarget.10812] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2016] [Accepted: 07/13/2016] [Indexed: 12/29/2022] Open
Abstract
In this study, we described the phenotype of monoallelic interleukin 2 receptor gamma knockout (mIL2RG+/Δ69-368 KO) pigs. Approximately 80% of mIL2RG+/Δ69-368 KO pigs (8/10) were athymic, whereas 20% (2/10) presented a rudimentary thymus. The body weight of IL2RG+/Δ69-368KO pigs developed normally. Immunological analysis showed that mIL2RG+/Δ69-368 KO pigs possessed CD25+CD44- or CD25-CD44+ cells, whereas single (CD4 or CD8) or double (CD4/8) positive cells were lacking in mIL2RG+/Δ69-368 KO pigs. CD3+ cells in the thymus of mIL2RG+/Δ69-368 KO pigs contained mainly CD44+ cells and/or CD25+ cells, which included FOXP3+ cells. These observations demonstrated that T cells from mIL2RG+/Δ69-368 KO pigs were able to develop to the DN3 stage, but failed to transition toward the DN4 stage. Whole-transcriptome analysis of thymus and spleen, and subsequent pathway analysis revealed that a subset of genes differentially expressed following the loss of IL2RG might be responsible for both impaired T-cell receptor and cytokine-mediated signalling. However, comparative analysis of two mIL2RG+/Δ69-368 KO pigs revealed little variability in the down- and up-regulated gene sets. In conclusion, mIL2RG+/Δ69-368 KO pigs presented a T-B+NK- SCID phenotype, suggesting that pigs can be used as a valuable and suitable biomedical model for human SCID research.
Collapse
Affiliation(s)
- Yun-Jung Choi
- Animal Biotechnology to Stem Cell and Regenerative Biotechnology, Humanized Pig Research Center (SRC), Konkuk University, Seoul, Republic of Korea
| | - Kiho Lee
- Department of Animal and Poultry Sciences, Virginia Tech, Blacksburg, VA, USA
- Division of Animal Science, National Swine Resource and Research Center, University of Missouri, Columbia, MO, USA
| | - Woo-Jin Park
- Animal Biotechnology to Stem Cell and Regenerative Biotechnology, Humanized Pig Research Center (SRC), Konkuk University, Seoul, Republic of Korea
| | - Deug-Nam Kwon
- Animal Biotechnology to Stem Cell and Regenerative Biotechnology, Humanized Pig Research Center (SRC), Konkuk University, Seoul, Republic of Korea
| | - Chankyu Park
- Animal Biotechnology to Stem Cell and Regenerative Biotechnology, Humanized Pig Research Center (SRC), Konkuk University, Seoul, Republic of Korea
| | - Jeong Tae Do
- Animal Biotechnology to Stem Cell and Regenerative Biotechnology, Humanized Pig Research Center (SRC), Konkuk University, Seoul, Republic of Korea
| | - Hyuk Song
- Animal Biotechnology to Stem Cell and Regenerative Biotechnology, Humanized Pig Research Center (SRC), Konkuk University, Seoul, Republic of Korea
| | - Seong-Keun Cho
- Department of Animal Science, Pusan National University, Miryang, Gyeongnam, Republic of Korea
| | - Kwang-Wook Park
- Department of Animal Science and Technology, Sunchon National University, Suncheon, Jeonnam, Republic of Korea
| | - Alana N. Brown
- Division of Animal Science, National Swine Resource and Research Center, University of Missouri, Columbia, MO, USA
- National Swine Resource and Research Center, University of Missouri, Columbia, MO, USA
| | - Melissa S. Samuel
- Division of Animal Science, National Swine Resource and Research Center, University of Missouri, Columbia, MO, USA
- National Swine Resource and Research Center, University of Missouri, Columbia, MO, USA
| | - Clifton N. Murphy
- Division of Animal Science, National Swine Resource and Research Center, University of Missouri, Columbia, MO, USA
- National Swine Resource and Research Center, University of Missouri, Columbia, MO, USA
| | - Randall S. Prather
- Division of Animal Science, National Swine Resource and Research Center, University of Missouri, Columbia, MO, USA
- National Swine Resource and Research Center, University of Missouri, Columbia, MO, USA
| | - Jin-Hoi Kim
- Animal Biotechnology to Stem Cell and Regenerative Biotechnology, Humanized Pig Research Center (SRC), Konkuk University, Seoul, Republic of Korea
| |
Collapse
|
38
|
Schuh RS, Baldo G, Teixeira HF. Nanotechnology applied to treatment of mucopolysaccharidoses. Expert Opin Drug Deliv 2016; 13:1709-1718. [DOI: 10.1080/17425247.2016.1202235] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Roselena S. Schuh
- Programa de Pós-Graduação em Ciências Farmacêuticas da UFRGS, Faculdade de Farmácia, Porto Alegre, RS, Brazil
| | - Guilherme Baldo
- Programa de Pós-Graduação em Genética e Biologia Molecular da UFRGS, Departamento de Fisiologia, Porto Alegre, RS, Brazil
| | - Helder F. Teixeira
- Programa de Pós-Graduação em Ciências Farmacêuticas da UFRGS, Faculdade de Farmácia, Porto Alegre, RS, Brazil
| |
Collapse
|
39
|
Genome Therapy of Myotonic Dystrophy Type 1 iPS Cells for Development of Autologous Stem Cell Therapy. Mol Ther 2016; 24:1378-87. [PMID: 27203440 DOI: 10.1038/mt.2016.97] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2015] [Accepted: 04/26/2016] [Indexed: 12/11/2022] Open
Abstract
Myotonic dystrophy type 1 (DM1) is caused by expanded Cytosine-Thymine-Guanine (CTG) repeats in the 3'-untranslated region (3' UTR) of the Dystrophia myotonica protein kinase (DMPK) gene, for which there is no effective therapy. The objective of this study is to develop genome therapy in human DM1 induced pluripotent stem (iPS) cells to eliminate mutant transcripts and reverse the phenotypes for developing autologous stem cell therapy. The general approach involves targeted insertion of polyA signals (PASs) upstream of DMPK CTG repeats, which will lead to premature termination of transcription and elimination of toxic mutant transcripts. Insertion of PASs was mediated by homologous recombination triggered by site-specific transcription activator-like effector nuclease (TALEN)-induced double-strand break. We found genome-treated DM1 iPS cells continue to maintain pluripotency. The insertion of PASs led to elimination of mutant transcripts and complete disappearance of nuclear RNA foci and reversal of aberrant splicing in linear-differentiated neural stem cells, cardiomyocytes, and teratoma tissues. In conclusion, genome therapy by insertion of PASs upstream of the expanded DMPK CTG repeats prevented the production of toxic mutant transcripts and reversal of phenotypes in DM1 iPS cells and their progeny. These genetically-treated iPS cells will have broad clinical application in developing autologous stem cell therapy for DM1.
Collapse
|
40
|
Watson AL, Carlson DF, Largaespada DA, Hackett PB, Fahrenkrug SC. Engineered Swine Models of Cancer. Front Genet 2016; 7:78. [PMID: 27242889 PMCID: PMC4860525 DOI: 10.3389/fgene.2016.00078] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 04/18/2016] [Indexed: 12/13/2022] Open
Abstract
Over the past decade, the technology to engineer genetically modified swine has seen many advancements, and because their physiology is remarkably similar to that of humans, swine models of cancer may be extremely valuable for preclinical safety studies as well as toxicity testing of pharmaceuticals prior to the start of human clinical trials. Hence, the benefits of using swine as a large animal model in cancer research and the potential applications and future opportunities of utilizing pigs in cancer modeling are immense. In this review, we discuss how pigs have been and can be used as a biomedical models for cancer research, with an emphasis on current technologies. We have focused on applications of precision genetics that can provide models that mimic human cancer predisposition syndromes. In particular, we describe the advantages of targeted gene-editing using custom endonucleases, specifically TALENs and CRISPRs, and transposon systems, to make novel pig models of cancer with broad preclinical applications.
Collapse
Affiliation(s)
| | | | - David A Largaespada
- RecombineticsSt. Paul, MN, USA; Masonic Cancer Center, University of MinnesotaMinneapolis, MN, USA; Genetics, Cell Biology and Development, University of MinnesotaMinneapolis, MN, USA; Pediatrics, University of MinnesotaMinneapolis, MN, USA
| | - Perry B Hackett
- RecombineticsSt. Paul, MN, USA; Genetics, Cell Biology and Development, University of MinnesotaMinneapolis, MN, USA; Center for Genome Engineering, University of MinnesotaMinneapolis, MN, USA
| | | |
Collapse
|
41
|
|
42
|
New insights and current tools for genetically engineered (GE) sheep and goats. Theriogenology 2016; 86:160-9. [PMID: 27155732 DOI: 10.1016/j.theriogenology.2016.04.028] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 12/08/2015] [Accepted: 03/14/2016] [Indexed: 01/20/2023]
Abstract
Genetically engineered sheep and goats represent useful models applied to proof of concepts, large-scale production of novel products or processes, and improvement of animal traits, which is of interest in biomedicine, biopharma, and livestock. This disruptive biotechnology arose in the 80s by injecting DNA fragments into the pronucleus of zygote-staged embryos. Pronuclear microinjection set the transgenic concept into people's mind but was characterized by inefficient and often frustrating results mostly because of uncontrolled and/or random integration and unpredictable transgene expression. Somatic cell nuclear transfer launched the second wave in the late 90s, solving several weaknesses of the previous technique by making feasible the transfer of a genetically modified and fully characterized cell into an enucleated oocyte, capable of cell reprogramming to generate genetically engineered animals. Important advances were also achieved during the 2000s with the arrival of new techniques like the lentivirus system, transposons, RNA interference, site-specific recombinases, and sperm-mediated transgenesis. We are now living the irruption of the third technological wave in which genome edition is possible by using endonucleases, particularly the CRISPR/Cas system. Sheep and goats were recently produced by CRISPR/Cas9, and for sure, cattle will be reported soon. We will see new genetically engineered farm animals produced by homologous recombination, multiple gene editing in one-step generation and conditional modifications, among other advancements. In the following decade, genome edition will continue expanding our technical possibilities, which will contribute to the advancement of science, the development of clinical or commercial applications, and the improvement of people's life quality around the world.
Collapse
|
43
|
Tomatsu S, Azario I, Sawamoto K, Pievani AS, Biondi A, Serafini M. Neonatal cellular and gene therapies for mucopolysaccharidoses: the earlier the better? J Inherit Metab Dis 2016; 39:189-202. [PMID: 26578156 PMCID: PMC4754332 DOI: 10.1007/s10545-015-9900-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 10/21/2015] [Accepted: 10/22/2015] [Indexed: 12/03/2022]
Abstract
Mucopolysaccharidoses (MPSs) are a group of lysosomal storage disorders (LSDs). The increasing interest in newborn screening procedures for LSDs underlines the need for alternative cellular and gene therapy approaches to be developed during the perinatal period, supporting the treatment of MPS patients before the onset of clinical signs and symptoms. The rationale for considering these early therapies results from the clinical experience in the treatment of MPSs and other genetic disorders. The normal or gene-corrected hematopoiesis transplanted in patients can produce the missing protein at levels sufficient to improve and/or halt the disease-related abnormalities. However, these current therapies are only partially successful, probably due to the limited efficacy of the protein provided through the hematopoiesis. An alternative explanation is that the time at which the cellular or gene therapy procedures are performed could be too late to prevent pre-existing or progressive organ damage. Considering these aspects, in the last several years, novel cellular and gene therapy approaches have been tested in different animal models at birth, a highly early stage, showing that precocious treatment is critical to prevent long-term pathological consequences. This review provides insights into the state-of-art accomplishments made with neonatal cellular and gene-based therapies and the major barriers that need to be overcome before they can be implemented in the medical community.
Collapse
Affiliation(s)
- Shunji Tomatsu
- Department of Biomedical Research, Alfred I. duPont Institute Hospital for Children, Wilmington, DE, USA.
- Skeletal Dysplasia Lab, Department of Biomedical Research, Nemours/Alfred I. duPont Hospital for Children, 1600 Rockland Rd., Wilmington, DE, 19899-0269, USA.
| | - Isabella Azario
- Dulbecco Telethon Institute at Centro Ricerca M. Tettamanti, Department of Paediatrics, University of Milano-Bicocca, San Gerardo Hospital, via Pergolesi, 33, 20900, Monza, MB, Italy
| | - Kazuki Sawamoto
- Department of Biomedical Research, Alfred I. duPont Institute Hospital for Children, Wilmington, DE, USA
| | - Alice Silvia Pievani
- Dulbecco Telethon Institute at Centro Ricerca M. Tettamanti, Department of Paediatrics, University of Milano-Bicocca, San Gerardo Hospital, via Pergolesi, 33, 20900, Monza, MB, Italy
| | - Andrea Biondi
- Centro Ricerca M. Tettamanti, Department of Paediatrics, University of Milano-Bicocca, Via Pergolesi, 33, Monza, 20900, Italy
| | - Marta Serafini
- Dulbecco Telethon Institute at Centro Ricerca M. Tettamanti, Department of Paediatrics, University of Milano-Bicocca, San Gerardo Hospital, via Pergolesi, 33, 20900, Monza, MB, Italy.
| |
Collapse
|
44
|
Murray JD, Maga EA. Genetically engineered livestock for agriculture: a generation after the first transgenic animal research conference. Transgenic Res 2016; 25:321-7. [PMID: 26820413 DOI: 10.1007/s11248-016-9927-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Accepted: 01/06/2016] [Indexed: 12/23/2022]
Abstract
At the time of the first Transgenic Animal Research Conference, the lack of knowledge about promoter, enhancer and coding regions of genes of interest greatly hampered our efforts to create transgenes that would express appropriately in livestock. Additionally, we were limited to gene insertion by pronuclear microinjection. As predicted then, widespread genome sequencing efforts and technological advancements have profoundly altered what we can do. There have been many developments in technology to create transgenic animals since we first met at Granlibakken in 1997, including the advent of somatic cell nuclear transfer-based cloning and gene editing. We can now create new transgenes that will express when and where we want and can target precisely in the genome where we want to make a change or insert a transgene. With the large number of sequenced genomes, we have unprecedented access to sequence information including, control regions, coding regions, and known allelic variants. These technological developments have ushered in new and renewed enthusiasm for the production of transgenic animals among scientists and animal agriculturalists around the world, both for the production of more relevant biomedical research models as well as for agricultural applications. However, even though great advancements have been made in our ability to control gene expression and target genetic changes in our animals, there still are no genetically engineered animal products on the market for food. World-wide there has been a failure of the regulatory processes to effectively move forward. Estimates suggest the world will need to increase our current food production 70 % by 2050; that is we will have to produce the total amount of food each year that has been consumed by mankind over the past 500 years. The combination of transgenic animal technology and gene editing will become increasingly more important tools to help feed the world. However, to date the practical benefits of these technologies have not yet reached consumers in any country and in the absence of predictable, science-based regulatory programs it is unlikely that the benefits will be realized in the short to medium term.
Collapse
Affiliation(s)
- James D Murray
- Department of Animal Science, University of California, Davis, CA, USA. .,Department of Population Health and Reproduction, University of California, Davis, CA, USA.
| | - Elizabeth A Maga
- Department of Animal Science, University of California, Davis, CA, USA
| |
Collapse
|
45
|
Sun L, Lutz BM, Tao YX. The CRISPR/Cas9 system for gene editing and its potential application in pain research. TRANSLATIONAL PERIOPERATIVE AND PAIN MEDICINE 2016; 1:22-33. [PMID: 27500183 PMCID: PMC4971521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The CRISPR/Cas9 system is a research hotspot in genome editing and regulation. Currently, it is used in genomic silencing and knock-in experiments as well as transcriptional activation and repression. This versatile system consists of two components: a guide RNA (gRNA) and a Cas9 nuclease. Recognition of a genomic DNA target is mediated through base pairing with a 20-base gRNA. The latter further recruits the Cas9 endonuclease protein to the target site and creates double-stranded breaks in the target DNA. Compared with traditional genome editing directed by DNA-binding protein domains, this short RNA-directed Cas9 endonuclease system is simple and easily programmable. Although this system may have off-target effects and in vivo delivery and immune challenges, researchers have employed this system in vivo to establish disease models, study specific gene functions under certain disease conditions, and correct genomic information for disease treatment. In regards to pain research, the CRISPR/Cas9 system may act as a novel tool in gene correction therapy for pain-associated hereditary diseases and may be a new approach for RNA-guided transcriptional activation or repression of pain-related genes. In addition, this system is also applied to loss-of-function mutations in pain-related genes and knockin of reporter genes or loxP tags at pain-related genomic loci. The CRISPR/Cas9 system will likely be carried out widely in both bench work and clinical settings in the pain field.
Collapse
Affiliation(s)
- Linlin Sun
- Department of Anesthesiology, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ 07103, USA
| | - Brianna Marie Lutz
- Rutgers Graduate School of Biomedical Sciences, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ 07103, USA
| | - Yuan-Xiang Tao
- Department of Anesthesiology, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ 07103, USA
- Rutgers Graduate School of Biomedical Sciences, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ 07103, USA
- Departments of Cell Biology & Molecular Medicine, Physiology, Pharmacology, & Neuroscience, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ 07103, USA
| |
Collapse
|
46
|
Whitelaw CBA, Sheets TP, Lillico SG, Telugu BP. Engineering large animal models of human disease. J Pathol 2015; 238:247-56. [PMID: 26414877 PMCID: PMC4737318 DOI: 10.1002/path.4648] [Citation(s) in RCA: 96] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Revised: 09/15/2015] [Accepted: 09/22/2015] [Indexed: 12/17/2022]
Abstract
The recent development of gene editing tools and methodology for use in livestock enables the production of new animal disease models. These tools facilitate site‐specific mutation of the genome, allowing animals carrying known human disease mutations to be produced. In this review, we describe the various gene editing tools and how they can be used for a range of large animal models of diseases. This genomic technology is in its infancy but the expectation is that through the use of gene editing tools we will see a dramatic increase in animal model resources available for both the study of human disease and the translation of this knowledge into the clinic. Comparative pathology will be central to the productive use of these animal models and the successful translation of new therapeutic strategies. © 2015 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- C Bruce A Whitelaw
- The Roslin Institute and Royal (Dick) School of Veterinary Science, Easter Bush Campus, University of Edinburgh, Edinburgh, EH25 9RG, UK
| | - Timothy P Sheets
- Animal Bioscience and Biotechnology Laboratory, ARS, Beltsville, MD, 20705, USA.,Department of Animal and Avian Sciences, Beltsville, MD, 20742, USA
| | - Simon G Lillico
- The Roslin Institute and Royal (Dick) School of Veterinary Science, Easter Bush Campus, University of Edinburgh, Edinburgh, EH25 9RG, UK
| | - Bhanu P Telugu
- Animal Bioscience and Biotechnology Laboratory, ARS, Beltsville, MD, 20705, USA.,Department of Animal and Avian Sciences, Beltsville, MD, 20742, USA
| |
Collapse
|
47
|
Van Eenennaam AL, Young AE. Animal agriculture and the importance of agnostic governance of biotechnology. ACTA ACUST UNITED AC 2015. [DOI: 10.1186/s40066-015-0043-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
48
|
Abstract
The genome editing platforms currently in use have revolutionized the field of genetics. At an accelerating rate, these tools are entering areas with direct impact on human well being. Here, we discuss applications in agriculture and in medicine, and examine some associated societal issues.
Collapse
Affiliation(s)
- Dana Carroll
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT, 84112-5650, USA
| | - R Alta Charo
- School of Law and Department of Medical History and Bioethics, School of Medicine and Public Health, University of Wisconsin, Madison, WI, 53706, USA.
| |
Collapse
|
49
|
Chandrasegaran S, Carroll D. Origins of Programmable Nucleases for Genome Engineering. J Mol Biol 2015; 428:963-89. [PMID: 26506267 DOI: 10.1016/j.jmb.2015.10.014] [Citation(s) in RCA: 179] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2015] [Revised: 10/12/2015] [Accepted: 10/15/2015] [Indexed: 02/06/2023]
Abstract
Genome engineering with programmable nucleases depends on cellular responses to a targeted double-strand break (DSB). The first truly targetable reagents were the zinc finger nucleases (ZFNs) showing that arbitrary DNA sequences could be addressed for cleavage by protein engineering, ushering in the breakthrough in genome manipulation. ZFNs resulted from basic research on zinc finger proteins and the FokI restriction enzyme (which revealed a bipartite structure with a separable DNA-binding domain and a non-specific cleavage domain). Studies on the mechanism of cleavage by 3-finger ZFNs established that the preferred substrates were paired binding sites, which doubled the size of the target sequence recognition from 9 to 18bp, long enough to specify a unique genomic locus in plant and mammalian cells. Soon afterwards, a ZFN-induced DSB was shown to stimulate homologous recombination in cells. Transcription activator-like effector nucleases (TALENs) that are based on bacterial TALEs fused to the FokI cleavage domain expanded this capability. The fact that ZFNs and TALENs have been used for genome modification of more than 40 different organisms and cell types attests to the success of protein engineering. The most recent technology platform for delivering a targeted DSB to cellular genomes is that of the RNA-guided nucleases, which are based on the naturally occurring Type II prokaryotic CRISPR-Cas9 system. Unlike ZFNs and TALENs that use protein motifs for DNA sequence recognition, CRISPR-Cas9 depends on RNA-DNA recognition. The advantages of the CRISPR-Cas9 system-the ease of RNA design for new targets and the dependence on a single, constant Cas9 protein-have led to its wide adoption by research laboratories around the world. These technology platforms have equipped scientists with an unprecedented ability to modify cells and organisms almost at will, with wide-ranging implications across biology and medicine. However, these nucleases have also been shown to cut at off-target sites with mutagenic consequences. Therefore, issues such as efficacy, specificity and delivery are likely to drive selection of reagents for particular purposes. Human therapeutic applications of these technologies will ultimately depend on risk versus benefit analysis and informed consent.
Collapse
Affiliation(s)
- Srinivasan Chandrasegaran
- Department of Environmental Health Sciences, Johns Hopkins School of Public Health, 615 North Wolfe Street, Baltimore, MD 21205, USA.
| | - Dana Carroll
- Department of Biochemistry, University of Utah School of Medicine, 15 North Medical Drive East, Salt Lake City, UT 84112, USA.
| |
Collapse
|
50
|
Lee HJ, Lee HC, Han JY. Germline Modification and Engineering in Avian Species. Mol Cells 2015; 38:743-9. [PMID: 26333275 PMCID: PMC4588716 DOI: 10.14348/molcells.2015.0225] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Revised: 08/26/2015] [Accepted: 08/27/2015] [Indexed: 12/21/2022] Open
Abstract
Production of genome-edited animals using germline-competent cells and genetic modification tools has provided opportunities for investigation of biological mechanisms in various organisms. The recently reported programmed genome editing technology that can induce gene modification at a target locus in an efficient and precise manner facilitates establishment of animal models. In this regard, the demand for genome-edited avian species, which are some of the most suitable model animals due to their unique embryonic development, has also increased. Furthermore, germline chimera production through long-term culture of chicken primordial germ cells (PGCs) has facilitated research on production of genome-edited chickens. Thus, use of avian germline modification is promising for development of novel avian models for research of disease control and various biological mechanisms. Here, we discuss recent progress in genome modification technology in avian species and its applications and future strategies.
Collapse
Affiliation(s)
- Hong Jo Lee
- Department of Agricultural Biotechnology, College of Agriculture and Life Sciences, and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 151-921,
Korea
| | - Hyung Chul Lee
- Department of Cell and Developmental Biology, University College London, Gower Street, London WC1E 6BT,
UK
| | - Jae Yong Han
- Department of Agricultural Biotechnology, College of Agriculture and Life Sciences, and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 151-921,
Korea
- Institute for Biomedical Sciences, Shinshu University, 8304 Minamiminowa, Kamiina, Nagano 399-4598,
Japan
| |
Collapse
|