1
|
Blume C, Münch M. Effects of light on biological functions and human sleep. HANDBOOK OF CLINICAL NEUROLOGY 2025; 206:3-16. [PMID: 39864930 DOI: 10.1016/b978-0-323-90918-1.00008-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
The nonvisual effects of light in humans are mainly conveyed by a subset of retinal ganglion cells that contain the pigment melanopsin which renders them intrinsically photosensitive (= intrinsically photosensitive retinal ganglion cells, ipRGCs). They have direct connections to the main circadian clock in the suprachiasmatic nuclei (SCN) of the hypothalamus and modulate a variety of physiological processes, pineal melatonin secretion, autonomic functions, cognitive processes such as attention, and behavior, including sleep and wakefulness. This is because efferent projections from the SCN reach other hypothalamic nuclei, the pineal gland, thalamus, basal forebrain, and the brainstem. The ipRGCs also directly impact the prefrontal cortex and the perihabenular nucleus (mood). In particular, light suppresses the secretion of melatonin in a dose-dependent manner, mainly depending on irradiance and spectral composition of light. There is evidence that exposure to light-emitting devices from luminaires and screens before bedtime can impact on sleep onset latency, sleep duration, and sleep quality. Likewise, light exposure during daytime modulates sleep architecture, duration, and sleep quality during the subsequent night. Therefore, the integration of acute, circadian, and long-term effects of light together influence sleep-wake quality and behavior in healthy individuals, as well as in patients with psychiatric or medical disorders.
Collapse
Affiliation(s)
- Christine Blume
- Centre for Chronobiology, Psychiatric Hospital of the University of Basel, Basel, Switzerland; Research Cluster Molecular and Cognitive Neurosciences, University of Basel, Basel, Switzerland; Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Mirjam Münch
- Centre for Chronobiology, Psychiatric Hospital of the University of Basel, Basel, Switzerland; Research Cluster Molecular and Cognitive Neurosciences, University of Basel, Basel, Switzerland; Department of Biomedicine, University of Basel, Basel, Switzerland
| |
Collapse
|
2
|
Roy RK, Yao Y, Green IK, Aitken AV, Biancardi VC, Silver R, Stern JE. Blood flows from the SCN toward the OVLT within a new brain vascular portal pathway. SCIENCE ADVANCES 2024; 10:eadn8350. [PMID: 38905332 PMCID: PMC11192075 DOI: 10.1126/sciadv.adn8350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 05/16/2024] [Indexed: 06/23/2024]
Abstract
The suprachiasmatic nucleus (SCN) sets the phase of oscillation throughout the brain and body. Anatomical evidence reveals a portal system linking the SCN and the organum vasculosum of the lamina terminalis (OVLT), begging the question of the direction of blood flow and the nature of diffusible signals that flow in this specialized vasculature. Using a combination of anatomical and in vivo two-photon imaging approaches, we unequivocally show that blood flows unidirectionally from the SCN to the OVLT, that blood flow rate displays daily oscillations with a higher rate at night than in the day, and that circulating vasopressin can access portal vessels. These findings highlight a previously unknown central nervous system communication pathway, which, like that of the pituitary portal system, could allow neurosecretions to reach nearby target sites in OVLT, avoiding dilution in the systemic blood. In both of these brain portal pathways, the target sites relay signals broadly to both the brain and the rest of the body.
Collapse
Affiliation(s)
- Ranjan K. Roy
- Neuroscience Institute, Georgia State University, Atlanta, GA, USA
- Center for Neuroinflammation and Cardiometabolic Diseases, Georgia State University, Atlanta, GA, USA
| | - Yifan Yao
- Department of Psychology, Columbia University, New York, NY, USA
| | | | - Andrew V. Aitken
- Department of Anatomy, Physiology and Pharmacology, Auburn University, Auburn, AL, USA
| | - Vinicia C. Biancardi
- Department of Anatomy, Physiology and Pharmacology, Auburn University, Auburn, AL, USA
| | - Rae Silver
- Department of Psychology, Columbia University, New York, NY, USA
- Department of Neuroscience and Behavior, Barnard College, New York, NY, USA
- Department of Pathology and Cell Biology Graduate Program, Columbia University, New York, NY, USA
- Zukerman Institute Affiliate, Columbia University, New York, NY, USA
| | - Javier E. Stern
- Neuroscience Institute, Georgia State University, Atlanta, GA, USA
- Center for Neuroinflammation and Cardiometabolic Diseases, Georgia State University, Atlanta, GA, USA
| |
Collapse
|
3
|
Patlin BH, Mok H, Arra M, Haspel JA. Circadian rhythms in solid organ transplantation. J Heart Lung Transplant 2024; 43:849-857. [PMID: 38310995 PMCID: PMC11070314 DOI: 10.1016/j.healun.2024.01.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/17/2024] [Accepted: 01/29/2024] [Indexed: 02/06/2024] Open
Abstract
Circadian rhythms are daily cycles in physiology that can affect medical interventions. This review considers how these rhythms may relate to solid organ transplantation. It begins by summarizing the mechanism for circadian rhythm generation known as the molecular clock, and basic research connecting the clock to biological activities germane to organ acceptance. Next follows a review of clinical evidence relating time of day to adverse transplantation outcomes. The concluding section discusses knowledge gaps and practical areas where applying circadian biology might improve transplantation success.
Collapse
Affiliation(s)
- Brielle H Patlin
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Huram Mok
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Monaj Arra
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Jeffrey A Haspel
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri.
| |
Collapse
|
4
|
Han Y, Xia G, Harris L, Liu P, Guan D, Wu Q. Reversal of Obesity by Enhancing Slow-wave Sleep via a Prokineticin Receptor Neural Circuit. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.30.591948. [PMID: 38746393 PMCID: PMC11092673 DOI: 10.1101/2024.04.30.591948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Obese subjects often exhibit hypersomnia accompanied by severe sleep fragmentation, while emerging evidence suggests that poor sleep quality promotes overeating and exacerbates diet-induced obesity (DIO). However, the neural circuit and signaling mechanism underlying the reciprocal control of appetite and sleep is yet not elucidated. Here, we report a neural circuit where prokineticin receptor 2 (PROKR2)-expressing neurons within the parabrachial nucleus (PBN) of the brainstem received direct projections from neuropeptide Y receptor Y2 (NPY2R)-expressing neurons within the lateral preoptic area (LPO) of the hypothalamus. The RNA-Seq results revealed Prokr2 in the PBN is the most regulated GPCR signaling gene that is responsible for comorbidity of obesity and sleep dysfunction. Furthermore, those NPY2R LPO neurons are minimally active during NREM sleep and maximally active during wakefulness and REM sleep. Activation of the NPY2R LPO →PBN circuit or the postsynaptic PROKR2 PBN neurons suppressed feeding of a high-fat diet and abrogated morbid sleep patterns in DIO mice. Further studies showed that genetic ablation of the PROKR2 signaling within PROKR2 PBN neurons alleviated the hyperphagia and weight gain, and restored sleep dysfunction in DIO mice. We further discovered pterostilbene, a plant-derived stilbenoid, is a powerful anti-obesity and sleep-improving agent, robustly suppressed hyperphagia and promoted reconstruction of a healthier sleep architecture, thereby leading to significant weight loss. Collectively, our results unveil a neural mechanism for the reciprocal control of appetite and sleep, through which pterostilbene, along with a class of similarly structured compounds, may be developed as effective therapeutics for tackling obesity and sleep disorders.
Collapse
|
5
|
Yao Y, Green IK, Taub AB, Tazebay R, LeSauter J, Silver R. Vasculature of the Suprachiasmatic Nucleus: Pathways for Diffusible Output Signals. J Biol Rhythms 2023; 38:571-585. [PMID: 37553858 PMCID: PMC10652420 DOI: 10.1177/07487304231189537] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2023]
Abstract
Transplant studies demonstrate unequivocally that the suprachiasmatic nucleus (SCN) produces diffusible signals that can sustain circadian locomotor rhythms. There is a vascular portal pathway between the SCN and the organum vasculosum of the lamina terminalis in mouse brain. Portal pathways enable low concentrations of neurosecretions to reach specialized local targets without dilution in the systemic circulation. To explore the SCN vasculature and the capillary vessels whereby SCN neurosecretions might reach portal vessels, we investigated the blood vessels (BVs) of the core and shell SCN. The arterial supply of the SCN differs among animals, and in some animals, there are differences between the 2 sides. The rostral SCN is supplied by branches from either the superior hypophyseal artery (SHpA) or the anterior cerebral artery or the anterior communicating artery. The caudal SCN is consistently supplied by the SHpA. The rostral SCN is drained by the preoptic vein, while the caudal is drained by the basal vein, with variations in laterality of draining vessels. In addition, several key features of the core and shell SCN regions differ: Median BV diameter is significantly smaller in the shell than the core based on confocal image measurements, and a similar trend occurs in iDISCO-cleared tissue. In the cleared tissue, whole BV length density and surface area density are significantly greater in the shell than the core. Finally, capillary length density is also greater in the shell than the core. The results suggest three hypotheses: First, the distinct arterial and venous systems of the rostral and caudal SCN may contribute to the in vivo variations of metabolic and neural activities observed in SCN networks. Second, the dense capillaries of the SCN shell are well positioned to transport blood-borne signals. Finally, variations in SCN vascular supply and drainage may contribute to inter-animal differences.
Collapse
Affiliation(s)
- Yifan Yao
- Department of Psychology, Columbia University, New York City, NY
| | | | - Alana B. Taub
- Department of Neuroscience and Behavior, Barnard College, New York City, NY
| | - Ruya Tazebay
- Department of Neuroscience and Behavior, Barnard College, New York City, NY
| | - Joseph LeSauter
- Department of Neuroscience and Behavior, Barnard College, New York City, NY
| | - Rae Silver
- Department of Psychology, Columbia University, New York City, NY
- Department of Neuroscience and Behavior, Barnard College, New York City, NY
- Department of Pathology and Cell Biology, Columbia University, New York City, NY
- Zuckerman Institute, Columbia University, New York City, NY
| |
Collapse
|
6
|
Cincotta AH. Brain Dopamine-Clock Interactions Regulate Cardiometabolic Physiology: Mechanisms of the Observed Cardioprotective Effects of Circadian-Timed Bromocriptine-QR Therapy in Type 2 Diabetes Subjects. Int J Mol Sci 2023; 24:13255. [PMID: 37686060 PMCID: PMC10487918 DOI: 10.3390/ijms241713255] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/19/2023] [Accepted: 07/27/2023] [Indexed: 09/10/2023] Open
Abstract
Despite enormous global efforts within clinical research and medical practice to reduce cardiovascular disease(s) (CVD), it still remains the leading cause of death worldwide. While genetic factors clearly contribute to CVD etiology, the preponderance of epidemiological data indicate that a major common denominator among diverse ethnic populations from around the world contributing to CVD is the composite of Western lifestyle cofactors, particularly Western diets (high saturated fat/simple sugar [particularly high fructose and sucrose and to a lesser extent glucose] diets), psychosocial stress, depression, and altered sleep/wake architecture. Such Western lifestyle cofactors are potent drivers for the increased risk of metabolic syndrome and its attendant downstream CVD. The central nervous system (CNS) evolved to respond to and anticipate changes in the external (and internal) environment to adapt survival mechanisms to perceived stresses (challenges to normal biological function), including the aforementioned Western lifestyle cofactors. Within the CNS of vertebrates in the wild, the biological clock circuitry surveils the environment and has evolved mechanisms for the induction of the obese, insulin-resistant state as a survival mechanism against an anticipated ensuing season of low/no food availability. The peripheral tissues utilize fat as an energy source under muscle insulin resistance, while increased hepatic insulin resistance more readily supplies glucose to the brain. This neural clock function also orchestrates the reversal of the obese, insulin-resistant condition when the low food availability season ends. The circadian neural network that produces these seasonal shifts in metabolism is also responsive to Western lifestyle stressors that drive the CNS clock into survival mode. A major component of this natural or Western lifestyle stressor-induced CNS clock neurophysiological shift potentiating the obese, insulin-resistant state is a diminution of the circadian peak of dopaminergic input activity to the pacemaker clock center, suprachiasmatic nucleus. Pharmacologically preventing this loss of circadian peak dopaminergic activity both prevents and reverses existing metabolic syndrome in a wide variety of animal models of the disorder, including high fat-fed animals. Clinically, across a variety of different study designs, circadian-timed bromocriptine-QR (quick release) (a unique formulation of micronized bromocriptine-a dopamine D2 receptor agonist) therapy of type 2 diabetes subjects improved hyperglycemia, hyperlipidemia, hypertension, immune sterile inflammation, and/or adverse cardiovascular event rate. The present review details the seminal circadian science investigations delineating important roles for CNS circadian peak dopaminergic activity in the regulation of peripheral fuel metabolism and cardiovascular biology and also summarizes the clinical study findings of bromocriptine-QR therapy on cardiometabolic outcomes in type 2 diabetes subjects.
Collapse
|
7
|
Asadpoordezaki Z, Coogan AN, Henley BM. Chronobiology of Parkinson's disease: Past, present and future. Eur J Neurosci 2023; 57:178-200. [PMID: 36342744 PMCID: PMC10099399 DOI: 10.1111/ejn.15859] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 10/19/2022] [Accepted: 10/20/2022] [Indexed: 11/09/2022]
Abstract
Parkinson's disease is a neurodegenerative disorder predominately affecting midbrain dopaminergic neurons that results in a broad range of motor and non-motor symptoms. Sleep complaints are among the most common non-motor symptoms, even in the prodromal period. Sleep alterations in Parkinson's disease patients may be associated with dysregulation of circadian rhythms, intrinsic 24-h cycles that control essential physiological functions, or with side effects from levodopa medication and physical and mental health challenges. The impact of circadian dysregulation on sleep disturbances in Parkinson's disease is not fully understood; as such, we review the systems, cellular and molecular mechanisms that may underlie circadian perturbations in Parkinson's disease. We also discuss the potential benefits of chronobiology-based personalized medicine in the management of Parkinson's disease both in terms of behavioural and pharmacological interventions. We propose that a fuller understanding of circadian clock function may shed important new light on the aetiology and symptomatology of the disease and may allow for improvements in the quality of life for the millions of people with Parkinson's disease.
Collapse
Affiliation(s)
- Ziba Asadpoordezaki
- Department of Psychology, Maynooth University, Maynooth, Co Kildare, Ireland.,Kathleen Lonsdale Institute for Human Health Research, Maynooth University, Maynooth, Co Kildare, Ireland
| | - Andrew N Coogan
- Department of Psychology, Maynooth University, Maynooth, Co Kildare, Ireland.,Kathleen Lonsdale Institute for Human Health Research, Maynooth University, Maynooth, Co Kildare, Ireland
| | - Beverley M Henley
- Kathleen Lonsdale Institute for Human Health Research, Maynooth University, Maynooth, Co Kildare, Ireland
| |
Collapse
|
8
|
Yao Y, Silver R. Mutual Shaping of Circadian Body-Wide Synchronization by the Suprachiasmatic Nucleus and Circulating Steroids. Front Behav Neurosci 2022; 16:877256. [PMID: 35722187 PMCID: PMC9200072 DOI: 10.3389/fnbeh.2022.877256] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 04/11/2022] [Indexed: 11/18/2022] Open
Abstract
Background Steroids are lipid hormones that reach bodily tissues through the systemic circulation, and play a major role in reproduction, metabolism, and homeostasis. All of these functions and steroids themselves are under the regulation of the circadian timing system (CTS) and its cellular/molecular underpinnings. In health, cells throughout the body coordinate their daily activities to optimize responses to signals from the CTS and steroids. Misalignment of responses to these signals produces dysfunction and underlies many pathologies. Questions Addressed To explore relationships between the CTS and circulating steroids, we examine the brain clock located in the suprachiasmatic nucleus (SCN), the daily fluctuations in plasma steroids, the mechanisms producing regularly recurring fluctuations, and the actions of steroids on their receptors within the SCN. The goal is to understand the relationship between temporal control of steroid secretion and how rhythmic changes in steroids impact the SCN, which in turn modulate behavior and physiology. Evidence Surveyed The CTS is a multi-level organization producing recurrent feedback loops that operate on several time scales. We review the evidence showing that the CTS modulates the timing of secretions from the level of the hypothalamus to the steroidogenic gonadal and adrenal glands, and at specific sites within steroidogenic pathways. The SCN determines the timing of steroid hormones that then act on their cognate receptors within the brain clock. In addition, some compartments of the body-wide CTS are impacted by signals derived from food, stress, exercise etc. These in turn act on steroidogenesis to either align or misalign CTS oscillators. Finally this review provides a comprehensive exploration of the broad contribution of steroid receptors in the SCN and how these receptors in turn impact peripheral responses. Conclusion The hypothesis emerging from the recognition of steroid receptors in the SCN is that mutual shaping of responses occurs between the brain clock and fluctuating plasma steroid levels.
Collapse
Affiliation(s)
- Yifan Yao
- Department of Psychology, Columbia University, New York City, NY, United States
- *Correspondence: Yifan Yao,
| | - Rae Silver
- Department of Psychology, Columbia University, New York City, NY, United States
- Department of Neuroscience, Barnard College, New York City, NY, United States
- Department of Psychology, Barnard College, New York City, NY, United States
- Department of Pathology and Cell Biology, Graduate School, Columbia University Irving Medical Center, New York City, NY, United States
| |
Collapse
|
9
|
Méndez-Hernández R, Escobar C, Buijs RM. Suprachiasmatic Nucleus-Arcuate Nucleus Axis: Interaction Between Time and Metabolism Essential for Health. Obesity (Silver Spring) 2020; 28 Suppl 1:S10-S17. [PMID: 32538539 DOI: 10.1002/oby.22774] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 01/15/2020] [Indexed: 02/06/2023]
Abstract
In mammals, time and metabolism are tightly coupled variables; this relationship can be illustrated by numerous examples, such as the circadian variation in food intake or the circadian response to a glucose bolus. We review evidence that the interaction between the suprachiasmatic nucleus and the arcuate nucleus plays a key role in the execution of these functions. The nuclei are reciprocally connected via different projections, and this interaction provides an ideal anatomical framework to modify the temporal output of the hypothalamus to metabolic organs as a consequence of the feedback from the periphery. The suprachiasmatic nucleus-arcuate nucleus relationship is essential to integrate metabolic information into the circadian system and thus adapt circadian rhythms in core body temperature, locomotor activity, food intake, and circulating molecules such as glucose and corticosterone. With the rise in obesity-associated diseases in the world population, gaining knowledge about this relationship, and the consequences of disturbing this liaison, is essential to understand the pathogenesis of obesity.
Collapse
Affiliation(s)
- Rebeca Méndez-Hernández
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, Mexico City, Mexico
| | - Carolina Escobar
- Departamento de Anatomía, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad Universitaria, Mexico City, Mexico
| | - Ruud M Buijs
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, Mexico City, Mexico
| |
Collapse
|
10
|
Abnormal Photic Entrainment to Phase-Delaying Stimuli in the R6/2 Mouse Model of Huntington's Disease, despite Retinal Responsiveness to Light. eNeuro 2019; 6:ENEURO.0088-19.2019. [PMID: 31744839 PMCID: PMC6905640 DOI: 10.1523/eneuro.0088-19.2019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 10/22/2019] [Accepted: 10/28/2019] [Indexed: 12/13/2022] Open
Abstract
The circadian clock located in the suprachiasmatic nucleus (SCN) in mammals entrains to ambient light via the retinal photoreceptors. This allows behavioral rhythms to change in synchrony with seasonal and daily changes in light period. Circadian rhythmicity is progressively disrupted in Huntington's disease (HD) and in HD mouse models such as the transgenic R6/2 line. Although retinal afferent inputs to the SCN are disrupted in R6/2 mice at late stages, they can respond to changes in light/dark cycles, as seen in jet lag and 23 h/d paradigms. To investigate photic entrainment and SCN function in R6/2 mice at different stages of disease, we first assessed the effect on locomotor activity of exposure to a 15 min light pulse given at different times of the day. We then placed the mice under five non-standard light conditions. These were light cycle regimes (T-cycles) of T21 (10.5 h light/dark), T22 (11 h light/dark), T26 (13 h light/dark), constant light, or constant dark. We found a progressive impairment in photic synchronization in R6/2 mice when the stimuli required the SCN to lengthen rhythms (phase-delaying light pulse, T26, or constant light), but normal synchronization to stimuli that required the SCN to shorten rhythms (phase-advancing light pulse and T22). Despite the behavioral abnormalities, we found that Per1 and c-fos gene expression remained photo-inducible in SCN of R6/2 mice. Both the endogenous drift of the R6/2 mouse SCN to shorter periods and its inability to adapt to phase-delaying changes will contribute to the HD circadian dysfunction.
Collapse
|
11
|
Versaci F, Biondi-Zoccai G, Giudici AD, Mariano E, Trivisonno A, Sciarretta S, Valenti V, Peruzzi M, Cavarretta E, Frati G, Scappaticci M, Federici M, Romeo F. Climate changes and ST-elevation myocardial infarction treated with primary percutaneous coronary angioplasty. Int J Cardiol 2019; 294:1-5. [PMID: 31301864 DOI: 10.1016/j.ijcard.2019.07.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Revised: 06/20/2019] [Accepted: 07/02/2019] [Indexed: 02/08/2023]
|
12
|
Spulber S, Conti M, Elberling F, Raciti M, Borroto-Escuela DO, Fuxe K, Ceccatelli S. Desipramine restores the alterations in circadian entrainment induced by prenatal exposure to glucocorticoids. Transl Psychiatry 2019; 9:263. [PMID: 31624238 PMCID: PMC6797805 DOI: 10.1038/s41398-019-0594-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 09/09/2019] [Accepted: 09/24/2019] [Indexed: 11/16/2022] Open
Abstract
Alterations in circadian rhythms are closely linked to depression, and we have shown earlier that progressive alterations in circadian entrainment precede the onset of depression in mice exposed in utero to excess glucocorticoids. The aim of this study was to investigate whether treatment with the noradrenaline reuptake inhibitor desipramine (DMI) could restore the alterations in circadian entrainment and prevent the onset of depression-like behavior. C57Bl/6 mice were exposed to dexamethasone (DEX-synthetic glucocorticoid analog, 0.05 mg/kg/day) between gestational day 14 and delivery. Male offspring aged 6 months (mo) were treated with DMI (10 mg/kg/day in drinking water) for at least 21 days before behavioral testing. We recorded spontaneous activity using the TraffiCage™ system and found that DEX mice re-entrained faster than controls after an abrupt advance in light-dark cycle by 6 h, while DMI treatment significantly delayed re-entrainment. Next we assessed the synchronization of peripheral oscillators with the central clock (located in the suprachiasmatic nucleus-SCN), as well as the mechanisms required for entrainment. We found that photic entrainment of the SCN was apparently preserved in DEX mice, but the expression of clock genes in the hippocampus was not synchronized with the light-dark cycle. This was associated with downregulated mRNA expression for arginine vasopressin (AVP; the main molecular output entraining peripheral clocks) in the SCN, and for glucocorticoid receptor (GR; required for the negative feedback loop regulating glucocorticoid secretion) in the hippocampus. DMI treatment restored the mRNA expression of AVP in the SCN and enhanced GR-mediated signaling by upregulating GR expression and nuclear translocation in the hippocampus. Furthermore, DMI treatment at 6 mo prevented the onset of depression-like behavior and the associated alterations in neurogenesis in 12-mo-old DEX mice. Taken together, our data indicate that DMI treatment enhances GR-mediated signaling and restores the synchronization of peripheral clocks with the SCN and support the hypothesis that altered circadian entrainment is a modifiable risk factor for depression.
Collapse
Affiliation(s)
- Stefan Spulber
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden.
| | - Mirko Conti
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | | | - Marilena Raciti
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | | | - Kjell Fuxe
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Sandra Ceccatelli
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
13
|
Schatz KC, Brown LM, Barrett AR, Roth LC, Grinevich V, Paul MJ. Viral rescue of magnocellular vasopressin cells in adolescent Brattleboro rats ameliorates diabetes insipidus, but not the hypoaroused phenotype. Sci Rep 2019; 9:8243. [PMID: 31160697 PMCID: PMC6546688 DOI: 10.1038/s41598-019-44776-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Accepted: 05/23/2019] [Indexed: 12/27/2022] Open
Abstract
Dysregulated arousal often accompanies neurodevelopmental disorders such as attention deficit hyperactivity disorder and autism spectrum disorder. Recently, we have found that adolescent homozygous Brattleboro (Hom) rats, which contain a mutation in the arginine vasopressin (AVP) gene, exhibit lower behavioral arousal than their heterozygous (Het) littermates in the open field test. This hypoaroused phenotype could be due to loss of AVP in magnocellular cells that supply AVP to the peripheral circulation and project to limbic structures or parvocellular cells that regulate the stress axis and other central targets. Alternatively, hypoarousal could be a side effect of diabetes insipidus - polydipsia and polyuria seen in Hom rats due to loss of AVP facilitation of water reabsorption in the kidney. We developed a viral-rescue approach to "cure" magnocellular AVP cells of their Brattleboro mutation. Infusion of a recombinant adeno-associated virus (rAAV) containing a functional Avp gene and promoter (rAAV-AVP) rescued AVP within magnocellular cells and fiber projections of the paraventricular nucleus of the hypothalamus (PVN) of male and female adolescent Hom rats. Furthermore, water intake was markedly reduced, ameliorating the symptoms of diabetes insipidus. In contrast, open field activity was unaffected. These findings indicate that the hyporaoused phenotype of adolescent Hom rats is not due to the loss of AVP function in magnocellular cells or a side effect of diabetes insipidus, but favors the hypothesis that central, parvocellular AVP mechanisms underlie the regulation of arousal during adolescence.
Collapse
Affiliation(s)
- K C Schatz
- Department of Psychology, University at Buffalo, SUNY, Buffalo, 14260, NY, USA.
| | - L M Brown
- Department of Psychology, University at Buffalo, SUNY, Buffalo, 14260, NY, USA
| | - A R Barrett
- Department of Psychology, University at Buffalo, SUNY, Buffalo, 14260, NY, USA
| | - L C Roth
- Department of Molecular Neurobiology, Max Planck Institute for Medical Research, Heidelberg, 69120, Germany
- Letten Centre and GliaLab, Department of Physiology, Institute of Basic Medical Sciences, University of Oslo, 0317, Oslo, Norway
| | - V Grinevich
- Department of Molecular Neurobiology, Max Planck Institute for Medical Research, Heidelberg, 69120, Germany
- Schaller Group on Neuropeptides, German Cancer Research Center, Heidelberg, 69120, Germany
- Department of Neuropeptide Research for Psychiatry, Central Institute of Mental Health, Heidelberg University, Mannheim, 68159, Germany
| | - M J Paul
- Department of Psychology, University at Buffalo, SUNY, Buffalo, 14260, NY, USA
- Neuroscience Program, University at Buffalo, SUNY, Buffalo, 14260, NY, USA
- Evolution, Ecology and Behavior Program, University at Buffalo, SUNY, Buffalo, 14260, NY, USA
| |
Collapse
|
14
|
Schatz KC, Martin CD, Ishiwari K, George AM, Richards JB, Paul MJ. Mutation in the vasopressin gene eliminates the sex difference in social reinforcement in adolescent rats. Physiol Behav 2019; 206:125-133. [PMID: 30951747 DOI: 10.1016/j.physbeh.2019.04.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 04/01/2019] [Accepted: 04/02/2019] [Indexed: 12/19/2022]
Abstract
The neuropeptide, arginine vasopressin (AVP), is thought to contribute to sex differences in normative and pathological social development by regulating social motivation. Recent studies using Brattleboro rats that have a mutation in the Avp gene, however, have suggested that AVP impacts adolescent social behaviors of males and females in a similar manner through actions on behavioral state (i.e., arousal). In the present study, we made use of a recently developed operant conditioning paradigm to test whether the chronic, lifelong AVP deficiency caused by the Brattleboro mutation impacts the reinforcement value of social stimuli during adolescence. Operant responding for access to a familiar conspecific was assessed in male and female adolescent wild type (WT; normal AVP), heterozygous Brattleboro (HET), and homozygous Brattleboro (HOM) rats. Following the social reinforcement test, rats were tested in the same operant paradigm except that the social reinforcer was replaced with a light reinforcer to determine whether effects of the Brattleboro mutation were specific to social stimuli or a general characteristic of operant conditioning. WT males directed a greater proportion of their responding toward the social and light stimuli than WT females; only males exhibited a preference for these reinforcers over unreinforced ports. The sex difference in social reinforcement was absent in HOM rats, whereas the sex difference in light reinforcement was present in all genotypes. These data indicate that adolescent males are more sensitive to the reinforcing properties of social and light stimuli, and that the sex difference in social, but not light, reinforcement depends upon normal levels of AVP. These findings support the hypothesis that AVP plays a critical role in sex differences in social development by acting on factors that influence social motivation.
Collapse
Affiliation(s)
- K C Schatz
- Department of Psychology, University at Buffalo, Buffalo, NY, USA.
| | - C D Martin
- Clinical and Research Institute on Addictions, University at Buffalo, Buffalo, NY, USA.
| | - K Ishiwari
- Clinical and Research Institute on Addictions, University at Buffalo, Buffalo, NY, USA.
| | - A M George
- Clinical and Research Institute on Addictions, University at Buffalo, Buffalo, NY, USA.
| | - J B Richards
- Clinical and Research Institute on Addictions, University at Buffalo, Buffalo, NY, USA.
| | - M J Paul
- Department of Psychology, University at Buffalo, Buffalo, NY, USA; Neuroscience Program, University at Buffalo, Buffalo, NY, USA; Evolution, Ecology and Behavior Program, University at Buffalo, Buffalo, NY, USA.
| |
Collapse
|
15
|
Overexpression of Prokineticin 2 in Transgenic Mice Leads to Reduced Circadian Behavioral Rhythmicity and Altered Molecular Rhythms in the Suprachiasmatic Clock. J Circadian Rhythms 2018; 16:13. [PMID: 30473715 PMCID: PMC6234414 DOI: 10.5334/jcr.170] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
In mammals, the master pacemaker driving circadian rhythms is thought to reside in the suprachiasmatic nuclei (SCN) of the anterior hypothalamus. A clear view of molecular clock mechanisms within the SCN neurons has been elucidated. In contrast, much less is known about the output mechanism by which the SCN circadian pacemaker sends timing information for eventual control of physiological and behavioral rhythms. Two secreted molecules, prokineticin 2 (PK2) and vasopressin, that are encoded by respective clock-controlled genes, have been indicated as candidate SCN output molecules. Several lines of evidence have emerged that support the role of PK2 as an output signal for the SCN circadian clock, including the reduced circadian rhythms in mice that are deficient in PK2 or its receptor, PKR2. In the current study, transgenic mice with the overexpression of PK2 have been generated. These transgenic mice displayed reduced oscillation of the PK2 expression in the SCN and decreased amplitude of circadian locomotor rhythm, supporting the important signaling role of PK2 in the regulation of circadian rhythms. Altered molecular rhythms were also observed in the SCN in the transgenic mice, indicating that PK2 signaling also regulates the operation of core clockwork. This conclusion is consistent with recent reports showing the likely signaling role of PK2 from the intrinsically photosensitive retinal ganglion cells to SCN neurons. Thus, PK2 signaling plays roles in both the input and the output pathways of the SCN circadian clock.
Collapse
|
16
|
Schatz KC, Kyne RF, Parmeter SL, Paul MJ. Investigation of social, affective, and locomotor behavior of adolescent Brattleboro rats reveals a link between vasopressin's actions on arousal and social behavior. Horm Behav 2018; 106:1-9. [PMID: 30184461 DOI: 10.1016/j.yhbeh.2018.08.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2018] [Revised: 08/22/2018] [Accepted: 08/31/2018] [Indexed: 10/28/2022]
Abstract
Arginine vasopressin (AVP) has recently been implicated in juvenile and adolescent social development. How AVP influences social development, however, is not understood. Adolescent homozygous Brattleboro rats (Hom), which lack AVP due to a mutation in the Avp gene, exhibit fewer active social behaviors (e.g., social play) but more passive social behaviors (e.g., huddling) than their wild type and heterozygous (Het) littermates, raising the possibility that AVP impacts social development through an arousal mechanism. Here, we test whether the atypical social phenotype of adolescent Hom rats is associated with altered behavioral arousal, social approach, or affective behaviors and whether Brattleboro mothers impact these behavioral phenotypes. Male and female Het and Hom adolescents born to Het or Hom mothers were tested in social interaction, open field, novelty-seeking, social approach, and marble burying tests. As reported previously, Hom rats played less and emitted fewer 50 kHz ultrasonic vocalizations while huddling more than their Het littermates. No genotype differences were detected in novelty seeking or social approach, nor were consistent differences found between offspring from Het and Hom mothers. However, Hom rats were less active in the open field and buried fewer marbles than Het rats indicating a hypoaroused, low anxiety phenotype. Open field activity correlated with levels of social play indicating that the effects of the Brattleboro mutation on arousal and social behavior are linked. These data demonstrate that chronic AVP deficiency impacts behavioral arousal during adolescence and support the hypothesis that AVP influences adolescent social development, in part, through its regulation of arousal.
Collapse
Affiliation(s)
- Kelcie C Schatz
- Department of Psychology, University at Buffalo, SUNY, Buffalo, NY 14260, USA.
| | - Robert F Kyne
- Neuroscience Program, University at Buffalo, SUNY, Buffalo, NY 14260, USA.
| | | | - Matthew J Paul
- Department of Psychology, University at Buffalo, SUNY, Buffalo, NY 14260, USA; Neuroscience Program, University at Buffalo, SUNY, Buffalo, NY 14260, USA; Evolution, Ecology, and Behavior Program, University at Buffalo, SUNY, Buffalo, NY 14260, USA.
| |
Collapse
|
17
|
Negri L, Ferrara N. The Prokineticins: Neuromodulators and Mediators of Inflammation and Myeloid Cell-Dependent Angiogenesis. Physiol Rev 2018. [PMID: 29537336 DOI: 10.1152/physrev.00012.2017] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The mammalian prokineticins family comprises two conserved proteins, EG-VEGF/PROK1 and Bv8/PROK2, and their two highly related G protein-coupled receptors, PKR1 and PKR2. This signaling system has been linked to several important biological functions, including gastrointestinal tract motility, regulation of circadian rhythms, neurogenesis, angiogenesis and cancer progression, hematopoiesis, and nociception. Mutations in PKR2 or Bv8/PROK2 have been associated with Kallmann syndrome, a developmental disorder characterized by defective olfactory bulb neurogenesis, impaired development of gonadotropin-releasing hormone neurons, and infertility. Also, Bv8/PROK2 is strongly upregulated in neutrophils and other inflammatory cells in response to granulocyte-colony stimulating factor or other myeloid growth factors and functions as a pronociceptive mediator in inflamed tissues as well as a regulator of myeloid cell-dependent tumor angiogenesis. Bv8/PROK2 has been also implicated in neuropathic pain. Anti-Bv8/PROK2 antibodies or small molecule PKR inhibitors ameliorate pain arising from tissue injury and inhibit angiogenesis and inflammation associated with tumors or some autoimmune disorders.
Collapse
Affiliation(s)
- Lucia Negri
- Sapienza University of Rome, Rome, Italy ; and University of California, San Diego, La Jolla, California
| | - Napoleone Ferrara
- Sapienza University of Rome, Rome, Italy ; and University of California, San Diego, La Jolla, California
| |
Collapse
|
18
|
Zhao Y, Wu J, Wang X, Jia H, Chen DN, Li JD. Prokineticins and their G protein-coupled receptors in health and disease. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2018; 161:149-179. [PMID: 30711026 DOI: 10.1016/bs.pmbts.2018.09.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Prokineticins are two conserved small proteins (~8kDa), prokineticin 1 (PROK1; also called EG-VEGF) and prokineticin 2 (PROK2; also called Bv8), with an N-terminal AVITGA sequence and 10 cysteines forming 5 disulfide bridges. PROK1 and PROK2 bind to two highly related G protein-coupled receptors (GPCRs), prokineticin receptor 1 (PROKR1) and prokineticin receptor 2 (PROKR2). Prokineticins and their receptors are widely expressed. PROK1 is predominantly expressed in peripheral tissues, especially steroidogenic organs, whereas PROK2 is mainly expressed in the central nervous system and nonsteroidogenic cells of the testes. Prokineticins signaling has been implicated in several important physiological functions, including gastrointestinal smooth muscle contraction, circadian rhythm regulation, neurogenesis, angiogenesis, pain perception, mood regulation, and reproduction. Dysregulation of prokineticins signaling has been observed in a variety of diseases, such as cancer, ischemia, and neurodegeneration, in which prokineticins signaling seems to be a promising therapeutic target. Based on the phenotypes of knockout mice, PROKR2 and PROK2 have recently been identified as causative genes for idiopathic hypogonadotropic hypogonadism, a developmental disorder characterized by impaired development of gonadotropin-releasing hormone neurons and infertility. In vitro functional studies with these disease-associated PROKR2 mutations uncovered some novel features for this receptor, such as biased signaling, which may be used to understand GPCR signaling regulation in general.
Collapse
Affiliation(s)
- Yaguang Zhao
- School of Life Sciences, Central South University, Changsha, China; Hunan Key Laboratory of Animal Models for Human Diseases, Central South University, Changsha, China; Hunan Key Laboratory of Medical Genetics, Central South University, Changsha, China
| | - Jiayu Wu
- School of Life Sciences, Central South University, Changsha, China; Hunan Key Laboratory of Animal Models for Human Diseases, Central South University, Changsha, China; Hunan Key Laboratory of Medical Genetics, Central South University, Changsha, China
| | - Xinying Wang
- School of Life Sciences, Central South University, Changsha, China; Hunan Key Laboratory of Animal Models for Human Diseases, Central South University, Changsha, China; Hunan Key Laboratory of Medical Genetics, Central South University, Changsha, China
| | - Hong Jia
- School of Life Sciences, Central South University, Changsha, China; Hunan Key Laboratory of Animal Models for Human Diseases, Central South University, Changsha, China; Hunan Key Laboratory of Medical Genetics, Central South University, Changsha, China
| | - Dan-Na Chen
- Department of Basic Medical Sciences, Changsha Medical University, Changsha, China.
| | - Jia-Da Li
- School of Life Sciences, Central South University, Changsha, China; Hunan Key Laboratory of Animal Models for Human Diseases, Central South University, Changsha, China; Hunan Key Laboratory of Medical Genetics, Central South University, Changsha, China.
| |
Collapse
|
19
|
Herr KB, Mann GL, Kubin L. Modulation of Motoneuronal Activity With Sleep-Wake States and Motoneuronal Gene Expression Vary With Circadian Rest-Activity Cycle. Front Integr Neurosci 2018; 12:32. [PMID: 30131680 PMCID: PMC6090895 DOI: 10.3389/fnint.2018.00032] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 07/17/2018] [Indexed: 12/16/2022] Open
Abstract
In both nocturnal and diurnal mammals, sleep and wake states differentially aggregate during the rest and active phases of circadian cycle. Closely associated with this rhythm are prominent changes in motor activity. Here, we quantified the magnitudes of electromyographic activity (EMG) measured separately during different sleep-wake states across the rest-activity cycle, thereby separating amplitude measurements from the known dependance of the timing of wake and sleep on the phase of circadian rest-activity cycle. In seven rats chronically instrumented for electroencephalogram and EMG monitoring, nuchal and lingual muscle EMGs were measured as a commonly used postural output in behavioral sleep studies and as a cranial motor output with potential clinical relevance in obstructive sleep apnea (OSA) syndrome, respectively. We found that, for both motor outputs, EMG measured during wake episodes was significantly higher during the active phase, than during the rest phase, of circadian cycle. The corresponding patterns observed during slow-wave sleep (SWS) and rapid eye movement sleep (REMS) were different. During SWS, lingual EMG was very low and did not differ between the rest and active phase, whereas nuchal EMG had pattern similar to that during wakefulness. During REMS, lingual EMG was, paradoxically, higher during the rest phase due to increased twitching activity, whereas nuchal EMG was very low throughout the rest and active periods (postural atonia). In the follow-up comparison of differences in transcript levels in tissue samples obtained from the medullary hypoglossal motor nucleus and inferior olive (IO) at rest onset and active period onset conducted using microarrays, we identified significant differences for multiple transcripts representing the core members of the molecular circadian clock and other genes important for the regulation of cell metabolism and activity (up to n = 130 at p < 0.001). Collectively, our data indicate that activity of motoneurons is regulated to optimally align it with the rest-activity cycle, with the process possibly involving transcriptional mechanisms at the motoneuronal level. Our data also suggest that OSA patients may be relatively better protected against sleep-related upper airway obstructions during REMS episodes generated during the rest phase, than during active phase, of the circadian cycle.
Collapse
Affiliation(s)
- Kate B Herr
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Graziella L Mann
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Leszek Kubin
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
20
|
Matos HDC, Koike BDV, Pereira WDS, de Andrade TG, Castro OW, Duzzioni M, Kodali M, Leite JP, Shetty AK, Gitaí DLG. Rhythms of Core Clock Genes and Spontaneous Locomotor Activity in Post- Status Epilepticus Model of Mesial Temporal Lobe Epilepsy. Front Neurol 2018; 9:632. [PMID: 30116220 PMCID: PMC6082935 DOI: 10.3389/fneur.2018.00632] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 07/12/2018] [Indexed: 12/16/2022] Open
Abstract
The interaction of Mesial Temporal Lobe Epilepsy (mTLE) with the circadian system control is apparent from an oscillatory pattern of limbic seizures, daytime's effect on seizure onset and the efficacy of antiepileptic drugs. Moreover, seizures per se can interfere with the biological rhythm output, including circadian oscillation of body temperature, locomotor activity, EEG pattern as well as the transcriptome. However, the molecular mechanisms underlying this cross-talk remain unclear. In this study, we systematically evaluated the temporal expression of seven core circadian transcripts (Bmal1, Clock, Cry1, Cry2, Per1, Per2, and Per3) and the spontaneous locomotor activity (SLA) in post-status epilepticus (SE) model of mTLE. Twenty-four hour oscillating SLA remained intact in post-SE groups although the circadian phase and the amount and intensity of activity were changed in early post-SE and epileptic phases. The acrophase of the SLA rhythm was delayed during epileptogenesis, a fragmented 24 h rhythmicity and extended active phase length appeared in the epileptic phase. The temporal expression of circadian transcripts Bmal1, Cry1, Cry2, Per1, Per2, and Per3 was also substantially altered. The oscillatory expression of Bmal1 was maintained in rats imperiled to SE, but with lower amplitude (A = 0.2) and an advanced acrophase in the epileptic phase. The diurnal rhythm of Cry1 and Cry2 was absent in the early post-SE but was recovered in the epileptic phase. Per1 and Per2 rhythmic expression were disrupted in post-SE groups while Per3 presented an arrhythmic profile in the epileptic phase, only. The expression of Clock did not display rhythmic pattern in any condition. These oscillating patterns of core clock genes may contribute to hippocampal 24 h cycling and, consequently to seizure periodicity. Furthermore, by using a pool of samples collected at 6 different Zeitgeber Times (ZT), we found that all clock transcripts were significantly dysregulated after SE induction, except Per3 and Per2. Collectively, altered SLA rhythm in early post-SE and epileptic phases implies a possible role for seizure as a nonphotic cue, which is likely linked to activation of hippocampal–accumbens pathway. On the other hand, altered temporal expression of the clock genes after SE suggests their involvement in the MTLE.
Collapse
Affiliation(s)
- Heloisa de Carvalho Matos
- Department of Cellular and Molecular Biology, Institute of Biological Sciences and Health, Federal University of Alagoas, Maceio, Brazil
| | | | - Wanessa Dos Santos Pereira
- Department of Cellular and Molecular Biology, Institute of Biological Sciences and Health, Federal University of Alagoas, Maceio, Brazil
| | - Tiago G de Andrade
- Laboratory of Molecular Chronobiology, Federal University of Alagoas, Arapiraca, Brazil.,Department of Physiology and Pharmacology, Institute of Biological Sciences and Health, Federal University of Alagoas, Maceio, Brazil
| | - Olagide W Castro
- Institute for Regenerative Medicine, Department of Molecular and Cellular Medicine, Texas A&M Health Science Center College of Medicine, College Station, TX, United States
| | - Marcelo Duzzioni
- Institute for Regenerative Medicine, Department of Molecular and Cellular Medicine, Texas A&M Health Science Center College of Medicine, College Station, TX, United States
| | - Maheedhar Kodali
- Division of Neurology, Department of Neurosciences and Behavioral Sciences, Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto, Brazil
| | - Joao P Leite
- Faculty of Medicine, Federal University of Alagoas, Maceio, Brazil
| | - Ashok K Shetty
- Division of Neurology, Department of Neurosciences and Behavioral Sciences, Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto, Brazil
| | - Daniel L G Gitaí
- Department of Cellular and Molecular Biology, Institute of Biological Sciences and Health, Federal University of Alagoas, Maceio, Brazil.,Division of Neurology, Department of Neurosciences and Behavioral Sciences, Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto, Brazil
| |
Collapse
|
21
|
Cutler TS, Park S, Loh DH, Jordan MC, Yokota T, Roos KP, Ghiani CA, Colwell CS. Neurocardiovascular deficits in the Q175 mouse model of Huntington's disease. Physiol Rep 2018; 5:5/11/e13289. [PMID: 28576852 PMCID: PMC5471434 DOI: 10.14814/phy2.13289] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 04/22/2017] [Accepted: 04/26/2017] [Indexed: 12/22/2022] Open
Abstract
Cardiovascular dysautonomia as well as the deterioration of circadian rhythms are among the earliest detectable pathophysiological changes in individuals with Huntington's disease (HD). Preclinical research requires mouse models that recapitulate disease symptoms and the Q175 knock-in model offers a number of advantages but potential autonomic dysfunction has not been explored. In this study, we sought to test the dual hypotheses that cardiovascular dysautonomia can be detected early in disease progression in the Q175 model and that this dysfunction varies with the daily cycle. Using radiotelemetry implants, we observed a significant reduction in the diurnal and circadian activity rhythms in the Q175 mutants at the youngest ages. By middle age, the autonomically driven rhythms in core body temperature were highly compromised, and the Q175 mutants exhibited striking episodes of hypothermia that increased in frequency with mutant huntingtin gene dosage. In addition, Q175 mutants showed higher resting heart rate (HR) during sleep and greatly reduced correlation between activity and HR HR variability was reduced in the mutants in both time and frequency domains, providing more evidence of autonomic dysfunction. Measurement of the baroreceptor reflex revealed that the Q175 mutant could not appropriately increase HR in response to a pharmacologically induced decrease in blood pressure. Echocardiograms showed reduced ventricular mass and ejection fraction in mutant hearts. Finally, cardiac histopathology revealed localized points of fibrosis resembling those caused by myocardial infarction. Thus, the Q175 mouse model of HD exhibits cardiovascular dysautonomia similar to that seen in HD patients with prominent sympathetic dysfunction during the resting phase of the activity rhythm.
Collapse
Affiliation(s)
- Tamara S Cutler
- Department of Psychiatry & Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, California
| | - Saemi Park
- Department of Psychiatry & Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, California
| | - Dawn H Loh
- Department of Psychiatry & Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, California
| | - Maria C Jordan
- Department of Physiology and Cardiovascular Research Lab, University of California, Los Angeles, Los Angeles, California
| | - Tomohiro Yokota
- Department of Anesthesiology, Division of Molecular Medicine David Geffen School of Medicine University of California, Los Angeles, Los Angeles, California
| | - Kenneth P Roos
- Department of Physiology and Cardiovascular Research Lab, University of California, Los Angeles, Los Angeles, California
| | - Cristina A Ghiani
- Department of Psychiatry & Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, California.,Department of Pathology & Laboratory Medicine, University of California, Los Angeles, Los Angeles, California
| | - Christopher S Colwell
- Department of Psychiatry & Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, California
| |
Collapse
|
22
|
Circadian Regulation of Hippocampal-Dependent Memory: Circuits, Synapses, and Molecular Mechanisms. Neural Plast 2018; 2018:7292540. [PMID: 29593785 PMCID: PMC5822921 DOI: 10.1155/2018/7292540] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 12/18/2017] [Indexed: 01/01/2023] Open
Abstract
Circadian modulation of learning and memory efficiency is an evolutionarily conserved phenomenon, occurring in organisms ranging from invertebrates to higher mammalian species, including humans. While the suprachiasmatic nucleus (SCN) of the hypothalamus functions as the master mammalian pacemaker, recent evidence suggests that forebrain regions, including the hippocampus, exhibit oscillatory capacity. This finding, as well as work on the cellular signaling events that underlie learning and memory, has opened promising new avenues of investigation into the precise cellular, molecular, and circuit-based mechanisms by which clock timing impacts plasticity and cognition. In this review, we examine the complex molecular relationship between clock timing and memory, with a focus on hippocampal-dependent tasks. We evaluate how the dysregulation of circadian timing, both at the level of the SCN and at the level of ancillary forebrain clocks, affects learning and memory. Further, we discuss experimentally validated intracellular signaling pathways (e.g., ERK/MAPK and GSK3β) and potential cellular signaling mechanisms by which the clock affects learning and memory formation. Finally, we examine how long-term potentiation (LTP), a synaptic process critical to the establishment of several forms of memory, is regulated by clock-gated processes.
Collapse
|
23
|
Luo S, Zhang Y, Ezrokhi M, Li Y, Tsai T, Cincotta AH. Circadian peak dopaminergic activity response at the biological clock pacemaker (suprachiasmatic nucleus) area mediates the metabolic responsiveness to a high-fat diet. J Neuroendocrinol 2018; 30:e12563. [PMID: 29224246 PMCID: PMC5817247 DOI: 10.1111/jne.12563] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 11/28/2017] [Accepted: 12/04/2017] [Indexed: 12/24/2022]
Abstract
Among vertebrate species of the major vertebrate classes in the wild, a seasonal rhythm of whole body fuel metabolism, oscillating from a lean to obese condition, is a common biological phenomenon. This annual cycle is driven in part by annual changes in the circadian dopaminergic signalling at the suprachiasmatic nuclei (SCN), with diminution of circadian peak dopaminergic activity at the SCN facilitating development of the seasonal obese insulin-resistant condition. The present study investigated whether such an ancient circadian dopamine-SCN activity system for expression of the seasonal obese, insulin-resistant phenotype may be operative in animals made obese amd insulin resistant by high-fat feeding and, if so, whether reinstatement of the circadian dopaminergic peak at the SCN would be sufficient to reverse the adverse metabolic impact of the high-fat diet without any alteration of caloric intake. First, we identified the supramammillary nucleus as a novel site providing the majority of dopaminergic neuronal input to the SCN. We further identified dopamine D2 receptors within the peri-SCN region as being functional in mediating SCN responsiveness to local dopamine. In lean, insulin-sensitive rats, the peak in the circadian rhythm of dopamine release at the peri-SCN coincided with the daily peak in SCN electrophysiological responsiveness to local dopamine administration. However, in rats made obese and insulin resistant by high-fat diet (HFD) feeding, these coincident circadian peak activities were both markedly attenuated or abolished. Reinstatement of the circadian peak in dopamine level at the peri-SCN by its appropriate circadian-timed daily microinjection to this area (but not outside this circadian time-interval) abrogated the obese, insulin-resistant condition without altering the consumption of the HFD. These findings suggest that the circadian peak of dopaminergic activity at the peri-SCN/SCN is a key modulator of metabolism and the responsiveness to adverse metabolic consequences of HFD consumption.
Collapse
Affiliation(s)
- S. Luo
- VeroScience LLCTivertonRIUSA
| | | | | | - Y. Li
- VeroScience LLCTivertonRIUSA
| | | | | |
Collapse
|
24
|
Abstract
Most hormones display daily fluctuations of secretion during the 24-h cycle. This is also the case for adipokines, in particular the anorexigenic hormone, leptin. The temporal organization of the endocrine system is principally controlled by a network of circadian clocks. The circadian network comprises a master circadian clock, located in the suprachiasmatic nucleus of the hypothalamus, synchronized to the ambient light, and secondary circadian clocks found in various peripheral organs, such as the adipose tissues. Besides circadian clocks, other factors such as meals and metabolic status impact daily profiles of hormonal levels. In turn, the precise daily pattern of hormonal release provides temporal signaling information. This review will describe the reciprocal links between the circadian clocks and rhythmic secretion of leptin, and discuss the metabolic impact of circadian desynchronization and altered rhythmic leptin.
Collapse
Affiliation(s)
- Etienne Challet
- Circadian Clocks and Metabolism Team, Institute of Cellular and Integrative Neurosciences, UPR3212, Centre National de La Recherche Scientifique (CNRS), University of Strasbourg, France.
| |
Collapse
|
25
|
Sasaki K, Othman MB, Demura M, Watanabe M, Isoda H. Modulation of Neurogenesis through the Promotion of Energy Production Activity Is behind the Antidepressant-Like Effect of Colonial Green Alga, Botryococcus braunii. Front Physiol 2017; 8:900. [PMID: 29176952 PMCID: PMC5686089 DOI: 10.3389/fphys.2017.00900] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 10/24/2017] [Indexed: 12/31/2022] Open
Abstract
Algae have been recognized as important resources providing functional components due to their capacity to exert beneficial effects on health. Therefore, there is increasing interest in investigating the biological activity of algae. In this study, we evaluated the antidepressant-like effect of the administration of 100 mg/kg/day of the ethanol extract of colonial green alga Botryococcus braunii (EEB) for 14 consecutive days in the forced swimming test (FST)-induced depression in imprinting control region (ICR) mice. Imipramine, a commercial antidepressant drug, was used as a positive control. In addition, we investigated the molecular mechanisms underlying the effect of EEB by measuring ATP production and by assessing any change in gene expression at the end of the treatment using real-time polymerase chain reaction (PCR) and microarray assays. We showed that the immobility time in the water-administered control (FST stress) group gradually increased from day 1 to day 14. However, treatment with EEB caused a significant decrease of immobility time in the FST compared with that in the FST stress group. Microarray and real-time PCR results revealed that EEB treatment induced variation in the expression of several genes associated with neurogenesis, energy metabolism, and dopamine synthesis. Interestingly, we revealed that only EEB treatment enhanced the promotion of energy production, while treatment with imipramine was ineffective. Our study provides the first evidence that B. braunii enhances energy production, which may contribute to the modulation of neurogenesis and to the enhancement of dopaminergic function, in turn potentially underlying the antistress- and antidepressant-like effects that we observed.
Collapse
Affiliation(s)
- Kazunori Sasaki
- Interdisciplinary Research Center for Catalytic Chemistry, National Institute of Advanced Industrial Science and Technology, Tsukuba, Japan.,Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Japan
| | - Mahmoud B Othman
- Alliance for Research on North Africa, University of Tsukuba, Tsukuba, Japan
| | - Mikihide Demura
- Algal Biomass and Energy System R&D Center, University of Tsukuba, Tsukuba, Japan
| | - Makoto Watanabe
- Algal Biomass and Energy System R&D Center, University of Tsukuba, Tsukuba, Japan.,Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| | - Hiroko Isoda
- Alliance for Research on North Africa, University of Tsukuba, Tsukuba, Japan.,Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| |
Collapse
|
26
|
Chen S, Reichert S, Singh C, Oikonomou G, Rihel J, Prober DA. Light-Dependent Regulation of Sleep and Wake States by Prokineticin 2 in Zebrafish. Neuron 2017. [PMID: 28648499 DOI: 10.1016/j.neuron.2017.06.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Light affects sleep and wake behaviors by providing an indirect cue that entrains circadian rhythms and also by inducing a direct and rapid regulation of behavior. While circadian entrainment by light is well characterized at the molecular level, mechanisms that underlie the direct effect of light on behavior are largely unknown. In zebrafish, a diurnal vertebrate, we found that both overexpression and mutation of the neuropeptide prokineticin 2 (Prok2) affect sleep and wake behaviors in a light-dependent but circadian-independent manner. In light, Prok2 overexpression increases sleep and induces expression of galanin (galn), a hypothalamic sleep-inducing peptide. We also found that light-dependent, Prok2-induced sedation requires prokineticin receptor 2 (prokr2) and is strongly suppressed in galn mutants. These results suggest that Prok2 antagonizes the direct wake-promoting effect of light in zebrafish, in part through the induction of galn expression in the hypothalamus.
Collapse
Affiliation(s)
- Shijia Chen
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Sabine Reichert
- Department of Cell and Developmental Biology, University College London, London WC1E 6BT, UK
| | - Chanpreet Singh
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Grigorios Oikonomou
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Jason Rihel
- Department of Cell and Developmental Biology, University College London, London WC1E 6BT, UK.
| | - David A Prober
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA.
| |
Collapse
|
27
|
Tarahovsky YS, Fadeeva IS, Komelina NP, Khrenov MO, Zakharova NM. Antipsychotic inductors of brain hypothermia and torpor-like states: perspectives of application. Psychopharmacology (Berl) 2017; 234:173-184. [PMID: 27933367 DOI: 10.1007/s00213-016-4496-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 11/26/2016] [Indexed: 12/12/2022]
Abstract
Hypothermia and hypometabolism (hypometabothermia) normally observed during natural hibernation and torpor, allow animals to protect their body and brain against the damaging effects of adverse environment. A similar state of hypothermia can be achieved under artificial conditions through physical cooling or pharmacological effects directed at suppression of metabolism and the processes of thermoregulation. In these conditions called torpor-like states, the mammalian ability to recover from stroke, heart attack, and traumatic injuries greatly increases. Therefore, the development of therapeutic methods for different pathologies is a matter of great concern. With the discovery of the antipsychotic drug chlorpromazine in the 1950s of the last century, the first attempts to create a pharmacologically induced state of hibernation for therapeutic purposes were made. That was the beginning of numerous studies in animals and the broad use of therapeutic hypothermia in medicine. Over the last years, many new agents have been discovered which were capable of lowering the body temperature and inhibiting the metabolism. The psychotropic agents occupy a significant place among them, which, in our opinion, is not sufficiently recognized in the contemporary literature. In this review, we summarized the latest achievements related to the ability of modern antipsychotics to target specific receptors in the brain, responsible for the initiation of hypometabothermia.
Collapse
Affiliation(s)
- Yury S Tarahovsky
- Institute of Cell Biophysics RAS, Pushchino, Moscow Region, Russian Federation, 142290. .,Institute of Theoretical and Experimental Biophysics RAS, Pushchino, Moscow Region, Russian Federation, 142290.
| | - Irina S Fadeeva
- Institute of Cell Biophysics RAS, Pushchino, Moscow Region, Russian Federation, 142290.,Institute of Theoretical and Experimental Biophysics RAS, Pushchino, Moscow Region, Russian Federation, 142290
| | - Natalia P Komelina
- Institute of Cell Biophysics RAS, Pushchino, Moscow Region, Russian Federation, 142290
| | - Maxim O Khrenov
- Institute of Cell Biophysics RAS, Pushchino, Moscow Region, Russian Federation, 142290
| | - Nadezhda M Zakharova
- Institute of Cell Biophysics RAS, Pushchino, Moscow Region, Russian Federation, 142290
| |
Collapse
|
28
|
Burton KJ, Li X, Li B, Cheng MY, Urbanski HF, Zhou QY. Expression of prokineticin 2 and its receptor in the macaque monkey brain. Chronobiol Int 2016; 33:191-9. [PMID: 26818846 PMCID: PMC4959799 DOI: 10.3109/07420528.2015.1125361] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Prokineticin 2 (PK2) has been indicated as an output signaling molecule for the suprachiasmatic nucleus (SCN) circadian clock. Most of these studies were performed with nocturnal animals, particularly mice and rats. In the current study, the PK2 and its receptor, PKR2, was cloned from a species of diurnal macaque monkey. The macaque monkey PK2 and PKR2 were found to be highly homologous to that of other mammalian species. The mRNA expression of PK2 and PKR2 in the macaque brain was examined by in situ hybridization. The expression patterns of PK2 and PKR2 in the macaque brain were found to be quite similar to that of the mouse brain. Particularly, PK2 mRNA was shown to oscillate in the SCN of the macaque brain in the same phase and with similar amplitude with that of nocturnal mouse brain. PKR2 expression was also detected in known primary SCN targets, including the midline thalamic and hypothalamic nuclei. In addition, we detected the expression of PKR2 mRNA in the dorsal raphe nucleus (DR) of both macaque and mouse brains. As a likely SCN to dorsal raphe projection has previously been indicated, the expression of PKR2 in the raphe nuclei of both macaque and mouse brain signifies a possible role of DR as a previously unrecognized primary SCN projection target.
Collapse
Affiliation(s)
- Katherine J. Burton
- Department of Pharmacology, University of California, Irvine, Irvine, CA, USA
| | - Xiaohan Li
- Department of Pharmacology, University of California, Irvine, Irvine, CA, USA
| | - Baoan Li
- Department of Pharmacology, University of California, Irvine, Irvine, CA, USA
| | - Michelle Y. Cheng
- Department of Pharmacology, University of California, Irvine, Irvine, CA, USA
| | - Henryk F. Urbanski
- Division of Neuroscience, Oregon National Primate Research Center, Beaverton, OR, USA
| | - Qun-Yong Zhou
- Department of Pharmacology, University of California, Irvine, Irvine, CA, USA
| |
Collapse
|
29
|
Parekh PK, McClung CA. Circadian Mechanisms Underlying Reward-Related Neurophysiology and Synaptic Plasticity. Front Psychiatry 2016; 6:187. [PMID: 26793129 PMCID: PMC4709415 DOI: 10.3389/fpsyt.2015.00187] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 12/21/2015] [Indexed: 12/18/2022] Open
Abstract
Evidence from clinical and preclinical research provides an undeniable link between disruptions in the circadian clock and the development of psychiatric diseases, including mood and substance abuse disorders. The molecular clock, which controls daily patterns of physiological and behavioral activity in living organisms, when desynchronized, may exacerbate or precipitate symptoms of psychiatric illness. One of the outstanding questions remaining in this field is that of cause and effect in the relationship between circadian rhythm disruption and psychiatric disease. Focus has recently turned to uncovering the role of circadian proteins beyond the maintenance of homeostatic systems and outside of the suprachiasmatic nucleus (SCN), the master pacemaker region of the brain. In this regard, several groups, including our own, have sought to understand how circadian proteins regulate mechanisms of synaptic plasticity and neurotransmitter signaling in mesocorticolimbic brain regions, which are known to be critically involved in reward processing and mood. This regulation can come in the form of direct transcriptional control of genes central to mood and reward, including those associated with dopaminergic activity in the midbrain. It can also be seen at the circuit level through indirect connections of mesocorticolimbic regions with the SCN. Circadian misalignment paradigms as well as genetic models of circadian disruption have helped to elucidate some of the complex interactions between these systems and neural activity influencing behavior. In this review, we explore findings that link circadian protein function with synaptic adaptations underlying plasticity as it may contribute to the development of mood disorders and addiction. In light of recent advances in technology and sophisticated methods for molecular and circuit-level interrogation, we propose future directions aimed at teasing apart mechanisms through which the circadian system modulates mood and reward-related behavior.
Collapse
Affiliation(s)
- Puja K. Parekh
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Colleen A. McClung
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
30
|
Abstract
Daily variations of metabolism, physiology and behaviour are controlled by a network of coupled circadian clocks, comprising a master clock in the suprachiasmatic nuclei of the hypothalamus and a multitude of secondary clocks in the brain and peripheral organs. Light cues synchronize the master clock that conveys temporal cues to other body clocks via neuronal and hormonal signals. Feeding at unusual times can reset the phase of most peripheral clocks. While the neuroendocrine aspect of circadian regulation has been underappreciated, this review aims at showing that the role of hormonal rhythms as internal time-givers is the rule rather than the exception. Adrenal glucocorticoids, pineal melatonin and adipocyte-derived leptin participate in internal synchronization (coupling) within the multi-oscillatory network. Furthermore, pancreatic insulin is involved in food synchronization of peripheral clocks, while stomach ghrelin provides temporal signals modulating behavioural anticipation of mealtime. Circadian desynchronization induced by shift work or chronic jet lag has harmful effects on metabolic regulation, thus favouring diabetes and obesity. Circadian deregulation of hormonal rhythms may participate in internal desynchronization and associated increase in metabolic risks. Conversely, adequate timing of endocrine therapies can promote phase-adjustment of the master clock (e.g. via melatonin agonists) and peripheral clocks (e.g. via glucocorticoid agonists).
Collapse
Affiliation(s)
- E Challet
- Institute of Cellular and Integrative Neurosciences, UPR3212 Centre National de la Recherche Scientifique, University of Strasbourg, Strasbourg, France
| |
Collapse
|
31
|
Garnier V, Traboulsi W, Salomon A, Brouillet S, Fournier T, Winkler C, Desvergne B, Hoffmann P, Zhou QY, Congiu C, Onnis V, Benharouga M, Feige JJ, Alfaidy N. PPARγ controls pregnancy outcome through activation of EG-VEGF: new insights into the mechanism of placental development. Am J Physiol Endocrinol Metab 2015; 309:E357-69. [PMID: 26081281 DOI: 10.1152/ajpendo.00093.2015] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Accepted: 06/04/2015] [Indexed: 01/29/2023]
Abstract
PPARγ-deficient mice die at E9.5 due to placental abnormalities. The mechanism by which this occurs is unknown. We demonstrated that the new endocrine factor EG-VEGF controls the same processes as those described for PPARγ, suggesting potential regulation of EG-VEGF by PPARγ. EG-VEGF exerts its functions via prokineticin receptor 1 (PROKR1) and 2 (PROKR2). This study sought to investigate whether EG-VEGF mediates part of PPARγ effects on placental development. Three approaches were used: 1) in vitro, using human primary isolated cytotrophoblasts and the extravillous trophoblast cell line (HTR-8/SVneo); 2) ex vivo, using human placental explants (n = 46 placentas); and 3) in vivo, using gravid wild-type PPARγ(+/-) and PPARγ(-/-) mice. Major processes of placental development that are known to be controlled by PPARγ, such as trophoblast proliferation, migration, and invasion, were assessed in the absence or presence of PROKR1 and PROKR2 antagonists. In both human trophoblast cell and placental explants, we demonstrated that rosiglitazone, a PPARγ agonist, 1) increased EG-VEGF secretion, 2) increased EG-VEGF and its receptors mRNA and protein expression, 3) increased placental vascularization via PROKR1 and PROKR2, and 4) inhibited trophoblast migration and invasion via PROKR2. In the PPARγ(-/-) mouse placentas, EG-VEGF levels were significantly decreased, supporting an in vivo control of EG-VEGF/PROKRs system during pregnancy. The present data reveal EG-VEGF as a new mediator of PPARγ effects during pregnancy and bring new insights into the fine mechanism of trophoblast invasion.
Collapse
Affiliation(s)
- Vanessa Garnier
- Institut National de la Santé et de la Recherche Médicale, Unité 1036, Grenoble, France; Université Grenoble-Alpes, Grenoble, France; iRTSV-Biology of Cancer and Infection, Commissariat à l'Energie Atomique, Grenoble, France
| | - Wael Traboulsi
- Institut National de la Santé et de la Recherche Médicale, Unité 1036, Grenoble, France; Université Grenoble-Alpes, Grenoble, France; iRTSV-Biology of Cancer and Infection, Commissariat à l'Energie Atomique, Grenoble, France
| | - Aude Salomon
- Institut National de la Santé et de la Recherche Médicale, Unité 1036, Grenoble, France; Université Grenoble-Alpes, Grenoble, France; iRTSV-Biology of Cancer and Infection, Commissariat à l'Energie Atomique, Grenoble, France
| | - Sophie Brouillet
- Institut National de la Santé et de la Recherche Médicale, Unité 1036, Grenoble, France; Université Grenoble-Alpes, Grenoble, France; iRTSV-Biology of Cancer and Infection, Commissariat à l'Energie Atomique, Grenoble, France; Department of Life and Environmental Sciences, University of Cagliari, Cagliari, Italy
| | - Thierry Fournier
- Institut National de la Santé et de la Recherche Médicale, UMR-S 1139, Paris, France; Université Paris Descartes, Sorbonne Paris Cité, Paris, France; PremUP Foundation, Paris, France
| | - Carine Winkler
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | - Beatrice Desvergne
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | - Pascale Hoffmann
- Institut National de la Santé et de la Recherche Médicale, Unité 1036, Grenoble, France; Université Grenoble-Alpes, Grenoble, France; iRTSV-Biology of Cancer and Infection, Commissariat à l'Energie Atomique, Grenoble, France; Department of Obstetrics and Gynaecology, University Hospital of Grenoble, La Tronche, France; and
| | - Qun-Yong Zhou
- Department of Pharmacology, University of California-Irvine, Irvine, California
| | - Cenzo Congiu
- Department of Life and Environmental Sciences, University of Cagliari, Cagliari, Italy
| | - Valentina Onnis
- Department of Life and Environmental Sciences, University of Cagliari, Cagliari, Italy
| | - Mohamed Benharouga
- Laboratoire de Chimie et Biologie des Métaux, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5249, Grenoble, France
| | - Jean-Jacques Feige
- Institut National de la Santé et de la Recherche Médicale, Unité 1036, Grenoble, France; Université Grenoble-Alpes, Grenoble, France; iRTSV-Biology of Cancer and Infection, Commissariat à l'Energie Atomique, Grenoble, France
| | - Nadia Alfaidy
- Institut National de la Santé et de la Recherche Médicale, Unité 1036, Grenoble, France; Université Grenoble-Alpes, Grenoble, France; iRTSV-Biology of Cancer and Infection, Commissariat à l'Energie Atomique, Grenoble, France;
| |
Collapse
|
32
|
Abstract
The cellular mechanisms governing the impact of the central circadian clock on neuronal networks are incompletely understood. We examine here the influence of the suprachiasmatic nucleus output neuropeptide arginine-vasopressin (AVP) on the activity of preoptic area kisspeptin neurons. These cells integrate circadian and hormonal signals within the neuronal network that regulates fertility in females. Electrophysiological recordings in brain slices from kisspeptin-GFP mice showed that AVP dose-dependently increased the firing rate of most kisspeptin neurons. These actions were mediated directly at the kisspeptin neuron. Experiments in mice expressing the calcium indicator GCaMP3 in kisspeptin neurons enabled simultaneous monitoring of intracellular calcium concentrations ([Ca(2+)]i) in multiple cells and revealed that AVP increased [Ca(2+)]i in >80% of diestrous kisspeptin neurons via a mechanism involving voltage-gated calcium channels. We next examined whether AVP signaling in kisspeptin neurons was time and ovarian cycle dependent. AVP exerted the same effects on diestrous and proestrous days of the ovarian cycle, whether hours before [zeitgeber time 4 (ZT4)-ZT6] or just before (ZT10) the expected time of the proestrous preovulatory luteinizing hormone surge. Remarkably, however, AVP signaling was critically dependent on circulating ovarian steroids as AVP no longer excited preoptic kisspeptin neurons in ovariectomized mice, an effect that was fully restored by estradiol treatment. Together, these studies show that AVP exerts a potent and direct stimulatory influence upon the electrical activity and [Ca(2+)]i of most preoptic kisspeptin neurons. Unexpectedly, estrogen is found to permit circadian AVP signaling at preoptic kisspeptin neurons rather than dynamically modulate its activity throughout the estrous cycle.
Collapse
|
33
|
Archer SN, Oster H. How sleep and wakefulness influence circadian rhythmicity: effects of insufficient and mistimed sleep on the animal and human transcriptome. J Sleep Res 2015; 24:476-93. [PMID: 26059855 DOI: 10.1111/jsr.12307] [Citation(s) in RCA: 124] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Accepted: 04/04/2015] [Indexed: 12/12/2022]
Abstract
The mammalian circadian system is a multi-oscillator, hierarchically organised system where a central pacemaker synchronises behavioural, physiological and gene expression rhythms in peripheral tissues. Epidemiological studies show that disruption of this internal synchronisation by short sleep and shift work is associated with adverse health outcomes through mechanisms that remain to be elucidated. Here, we review recent animal and human studies demonstrating the profound effects of insufficient and mistimed sleep on the rhythms of gene expression in central and peripheral tissues. In mice, sleep restriction leads to an ~80% reduction in circadian transcripts in the brain and profound disruption of the liver transcriptome. In humans, sleep restriction leads to a 1.9% reduction in circadian transcripts in whole blood, and when sleep is displaced to the daytime, 97% of rhythmic genes become arrhythmic and one-third of all genes show changes in temporal expression profiles. These changes in mice and humans include a significant reduction in the circadian regulation of transcription and translation and core clock genes in the periphery, while at the same time rhythms within the suprachiasmatic nucleus are not disrupted. Although the physiological mediators of these sleep disruption effects on the transcriptome have not been established, altered food intake, changes in hormones such as cortisol, and changes in body and brain temperature may play important roles. Processes and molecular pathways associated with these disruptions include metabolism, immune function, inflammatory and stress responses, and point to the molecular mechanisms underlying the established adverse health outcomes associated with short sleep duration and shift work, such as metabolic syndrome and cancer.
Collapse
Affiliation(s)
- Simon N Archer
- Surrey Sleep Research Centre, Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK
| | - Henrik Oster
- Chronophysiology Group, Medical Department I, University of Lübeck, Lübeck, Germany
| |
Collapse
|
34
|
Schippers JHM, Lai AG, Mueller-Roeber B, Dijkwel PP. Could ROS signals drive tissue-specific clocks? Transcription 2015; 4:206-8. [PMID: 24135705 PMCID: PMC4114656 DOI: 10.4161/trns.26362] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Circadian clocks have emerged to tune the physiology of organisms to periodic changes in the environment in a dynamic fashion. Negative implications of circadian disruptions in humans, animals and plants have encouraged extensive studies of clock-controlled biological processes in various model species. Recently, it has been shown that the transcription-dependent and -independent biological oscillators are largely driven by cellular oxidative cycles that are intrinsically linked with metabolism. Essentially, the clock is viewed as an integrated network that encompasses cytosolic, genetic and metabolic dimensions. Furthermore, in multicellular organisms, the clock network is organized in a tissue-specific manner. Here we discuss questions that remain unanswered: How do these dimensions communicate with each other and how do tissue-specific clocks exchange temporal information within multicellular organisms?
Collapse
|
35
|
Lumaban JG, Nelson DL. The Fragile X proteins Fmrp and Fxr2p cooperate to regulate glucose metabolism in mice. Hum Mol Genet 2014; 24:2175-84. [PMID: 25552647 DOI: 10.1093/hmg/ddu737] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Fragile X syndrome results from loss of FMR1 expression. Individuals with the disorder exhibit not only intellectual disability, but also an array of physical and behavioral abnormalities, including sleep difficulties. Studies in mice demonstrated that Fmr1, along with its paralog Fxr2, regulate circadian behavior, and that their absence disrupts expression and cycling of essential clock mRNAs in the liver. Recent reports have identified circadian genes to be essential for normal metabolism. Here we describe the metabolic defects that arise in mice mutated for both Fmr1 and Fxr2. These mice have reduced fat deposits compared with age- and weight-matched controls. Several metabolic markers show either low levels in plasma or abnormal circadian cycling (or both). Insulin levels are consistently low regardless of light exposure and feeding conditions, and the animals are extremely sensitive to injected insulin. Glucose production from introduced pyruvate and glucagon is impaired and the mice quickly clear injected glucose. These mice also have higher food intake and higher VO2 and VCO2 levels. We analyzed liver expression of genes involved in glucose homeostasis and found several that are expressed differentially in the mutant mice. These results point to the involvement of Fmr1 and Fxr2 in maintaining the normal metabolic state in mice.
Collapse
Affiliation(s)
- Jeannette G Lumaban
- Department of Molecular and Human Genetics, Jan and Dan Duncan Neurological Research Institute, Baylor College of Medicine, 1250 Moursund Street, Houston, TX 77030, USA
| | - David L Nelson
- Department of Molecular and Human Genetics, Jan and Dan Duncan Neurological Research Institute, Baylor College of Medicine, 1250 Moursund Street, Houston, TX 77030, USA
| |
Collapse
|
36
|
Kunst M, Tso MCF, Ghosh DD, Herzog ED, Nitabach MN. Rhythmic control of activity and sleep by class B1 GPCRs. Crit Rev Biochem Mol Biol 2014; 50:18-30. [PMID: 25410535 DOI: 10.3109/10409238.2014.985815] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Members of the class B1 family of G-protein coupled receptors (GPCRs) whose ligands are neuropeptides have been implicated in regulation of circadian rhythms and sleep in diverse metazoan clades. This review discusses the cellular and molecular mechanisms by which class B1 GPCRs, especially the mammalian VPAC2 receptor and its functional homologue PDFR in Drosophila and C. elegans, regulate arousal and daily rhythms of sleep and wake. There are remarkable parallels in the cellular and molecular roles played by class B1 intercellular signaling pathways in coordinating arousal and circadian timekeeping across multiple cells and tissues in these very different genetic model organisms.
Collapse
Affiliation(s)
- Michael Kunst
- Department of Cellular and Molecular Physiology, Yale University School of Medicine , New Haven, CT , USA and
| | | | | | | | | |
Collapse
|
37
|
Kunst M, Hughes ME, Raccuglia D, Felix M, Li M, Barnett G, Duah J, Nitabach MN. Calcitonin gene-related peptide neurons mediate sleep-specific circadian output in Drosophila. Curr Biol 2014; 24:2652-64. [PMID: 25455031 DOI: 10.1016/j.cub.2014.09.077] [Citation(s) in RCA: 146] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2012] [Revised: 09/05/2014] [Accepted: 09/26/2014] [Indexed: 01/09/2023]
Abstract
BACKGROUND Imbalances in amount and timing of sleep are harmful to physical and mental health. Therefore, the study of the underlying mechanisms is of great biological importance. Proper timing and amount of sleep are regulated by both the circadian clock and homeostatic sleep drive. However, very little is known about the cellular and molecular mechanisms by which the circadian clock regulates sleep. In this study, we describe a novel role for diuretic hormone 31 (DH31), the fly homolog of the vertebrate neuropeptide calcitonin gene-related peptide, as a circadian wake-promoting signal that awakens the fly in anticipation of dawn. RESULTS Analysis of loss-of-function and gain-of-function Drosophila mutants demonstrates that DH31 suppresses sleep late at night. DH31 is expressed by a subset of dorsal circadian clock neurons that also express the receptor for the circadian neuropeptide pigment-dispersing factor (PDF). PDF secreted by the ventral pacemaker subset of circadian clock neurons acts on PDF receptors in the DH31-expressing dorsal clock neurons to increase DH31 secretion before dawn. Activation of PDF receptors in DH31-positive DN1 specifically affects sleep and has no effect on circadian rhythms, thus constituting a dedicated locus for circadian regulation of sleep. CONCLUSIONS We identified a novel signaling molecule (DH31) as part of a neuropeptide relay mechanism for circadian control of sleep. Our results indicate that outputs of the clock controlling sleep and locomotor rhythms are mediated via distinct neuronal pathways.
Collapse
Affiliation(s)
- Michael Kunst
- Department of Cellular and Molecular Physiology, Yale School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA
| | - Michael E Hughes
- Department of Cellular and Molecular Physiology, Yale School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA
| | - Davide Raccuglia
- Department of Cellular and Molecular Physiology, Yale School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA
| | - Mario Felix
- Department of Cellular and Molecular Physiology, Yale School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA
| | - Michael Li
- Department of Cellular and Molecular Physiology, Yale School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA
| | - Gregory Barnett
- Department of Cellular and Molecular Physiology, Yale School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA
| | - Janelle Duah
- Department of Cellular and Molecular Physiology, Yale School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA
| | - Michael N Nitabach
- Department of Cellular and Molecular Physiology, Yale School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA; Department of Genetics, Yale School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA; Program in Cellular Neuroscience, Neurodegeneration, and Repair, Yale School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA.
| |
Collapse
|
38
|
Mendoza J, Challet E. Circadian insights into dopamine mechanisms. Neuroscience 2014; 282:230-42. [PMID: 25281877 DOI: 10.1016/j.neuroscience.2014.07.081] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Revised: 07/22/2014] [Accepted: 07/24/2014] [Indexed: 01/11/2023]
Abstract
Almost every physiological or behavioral process in mammals follows rhythmic patterns, which depend mainly on a master circadian clock located in the hypothalamic suprachiasmatic nucleus (SCN). The dopaminergic (DAergic) system in the brain is principally implicated in motor functions, motivation and drug intake. Interestingly, DA-related parameters and behaviors linked to the motivational and arousal states, show daily rhythms that could be regulated by the SCN or by extra-SCN circadian oscillator(s) modulating DAergic systems. Here we examine what is currently understood about the anatomical and functional central multi-oscillatory circadian system, highlighting how the main SCN clock communicates timing information with other brain clocks to regulate the DAergic system and conversely, how DAergic cues may have feedback effects on the SCN. These studies give new insights into the role of the brain circadian system in DA-related neurologic pathologies, such as Parkinson's disease, attention deficit/hyperactive disorder and drug addiction.
Collapse
Affiliation(s)
- J Mendoza
- Institute of Cellular and Integrative Neurosciences, CNRS UPR-3212, University of Strasbourg, 5 rue Blaise Pascal, 67084 Strasbourg cedex, France.
| | - E Challet
- Institute of Cellular and Integrative Neurosciences, CNRS UPR-3212, University of Strasbourg, 5 rue Blaise Pascal, 67084 Strasbourg cedex, France
| |
Collapse
|
39
|
Yang SL, Yu C, Jiang JX, Liu LP, Fang X, Wu C. Hepatitis B virus X protein disrupts the balance of the expression of circadian rhythm genes in hepatocellular carcinoma. Oncol Lett 2014; 8:2715-2720. [PMID: 25360177 PMCID: PMC4214404 DOI: 10.3892/ol.2014.2570] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Accepted: 09/11/2014] [Indexed: 01/09/2023] Open
Abstract
The human circadian rhythm is controlled by at least eight circadian clock genes and disruption of the circadian rhythm is associated with cancer development. The present study aims to elucidate the association between the expression of circadian clock genes and the development of hepatocellular carcinoma (HCC), and also to reveal whether the hepatitis B virus X protein (HBx) is the major regulator that contributes to the disturbance of circadian clock gene expression. The mRNA levels of circadian clock genes in 30 HCC and the paired peritumoral tissues were determined by reverse transcription-quantitative polymerase chain reaction (RT-qPCR). A stable HBx-expressing cell line, Bel-7404-HBx, was established through transfection of HBx plasmids. The mRNA level of circadian clock genes was also detected by RT-qPCR in these cells. Compared with the paired peritumoral tissues, the mRNA levels of the Per1, Per2, Per3 and Cry2 genes in HCC tissue were significantly lower (P<0.05), while no significant difference was observed in the expression levels of CLOCK, BMAL1, Cry1 and casein kinase 1ɛ (CK1ɛ; P>0.05). Compared with Bel-7404 cells, the mRNA levels of the CLOCK, Per1 and Per2 genes in Bel-7404-HBx cells were significantly increased, while the mRNA levels of the BMAL1, Per3, Cry1, Cry2 and CKIɛ genes were decreased (P<0.05). Thus, the present study identified that disturbance of the expression of circadian clock genes is common in HCC. HBx disrupts the expression of circadian clock genes and may, therefore, induce the development of HCC.
Collapse
Affiliation(s)
- Sheng-Li Yang
- Department of General Surgery, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430077, P.R. China
| | - Chao Yu
- Department of Hepatobiliary Surgery, Affiliated Hospital of Guiyang Medical College, Guiyang, Guizhou 550001, P.R. China
| | - Jian-Xin Jiang
- Department of Hepatobiliary Surgery, Affiliated Hospital of Guiyang Medical College, Guiyang, Guizhou 550001, P.R. China
| | - Li-Ping Liu
- Department of Hepatobiliary and Pancreatic Surgery, Shenzhen People's Hospital, Second Clinical Medical College, Jinan University, Shenzhen, Guangdong 518000, P.R. China
| | - Xiefan Fang
- Department of Pediatrics, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Chao Wu
- Department of General Surgery, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430077, P.R. China
| |
Collapse
|
40
|
Wu C, Sui G, Archer SN, Sassone-Corsi P, Aitken K, Bagli D, Chen Y. Local receptors as novel regulators for peripheral clock expression. FASEB J 2014; 28:4610-6. [PMID: 25145629 PMCID: PMC4200324 DOI: 10.1096/fj.13-243295] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Mammalian circadian control is determined by a central clock in the brain suprachiasmatic nucleus (SCN) and synchronized peripheral clocks in other tissues. Increasing evidence suggests that SCN-independent regulation of peripheral clocks also occurs. We examined how activation of excitatory receptors influences the clock protein PERIOD 2 (PER2) in a contractile organ, the urinary bladder. PERIOD2::LUCIFERASE-knock-in mice were used to report real-time PER2 circadian dynamics in the bladder tissue. Rhythmic PER2 activities occurred in the bladder wall with a cycle of ∼24 h and peak at ∼12 h. Activation of the muscarinic and purinergic receptors by agonists shifted the peak to an earlier time (7.2±2.0 and 7.2±0.9 h, respectively). PER2 expression was also sensitive to mechanical stimulation. Aging significantly dampened PER2 expression and its response to the agonists. Finally, muscarinic agonist-induced smooth muscle contraction also exhibited circadian rhythm. These data identified novel regulators, endogenous receptors, in determining local clock activity, in addition to mediating the central control. Furthermore, the local clock appears to reciprocally align receptor activity to circadian rhythm for muscle contraction. The interaction between receptors and peripheral clock represents an important mechanism for maintaining physiological functions and its dysregulation may contribute to age-related organ disorders.—Wu, C., Sui, G., Archer, S. N., Sassone-Corsi, P., Aitken, K., Bagli, D., Chen, Y. Local receptors as novel regulators for peripheral clock expression.
Collapse
Affiliation(s)
- Changhao Wu
- Department of Biochemistry and Physiology, University of Surrey, Surrey, UK;
| | - Guiping Sui
- Oesophageal Laboratory, Guy's and St. Thomas Hospitals National Health Service Trust, London, UK
| | - Simon N Archer
- Department of Biochemistry and Physiology, University of Surrey, Surrey, UK
| | - Paolo Sassone-Corsi
- Department of Biological Chemistry, University of California, Irvine, California, USA; and
| | - Karen Aitken
- Department of Urology, Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Darius Bagli
- Department of Urology, Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Ying Chen
- Department of Biochemistry and Physiology, University of Surrey, Surrey, UK
| |
Collapse
|
41
|
Silver R, Kriegsfeld LJ. Circadian rhythms have broad implications for understanding brain and behavior. Eur J Neurosci 2014; 39:1866-80. [PMID: 24799154 DOI: 10.1111/ejn.12593] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Revised: 03/14/2014] [Accepted: 03/19/2014] [Indexed: 12/28/2022]
Abstract
Circadian rhythms are generated by an endogenously organized timing system that drives daily rhythms in behavior, physiology and metabolism. In mammals, the suprachiasmatic nucleus (SCN) of the hypothalamus is the locus of a master circadian clock. The SCN is synchronized to environmental changes in the light:dark cycle by direct, monosynaptic innervation via the retino-hypothalamic tract. In turn, the SCN coordinates the rhythmic activities of innumerable subordinate clocks in virtually all bodily tissues and organs. The core molecular clockwork is composed of a transcriptional/post-translational feedback loop in which clock genes and their protein products periodically suppress their own transcription. This primary loop connects to downstream output genes by additional, interlocked transcriptional feedback loops to create tissue-specific 'circadian transcriptomes'. Signals from peripheral tissues inform the SCN of the internal state of the organism and the brain's master clock is modified accordingly. A consequence of this hierarchical, multilevel feedback system is that there are ubiquitous effects of circadian timing on genetic and metabolic responses throughout the body. This overview examines landmark studies in the history of the study of circadian timing system, and highlights our current understanding of the operation of circadian clocks with a focus on topics of interest to the neuroscience community.
Collapse
Affiliation(s)
- Rae Silver
- Department of Psychology, Barnard College, Columbia University, New York, NY, USA; Department of Psychology, Columbia University, Mail Code 5501, 1190 Amsterdam Avenue, New York, NY, 10027, USA; Department of Pathology and Cell Biology, Columbia University Health Sciences, New York, NY, USA
| | | |
Collapse
|
42
|
Acute suppressive and long-term phase modulation actions of orexin on the mammalian circadian clock. J Neurosci 2014; 34:3607-21. [PMID: 24599460 DOI: 10.1523/jneurosci.3388-13.2014] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Circadian and homeostatic neural circuits organize the temporal architecture of physiology and behavior, but knowledge of their interactions is imperfect. For example, neurons containing the neuropeptide orexin homeostatically control arousal and appetitive states, while neurons in the suprachiasmatic nuclei (SCN) function as the brain's master circadian clock. The SCN regulates orexin neurons so that they are much more active during the circadian night than the circadian day, but it is unclear whether the orexin neurons reciprocally regulate the SCN clock. Here we show both orexinergic innervation and expression of genes encoding orexin receptors (OX1 and OX2) in the mouse SCN, with OX1 being upregulated at dusk. Remarkably, we find through in vitro physiological recordings that orexin predominantly suppresses mouse SCN Period1 (Per1)-EGFP-expressing clock cells. The mechanisms underpinning these suppressions vary across the circadian cycle, from presynaptic modulation of inhibitory GABAergic signaling during the day to directly activating leak K(+) currents at night. Orexin also augments the SCN clock-resetting effects of neuropeptide Y (NPY), another neurochemical correlate of arousal, and potentiates NPY's inhibition of SCN Per1-EGFP cells. These results build on emerging literature that challenge the widely held view that orexin signaling is exclusively excitatory and suggest new mechanisms for avoiding conflicts between circadian clock signals and homeostatic cues in the brain.
Collapse
|
43
|
Chen DN, Ma YT, Liu H, Zhou QY, Li JD. Functional rescue of Kallmann syndrome-associated prokineticin receptor 2 (PKR2) mutants deficient in trafficking. J Biol Chem 2014; 289:15518-26. [PMID: 24753254 DOI: 10.1074/jbc.m114.556381] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Mutations in the G protein-coupled prokineticin receptor 2 (PKR2) are known to cause Kallmann syndrome and idiopathic hypogonadotropic hypogonadism manifesting with delayed puberty and infertility. Some of the mutant receptors are not routed to the cell surface; instead, they are trapped in the cellular secretory pathway. The cell-permeant agonists/antagonists have been used to rescue some membrane receptors that are not targeted onto the cell membrane. Here, we chose three disease-associated mutations (W178S, G234D, and P290S), which all resulted in retention of PKR2 intracellularly. We show that a small molecule PKR2 antagonist (A457) dramatically increased cell surface expression and rescued the function of P290S PKR2, but had no effect on W178S and G234D PKR2. Furthermore, we also tested chemical chaperone glycerol on the cell surface expression and function of PKR2 mutants. Treatment with 10% glycerol significantly increased the cell surface expression and signaling of P290S and W178S PKR2. These data demonstrate that some Kallmann syndrome-associated, intracellularly retained mutant PKR2 receptors can be functionally rescued, suggesting a potential treatment strategy for patients bearing such mutations.
Collapse
Affiliation(s)
- Dan-Na Chen
- From the State Key Laboratory of Medical Genetics, Central South University, Changsha, Hunan 410078, China, the Department of Basic Medical Sciences, Changsha Medical University, Changsha, Hunan 410219, China
| | - Yan-Tao Ma
- From the State Key Laboratory of Medical Genetics, Central South University, Changsha, Hunan 410078, China
| | - Huadie Liu
- From the State Key Laboratory of Medical Genetics, Central South University, Changsha, Hunan 410078, China
| | - Qun-Yong Zhou
- the Department of Pharmacology, University of California, Irvine, California 92697
| | - Jia-Da Li
- From the State Key Laboratory of Medical Genetics, Central South University, Changsha, Hunan 410078, China, the Department of Pharmacology, Hubei University of Science and Technology, 88 Xianning Road, Xianning, Hubei 437100, China, and
| |
Collapse
|
44
|
Ragancokova D, Rocca E, Oonk AM, Schulz H, Rohde E, Bednarsch J, Feenstra I, Pennings RJ, Wende H, Garratt AN. TSHZ1-dependent gene regulation is essential for olfactory bulb development and olfaction. J Clin Invest 2014; 124:1214-27. [PMID: 24487590 PMCID: PMC3934178 DOI: 10.1172/jci72466] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Accepted: 11/14/2013] [Indexed: 02/04/2023] Open
Abstract
The olfactory bulb (OB) receives odor information from the olfactory epithelium and relays this to the olfactory cortex. Using a mouse model, we found that development and maturation of OB interneurons depends on the zinc finger homeodomain factor teashirt zinc finger family member 1 (TSHZ1). In mice lacking TSHZ1, neuroblasts exhibited a normal tangential migration to the OB; however, upon arrival to the OB, the neuroblasts were distributed aberrantly within the radial dimension, and many immature neuroblasts failed to exit the rostral migratory stream. Conditional deletion of Tshz1 in mice resulted in OB hypoplasia and severe olfactory deficits. We therefore investigated olfaction in human subjects from families with congenital aural atresia that were heterozygous for TSHZ1 loss-of-function mutations. These individuals displayed hyposmia, which is characterized by impaired odor discrimination and reduced olfactory sensitivity. Microarray analysis, in situ hybridization, and ChIP revealed that TSHZ1 bound to and regulated expression of the gene encoding prokineticin receptor 2 (PROKR2), a G protein–coupled receptor essential for OB development. Mutations in PROKR2 lead to Kallmann syndrome, characterized by anosmia and hypogonadotrophic hypogonadism. Our data indicate that TSHZ1 is a key regulator of mammalian OB development and function and controls the expression of molecules involved in human Kallmann syndrome.
Collapse
Affiliation(s)
- Daniela Ragancokova
- Neuroscience Program, Max-Delbrück-Center for Molecular Medicine (MDC), Berlin, Germany
| | - Elena Rocca
- Neuroscience Program, Max-Delbrück-Center for Molecular Medicine (MDC), Berlin, Germany
| | - Anne M.M. Oonk
- Department of Otorhinolaryngology, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, Nijmegen, The Netherlands
| | | | - Elvira Rohde
- Neuroscience Program, Max-Delbrück-Center for Molecular Medicine (MDC), Berlin, Germany
| | - Jan Bednarsch
- Department of General, Visceral, and Transplantation Surgery, Charité University Hospital Berlin, Berlin, Germany
| | - Ilse Feenstra
- Human Genetics, Hearing, and Genes, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Ronald J.E. Pennings
- Department of Otorhinolaryngology, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, Nijmegen, The Netherlands
| | - Hagen Wende
- Neuroscience Program, Max-Delbrück-Center for Molecular Medicine (MDC), Berlin, Germany
| | - Alistair N. Garratt
- Neuroscience Program, Max-Delbrück-Center for Molecular Medicine (MDC), Berlin, Germany
- Institute of Cell Biology and Neurobiology, Center for Anatomy, Charité University Hospital Berlin, Berlin, Germany
| |
Collapse
|
45
|
Yin W, Liu H, Peng Z, Chen D, Li J, Li JD. Mechanisms that underlie the internalization and extracellular signal regulated kinase 1/2 activation by PKR2 receptor. Cell Signal 2014; 26:1118-24. [PMID: 24509228 DOI: 10.1016/j.cellsig.2014.01.031] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Revised: 01/16/2014] [Accepted: 01/26/2014] [Indexed: 01/17/2023]
Abstract
Prokineticins (PKs) are a pair of signal factors involved in many physiological processes by binding to two closely related G-protein-coupled receptors (GPCRs), PKR1 and PKR2. We recently demonstrated that PKR2 undergoes rapid ligand-induced endocytosis, and PKR2 recycles back to the plasma membrane after the removal of ligand. However, little is known about the molecular mechanisms underlying the PKR2 endocytosis. Here, we studied the involvement of GPCR kinase 2 (GRK2), β-arrestins, clathrin and protein kinase C (PKC) in the PKR2 endocytosis. Our results indicated that PK2-induced PKR2 endocytosis is GRK2- and clathrin-dependent, but β-arrestin-independent. PKC activation also induced PKR2 endocytosis; however, PKC activation is not necessary for the PK2-induced PKR2 endocytosis. PK2 stimulation induced a transient activation of extracellular signal regulated kinase 1/2 (ERK1/2) on PKR2 expressing cells. The internalization and PKC activation are not required for the PK2-induced ERK1/2 activation. Our results indicated that PK2-induced ERK1/2 activation may involve the released βγ subunits of G-protein, phospholipase C β and MEK activation.
Collapse
Affiliation(s)
- Wenqing Yin
- The Second Xiangya Hospital, State Key Laboratory of Medical Genetics, Changsha, Hunan, China
| | - Huadie Liu
- The Second Xiangya Hospital, State Key Laboratory of Medical Genetics, Changsha, Hunan, China
| | - Zhen Peng
- The Second Xiangya Hospital, State Key Laboratory of Medical Genetics, Changsha, Hunan, China
| | - Danna Chen
- The Second Xiangya Hospital, State Key Laboratory of Medical Genetics, Changsha, Hunan, China
| | - Jie Li
- School of Life Sciences, Central South University, Changsha, Hunan, China.
| | - Jia-Da Li
- The Second Xiangya Hospital, State Key Laboratory of Medical Genetics, Changsha, Hunan, China; School of Life Sciences, Central South University, Changsha, Hunan, China.
| |
Collapse
|
46
|
Karmarkar SW, Tischkau SA. Influences of the circadian clock on neuronal susceptibility to excitotoxicity. Front Physiol 2013; 4:313. [PMID: 24204346 PMCID: PMC3817863 DOI: 10.3389/fphys.2013.00313] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Accepted: 10/12/2013] [Indexed: 11/13/2022] Open
Abstract
Stroke is the third leading cause of death and the primary cause of morbidity in the United States, thus posing an enormous burden on the healthcare system. The factors that determine the risk of an individual toward precipitation of an ischemic event possess a strong circadian component as does the ischemic event itself. This predictability provided a window of opportunity toward the development of chronopharmaceuticals which provided much better clinical outcomes. Experiments from our lab showed for the first time that neuronal susceptibility to ischemic events follows a circadian pattern; hippocampal neurons being most susceptible to an ischemic insult occurring during peak activity in a rodent model of global cerebral ischemia. We also demonstrated that the SCN2.2 cells (like their in vivo counterpart) are resistant to excitotoxicity by glutamate and that this was dependent on activation of ERK signaling. We are currently working on elucidating the complete neuroprotective pathway that provides a barricade against glutamate toxicity in the SCN2.2 cells. Our future experiments will be engaged in hijacking the neuroprotective mechanism in the SCN2.2 cells and applying it to glutamate-susceptible entities in an effort to prevent their death in the presence of excitotoxicity. Despite the advancement in chronopharmaceuticals, optimal clinical outcome with minimal adverse events are difficult to come by at an affordable price. Superior treatment options require a better understanding of molecular mechanisms that define the disease, including the role of the circadian clock.
Collapse
Affiliation(s)
- Sumedha W Karmarkar
- Department of Pharmacology, Southern Illinois University School of Medicine Springfield, IL, USA
| | | |
Collapse
|
47
|
Zhou XT, Chen DN, Xie ZQ, Peng Z, Xia KD, Liu HD, Liu W, Su B, Li JD. Functional analysis of the distal region of the third intracellular loop of PROKR2. Biochem Biophys Res Commun 2013; 439:12-7. [PMID: 23969157 DOI: 10.1016/j.bbrc.2013.08.039] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Accepted: 08/07/2013] [Indexed: 01/09/2023]
Abstract
Mutations in the G-protein-coupled receptor PROKR2 have been identified in patients with idiopathic hypogonadotropic hypogonadism (IHH) and Kallmann syndrome (KS) manifesting with delayed puberty and infertility. Recently, the homozygous mutation V274D was identified in a man displaying KS with an apparent reversal of hypogonadism. The affected amino acid, valine 274, is located at the junction region of the third intracellular loop (IL3) and the sixth transmembrane domain (TM6). In this study, we first studied the effect of V274D and related mutations (V274A, V274T, and V274R) on the signaling activity and cell surface expression of PROKR2. Our data indicate that a charged amino acid substitution at residue 274 of PROKR2 results in low cell surface expression and loss-of-function. Furthermore, we studied the effects of two clusters of basic amino acids located at the proximal region of Val274 on the cell surface expression and function of PROKR2. The deletion of RRK (270-272) resulted in undetectable cell surface expression, whereas RKR (264-266)-deleted PROKR2 was expressed normally on the cell surface but showed loss-of-function due to a deficiency in G-protein coupling. Our data indicate that the distal region of the IL3 of PROKR2 may differentially influence receptor trafficking and G-protein coupling.
Collapse
Affiliation(s)
- Xiao-Tao Zhou
- Xiangya Hospital, State Key Laboratory of Medical Genetics, Central South University, Changsha, Hunan Province 410078, PR China; Department of Immunology, Xinjiang Medical University, Urumqi, Xinjiang Uygur Autonomous Region 830054, PR China
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Grassi D, Bellini MJ, Acaz-Fonseca E, Panzica G, Garcia-Segura LM. Estradiol and testosterone regulate arginine-vasopressin expression in SH-SY5Y human female neuroblastoma cells through estrogen receptors-α and -β. Endocrinology 2013; 154:2092-100. [PMID: 23584859 DOI: 10.1210/en.2012-2137] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The expression of arginine-vasopressin (AVP) is regulated by estradiol and testosterone (T) in different neuronal populations by mechanisms that are not yet fully understood. Estrogen receptors (ERs) have been shown to participate in the regulation of AVP neurons by estradiol. In addition, there is evidence of the participation of ERβ in the regulation of AVP expression exerted by T via its metabolite 5α-dihydrotestosterone (5α-DHT) and its further conversion in the androgen metabolite and ERβ ligand 3β-diol. In this study we have explored the role of ERs in the regulation exerted by estradiol and T on AVP expression, using the human neuroblastoma cell line SH-SY5Y. Estradiol treatment increased AVP mRNA levels in SH-SY5Y cells in comparison with cells treated with vehicle. The stimulatory effect of estradiol on AVP expression was imitated by the ERα agonist 4,4',4',-(4-propyl-[1H]-pyrazole-1,3,5-triyl)trisphenol and blocked by the ER antagonist, ICI 182,780, and the ERα antagonist 1,3-bis(4-hydroxyphenyl)-4-methyl-5-[4-(2-piperidinylethoxy)phenol]-1hpyrazoledihydrochloride. In contrast, the ERβ agonist 2,3-bis(4-hydroxyphenyl)-propionitrile reduced AVP expression, whereas the ERβ antagonist 4-[2-phenyl-5,7-bis(trifluoromethyl) pyrazolo[1,5-a]pyrimidin-3-yl]phenol enhanced the action of estradiol on AVP expression. T increased AVP expression in SH-SY5Y cells by a mechanism that was dependent on aromatase but not on 5α-reductase activity. The T effect was not affected by blocking the androgen receptor, was not imitated by the T metabolite 5α-DHT, and was blocked by the ERα antagonist 1,3-bis(4-hydroxyphenyl)-4-methyl-5-[4-(2-piperidinylethoxy)phenol]-1hpyrazoledihydrochloride. In contrast, 5α-DHT had a similar effect as the ERβ agonists 2,3-bis(4-hydroxyphenyl)-propionitrile and 3β-diol, reducing AVP expression. These findings suggest that estradiol and T regulate AVP expression in SH-SY5Y cells through ERs, exerting a stimulatory action via ERα and an inhibitory action via ERβ.
Collapse
Affiliation(s)
- Daniela Grassi
- Instituto Cajal, Consejo Suerior de Investigaciones Científicas, Avenida Doctor Arce 37, E-28002 Madrid, Spain
| | | | | | | | | |
Collapse
|
49
|
Dodé C, Rondard P. PROK2/PROKR2 Signaling and Kallmann Syndrome. Front Endocrinol (Lausanne) 2013; 4:19. [PMID: 23596439 PMCID: PMC3624607 DOI: 10.3389/fendo.2013.00019] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2012] [Accepted: 02/14/2013] [Indexed: 01/04/2023] Open
Abstract
Kallmann syndrome (KS) is a developmental disease that associates hypogonadism and a deficiency of the sense of smell. The reproductive phenotype of KS results from the primary interruption of the olfactory, vomeronasal, and terminal nerve fibers in the frontonasal region, which in turn disrupts the embryonic migration of neuroendocrine gonadotropin-releasing hormone (GnRH) synthesizing cells from the nose to the brain. This is a highly heterogeneous genetic disease, and mutations in any of the nine genes identified so far have been found in approximately 30% of the KS patients. PROKR2 and PROK2, which encode the G protein-coupled prokineticin receptor-2 and its ligand prokineticin-2, respectively, are two of these genes. Homozygous knockout mice for the orthologous genes exhibit a phenotype reminiscent of the KS features, but biallelic mutations in PROKR2 or PROK2 (autosomal recessive mode of disease transmission) have been found only in a minority of the patients, whereas most patients carrying mutations in these genes are heterozygotes. The mutations, mainly missense mutations, have deleterious effects on PROKR2 signaling in transfected cells, ranging from defective cell surface-targeting of the receptor to defective coupling to G proteins or impaired receptor-ligand interaction, but the same mutations have also been found in apparently unaffected individuals, which suggests a digenic/oligogenic mode of inheritance of the disease in heterozygous patients. This non-Mendelian mode of inheritance has so far been confirmed only in a few patients. However, it may account for the unusually high proportion of KS sporadic cases compared to familial cases.
Collapse
Affiliation(s)
- Catherine Dodé
- INSERM U1016, Institut Cochin, Université Paris-DescartesParis, France
- *Correspondence: Catherine Dodé, INSERM U1016, Institut Cochin, Département de génétique et développement, 24 rue du Faubourg Saint-Jacques, 75014 Paris, France. e-mail:
| | - Philippe Rondard
- CNRS UMR5203, INSERM U661, Institut de Génomique Fonctionnelle, Université Montpellier 1, 2Montpellier, France
| |
Collapse
|