1
|
Franco C, Rezzani R. Methods and Models for Studying Mycobacterium tuberculosis in Respiratory Infections. Int J Mol Sci 2024; 26:18. [PMID: 39795880 PMCID: PMC11719571 DOI: 10.3390/ijms26010018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 12/18/2024] [Accepted: 12/19/2024] [Indexed: 01/13/2025] Open
Abstract
Respiratory infections, including tuberculosis, constitute a major global health challenge. Tuberculosis (TB), caused by Mycobacterium tuberculosis (Mtb), remains one of the leading causes of mortality worldwide. The disease's complexity is attributed to Mtb's capacity to persist in latent states, evade host immune defenses, and develop resistance to antimicrobial treatments, posing significant challenges for diagnosis and therapy. Traditional models, such as animal studies and two-dimensional (2D) in vitro systems, often fail to accurately recapitulate human-specific immune processes, particularly the formation of granulomas-a defining feature of tubercular infection. These limitations underscore the need for more physiologically relevant models to study TB pathogenesis. Emerging three-dimensional (3D) in vitro systems, including organoids and lung-on-chip platforms, offer innovative approaches to mimic the structural and functional complexity of the human lung. These models enable the recreation of key aspects of the tubercular granulomas, such as cellular interactions, oxygen gradients, and nutrient limitations, thereby providing deeper insights into Mtb pathogenesis. This review aims to elucidate the advantages of 3D in vitro systems in bridging the translational gap between traditional experimental approaches and clinical applications. Particular emphasis is placed on their potential to address challenges related to genetic variability in both the host and pathogen, thereby advancing tubercular research and therapeutic development.
Collapse
Affiliation(s)
- Caterina Franco
- Anatomy and Physiopathology Division, Department of Clinical and Experimental Sciences, University of Brescia, 25123 Brescia, Italy
- Division of Immunology, Transplantation, and Infectious Diseases, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Rita Rezzani
- Anatomy and Physiopathology Division, Department of Clinical and Experimental Sciences, University of Brescia, 25123 Brescia, Italy
- Italian Society for the Study of Orofacial Pain (Società Italiana Studio Dolore Orofacciale–SISDO), 25123 Brescia, Italy
- Interdepartmental University Center of Research “Adaption and Regeneration of Tissues and Organs (ARTO)”, University of Brescia, 25123 Brescia, Italy
| |
Collapse
|
2
|
Tan W, Qi L, Tan Z. Animal models of infection-induced acute lung injury. Exp Lung Res 2024; 50:221-241. [PMID: 39558475 DOI: 10.1080/01902148.2024.2428939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 10/19/2024] [Accepted: 11/07/2024] [Indexed: 11/20/2024]
Abstract
Aim: Acute lung injury (ALI) is characterized by severe hypoxemia, reduced lung elasticity, and notable pulmonary edema, often caused by infections and potentially progressing to ARDS. This article explores animal models of ALI and clarifies its main pathogenic mechanisms. Materials and Methods: we reviewed 20 years of ALI animal model advancements via PubMed, assessing clinical symptoms, histopathology, and reproducibility, and provided guidance on selecting models aligned with ALI pathogenesis. Results: key proinflammatory mediators and interleukins play a significant role in ALI development, though their interactions are not fully understood. Preclinical models are essential for investigating ALI causes and testing treatments. Animal models mimic ALI from sources such as infections, drugs, and I/R events, but differences between mouse and human lungs necessitate careful validation of these findings. Conclusions: A comprehensive strategy is essential to address clinical treatment and drug R&D challenges to prevent severe complications and reduce mortality rates.
Collapse
Affiliation(s)
- Wanying Tan
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, China
| | - Lingjun Qi
- Institute of Traditional Chinese Medicine Pharmacology and Toxicology, Sichuan academy of Chinese Medicine Sciences, Chengdu, China
| | - Zhenghuai Tan
- Affiliated Sichuan Gem Flower Hospital of North Sichuan Medical College, Chengdu, China
| |
Collapse
|
3
|
Orlando SA, Mera MD, Mora Jaramillo N, Leon-Sosa A, Calderon J, Rodriguez-Pazmiño AS, Garcia-Bereguiain MA. SARS-CoV-2 infection in synanthropic rats from Guayaquil city (Ecuador) during COVID-19 pandemic: A proxy to prevent wild reservoirs in the tropics. Acta Trop 2024; 259:107371. [PMID: 39209140 DOI: 10.1016/j.actatropica.2024.107371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/30/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
Human-to-animal reverse transmission of SARS-CoV-2 is a risk for new reservoirs' emergence and new variants' evolution. SARS-CoV-2 infection of synanthropic rodents in urban settings has been reported during COVID-19 in New York and Mexico cities. In this study, we addressed the potential transmission of SARS-CoV-2 to synanthropic rats in the city of Guayaquil (Ecuador) during the COVID-19 pandemic. A total number of 234 rats were collected and analyzed for SARS-CoV-2 detection by RT-qPCR. A positivity rate of 6 % (14 rats) was found, and SARS-CoV-2 infection was confirmed by Sanger sequencing of the viral genome. Our results confirm the potential risk of synanthropic rats as reservoirs for SARS-CoV-2 infection. This is worrisome for low and middle income countries like Ecuador, where pest and waste control in urban settings is challenging. Moreover, the risk of spillover to wild fauna is a concern in Guayaquil, where synanthropic fauna includes raccoons or coatis and forest patches with a wild population of felids or primates existing within the city limits. In this context, SARS-CoV-2 sentinel surveillance of synanthropic rodents could serve as a proxy for a One Health approach to prevent the emergence of new wild reservoirs.
Collapse
Affiliation(s)
- Solon Alberto Orlando
- Instituto Nacional de Salud Pública e Investigación, Guayaquil, Ecuador; Universidad Espíritu Santo, Guayaquil, Ecuador
| | | | | | - Ariana Leon-Sosa
- Instituto Nacional de Salud Pública e Investigación, Guayaquil, Ecuador
| | - Joselyn Calderon
- Instituto Nacional de Salud Pública e Investigación, Guayaquil, Ecuador
| | | | | |
Collapse
|
4
|
Lina A, Keith H, Jenny H, Mariana M, Gregorio T, Laure WV, Paolo T. Facing SARS-CoV-2 emergence on the animal health perspective: The role of the World Organisation for Animal Health in preparedness and official reporting of disease occurrence. Zoonoses Public Health 2024; 71:683-695. [PMID: 38584342 DOI: 10.1111/zph.13133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 03/17/2024] [Accepted: 03/19/2024] [Indexed: 04/09/2024]
Abstract
AIMS Current data suggest that SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) emerged from an animal source. However, to date, there is insufficient scientific evidence to identify the source of SARS-CoV-2 or to explain the original route of transmission to humans. A wide range of mammalian species have been shown to be susceptible to the virus through experimental infection, and in natural environments when in contact with infected humans. The main objective of this work was to provide a summary of the official data shared by countries on SARS-CoV-2 in animals with the World Organisation for Animal Health (WOAH), to highlight the role of WOAH as an international organization in coordinating scientific information actions and to discuss the implications and impact of these activities. METHODS AND RESULTS Between January 2020 and December 2022, 36 countries in Europe, the Americas, Asia and Africa officially reported SARS-CoV-2 identification in 26 animal species. Affected countries were generally responsive in confirming the pathogen (median of 5 days after onset) and reporting to WOAH (median of 7 days after confirmation). CONCLUSIONS During the pandemic, WOAH, supported by its network of experts, played a crucial role in collecting, analysing and disseminating veterinary scientific information, acting as the reference organization on these issues, thus avoiding misinformation and disinformation. Future perspectives to avoid new emerging threats are discussed.
Collapse
Affiliation(s)
- Awada Lina
- World Organisation for Animal Health (WOAH), Paris, France
| | - Hamilton Keith
- World Organisation for Animal Health (WOAH), Paris, France
| | | | | | | | | | - Tizzani Paolo
- World Organisation for Animal Health (WOAH), Paris, France
| |
Collapse
|
5
|
Heniff AC, McAloose D, Crook E, Harrison TM. SARS-CoV-2 morbidity, treatment interventions, and vaccination practices in tigers (Panthera tigris ssp) in North American zoos. J Am Vet Med Assoc 2024; 262:1-7. [PMID: 38640954 DOI: 10.2460/javma.24.01.0030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 03/26/2024] [Indexed: 04/21/2024]
Abstract
OBJECTIVE Evaluate SARS-CoV-2 morbidity, mortality, clinical signs, treatment interventions, and vaccination practices in tigers under professional care. ANIMALS Amur (Panthera tigris altaica), Sumatran (Panthera tigris sumatrae), and Malayan (Panthera tigris jacksoni) tigers managed under the Tiger Species Survival Plan (SSP). METHODS A retrospective, voluntary online survey was sent to all North American zoos holding SSP tigers between January 2020 and June 2023. RESULTS Responses were received from 55 of 108 institutions (51%) housing 162 tigers in total, and SARS-CoV-2 infection was diagnosed in 39 tigers from 15 institutions (20 Amur, 8 Sumatran, and 11 Malayan [1 to 18 years old; 17 males and 22 females]). This corresponds to a minimum study group infection incidence of 24% over 42 months. Clinical signs included dry cough (82%), inappetence (64%), lethargy (62%), nasal discharge (46%), wheezing (31%), wet cough (18%), and ocular discharge (15%). Most cases were characterized as mild (n = 22) or moderate (14). A single case was characterized as severe. Two cases were asymptomatic. Seventeen positive tigers had been vaccinated once (n = 8) or twice (9) for SARS-CoV-2 prior to infection. No deaths due to SARS-CoV-2 were reported in the study group. Treatment interventions included antibiotics (49%), NSAIDs (18%), antiemetics (15%), and fluids (13%). No treatments were administered in 19 of 39 cases (49%). Amongst participating institutions, 69% reported fully vaccinating tigers for SARS-CoV-2 (≥ 2 doses). CLINICAL RELEVANCE Most SARS-CoV-2-infected tigers presented with mild to moderate clinical signs and recovered with limited to no treatment interventions. Asymptomatic SARS-CoV-2 infections can occur in tigers and may be underreported. Tigers vaccinated for SARS-CoV-2 remain susceptible to infection.
Collapse
Affiliation(s)
- Ashlyn C Heniff
- 1Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC
| | - Denise McAloose
- 2Wildlife Conservation Society, Zoological Health Program, Bronx, NY
| | | | - Tara M Harrison
- 1Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC
| |
Collapse
|
6
|
Mancusi A, Proroga YTR, Maiolino P, Marrone R, D’Emilio C, Girardi S, Egidio M, Boni A, Vicenza T, Suffredini E, Power K. Droplet Digital RT-PCR (dd RT-PCR) Detection of SARS-CoV-2 in Honey Bees and Honey Collected in Apiaries across the Campania Region. Viruses 2024; 16:729. [PMID: 38793611 PMCID: PMC11126096 DOI: 10.3390/v16050729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/28/2024] [Accepted: 05/02/2024] [Indexed: 05/26/2024] Open
Abstract
Coronaviruses (CoVs), a subfamily of Orthocoronavirinae, are viruses that sometimes present a zoonotic character. Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) is responsible for the recent outbreak of COVID-19, which, since its outbreak in 2019, has caused about 774,593,066 confirmed cases and 7,028,881 deaths. Aereosols are the main route of transmission among people; however, viral droplets can contaminate surfaces and fomites as well as particulate matter (PM) in suspensions of natural and human origin. Honey bees are well known bioindicators of the presence of pollutants and PMs in the environment as they can collect a great variety of substances during their foraging activities. The aim of this study was to evaluate the possible role of honey bees as bioindicators of the prevalence SARS-CoV-2. In this regard, 91 samples of honey bees and 6 of honey were collected from different apiaries of Campania region (Southern Italy) in four time periods from September 2020 to June 2022 and were analyzed with Droplet Digital RT-PCR for SARS-CoV-2 target genes Orf1b and N. The screening revealed the presence of SARS-CoV-2 in 12/91 in honey bee samples and in 2/6 honey samples. These results suggest that honey bees could also be used as indicators of outbreaks of airborne pathogens such as SARS-CoV-2.
Collapse
Affiliation(s)
- Andrea Mancusi
- Department of Food Security Coordination, Istituto Zooprofilattico Sperimentale del Mezzogiorno, Via Salute No. 2, 80055 Portici, Italy; (A.M.); (Y.T.R.P.); (S.G.)
| | - Yolande Thérèse Rose Proroga
- Department of Food Security Coordination, Istituto Zooprofilattico Sperimentale del Mezzogiorno, Via Salute No. 2, 80055 Portici, Italy; (A.M.); (Y.T.R.P.); (S.G.)
| | - Paola Maiolino
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, 80137 Naples, Italy; (P.M.); (R.M.); (C.D.)
| | - Raffaele Marrone
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, 80137 Naples, Italy; (P.M.); (R.M.); (C.D.)
| | - Claudia D’Emilio
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, 80137 Naples, Italy; (P.M.); (R.M.); (C.D.)
| | - Santa Girardi
- Department of Food Security Coordination, Istituto Zooprofilattico Sperimentale del Mezzogiorno, Via Salute No. 2, 80055 Portici, Italy; (A.M.); (Y.T.R.P.); (S.G.)
| | - Marica Egidio
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, 80137 Naples, Italy; (P.M.); (R.M.); (C.D.)
| | - Arianna Boni
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy; (A.B.); (T.V.); (E.S.)
| | - Teresa Vicenza
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy; (A.B.); (T.V.); (E.S.)
| | - Elisabetta Suffredini
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy; (A.B.); (T.V.); (E.S.)
| | - Karen Power
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy;
| |
Collapse
|
7
|
Martínez-Hernández F, Gonzalez-Arenas NR, Cervantes JAO, Villalobos G, Olivo-Diaz A, Rendon-Franco E, Maravilla P, Valdovinos MR, Muñoz-Garcia CI. Identification of SARS-CoV-2 in urban rodents from Southern Mexico City at the beginning of the COVID-19 pandemic. Rev Inst Med Trop Sao Paulo 2024; 66:e8. [PMID: 38324874 PMCID: PMC10846537 DOI: 10.1590/s1678-9946202466008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 12/08/2023] [Indexed: 02/09/2024] Open
Abstract
Currently, there are some concerns about the situation and, in particular, about the future of the COVID-19 pandemic and the new emerging variants of SARS-CoV-2. Rodents are an example of synanthropic animals in urban environments that harbor important zoonoses. Although the molecular identification of SARS-CoV-2 in Rattus norvegicus from New York City had been reported, in other studies, urban wild rodents infected with this virus have not been found. This study aimed to molecularly identify the presence of SARS-CoV-2 in urban wild rodents from Mexico City, trapped along a water channel of a public park as part of a pest control program, at the beginning of the COVID-19 pandemic, during the fall and winter of 2020. Up to 33 Mus musculus and 52 R. norvegicus were captured and euthanized, large intestine samples with feces from the animals were obtained. RNAs were obtained and subjected to qRT-PCR for SARS-CoV-2 identification and threshold cycle (Ct) values were obtained. Four mice (12.1%) and three rats (5.8%) were positive, three rodents exhibited Ct<30. Our results on the frequency of SARS-CoV-2 in urban rats are in line with other previous reports. Thus, similar to other authors, we suggest that surveillance for the detection of SARS-CoV-2 in urban wild rodents, as sentinel animals, should be maintained.
Collapse
Affiliation(s)
| | | | - José Antonio Ocampo Cervantes
- Universidad Autónoma Metropolitana, Centro de Investigaciones Biológicas y Acuícolas de Cuemanco, Ciudad de México, Mexico
| | - Guiehdani Villalobos
- Universidad Autónoma Metropolitana, Departamento de Producción Agrícola y Animal, Ciudad de México, Mexico
| | | | - Emilio Rendon-Franco
- Universidad Autónoma Metropolitana, Departamento de Producción Agrícola y Animal, Ciudad de México, Mexico
| | - Pablo Maravilla
- Hospital General “Dr. Manuel Gea González”, Ciudad de México, Mexico
| | - Mirza Romero Valdovinos
- Hospital General “Dr. Manuel Gea González”, Departamento de Biología Molecular e Histocompatibilidad, Laboratorio de Patógenos Emergentes, Ciudad de México, Mexico
| | - Claudia Irais Muñoz-Garcia
- Universidad Autónoma Metropolitana, Departamento de Producción Agrícola y Animal, Ciudad de México, Mexico
| |
Collapse
|
8
|
Morozov I, Gaudreault NN, Trujillo JD, Indran SV, Cool K, Kwon T, Meekins DA, Balaraman V, Artiaga BL, Madden DW, McDowell C, Njaa B, Retallick J, Hainer N, Millership J, Wilson WC, Tkalcevic G, Vander Horst H, Burakova Y, King V, Hutchinson K, Hardham JM, Schwahn DJ, Kumar M, Richt JA. Preliminary Study on the Efficacy of a Recombinant, Subunit SARS-CoV-2 Animal Vaccine against Virulent SARS-CoV-2 Challenge in Cats. Vaccines (Basel) 2023; 11:1831. [PMID: 38140233 PMCID: PMC10747320 DOI: 10.3390/vaccines11121831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 11/26/2023] [Accepted: 11/30/2023] [Indexed: 12/24/2023] Open
Abstract
The objective of this work was to evaluate the safety and efficacy of a recombinant, subunit SARS-CoV-2 animal vaccine in cats against virulent SARS-CoV-2 challenge. Two groups of cats were immunized with two doses of either a recombinant SARS-CoV-2 spike protein vaccine or a placebo, administered three weeks apart. Seven weeks after the second vaccination, both groups of cats were challenged with SARS-CoV-2 via the intranasal and oral routes simultaneously. Animals were monitored for 14 days post-infection for clinical signs and viral shedding before being humanely euthanized and evaluated for macroscopic and microscopic lesions. The recombinant SARS-CoV-2 spike protein subunit vaccine induced strong serologic responses post-vaccination and significantly increased neutralizing antibody responses post-challenge. A significant difference in nasal and oral viral shedding, with significantly reduced virus load (detected using RT-qPCR) was observed in vaccinates compared to mock-vaccinated controls. Duration of nasal, oral, and rectal viral shedding was also significantly reduced in vaccinates compared to controls. No differences in histopathological lesion scores were noted between the two groups. Our findings support the safety and efficacy of the recombinant spike protein-based SARS-CoV-2 vaccine which induced high levels of neutralizing antibodies and reduced nasal, oral, and rectal viral shedding, indicating that this vaccine will be efficacious as a COVID-19 vaccine for domestic cats.
Collapse
Affiliation(s)
- Igor Morozov
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA (V.B.)
| | - Natasha N. Gaudreault
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA (V.B.)
| | - Jessie D. Trujillo
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA (V.B.)
| | - Sabarish V. Indran
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA (V.B.)
| | - Konner Cool
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA (V.B.)
| | - Taeyong Kwon
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA (V.B.)
| | - David A. Meekins
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA (V.B.)
| | - Velmurugan Balaraman
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA (V.B.)
| | - Bianca Libanori Artiaga
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA (V.B.)
| | - Daniel W. Madden
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA (V.B.)
| | - Chester McDowell
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA (V.B.)
| | - Bradley Njaa
- Kansas State Veterinary Diagnostic Laboratory, Kansas State University, Manhattan, KS 66506, USA; (B.N.)
| | - Jamie Retallick
- Kansas State Veterinary Diagnostic Laboratory, Kansas State University, Manhattan, KS 66506, USA; (B.N.)
| | | | | | - William C. Wilson
- Foreign Arthropod-Borne Animal Disease Research Unit, National Bio and Agro-Defense Facility, United States Department of Agriculture, Manhattan, KS 66506, USA
| | | | | | | | | | | | | | | | | | - Juergen A. Richt
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA (V.B.)
| |
Collapse
|
9
|
Corleis B, Bastian M, Hoffmann D, Beer M, Dorhoi A. Animal models for COVID-19 and tuberculosis. Front Immunol 2023; 14:1223260. [PMID: 37638020 PMCID: PMC10451089 DOI: 10.3389/fimmu.2023.1223260] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 07/21/2023] [Indexed: 08/29/2023] Open
Abstract
Respiratory infections cause tremendous morbidity and mortality worldwide. Amongst these diseases, tuberculosis (TB), a bacterial illness caused by Mycobacterium tuberculosis which often affects the lung, and coronavirus disease 2019 (COVID-19) caused by the Severe Acute Respiratory Syndrome Coronavirus type 2 (SARS-CoV-2), stand out as major drivers of epidemics of global concern. Despite their unrelated etiology and distinct pathology, these infections affect the same vital organ and share immunopathogenesis traits and an imperative demand to model the diseases at their various progression stages and localizations. Due to the clinical spectrum and heterogeneity of both diseases experimental infections were pursued in a variety of animal models. We summarize mammalian models employed in TB and COVID-19 experimental investigations, highlighting the diversity of rodent models and species peculiarities for each infection. We discuss the utility of non-human primates for translational research and emphasize on the benefits of non-conventional experimental models such as livestock. We epitomize advances facilitated by animal models with regard to understanding disease pathophysiology and immune responses. Finally, we highlight research areas necessitating optimized models and advocate that research of pulmonary infectious diseases could benefit from cross-fertilization between studies of apparently unrelated diseases, such as TB and COVID-19.
Collapse
Affiliation(s)
- Björn Corleis
- Institute of Immunology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Max Bastian
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Donata Hoffmann
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Martin Beer
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Anca Dorhoi
- Institute of Immunology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
- Faculty of Mathematics and Natural Sciences, University of Greifswald, Greifswald, Germany
| |
Collapse
|
10
|
Jaramillo Hernández DA, Chacón MC, Velásquez MA, Vásquez-Trujillo A, Sánchez AP, Salazar Garces LF, García GL, Velasco-Santamaría YM, Pedraza LN, Lesmes-Rodríguez LC. Seroprevalence of exposure to SARS-CoV-2 in domestic dogs and cats and its relationship with COVID-19 cases in the city of Villavicencio, Colombia. F1000Res 2023; 11:1184. [PMID: 37965037 PMCID: PMC10643872 DOI: 10.12688/f1000research.125780.3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/03/2023] [Indexed: 11/16/2023] Open
Abstract
Background: Since the beginning of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) outbreak, different animal species have been implicated as possible intermediate hosts that could facilitate the transmission of the virus between species. The detection of these hosts has intensified, reporting wild, zoo, farm, and pet animals. The goal of this study was to determine the seroprevalence of anti-SARS-CoV-2 immunoglobulins (IgG) in domestic dogs and cats and its epidemiological association with the frequency of coronavirus disease 2019 (COVID-19) patients in Villavicencio, Colombia. Methods: 300 dogs and 135 cats were randomly selected in a two-stage distribution by clusters according to COVID-19 cases (positive RT-qPCR for SARS-CoV-2) within the human population distributed within the eight communes of Villavicencio. Indirect enzyme-linked immunosorbent assay (ELISA) technique was applied in order to determine anti-SARS-CoV-2 IgG in sera samples. Kernel density estimation was used to compare the prevalence of COVID-19 cases with the seropositivity of dogs and cats. Results: The overall seroprevalence of anti-SARS-CoV-2 IgG was 4.6% (95% CI=3.2-7.4). In canines, 3.67% (95% CI=2.1-6.4) and felines 6.67% (95% CI=3.6-12.18). Kernel density estimation indicated that seropositive cases were concentrated in the southwest region of the city. There was a positive association between SARS-CoV-2 seropositivity in pet animals and their habitat in Commune 2 (adjusted OR=5.84; 95% CI=1.1-30.88). Spearman's correlation coefficients were weakly positive ( p=0.32) between the ratio of COVID-19 cases in November 2020 and the results for domestic dogs and cats from the eight communes of Villavicencio. Conclusions: In the present research cats were more susceptible to SARS-CoV-2 infection than dogs. This study provides the first positive results of anti-SARS-CoV-2 ELISA serological tests in domestic dogs and cats in Colombia with information about the virus transmission dynamics in Latin America during the COVID-19 pandemic.
Collapse
Affiliation(s)
| | - María Clara Chacón
- Programa de Medicina Veterinaria y Zootecnia, Escuela de Ciencias Animales, Facultad de Ciencias Agropecuarias y Recursos Naturales, Universidad de los Llanos, Villavicencio, Meta, 1745, Colombia
| | - María Alejandra Velásquez
- Programa de Medicina Veterinaria y Zootecnia, Escuela de Ciencias Animales, Facultad de Ciencias Agropecuarias y Recursos Naturales, Universidad de los Llanos, Villavicencio, Meta, 1745, Colombia
| | - Adolfo Vásquez-Trujillo
- Escuela de Ciencias Animales, Universidad de los Llanos, Villavicencio, Meta, 1745, Colombia
| | - Ana Patricia Sánchez
- Secretaria de Salud Municipal, Alcaldía de Villavicencio, Villavicencio, Meta, 110221, Colombia
| | - Luis Fabian Salazar Garces
- Research and Development Department (DIDE), Faculty of Health Sciences, Technical University of Ambato, Ambato, Ambato, Av. Colombia and Chile s/n, Ecuador
| | - Gina Lorena García
- Escuela de Ciencias Animales, Universidad de los Llanos, Villavicencio, Meta, 1745, Colombia
| | | | - Luz Natalia Pedraza
- Escuela de Ciencias Animales, Universidad de los Llanos, Villavicencio, Meta, 1745, Colombia
| | - Lida Carolina Lesmes-Rodríguez
- Departamento de Biología & Química, Facultad de Ciencias Básicas e Ingeniería, Universidad de los Llanos, Villavicencio, Meta, 1745, Colombia
| |
Collapse
|
11
|
Jhelum H, Grand N, Jacobsen KR, Halecker S, Salerno M, Prate R, Krüger L, Kristiansen Y, Krabben L, Möller L, Laue M, Kaufer B, Kaaber K, Denner J. First virological and pathological study of Göttingen Minipigs with Dippity Pig Syndrome (DPS). PLoS One 2023; 18:e0281521. [PMID: 37319233 PMCID: PMC10270609 DOI: 10.1371/journal.pone.0281521] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 05/24/2023] [Indexed: 06/17/2023] Open
Abstract
Dippity Pig Syndrome (DPS) is a well-known but rare complex of clinical signs affecting minipigs, which has not been thoroughly investigated yet. Clinically affected animals show acute appearance of red, exudating lesions across the spine. The lesions are painful, evidenced by arching of the back (dipping), and the onset of clinical signs is generally sudden. In order to understand the pathogenesis, histological and virological investigations were performed in affected and unaffected Göttingen Minipigs (GöMPs). The following DNA viruses were screened for using PCR-based methods: Porcine cytomegalovirus (PCMV), which is a porcine roseolovirus (PCMV/PRV), porcine lymphotropic herpesviruses (PLHV-1, PLHV-2, PLHV-3), porcine circoviruses (PCV1, PCV2, PCV3, PCV4), porcine parvovirus 1 (PPV1), and Torque Teno sus viruses (TTSuV1, TTSuV2). Screening was also performed for integrated porcine endogenous retroviruses (PERV-A, PERV-B, PERV-C) and recombinant PERV-A/C and their expression as well as for the RNA viruses hepatitis E virus (HEV) and SARS-CoV-2. Eight clinically affected and one unaffected GöMPs were analyzed. Additional unaffected minipigs had been analyzed in the past. The analyzed GöMPs contained PERV-A and PERV-B integrated in the genome, which are present in all pigs and PERV-C, which is present in most, but not all pigs. In one affected GöMPs recombinant PERV-A/C was detected in blood. In this animal a very high expression of PERV mRNA was observed. PCMV/PRV was found in three affected animals, PCV1 was found in three animals with DPS and in the unaffected minipig, and PCV3 was detected in two animals with DPS and in the unaffected minipig. Most importantly, in one animal only PLHV-3 was detected. It was found in the affected and unaffected skin, and in other organs. Unfortunately, PLHV-3 could not be studied in all other affected minipigs. None of the other viruses were detected and using electron microscopy, no virus particles were found in the affected skin. No porcine virus RNA with exception of PERV and astrovirus RNA were detected in the affected skin by next generation sequencing. This data identified some virus infections in GöMPs with DPS and assign a special role to PLHV-3. Since PCMV/PRV, PCV1, PCV3 and PLHV-3 were also found in unaffected animals, a multifactorial cause of DPS is suggested. However, elimination of the viruses from GöMPs may prevent DPS.
Collapse
Affiliation(s)
- Hina Jhelum
- Institute of Virology, Free University, Berlin, Germany
| | | | | | | | - Michelle Salerno
- Marshall BioResources, North Rose, New York, NY, United States of America
| | - Robert Prate
- Institute of Virology, Free University, Berlin, Germany
| | | | | | | | - Lars Möller
- Robert Koch Institute, Centre for Biological Threats and Special Pathogens ZBS 4: Advanced Light and Electron Microscopy, Berlin, Germany
| | - Michael Laue
- Robert Koch Institute, Centre for Biological Threats and Special Pathogens ZBS 4: Advanced Light and Electron Microscopy, Berlin, Germany
| | | | | | | |
Collapse
|
12
|
Michelitsch A, Allendorf V, Conraths FJ, Gethmann J, Schulz J, Wernike K, Denzin N. SARS-CoV-2 Infection and Clinical Signs in Cats and Dogs from Confirmed Positive Households in Germany. Viruses 2023; 15:v15040837. [PMID: 37112817 PMCID: PMC10144952 DOI: 10.3390/v15040837] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/17/2023] [Accepted: 03/23/2023] [Indexed: 03/29/2023] Open
Abstract
On a global scale, the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) poses a serious threat to the health of the human population. Not only humans can be infected, but also their companion animals. The antibody status of 115 cats and 170 dogs, originating from 177 German households known to have been SARS-CoV-2 positive, was determined by enzyme-linked immunosorbent assay (ELISA), and the results were combined with information gathered from a questionnaire that was completed by the owner(s) of the animals. The true seroprevalences of SARS-CoV-2 among cats and dogs were 42.5% (95% CI 33.5–51.9) and 56.8% (95% CI 49.1–64.4), respectively. In a multivariable logistic regression accounting for data clustered in households, for cats, the number of infected humans in the household and an above-average contact intensity turned out to be significant risk factors; contact with humans outside the household was a protective factor. For dogs, on the contrary, contact outside the household was a risk factor, and reduced contact, once the human infection was known, was a significant protective factor. No significant association was found between reported clinical signs in animals and their antibody status, and no spatial clustering of positive test results was identified.
Collapse
|
13
|
Kaczorek-Łukowska E, Wernike K, Beer M, Blank A, Małaczewska J, Blank M, Jałonicka A, Siwicki AK. No indication for SARS-CoV-2 transmission to pet ferrets, in five cities in Poland, 2021 - antibody testing among ferrets living with owners infected with SARS-CoV-2 or free of infection. Acta Vet Scand 2023; 65:9. [PMID: 36855124 PMCID: PMC9974054 DOI: 10.1186/s13028-023-00672-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 02/21/2023] [Indexed: 03/02/2023] Open
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was first identified in China by the end of 2019 and was responsible for a pandemic in the human population that resulted in millions of deaths worldwide. Since the beginning of the pandemic, the role of animals as spill-over or reservoir hosts was discussed. In addition to cats and dogs, ferrets are becoming increasingly popular as companion animals. Under experimental conditions, ferrets are susceptible to SARS-CoV-2 and it appears that they can also be infected through contact with a SARS-CoV-2 positive owner. However, there is still little information available regarding these natural infections. Here, we serologically tested samples collected from pet ferrets (n = 45) from Poland between June and September 2021. Of the ferrets that were included in the study, 29% (13/45) had contact with owners with confirmed SARS-CoV-2 infections. Nevertheless, SARS-CoV-2-specific antibodies could not be detected in any of the animals, independent of the infection status of the owner. The obtained results suggest that ferrets cannot be readily infected with SARS-CoV-2 under natural conditions, even after prolonged contact with infected humans. However, due to the rapid mutation rate of this virus, it is important to include ferrets in future monitoring studies.
Collapse
Affiliation(s)
- Edyta Kaczorek-Łukowska
- Department of Microbiology and Clinical Immunology, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego 13, 10-719, Olsztyn, Poland.
| | - Kerstin Wernike
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Südufer 10, 17493, Greifswald - Insel Riems, Germany
| | - Martin Beer
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Südufer 10, 17493, Greifswald - Insel Riems, Germany
| | - Alicja Blank
- Department of Microbiology and Clinical Immunology, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego 13, 10-719, Olsztyn, Poland
| | - Joanna Małaczewska
- Department of Microbiology and Clinical Immunology, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego 13, 10-719, Olsztyn, Poland
| | - Mirosława Blank
- Association of Friends of Ferrets, Mickiewicza 18a/4, 01-517, Warsaw, Poland
| | - Anna Jałonicka
- PULSVET Specialist Veterinary Clinic, Alternatywy 7/U8, 02-775, Warsaw, Poland
| | - Andrzej Krzysztof Siwicki
- Department of Microbiology and Clinical Immunology, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego 13, 10-719, Olsztyn, Poland
| |
Collapse
|
14
|
The Luciferase Immunoprecipitation System (LIPS) Targeting the Spike Protein of SARS-CoV-2 Is More Accurate than Nucleoprotein-Based LIPS and ELISAs for Mink Serology. Transbound Emerg Dis 2023. [DOI: 10.1155/2023/1318901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
Since anthropo-zoonotic outbreaks of SARS-CoV-2 have been reported in mink farms, it is important to monitor the seroprevalence within this population. To investigate the accuracy of nucleo (N) or spike (S) protein-based assays to detect anti-SARS-CoV-2 antibodies in animal serum, we compared four assays, two commercial N-based enzyme-linked immunosorbent assays (ELISA) validated for animal sera and two luciferase immunoprecipitation systems (LIPS-N and LIPS-S), to the reference standard plaque reduction neutralisation test (PRNT). Samples included in this study were derived from a naturally infected mink population. For the first time in this study, serum samples of mink were collected over a 307-day period, at different time points, thus providing an overview of performances of four different rapid serological tests over time. The assays were compared by performing a correlation analysis using R2, Spearman’s rank-order correlation coefficient, and Fleiss’ and Cohen’s kappa for analysis of agreement to PRNT, and an UpSet chart was created to visualize the number of shared positive samples between assays. Cohen’s kappa test on categorical data showed an excellent agreement between PRNT and LIPS-S, while agreements between PRNT and N-based methods decreased from fair for LIPS-N to poor agreements for the ELISA kits. In addition, LIPS-S revealed the highest number of true-positive SARS-CoV-2 samples compared to N-based methods. Despite an excellent agreement between LIPS-S and PRNT, a weak correlation was detectable between PRNT titres and relative light units. This study shows that the LIPS-S assay can be used for serological surveillance within a naturally exposed mink population, while N-based serological assays are less accurate providing a higher number of false-negative results, especially at a later stage of infection, thus indicating that N antibodies are less persistent in naturally exposed mink. Our findings provide crucial information for veterinarians and competent authorities involved in surveillance and outbreak investigation in wild and farmed minks.
Collapse
|
15
|
Interactions between Humans and Dogs during the COVID-19 Pandemic: Recent Updates and Future Perspectives. Animals (Basel) 2023; 13:ani13030524. [PMID: 36766413 PMCID: PMC9913536 DOI: 10.3390/ani13030524] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/27/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023] Open
Abstract
COVID-19 is one of the deadliest epidemics. This pandemic is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), but the role of dogs in spreading the disease in human society is poorly understood. This review sheds light on the limited susceptibility of dogs to COVID-19 infections which is likely attributed to the relatively low levels of angiotensin-converting enzyme 2 (ACE2) in the respiratory tract and the phylogenetic distance of ACE2 in dogs from the human ACE2 receptor. The low levels of ACE2 affect the binding affinity between spike and ACE2 proteins resulting in it being uncommon for dogs to spread the disease. To demonstrate the role of dogs in spreading COVID-19, we reviewed the epidemiological studies and prevalence of SARS-CoV-2 in dogs. Additionally, we discussed the use of detection dogs as a rapid and reliable method for effectively discriminating between SARS-CoV-2 infected and non-infected individuals using different types of samples (secretions, saliva, and sweat). We considered the available information on COVID-19 in the human-dog interfaces involving the possibility of transmission of COVID-19 to dogs by infected individuals and vice versa, the human-dog behavior changes, and the importance of preventive measures because the risk of transmission by domestic dogs remains a concern.
Collapse
|
16
|
A Novel Universal Primer Multiplex Real-Time PCR (UP-M-rtPCR) Approach for Specific Identification and Quantitation of Cat, Dog, Fox, and Mink Fractions Using Nuclear DNA Sequences. Foods 2023; 12:foods12030594. [PMID: 36766123 PMCID: PMC9914226 DOI: 10.3390/foods12030594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/23/2023] [Accepted: 01/24/2023] [Indexed: 02/01/2023] Open
Abstract
Adulteration of meat with carnivorous animals (such as cats, dogs, foxes, and minks) can cause ethical problems and lead to disease transmission; however, DNA quantitative methods for four carnivorous species in one tube reaction are still rare. In this study, a carnivore-specific nuclear DNA sequence that is conserved in carnivorous animals but has base differences within the sequence was used to design universal primers for its conserved region and corresponding species-specific probes for the hypervariable region. A novel universal primer multiplex real-time PCR (UP-M-rtPCR) approach was developed for the specific identification and quantitation of cat, dog, fox, and mink fractions in a single reaction, with a 0.05 ng absolute limit of detection (LOD) and 0.05% relative LOD. This approach simplifies the PCR system and improves the efficiency of simultaneous identification of multiple animal-derived ingredients in meat. UP-M-rtPCR showed good accuracy (0.48-7.04% relative deviation) and precision (1.42-13.78% relative standard deviation) for quantitative analysis of cat, dog, fox, and mink DNA as well as excellent applicability for the evaluation of meat samples.
Collapse
|
17
|
Rao SS, Parthasarathy K, Sounderrajan V, Neelagandan K, Anbazhagan P, Chandramouli V. Susceptibility of SARS Coronavirus-2 infection in domestic and wild animals: a systematic review. 3 Biotech 2023; 13:5. [PMID: 36514483 PMCID: PMC9741861 DOI: 10.1007/s13205-022-03416-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Accepted: 11/26/2022] [Indexed: 12/14/2022] Open
Abstract
Animals and viruses have constantly been co-evolving under natural circumstances and pandemic like situations. They harbour harmful viruses which can spread easily. In the recent times we have seen pandemic like situations being created as a result of the spread of deadly and fatal viruses. Coronaviruses (CoVs) are one of the wellrecognized groups of viruses. There are four known genera of Coronavirus family namely, alpha (α), beta (β), gamma (γ), and delta (δ). Animals have been infected with CoVs belonging to all four genera. In the last few decades the world has witnessed an emergence of severe acute respiratory syndromes which had created a pandemic like situation such as SARS CoV, MERS-CoV. We are currently in another pandemic like situation created due to the uncontrolled spread of a similar coronavirus namely SARSCoV-2. These findings are based on a small number of animals and do not indicate whether animals can transmit disease to humans. Several mammals, including cats, dogs, bank voles, ferrets, fruit bats, hamsters, mink, pigs, rabbits, racoon dogs, and white-tailed deer, have been found to be infected naturally by the virus. Certain laboratory discoveries revealed that animals such as cats, ferrets, fruit bats, hamsters, racoon dogs, and white-tailed deer can spread the illness to other animals of the same species. This review article gives insights on the current knowledge about SARS-CoV-2 infection and development in animals on the farm and in domestic community and their impact on society.
Collapse
Affiliation(s)
- Sudhanarayani S. Rao
- Centre for Drug Discovery and Development, Sathyabama Institute of Science and Technology, Chennai, 600119 India
| | - Krupakar Parthasarathy
- Centre for Drug Discovery and Development, Sathyabama Institute of Science and Technology, Chennai, 600119 India
| | - Vignesh Sounderrajan
- Centre for Drug Discovery and Development, Sathyabama Institute of Science and Technology, Chennai, 600119 India
| | - K. Neelagandan
- Centre for Chemical Biology and Therapeutics, Institute for Stem Cell Science and Regenerative Medicine, Bengaluru, India
| | | | | |
Collapse
|
18
|
Lu S, Ma B, Zhou H, Li Y, Qiao Z, Xiao T, Li H, Wang B, Cui M, Zhang S, Chang J, Du T, Liu J, Wang H. Smartphone recognition-based immune microparticles for rapid on-site visual data-sharing detection of Newcastle disease virus. Talanta 2023; 252:123845. [DOI: 10.1016/j.talanta.2022.123845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 08/02/2022] [Accepted: 08/12/2022] [Indexed: 10/15/2022]
|
19
|
Binns C, Low WY, Shunnmugam B. The Year of the Rabbit and the COVID Pandemic. Asia Pac J Public Health 2023; 35:5-6. [PMID: 36694949 PMCID: PMC9895313 DOI: 10.1177/10105395221150836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Colin Binns
- School of Population Health, Faculty of
Health Sciences, Curtin University, Perth, WA, Australia,Colin Binns, School of Population Health,
Faculty of Health Sciences, Curtin University, GPO Box U1987, Perth, WA 6845,
Australia.
| | - Wah Yun Low
- Faculty of Medicine, Universiti Malaya,
Kuala Lumpur, Malaysia
| | | |
Collapse
|
20
|
SARS-CoV-2 and West Nile Virus Prevalence Studies in Raccoons and Raccoon Dogs from Germany. Viruses 2022; 14:v14112559. [PMID: 36423168 PMCID: PMC9698735 DOI: 10.3390/v14112559] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/10/2022] [Accepted: 11/11/2022] [Indexed: 11/22/2022] Open
Abstract
Unlike farm animals, wild animals are not subject to continuous health surveillance. Individual projects designed to screen wildlife populations for specific pathogens are, therefore, also of great importance for human health. In this context, the possible formation of a reservoir for highly pathogenic zoonotic pathogens is a focus of research. Two of these pathogens that have received particular attention during the last years are the novel severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2), due to its fast global spread and high impact to the human health, and, since its introduction into Germany, the flavivirus West Nile virus (WNV). Especially in combination with invasive vertebrate species (e.g., raccoons (Procyon lotor) and raccoon dogs (Nyctereutes procyonoides) in Germany), risk analysis must be done to enable health authorities to assess the potential for the establishment of new wild life reservoirs for pathogens. Therefore, samples were collected from raccoons and raccoon dogs and analyzed for the presence of SARS-CoV-2 and WNV infections in these populations. Molecular biological and serological data obtained imply that no SARS-CoV-2 nor WNV reservoir has been established in these two wild life species yet. Future investigations need to keep an eye on these invasive carnivore populations, especially since the close contact of these animals to humans, mainly in urban areas, would make animal-human transmission a challenge for human health.
Collapse
|
21
|
Molecular surveillance revealed no SARS-CoV-2 spillovers to raccoons (Procyon lotor) in four German federal states. EUR J WILDLIFE RES 2022; 68:54. [PMID: 35967094 PMCID: PMC9362721 DOI: 10.1007/s10344-022-01605-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/21/2022] [Accepted: 07/24/2022] [Indexed: 12/16/2022]
Abstract
Raccoons (Procyon lotor), which are closely related to the family Mustelidae, might be susceptible to natural infection by SARS-CoV-2. This assumption is based on experimental evidence that confirmed the vulnerability of farmed fur-carnivore species, including Procyon lotor to SARS-CoV-2. To date, there are no reports of natural SARS-CoV-2 infections of raccoons in Germany. Here, we use RT-PCR to analyze 820 samples from raccoons hunted in Germany with a focus on 4 German federal states (Saxony-Anhalt, Thuringia, Hesse, North Rhine-Westphalia). Lung tissues were homogenized and processed for RNA extraction and RT-qPCR for detecting SARS-CoV-2 was performed. No viral RNA was detected in any samples (0/820). Next, we compared raccoons and human ACE-2 residues that are known to serve for binding with SARS-CoV-2 receptor binding domain (RBD). Interestingly, we found only 60% identity on amino acid level, which may have contributed to the absence of SARS-CoV-2 infections in raccoons. In conclusion, the chance of raccoons being intermediate reservoir hosts for SARS-CoV-2 seems to be very low.
Collapse
|
22
|
Wernike K, Drewes S, Mehl C, Hesse C, Imholt C, Jacob J, Ulrich RG, Beer M. No Evidence for the Presence of SARS-CoV-2 in Bank Voles and Other Rodents in Germany, 2020–2022. Pathogens 2022; 11:pathogens11101112. [PMID: 36297169 PMCID: PMC9610409 DOI: 10.3390/pathogens11101112] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/23/2022] [Accepted: 09/26/2022] [Indexed: 11/16/2022] Open
Abstract
Rodentia is the most speciose mammalian order, found across the globe, with some species occurring in close proximity to humans. Furthermore, rodents are known hosts for a variety of zoonotic pathogens. Among other animal species, rodents came into focus when the severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) spread through human populations across the globe, initially as laboratory animals to study the viral pathogenesis and to test countermeasures. Under experimental conditions, some rodent species including several cricetid species are susceptible to SARS-CoV-2 infection and a few of them can transmit the virus to conspecifics. To investigate whether SARS-CoV-2 is also spreading in wild rodent populations in Germany, we serologically tested samples of free-ranging bank voles (Myodes glareolus, n = 694), common voles (Microtus arvalis, n = 2), house mice (Mus musculus, n = 27), brown or Norway rats (Rattus norvegicus, n = 97) and Apodemus species (n = 8) for antibodies against the virus. The samples were collected from 2020 to 2022 in seven German federal states. All but one sample tested negative by a multispecies ELISA based on the receptor-binding domain (RBD) of SARS-CoV-2. The remaining sample, from a common vole collected in 2021, was within the inconclusive range of the RBD-ELISA, but this result could not be confirmed by a surrogate virus neutralization test as the sample gave a negative result in this test. These results indicate that SARS-CoV-2 has not become highly prevalent in wild rodent populations in Germany.
Collapse
Affiliation(s)
- Kerstin Wernike
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, 17493 Greifswald-Insel Riems, Germany
- Correspondence:
| | - Stephan Drewes
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, 17493 Greifswald-Insel Riems, Germany
| | - Calvin Mehl
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, 17493 Greifswald-Insel Riems, Germany
- German Centre for Infection Research (DZIF), Site Hamburg-Lübeck-Borstel-Riems, 17493 Greifswald-Insel Riems, Germany
| | - Christin Hesse
- Rodent Research, Institute for Epidemiology and Pathogen Diagnostics, Julius Kühn-Institute (JKI), Federal Research Centre for Cultivated Plants, 48161 Münster, Germany
| | - Christian Imholt
- Rodent Research, Institute for Epidemiology and Pathogen Diagnostics, Julius Kühn-Institute (JKI), Federal Research Centre for Cultivated Plants, 48161 Münster, Germany
| | - Jens Jacob
- Rodent Research, Institute for Epidemiology and Pathogen Diagnostics, Julius Kühn-Institute (JKI), Federal Research Centre for Cultivated Plants, 48161 Münster, Germany
| | - Rainer G. Ulrich
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, 17493 Greifswald-Insel Riems, Germany
- German Centre for Infection Research (DZIF), Site Hamburg-Lübeck-Borstel-Riems, 17493 Greifswald-Insel Riems, Germany
| | - Martin Beer
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, 17493 Greifswald-Insel Riems, Germany
| |
Collapse
|
23
|
Wernike K, Böttcher J, Amelung S, Albrecht K, Gärtner T, Donat K, Beer M. Antibodies against SARS-CoV-2 Suggestive of Single Events of Spillover to Cattle, Germany. Emerg Infect Dis 2022; 28:1916-1918. [PMID: 35914515 PMCID: PMC9423924 DOI: 10.3201/eid2809.220125] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Human infection with SARS-CoV-2 poses a risk for transmission to animals. To characterize the risk for cattle, we serologically investigated 1,000 samples collected from cattle in Germany in late 2021. Eleven antibody-positive samples indicated that cattle may be occasionally infected by contact with SARS-CoV-2–positive keepers, but we found no indication of further spread.
Collapse
|
24
|
Adler JM, Weber C, Wernike K, Michelitsch A, Friedrich K, Trimpert J, Beer M, Kohn B, Osterrieder K, Müller E. Prevalence of anti-severe acute respiratory syndrome coronavirus 2 antibodies in cats in Germany and other European countries in the early phase of the coronavirus disease-19 pandemic. Zoonoses Public Health 2022; 69:439-450. [PMID: 35238485 PMCID: PMC9115359 DOI: 10.1111/zph.12932] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 01/14/2022] [Accepted: 02/13/2022] [Indexed: 01/14/2023]
Abstract
During the first months of the coronavirus disease (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), cases of human-to-cat transmission were reported. Seroconversion was shown in cats infected under experimental and natural conditions. This large-scale survey of 1,005 serum samples was conducted to investigate anti-SARS-CoV-2 antibody prevalence in domestic cats during the first 7 months of the pandemic in Germany and other European countries. In addition, we compared the sensitivity and specificity of two multispecies SARS-CoV-2 antibody enzyme-linked immunosorbent assays (ELISA). Results were confirmed by using an indirect immunofluorescence test (iIFT) and a surrogate virus neutralization test (sVNT). Sera that were highly positive for feline coronavirus (FCoV) antibodies (n = 103) were included to correct for cross-reactivity of the tests used. Our results showed an overall SARS-CoV-2 seropositivity of 1.9% (n = 19) in a receptor-binding domain (RBD)-based ELISA, additional 0.8% (n = 8) were giving inconclusive results. In contrast, a nucleocapsid-based ELISA revealed 0.5% (n = 5) positive and 0.2% (n = 2) inconclusive results. While the iIFT and sVNT confirmed 100% of positive and 50%-57.1% of the doubtful results as determined in the RBD ELISA, the nucleocapsid-based assay showed a high discrepancy and only one of the five positive results could be confirmed. The results indicate significant deficits of the nucleocapsid-based ELISA with respect to sensitivity and specificity. Due to a significantly higher rate (5.8%) of positive results in the group of highly FCoV antibody-positive samples, cross-reactivity of the FCoV-ELISA with SARS-CoV-2 antibodies cannot be excluded. Furthermore, we investigated the impact of direct contact of domestic cats (n = 23) to SARS-CoV-2 positive owners. Considering one inconclusive result, which got confirmed by iIFT, this exposure did not lead to a significantly higher prevalence (4.4%; p = .358) among tested subjects. Overall, we conclude that cats are a negligible entity with respect to virus transmission in Europe.
Collapse
Affiliation(s)
- Julia Maria Adler
- Institut für VirologieFreie Universität BerlinBerlinGermany
- Laboklin GmbH & Co.KGBad KissingenGermany
- Present address:
Department of Infectious Diseases and Respiratory MedicineCharitéUniversitätsmedizin BerlinBerlinGermany
| | | | - Kerstin Wernike
- Institute of Diagnostic VirologyFriedrich‐Loeffler‐InstitutGreifswald–Insel RiemsGermany
| | - Anna Michelitsch
- Institute of Diagnostic VirologyFriedrich‐Loeffler‐InstitutGreifswald–Insel RiemsGermany
| | | | - Jakob Trimpert
- Institut für VirologieFreie Universität BerlinBerlinGermany
| | - Martin Beer
- Institute of Diagnostic VirologyFriedrich‐Loeffler‐InstitutGreifswald–Insel RiemsGermany
| | - Barbara Kohn
- Klinik für kleine HaustiereFreie Universität BerlinBerlinGermany
| | - Klaus Osterrieder
- Institut für VirologieFreie Universität BerlinBerlinGermany
- Department of Infectious Diseases and Public HealthJockey Club College of Veterinary Medicine and Life SciencesCity University of Hong KongKowloonHong Kong
| | | |
Collapse
|
25
|
Kim Y, Gaudreault NN, Meekins DA, Perera KD, Bold D, Trujillo JD, Morozov I, McDowell CD, Chang KO, Richt JA. Effects of Spike Mutations in SARS-CoV-2 Variants of Concern on Human or Animal ACE2-Mediated Virus Entry and Neutralization. Microbiol Spectr 2022; 10:e0178921. [PMID: 35638818 PMCID: PMC9241865 DOI: 10.1128/spectrum.01789-21] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 04/15/2022] [Indexed: 12/31/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a zoonotic agent capable of infecting humans and a wide range of animal species. Over the duration of the pandemic, mutations in the SARS-CoV-2 spike (S) protein have arisen, culminating in the spread of several variants of concern (VOCs) with various degrees of altered virulence, transmissibility, and neutralizing antibody escape. In this study, we used pseudoviruses that express specific SARS-CoV-2 S protein substitutions and cell lines that express angiotensin-converting enzyme 2 (ACE2) from nine different animal species to gain insights into the effects of VOC mutations on viral entry and antibody neutralization capability. All animal ACE2 receptors tested, except mink, support viral cell entry for pseudoviruses expressing the ancestral prototype S at levels comparable to human ACE2. Most single S substitutions did not significantly change virus entry, although 614G and 484K resulted in a decreased efficiency. Conversely, combinatorial VOC substitutions in the S protein were associated with increased entry of pseudoviruses. Neutralizing titers in sera from various animal species were significantly reduced against pseudoviruses expressing the S proteins of Beta, Delta, or Omicron VOCs compared to the parental S protein. Especially, substitutions in the S protein of the Omicron variant significantly reduced the neutralizing titers of the sera. This study reveals important insights into the host range of SARS-CoV-2 and the effect of recently emergent S protein substitutions on viral entry, virus replication, and antibody-mediated viral neutralization. IMPORTANCE The ongoing coronavirus disease 2019 (COVID-19) pandemic, caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), continues to have devastating impacts on global health and socioeconomics. The recent emergence of SARS-CoV-2 variants of concern, which contain mutations that can affect the virulence, transmission, and effectiveness of licensed vaccines and therapeutic antibodies, are currently becoming the common strains circulating in humans worldwide. In addition, SARS-CoV-2 has been shown to infect a wide variety of animal species, which could result in additional mutations of the SARS-CoV-2 virus. In this study, we investigate the effect of mutations present in SARS-CoV-2 variants of concern and determine the effects of these mutations on cell entry, virulence, and antibody neutralization activity in humans and a variety of animals that might be susceptible to SARS-CoV-2 infection. This information is essential to understand the effects of important SARS-CoV-2 mutations and to inform public policy to create better strategies to control the COVID-19 pandemic.
Collapse
Affiliation(s)
- Yunjeong Kim
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas, USA
| | - Natasha N. Gaudreault
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas, USA
| | - David A. Meekins
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas, USA
| | - Krishani D. Perera
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas, USA
| | - Dashzeveg Bold
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas, USA
| | - Jessie D. Trujillo
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas, USA
| | - Igor Morozov
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas, USA
| | - Chester D. McDowell
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas, USA
| | - Kyeong-Ok Chang
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas, USA
| | - Juergen A. Richt
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas, USA
| |
Collapse
|
26
|
Allendorf V, Denzin N, Conraths FJ, Boden LA, Elvinger F, Magouras I, Stegeman A, Wood JL, Urueña AC, Grace KE, Stärk KD. Does having a cat in your house increase your risk of catching COVID-19? One Health 2022; 14:100381. [PMID: 35356102 PMCID: PMC8950096 DOI: 10.1016/j.onehlt.2022.100381] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 03/14/2022] [Accepted: 03/20/2022] [Indexed: 02/06/2023] Open
Abstract
Due to the zoonotic origin of SARS-Coronavirus 2 (SARS-CoV-2), the potential for its transmission from humans back to animals and the possibility that it might establish ongoing infection pathways in other animal species has been discussed. Cats are highly susceptible to SARS-CoV-2 and were shown experimentally to transmit the virus to other cats. Infection of cats has been widely reported. Domestic cats in COVID-19-positive households could therefore be a part of a human to animal to human transmission pathway. Here, we report the results of a qualitative risk assessment focusing on the potential of cat to human transmission in such settings. The assessment was based on evidence available by October 2021. After the introduction of SARS-CoV-2 to a household by a human, cats may become infected and infected cats may pose an additional infection risk for other members of the household. In order to assess this additional risk qualitatively, expert opinion was elicited within the framework of a modified Delphi procedure. The conclusion was that the additional risk of infection of an additional person in a household associated with keeping a domestic cat is very low to negligible, depending on the intensity of cat-to-human interactions. The separation of cats from humans suffering from SARS-CoV-2 infection should contribute to preventing further transmission.
Collapse
Affiliation(s)
- Valerie Allendorf
- Friedrich-Loeffler-Institut, Institute of Epidemiology, Greifswald – Insel Riems, Germany
- Friedrich-Loeffler-Institut, Institute of International Animal Health & One Health, Greifswald – Insel Riems, Germany
| | - Nicolai Denzin
- Friedrich-Loeffler-Institut, Institute of Epidemiology, Greifswald – Insel Riems, Germany
| | - Franz J. Conraths
- Friedrich-Loeffler-Institut, Institute of Epidemiology, Greifswald – Insel Riems, Germany
| | - Lisa A. Boden
- Global Academy of Agriculture and Food Security, University of Edinburgh, Edinburgh, UK
| | - François Elvinger
- Cornell University, Department of Population Medicine and Diagnostic Science, Ithaca, USA
| | - Ioannis Magouras
- City University of Hong Kong, Department of Infectious Diseases and Public Health, Hong Kong Special Administrative Region
| | - Arjan Stegeman
- Universiteit Utrecht, Department of Population Health Sciences, Utrecht, the Netherlands
| | - James L.N. Wood
- Disease Dynamics Unit, University of Cambridge, Department of Veterinary Medicine, Cambridge, UK
| | | | | | - Katharina D.C. Stärk
- Federal Food Safety and Veterinary Office (BLV), Department of Animal Health, Bern, Switzerland
| |
Collapse
|
27
|
Iaconis D, Bordi L, Matusali G, Talarico C, Manelfi C, Cesta MC, Zippoli M, Caccuri F, Bugatti A, Zani A, Filippini F, Scorzolini L, Gobbi M, Beeg M, Piotti A, Montopoli M, Cocetta V, Bressan S, Bucci EM, Caruso A, Nicastri E, Allegretti M, Beccari AR. Characterization of raloxifene as a potential pharmacological agent against SARS-CoV-2 and its variants. Cell Death Dis 2022; 13:498. [PMID: 35614039 PMCID: PMC9130985 DOI: 10.1038/s41419-022-04961-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 05/12/2022] [Accepted: 05/17/2022] [Indexed: 12/14/2022]
Abstract
The new coronavirus SARS-CoV-2 is the causative agent of the COVID-19 pandemic, which so far has caused over 6 million deaths in 2 years, despite new vaccines and antiviral medications. Drug repurposing, an approach for the potential application of existing pharmaceutical products to new therapeutic indications, could be an effective strategy to obtain quick answers to medical emergencies. Following a virtual screening campaign on the most relevant viral proteins, we identified the drug raloxifene, a known Selective Estrogen Receptor Modulator (SERM), as a new potential agent to treat mild-to-moderate COVID-19 patients. In this paper we report a comprehensive pharmacological characterization of raloxifene in relevant in vitro models of COVID-19, specifically in Vero E6 and Calu-3 cell lines infected with SARS-CoV-2. A large panel of the most common SARS-CoV-2 variants isolated in Europe, United Kingdom, Brazil, South Africa and India was tested to demonstrate the drug's ability in contrasting the viral cytopathic effect (CPE). Literature data support a beneficial effect by raloxifene against the viral infection due to its ability to interact with viral proteins and activate protective estrogen receptor-mediated mechanisms in the host cells. Mechanistic studies here reported confirm the significant affinity of raloxifene for the Spike protein, as predicted by in silico studies, and show that the drug treatment does not directly affect Spike/ACE2 interaction or viral internalization in infected cell lines. Interestingly, raloxifene can counteract Spike-mediated ADAM17 activation in human pulmonary cells, thus providing new insights on its mechanism of action. A clinical study in mild to moderate COVID-19 patients (NCT05172050) has been recently completed. Our contribution to evaluate raloxifene results on SARS-CoV-2 variants, and the interpretation of the mechanisms of action will be key elements to better understand the trial results, and to design new clinical studies aiming to evaluate the potential development of raloxifene in this indication.
Collapse
Affiliation(s)
| | - Licia Bordi
- grid.419423.90000 0004 1760 4142National Institute for Infectious Diseases Lazzaro Spallanzani-IRCCS, Rome, Italy
| | - Giulia Matusali
- grid.419423.90000 0004 1760 4142National Institute for Infectious Diseases Lazzaro Spallanzani-IRCCS, Rome, Italy
| | | | | | | | | | - Francesca Caccuri
- grid.7637.50000000417571846Department of Molecular and Translational Medicine, Section of Microbiology and Virology, University of Brescia Medical School, Brescia, Italy
| | - Antonella Bugatti
- grid.7637.50000000417571846Department of Molecular and Translational Medicine, Section of Microbiology and Virology, University of Brescia Medical School, Brescia, Italy
| | - Alberto Zani
- grid.7637.50000000417571846Department of Molecular and Translational Medicine, Section of Microbiology and Virology, University of Brescia Medical School, Brescia, Italy
| | - Federica Filippini
- grid.7637.50000000417571846Department of Molecular and Translational Medicine, Section of Microbiology and Virology, University of Brescia Medical School, Brescia, Italy
| | - Laura Scorzolini
- grid.419423.90000 0004 1760 4142National Institute for Infectious Diseases Lazzaro Spallanzani-IRCCS, Rome, Italy
| | - Marco Gobbi
- grid.4527.40000000106678902Department of Biochemistry and Molecular Pharmacology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Marten Beeg
- grid.4527.40000000106678902Department of Biochemistry and Molecular Pharmacology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Arianna Piotti
- grid.4527.40000000106678902Department of Biochemistry and Molecular Pharmacology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Monica Montopoli
- grid.5608.b0000 0004 1757 3470Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Padua, VIMM Veneto Institute Molecular Medicine, Padua, Italy
| | - Veronica Cocetta
- grid.5608.b0000 0004 1757 3470Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Padua, VIMM Veneto Institute Molecular Medicine, Padua, Italy
| | - Silvia Bressan
- grid.5608.b0000 0004 1757 3470Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Padua, VIMM Veneto Institute Molecular Medicine, Padua, Italy
| | - Enrico M. Bucci
- grid.264727.20000 0001 2248 3398Sbarro Health Research Organization, Biology Department CFT, Temple University, Philadelphia, PA USA
| | - Arnaldo Caruso
- grid.7637.50000000417571846Department of Molecular and Translational Medicine, Section of Microbiology and Virology, University of Brescia Medical School, Brescia, Italy
| | - Emanuele Nicastri
- grid.419423.90000 0004 1760 4142National Institute for Infectious Diseases Lazzaro Spallanzani-IRCCS, Rome, Italy
| | | | | |
Collapse
|
28
|
Da Costa CBP, Cruz ACDM, Penha JCQ, Castro HC, Da Cunha LER, Ratcliffe NA, Cisne R, Martins FJ. Using in vivo animal models for studying SARS-CoV-2. Expert Opin Drug Discov 2022; 17:121-137. [PMID: 34727803 PMCID: PMC8567288 DOI: 10.1080/17460441.2022.1995352] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 10/15/2021] [Indexed: 12/23/2022]
Abstract
INTRODUCTION The search for an animal model capable of reproducing the physiopathology of the COVID-19, and also suitable for evaluating the efficacy and safety of new drugs has become a challenge for many researchers. AREAS COVERED This work reviews the current animal models for in vivo tests with SARS-CoV-2 as well as the challenges involved in the safety and efficacy trials. EXPERT OPINION Studies have reported the use of nonhuman primates, ferrets, mice, Syrian hamsters, lagomorphs, mink, and zebrafish in experiments that aimed to understand the course of COVID-19 or test vaccines and other drugs. In contrast, the assays with animal hyperimmune sera have only been used in in vitro assays. Finding an animal that faithfully reproduces all the characteristics of the disease in humans is difficult. Some models may be more complex to work with, such as monkeys, or require genetic manipulation so that they can express the human ACE2 receptor, as in the case of mice. Although some models are more promising, possibly the use of more than one animal model represents the best scenario. Therefore, further studies are needed to establish an ideal animal model to help in the development of other treatment strategies besides vaccines.
Collapse
Affiliation(s)
- Camila B. P. Da Costa
- Technological Development and Innovation Laboratory of the Industrial Board, Instituto Vital Brazil, Rio De Janeiro, Brazil
- Programa de Pós-graduação em Ciências e Biotecnologia, IB, UFF, Rio de Janeiro, Brazil
| | | | - Julio Cesar Q Penha
- Programa de Pós-graduação em Ciências e Biotecnologia, IB, UFF, Rio de Janeiro, Brazil
| | - Helena C Castro
- Programa de Pós-graduação em Ciências e Biotecnologia, IB, UFF, Rio de Janeiro, Brazil
| | - Luis E. R. Da Cunha
- Technological Development and Innovation Laboratory of the Industrial Board, Instituto Vital Brazil, Rio De Janeiro, Brazil
| | - Norman A Ratcliffe
- Programa de Pós-graduação em Ciências e Biotecnologia, IB, UFF, Rio de Janeiro, Brazil
- Department of Biociences, College of Science, Swansea University, Swansea, UK
| | - Rafael Cisne
- Programa de Pós-graduação em Ciências e Biotecnologia, IB, UFF, Rio de Janeiro, Brazil
| | | |
Collapse
|
29
|
Petukhova T, Pearl DL, Spinato M, Fairles J, Hazlett M, Poljak Z. The impact of the initial public health response to COVID-19 on swine health surveillance in Ontario. One Health 2021; 13:100338. [PMID: 34692972 PMCID: PMC8523356 DOI: 10.1016/j.onehlt.2021.100338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 10/14/2021] [Accepted: 10/15/2021] [Indexed: 11/21/2022] Open
Abstract
COVID-19 restrictions and the pandemic have affected animal health and food production through the disease's effects on human activities. COVID-19 impact on swine health surveillance can be assessed by investigating submissions and test positivity for pathogens before and after COVID-19 restrictions. PRRSV, Influenza A virus, Mycoplasma hyopneumoniae and PCV-2 are considered important and economically challenging respiratory diseases for the swine populations. By reviewing test results from swine samples submitted for diagnostic testing to a regional diagnostic laboratory, and by assessing total submissions, total positive tests, and the proportion of positive tests at weekly intervals with time series techniques and generalized linear regression models, we evaluated COVID-19's impact on the monitoring of these respiratory pathogens in Ontario, Canada. We classified weeks that fell from week 12 through week 24 in each year as pandemic equivalent weeks and the non-pandemic weeks included all other weeks. The pandemic period in 2020 resulted in a significantly higher number of submissions (p < 0.05) and PRRSV positive submission counts (p < 0.05) when compared to equivalent time periods in previous years; however, no changes could be detected in the odds of weekly PRRSV submission positivity. Weekly positive proportions of PCV-2 tests were higher during the pandemic period in 2020 compared with the pandemic equivalent period in 2018 and 2017. The counts of submissions that requested tests for PRRSV, Influenza A virus and M. hyopneumonia combined, as well as the number of submissions and the proportions of submissions that tested negative for these multiple respiratory pathogens were not significantly different between the pandemic period in 2020 and other periods examined. Our findings indicate that swine producers, in conjunction with various private and public veterinary support services, continued monitoring and performing diagnostic screening on farms for economically important animal diseases despite complications resulting from COVID-19 public health restrictions. PRRSV continues to have a serious impact on swine health. The absence of an increased proportion of negative tests for individual or groups of pathogens, or an accompanying increase in submissions during the 2020 pandemic period suggests that no new undetected pathogens with an impact on respiratory signs in swine were introduced during this time.
Collapse
Affiliation(s)
- Tatiana Petukhova
- Department of Population Medicine, University of Guelph, ON N1G 2W1, Canada
| | - David L. Pearl
- Department of Population Medicine, University of Guelph, ON N1G 2W1, Canada
| | - Maria Spinato
- Animal Health Laboratory, University of Guelph, ON N1G 2W1, Canada
| | - Jim Fairles
- Animal Health Laboratory, University of Guelph, ON N1G 2W1, Canada
| | - Murray Hazlett
- Animal Health Laboratory, University of Guelph, ON N1G 2W1, Canada
| | - Zvonimir Poljak
- Department of Population Medicine, University of Guelph, ON N1G 2W1, Canada
| |
Collapse
|
30
|
Parkhe P, Verma S. Evolution, Interspecies Transmission, and Zoonotic Significance of Animal Coronaviruses. Front Vet Sci 2021; 8:719834. [PMID: 34738021 PMCID: PMC8560429 DOI: 10.3389/fvets.2021.719834] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 09/07/2021] [Indexed: 12/18/2022] Open
Abstract
Coronaviruses are single-stranded RNA viruses that affect humans and a wide variety of animal species, including livestock, wild animals, birds, and pets. These viruses have an affinity for different tissues, such as those of the respiratory and gastrointestinal tract of most mammals and birds and the hepatic and nervous tissues of rodents and porcine. As coronaviruses target different host cell receptors and show divergence in the sequences and motifs of their structural and accessory proteins, they are classified into groups, which may explain the evolutionary relationship between them. The interspecies transmission, zoonotic potential, and ability to mutate at a higher rate and emerge into variants of concern highlight their importance in the medical and veterinary fields. The contribution of various factors that result in their evolution will provide better insight and may help to understand the complexity of coronaviruses in the face of pandemics. In this review, important aspects of coronaviruses infecting livestock, birds, and pets, in particular, their structure and genome organization having a bearing on evolutionary and zoonotic outcomes, have been discussed.
Collapse
Affiliation(s)
| | - Subhash Verma
- Department of Veterinary Microbiology, DGCN College of Veterinary and Animal Sciences, Chaudhary Sarwan Kumar Himachal Pradesh Krishi Vishvavidyalaya, Palampur, India
| |
Collapse
|
31
|
Diversity of ACE2 and its interaction with SARS-CoV-2 receptor binding domain. Biochem J 2021; 478:3671-3684. [PMID: 34558627 DOI: 10.1042/bcj20200908] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 09/22/2021] [Accepted: 09/24/2021] [Indexed: 12/13/2022]
Abstract
COVID-19, the clinical syndrome caused by the SARS-CoV-2 virus, has rapidly spread globally causing hundreds of millions of infections and over two million deaths. The potential animal reservoirs for SARS-CoV-2 are currently unknown, however sequence analysis has provided plausible potential candidate species. SARS-CoV-2 binds to the angiotensin I converting enzyme 2 (ACE2) to enable its entry into host cells and establish infection. We analyzed the binding surface of ACE2 from several important animal species to begin to understand the parameters for the ACE2 recognition by the SARS-CoV-2 spike protein receptor binding domain (RBD). We employed Shannon entropy analysis to determine the variability of ACE2 across its sequence and particularly in its RBD interacting region, and assessed differences between various species' ACE2 and human ACE2. Recombinant ACE2 from human, hamster, horseshoe bat, cat, ferret, and cow were evaluated for RBD binding. A gradient of binding affinities were seen where human and hamster ACE2 were similarly in the low nanomolar range, followed by cat and cow. Surprisingly, horseshoe bat (Rhinolophus sinicus) and ferret (Mustela putorius) ACE2s had poor binding activity compared with the other species' ACE2. The residue differences and binding properties between the species' variants provide a framework for understanding ACE2-RBD binding and virus tropism.
Collapse
|
32
|
Brugère-Picoux J, Leroy E, Rosolen S, Angot JL, Buisson Y. [Covid-19 and the animal world, from a still mysterious origin towards an always unpredictable future]. BULLETIN DE L'ACADEMIE NATIONALE DE MEDECINE 2021; 205:879-890. [PMID: 34305142 PMCID: PMC8278875 DOI: 10.1016/j.banm.2021.07.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Although the emergence of Covid-19 in China has not been clearly elucidated, the hypothesis of an animal origin remains the most likely. It is supported by the presence of the horseshoe bat suspected to be the progenitor of SARS-CoV-2 and by the scarcity of pork, due to African swine fever, diverting consumers to exotic animals of breeding sold in the markets. During this pandemic, several animal species were affected by SARS-CoV-2. Sporadic cases were first reported in pets (dogs and cats) infected by their owners, then in large feline species and apes infected in zoos by their nurses. The most significant human-to-animal transmission has occurred in mink farms, especially in the Netherlands and Denmark, requiring the euthanasia of several million animals, with mink in turn having contaminated men and stray or nomadic cats. The study of natural or experimental transmissions of SARS-CoV-2 has made it possible to identify the most receptive animal species: American minks and raccoon dogs, and to a lesser extent stray or nomadic cats, which could become an animal reservoir due to their sensitivity to this virus and their extending prolificacy. The European Commission decided on May 17, 2021 to strengthen the surveillance of SARS-CoV-2 infections in minks and other mustelids, as well as in raccoon dogs, highlighting stressing that the epidemiological assessment of the risk presented by the he appearance of SARS-CoV-2 in these susceptible species was a public health priority.
Collapse
Affiliation(s)
- J Brugère-Picoux
- Académie nationale de médecine, 16, rue Bonaparte, 75006 Paris, France
- Académie vétérinaire de France, 34, rue Bréguet, 75011 Paris, France
| | - E Leroy
- Académie nationale de médecine, 16, rue Bonaparte, 75006 Paris, France
- Académie vétérinaire de France, 34, rue Bréguet, 75011 Paris, France
| | - S Rosolen
- Académie nationale de médecine, 16, rue Bonaparte, 75006 Paris, France
- Académie vétérinaire de France, 34, rue Bréguet, 75011 Paris, France
| | - J-L Angot
- Académie nationale de médecine, 16, rue Bonaparte, 75006 Paris, France
- Académie vétérinaire de France, 34, rue Bréguet, 75011 Paris, France
| | - Y Buisson
- Académie nationale de médecine, 16, rue Bonaparte, 75006 Paris, France
| |
Collapse
|
33
|
Kim Y, Gaudreault NN, Meekins DA, Perera KD, Bold D, Trujillo JD, Morozov I, McDowell CD, Chang KO, Richt JA. Effects of Spike Mutations in SARS-CoV-2 Variants of Concern on Human or Animal ACE2-Mediated Virus Entry and Neutralization. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021:2021.08.25.457627. [PMID: 34462749 PMCID: PMC8404895 DOI: 10.1101/2021.08.25.457627] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
SARS-CoV-2 is a zoonotic agent capable of infecting humans and a wide range of animal species. Over the duration of the pandemic, mutations in the SARS-CoV-2 Spike protein (S) have arisen in circulating viral populations, culminating in the spread of several variants of concern (VOC) with varying degrees of altered virulence, transmissibility, and neutralizing antibody escape. In this study, we employed lentivirus-based pseudotyped viruses that express specific SARS-CoV-2 S protein substitutions and cell lines that stably express ACE2 from nine different animal species to gain insights into the effects of VOC mutations on viral entry and antibody neutralization capability. All animal ACE2 receptors tested, except mink, support viral cell entry for pseudoviruses expressing the parental (prototype Wuhan-1) S at levels comparable to human ACE2. Most single S substitutions (e.g., 452R, 478K, 501Y) did not significantly change virus entry, although 614G and 484K resulted in a decreased efficiency in viral entry. Conversely, combinatorial VOC substitutions in the S protein were associated with significantly increased entry capacity of pseudotyped viruses compared to that of the parental Wuhan-1 pseudotyped virus. Similarly, infection studies using live ancestral (USA-WA1/2020), Alpha, and Beta SARS-CoV-2 viruses in hamsters revealed a higher replication potential for the Beta variant compared to the ancestral prototype virus. Moreover, neutralizing titers in sera from various animal species, including humans, were significantly reduced by single substitutions of 484K or 452R, double substitutions of 501Y-484K, 452R-484K and 452R-478K and the triple substitution of 501Y-484K-417N, suggesting that 484K and 452R are particularly important for evading neutralizing antibodies in human, cat, and rabbit sera. Cumulatively, this study reveals important insights into the host range of SARS-CoV-2 and the effect of recently emergent S protein substitutions on viral entry, virus replication and antibody-mediated viral neutralization. AUTHOR SUMMARY Cells stably expressing ACE2 from various animals and a lentivirus-based SARS-CoV-2 pseudotyped virus assay were established to study SARS-CoV-2 cell entry. The results demonstrated that ACE2 from a wide range of animal species facilitate S-mediated virus entry into cells, which is supported by in silico data as well as natural and experimental infection studies. Pseudotyped viruses containing mutations in the RBD of S representative of the Alpha, Gamma, and especially Beta, variants of concern demonstrated that certain mutations are associated with increased viral entry compared to the parental S. The Beta variant was also observed to have a replicative advantage in vitro and in vivo compared to the prototype virus. Pseudotyped viruses containing combinatorial substitutions of 501Y-484K-417K, 614G-501Y-484K and 614G-501Y-484K-417N increased viral entry via ACE2 across multiple species. The 501Y or 478K single substitution did not significantly affect neutralizing capacity of immune sera compared to the prototype strain, but the addition of 484K or 452R substitutions significantly reduced the neutralizing titers.
Collapse
Affiliation(s)
- Yunjeong Kim
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| | - Natasha N Gaudreault
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| | - David A. Meekins
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| | - Krishani D Perera
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| | - Dashzeveg Bold
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| | - Jessie D. Trujillo
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| | - Igor Morozov
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| | - Chester D. McDowell
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| | - Kyeong-Ok Chang
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| | - Juergen A. Richt
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| |
Collapse
|