1
|
Lu W, Feng W, Zhen H, Jiang S, Li Y, Liu S, Ru Q, Xiao W. Unlocking the therapeutic potential of WISP-1: A comprehensive exploration of its role in age-related musculoskeletal disorders. Int Immunopharmacol 2025; 145:113791. [PMID: 39667044 DOI: 10.1016/j.intimp.2024.113791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 10/03/2024] [Accepted: 12/03/2024] [Indexed: 12/14/2024]
Abstract
As the global population ages, the incidence of age-related musculoskeletal diseases continues to increase, driven by numerous complex and poorly understood factors. WNT-1 inducible secreted protein 1 (WISP-1), a secreted matrix protein, plays a critical role in the growth and development of the musculoskeletal system, including chondrogenesis, osteogenesis, and myogenesis. Numerous in vivo and in vitro studies have demonstrated that WISP-1 is significantly upregulated in age-related musculoskeletal conditions, such as osteoarthritis, osteoporosis, and sarcopenia, suggesting its involvement in the pathogenesis of these diseases. Regulating WISP-1 expression holds promise as a therapeutic strategy for improving musculoskeletal function, potentially offering new avenues for treating age-related musculoskeletal diseases in clinical practice. This review highlights the signaling pathways associated with WISP-1, its physiological roles within the musculoskeletal system, and its therapeutic potential in treating age-related musculoskeletal disorders.
Collapse
Affiliation(s)
- Wenhao Lu
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Wenjie Feng
- Department of Burns and Plastic Surgery, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Haozu Zhen
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha 410008, China; Xiangya School of Medicine, Central South University, Changsha, Hunan 410083, China
| | - Shide Jiang
- The Central Hospital of Yongzhou, Yongzhou 425000, China
| | - Yusheng Li
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Shuguang Liu
- Department of Joint Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an 710001, Shaanxi, China.
| | - Qin Ru
- Department of Health and Physical Education, Jianghan University, Wuhan 430056, China.
| | - Wenfeng Xiao
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China.
| |
Collapse
|
2
|
Wang Z, Cheng Y, Fan J, Luo R, Xu G, Ge S. Deletion of lymphotoxin-β receptor (LTβR) protects against acute kidney injury by PPARα pathway. Mol Med 2024; 30:254. [PMID: 39707217 DOI: 10.1186/s10020-024-01026-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 12/03/2024] [Indexed: 12/23/2024] Open
Abstract
BACKGROUND Recent data has shown a considerable advancement in understanding the role of lymphotoxin-β receptor (LTβR) in inflammation. However, the functions and underlying mechanisms of LTβR in acute kidney injury (AKI) remain largely unknown. METHODS AKI was induced in mice by renal ischemia-reperfusion (I/R). HK-2 cells and primary renal tubular epithelial cells (RTECs) were subjected to hypoxia/reoxygenation (H/R) injury. The effects of LTβR depletion were examined in mice, as well as primary RTECs. Bone marrow chimeric mice was generated to determine whether the involvement of LTβR expression by parenchymal cells or bone marrow derived cells contributes to renal injury during AKI. RNA sequencing techniques were employed to investigate the mechanism via which LTβR signaling provides protection against I/R-induced AKI RESULTS: LTβR expression was downregulated both in vivo and in vitro models of AKI. Moreover, depletion of LTβR decreased renal damage and inflammation in I/R-induced AKI. We also found that LTβR deficient mice engrafted with wild type bone marrow had significantly less tubular damage, implying that LTβR in renal parenchymal cells may play dominant role in I/R-induced AKI. RNA sequencing indicated that the protective effect of LTβR deletion was associated with activation of PPARα signaling. Furthermore, upregulation of PPARα was observed upon depletion of LTβR. PPARα inhibitor, GW6471, aggravated the tubular damage and inflammation in LTβR-/- mice following I/R injury. Then we further demonstrated that LTβR depletion down-regulated non-canonical NF-κB and Bax/Bcl-2 apoptosis pathway through PPARα. CONCLUSIONS Our results suggested that the LTβR/PPARα axis may be a potential therapeutic target for the treatment of AKI.
Collapse
Affiliation(s)
- Zufeng Wang
- Department of Nephrology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
| | - Yichun Cheng
- Department of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095 Jiefang Road, Wuhan, 430030, China
| | - Jiahe Fan
- Department of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095 Jiefang Road, Wuhan, 430030, China
| | - Ran Luo
- Department of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095 Jiefang Road, Wuhan, 430030, China
| | - Gang Xu
- Department of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095 Jiefang Road, Wuhan, 430030, China.
| | - Shuwang Ge
- Department of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095 Jiefang Road, Wuhan, 430030, China.
| |
Collapse
|
3
|
Shi A, Yun F, Shi L, Liu X, Jia Y. Research progress on the mechanism of common inflammatory pathways in the pathogenesis and development of lymphoma. Ann Med 2024; 56:2329130. [PMID: 38489405 PMCID: PMC10946270 DOI: 10.1080/07853890.2024.2329130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 02/25/2024] [Indexed: 03/17/2024] Open
Abstract
In recent years, the incidence and mortality rates of lymphoma have gradually increased worldwide. Tumorigenesis and drug resistance are closely related to intracellular inflammatory pathways in lymphoma. Therefore, understanding the biological role of inflammatory pathways and their abnormal activation in relation to the development of lymphoma and their selective modulation may open new avenues for targeted therapy of lymphoma. The biological functions of inflammatory pathways are extensive, and they are central hubs for regulating inflammatory responses, immune responses, and the tumour immune microenvironment. However, limited studies have investigated the role of inflammatory pathways in lymphoma development. This review summarizes the relationship between abnormal activation of common inflammatory pathways and lymphoma development to identify precise and efficient targeted therapeutic options for patients with advanced, drug-resistant lymphoma.
Collapse
Affiliation(s)
- Aorong Shi
- Department of Pathology, Basic Medical Sciences College, Inner Mongolia Medical University, Hohhot, China
| | - Fen Yun
- Department of Pathology, Basic Medical Sciences College, Inner Mongolia Medical University, Hohhot, China
- Department of Pathology, The First Affiliated Hospital of Inner Mongolia Medical University, Huhhot, China
| | - Lin Shi
- Department of Pathology, Basic Medical Sciences College, Inner Mongolia Medical University, Hohhot, China
- Department of Pathology, The First Affiliated Hospital of Inner Mongolia Medical University, Huhhot, China
| | - Xia Liu
- Department of Pathology, Basic Medical Sciences College, Inner Mongolia Medical University, Hohhot, China
- Department of Pathology, The First Affiliated Hospital of Inner Mongolia Medical University, Huhhot, China
| | - Yongfeng Jia
- Department of Pathology, Basic Medical Sciences College, Inner Mongolia Medical University, Hohhot, China
- Department of Pathology, The First Affiliated Hospital of Inner Mongolia Medical University, Huhhot, China
| |
Collapse
|
4
|
Alruhaimi RS, Hassanein EHM, Ahmeda AF, Alnasser SM, Atwa AM, Sabry M, Alzoghaibi MA, Mahmoud AM. Attenuation of inflammation, oxidative stress and TGF-β1/Smad3 signaling and upregulation of Nrf2/HO-1 signaling mediate the protective effect of diallyl disulfide against cadmium nephrotoxicity. Tissue Cell 2024; 91:102576. [PMID: 39353227 DOI: 10.1016/j.tice.2024.102576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/25/2024] [Accepted: 09/25/2024] [Indexed: 10/04/2024]
Abstract
Heavy metals are toxic environmental pollutants with serious health effects on humans and animals. Cadmium (Cd) is known for its serious nephrotoxic effect and its toxicity involves oxidative stress (OS) and inflammation. Diallyl disulfide (DADS), a main constituent of garlic, exhibites cytoprotective and antioxidant activities. This study investigated the effect of DADS on OS, inflammation, and fibrosis induced by Cd in rat kidney, pointing to the involvement of transforming growth factor-β (TGF-β)/Smad3 and nuclear factor erythroid 2-related factor 2 (Nrf2)/heme oxygenase-1 (HO-1) signaling, and peroxisome proliferator-activated receptor gamma (PPARγ). Rats received DADS for 14 days and Cd on day 7 and blood and kidney samples were collected. Cd elevated serum creatinine, urea and uric acid, provoked kidney histopathological alterations and collagen deposition, increased kidney malondialdehyde (MDA) level, and decreased glutathione (GSH) and antioxidant enzymes. Nuclear factor-kappaB (NF-κB) p65, interleukin (IL)-6, tumor necrosis factor (TNF)-α, IL-1β, and CD68 were upregulated in Cd-administered rat kidney. DADS prevented kidney injury, mitigated OS, suppressed NF-κB, CD68 and pro-inflammatory mediators, and boosted antioxidants. DADS downregulated TGF-β1, Smad3 phosphorylation and Kelch-like ECH-associated protein-1 (Keap1), and increased Nrf2, HO-1, cytoglobin, and PPARγ. In conclusion, DADS protects the kidney against Cd toxicity by attenuating OS, inflammation, and TGF-β1/Smad3 signaling, and enhancement of Nrf2/HO-1 signaling, antioxidants, and PPARγ.
Collapse
Affiliation(s)
- Reem S Alruhaimi
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia
| | - Emad H M Hassanein
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Al-Azhar University-Assiut Branch, Assiut 71524, Egypt
| | - Ahmad F Ahmeda
- Department of Basic Medical Sciences, College of Medicine, Ajman University, Ajman 346, United Arab Emirates; Center of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman 346, United Arab Emirates
| | - Sulaiman M Alnasser
- Department of Pharmacology and Toxicology, College of Pharmacy, Qassim University, Qassim 51452, Saudi Arabia
| | - Ahmed M Atwa
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Egyptian Russian University, Cairo 11829, Egypt
| | - Mostafa Sabry
- Department of Biochemistry, Faculty of Pharmacy, Al-Azhar University, Assiut 71524, Egypt
| | - Mohammed A Alzoghaibi
- Physiology Department, College of Medicine, King Saud University, Riyadh 11461, Saudi Arabia
| | - Ayman M Mahmoud
- Department of Life Sciences, Faculty of Science and Engineering, Manchester Metropolitan University, Manchester M1 5GD, UK; Molecular Physiology Division, Zoology Department, Faculty of Science, Beni-Suef University, Beni-Suef 62514, Egypt.
| |
Collapse
|
5
|
Saker D, Sencar L, Coskun G, Sapmaz Ercakalli T, Yilmaz DM, Polat S. Galantamine and wedelolactone combined treatment suppresses LPS-induced NLRP3 inflammasome activation in microglial cells. Immunopharmacol Immunotoxicol 2024; 46:805-814. [PMID: 39279139 DOI: 10.1080/08923973.2024.2405579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 08/09/2024] [Indexed: 09/18/2024]
Abstract
CONTEXT Inflammasome NLR family pyrin domain-containing 3 (NLRP3) is associated with neurological disorders. Neuroinflammation can be suppressed by inhibiting NLRP3 inflammasome activation, decreasing neurodegenerative disorder progression. We devised a therapeutic technique that can reduce neuroinflammation induced by microglial activation, avoiding neurodegeneration. We aimed to investigate the mechanisms underlying the pharmacological effects of galantamine and wedelolactone by evaluating the response of the nuclear factor kappa B (NF-κB) signaling pathway and NLRP3 inflammasome in lipopolysaccharide (LPS)-activated N9 microglia. METHODS LPS and adenosine triphosphate were used to activate the NLRP3 inflammasome in N9 microglial cells, which were pretreated with galantamine and wedelolactone. Caspase-1, NLRP3, NF-κB, and interleukin (IL)-1β levels were measured using RT-qPCR and immunostaining. RESULTS Combined administration of galantamine and wedelolactone rescued microglial cells from LPS-induced cell death. Furthermore, treatment with galantamine and wedelolactone led to the suppression of NF-κB expression. NLRP3, caspase-1, and IL-1β levels were decreased by the combined treatment. DISCUSSION AND CONCLUSION The concurrent administration of galantamine and wedelolactone effectively suppresses the production of inflammatory cytokines and NLRP3 inflammasome activation in microglia. This inhibitory effect is likely linked to the NF-κB signaling pathway modulation. Therefore, this combined treatment is a potential therapeutic approach for neuroinflammatory diseases.
Collapse
Affiliation(s)
- Dilek Saker
- Department of Histology and Embryology, Faculty of Medicine, Çukurova University, Adana, Turkey
| | - Leman Sencar
- Department of Histology and Embryology, Faculty of Medicine, Çukurova University, Adana, Turkey
| | - Gulfidan Coskun
- Department of Histology and Embryology, Faculty of Medicine, Çukurova University, Adana, Turkey
| | - Tugce Sapmaz Ercakalli
- Department of Histology and Embryology, Faculty of Medicine, Çukurova University, Adana, Turkey
| | | | - Sait Polat
- Department of Histology and Embryology, Faculty of Medicine, Çukurova University, Adana, Turkey
| |
Collapse
|
6
|
Liao H, Zheng J, Lu J, Shen HL. NF-κB Signaling Pathway in Rheumatoid Arthritis: Mechanisms and Therapeutic Potential. Mol Neurobiol 2024:10.1007/s12035-024-04634-2. [PMID: 39560902 DOI: 10.1007/s12035-024-04634-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 11/12/2024] [Indexed: 11/20/2024]
Abstract
Rheumatoid arthritis (RA) is an autoimmune chronic inflammatory disease that imposes a heavy economic burden on patients and society. Bone and cartilage destruction is considered an important factor leading to RA, and inflammation, oxidative stress, and mitochondrial dysfunction are closely related to bone erosion and cartilage destruction in RA. Currently, there are limitations in the clinical treatment methods for RA, which urgently necessitates finding new effective treatments for patients. Nuclear transcription factor-κB (NF-κB) is a signaling transcription factor that is widely present in various cells. It plays an important role as a stress source in the cellular environment and regulates gene expression in processes such as immunity, inflammation, cell proliferation, and apoptosis. NF-κB has long been recognized as a pathogenic factor of RA, and its activation can exacerbate RA by promoting inflammation, oxidative stress, mitochondrial dysfunction, and bone destruction. Conversely, inhibiting the activity of the NF-κB pathway effectively inhibits these pathological processes, thereby alleviating RA. Therefore, NF-κB may be a potential therapeutic target for RA. This article describes the physiological structure of NF-κB and its important role in RA through the regulation of oxidative stress, inflammatory response, mitochondrial function, and bone destruction. Meanwhile, we also summarized the impact of NF-κB crosstalk with other signaling pathways on RA and the effect of related drugs or inhibitors targeting NF-κB on RA. The purpose of this article is to provide evidence for the role of NF-κB in RA and to emphasize its significant role in RA by elucidating the mechanisms, so as to provide a theoretical basis for targeting the NF-κB pathway as a treatment for RA.
Collapse
Affiliation(s)
- Haiyang Liao
- The Second Clinical Medical College of Lanzhou University, Lanzhou, 730000, People's Republic of China
- Department of Rheumatology, Lanzhou University Second Hospital, Lanzhou, 730000, People's Republic of China
| | - Jianxiong Zheng
- The Second Clinical Medical College of Lanzhou University, Lanzhou, 730000, People's Republic of China
- Department of Rheumatology, Lanzhou University Second Hospital, Lanzhou, 730000, People's Republic of China
| | - Jinyue Lu
- The Second Clinical Medical College of Lanzhou University, Lanzhou, 730000, People's Republic of China
- Department of Rheumatology, Lanzhou University Second Hospital, Lanzhou, 730000, People's Republic of China
| | - Hai-Li Shen
- The Second Clinical Medical College of Lanzhou University, Lanzhou, 730000, People's Republic of China.
- Department of Rheumatology, Lanzhou University Second Hospital, Lanzhou, 730000, People's Republic of China.
| |
Collapse
|
7
|
Huang Y, Li C, Xu W, Li F, Hua Y, Xu C, Wu C, Wang Y, Zhang X, Xia D. Kaempferol attenuates hyperuricemia combined with gouty arthritis via urate transporters and NLRP3/NF-κB pathway modulation. iScience 2024; 27:111186. [PMID: 39524334 PMCID: PMC11550584 DOI: 10.1016/j.isci.2024.111186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 05/13/2024] [Accepted: 10/14/2024] [Indexed: 11/16/2024] Open
Abstract
Hyperuricemia (HUA), caused by purine disorders, can lead to gouty arthritis (GA). Kaempferol (KPF), a natural flavonoid, has anti-inflammatory properties, though its mechanism in treating HUA combined with GA remains unclear. This study used a mouse model of HUA combined with GA and in vitro models with HK-2 and THP-1 cells to explore KPF's effects. Cells were treated with KPF or inhibitors of ABCG2, ROS, NLRP3 inflammasome, and nuclear factor κB (NF-κB) pathway. Quantitative assays measured uric acid (UA), creatinine, oxidative stress biomarkers, and pro-inflammatory cytokines. Histopathological analyses showed KPF improved renal and joint inflammation caused by HUA and GA. KPF alleviated oxidative stress, reduced pro-inflammatory cytokines, and regulated UA levels through the modulation of urate transporters, NLRP3 inflammasome, and NF-κB pathway. KPF's actions, partly mediated by ROS reduction, suggest it is a promising candidate for treating HUA combined with GA.
Collapse
Affiliation(s)
- Yan Huang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Cantao Li
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Wenjing Xu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Fenfen Li
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Ying Hua
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Changyu Xu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Chenxi Wu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yihuan Wang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xiaoxi Zhang
- Academy of Chinese Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Daozong Xia
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
8
|
Xu F, Li Z, Jiang Y, Liao T, Aschner M, Wei Q. Ononin delays the development of osteoarthritis by down-regulating MAPK and NF-κB pathways in rat models. PLoS One 2024; 19:e0310293. [PMID: 39480787 PMCID: PMC11527302 DOI: 10.1371/journal.pone.0310293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 08/27/2024] [Indexed: 11/02/2024] Open
Abstract
BACKGROUND Osteoarthritis (OA) is featured as cartilage loss, joint pain and loss of labor, which the inflammatory reaction may play critical roles. Ononin is an isoflavone isolating from medicinal plants and has anti-inflammatory effects. Our study investigated the anti-inflammation response of ononin on OA. METHODS Anterior cruciate ligament transection (ACLT)-induced OA operation was used to establish research model, then treated with ononin for 8 weeks. The condition of joint injury was assessed using pathological staining. The concentration of tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β) and interleukin-6 (IL-6) in serum were measured by Elisa kit. The expression of collagen II and matrix metalloproteinase 13 (MMP-13) proteins to assess cartilage metabolism level by immunohistochemistry and Western blot. We detected the expression of proteins involved in the MAPK and NF-κB signaling pathways. Finally, we used molecular docking to assess the affinity of ononin for the target proteins ERK1/2, JNK1/2, p38 and p65. RESULTS Our results confirmed that ononin ameliorated cartilage impairment through histopathological analysis by improving the morphological structures and cartilage tidal lines and decreasing Osteoarthritis Research Society International (OARSI) scores in OA rats. Moreover, ononin inhibited the secretion of above factors in OA rats. Furthermore, ononin has been shown to improve cartilage content levels in OA rats. In addition, ononin inhibited the reactivity of MAPK and NF-κB pathways in OA rats. And molecular docking indicated the ligand molecules could stably bind to the proteins of above receptors. CONCLUSION Our results demonstrated that ononin may ameliorate cartilage damage and inflammatory response in OA rats by downgrading MAPK and NF-κB pathways, thus identifying ononin as a potential novel drug to treat OA.
Collapse
Affiliation(s)
- Fang Xu
- Department of Orthopaedics Trauma and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning, China
| | - Zhaocong Li
- Institute of Brain and Mental Diseases, Guangxi Academy of Medical Sciences, The People’s Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Yueming Jiang
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning, China
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China
| | - Ting Liao
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning, China
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Qingjun Wei
- Department of Orthopedics, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| |
Collapse
|
9
|
Zhu Z, Yu M, Xu M, Ji X, Zong X, Zhang Z, Shang W, Zhang L, Fang P. Baicalin suppresses macrophage JNK-mediated adipose tissue inflammation to mitigate insulin resistance in obesity. JOURNAL OF ETHNOPHARMACOLOGY 2024; 332:118355. [PMID: 38762213 DOI: 10.1016/j.jep.2024.118355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 05/05/2024] [Accepted: 05/15/2024] [Indexed: 05/20/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Radix scutellariae (the root of Scutellaria baicalensis Georgi) is a traditional Chinese medicine (TCM) used to treat a wide range of inflammation-related diseases, such as obesity, diabetes, diabetic kidney disease, and COVID-19-associated inflammatory states in the lung and kidney. Baicalin is the major anti-inflammatory component of Radix scutellariae and has shown the potential to inhibit inflammation in metabolic disorders. In this study, we explored the ability and underlying mechanisms of baicalin to modulate the macrophage to mitigate insulin resistance in obesity. MATERIALS AND METHODS Obese mice were administered baicalin (50 mg/kg/day) intraperitoneally for 3 weeks. RAW264.7 and BMDM cells were stimulated with LPS and treated with baicalin for 24 h, while 3T3-L1 and primary white adipocytes were treated with the supernatants from baicalin-treated RAW264.7 cells for 24 h. RESULTS The results showed that baicalin significantly improved glucose and insulin tolerance as well as decreased fat and adipose tissue macrophage levels in obese mice. Besides, baicalin significantly reduced serum and adipose tissue IL-1β, TNF-α and IL-6 levels in obese mice, as well as suppressed LPS-induced IL-1β, TNF-α and IL-6 expression and release in macrophages. Furthermore, treatment with the supernatant from baicalin-treated RAW264.7 cells increased the levels of PGC-1α, SIRT1, p-IRS-1 and p-AKT in adipocytes. Moreover, baicalin treatment dramatically downregulated macrophage p-p38, p-JNK, and Ac-p65Lys310 levels while increasing SIRT1 both in vivo and in vitro. Importantly, JNK inhibitor SP600125 blocked most of the effects of baicalin on SIRT1, Ac-p65Lys310 and pro-inflammatory factors in macrophages. CONCLUSION Therefore, these results demonstrated for the first time that baicalin exerts its anti-inflammatory effects in obese adipose tissue macrophages mainly through suppressing JNK/SIRT1/p65 signaling. These findings amplified the mechanisms of baicalin and its potential to attenuate insulin resistance.
Collapse
Affiliation(s)
- Ziyue Zhu
- Key Laboratory for Metabolic Diseases in Chinese Medicine, First College of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Mei Yu
- Key Laboratory for Metabolic Diseases in Chinese Medicine, First College of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Mengfan Xu
- Key Laboratory for Metabolic Diseases in Chinese Medicine, First College of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Xin Ji
- Department of Endocrinology, Clinical Medical College, Yangzhou University, Yangzhou, Jiangsu, 225001, China
| | - Xicui Zong
- Hanlin College, Nanjing University of Chinese Medicine, Taizhou, 225300, China
| | - Zhenwen Zhang
- Department of Endocrinology, Clinical Medical College, Yangzhou University, Yangzhou, Jiangsu, 225001, China.
| | - Wenbin Shang
- Key Laboratory for Metabolic Diseases in Chinese Medicine, First College of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Li Zhang
- Hanlin College, Nanjing University of Chinese Medicine, Taizhou, 225300, China.
| | - Penghua Fang
- Key Laboratory for Metabolic Diseases in Chinese Medicine, First College of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| |
Collapse
|
10
|
Nist MD, Pickler RH, Shoben AB, Conley YP. DNA Methylation, Inflammation, and Neurobehavior in Preterm Infants. Biol Res Nurs 2024; 26:547-558. [PMID: 38840298 DOI: 10.1177/10998004241257664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
Objectives: Inflammation contributes to disparate neurodevelopmental outcomes between preterm and term-born infants. In this context, DNA methylation may contribute to inflammation by affecting gene expression. Brain-derived neurotrophic factor (BDNF) and nuclear factor-kappa-B-inhibitor alpha (NFKBIA) are important genes for targeted DNA methylation analysis. The aims of this study were to (1) identify associations between inflammatory factors and BDNF and NFKBIA methylation, and (2) identify associations between BDNF and NFKBIA methylation and early neurobehavior in preterm infants. Methods: In a longitudinal cohort study of preterm infants born 28-31 weeks gestational age, blood samples were collected weekly for the quantification of inflammatory factors. We extracted DNA from saliva samples and quantified methylation of six BDNF cytosine-phosphate-guanine (CpG) sites and five NFKBIA CpG sites. Neurobehavior was assessed using the Neurobehavioral Assessment of the Preterm Infant. Results: Sixty-five infants were included in the analysis. In females, inflammatory factors were positively associated with BDNF methylation of most CpG sites. Interleukin-1 receptor antagonist was negatively associated with NFKBIA methylation at two CpG sites. In males, interleukin-6 was negatively associated with BDNF and NFKBIA methylation at most CpG sites. In females, BDNF methylation at two sites was inversely associated with motor performance. In males, NFKBIA methylation at one site was inversely associated with motor performance. Conclusion: This study provides evidence for the relationship between inflammation and neurobehavior in preterm infants, working mechanistically through DNA methylation. The finding of a difference between males and females suggests that female infants are potentially more vulnerable to inflammation and warrants future study.
Collapse
Affiliation(s)
| | - Rita H Pickler
- College of Nursing, The Ohio State University, Columbus, OH, USA
| | - Abigail B Shoben
- College of Public Health, The Ohio State University, Columbus, OH, USA
| | - Yvette P Conley
- School of Nursing, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
11
|
Cheng S, Chen W, Guo Z, Ding C, Zuo R, Liao Q, Liu G. Paeonol alleviates ulcerative colitis by modulating PPAR-γ and nuclear factor-κB activation. Sci Rep 2024; 14:18390. [PMID: 39117680 PMCID: PMC11310503 DOI: 10.1038/s41598-024-68992-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 07/30/2024] [Indexed: 08/10/2024] Open
Abstract
Ulcerative colitis (UC) is a chronic idiopathic inflammatory disease affecting the gastrointestinal tract. Although paeonol has been used for treating UC due to its anti-inflammatory and antioxidant effects, the underlying mechanisms remain unclear. In this study, we investigated the mechanisms of paeonol's action on UC by conducting in-vitro and in-vivo studies using NCM460 cells and RAW264.7 cells, and the DSS-induced mice colitis model. The in vitro studies demonstrate that paeonol exerts inhibitory effects on the activation of the NF-κB signaling pathway through upregulating PPARγ expression, thereby attenuating pro-inflammatory cytokine production, reducing reactive oxygen species levels, and promoting M2 macrophage polarization. These effects are significantly abrogated upon addition of the PPARγ inhibitor GW9662. Moreover, UC mice treated with paeonol showed increased PPARγ expression, which reduced inflammation and apoptosis to maintain intestinal epithelial barrier integrity. In conclusion, our findings suggest that paeonol inhibits the NF-κB signaling pathway by activating PPARγ, reducing inflammation and oxidative stress and improving Dss-induced colitis. This study provides a new insight into the mechanism of treating UC by paeonol.
Collapse
Affiliation(s)
- Shuyu Cheng
- School of Medicine Xiamen University, Xiamen University, Xiamen, 361102, Fujian, China
| | - Wujin Chen
- The Third People's Hospital of Fujian Province, The Third Affiliated People's Hospital of Fujian University of Traditional Chinese Medicine, Fuzhou, 350000, China
| | - Zhenzhen Guo
- School of Pharmaceutical Sciences Xiamen University, Xiamen University, Xiamen, 361102, China
| | - Chenchun Ding
- School of Medicine Xiamen University, Xiamen University, Xiamen, 361102, Fujian, China
| | - Renjie Zuo
- School of Medicine Xiamen University, Xiamen University, Xiamen, 361102, Fujian, China
| | - Quan Liao
- School of Medicine Xiamen University, Xiamen University, Xiamen, 361102, Fujian, China
| | - Guoyan Liu
- School of Medicine Xiamen University, Xiamen University, Xiamen, 361102, Fujian, China.
- School of Pharmaceutical Sciences Xiamen University, Xiamen University, Xiamen, 361102, China.
- Department of Gastrointestinal Surgery, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 350108, China.
| |
Collapse
|
12
|
Li S, Huo C, Liu A, Zhu Y. Mitochondria: a breakthrough in combating rheumatoid arthritis. Front Med (Lausanne) 2024; 11:1439182. [PMID: 39161412 PMCID: PMC11330793 DOI: 10.3389/fmed.2024.1439182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 07/26/2024] [Indexed: 08/21/2024] Open
Abstract
As a chronic autoimmune disease with complex aetiology, rheumatoid arthritis (RA) has been demonstrated to be associated with mitochondrial dysfunction since mitochondrial dysfunction can affect the survival, activation, and differentiation of immune and non-immune cells involved in the pathogenesis of RA. Nevertheless, the mechanism behind mitochondrial dysfunction in RA remains uncertain. Accordingly, this review addresses the possible role and mechanisms of mitochondrial dysfunction in RA and discusses the potential and challenges of mitochondria as a potential therapeutic strategy for RA, thereby providing a breakthrough point in the prevention and treatment of RA.
Collapse
Affiliation(s)
- Shuang Li
- Graduate School of Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Chenlu Huo
- Graduate School of Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Anting Liu
- Graduate School of Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Yan Zhu
- Department of Geriatrics, The Second Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui, China
| |
Collapse
|
13
|
Xu HJ, Lin YY, Yu JJ, Zhang N, Hu JM, Qu JS, Yuan CM, Chen DQ, Liang M, Cai HD, Zeng K. Gibberellic acid targeting ZBTB16 reduces NF-κB dependent inflammatory stress in sepsis-induced neuroinflammation. Eur J Pharmacol 2024; 976:176665. [PMID: 38797312 DOI: 10.1016/j.ejphar.2024.176665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 05/01/2024] [Accepted: 05/22/2024] [Indexed: 05/29/2024]
Abstract
OBJECTIVE Sepsis is frequently complicated by neuroinflammation. Gibberellic acid (GA3) is recognized for its anti-inflammatory properties. In this study, our objective was to investigate whether GA3 could alleviate Nuclear factor-kappa B (NF-κB) -dependent inflammatory stress in sepsis-induced neuroinflammation. METHODS C57BL/6 J mice were administered 10 mg/kg lipopolysaccharide (LPS) to induce sepsis. BV2 cells were pre-incubated with GA3 and subjected lipopolysaccharide stimulation to replicate the inflammatory microglia during sepsis. Subsequently, we assessed the release of IL-6, TNF-α, and IL-1β, along with the expression of Zbtb16, NF-κB, and IκB. To investigate whether any observed anti-inflammatory effects of GA3 were mediated through a Zbtb16-dependent mechanism, Zbtb16 was silenced using siRNA. RESULTS GA3 improved the survival of sepsis mice and alleviated post-sepsis cognitive impairment. Additionally, GA3 attenuated microglial M1 activation (pro-inflammatory phenotype), inflammation, and neuronal damage in the brain. Moreover, GA3 inhibited the release of TNF-α, IL-6, and IL-1β in microglia stimulated with LPS. The NF-κB signaling pathway emerged as one of the key molecular pathways associated with the impact of GA3 on LPS-stimulated microglia. Lastly, GA3 upregulated Zbtb16 expression in microglia that had been downregulated by LPS. The inhibitory effects of GA3 on microglial M1 activation were partially reversed through siRNA knockdown of Zbtb16. CONCLUSIONS Pre-incubation of microglia with GA3 led to the upregulation of the NF-κB regulator, Zbtb16. This process counteracted LPS-induced microglial M1 activation, resulting in an anti-inflammatory effect upon subsequent LPS stimulation.
Collapse
Affiliation(s)
- Hao-Jie Xu
- Department of Anesthesiology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China; Department of Anesthesiology, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China; Institute of Anesthesiology, Fujian Medical University, Fuzhou, 350005, China
| | - Ying-Yi Lin
- Department of Anesthesiology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China; Department of Anesthesiology, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China; Institute of Anesthesiology, Fujian Medical University, Fuzhou, 350005, China
| | - Jian-Jun Yu
- Department of Anesthesiology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China; Department of Anesthesiology, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China; Institute of Anesthesiology, Fujian Medical University, Fuzhou, 350005, China
| | - Na Zhang
- Department of Anesthesiology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China; Department of Anesthesiology, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China; Institute of Anesthesiology, Fujian Medical University, Fuzhou, 350005, China
| | - Jia-Min Hu
- Department of Anesthesiology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China; Department of Anesthesiology, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China; Institute of Anesthesiology, Fujian Medical University, Fuzhou, 350005, China
| | - Jin-Shuang Qu
- Department of Anesthesiology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China; Department of Anesthesiology, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China; Institute of Anesthesiology, Fujian Medical University, Fuzhou, 350005, China
| | - Chao-Mei Yuan
- Department of Anesthesiology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China; Department of Anesthesiology, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China; Institute of Anesthesiology, Fujian Medical University, Fuzhou, 350005, China
| | - Da-Qiu Chen
- Department of Cardiology, Affiliated Nanping First Hospital, Fujian Medical University, Nanping, 353000, Fujian Province, China
| | - Min Liang
- Department of Anesthesiology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China; Department of Anesthesiology, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China; Institute of Anesthesiology, Fujian Medical University, Fuzhou, 350005, China
| | - Hong-da Cai
- Department of Anesthesiology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China; Department of Anesthesiology, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China; Institute of Anesthesiology, Fujian Medical University, Fuzhou, 350005, China
| | - Kai Zeng
- Department of Anesthesiology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China; Department of Anesthesiology, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China; Institute of Anesthesiology, Fujian Medical University, Fuzhou, 350005, China.
| |
Collapse
|
14
|
Duan H, Wang D, Zheng Y, Zhou Y, Yan W. The powerful antioxidant effects of plant fruits, flowers, and leaves help to improve retinal damage and support the relief of visual fatigue. Heliyon 2024; 10:e34299. [PMID: 39113954 PMCID: PMC11305225 DOI: 10.1016/j.heliyon.2024.e34299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 07/04/2024] [Accepted: 07/08/2024] [Indexed: 08/10/2024] Open
Abstract
With the popularization of electronic products, visual fatigue is inevitably frequent. The causes of visual fatigue are varied, but from the perspective of physiological mechanisms, it is mainly closely related to retinal function or structural damage, especially the light source from various mobile devices and office equipments nowadays, which induces oxidative stress damage in the retina and exacerbates the degree of visual fatigue, resulting in the inability to use the eyes for a long period of time, pain in the eyes and periorbital area, blurred vision, dry eyes, tearing, and other discomforts. Food ingredients derived from natural plants have greater application in relieving visual fatigue. Therefore, this paper presents a detailed compilation of six plants that are widely used for their visual fatigue-relieving function, in the hope of providing more raw material choices for the development of products with visual fatigue-relieving functions in the future.
Collapse
Affiliation(s)
- Hao Duan
- College of Biochemical Engineering, Beijing Union University, Beijing, 100023, China
- Beijing Key Laboratory of Bioactive Substances and Functional Food, Beijing Union University, Beijing, 100023, China
| | - Diandian Wang
- College of Biochemical Engineering, Beijing Union University, Beijing, 100023, China
- Beijing Key Laboratory of Bioactive Substances and Functional Food, Beijing Union University, Beijing, 100023, China
| | - Yue Zheng
- College of Biochemical Engineering, Beijing Union University, Beijing, 100023, China
- Beijing Key Laboratory of Bioactive Substances and Functional Food, Beijing Union University, Beijing, 100023, China
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yaxi Zhou
- College of Biochemical Engineering, Beijing Union University, Beijing, 100023, China
- Beijing Key Laboratory of Bioactive Substances and Functional Food, Beijing Union University, Beijing, 100023, China
| | - Wenjie Yan
- College of Biochemical Engineering, Beijing Union University, Beijing, 100023, China
- Beijing Key Laboratory of Bioactive Substances and Functional Food, Beijing Union University, Beijing, 100023, China
| |
Collapse
|
15
|
Xie FF, Xu LB, Zhu H, Yu XQ, Deng LY, Qin HZ, Lin S. Serum Metabolomics and NF-κB Pathway Analysis Revealed the Antipyretic Mechanism of Ellagic Acid on LPS-Induced Fever in Rabbits. Metabolites 2024; 14:407. [PMID: 39195502 DOI: 10.3390/metabo14080407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/12/2024] [Accepted: 07/17/2024] [Indexed: 08/29/2024] Open
Abstract
Fever is one of the most common clinical conditions and is characterized by pyrogenic infection, malignancy, inflammation, and tissue damage, among others. Ellagic acid (EA) can inhibit the expression of related proteins on the pathway by blocking the nuclear factor kappa-B(NF-κB) signaling pathway, inhibit the levels of pro-inflammatory factors interleukin-1β(IL-1β), interleukin-6(IL-6), and tumor necrosis factor-α(TNF-α), increase the level of anti-inflammatory factor IL-10, and effectively alleviate inflammatory symptoms. In addition, EA can also reduce the levels of malondialdehyde(MDA) and nitric oxide(NO) in the body, increase the activities of superoxide dismutase (SOD), glutathione (GSH), and catalase(CAT), scavenge oxidative free radicals, inhibit lipid oxidation, and achieve antipyretic and anti-inflammatory effects. The purpose of this study was to establish the relationship between EA and various inflammatory markers, such as TNF-α, IL-6, IL-1β, prostaglandin E2(PGE2), and cyclic adenosine monophosphate(cAMP), and clarify the mechanism of the cyclooxidase-2(COX-2)/NF-κB signaling pathway. Combined with the metabolomics analysis, our study revealed the effects of EA on multiple endogenous biomarkers, reflecting the characteristics of a multi-component, multi-target, and multi-pathway mechanism. Compared to lipopolysaccharide (LPS)- treated animals, subsequent administration of EA significantly lowered the LPS-induced rectal temperature increase (p < 0.05 or p < 0.01), significantly increased serum SOD and GSH levels (p < 0.05 or p < 0.01), and significantly decreased serum MDA, IL-1β, IL-6, and TNF-α levels (p < 0.05 or p < 0.01). In addition, compared to LPS-treated animals, subsequent administration of EA significantly decreased cerebrospinal fluid cAMP and PGE2 levels (p < 0.05 or p < 0.01), significantly decreased cAMP, significantly increased 5-HT levels (p < 0.05 or p < 0.01), and significantly down-regulated p-NF-κB p65 and COX-2 protein levels in the hypothalamus. Subsequent gas chromatography mass spectrometry(GC-MS) metabolite analysis indicated that 12 differential metabolites were detected in serum isolated 4 h after LPS treatment, and 10 differential metabolites were detected in serum collected 7 h after LPS treatment. Next, Pearson correlation analysis was used to systematically characterize the relationship between the identified metabolites and TNF-α, IL-6, MDA, SOD, PGE2, and cAMP. The levels of propionic acid, pyridine, and L-valine were up-regulated by EA, which inhibited the expression of MDA, IL-1β, and TNF-α and increased the activity of GSH. The levels of inositol, urea, and 2-monopalmitin were down-regulated by EA, which inhibited the expression of MDA, IL-1β, and TNF-α, increased the activity of SOD and GSH, reduced the inflammatory response, and alleviated the oxidative stress state. Combined with the results of the metabolic pathway analysis, we suggest that the pathways of the galactose metabolism, synthesis and degradation of ketone bodies, as well as ascorbic acid and aldehyde acid metabolism are closely related to the antipyretic and anti-inflammatory effects of EA. Our study established the relationship between EA and various inflammatory markers, such as TNF-α, IL-6, IL-1β, PGE2, and cAMP, and clarified the mechanism of the COX-2/NF-κB signaling pathway. Combined with the metabolomics analysis, our study revealed the effects of EA on multiple endogenous biomarkers, reflecting the characteristics of a multi-component, multi-target, and multi-pathway mechanism.
Collapse
Affiliation(s)
- Feng-Feng Xie
- Guangxi Key Laboratory of Zhuang and Yao Ethnic Medicine, The Collaborative Innovation Center of Zhuang and Yao Ethnic Medicine, Guangxi Engineering Research Center of Ethnic Medicine Resources and Application, Guangxi University of Chinese Medicine, Nanning 530200, China
- School of Chemistry and Chemical Engineering, Guangxi MinZu University, Nanning 530006, China
- Guangxi Institute for DRUG Control, Nanning 530018, China
| | - Li-Ba Xu
- Guangxi Key Laboratory of Zhuang and Yao Ethnic Medicine, The Collaborative Innovation Center of Zhuang and Yao Ethnic Medicine, Guangxi Engineering Research Center of Ethnic Medicine Resources and Application, Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Hua Zhu
- Guangxi Key Laboratory of Zhuang and Yao Ethnic Medicine, The Collaborative Innovation Center of Zhuang and Yao Ethnic Medicine, Guangxi Engineering Research Center of Ethnic Medicine Resources and Application, Guangxi University of Chinese Medicine, Nanning 530200, China
- School of Chemistry and Chemical Engineering, Guangxi MinZu University, Nanning 530006, China
- Guangxi Institute for DRUG Control, Nanning 530018, China
| | - Xiu-Qi Yu
- Guangxi Key Laboratory of Zhuang and Yao Ethnic Medicine, The Collaborative Innovation Center of Zhuang and Yao Ethnic Medicine, Guangxi Engineering Research Center of Ethnic Medicine Resources and Application, Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Lin-Yu Deng
- Guangxi Key Laboratory of Zhuang and Yao Ethnic Medicine, The Collaborative Innovation Center of Zhuang and Yao Ethnic Medicine, Guangxi Engineering Research Center of Ethnic Medicine Resources and Application, Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Hui-Zhen Qin
- Guangxi Key Laboratory of Zhuang and Yao Ethnic Medicine, The Collaborative Innovation Center of Zhuang and Yao Ethnic Medicine, Guangxi Engineering Research Center of Ethnic Medicine Resources and Application, Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Si Lin
- Guangxi Key Laboratory of Zhuang and Yao Ethnic Medicine, The Collaborative Innovation Center of Zhuang and Yao Ethnic Medicine, Guangxi Engineering Research Center of Ethnic Medicine Resources and Application, Guangxi University of Chinese Medicine, Nanning 530200, China
| |
Collapse
|
16
|
Peng Z, Zhang W, Hong H, Liu L. Effect of luteolin on oxidative stress and inflammation in the human osteoblast cell line hFOB1.19 in an inflammatory microenvironment. BMC Pharmacol Toxicol 2024; 25:40. [PMID: 38997762 PMCID: PMC11241847 DOI: 10.1186/s40360-024-00764-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 07/05/2024] [Indexed: 07/14/2024] Open
Abstract
BACKGROUND Periapical lesions are characterized by periapical inflammation and damage to periapical tissues and eventually lead to bone resorption and even tooth loss. H2O2 is widely used in root canal therapy for patients with periapical inflammation. Luteolin possesses high anti-inflammatory, antioxidant, and anticancer potential. However, the underlying mechanism of the efficacy of H2O2 and luteolin on oxidative stress and inflammatory tissue has not been previously addressed. We aimed to investigate the anti-inflammatory and antioxidative effects of luteolin on H2O2-induced cellular oxidative inflammation. METHODS After human osteoblasts (hFOB1.19) were treated with lipopolysaccharide (LPS), luteolin, or H2O2, cell proliferation was analysed by using a cell counting kit-8 (CCK-8), cell apoptosis was measured by using flow cytometry, the production of reactive oxygen species (ROS) was evaluated by using an oxidation-sensitive probe DCFH-DA ROS assay kit, and the expression of genes and proteins was detected by using reverse transcription quantitative polymerase chain reaction (RT‒qPCR), Western blotting, and enzyme-linked immunosorbent assay (ELISA). RESULTS We demonstrated that inflammation is closely related to oxidative stress and that the oxidative stress level in the inflammatory environment is increased. Luteolin inhibited the H2O2-induced increase in the expression of interleukin-6 (IL-6), interleukin-8 (IL-8) and tumour necrosis factor α (TNF-α) and significantly repressed the H2O2-induced increase in ROS, as well as markedly strengthened superoxide dismutase (SOD) activity in hFOB1.19 cells. Moreover, we detected that luteolin may inhibit H2O2-induced hFOB1.19 cell injury by suppressing the NF-κB pathway. CONCLUSION We elucidated that luteolin protected human osteoblasts (hFOB1.19) from H2O2-induced cell injury and inhibited the production of proinflammatory cytokines by suppressing the NF-κB signalling pathway. Our findings provide a potential drug for treating H2O2-induced periodontitis and cell injury.
Collapse
Affiliation(s)
- Zhengjun Peng
- Operative Dentistry and Endodontics, Guanghua School of Stomatology, Guangdong Province Key Laboratory of Stomatology, Affiliated Stomatological Hospital, Sun Yat-Sen University, 56 Lingyuan Xi Rd, Guangzhou, 510055, Guangdong, China
| | - Wenyu Zhang
- Operative Dentistry and Endodontics, Guanghua School of Stomatology, Guangdong Province Key Laboratory of Stomatology, Affiliated Stomatological Hospital, Sun Yat-Sen University, 56 Lingyuan Xi Rd, Guangzhou, 510055, Guangdong, China
| | - Hong Hong
- Operative Dentistry and Endodontics, Guanghua School of Stomatology, Guangdong Province Key Laboratory of Stomatology, Affiliated Stomatological Hospital, Sun Yat-Sen University, 56 Lingyuan Xi Rd, Guangzhou, 510055, Guangdong, China
| | - Lu Liu
- Operative Dentistry and Endodontics, Guanghua School of Stomatology, Guangdong Province Key Laboratory of Stomatology, Affiliated Stomatological Hospital, Sun Yat-Sen University, 56 Lingyuan Xi Rd, Guangzhou, 510055, Guangdong, China.
| |
Collapse
|
17
|
Tu C, Yang S, Yang M, Liu L, Tao J, Zhang L, Huang X, Tian Y, Li N, Lin L, Qin Z. Mechanisms of persistent hemolysis-induced middle kidney injury in grass carp (Ctenopharyngodon idella). FISH & SHELLFISH IMMUNOLOGY 2024; 150:109603. [PMID: 38704112 DOI: 10.1016/j.fsi.2024.109603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/20/2024] [Accepted: 05/02/2024] [Indexed: 05/06/2024]
Abstract
Infection-induced hemolysis results in intravascular hemolysis, which releases hemoglobin (Hb) into the tissues. Free Hb exhibits cytotoxic, oxidative, and pro-inflammatory effects, leading to systemic inflammation, vascular constriction dysfunction, thrombosis, and proliferative vascular lesions. Currently, the impact of intravascular hemolysis on the middle kidney in fish is unclear. Here, the injection of phenylhydrazine (PHZ) was used to establish a persistent hemolysis model in grass carp. The determination results revealed that the PHZ-induced hemolysis caused conspicuous tissue damage in the kidneys of grass carp, increased the levels of Cr in the serum and the expression indicators of kidney injury-related genes in the middle kidney. Prussian blue staining indicated that PHZ-induced hemolysis significantly increased the deposition of iron ions in the kidneys of grass carp, and activated the expression levels of iron metabolism-related genes. The results of oxidative damage-related experiments indicate that under PHZ treatment, the activity of middle kidney cells decreases, and the production of oxidative damage markers malondialdehyde (MDA) and 4-hydroxynonenal (4-HNE) increases, simultaneously inhibiting the activity of antioxidant enzymes and upregulating the transcription levels of antioxidant enzyme-related genes. Additionally, the analysis of inflammatory factors revealed a significant upregulation of genes associated with inflammation induced by PHZ-induced hemolysis. The transcriptome analysis was performed to further explore the molecular regulatory effects of hemolysis on tissues, the analysis revealed the treatment of PHZ activated various of programmed cell death (PCD) pathways, including ferroptosis, apoptosis, and autophagy. In summary, this study found that sustained hemolysis in fish results in Hb and iron ion deposition in middle kidney, promoting oxidative damage, ultimately inducing various forms of PCD.
Collapse
Affiliation(s)
- Chengming Tu
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong Province, 510222, China
| | - Shiyi Yang
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong Province, 510222, China
| | - Minxuan Yang
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong Province, 510222, China
| | - Lihan Liu
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong Province, 510222, China
| | - Junjie Tao
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong Province, 510222, China
| | - Linpeng Zhang
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong Province, 510222, China
| | - Xiaoman Huang
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong Province, 510222, China
| | - Ye Tian
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong Province, 510222, China
| | - Ningjing Li
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong Province, 510222, China
| | - Li Lin
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong Province, 510222, China.
| | - Zhendong Qin
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong Province, 510222, China.
| |
Collapse
|
18
|
Liu Y, Long Y, Fang J, Liu G. Advances in the Anti-Atherosclerotic Mechanisms of Epigallocatechin Gallate. Nutrients 2024; 16:2074. [PMID: 38999821 PMCID: PMC11243004 DOI: 10.3390/nu16132074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 06/24/2024] [Accepted: 06/27/2024] [Indexed: 07/14/2024] Open
Abstract
Atherosclerosis (AS) is a common clinical sickness and the major pathological basis of ischemic cardiocerebrovascular diseases (CCVDs). The pathogenesis of AS involves a variety of risk factors, and there is a lack of effective preventive and curative drugs that can completely treat AS. In recent years, with the improvement of people's living standards and changes in dietary habits, the morbidity and mortality rates of AS are on the rise, and the age of onset tends to be younger. The formation of AS is closely related to a variety of factors, and the main factors include lipid metabolism disorders, endothelial damage, inflammation, unstable plaques, etc. Epigallocatechin gallate (EGCG), as one of the main components of catechins, has a variety of pharmacological effects, and its role in the prevention of AS and the protection of cardiovascular and cerebral blood vessels has been highly valued. Recent epidemiological investigations and various in vivo and ex vivo experiments have shown that EGCG is capable of resisting atherosclerosis and reducing the morbidity and mortality of AS. In this paper, we reviewed the anti-AS effects of EGCG and its mechanisms in recent years, including the regulation of lipid metabolism, regulation of intestinal flora disorders, improvement of vascular endothelial cell functions, inhibition of inflammatory factors expression, regulation of inflammatory signaling pathways, inhibition of matrix metalloproteinase (MMP) expression, and inhibition of platelet aggregation, which are helpful for the prevention of cardiocerebrovascular diseases.
Collapse
Affiliation(s)
- Yihui Liu
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| | - Yiling Long
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| | - Jun Fang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| | - Gang Liu
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| |
Collapse
|
19
|
Dong S, Jia L, Sun S, Hao X, Feng X, Qiu Y, Gu K, Wen Y. TAZ reverses the inhibitory effects of LPS on the osteogenic differentiation of human periodontal ligament stem cells through the NF-κB signaling pathway. BMC Oral Health 2024; 24:733. [PMID: 38926705 PMCID: PMC11210133 DOI: 10.1186/s12903-024-04497-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 06/17/2024] [Indexed: 06/28/2024] Open
Abstract
BACKGROUND Human periodontal ligament stem cells (hPDLSCs) are important candidate seed cells for periodontal tissue engineering, but the presence of lipopolysaccharide(LPS) in periodontal tissues inhibits the self-renewal and osteogenic differentiation of hPDLSCs. Our previous studies demonstrated that TAZ is a positive regulator of osteogenic differentiation of hPDLSCs, but whether TAZ can protect hPDLSCs from LPS is still unknown. The present study aimed to explore the regulatory effect of TAZ on the osteogenic differentiation of hPDLSCs in an LPS-induced inflammatory model, and to preliminarily reveal the molecular mechanisms related to the NF-κB signaling pathway. METHODS LPS was added to the culture medium of hPDLSCs. The influence of LPS on hPDLSC proliferation was analyzed by CCK-8 assays. The effects of LPS on hPDLSC osteogenic differentiation were detected by Alizarin Red staining, ALP staining, Western Blot and qRT-PCR analysis of osteogenesis-related genes. The effects of LPS on the osteogenic differentiation of hPDLSCs with TAZ overexpressed or knocked down via lentivirus were analyzed. NF-κB signaling in hPDLSCs was analyzed by Western Blot and immunofluorescence. RESULTS LPS inhibited the osteogenic differentiation of hPDLSCs, inhibited TAZ expression, and activated the NF-κB signaling pathway. Overexpressing TAZ in hPDLSCs partly reversed the negative effects of LPS on osteogenic differentiation and inhibited the activation of the NF-κB pathway by LPS. TAZ knockdown enhanced the inhibitory effects of LPS on osteogenesis. CONCLUSION Overexpressing TAZ could partly reverse the inhibitory effects of LPS on the osteogenic differentiation of hPDLSCs, possibly through inhibiting the NF-κB signaling pathway. TAZ is a potential target for improving hPDLSC-based periodontal tissue regeneration in inflammatory environments.
Collapse
Affiliation(s)
- Shuyi Dong
- School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration, Jinan, Shandong, China
- Shandong Provincial Clinical Research Center for Oral Diseases, No.44-1 Wenhua Road West, Jinan, 250012, Shandong, China
| | - Linglu Jia
- School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration, Jinan, Shandong, China
- Shandong Provincial Clinical Research Center for Oral Diseases, No.44-1 Wenhua Road West, Jinan, 250012, Shandong, China
| | - Shaoqing Sun
- School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration, Jinan, Shandong, China
- Shandong Provincial Clinical Research Center for Oral Diseases, No.44-1 Wenhua Road West, Jinan, 250012, Shandong, China
| | - Xingyao Hao
- School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration, Jinan, Shandong, China
- Shandong Provincial Clinical Research Center for Oral Diseases, No.44-1 Wenhua Road West, Jinan, 250012, Shandong, China
| | - Xiaomei Feng
- School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration, Jinan, Shandong, China
- Shandong Provincial Clinical Research Center for Oral Diseases, No.44-1 Wenhua Road West, Jinan, 250012, Shandong, China
| | - Yunge Qiu
- School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration, Jinan, Shandong, China
- Shandong Provincial Clinical Research Center for Oral Diseases, No.44-1 Wenhua Road West, Jinan, 250012, Shandong, China
| | - Ke Gu
- School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration, Jinan, Shandong, China
- Shandong Provincial Clinical Research Center for Oral Diseases, No.44-1 Wenhua Road West, Jinan, 250012, Shandong, China
| | - Yong Wen
- School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China.
- Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration, Jinan, Shandong, China.
- Shandong Provincial Clinical Research Center for Oral Diseases, No.44-1 Wenhua Road West, Jinan, 250012, Shandong, China.
| |
Collapse
|
20
|
Fu Y, Wang Y, Zhang L, He T, Shi W, Guo X, Wang Y. SRSF3 Knockdown Inhibits Lipopolysaccharide-Induced Inflammatory Response in Macrophages. Curr Issues Mol Biol 2024; 46:6237-6247. [PMID: 38921043 PMCID: PMC11202707 DOI: 10.3390/cimb46060372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 06/15/2024] [Accepted: 06/18/2024] [Indexed: 06/27/2024] Open
Abstract
Serine/arginine-rich splicing factor 3 (SRSF3), the smallest member of the SR protein family, serves multiple roles in RNA processing, including splicing, translation, and stability. Recent studies have shown that SRSF3 is implicated in several inflammatory diseases. However, its impact on macrophage inflammation remains unclear. Herein, we determined the expression of SRSF3 in inflammatory macrophages and found that the level of SRSF3 was increased in macrophages within atherosclerotic plaques, as well as in RAW-264.7 macrophages stimulated by lipopolysaccharides. Moreover, the downregulation of SRSF3 suppressed the levels of inflammatory cytokines by deactivating the nuclear factor κB (NFκB) pathway. Furthermore, the alternative splicing of myeloid differentiation protein 2 (MD2), a co-receptor of toll-like receptor 4 (TLR4), is regulated by SRSF3. The depletion of SRSF3 increased the level of the shorter MD2B splicing variants, which contributed to inflammatory inhibition in macrophages. In conclusion, our findings imply that SRSF3 regulates lipopolysaccharide-stimulated inflammation, in part by controlling the alternative splicing of MD2 mRNA in macrophages.
Collapse
Affiliation(s)
- Yu Fu
- College of Food Science and Biology, Hebei University of Science and Technology, Shijiazhuang 050018, China; (Y.W.); (L.Z.); (T.H.); (W.S.); (X.G.)
| | | | | | | | | | | | - Yingze Wang
- College of Food Science and Biology, Hebei University of Science and Technology, Shijiazhuang 050018, China; (Y.W.); (L.Z.); (T.H.); (W.S.); (X.G.)
| |
Collapse
|
21
|
Niu Z, Qu ST, Zhang L, Dai JH, Wang K, Liu Y, Chen L, Song Y, Sun R, Xu ZH, Zhang HL. Trim14-IκBα Signaling Regulates Chronic Inflammatory Pain in Rats and Osteoarthritis Patients. Neuroscience 2024; 548:39-49. [PMID: 38697463 DOI: 10.1016/j.neuroscience.2024.04.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 04/10/2024] [Accepted: 04/26/2024] [Indexed: 05/05/2024]
Abstract
Chronic inflammatory pain is the highest priority for people with osteoarthritis when seeking medical attention. Despite the availability of NSAIDs and glucocorticoids, central sensitization and peripheral sensitization make pain increasingly difficult to control. Previous studies have identified the ubiquitination system as an important role in the chronic inflammatory pain. Our study displayed that the E3 ubiquitin ligase tripartite motif-containing 14 (Trim14) was abnormally elevated in the serum of patients with osteoarthritis and pain, and the degree of pain was positively correlated with the degree of Trim14 elevation. Furthermore, CFA-induced inflammatory pain rat model showed that Trim14 was significantly increased in the L3-5 spinal dorsal horn (SDH) and dorsal root ganglion (DRG), and in turn the inhibitor of nuclear factor Kappa-B isoform α (IκBα) was decreased after Trim14 elevation. After intrathecal injection of Trim14 siRNA to inhibit Trim14 expression, IκBα expression was reversed and increased, and the pain behaviors and anxiety behaviors of rats were significantly relieved. Overall, these findings suggested that Trim14 may contribute to chronic inflammatory pain by degrading IκBα, and that Trim14 may become a novel therapeutic target for chronic inflammatory pain.
Collapse
Affiliation(s)
- Zheng Niu
- Center for Translational Medicine, Department of Anesthesiology, The Affiliated Zhangjiagang Hospital of Soochow University, Suzhou Medical College of Soochow University, Suzhou 215600, China
| | - Shu-Ting Qu
- Center for Translational Medicine, Department of Anesthesiology, The Affiliated Zhangjiagang Hospital of Soochow University, Suzhou Medical College of Soochow University, Suzhou 215600, China
| | - Ling Zhang
- Center for Translational Medicine, Department of Anesthesiology, The Affiliated Zhangjiagang Hospital of Soochow University, Suzhou Medical College of Soochow University, Suzhou 215600, China
| | - Jia-Hao Dai
- Center for Translational Medicine, Department of Anesthesiology, The Affiliated Zhangjiagang Hospital of Soochow University, Suzhou Medical College of Soochow University, Suzhou 215600, China
| | - Ke Wang
- Department of Pain, Suzhou Wuzhong People's Hospital, Suzhou 215128, China
| | - Yun Liu
- Center for Translational Medicine, Department of Anesthesiology, The Affiliated Zhangjiagang Hospital of Soochow University, Suzhou Medical College of Soochow University, Suzhou 215600, China
| | - Long Chen
- Center for Translational Medicine, Department of Anesthesiology, The Affiliated Zhangjiagang Hospital of Soochow University, Suzhou Medical College of Soochow University, Suzhou 215600, China
| | - Yu Song
- Center for Translational Medicine, Department of Anesthesiology, The Affiliated Zhangjiagang Hospital of Soochow University, Suzhou Medical College of Soochow University, Suzhou 215600, China
| | - Ren Sun
- Center for Translational Medicine, Department of Anesthesiology, The Affiliated Zhangjiagang Hospital of Soochow University, Suzhou Medical College of Soochow University, Suzhou 215600, China
| | - Zhen-Hua Xu
- Center for Translational Medicine, Department of Anesthesiology, The Affiliated Zhangjiagang Hospital of Soochow University, Suzhou Medical College of Soochow University, Suzhou 215600, China.
| | - Hai-Long Zhang
- Center of Translational Medicine and Clinical Laboratory, The Fourth Affiliated Hospital of Soochow University, Medical Center of Soochow University, Suzhou Medical College of Soochow University, Suzhou 215123, China.
| |
Collapse
|
22
|
Zhuo F, Jia X, Wang Z, Zhang Y, Yan X. Platelet-rich plasma alleviates knee arthritis in rats by inhibiting p65. Cell Tissue Bank 2024; 25:463-473. [PMID: 37501011 DOI: 10.1007/s10561-023-10102-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 07/06/2023] [Indexed: 07/29/2023]
Abstract
Knee osteoarthritis (KOA) is a chronic joint disease characterized by the degeneration of articular cartilage. In this study, we explored the potential therapeutic effects of platelet-rich plasma (PRP) and identified molecular targets for treating KOA. A rat model of KOA was established via the Hulth method and primary knee joint chondrocytes were isolated to evaluate the effects of PRP and shRNA targeting p65 (sh-p65). ELISA was used to detect inflammatory factors, including IL-6, IL-1β, and TNF-α. HE staining, Safranin O/Fast Green staining and Masson staining were performed to evaluate the morphology of articular cartilage, followed by detection of p65, COL2A1, ACAN, MMP13, and ADAMTS5 expression. The proliferation and apoptosis of primary knee chondrocytes were detected by the CCK-8 assay and TUNEL staining, respectively. Treatment with either PRP or sh-p65 decreased IL-6, IL-1β, and TNF-α levels in the peripheral blood of KOA rats and chondrocyte culture supernatants, increased COL2A1 and ACAN levels, and decreased MMP13 and ADAMTS5 expression. Furthermore, administration of PRP or sh-p65 exerted protective effects on articular cartilage, enhanced the vitality of knee joint chondrocytes, and inhibited apoptosis. Collectively, PRP inhibited inflammation, promoted chondrocyte proliferation and cartilage matrix secretion, and induced cartilage regeneration by suppressing p65 expression; these effects allow PRP to alleviate KOA progression. P65-based targeted therapy administered in combination with PRP might be a promising strategy for treating KOA.
Collapse
Affiliation(s)
- Feng Zhuo
- Department of Joint Surgery, Shandong Provincial Qianfoshan Hospital, Shandong University, Lixia District, No. 16766, Jingshi Road, Jinan, 271000, Shandong, China
- Department of Joint Surgery, The Affiliated Taian City Central Hospital of Qingdao University, Longtan Road, Taian, 271000, Shandong, China
| | - Xiaojing Jia
- Orthopedics Department, The Affiliated Taian City Central Hospital of Qingdao University, Longtan Road, Taian, 271000, Shandong, China
| | - Zongru Wang
- Department of Joint Surgery, Municipal Hospital of Taian, Tianpinghu Road, Taian, 271021, Shandong, China
| | - Yeyong Zhang
- Department of Joint Surgery, Shandong Provincial Qianfoshan Hospital, Shandong University, Lixia District, No. 16766, Jingshi Road, Jinan, 271000, Shandong, China
| | - Xinfeng Yan
- Department of Joint Surgery, Shandong Provincial Qianfoshan Hospital, Shandong University, Lixia District, No. 16766, Jingshi Road, Jinan, 271000, Shandong, China.
| |
Collapse
|
23
|
He YJ, Chen YR, Song JR, Jiang JX, Liu TT, Li JY, Li L, Jia J. Ubiquitin-specific protease-7 promotes expression of airway mucin MUC5AC via the NF-κB signaling pathway. Heliyon 2024; 10:e30967. [PMID: 38778971 PMCID: PMC11109812 DOI: 10.1016/j.heliyon.2024.e30967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 05/04/2024] [Accepted: 05/08/2024] [Indexed: 05/25/2024] Open
Abstract
Chronic obstructive pulmonary disease (COPD) and other respiratory diseases frequently present with airway mucus hypersecretion, which not only affects the patient's quality of life but also poses a constant threat to their life expectancy. Ubiquitin-specific protease 7 (USP7), a deubiquitinating enzyme, affects cell differentiation, tissue growth, and disease development. However, its role in airway mucus hypersecretion induced by COPD remains elusive. In this study, USP7 expression was significantly upregulated in airway epithelial samples from patients with COPD, and USP7 was also overexpressed in mouse lung and human airway epithelial cells in models of airway mucus hypersecretion. Inhibition of USP7 reduced the expression of nuclear factor kappa B (NF-κB), phosphorylated-NF-κB (p-NF-κB), and phosphonated inhibitor of nuclear factor kappa B (p-IκBα), and alleviated the airway mucus hypersecretion in vivo and in vitro. Further research revealed that USP7 stimulated airway mucus hypersecretion through the activation of NF-κB nuclear translocation. In addition, the expression of mucin 5AC (MUC5AC) was suppressed by the NF-κB inhibitor erdosteine. These findings suggest that USP7 stimulates the NF-κB signaling pathway, which promotes airway mucus hypersecretion. This study identifies one of the mechanisms regulating airway mucus secretion and provides a new potential target for its prevention and treatment.
Collapse
Affiliation(s)
- Yi-Jing He
- Department of Anesthesiology, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan Province, China
- Laboratory of Neurological Diseases and Brain Function, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan Province, China
| | - Yi-Rong Chen
- Department of Anesthesiology, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan Province, China
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan Province, China
| | - Jia-Rui Song
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan Province, China
| | - Jin-Xiu Jiang
- Department of Anesthesiology, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan Province, China
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan Province, China
| | - Ting-Ting Liu
- Department of Anesthesiology, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan Province, China
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan Province, China
| | - Jia-Yao Li
- Department of Anesthesiology, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan Province, China
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan Province, China
| | - Liu Li
- Department of Anesthesiology, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan Province, China
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan Province, China
| | - Jing Jia
- Department of Anesthesiology, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan Province, China
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan Province, China
| |
Collapse
|
24
|
Lv L, Li Q, Wang K, Zhao J, Deng K, Zhang R, Chen Z, Khan IA, Gui C, Feng S, Yang S, Liu Y, Xu Q. Discovery of a New Anti-Inflammatory Agent from Anemoside B4 Derivatives and Its Therapeutic Effect on Colitis by Targeting Pyruvate Carboxylase. J Med Chem 2024; 67:7385-7405. [PMID: 38687956 DOI: 10.1021/acs.jmedchem.4c00222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
Anemoside B4 (AB4), a triterpenoidal saponin from Pulsatilla chinensis, shows significant anti-inflammatory activity, and may be used for treating inflammatory bowel disease (IBD). Nevertheless, its application is limited due to its high molecular weight and pronounced water solubility. To discover new effective agents for treating IBD, we synthesized 28 AB4 derivatives and evaluated their cytotoxic and anti-inflammatory activities in vitro. Among them, A3-6 exhibited significantly superior anti-inflammatory activity compared to AB4. It showed a significant improvement in the symptoms of DSS-induced colitis in mice, with a notably lower oral effective dose compared to AB4. Furthermore, we discovered that A3-6 bound with pyruvate carboxylase (PC), then inhibited PC activity, reprogramming macrophage function, and alleviated colitis. These findings indicate that A3-6 is a promising therapeutic candidate for colitis, and PC may be a potential new target for treating colitis.
Collapse
Affiliation(s)
- Lijuan Lv
- College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| | - Qiurong Li
- College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| | - Kexin Wang
- College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| | - Jianping Zhao
- National Center for Natural Products Research, School of Pharmacy, University of Mississippi, University, Mississippi 38677, United States
| | - Kejun Deng
- School of Life Science and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, Sichuan 610054, China
| | - Ran Zhang
- College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| | - Zhong Chen
- College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| | - Ikhlas A Khan
- National Center for Natural Products Research, School of Pharmacy, University of Mississippi, University, Mississippi 38677, United States
| | - Chunshan Gui
- College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| | - Suxiang Feng
- Academy of Chinese Medicine Sciences, Henan University of Chinese Medicine, Zhengzhou, Henan 450018, China
| | - Shilin Yang
- College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| | - Yanli Liu
- College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| | - Qiongming Xu
- College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| |
Collapse
|
25
|
Pang C, Zhang H, Liu Y, Tang N, Tian K, Mu Y, Li X, Xiao L. Glutathione peroxidase 4 restrains temporomandibular joint osteoarthritis progression by inhibiting ferroptosis. J Cell Mol Med 2024; 28:e18377. [PMID: 38686488 PMCID: PMC11058612 DOI: 10.1111/jcmm.18377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 04/11/2024] [Accepted: 04/19/2024] [Indexed: 05/02/2024] Open
Abstract
There are few effective therapeutic strategies for temporomandibular joint osteoarthritis (TMJOA) due to the unclear pathology and mechanisms. We aimed to confirm the roles of GPX4 and ferroptosis in TMJOA progression. ELISA assay was hired to evaluate concentrations of ferroptosis-related markers. The qRT-PCR assay was hired to assess gene mRNA level. Western blot assay and immunohistochemistry were hired to verify the protein level. CCK-8 assay was hired to detect cell viability. Human fibroblast-like synoviocytes (FLSs) were cultured to confirm the effects of GPX4 and indicated inhibitors, and further verified the effects of GPX4 and ferroptosis inhibitors in TMJOA model rats. Markers of ferroptosis including 8-hidroxy-2-deoxyguanosine (8-OHdG) and iron were notably increased in TMJOA tissues and primary OA-FLSs. However, the activity of the antioxidant system including the glutathione peroxidase activity, glutathione (GSH) contents, and glutathione/oxidized glutathione (GSH/GSSG) ratio was notably inhibited in TMJOA tissues, and the primary OA-FLSs. Furthermore, the glutathione peroxidase 4 (GPX4) expression was down-regulated in TMJOA tissues and primary OA-FLSs. Animal and cell experiments have shown that ferroptosis inhibitors notably inhibited ferroptosis and promoted HLS survival as well as up-regulated GPX4 expression. Also, GPX4 knockdown promoted ferroptosis and GPX4 overexpression inhibited ferroptosis. GPX4 also positively regulated cell survival which was the opposite with ferroptosis. In conclusion, GPX4 and ferroptosis regulated the progression of TMJOA. Targeting ferroptosis might be an effective therapeutic strategy for TMJOA patients in the clinic.
Collapse
Affiliation(s)
- Chunyan Pang
- Department of Stomatology, Sichuan Provincial People's HospitalUniversity of Electronic Science and Technology of ChinaChengduSichuanChina
| | - Hongmei Zhang
- Department of Stomatology, Sichuan Provincial People's HospitalUniversity of Electronic Science and Technology of ChinaChengduSichuanChina
| | - Yi Liu
- Department of Stomatology, Sichuan Provincial People's HospitalUniversity of Electronic Science and Technology of ChinaChengduSichuanChina
| | - Na Tang
- Department of Stomatology, Sichuan Provincial People's HospitalUniversity of Electronic Science and Technology of ChinaChengduSichuanChina
| | - Kun Tian
- Department of Stomatology, Sichuan Provincial People's HospitalUniversity of Electronic Science and Technology of ChinaChengduSichuanChina
- Department of Laboratory Medicine, Sichuan Provincial Key Laboratory for Human Disease Gene Study, Center for Medical GeneticsSichuan Academy of Medical Sciences & Sichuan Provincial People's HospitalChengduSichuanChina
| | - Yandong Mu
- Department of Stomatology, Sichuan Provincial People's HospitalUniversity of Electronic Science and Technology of ChinaChengduSichuanChina
- Department of Laboratory Medicine, Sichuan Provincial Key Laboratory for Human Disease Gene Study, Center for Medical GeneticsSichuan Academy of Medical Sciences & Sichuan Provincial People's HospitalChengduSichuanChina
| | - Xue Li
- Department of Stomatology, Sichuan Provincial People's HospitalUniversity of Electronic Science and Technology of ChinaChengduSichuanChina
| | - Li Xiao
- Department of Stomatology, Sichuan Provincial People's HospitalUniversity of Electronic Science and Technology of ChinaChengduSichuanChina
- Department of Laboratory Medicine, Sichuan Provincial Key Laboratory for Human Disease Gene Study, Center for Medical GeneticsSichuan Academy of Medical Sciences & Sichuan Provincial People's HospitalChengduSichuanChina
| |
Collapse
|
26
|
Wang M, Wang P, Li B, Zhao G, Zhang N, Cao R. Protein inhibitor of activated STAT1 (PIAS1) alleviates cerebral infarction and inflammation after cerebral ischemia in rats. Heliyon 2024; 10:e24743. [PMID: 38617924 PMCID: PMC11015098 DOI: 10.1016/j.heliyon.2024.e24743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 12/01/2023] [Accepted: 01/12/2024] [Indexed: 04/16/2024] Open
Abstract
Background Ischemic stroke is a severe disorder with high incidence, disability rate and mortality. Multiple pathogenesis mechanisms are involved in ischemic stroke, such as inflammation and neuronal cell apoptosis. Protein inhibitor of activated signal transducer and activators of transcription 1 (PIAS1) plays a crucial role in various biological processes, including inflammation. PIAS1 is also downregulated in ischemia-reperfusion injury and involved in the disease processes. However, the role of PIAS1 in cerebral ischemia is unclear. Methods Sprague-Dawley (SD) rats were induced with middle cerebral artery occlusion (MCAO). The role and mechanisms of PIAS1 in ischemic cerebral infarction were explored by Longa test, 2,3,5-triphenyltetrazolium chloride (TTC) staining, Morris water maze (MWM) test, hematoxylin-eosin (HE) staining, quantification of brain water content, reverse transcription-quantitative polymerase chain reaction (RT-qPCR), enzyme-linked immunosorbent assay (ELISA), terminal deoxynucleotidyl transferase deoxyuridine triphosphate (dUTP) nick end labeling (TUNEL), Western blot and immunofluorescence assays. Results The expression of PIAS1 in MCAO-induced rat was declined compared to sham rats. Overexpression of PIAS1 reduced the Longa neurological scores, the percent of infarction area, the pathological abnormality, the escape latency of swimming and the percent of brain water content, and increased the number of platform crossings and time in the target quadrant in the MCAO-induced rats. Besides, overexpression of PIAS1 decreased the MCAO-induced the contents of IL-1β, IL-6 and TNF-α, but further elevated the concentrations of IL-10 in both sera and brain tissues. Moreover, overexpression of PIAS1 reversed the MCAO-induced apoptosis rate and the relative protein level of Bax, cleaved caspase3 and Bcl-2. Overexpression of PIAS1 also reversed the level of proteins involved in NF-κB pathway. Conclusion PIAS1 reduced inflammation and apoptosis, thereby alleviating ischemic cerebral infarction in MCAO-induced rats through regulation NF-κB pathway.
Collapse
Affiliation(s)
- Mingyang Wang
- Department of Rehabilitation Medicine, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, Shanxi, 030032, China
| | - Pingzhi Wang
- Department of Rehabilitation Medicine, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, Shanxi, 030032, China
| | - Bo Li
- Department of Rehabilitation Medicine, Shanxi Rongjun Hospital, Taiyuan, Shanxi, 030031, China
| | - Guohu Zhao
- Department of Stomatology, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, Shanxi, 030032, China
| | - Nan Zhang
- Department of Stomatology, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, Shanxi, 030032, China
| | - Ruifeng Cao
- Department of Stomatology, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, Shanxi, 030032, China
| |
Collapse
|
27
|
Wei X, Dai J, Liu R, Wan G, Gu S, Du Y, Yang X, Wang L, Huang Y, Chen P, Chen X, Yang X, Wang Q. S/O/W Emulsion with CAPE Ameliorates DSS-Induced Colitis by Regulating NF-κB Pathway, Gut Microbiota and Fecal Metabolome in C57BL/6 Mice. Nutrients 2024; 16:1145. [PMID: 38674835 PMCID: PMC11054280 DOI: 10.3390/nu16081145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/09/2024] [Accepted: 04/10/2024] [Indexed: 04/28/2024] Open
Abstract
Inflammatory bowel disease (IBD) has attracted much attention worldwide due to its prevalence. In this study, the effect of a solid-in-oil-in-water (S/O/W) emulsion with Caffeic acid phenethyl ester (CAPE, a polyphenolic active ingredient in propolis) on dextran sulfate sodium (DSS)-induced colitis in C57BL/6 mice was evaluated. The results showed that CAPE-emulsion could significantly alleviate DSS-induced colitis through its effects on colon length, reduction in the disease activity index (DAI), and colon histopathology. The results of ELISA and Western blot analysis showed that CAPE-emulsion can down-regulate the excessive inflammatory cytokines in colon tissue and inhibit the expression of p65 in the NF-κB pathway. Furthermore, CAPE-emulsion promoted short-chain fatty acids production in DSS-induced colitis mice. High-throughput sequencing results revealed that CAPE-emulsion regulates the imbalance of gut microbiota by enhancing diversity, restoring the abundance of beneficial bacteria (such as Odoribacter), and suppressing the abundance of harmful bacteria (such as Afipia, Sphingomonas). The results of fecal metabolome showed that CAPE-emulsion restored the DSS-induced metabolic disorder by affecting metabolic pathways related to inflammation and cholesterol metabolism. These research results provide a scientific basis for the use of CPAE-emulsions for the development of functional foods for treating IBD.
Collapse
Affiliation(s)
- Xuelin Wei
- School of Food and Bioengineering, Xihua University, Chengdu 610039, China; (X.W.); (R.L.); (G.W.); (S.G.); (Y.D.); (X.Y.); (L.W.); (Y.H.); (P.C.); (X.C.)
| | - Juan Dai
- School of Laboratory Medicine, Chengdu Medical College, Chengdu 610500, China;
| | - Ruijia Liu
- School of Food and Bioengineering, Xihua University, Chengdu 610039, China; (X.W.); (R.L.); (G.W.); (S.G.); (Y.D.); (X.Y.); (L.W.); (Y.H.); (P.C.); (X.C.)
| | - Guochao Wan
- School of Food and Bioengineering, Xihua University, Chengdu 610039, China; (X.W.); (R.L.); (G.W.); (S.G.); (Y.D.); (X.Y.); (L.W.); (Y.H.); (P.C.); (X.C.)
| | - Shiyu Gu
- School of Food and Bioengineering, Xihua University, Chengdu 610039, China; (X.W.); (R.L.); (G.W.); (S.G.); (Y.D.); (X.Y.); (L.W.); (Y.H.); (P.C.); (X.C.)
| | - Yuwei Du
- School of Food and Bioengineering, Xihua University, Chengdu 610039, China; (X.W.); (R.L.); (G.W.); (S.G.); (Y.D.); (X.Y.); (L.W.); (Y.H.); (P.C.); (X.C.)
| | - Xinyue Yang
- School of Food and Bioengineering, Xihua University, Chengdu 610039, China; (X.W.); (R.L.); (G.W.); (S.G.); (Y.D.); (X.Y.); (L.W.); (Y.H.); (P.C.); (X.C.)
| | - Lijun Wang
- School of Food and Bioengineering, Xihua University, Chengdu 610039, China; (X.W.); (R.L.); (G.W.); (S.G.); (Y.D.); (X.Y.); (L.W.); (Y.H.); (P.C.); (X.C.)
| | - Yukun Huang
- School of Food and Bioengineering, Xihua University, Chengdu 610039, China; (X.W.); (R.L.); (G.W.); (S.G.); (Y.D.); (X.Y.); (L.W.); (Y.H.); (P.C.); (X.C.)
| | - Pengfei Chen
- School of Food and Bioengineering, Xihua University, Chengdu 610039, China; (X.W.); (R.L.); (G.W.); (S.G.); (Y.D.); (X.Y.); (L.W.); (Y.H.); (P.C.); (X.C.)
| | - Xianggui Chen
- School of Food and Bioengineering, Xihua University, Chengdu 610039, China; (X.W.); (R.L.); (G.W.); (S.G.); (Y.D.); (X.Y.); (L.W.); (Y.H.); (P.C.); (X.C.)
- Chongqing Key Laboratory of Specialty Food Co-Built by Sichuan and Chongqing, Chengdu 610039, China
| | - Xiao Yang
- School of Food and Bioengineering, Xihua University, Chengdu 610039, China; (X.W.); (R.L.); (G.W.); (S.G.); (Y.D.); (X.Y.); (L.W.); (Y.H.); (P.C.); (X.C.)
- Chongqing Key Laboratory of Specialty Food Co-Built by Sichuan and Chongqing, Chengdu 610039, China
| | - Qin Wang
- Department of Nutrition and Food Science, University of Maryland, College Park, MD 20742, USA
| |
Collapse
|
28
|
Li L, Zhuang S, Jiang S. Muscone inhibits the progression of atherosclerotic plaques in mice aorta by inhibiting the NF-κB/p65 pathway. Biochem Biophys Res Commun 2024; 702:149628. [PMID: 38335704 DOI: 10.1016/j.bbrc.2024.149628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 02/01/2024] [Indexed: 02/12/2024]
Abstract
Atherosclerosis (AS) is considered to be one of the main pathogenic factors of coronary heart disease, cerebral infarction and peripheral vascular disease. Oxidative stress and inflammation run through the occurrence and development of atherosclerosis and related cardiovascular events. Muscone is a natural extract of deer musk and also the main physiological active substance of musk. This study investigated the impact of muscone on atherosclerosis. ApoE-/- mice were used to establised AS model and injected with low-dose (4 mg/kg/day) or high-dose (8 mg/kg/day) of muscone intraperitoneally for 4 weeks. Then aortic tissues were collected, and pathological sections of the aorta were prepared for oil red staining, HE and masson staining. The changes of MDA, SOD, VCAM-1, NF-κB, and TNF-α were observed by Western blotting or immunofluorescence staining. The results showed that high-dose muscone could effectively reduce the plaque area/aortic root area and relative atherosclerotic area, reduce the collagen composition in plaque tissue. In addition, we also found that high-dose muscone can effectively increase MDA level, reduce the level of SOD, and inhibit the expression of VCAM-1, NF-κB/p65, TNF-α in arterial plaques. Our results indicate that the administration of muscone has the benefit of inhibiting atherosclerosis. The potential mechanisms may be associated with antioxidant effect and inhibition of inflammatory reaction in arterial plaques. With the increasing understanding of the relationship between muscone and atherosclerosis, muscone has high potential value as a new drug to treat atherosclerosis.
Collapse
Affiliation(s)
- Li Li
- Department of Cardiology, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, 200137, China
| | - Shaowei Zhuang
- Department of Cardiology, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, 200137, China
| | - Shengyang Jiang
- Department of Cardiology, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, 200137, China.
| |
Collapse
|
29
|
Qing TL, Jiang XY, Li JF, Shen Q, Zhao XY, Ren LJ, Dai XY, Zhang JQZ, Shi WJ, Zhang XF, Zhang B, Yan L, Chen JK, Zhu JB. Celastrol reduces lung inflammation induced by multiwalled carbon nanotubes in mice via NF-κb-signaling pathway. Inhal Toxicol 2024; 36:275-281. [PMID: 38836332 DOI: 10.1080/08958378.2024.2351098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 04/29/2024] [Indexed: 06/06/2024]
Abstract
Multiwalled carbon nanotubes (MWCNTs) have numerous applications in the field of carbon nanomaterials. However, the associated toxicity concerns have increased significantly because of their widespread use. The inhalation of MWCNTs can lead to nanoparticle deposition in the lung tissue, causing inflammation and health risks. In this study, celastrol, a natural plant medicine with potent anti-inflammatory properties, effectively reduced the number of inflammatory cells, including white blood cells, neutrophils, and lymphocytes, and levels of inflammatory cytokines, such as IL-1β, IL-6, and TNF-α, in mice lungs exposed to MWCNTs. Moreover, celastrol inhibited the activation of the NF-κB-signaling pathway. This study confirmed these findings by demonstrating comparable reductions in inflammation upon exposure to MWCNTs in mice with the deletion of NF-κB (P50-/-). These results indicate the utility of celastrol as a promising pharmacological agent for preventing MWCNT-induced lung tissue inflammation.
Collapse
Affiliation(s)
- Tao-Lin Qing
- Department of Health Toxicology, Faculty of Naval Medicine, Naval Medical University, Shanghai, China
| | - Xuan-Yao Jiang
- Department of Health Toxicology, Faculty of Naval Medicine, Naval Medical University, Shanghai, China
| | - Jin-Feng Li
- Department of Health Toxicology, Faculty of Naval Medicine, Naval Medical University, Shanghai, China
| | - Qi Shen
- Department of Health Toxicology, Faculty of Naval Medicine, Naval Medical University, Shanghai, China
| | - Xin-Yi Zhao
- Department of Health Toxicology, Faculty of Naval Medicine, Naval Medical University, Shanghai, China
| | - Li-Jun Ren
- Department of Health Toxicology, Faculty of Naval Medicine, Naval Medical University, Shanghai, China
| | - Xiao-Yu Dai
- Department of Health Toxicology, Faculty of Naval Medicine, Naval Medical University, Shanghai, China
| | - Ji-Qian-Zhu Zhang
- Department of Health Toxicology, Faculty of Naval Medicine, Naval Medical University, Shanghai, China
| | - Wen-Jing Shi
- Department of Health Toxicology, Faculty of Naval Medicine, Naval Medical University, Shanghai, China
| | - Xiao-Fang Zhang
- Department of Health Toxicology, Faculty of Naval Medicine, Naval Medical University, Shanghai, China
| | - Bin Zhang
- Department of Health Toxicology, Faculty of Naval Medicine, Naval Medical University, Shanghai, China
| | - Lang Yan
- Department of Health Toxicology, Faculty of Naval Medicine, Naval Medical University, Shanghai, China
| | - Ji-Kuai Chen
- Department of Health Toxicology, Faculty of Naval Medicine, Naval Medical University, Shanghai, China
| | - Jiang-Bo Zhu
- Department of Health Toxicology, Faculty of Naval Medicine, Naval Medical University, Shanghai, China
| |
Collapse
|
30
|
Jin H, Huan Z, Wu Y, Yao H, Zhang L, Ge X. Lilrb4 ameliorates ileal injury in rats with hemorrhagic shock and suppresses the activation of NF-κB signaling pathway. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167082. [PMID: 38367899 DOI: 10.1016/j.bbadis.2024.167082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 02/04/2024] [Accepted: 02/12/2024] [Indexed: 02/19/2024]
Abstract
Hemorrhagic shock (HS) leads to intestinal damage and subsequent multiple organ dysfunction syndrome. Intestinal barrier dysfunction is the main cause of multiple organ failure associated with HS. Leukocyte immunoglobulin-like receptor B4 (Lilrb4) belongs to the Ig superfamily and is a vital natural immunomodulatory receptor. The purpose of this study was to identify the role and molecular mechanism of Lilrb4 in HS-induced ileal injury. In this work, HS was established by femoral artery cannula and 90 min of HS (blood pressure, 35-40 mmHg), followed by resuscitation. RNA sequencing analysis showed that Lilrb4 was highly expressed in the ileum of HS rats. As observed, HS rats exhibited severe ileal injury, characterized by enlarged subepithelial space, edema, exfoliation and extensive loss of villi. Whereas, lentivirus system-mediated Lilrb4 overexpression considerably mitigated these alterations. HS led to increased release of markers associated with intestinal injury, which was effectively reversed by Lilrb4 overexpression. In addition, after resuscitation, Lilrb4 overexpression inhibited HS-triggered inflammatory response, as evidenced by decreased levels of proinflammatory cytokines. Lilrb4 also inhibited the activation of NF-κB signal induced by HS. Notably, Lilrb4 modulated the balance of regulatory T (Treg)-T helper 17 (Th17) cells in the mesenteric lymph node (MLN), which may also contribute to its protective role in HS progression. In aggregate, these findings confirmed that Lilrb4 overexpression protected against ileal injury caused by HS, indicating that Lilrb4 may be a potential candidate for the treatment of HS.
Collapse
Affiliation(s)
- Hongdou Jin
- Department of General Surgery, Wuxi 9th People's Hospital Affiliated to Soochow University, Wuxi, Jiangsu 214000, People's Republic of China
| | - Zhirong Huan
- Department of Critical Care Medicine, Wuxi 9th People's Hospital Affiliated to Soochow University, Wuxi, Jiangsu 214000, People's Republic of China
| | - Yifeng Wu
- Department of General Surgery, Wuxi 9th People's Hospital Affiliated to Soochow University, Wuxi, Jiangsu 214000, People's Republic of China
| | - Hao Yao
- Department of Critical Care Medicine, Wuxi 9th People's Hospital Affiliated to Soochow University, Wuxi, Jiangsu 214000, People's Republic of China
| | - Leyao Zhang
- Department of Gastroenterology, Wuxi 9th People's Hospital Affiliated to Soochow University, Wuxi, Jiangsu 214000, People's Republic of China.
| | - Xin Ge
- Department of Critical Care Medicine, Wuxi 9th People's Hospital Affiliated to Soochow University, Wuxi, Jiangsu 214000, People's Republic of China; Orthopedic Institution of Wuxi City, Wuxi, Jiangsu 214000, People's Republic of China.
| |
Collapse
|
31
|
Yin J, Diao N, Tian T, Wang Q, Ma S, He N, Zhou H, Zhou Z, Jia W, Wang X, Shi K, Du R. ARHGEF18 can promote BVDV NS5B activation of the host NF-κB signaling pathway by combining with the NS5B-palm domain. Vet Microbiol 2024; 291:109911. [PMID: 38367539 DOI: 10.1016/j.vetmic.2023.109911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 10/31/2023] [Accepted: 11/04/2023] [Indexed: 02/19/2024]
Abstract
Rho guanine nucleotide exchange factor 18 (ARHGEF18) is a member of the Rho guanine nucleotide exchange factor (RhoGEF) family. RhoGEF plays an important role in the occurrence of tumors and neurological diseases; however, its involvement in host cell resistance against pathogenic microorganisms is mostly unknown. Herein, we report that bovine viral diarrhea virus (BVDV) nonstructural protein 5B (NS5B) can activate the nuclear factor kappa B (NF-κB) signaling pathway to induce an immune response. To clarify the functional domains of NS5B that activate NF-κB signaling, the six structural domains of NS5B were expressed separately: NS5B-core, NS5B-finger, NS5B-palm, NS5B-thumb, NS5B-N and NS5B-c domain. We preliminarily determined that the functional domains of NS5B that activate NF-κB signaling are the finger and palm domains. We used a bovine kidney cell cDNA library and yeast two-hybrid technology to identify that the host protein ARHGEF18 interacts with NS5B. Co-immunoprecipitation assays showed that ARHGEF18 interacts strongly with NS5B-palm. Interestingly ARHGEF18 could promote NF-κB signaling activation by BVDV NS5B. In addition silencing ARHGEF18 significantly inhibited NS5B-palm activation of NF-κB signaling. We concluded that ARHGEF18 can bind to BVDV NS5B through the palm domain to activate the NF-κB pathway. These findings provide direct evidence that BVDV NS5B induces immune responses by activating NF-κB signaling.
Collapse
Affiliation(s)
- Jiying Yin
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Naichao Diao
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Tian Tian
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Qi Wang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Shuqi Ma
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Ning He
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Hongming Zhou
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Zehui Zhou
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Wenyi Jia
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Xiaonan Wang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Kun Shi
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China.
| | - Rui Du
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China; Laboratory of Production and Product Application of Sika Deer of Jilin Province, Jilin Agricultural University, Changchun 130118, China; Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Changchun 130118, China.
| |
Collapse
|
32
|
Liu K, Yin Y, Shi C, Yan C, Zhang Y, Qiu L, He S, Li G. Asiaticoside ameliorates DSS-induced colitis in mice by inhibiting inflammatory response, protecting intestinal barrier and regulating intestinal microecology. Phytother Res 2024; 38:2023-2040. [PMID: 38384110 DOI: 10.1002/ptr.8129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 12/28/2023] [Accepted: 01/03/2024] [Indexed: 02/23/2024]
Abstract
Ulcerative colitis (UC) is one of the most prevalent inflammatory bowel diseases and poses a serious threat to human health. Currently, safe and effective preventive measures are unavailable. In this study, the protective effects of asiaticoside (AS) on dextran sodium sulfate (DSS)-induced colitis in mice and the underlying molecular mechanism were investigated. In this experiment, colitis was induced in mice with DSS. Subsequently, the role of AS in colitis and its underlying mechanisms were examined using H&E staining, immunofluorescence staining, western blot, Elisa, FMT, and other assays. The results showed that AS significantly attenuated the related symptoms of DSS-induced colitis in mice. In addition, AS inhibited the activation of signaling pathways TLR4/NF-κB and MAPK reduced the release of inflammatory factors, thereby attenuating the inflammatory response in mice. AS administration also restored the permeability of the intestinal barrier by increasing the levels of tight junction-associated proteins (claudin-3, occludin, and ZO-1). In addition, AS rebalanced the intestinal flora of DSS-treated mice by increasing the diversity of the flora. AS can alleviate DSS-induced ulcerative colitis in mice by maintaining the intestinal barrier, thus inhibiting the signaling pathways TLR4/NF-κB and MAPK activation, reducing the release of inflammatory factors, and regulating intestinal microecology.
Collapse
Affiliation(s)
- Kunjian Liu
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Yu Yin
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Chong Shi
- Anorectal Department, First Affiliated Hospital of Changchun University of Traditional Chinese Medicine, Changchun, China
| | - Chengqiu Yan
- Anorectal Department, First Affiliated Hospital of Changchun University of Traditional Chinese Medicine, Changchun, China
| | - Yiwen Zhang
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Li Qiu
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Shuangyan He
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Guofeng Li
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
- Anorectal Department, Shenzhen Bao'an Authentic TCM Therapy Hospital, Shenzhen, China
| |
Collapse
|
33
|
Liu Y, Jiang P, Qu Y, Liu C, Zhang D, Xu B, Zhang Q. Exosomes and exosomal miRNAs: A new avenue for the future treatment of rheumatoid arthritis. Heliyon 2024; 10:e28127. [PMID: 38533025 PMCID: PMC10963384 DOI: 10.1016/j.heliyon.2024.e28127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 03/12/2024] [Accepted: 03/12/2024] [Indexed: 03/28/2024] Open
Abstract
Rheumatoid arthritis is a chronic systemic autoimmune disease that involves mainly synovitis and joint injury and is one of the main causes of disability. The pathogenesis of rheumatoid arthritis is complicated, and the treatment cycle is long. The traditional methods of inhibiting inflammation and immunosuppression are no longer sufficient for treatment of the disease, so there is an urgent need to seek new treatments. The exocrine microenvironment is a kind of microvesicle with a lipid bilayer membrane structure that can be secreted by most cells in the body. This structure contains cell-specific proteins, lipids and nucleic acids that can transmit this information from one cell to another. To achieve cell-to-cell communication. Exocrine microRNAs can be contained in exocrine cells and can be selectively transferred to target receptor cells via exocrine signaling, thus regulating the physiological function of target cells. This article focuses on the pathological changes that occur during the development of rheumatoid arthritis and the biological regulation of exocrine and exocrine microRNAs in rheumatoid joints. Research on the roles of exocrine and exocrine microRNAs in regulating the inflammatory response, cell proliferation/apoptosis, autophagy, effects on fibroblast-like synoviocytes and immune regulation in rheumatoid arthritis was reviewed. In addition, the challenges faced by this new treatment are discussed.
Collapse
Affiliation(s)
- Yuan Liu
- The First Clinical Medical College, Shandong University of Chinese Traditional Medicine, Jinan, China
| | - Ping Jiang
- The First Clinical Medical College, Shandong University of Chinese Traditional Medicine, Jinan, China
- Rheumatology and Immunology Department, The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yuan Qu
- The First Clinical Medical College, Shandong University of Chinese Traditional Medicine, Jinan, China
| | - Chuanguo Liu
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Di Zhang
- Rheumatology and Immunology Department, The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Bing Xu
- Rheumatology and Immunology Department, The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Qian Zhang
- Science and Technology Department, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
34
|
Yang Y, Zhang Q, Cai H, Feng Y, Wen A, Yang Y, Wen M. RNA-seq analysis of chlorogenic acid intervention in duck embryo fibroblasts infected with duck plague virus. Virol J 2024; 21:60. [PMID: 38454409 PMCID: PMC10921813 DOI: 10.1186/s12985-024-02312-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 02/05/2024] [Indexed: 03/09/2024] Open
Abstract
INTRODUCTION Chlorogenic acid, the primary active component in Chinese medicines like honeysuckle, exhibits anti-inflammatory and antiviral effects. It has been demonstrated that chlorogenic acid effectively prevents and treats Duck enteritis virus (DEV) infection. This study aims to further elucidate the mechanism by which chlorogenic acid prevents DEV infection. METHODS Duck embryo fibroblast (DEF) cells were pre-treated with chlorogenic acid before being infected with DEV. Cell samples were collected at different time points for transcriptomic sequencing, while qPCR was used to detect the proliferation of DEV. Additionally, 30-day-old ducks were treated with chlorogenic acid, and their lymphoid organs were harvested for histopathological sections to observe pathological damage. The proliferation of DEV in the lymphoid organs was also detected using qPCR Based on the transcriptomic sequencing results, NF-κB1 gene was silenced by RNAi technology to analyze the effect of NF-κB1 gene on DEV proliferation. RESULTS Compared to the viral infection group, DEF cells in the chlorogenic acid intervention group exhibited significantly reduced DEV load (P < 0.05). Transcriptomic sequencing results suggested that chlorogenic acid inhibited DEV proliferation in DEF cells by regulating NF-κB signaling pathway. The results of RNAi silencing suggested that in the three treatment groups, compared with the DEV experimental group, there was no significant difference in the effect of pre-transfection after transfection on DEV proliferation, while both the pre-transfection after transfection and the simultaneous transfection group showed significant inhibition on DEV proliferation Furthermore, compared to the virus infection group, ducks in the chlorogenic acid intervention group showed significantly decreased DEV load in their lymphoid organs (P < 0.05), along with alleviated pathological damage such as nuclear pyretosis and nuclear fragmentation. CONCLUSIONS Chlorogenic acid effectively inhibits DEV proliferation in DEF and duck lymphatic organs, mitigates viral-induced pathological damage, and provides a theoretical basis for screening targeted drugs against DEV.
Collapse
Affiliation(s)
- Yunyun Yang
- School of Animal Science, Guizhou University, Guiyang, China
- Guizhou Provincial Animal Biological Products Engineering Technology Research Center, Guiyang, China
| | - Qiandong Zhang
- School of Animal Science, Guizhou University, Guiyang, China
- Guizhou Provincial Animal Biological Products Engineering Technology Research Center, Guiyang, China
| | - Haiqing Cai
- School of Animal Science, Guizhou University, Guiyang, China
- Guizhou Provincial Animal Biological Products Engineering Technology Research Center, Guiyang, China
| | - Yi Feng
- School of Animal Science, Guizhou University, Guiyang, China
- Guizhou Provincial Animal Biological Products Engineering Technology Research Center, Guiyang, China
| | - Anlin Wen
- School of Animal Science, Guizhou University, Guiyang, China
- Guizhou Provincial Animal Biological Products Engineering Technology Research Center, Guiyang, China
| | - Ying Yang
- School of Animal Science, Guizhou University, Guiyang, China
- Guizhou Provincial Animal Biological Products Engineering Technology Research Center, Guiyang, China
| | - Ming Wen
- School of Animal Science, Guizhou University, Guiyang, China.
- Guizhou Provincial Animal Biological Products Engineering Technology Research Center, Guiyang, China.
| |
Collapse
|
35
|
Dai Y, Yi X, Huang Y, Qian K, Huang L, Hu J, Liu Y. miR-345-3p Modulates M1/M2 Macrophage Polarization to Inhibit Inflammation in Bone Infection via Targeting MAP3K1 and NF-κB Pathway. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 212:844-854. [PMID: 38231123 DOI: 10.4049/jimmunol.2300561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 12/20/2023] [Indexed: 01/18/2024]
Abstract
Infection after fracture fixation (IAFF), a complex infectious disease, causes inflammatory destruction of bone tissue and poses a significant clinical challenge. miR-345-3p is a biomarker for tibial infected nonunion; however, the comprehensive mechanistic role of miR-345-3p in IAFF is elusive. In this study, we investigated the role of miR-345-3p in IAFF pathogenesis through in vivo and in vitro experiments. In vivo, in a rat model of IAFF, miR-345-3p expression was downregulated, accompanied by increased M1 macrophage infiltration and secretion of proinflammatory factors. In vitro, LPS induced differentiation of primary rat bone marrow-derived macrophages into M1 macrophages, which was attenuated by miR-345-3p mimics. miR-345-3p promoted M1 to M2 macrophage transition-it reduced the expression of cluster of differentiation (CD) 86, inducible NO synthase, IL-1β, and TNF-α but elevated those of CD163, arginase-1, IL-4, and IL-10. MAPK kinase kinase 1 (MAP3K1), a target mRNA of miR-345-3p, was overexpressed in the bone tissue of IAFF rats compared with that in those of the control rats. The M1 to M2 polarization inhibited MAP3K1 signaling pathways in vitro. Conversely, MAP3K1 overexpression promoted the transition from M2 to M1. miR-345-3p significantly inhibited NF-κB translocation from the cytosol to the nucleus in a MAP3K1-dependent manner. In conclusion, miR-345-3p promotes the polarization of M1 macrophages to the M2 phenotype by inhibiting the MAP3K1 and NF-κB pathways. These findings provide insight into the pathogenesis and immunotherapeutic strategies for IAFF and offer potential new targets for subsequent research.
Collapse
Affiliation(s)
- Yan Dai
- Department of Infectious Diseases, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xiaolan Yi
- Department of Infectious Diseases, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yahui Huang
- Department of Infectious Diseases, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Kaoliang Qian
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Lili Huang
- Department of Infectious Diseases, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jun Hu
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yuan Liu
- Department of Infectious Diseases, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
36
|
Gu Q, Xiao YB, Wang Y. Silencing suppressor of cytokine signaling 3 induces apoptosis and activates the p-STAT3/NF-κB pathway in hypoxic cultivated H9c2 cells. J Physiol Biochem 2024; 80:127-136. [PMID: 37856074 DOI: 10.1007/s13105-023-00989-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 10/05/2023] [Indexed: 10/20/2023]
Abstract
Suppressor of cytokine signaling 3 (SOCS3) plays a significant role in the process of myocardial adaptation to chronic hypoxia. SOCS3 finely regulates cell signaling cross-talk that occurs between NF-κB and STAT3 during the compensatory protective response. However, the role and mechanism of SOCS3 in hypoxic cardiomyocytes are not fully understood. In the study, we investigated the effect of SOCS3 on the p65 and STAT3 signaling pathways and further examined the potential molecular mechanism involved in regulating apoptosis. Our data showed that SOCS3 silencing could upregulate Ac-p65, p-p65, and p-STAT3 expression in nuclear extracts of H9c2 cells that received hypoxic treatment for 24, 48, and 72 h. SOCS3 silencing also remarkably increased the DNA-binding activity of the p65 motif in hypoxic cultivated H9c2 cells. We also found that SOCS3 knockdown increased cleaved-caspase-3, Bax, and PUMA expression and decreased cleaved PARP and Bcl-2 in expression in hypoxic H9c2 cells. Silencing of SOCS3 caused an increase in LDH leakage from injured cardiomyocytes and reduced cell viability under conditions of hypoxic stress. Furthermore, SOCS3 silencing enhanced the apoptosis of H9c2 cells at 72 h of hypoxia. These findings suggest that knockdown of SOCS3 leads to excessive activation of the NF-κB pathway, which, in turn, might promote apoptosis under conditions of chronic hypoxia.
Collapse
Affiliation(s)
- Qiang Gu
- Department of Cardiovascular Surgery, Xinqiao Hospital, Second Affiliated Hospital of Army Military Medical University, No.183 Xinqiao Street, Shapingba District, Chongqing, 400037, China.
- Vascular Injury and Repair Laboratory, Xinqiao Hospital, Second Affiliated Hospital of Army Medical University, Chongqing, 400037, China.
| | - Ying-Bin Xiao
- Department of Cardiovascular Surgery, Xinqiao Hospital, Second Affiliated Hospital of Army Military Medical University, No.183 Xinqiao Street, Shapingba District, Chongqing, 400037, China
- Vascular Injury and Repair Laboratory, Xinqiao Hospital, Second Affiliated Hospital of Army Medical University, Chongqing, 400037, China
| | - Yong Wang
- Department of Cardiovascular Surgery, Xinqiao Hospital, Second Affiliated Hospital of Army Military Medical University, No.183 Xinqiao Street, Shapingba District, Chongqing, 400037, China
- Vascular Injury and Repair Laboratory, Xinqiao Hospital, Second Affiliated Hospital of Army Medical University, Chongqing, 400037, China
| |
Collapse
|
37
|
Sun B, Bai L, Li Q, Sun Y, Li M, Wang J, Shi X, Zhao M. Knockdown of angiopoietin-like 4 suppresses sepsis-induced acute lung injury by blocking the NF-κB pathway activation and hindering macrophage M1 polarization and pyroptosis. Toxicol In Vitro 2024; 94:105709. [PMID: 37820748 DOI: 10.1016/j.tiv.2023.105709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/27/2023] [Accepted: 10/07/2023] [Indexed: 10/13/2023]
Abstract
OBJECTIVE Sepsis-induced acute lung injury (ALI) is a life-threatening disease. Macrophage pyroptosis has been reported to exert function in ALI. We aimed to investigate the mechanisms of ANGPTL4-mediated cell pyroptosis in sepsis-induced ALI, thus providing new insights into the pathogenesis and prevention and treatment measures of sepsis-induced ALI. METHODS In vivo animal models and in vitro cell models were established by cecal ligation and puncture (CLP) method and lipopolysaccharide-induced macrophages RAW264.7. ANGPTL4 was silenced in CLP mice or macrophages, followed by the determination of ANGPTL4 expression in bronchoalveolar lavage fluid (BALF) or macrophages. Lung histopathology was observed by H&E staining, with pathological injury scores evaluated and lung wet and dry weight ratio recorded. M1/M2 macrophage marker levels (iNOS/CD86/Arg1), inflammatory factor (TNF-α/IL-6/IL-1β/iNOS) expression in BALF, cell death and pyroptosis, NLRP3 inflammasome, cell pyroptosis-related protein (NLRP3/Cleaved-caspase-1/caspase-1/GSDMD-N) levels, NF-κB pathway activation were assessed by RT-qPCR/ELISA/flow cytometry/Western blot, respectively. RESULTS ANGPTL4 was highly expressed in mice with sepsis-induced ALI, and ANGPTL4 silencing ameliorated sepsis-induced ALI in mice. In vivo, ANGPTL4 silencing repressed M1 macrophage polarization and macrophage pyroptosis in mice with sepsis-induced ALI. In vitro, ANGPTL4 knockout impeded LPS-induced activation and pyroptosis of M1 macrophages and hindered LPS-induced activation of the NF-κB pathway in macrophages. CONCLUSION Knockdown of ANGPTL4 blocks the NF-κB pathway activation, hinders macrophage M1 polarization and pyroptosis, thereby suppressing sepsis-induced ALI.
Collapse
Affiliation(s)
- Baisheng Sun
- Medical School of Chinese PLA, Beijing, China; Department of Critical Care Medicine, The First Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Lina Bai
- Department of Emergency, The Fifth Medical Centre of PLA General Hospital, Beijing, China
| | - Qinglin Li
- Department of Critical Care Medicine, The First Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Yubo Sun
- The Third Sanatorium, Dalian Rehabilitation and Recuperation Center of Joint Logistic Support Force, Dalian, China
| | - Mei Li
- Department of Radiography, General Hospital of Central Theater Command, PLA, Wuhan 430070, China
| | - Jiazhi Wang
- The 63650 Brigade Hospital, Chinese People's Liberation Army, Xinjiang, China
| | - Xiaoli Shi
- The 63650 Brigade Hospital, Chinese People's Liberation Army, Xinjiang, China
| | - Meng Zhao
- Department of Infection Control, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
38
|
Toya M, Kushioka J, Shen H, Utsunomiya T, Hirata H, Tsubosaka M, Gao Q, Chow SKH, Zhang N, Goodman SB. Sex differences of NF-κB-targeted therapy for mitigating osteoporosis associated with chronic inflammation of bone. Bone Joint Res 2024; 13:28-39. [PMID: 38194999 PMCID: PMC10776185 DOI: 10.1302/2046-3758.131.bjr-2023-0040.r3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2024] Open
Abstract
Aims Transcription factor nuclear factor kappa B (NF-κB) plays a major role in the pathogenesis of chronic inflammatory diseases in all organ systems. Despite its importance, NF-κB targeted drug therapy to mitigate chronic inflammation has had limited success in preclinical studies. We hypothesized that sex differences affect the response to NF-κB treatment during chronic inflammation in bone. This study investigated the therapeutic effects of NF-κB decoy oligodeoxynucleotides (ODN) during chronic inflammation in male and female mice. Methods We used a murine model of chronic inflammation induced by continuous intramedullary delivery of lipopolysaccharide-contaminated polyethylene particles (cPE) using an osmotic pump. Specimens were evaluated using micro-CT and histomorphometric analyses. Sex-specific osteogenic and osteoclastic differentiation potentials were also investigated in vitro, including alkaline phosphatase, Alizarin Red, tartrate-resistant acid phosphatase staining, and gene expression using reverse transcription polymerase chain reaction (RT-PCR). Results Local delivery of NF-κB decoy ODN in vivo increased osteogenesis in males, but not females, in the presence of chronic inflammation induced by cPE. Bone resorption activity was decreased in both sexes. In vitro osteogenic and osteoclastic differentiation assays during inflammatory conditions did not reveal differences among the groups. Receptor activator of nuclear factor kappa Β ligand (Rankl) gene expression by osteoblasts was significantly decreased only in males when treated with ODN. Conclusion We demonstrated that NF-κB decoy ODN increased osteogenesis in male mice and decreased bone resorption activity in both sexes in preclinical models of chronic inflammation. NF-κB signalling could be a therapeutic target for chronic inflammatory diseases involving bone, especially in males.
Collapse
Affiliation(s)
- Masakazu Toya
- Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - Junichi Kushioka
- Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - Huaishuang Shen
- Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - Takeshi Utsunomiya
- Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, California, USA
- Department of Orthopaedic Surgery, Kyushu University, Fukuoka, Japan
| | - Hirohito Hirata
- Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - Masanori Tsubosaka
- Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - Qi Gao
- Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - Simon K-H. Chow
- Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - Ning Zhang
- Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - Stuart B. Goodman
- Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, California, USA
- Department of Bioengineering, Stanford University, Stanford, California, USA
| |
Collapse
|
39
|
Fornari Laurindo L, Aparecido Dias J, Cressoni Araújo A, Torres Pomini K, Machado Galhardi C, Rucco Penteado Detregiachi C, Santos de Argollo Haber L, Donizeti Roque D, Dib Bechara M, Vialogo Marques de Castro M, de Souza Bastos Mazuqueli Pereira E, José Tofano R, Jasmin Santos German Borgo I, Maria Barbalho S. Immunological dimensions of neuroinflammation and microglial activation: exploring innovative immunomodulatory approaches to mitigate neuroinflammatory progression. Front Immunol 2024; 14:1305933. [PMID: 38259497 PMCID: PMC10800801 DOI: 10.3389/fimmu.2023.1305933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 12/15/2023] [Indexed: 01/24/2024] Open
Abstract
The increasing life expectancy has led to a higher incidence of age-related neurodegenerative conditions. Within this framework, neuroinflammation emerges as a significant contributing factor. It involves the activation of microglia and astrocytes, leading to the release of pro-inflammatory cytokines and chemokines and the infiltration of peripheral leukocytes into the central nervous system (CNS). These instances result in neuronal damage and neurodegeneration through activated nucleotide-binding domain and leucine-rich repeat containing (NLR) family pyrin domain containing protein 3 (NLRP3) and nuclear factor kappa B (NF-kB) pathways and decreased nuclear factor erythroid 2-related factor 2 (Nrf2) activity. Due to limited effectiveness regarding the inhibition of neuroinflammatory targets using conventional drugs, there is challenging growth in the search for innovative therapies for alleviating neuroinflammation in CNS diseases or even before their onset. Our results indicate that interventions focusing on Interleukin-Driven Immunomodulation, Chemokine (CXC) Receptor Signaling and Expression, Cold Exposure, and Fibrin-Targeted strategies significantly promise to mitigate neuroinflammatory processes. These approaches demonstrate potential anti-neuroinflammatory effects, addressing conditions such as Multiple Sclerosis, Experimental autoimmune encephalomyelitis, Parkinson's Disease, and Alzheimer's Disease. While the findings are promising, immunomodulatory therapies often face limitations due to Immune-Related Adverse Events. Therefore, the conduction of randomized clinical trials in this matter is mandatory, and will pave the way for a promising future in the development of new medicines with specific therapeutic targets.
Collapse
Affiliation(s)
- Lucas Fornari Laurindo
- Department of Biochemistry and Pharmacology, School of Medicine, Faculdade de Medicina de Marília (FAMEMA), Marília, São Paulo, Brazil
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, Brazil
| | - Jefferson Aparecido Dias
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, Brazil
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, Brazil
| | - Adriano Cressoni Araújo
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, Brazil
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, Brazil
| | - Karina Torres Pomini
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, Brazil
- Department of Anatomy, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, Brazil
| | - Cristiano Machado Galhardi
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, Brazil
| | - Claudia Rucco Penteado Detregiachi
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, Brazil
| | - Luíza Santos de Argollo Haber
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, Brazil
| | - Domingos Donizeti Roque
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, Brazil
- Department of Anatomy, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, Brazil
| | - Marcelo Dib Bechara
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, Brazil
| | - Marcela Vialogo Marques de Castro
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, Brazil
| | - Eliana de Souza Bastos Mazuqueli Pereira
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, Brazil
| | - Ricardo José Tofano
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, Brazil
| | - Iris Jasmin Santos German Borgo
- Department of Biological Sciences (Anatomy), School of Dentistry of Bauru, Universidade de São Paulo (FOB-USP), Bauru, São Paulo, Brazil
| | - Sandra Maria Barbalho
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, Brazil
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, Brazil
- Department of Biochemistry and Nutrition, School of Food and Technology of Marília (FATEC), Marília, São Paulo, Brazil
| |
Collapse
|
40
|
Li H, Zhao Q, Liu D, Zhou B, Liao F, Chen L. Cathepsin B aggravates atherosclerosis in ApoE-deficient mice by modulating vascular smooth muscle cell pyroptosis through NF-κB / NLRP3 signaling pathway. PLoS One 2024; 19:e0294514. [PMID: 38165884 PMCID: PMC10760722 DOI: 10.1371/journal.pone.0294514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 11/02/2023] [Indexed: 01/04/2024] Open
Abstract
Atherosclerosis (AS) is a chronic inflammatory disease involving cell death and inflammatory responses. Pyroptosis, a newly discovered pro-inflammatory programmed cell death process, exacerbates inflammatory responses. However, the roles of cathepsin B (CTSB) in pyroptosis and AS remain unclear. To gain further insight, we fed ApoE-/- mice a high-fat diet to investigate the effects and mechanisms of CTSB overexpression and silencing on AS. We also explored the specific role of CTSB in vascular smooth muscle cells (VSMCs) in vitro. The study revealed that high-fat diet led to the formation of AS plaques, and CTSB was found to increase the AS plaque lesion area. Immunohistochemical and TUNEL/caspase-1 staining revealed the existence of pyroptosis in atherosclerotic plaques, particularly in VSMCs. In vitro studies, including Hoechst 33342/propidium iodide staining, a lactate dehydrogenase (LDH) release assay, detection of protein indicators of pyroptosis, and detection of interleukin-1β (IL-1β) in cell culture medium, demonstrated that oxidized low-density lipoprotein (ox-LDL) induced VSMC pyroptosis. Additionally, CTSB promoted VSMC pyroptosis. Ox-LDL increased the expression of CTSB, which in turn activated the NOD-like receptor protein 3 (NLRP3) inflammasome and promoted NLRP3 expression by facilitating nuclear factor kappa B (NF-κB) p65 nuclear translocation. This effect could be attenuated by the NF-κB inhibitor SN50. Our research found that CTSB not only promotes VSMC pyroptosis by activating the NLRP3 inflammasome, but also increases the expression of NLRP3.
Collapse
Affiliation(s)
- Hui Li
- Department of Cardiology, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
- Institute of Medical Sciences, Guizhou Medical University, Guiyang, Guizhou, China
- School of Clinical Medicine, Guizhou Medical University, Guiyang, Guizhou, China
| | - Quanwei Zhao
- Department of Cardiology, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
- Institute of Medical Sciences, Guizhou Medical University, Guiyang, Guizhou, China
- School of Clinical Medicine, Guizhou Medical University, Guiyang, Guizhou, China
| | - Danan Liu
- Department of Cardiology, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
- Institute of Medical Sciences, Guizhou Medical University, Guiyang, Guizhou, China
| | - Bo Zhou
- Department of Cardiology, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
- Institute of Medical Sciences, Guizhou Medical University, Guiyang, Guizhou, China
- School of Clinical Medicine, Guizhou Medical University, Guiyang, Guizhou, China
| | - Fujun Liao
- Department of Cardiology, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
- Institute of Medical Sciences, Guizhou Medical University, Guiyang, Guizhou, China
- School of Clinical Medicine, Guizhou Medical University, Guiyang, Guizhou, China
| | - Long Chen
- Department of Cardiology, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
- Institute of Medical Sciences, Guizhou Medical University, Guiyang, Guizhou, China
- School of Clinical Medicine, Guizhou Medical University, Guiyang, Guizhou, China
| |
Collapse
|
41
|
Fu DN, Kong ZY, Sun W, Bai CM, Wu Y, Bian M, Ma QQ. Synthesis and cytotoxic activity of ethyl ferulate derivatives as potent anti-inflammatory agents. Nat Prod Res 2024; 38:261-269. [PMID: 36054816 DOI: 10.1080/14786419.2022.2118739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 08/22/2022] [Accepted: 08/25/2022] [Indexed: 10/14/2022]
Abstract
While a range of pharmacological agents are currently used to alleviate inflammation, the clinical administration of many of these anti-inflammatory drugs is associated with high rates of adverse side effects that make them poorly suited to long-term use. Therefore, there is a critical need for the development of novel anti-inflammatory agents. Natural compounds and derivatives like ethyl ferulate have risen to prominence as a foundation for many drug discovery efforts owing to their structural diversity and wide-ranging biological activities. In the present study, 24 ethyl ferulate derivatives were synthesized. Their anti-inflammatory activity was evaluated in vitro using RAW264.7 cells and CCK-8, ELISA, and Western blotting assays. These analyses revealed that most of the synthesized compounds exhibited moderate to high anti-inflammatory activities. In particular, c10 and c23 exerted more pronounced activity than ethyl ferulate or dexamethasone with respect to the suppression of tumour necrosis factor-α production by RAW264.7 cells through the targeting of the NF-κB and MAPK signalling pathways, suggesting that these compounds warrant further investigation.
Collapse
Affiliation(s)
- Dan-Ni Fu
- Medicinal Chemistry and Pharmacology Institute, Inner Mongolia Minzu University, Tongliao, Inner Mongolia, P.R. China
- Inner Mongolia Key Laboratory of Mongolian Medicine Pharmacology for Cardio-Cerebral Vascular System, Tongliao, Inner Mongolia, P.R. China
| | - Zi-Yi Kong
- Medicinal Chemistry and Pharmacology Institute, Inner Mongolia Minzu University, Tongliao, Inner Mongolia, P.R. China
- Inner Mongolia Key Laboratory of Mongolian Medicine Pharmacology for Cardio-Cerebral Vascular System, Tongliao, Inner Mongolia, P.R. China
| | - Wen Sun
- Medicinal Chemistry and Pharmacology Institute, Inner Mongolia Minzu University, Tongliao, Inner Mongolia, P.R. China
- Inner Mongolia Key Laboratory of Mongolian Medicine Pharmacology for Cardio-Cerebral Vascular System, Tongliao, Inner Mongolia, P.R. China
| | - Chun-Mei Bai
- Medicinal Chemistry and Pharmacology Institute, Inner Mongolia Minzu University, Tongliao, Inner Mongolia, P.R. China
- Inner Mongolia Key Laboratory of Mongolian Medicine Pharmacology for Cardio-Cerebral Vascular System, Tongliao, Inner Mongolia, P.R. China
| | - Yun Wu
- Affiliated Hospital of Inner Mongolia Minzu University, Tongliao, Inner Mongolia, P.R. China
| | - Ming Bian
- Medicinal Chemistry and Pharmacology Institute, Inner Mongolia Minzu University, Tongliao, Inner Mongolia, P.R. China
- Inner Mongolia Key Laboratory of Mongolian Medicine Pharmacology for Cardio-Cerebral Vascular System, Tongliao, Inner Mongolia, P.R. China
| | - Qian-Qian Ma
- Medicinal Chemistry and Pharmacology Institute, Inner Mongolia Minzu University, Tongliao, Inner Mongolia, P.R. China
- Inner Mongolia Key Laboratory of Mongolian Medicine Pharmacology for Cardio-Cerebral Vascular System, Tongliao, Inner Mongolia, P.R. China
| |
Collapse
|
42
|
Lv N, Zhang Y, Wang L, Suo Y, Zeng W, Yu Q, Yu B, Jiang X. LncRNA/CircRNA-miRNA-mRNA Axis in Atherosclerotic Inflammation: Research Progress. Curr Pharm Biotechnol 2024; 25:1021-1040. [PMID: 37842894 DOI: 10.2174/0113892010267577231005102901] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 08/09/2023] [Accepted: 08/21/2023] [Indexed: 10/17/2023]
Abstract
Atherosclerosis is characterized by chronic inflammation of the arterial wall. However, the exact mechanism underlying atherosclerosis-related inflammation has not been fully elucidated. To gain insight into the mechanisms underlying the inflammatory process that leads to atherosclerosis, there is need to identify novel molecular markers. Non-coding RNAs (ncRNAs), including microRNAs (miRNAs), long non-protein-coding RNAs (lncRNAs) and circular RNAs (circRNAs) have gained prominence in recent years. LncRNAs/circRNAs act as competing endogenous RNAs (ceRNAs) that bind to miRNAs via microRNA response elements (MREs), thereby inhibiting the silencing of miRNA target mRNAs. Inflammatory mediators and inflammatory signaling pathways are closely regulated by ceRNA regulatory networks in atherosclerosis. In this review, we discuss the role of LncRNA/CircRNA-miRNA-mRNA axis in atherosclerotic inflammation and how it can be targeted for early clinical detection and treatment.
Collapse
Affiliation(s)
- Nuan Lv
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yilin Zhang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Luming Wang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yanrong Suo
- Traditional Chinese Medicine Department, Ganzhou People's Hospital, Ganzhou, China
| | - Wenyun Zeng
- Oncology Department, Ganzhou People's Hospital, Ganzhou, China
| | - Qun Yu
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Bin Yu
- School of Medical Technology, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xijuan Jiang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
43
|
Mao S, Yao J, Zhang T, Zhang X, Tan W, Li C. Bilobalide attenuates lipopolysaccharide‑induced HepG2 cell injury by inhibiting TLR4‑NF‑κB signaling via the PI3K/Akt pathway. Exp Ther Med 2024; 27:24. [PMID: 38125341 PMCID: PMC10728898 DOI: 10.3892/etm.2023.12312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 09/23/2021] [Indexed: 12/23/2023] Open
Abstract
Inflammation is involved in the pathological process underlying a number of liver diseases. Bilobalide (BB) is a natural compound from Ginkgo biloba leaves that was recently demonstrated to exert hepatoprotective effects by inhibiting oxidative stress in the liver cancer cell line HepG2. The anti-inflammatory activity of BB has been reported in recent studies. The major objective of the present study was to investigate whether BB could attenuate inflammation-associated cell damage. HepG2 cells were cultured with lipopolysaccharide (LPS) and BB, and cell damage was evaluated by measuring cell viability using MTT assay. The activity of the NF-κB signaling pathway was assessed by measuring the levels of IκBα, NF-κB p65, phosphorylated (p)-IκBα, p-p65, p65 DNA-binding activity and inflammatory cytokines IL-1β, IL-6 and TNF-α. A toll-like receptor (TLR)4 inhibitor (CLI-095) was used to detect the involvement of TLR4 in cell injury caused by LPS. In addition, the PI3K/Akt inhibitor LY294002 was applied to explore the involvement of the PI3K/Akt axis in mediating the effects of BB. The results demonstrated that LPS induced HepG2 cell injury. LPS also elevated the levels of p-IκBα, p-p65, p65 DNA-binding activity and inflammatory cytokines. However, CLI-095 significantly attenuated the LPS-induced cell damage and inhibited the activation of NF-κB signaling. BB also dose-dependently attenuated the LPS-induced cell damage, activation of NF-κB signaling and TLR4 overexpression. Furthermore, it was observed that LY294002 diminished the cytoprotective effects of BB on cell injury, TLR4 expression and NF-κB activation. These findings indicated that BB could attenuate LPS-induced inflammatory injury to HepG2 cells by regulating TLR4-NF-κB signaling.
Collapse
Affiliation(s)
- Shumei Mao
- Department of Pharmacology, Weifang Medical University, Weifang, Shandong 261053, P.R. China
| | - Jinpeng Yao
- Department of Cardiology, Yantai Kaifaqu Hospital, Yantai, Shandong 264006, P.R. China
| | - Teng Zhang
- Department of Pharmacology, Weifang Medical University, Weifang, Shandong 261053, P.R. China
| | - Xiang Zhang
- Department of Pharmacology, Weifang Medical University, Weifang, Shandong 261053, P.R. China
| | - Wei Tan
- Department of Respiratory Medicine, Weifang People's Hospital, Weifang, Shandong 261041, P.R. China
| | - Chengde Li
- Department of Clinical Pharmacy, Key Laboratory of Applied Pharmacology in Universities of Shandong, Weifang Medical University, Weifang, Shandong 261053, P.R. China
| |
Collapse
|
44
|
Chervet A, Nehme R, Decombat C, Longechamp L, Habanjar O, Rousset A, Fraisse D, Blavignac C, Filaire E, Berthon JY, Delort L, Caldefie-Chezet F. Exploring the Therapeutic Potential of Ampelopsis grossedentata Leaf Extract as an Anti-Inflammatory and Antioxidant Agent in Human Immune Cells. Int J Mol Sci 2023; 25:416. [PMID: 38203587 PMCID: PMC10779184 DOI: 10.3390/ijms25010416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 12/21/2023] [Accepted: 12/25/2023] [Indexed: 01/12/2024] Open
Abstract
Inflammation is a vital protective response to threats, but it can turn harmful if chronic and uncontrolled. Key elements involve pro-inflammatory cells and signaling pathways, including the secretion of pro-inflammatory cytokines, NF-κB, reactive oxygen species (ROS) production, and the activation of the NLRP3 inflammasome. Ampelopsis grossedentata, or vine tea, contains dihydromyricetin (DHM) and myricetin, which are known for their various health benefits, including anti-inflammatory properties. Therefore, the aim of this study is to assess the impact of an extract of A. grossedentata leaves (50 µg/mL) on inflammation factors such as inflammasome, pro-inflammatory pathways, and macrophage polarization, as well as its antioxidant properties, with a view to combating the development of low-grade inflammation. Ampelopsis grossedentata extract (APG) significantly decreased ROS production and the secretion of pro-inflammatory cytokines (IFNγ, IL-12, IL-2, and IL-17a) in human leukocytes. In addition, APG reduced LPS/IFNγ -induced M1-like macrophage polarization, resulting in a significant decrease in the expression of the pro-inflammatory cytokines TNF-α and IL-6, along with a decrease in the percentage of M1 macrophages and an increase in M0 macrophages. Simultaneously, a significant decrease in NF-κB p65 phosphorylation and in the expression of inflammasome genes (NLRP3, IL-1β and Caspase 1) was observed. The results suggest that Ampelopsis grossedentata could be a promising option for managing inflammation-related chronic diseases. Further research is needed to optimize dosage and administration methods.
Collapse
Affiliation(s)
- Arthur Chervet
- Université Clermont-Auvergne, INRAE, UNH, Unité de Nutrition Humaine, CRNH-Auvergne, 63000 Clermont-Ferrand, France; (A.C.); (R.N.); (C.D.); (L.L.); (O.H.); (D.F.); (E.F.); (F.C.-C.)
| | - Rawan Nehme
- Université Clermont-Auvergne, INRAE, UNH, Unité de Nutrition Humaine, CRNH-Auvergne, 63000 Clermont-Ferrand, France; (A.C.); (R.N.); (C.D.); (L.L.); (O.H.); (D.F.); (E.F.); (F.C.-C.)
| | - Caroline Decombat
- Université Clermont-Auvergne, INRAE, UNH, Unité de Nutrition Humaine, CRNH-Auvergne, 63000 Clermont-Ferrand, France; (A.C.); (R.N.); (C.D.); (L.L.); (O.H.); (D.F.); (E.F.); (F.C.-C.)
| | - Lucie Longechamp
- Université Clermont-Auvergne, INRAE, UNH, Unité de Nutrition Humaine, CRNH-Auvergne, 63000 Clermont-Ferrand, France; (A.C.); (R.N.); (C.D.); (L.L.); (O.H.); (D.F.); (E.F.); (F.C.-C.)
| | - Ola Habanjar
- Université Clermont-Auvergne, INRAE, UNH, Unité de Nutrition Humaine, CRNH-Auvergne, 63000 Clermont-Ferrand, France; (A.C.); (R.N.); (C.D.); (L.L.); (O.H.); (D.F.); (E.F.); (F.C.-C.)
| | - Amandine Rousset
- Greentech, Biopôle Clermont-Limagne, 63360 Saint-Beauzire, France (J.-Y.B.)
| | - Didier Fraisse
- Université Clermont-Auvergne, INRAE, UNH, Unité de Nutrition Humaine, CRNH-Auvergne, 63000 Clermont-Ferrand, France; (A.C.); (R.N.); (C.D.); (L.L.); (O.H.); (D.F.); (E.F.); (F.C.-C.)
| | - Christelle Blavignac
- Centre Imagerie Cellulaire Santé, Université Clermont Auvergne, 63000 Clermont-Ferrand, France;
| | - Edith Filaire
- Université Clermont-Auvergne, INRAE, UNH, Unité de Nutrition Humaine, CRNH-Auvergne, 63000 Clermont-Ferrand, France; (A.C.); (R.N.); (C.D.); (L.L.); (O.H.); (D.F.); (E.F.); (F.C.-C.)
| | - Jean-Yves Berthon
- Greentech, Biopôle Clermont-Limagne, 63360 Saint-Beauzire, France (J.-Y.B.)
| | - Laetitia Delort
- Université Clermont-Auvergne, INRAE, UNH, Unité de Nutrition Humaine, CRNH-Auvergne, 63000 Clermont-Ferrand, France; (A.C.); (R.N.); (C.D.); (L.L.); (O.H.); (D.F.); (E.F.); (F.C.-C.)
| | - Florence Caldefie-Chezet
- Université Clermont-Auvergne, INRAE, UNH, Unité de Nutrition Humaine, CRNH-Auvergne, 63000 Clermont-Ferrand, France; (A.C.); (R.N.); (C.D.); (L.L.); (O.H.); (D.F.); (E.F.); (F.C.-C.)
| |
Collapse
|
45
|
Gao F, He Q, Wu S, Zhang K, Xu Z, Kang J, Quan F. Catalpol ameliorates LPS-induced inflammatory response by activating AMPK/mTOR signaling pathway in rat intestinal epithelial cells. Eur J Pharmacol 2023; 960:176125. [PMID: 37890606 DOI: 10.1016/j.ejphar.2023.176125] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 10/01/2023] [Accepted: 10/16/2023] [Indexed: 10/29/2023]
Abstract
Intestinal inflammation is a common clinical intestinal disease. Catalpol, a natural iridoid compound, has been shown to have anti-inflammatory, anti-oxidant and anti-apoptotic functions, but the mechanism of its protection against intestinal inflammation is still unclear. This study investigated the protective effect and potential mechanism of catalpol on the lipopolysaccharide (LPS)-induced inflammatory response of intestinal epithelial cell-6 (IEC-6). The results showed that catalpol could inhibit LPS-induced inflammatory response by dose-dependently reducing the release of inflammatory factors, such as tumor necrosis (TNF)-α, interleukin (IL)-1β and IL-6, and inhibiting the nuclear factor kappa-B (NF-κB) signaling pathway. Catalpol ameliorated cellular oxidative stress by reducing reactive oxygen species (ROS) and malondialdehyde (MDA) levels and increasing superoxide dismutase (SOD) and glutathione peroxidase (GSH-PX) expression. Meanwhile, catalpol also inhibited cell apoptosis, decreased the expression of B-cell lymphoma 2 (Bcl-2) - associated X (Bax), caspase 3 and caspase 9, and increased the expression of Bcl-2. This study found that catalpol activates AMP-activated protein kinase (AMPK) signaling pathway and inhibit mammalian target of rapamycin (mTOR) phosphorylationthe. In a further study, after inhibiting AMPK with dorsomorphin, the anti-inflammatory effects of catalpol were significantly reduced. Therefore, catalpol ameliorates LPS-induced inflammatory response by activating AMPK/mTOR signaling pathway in IEC-6 cells.
Collapse
Affiliation(s)
- Feng Gao
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, China
| | - Qifu He
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, China
| | - Shenghui Wu
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, China
| | - Kang Zhang
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, China
| | - Zhiming Xu
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, China
| | - Jian Kang
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, China
| | - Fusheng Quan
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, China.
| |
Collapse
|
46
|
Guo X, Yao YD, Kang JL, Luo FK, Mu XJ, Zhang YY, Chen MT, Liu MN, Lao CC, Tan ZH, Huang YF, Xie Y, Xu YH, Wu P, Zhou H. Iristectorigenin C suppresses LPS-induced macrophages activation by regulating mPGES-1 expression and p38/JNK pathway. JOURNAL OF ETHNOPHARMACOLOGY 2023; 317:116706. [PMID: 37301305 DOI: 10.1016/j.jep.2023.116706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 05/24/2023] [Accepted: 05/29/2023] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Nonsteroidal anti-inflammatory drugs (NSAIDs) have been used clinically to treat inflammatory diseases clinically. However, the adverse effects of NSAIDs cannot be ignored. Therefore, it is critical for us to find alternative anti-inflammatory drugs that can reduce adverse reactions to herbal medicine, such as Iris tectorum Maxim., which has therapeutic effects and can treat inflammatory diseases and liver-related diseases. AIM OF THE STUDY This study aimed to isolate active compounds from I. tectorum and investigate their anti-inflammatory effects and action mechanisms. MATERIALS AND METHODS Fourteen compounds were isolated from I. tectorum using silica gel column chromatography, Sephadex LH-20, ODS and high performance liquid chromatography, and their structures were identified by examining physicochemical properties, ultraviolet spectroscopy, infrared spectroscopy, mass spectrometry, and nuclear magnetic resonance spectroscopy. Classical inflammatory cell models were established using lipopolysaccharide (LPS)-stimulated RAW264.7 cells and rat primary peritoneal macrophages to examine the effect of these compounds. To examine the action mechanisms, the nitric oxide (NO) levels were measured by Griess reagent and the levels of inflammatory cytokines in the supernatant were measured by ELISA; The expressions of major proteins in prostaglandin E2 (PGE2) synthesis and the nuclear factor-κB (NF-κB) and mitogen-activated protein kinase (MAPK) signaling pathways were examined by Western blotting, and the mRNA expression levels were measured by quantitative real-time polymerase chain reaction; and the nuclear translocation of p65 was examined by high content imaging. Molecular docking was used to predict the binding of active compound to target protein. RESULTS Our findings revealed that Iristectorigenin C (IT24) significantly inhibited the levels of NO and PGE2 without affecting cyclooxygenase (COX)-1/COX-2 expression in LPS-induced RAW264.7 cells and rat peritoneal macrophages. Furthermore, IT24 was shown to decrease the expression of microsomal prostaglandin synthetase-1 (mPGES-1) in LPS-induced rat peritoneal macrophages. IT24 did not suppress the phosphorylation and nuclear translocation of proteins in the NF-κB pathway, but it inhibited the phosphorylation of p38/JNK in LPS-stimulated RAW264.7 cells. Additionally, molecular docking analysis indicated that IT24 may directly bind to the mPGES-1 protein. CONCLUSION IT24 might inhibit mPGES-1 and the p38/JNK pathway to exert its anti-inflammatory effects and could be also developed as an inhibitor of mPGES-1 to prevent and treat mPGES-1-related diseases, such as inflammatory diseases, and holds promise for further research and drug development.
Collapse
Affiliation(s)
- Xin Guo
- Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, State Key Laboratory of Dampness Syndrome of Chinese Medicine, Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou, Guangdong Province, PR China; Faculty of Chinese Medicine and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wailong, Taipa, Macao
| | - Yun-Da Yao
- Faculty of Chinese Medicine and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wailong, Taipa, Macao
| | - Jun-Li Kang
- Faculty of Chinese Medicine and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wailong, Taipa, Macao
| | - Fu-Kang Luo
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, PR China
| | - Xi-Jun Mu
- Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, State Key Laboratory of Dampness Syndrome of Chinese Medicine, Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou, Guangdong Province, PR China
| | - Yan-Yu Zhang
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, Henan, 450046, China
| | - Ming-Tai Chen
- Faculty of Chinese Medicine and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wailong, Taipa, Macao; Department of Cardiovascular Disease, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, Guangdong, 518033, PR China
| | - Meng-Nan Liu
- Faculty of Chinese Medicine and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wailong, Taipa, Macao; National Traditional Chinese Medicine Clinical Research Base and Department of Cardiovascular, Hospital (T.C.M) Affiliated to Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Chi-Chou Lao
- Faculty of Chinese Medicine and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wailong, Taipa, Macao
| | - Zi-Hao Tan
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, PR China
| | - Yu-Feng Huang
- Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, State Key Laboratory of Dampness Syndrome of Chinese Medicine, Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou, Guangdong Province, PR China
| | - Ying Xie
- Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, State Key Laboratory of Dampness Syndrome of Chinese Medicine, Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou, Guangdong Province, PR China.
| | - You-Hua Xu
- Faculty of Chinese Medicine and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wailong, Taipa, Macao.
| | - Peng Wu
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, PR China.
| | - Hua Zhou
- Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, State Key Laboratory of Dampness Syndrome of Chinese Medicine, Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou, Guangdong Province, PR China.
| |
Collapse
|
47
|
Wu Z, Zhang T, Ma X, Guo S, Zhou Q, Zahoor A, Deng G. Recent advances in anti-inflammatory active components and action mechanisms of natural medicines. Inflammopharmacology 2023; 31:2901-2937. [PMID: 37947913 DOI: 10.1007/s10787-023-01369-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 09/16/2023] [Indexed: 11/12/2023]
Abstract
Inflammation is a series of reactions caused by the body's resistance to external biological stimuli. Inflammation affects the occurrence and development of many diseases. Anti-inflammatory drugs have been used widely to treat inflammatory diseases, but long-term use can cause toxic side-effects and affect human functions. As immunomodulators with long-term conditioning effects and no drug residues, natural products are being investigated increasingly for the treatment of inflammatory diseases. In this review, we focus on the inflammatory process and cellular mechanisms in the development of diseases such as inflammatory bowel disease, atherosclerosis, and coronavirus disease-2019. Also, we focus on three signaling pathways (Nuclear factor-kappa B, p38 mitogen-activated protein kinase, Janus kinase/signal transducer and activator of transcription-3) to explain the anti-inflammatory effect of natural products. In addition, we also classified common natural products based on secondary metabolites and explained the association between current bidirectional prediction progress of natural product targets and inflammatory diseases.
Collapse
Affiliation(s)
- Zhimin Wu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Tao Zhang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Xiaofei Ma
- College of Veterinary Medicine, Gansu Agriculture University, Lanzhou, China
| | - Shuai Guo
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Qingqing Zhou
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Arshad Zahoor
- College of Veterinary Sciences, The University of Agriculture Peshawar, Peshawar, Pakistan
| | - Ganzhen Deng
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.
| |
Collapse
|
48
|
Cuaycal AE, Teixeira LD, Lorca GL, Gonzalez CF. Lactobacillus johnsonii N6.2 phospholipids induce immature-like dendritic cells with a migratory-regulatory-like transcriptional signature. Gut Microbes 2023; 15:2252447. [PMID: 37675983 PMCID: PMC10486300 DOI: 10.1080/19490976.2023.2252447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 07/12/2023] [Accepted: 08/23/2023] [Indexed: 09/08/2023] Open
Abstract
Shifts in the gut microbiota composition, called dysbiosis, have been directly associated with acute and chronic diseases. However, the underlying biological systems connecting gut dysbiosis to systemic inflammatory pathologies are not well understood. Phospholipids (PLs) act as precursors of both, bioactive inflammatory and resolving mediators. Their dysregulation is associated with chronic diseases including cancer. Gut microbial-derived lipids are structurally unique and capable of modulating host's immunity. Lactobacillus johnsonii N6.2 is a Gram-positive gut symbiont with probiotic characteristics. L. johnsonii N6.2 reduces the incidence of autoimmunity in animal models of Type 1 Diabetes and improves general wellness in healthy volunteers by promoting, in part, local and systemic anti-inflammatory responses. By utilizing bioassay-guided fractionation methods with bone marrow-derived dendritic cells (BMDCs), we report here that L. johnsonii N6.2 purified lipids induce a transcriptional signature that resembles that of migratory (mig) DCs. RNAseq-based analysis showed that BMDCs stimulated with L. johnsonii N6.2 total lipids upregulate maturation-mig related genes Cd86, Cd40, Ccr7, Icam1 along with immunoregulatory genes including Itgb8, Nfkbiz, Jag1, Adora2a, IL2ra, Arg1, and Cd274. Quantitative reverse transcription (qRT)-PCR analysis indicated that PLs are the bioactive lipids triggering the BMDCs response. Antibody-blocking of surface Toll-like receptor (TLR)2 resulted in boosted PL-mediated upregulation of pro-inflammatory Il6. Chemical inhibition of the IKKα kinase from the non-canonical NF-κB pathway specifically restricted upregulation of Il6 and Tnf. Phenotypically, PL-stimulated BMDCs displayed an immature like-phenotype with significantly increased surface ICAM-1. This study provides insight into the immunoregulatory capacity of Gram-positive, gut microbial-derived phospholipids on innate immune responses.
Collapse
Affiliation(s)
- Alexandra E. Cuaycal
- Department of Microbiology and Cell Science, Genetics Institute, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, USA
| | - Leandro Dias Teixeira
- Department of Microbiology and Cell Science, Genetics Institute, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, USA
| | - Graciela L. Lorca
- Department of Microbiology and Cell Science, Genetics Institute, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, USA
| | - Claudio F. Gonzalez
- Department of Microbiology and Cell Science, Genetics Institute, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, USA
| |
Collapse
|
49
|
Tang J, Yu Z, Xia J, Jiang R, Chen S, Ye D, Sheng H, Lin J. METTL14-Mediated m6A Modification of TNFAIP3 Involved in Inflammation in Patients With Active Rheumatoid Arthritis. Arthritis Rheumatol 2023; 75:2116-2129. [PMID: 37327357 DOI: 10.1002/art.42629] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 05/03/2023] [Accepted: 06/12/2023] [Indexed: 06/18/2023]
Abstract
OBJECTIVE The aim of the study was to investigate the role of N6 -methyladenosine (m6A) modification in the progression of rheumatoid arthritis (RA). METHODS Peripheral blood mononuclear cells (PBMCs) from patients with RA and healthy controls were collected. The expression of m6A modification-related proteins and m6A levels were detected using polymerase chain reaction (PCR), western blot, and m6A enzyme-linked immunosorbent assay (ELISA). The roles of methyltransferase-like 14 (METTL14) in the regulation of inflammation in RA was explored using methylated RNA immunoprecipitation (MeRIP) sequencing and RNA immunoprecipitation assays. Collagen antibody-induced arthritis (CAIA) mice were used as an in vivo model to study the role of METTL14 in the inflammation progression of RA. RESULTS We found that m6A writer METTL14 and m6A levels were decreased in PBMCs of patients with active RA and correlated negatively with the disease activity score using 28 joint counts (DAS28). Knockdown of METTL14 downregulated m6A and promoted the secretion of inflammatory cytokines interleukin 6 (IL-6) and IL-17 in PBMCs of patients with RA. Consistently, METTL14 knockdown promoted joint inflammation accompanied by upregulation of IL-6 and IL-17 in CAIA mice. MeRIP sequencing and functional studies confirmed that tumor necrosis factor α induced protein 3 (TNFAIP3), a key suppressor of the nuclear factor-κB inflammatory pathway, was involved in m6A-regulated PBMCs. Mechanistic investigations revealed that m6A affected TNFAIP3 expression by regulation of messenger RNA stability and translocation in TNFAIP3 protein coding sequence. CONCLUSIONS Our study highlights the critical roles of m6A on regulation of inflammation in RA progression. Treatment strategies targeting m6A modification may represent a new option for management of RA.
Collapse
Affiliation(s)
- Jifeng Tang
- Department of Laboratory Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China and Department of Laboratory Medicine, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Ziqing Yu
- Department of Laboratory Medicine, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China and Department of Pathology, Fujian Cancer Hospital, Fuzhou, China
| | - Jinfang Xia
- Department of Laboratory Medicine, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Renquan Jiang
- Department of Laboratory Medicine, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Shuhui Chen
- Department of Laboratory Medicine, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Detai Ye
- Department of Laboratory Medicine, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Huiming Sheng
- Department of Laboratory Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Faculty of Medical Laboratory Science, College of Health Science and Technology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jinpiao Lin
- Department of Laboratory Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China and Department of Laboratory Medicine, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| |
Collapse
|
50
|
Guo W, Yang J, Wang J, Xu X, Huang J, Liu Y, Xie S, Xu Y. Dietary Supplement with Tribulus terrestris L. Extract Exhibits Protective Effects on Ischemic Stroke Rats. Mol Nutr Food Res 2023; 67:e2300447. [PMID: 37876150 DOI: 10.1002/mnfr.202300447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/13/2023] [Indexed: 10/26/2023]
Abstract
SCOPE Among herbal dietary supplements, the extract of Tribulus terrestris L. (TT) has been used as a commercially registered product in multiple studies. The previous studies demonstrate the protective effect of gross saponins of TT (GSTTF) on ischemic stroke. However, the mechanism by which GSTTF protects against ischemic stroke is still unclear. METHODS AND RESULTS The study applies molecular biology and unbiased transcriptomics to explore the pathways and targets underlying the therapeutic impact of GSTTF in treating ischemic stroke. The mRNA of brain tissues from different groups is analyzed using a transcriptomics method. The data reveal that treatment with GSTTF significantly reduces elevated CRP, IL-6, and Ca2+ levels induced by middle cerebral artery occlusion (MCAO). A total of 61 differentially expressed genes (DEGs) are identified, GSTTF is found to effectively reverse the abnormal mRNA expression levels in rat brain tissues affected by ischemic stroke models. These positive effects of GSTTF are likely achieved through the suppression of calcium ion and the MyD88/IKK/NF-κB signaling pathway. CONCLUSIONS This study uncovers the mechanisms behind the efficacy of GSTTF in treating ischemic stroke, which not only expands its potential medicinal applications but also confirmed its potential as a dietary supplement.
Collapse
Affiliation(s)
- Wenjun Guo
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, Jilin, 130117, China
- Key Laboratory of Medicinal Materials, Jilin Academy of Chinese Medicine Sciences, Changchun, Jilin, 130021, China
| | - Jingxuan Yang
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, Jilin, 130117, China
| | - Jifeng Wang
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, Jilin, 130117, China
| | - Xiaohang Xu
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, Jilin, 130117, China
| | - Jinghan Huang
- Key Laboratory of Medicinal Materials, Jilin Academy of Chinese Medicine Sciences, Changchun, Jilin, 130021, China
| | - Yue Liu
- Key Laboratory of Medicinal Materials, Jilin Academy of Chinese Medicine Sciences, Changchun, Jilin, 130021, China
| | - Shengxu Xie
- Key Laboratory for Analysis Methods of Active Ingredients in Traditional Chinese Medicine, Jilin Academy of Chinese Medicine Sciences, Changchun, Jilin, 130021, China
| | - Yajuan Xu
- Key Laboratory of Medicinal Materials, Jilin Academy of Chinese Medicine Sciences, Changchun, Jilin, 130021, China
| |
Collapse
|