1
|
Hou YN, Zhang LJ, Du L, Fu DD, Li J, Liu L, Xu PF, Zheng YW, Pang DW, Tang HW. Analyzing the factors affecting virus invasion by quantitative single-particle analysis. Virulence 2024; 15:2367671. [PMID: 38910312 PMCID: PMC11197921 DOI: 10.1080/21505594.2024.2367671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 06/09/2024] [Indexed: 06/25/2024] Open
Abstract
Viral diseases are among the main threats to public health. Understanding the factors affecting viral invasion is important for antiviral research. Until now, it was known that most viruses have very low plaque-forming unit (PFU)-to-particle ratios. However, further investigation is required to determine the underlying factors. Here, using quantitative single-particle analysis methods, the invasion of Semliki Forest virus (SFV), Japanese encephalitis virus (JEV), and influenza A virus (IAV) containing attachment to the cell surface, entry into the cell, transport towards the cell interior, and fusion with endosomes to release nucleocapsids were quantitatively analysed in parallel. It was found that for SFV with an PFU-to-particle ratio of approximately 1:2, an entry efficiency of approximately 31% limited infection. For JEV, whose PFU-to-particle ratio was approximately 1:310, an attachment efficiency of approximately 27% and an entry efficiency of 10% were the main factors limiting its infection. Meanwhile, for IAV with PFU-to-particle ratios of 1:8100, 5% attachment efficiency, 9% entry efficiency, and 53% fusion efficiency significantly limited its infection. These results suggest that viruses with different infectivities have different limited steps in the invasion process. Moreover, there are significant differences in attachment efficiencies among viruses, emphasizing the pivotal role of attachment in viral invasion. The influence of the virus purification method on virus invasion was also investigated. This study, for the first time, reports the efficiencies of different stages of virus invasion, leading to a better understanding of virus invasion and providing a protocol to quantitatively analyse the virus invasion efficiency.
Collapse
Affiliation(s)
- Yi-Ning Hou
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, China
| | - Li-Juan Zhang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, China
| | - Lei Du
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, China
| | - Dan-Dan Fu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, China
| | - Jing Li
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, China
| | - Liu Liu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, China
| | - Peng-Fei Xu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, China
| | - Ya-Wen Zheng
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, China
| | - Dai-Wen Pang
- College of Chemistry, Nankai University, Tianjin, China
| | - Hong-Wu Tang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, China
| |
Collapse
|
2
|
Denpetkul T, Pumkaew M, Sittipunsakda O, Srathongneam T, Mongkolsuk S, Sirikanchana K. Risk-based critical concentrations of enteric pathogens for recreational water criteria and recommended minimum sample volumes for routine water monitoring. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 950:175234. [PMID: 39102962 DOI: 10.1016/j.scitotenv.2024.175234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/30/2024] [Accepted: 08/01/2024] [Indexed: 08/07/2024]
Abstract
Concerns are rising about the contamination of recreational waters from human and animal waste, along with associated risks to public health. However, existing guidelines for managing pathogens in these environments have not yet fully integrated risk-based pathogen-specific criteria, which, along with recent advancements in indicators and markers, are essential to improve the protection of public health. This study aimed to establish risk-based critical concentration benchmarks for significant enteric pathogens, i.e., norovirus, rotavirus, adenovirus, Cryptosporidium spp., Giardia lamblia, Campylobacter jejuni, Salmonella spp., and Escherichia coli O157:H7. Applying a 0.036 risk benchmark to both marine and freshwater environments, the study identified the lowest critical concentrations for children, who are the most susceptible group. Norovirus, C. jejuni, and Cryptosporidium presented lowest median critical concentrations for virus, bacteria, and protozoa, respectively: 0.74 GC, 1.73 CFU, and 0.39 viable oocysts per 100 mL in freshwater for children. These values were then used to determine minimum sample volumes corresponding to different recovery rates for culture method, digital polymerase chain reaction and quantitative PCR methods. The results indicate that for children, norovirus required the largest sample volumes of freshwater and marine water (52.08 to 178.57 L, based on the 5th percentile with a 10 % recovery rate), reflecting its low critical concentration and high potential for causing illness. In contrast, adenovirus and rotavirus required significantly smaller volumes (approximately 0.24 to 1.33 L). C. jejuni and Cryptosporidium, which required the highest sampling volumes for bacteria and protozoa, needed 1.72 to 11.09 L and 4.17 to 25.51 L, respectively. Additionally, the presented risk-based framework could provide a model for establishing pathogen thresholds, potentially guiding the creation of extensive risk-based criteria for various pathogens in recreational waters, thus aiding public health authorities in decision-making, strengthening pathogen monitoring, and improving water quality testing accuracy for enhanced health protection.
Collapse
Affiliation(s)
- Thammanitchpol Denpetkul
- Department of Social and Environmental Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
| | - Monchai Pumkaew
- Environmental Engineering and Disaster Management Program, School of Multidisciplinary, Mahidol University, Kanchanaburi Campus, Kanchanaburi 71150, Thailand
| | - Oranoot Sittipunsakda
- Department of Social and Environmental Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
| | - Thitima Srathongneam
- Research Laboratory of Biotechnology, Chulabhorn Research Institute, Bangkok 10210, Thailand
| | - Skorn Mongkolsuk
- Research Laboratory of Biotechnology, Chulabhorn Research Institute, Bangkok 10210, Thailand; Center of Excellence on Environmental Health and Toxicology (EHT), OPS, MHESI, Bangkok 10400, Thailand
| | - Kwanrawee Sirikanchana
- Research Laboratory of Biotechnology, Chulabhorn Research Institute, Bangkok 10210, Thailand; Center of Excellence on Environmental Health and Toxicology (EHT), OPS, MHESI, Bangkok 10400, Thailand.
| |
Collapse
|
3
|
Gräwe A, van der Veer H, Jongkees SAK, Flipse J, Rossey I, de Vries RP, Saelens X, Merkx M. Direct and Ultrasensitive Bioluminescent Detection of Intact Respiratory Viruses. ACS Sens 2024; 9:5550-5560. [PMID: 39375866 PMCID: PMC11519905 DOI: 10.1021/acssensors.4c01855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/15/2024] [Accepted: 09/27/2024] [Indexed: 10/09/2024]
Abstract
Respiratory viruses such as SARS-CoV-2, influenza, and respiratory syncytial virus (RSV) represent pressing health risks. Rapid diagnostic tests for these viruses detect single antigens or nucleic acids, which do not necessarily correlate with the amount of the intact virus. Instead, specific detection of intact respiratory virus particles may be more effective at assessing the contagiousness of a patient. Here, we report GLOVID, a modular biosensor platform to detect intact virions against a background of "free" viral proteins in solution. Our approach harnesses the multivalent display of distinct proteins on the surface of a viral particle to template the reconstitution of a split luciferase, allowing specific, single-step detection of intact influenza A and RSV virions corresponding to 0.1-0.3 fM of genomic units. The protein ligation system used to assemble GLOVID sensors is compatible with a broad range of binding domains, including nanobodies, scFv fragments, and cyclic peptides, which allows straightforward adjustment of the sensor platform to target different viruses.
Collapse
Affiliation(s)
- Alexander Gräwe
- Laboratory
of Protein Engineering, Department of Biomedical Engineering and Institute
for Complex Molecular Systems, Eindhoven
University of Technology, Eindhoven 5600 MB, The Netherlands
| | - Harm van der Veer
- Laboratory
of Protein Engineering, Department of Biomedical Engineering and Institute
for Complex Molecular Systems, Eindhoven
University of Technology, Eindhoven 5600 MB, The Netherlands
| | - Seino A. K. Jongkees
- Department
of Chemistry and Pharmaceutical Sciences, Amsterdam Institute of Molecular
and Life Sciences, Vrije Universiteit Amsterdam, Amsterdam 1081 HZ, The Netherlands
| | - Jacky Flipse
- Laboratory
for Medical Microbiology and Immunology, Rijnstate Hospital, Arnhem 6880 AA, The Netherlands
- Laboratory
for Medical Microbiology and Immunology, Dicoon, Elst 6662 PA, The Netherlands
| | - Iebe Rossey
- VIB
Center for Medical Biotechnology, Department of Biochemistry and Microbiology, Ghent University, 9052 Zwijnaarde, Belgium
| | - Robert P. de Vries
- Department
of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht 3584 CG, The Netherlands
| | - Xavier Saelens
- VIB
Center for Medical Biotechnology, Department of Biochemistry and Microbiology, Ghent University, 9052 Zwijnaarde, Belgium
| | - Maarten Merkx
- Laboratory
of Protein Engineering, Department of Biomedical Engineering and Institute
for Complex Molecular Systems, Eindhoven
University of Technology, Eindhoven 5600 MB, The Netherlands
| |
Collapse
|
4
|
McMinn RJ, Gallichotte EN, Courtney S, Telford SR, Ebel GD. Strain-Dependent Assessment of Powassan Virus Transmission to Ixodes scapularis Ticks. Viruses 2024; 16:830. [PMID: 38932123 PMCID: PMC11209038 DOI: 10.3390/v16060830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 05/22/2024] [Accepted: 05/22/2024] [Indexed: 06/28/2024] Open
Abstract
Powassan virus (POWV) is an emerging tick-borne encephalitic virus in Lyme disease-endemic sites in North America. Due to range expansion and local intensification of blacklegged tick vector (Ixodes scapularis) populations in the northeastern and upper midwestern U.S., human encephalitis cases are increasingly being reported. A better understanding of the transmission cycle between POWV and ticks is required in order to better predict and understand their public health burden. Recent phylogeographic analyses of POWV have identified geographical structuring, with well-defined northeastern and midwestern clades of the lineage II subtype. The extent that geographic and genetically defined sublineages differ in their ability to infect and be transmitted by blacklegged ticks is unclear. Accordingly, we determined whether there are strain-dependent differences in the transmission of POWV to ticks at multiple life stages. Five recent, low-passage POWV isolates were used to measure aspects of vector competence, using viremic and artificial infection methods. Infection rates in experimental ticks remained consistent between all five isolates tested, resulting in a 12-20% infection rate and some differences in viral load. We confirm that these differences are likely not due to differences in host viremia. Our results demonstrate that blacklegged ticks are susceptible to, and capable of transmitting, all tested strains and suggest that the tick-virus association is stable across diverse viral genotypes.
Collapse
Affiliation(s)
- Rebekah J. McMinn
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523, USA
| | - Emily N. Gallichotte
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523, USA
| | - Samantha Courtney
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523, USA
| | - Sam R. Telford
- Department of Infectious Disease and Global Health, Tufts University, North Grafton, MA 01536, USA
| | - Gregory D. Ebel
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523, USA
| |
Collapse
|
5
|
Huong TN, Lee ZQ, Lai SK, Lee HY, Tan BH, Sugrue RJ. Evidence that an interaction between the respiratory syncytial virus F and G proteins at the distal ends of virus filaments mediates efficient multiple cycle infection. Virology 2024; 591:109985. [PMID: 38227992 DOI: 10.1016/j.virol.2024.109985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 11/29/2023] [Accepted: 01/04/2024] [Indexed: 01/18/2024]
Abstract
Evidence for a stable interaction between the respiratory syncytial virus (RSV) F and G proteins on the surface of virus filaments was provided using antibody immunoprecipitation studies on purified RSV particles, and by the in situ analysis on the surface of RSV-infected cells using the proximity ligation assay. Imaging of the F and G protein distribution on virus filaments suggested that this protein complex was localised at the distal ends of the virus filaments, and suggested that this protein complex played a direct role in mediating efficient localised cell-to-cell virus transmission. G protein expression was required for efficient localised cell-to-cell transmission of RSV in cell monolayers which provided evidence that this protein complex mediates efficient multiple cycle infection. Collectively, these data provide evidence that F and G proteins form a complex on the surface of RSV particles, and that a role for this protein complex in promoting virus transmission is suggested.
Collapse
Affiliation(s)
- Tra Nguyen Huong
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551, Republic of Singapore
| | - Zhi Qi Lee
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551, Republic of Singapore
| | - Soak Kuan Lai
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551, Republic of Singapore
| | - Hsin Yee Lee
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551, Republic of Singapore
| | - Boon Huan Tan
- LKC School of Medicine, Nanyang Technological University, 11 Mandalay Road, Singapore, 308232, Republic of Singapore
| | - Richard J Sugrue
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551, Republic of Singapore.
| |
Collapse
|
6
|
Valbuena A, Strobl K, Gil-Redondo JC, Valiente L, de Pablo PJ, Mateu MG. Single-Molecule Analysis of Genome Uncoating from Individual Human Rhinovirus Particles, and Modulation by Antiviral Drugs. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2304722. [PMID: 37806749 DOI: 10.1002/smll.202304722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 09/26/2023] [Indexed: 10/10/2023]
Abstract
Infection of humans by many viruses is typically initiated by the internalization of a single virion in each of a few susceptible cells. Thus, the outcome of the infection process may depend on stochastic single-molecule events. A crucial process for viral infection, and thus a target for developing antiviral drugs, is the uncoating of the viral genome. Here a force spectroscopy procedure using an atomic force microscope is implemented to study uncoating for individual human rhinovirus particles. Application of an increasing mechanical force on a virion led to a high force-induced structural transition that facilitated extrusion of the viral RNA molecule without loss of capsid integrity. Application of force to virions that h ad previously extruded the RNA, or to RNA-free capsids, led to a lower force-induced event associated with capsid disruption. The kinetic parameters are determined for each reaction. The high-force event is a stochastic process governed by a moderate free energy barrier (≈20 kcal mol-1 ), which results in a heterogeneous population of structurally weakened virions in which different fractions of the RNA molecule are externalized. The effects of antiviral compounds or capsid mutation on the kinetics of this reaction reveal a correlation between the reaction rate and virus infectivity.
Collapse
Affiliation(s)
- Alejandro Valbuena
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | - Klara Strobl
- Departamento de Física de la Materia Condensada, Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | - Juan Carlos Gil-Redondo
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | - Luis Valiente
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | - Pedro J de Pablo
- Departamento de Física de la Materia Condensada, Universidad Autónoma de Madrid, 28049, Madrid, Spain
- Instituto de Física de la Materia Condensada (IFIMAC), Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | - Mauricio G Mateu
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Universidad Autónoma de Madrid, 28049, Madrid, Spain
| |
Collapse
|
7
|
Köppke J, Keller LE, Stuck M, Arnow ND, Bannert N, Doellinger J, Cingöz O. Direct translation of incoming retroviral genomes. Nat Commun 2024; 15:299. [PMID: 38182622 PMCID: PMC10770327 DOI: 10.1038/s41467-023-44501-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 12/15/2023] [Indexed: 01/07/2024] Open
Abstract
Viruses that carry a positive-sense, single-stranded (+ssRNA) RNA translate their genomes soon after entering the host cell to produce viral proteins, with the exception of retroviruses. A distinguishing feature of retroviruses is reverse transcription, where the +ssRNA genome serves as a template to synthesize a double-stranded DNA copy that subsequently integrates into the host genome. As retroviral RNAs are produced by the host cell transcriptional machinery and are largely indistinguishable from cellular mRNAs, we investigated the potential of incoming retroviral genomes to directly express proteins. Here we show through multiple, complementary methods that retroviral genomes are translated after entry. Our findings challenge the notion that retroviruses require reverse transcription to produce viral proteins. Synthesis of retroviral proteins in the absence of productive infection has significant implications for basic retrovirology, immune responses and gene therapy applications.
Collapse
Affiliation(s)
- Julia Köppke
- Robert Koch Institute, Department of Infectious Diseases, Unit of Sexually Transmitted Bacterial Pathogens and HIV (FG18), Berlin, Germany
| | - Luise-Elektra Keller
- Robert Koch Institute, Department of Infectious Diseases, Unit of Sexually Transmitted Bacterial Pathogens and HIV (FG18), Berlin, Germany
- Institute of Cardiovascular Regeneration, Goethe University Frankfurt, Frankfurt, Germany
| | - Michelle Stuck
- Robert Koch Institute, Department of Infectious Diseases, Unit of Sexually Transmitted Bacterial Pathogens and HIV (FG18), Berlin, Germany
- Department of Chemistry, Heidelberg University, Heidelberg, Germany
| | - Nicolas D Arnow
- Robert Koch Institute, Department of Infectious Diseases, Unit of Sexually Transmitted Bacterial Pathogens and HIV (FG18), Berlin, Germany
| | - Norbert Bannert
- Robert Koch Institute, Department of Infectious Diseases, Unit of Sexually Transmitted Bacterial Pathogens and HIV (FG18), Berlin, Germany
| | - Joerg Doellinger
- Robert Koch Institute, Centre for Biological Threats and Special Pathogens, Proteomics and Spectroscopy (ZBS6), Berlin, Germany
| | - Oya Cingöz
- Robert Koch Institute, Department of Infectious Diseases, Unit of Sexually Transmitted Bacterial Pathogens and HIV (FG18), Berlin, Germany.
| |
Collapse
|
8
|
Smith SC, Krystofiak E, Ogden KM. Mammalian orthoreovirus can exit cells in extracellular vesicles. PLoS Pathog 2024; 20:e1011637. [PMID: 38206991 PMCID: PMC10807757 DOI: 10.1371/journal.ppat.1011637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 01/24/2024] [Accepted: 01/02/2024] [Indexed: 01/13/2024] Open
Abstract
Several egress pathways have been defined for many viruses. Among these pathways, extracellular vesicles (EVs) have been shown to function as vehicles of non-lytic viral egress. EVs are heterogenous populations of membrane-bound structures released from cells as a form of intercellular communication. EV-mediated viral egress may enable immune evasion and collective viral transport. Strains of nonenveloped mammalian orthoreovirus (reovirus) differ in cell lysis phenotypes, with T3D disrupting cell membranes more efficiently than T1L. However, mechanisms of reovirus egress and the influence of transport strategy on infection are only partially understood. To elucidate reovirus egress mechanisms, we infected murine fibroblasts (L cells) and non-polarized human colon epithelial (Caco-2) cells with T1L or T3D reovirus and enriched cell culture supernatants for large EVs, medium EVs, small EVs, and free reovirus. We found that both reovirus strains exit cells in association with large and medium EVs and as free virus particles, and that EV-enriched fractions are infectious. While reovirus visually associates with large and medium EVs, only medium EVs offer protection from antibody-mediated neutralization. EV-mediated protection from neutralization is virus strain- and cell type-specific, as medium EVs enriched from L cell supernatants protect T1L and T3D, while medium EVs enriched from Caco-2 cell supernatants largely fail to protect T3D and only protect T1L efficiently. Using genetically barcoded reovirus, we provide evidence that large and medium EVs can convey multiple particles to recipient cells. Finally, T1L or T3D infection increases the release of all EV sizes from L cells. Together, these findings suggest that in addition to exiting cells as free particles, reovirus promotes egress from distinct cell types in association with large and medium EVs during lytic or non-lytic infection, a mode of exit that can mediate multiparticle infection and, in some cases, protection from antibody neutralization.
Collapse
Affiliation(s)
- Sydni Caet Smith
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Evan Krystofiak
- Department of Cell & Developmental Biology, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Kristen M. Ogden
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| |
Collapse
|
9
|
Lievens EJP, Agarkova IV, Dunigan DD, Van Etten JL, Becks L. Efficient assays to quantify the life history traits of algal viruses. Appl Environ Microbiol 2023; 89:e0165923. [PMID: 38092674 PMCID: PMC10734466 DOI: 10.1128/aem.01659-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 09/27/2023] [Indexed: 12/22/2023] Open
Abstract
IMPORTANCE Viruses play a crucial role in microbial ecosystems by liberating nutrients and regulating the growth of their hosts. These effects are governed by viral life history traits, i.e., by the traits determining viral reproduction and survival. Understanding these traits is essential to predicting viral effects, but measuring them is generally labor intensive. In this study, we present efficient methods to quantify the full life cycle of lytic viruses. We developed these methods for viruses infecting unicellular Chlorella algae but expect them to be applicable to other lytic viruses that can be quantified by flow cytometry. By making viral phenotypes accessible, our methods will support research into the diversity and ecological effects of microbial viruses.
Collapse
Affiliation(s)
- Eva J. P. Lievens
- Aquatic Ecology and Evolution Group, Limnological Institute, University of Konstanz, Konstanz, Germany
| | - Irina V. Agarkova
- Department of Plant Pathology, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
- Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - David D. Dunigan
- Department of Plant Pathology, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
- Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - James L. Van Etten
- Department of Plant Pathology, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
- Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Lutz Becks
- Aquatic Ecology and Evolution Group, Limnological Institute, University of Konstanz, Konstanz, Germany
| |
Collapse
|
10
|
Volle R, Luo L, Razafindratsimandresy R, Sadeuh-Mba SA, Gouandjika-Valisache I, Horwood P, Duong V, Buchy P, Joffret ML, Huang Z, Duizer E, Martin J, Chakrabarti LA, Dussart P, Jouvenet N, Delpeyroux F, Bessaud M. Neutralization of African enterovirus A71 genogroups by antibodies to canonical genogroups. J Gen Virol 2023; 104. [PMID: 37909282 DOI: 10.1099/jgv.0.001911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2023] Open
Abstract
Enterovirus 71 (EV-A71) is a major public health problem, causing a range of illnesses from hand-foot-and-mouth disease to severe neurological manifestations. EV-A71 strains have been phylogenetically classified into eight genogroups (A to H), based on their capsid-coding genomic region. Genogroups B and C have caused large outbreaks worldwide and represent the two canonical circulating EV-A71 subtypes. Little is known about the antigenic diversity of new genogroups as compared to the canonical ones. Here, we compared the antigenic features of EV-A71 strains that belong to the canonical B and C genogroups and to genogroups E and F, which circulate in Africa. Analysis of the peptide sequences of EV-A71 strains belonging to different genogroups revealed a high level of conservation of the capsid residues involved in known linear and conformational neutralization antigenic sites. Using a published crystal structure of the EV-A71 capsid as a model, we found that most of the residues that are seemingly specific to some genogroups were mapped outside known antigenic sites or external loops. These observations suggest a cross-neutralization activity of anti-genogroup B or C antibodies against strains of genogroups E and F. Neutralization assays were performed with diverse rabbit and mouse anti-EV-A71 sera, anti-EV-A71 human standards and a monoclonal neutralizing antibody. All the batches of antibodies that were tested successfully neutralized all available isolates, indicating an overall broad cross-neutralization between the canonical genogroups B and C and genogroups E and F. A panel constituted of more than 80 individual human serum samples from Cambodia with neutralizing antibodies against EV-A71 subgenogroup C4 showed quite similar cross-neutralization activities between isolates of genogroups C4, E and F. Our results thus indicate that the genetic drift underlying the separation of EV-A71 strains into genogroups A, B, C, E and F does not correlate with the emergence of antigenically distinct variants.
Collapse
Affiliation(s)
- Romain Volle
- Institut Pasteur, Université de Paris Cité, CNRS UMR 3569, Virus Sensing and Signaling Unit, Paris, France
- Present address: Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| | - Lingjie Luo
- Present address: Department of Immunology and Microbiology, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, PR China
- Institut Pasteur, Control of Chronic Viral Infections (CIVIC) Group, Virus and Immunity Unit, Université de Paris Cité, CNRS UMR 3569, Paris, France
| | | | - Serge Alain Sadeuh-Mba
- Present address: Maryland Department of Agriculture, Salisbury Animal Health Laboratory, Salisbury, USA
- Centre Pasteur of Cameroon, Yaounde, Cameroon
| | | | - Paul Horwood
- Present address: James Cook University, Townsville, Australia
- Institut Pasteur of Cambodia, Phnom Penh, Cambodia
| | - Veasna Duong
- Institut Pasteur of Cambodia, Phnom Penh, Cambodia
| | | | - Marie-Line Joffret
- Institut Pasteur, Université de Paris Cité, CNRS UMR 3569, Virus Sensing and Signaling Unit, Paris, France
| | - Zhong Huang
- Present address: Fudan University, Shanghai, PR China
- Institut Pasteur of Shanghai - Chinese Academy of Sciences, Shanghai, PR China
| | - Erwin Duizer
- National Institute for Public Health and the Environment (RIVM), Bilthoven, Netherlands
| | - Javier Martin
- National Institute for Biological Standards and Control (NIBSC), Potters Bar, UK
| | - Lisa A Chakrabarti
- Institut Pasteur, Control of Chronic Viral Infections (CIVIC) Group, Virus and Immunity Unit, Université de Paris Cité, CNRS UMR 3569, Paris, France
| | | | - Nolwenn Jouvenet
- Institut Pasteur, Université de Paris Cité, CNRS UMR 3569, Virus Sensing and Signaling Unit, Paris, France
| | - Francis Delpeyroux
- Institut Pasteur, Université de Paris Cité, CNRS UMR 3569, Virus Sensing and Signaling Unit, Paris, France
| | - Maël Bessaud
- Institut Pasteur, Université de Paris Cité, CNRS UMR 3569, Virus Sensing and Signaling Unit, Paris, France
| |
Collapse
|
11
|
Bou JV, Taguwa S, Matsuura Y. Trick-or-Trap: Extracellular Vesicles and Viral Transmission. Vaccines (Basel) 2023; 11:1532. [PMID: 37896936 PMCID: PMC10611016 DOI: 10.3390/vaccines11101532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/15/2023] [Accepted: 09/23/2023] [Indexed: 10/29/2023] Open
Abstract
Extracellular vesicles (EVs) are lipid membrane-enclosed particles produced by most cells, playing important roles in various biological processes. They have been shown to be involved in antiviral mechanisms such as transporting antiviral molecules, transmitting viral resistance, and participating in antigen presentation. While viral transmission was traditionally thought to occur through independent viral particles, the process of viral infection is complex, with multiple barriers and challenges that viruses must overcome for successful infection. As a result, viruses exploit the intercellular communication pathways of EVs to facilitate cluster transmission, increasing their chances of infecting target cells. Viral vesicle transmission offers two significant advantages. Firstly, it enables the collective transmission of viral genomes, increasing the chances of infection and promoting interactions between viruses in subsequent generations. Secondly, the use of vesicles as vehicles for viral transmission provides protection to viral particles against environmental factors, while also expanding the cell tropism allowing viruses to reach cells in a receptor-independent manner. Understanding the role of EVs in viral transmission is crucial for comprehending virus evolution and developing innovative antiviral strategies, therapeutic interventions, and vaccine approaches.
Collapse
Affiliation(s)
- Juan-Vicente Bou
- Laboratory of Virus Control, Center for Infectious Disease Education and Research, Osaka University, 2-8 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Shuhei Taguwa
- Laboratory of Virus Control, Center for Infectious Disease Education and Research, Osaka University, 2-8 Yamadaoka, Suita, Osaka 565-0871, Japan
- Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan
- Center for Advanced Modalities and DDS, Osaka University, 2-8 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Yoshiharu Matsuura
- Laboratory of Virus Control, Center for Infectious Disease Education and Research, Osaka University, 2-8 Yamadaoka, Suita, Osaka 565-0871, Japan
- Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan
- Center for Advanced Modalities and DDS, Osaka University, 2-8 Yamadaoka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
12
|
Smith SC, Krystofiak E, Ogden KM. Mammalian orthoreovirus can exit cells in extracellular vesicles. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.29.555250. [PMID: 37693509 PMCID: PMC10491149 DOI: 10.1101/2023.08.29.555250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Several egress pathways have been defined for many viruses. Among these pathways, extracellular vesicles (EVs) have been shown to function as vehicles of non-lytic viral egress. EVs are heterogenous populations of membrane-bound structures released from cells as a form of intercellular communication. EV-mediated viral egress may enable immune evasion and collective viral transport. Strains of nonenveloped mammalian orthoreovirus (reovirus) differ in cell lysis phenotypes, with T3D disrupting cell membranes more efficiently than T1L. However, mechanisms of reovirus egress and the influence of transport strategy on infection are only partially understood. To elucidate reovirus egress mechanisms, we infected murine fibroblasts (L cells) and non-polarized human colon epithelial (Caco-2) cells with T1L or T3D reovirus and enriched cell culture supernatants for large EVs, medium EVs, small EVs, and free reovirus. We found that both reovirus strains exit cells in association with large and medium EVs and as free virus particles, and that EV-enriched fractions are infectious. While reovirus visually associates with large and medium EVs, only medium EVs offer protection from antibody-mediated neutralization. EV-mediated protection from neutralization is virus strain- and cell type-specific, as medium EVs enriched from L cell supernatants protect T1L and T3D, while medium EVs enriched from Caco-2 cell supernatants largely fail to protect T3D and only protect T1L efficiently. Using genetically barcoded reovirus, we provide evidence that large and medium EVs can convey multiple particles to recipient cells. Finally, T1L or T3D infection increases the release of all EV sizes from L cells. Together, these findings suggest that in addition to exiting cells as free particles, reovirus promotes egress from distinct cell types in association with large and medium EVs during lytic or non-lytic infection, a mode of exit that can mediate multiparticle infection and, in some cases, protection from antibody neutralization.
Collapse
Affiliation(s)
- Sydni Caet Smith
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center
| | - Evan Krystofiak
- Department of Cell & Developmental Biology, Vanderbilt University
| | - Kristen M. Ogden
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center
- Department of Pediatrics, Vanderbilt University Medical Center
| |
Collapse
|
13
|
Liu Y, Potts JL, Bloch D, Nian K, McCormick CA, Fanari O, Rouhanifard SH. Paired Capture and FISH Detection of Individual Virions Enable Cell-Free Determination of Infectious Titers. ACS Sens 2023; 8:2563-2571. [PMID: 37368999 PMCID: PMC10621038 DOI: 10.1021/acssensors.3c00239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 06/16/2023] [Indexed: 06/29/2023]
Abstract
Early detection of viruses can prevent the uncontrolled spread of viral infections. Determination of viral infectivity is also critical for determining the dosage of gene therapies, including vector-based vaccines, CAR T-cell therapies, and CRISPR therapeutics. In both cases, for viral pathogens and viral vector delivery vehicles, fast and accurate measurement of infectious titers is desirable. The most common methods for virus detection are antigen-based (rapid but not sensitive) and polymerase chain reaction (PCR)-based (sensitive but not rapid). Current viral titration methods heavily rely on cultured cells, which introduces variability within labs and between labs. Thus, it is highly desirable to directly determine the infectious titer without using cells. Here, we report the development of a direct, fast, and sensitive assay for virus detection (dubbed rapid capture fluorescence in situ hybridization (FISH) or rapture FISH) and cell-free determination of infectious titers. Importantly, we demonstrate that the virions captured are "infectious," thus serving as a more consistent proxy of infectious titers. This assay is unique because it first captures viruses bearing an intact coat protein using an aptamer and then detects genomes directly in individual virions using fluorescence in situ hybridization (FISH); thus, it is selective for infectious particles (i.e., positive for coat proteins and positive for genomes).
Collapse
Affiliation(s)
- Yifang Liu
- Department of Bioengineering, Northeastern University, Boston, Massachusetts 02115, United States
| | - Jacob L. Potts
- Department of Bioengineering, Northeastern University, Boston, Massachusetts 02115, United States
| | - Dylan Bloch
- Department of Bioengineering, Northeastern University, Boston, Massachusetts 02115, United States
| | - Keqing Nian
- Department of Bioengineering, Northeastern University, Boston, Massachusetts 02115, United States
| | - Caroline A. McCormick
- Department of Bioengineering, Northeastern University, Boston, Massachusetts 02115, United States
| | - Oleksandra Fanari
- Department of Bioengineering, Northeastern University, Boston, Massachusetts 02115, United States
| | - Sara H. Rouhanifard
- Department of Bioengineering, Northeastern University, Boston, Massachusetts 02115, United States
| |
Collapse
|
14
|
Swartz AR, Shieh Y, Gulasarian A, Curtis E, Hofmann CF, Baker JB, Templeton N, Olson JW. Glutathione affinity chromatography for the scalable purification of an oncolytic virus immunotherapy from microcarrier cell culture. Front Bioeng Biotechnol 2023; 11:1193454. [PMID: 37397964 PMCID: PMC10310922 DOI: 10.3389/fbioe.2023.1193454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 05/31/2023] [Indexed: 07/04/2023] Open
Abstract
Therapeutic viral vectors are an emerging technology with several clinical applications in gene therapy, vaccines, and immunotherapy. Increased demand has required the redevelopment of conventional, low-throughput cell culture and purification manufacturing methods such as static cell stacks and ultracentrifugation. In this work, scalable methods were investigated for the manufacture of an oncolytic virus immunotherapy application consisting of a prototype strain of coxsackievirus A21 (CVA21) produced in adherent MRC-5 cells. Cell culture was established in stirred-tank microcarrier bioreactors, and an efficient affinity chromatography method was developed for the purification of harvested CVA21 through binding of the viral capsids to an immobilized glutathione (GSH) ligand. Bioreactor temperature during infection was investigated to maximize titer, and a decrease in temperature from 37°C to 34°C yielded a two-three-fold increase in infectivity. After purification of the 34°C harvests, the GSH affinity chromatography elution not only maintained a >two-fold increase in infectivity and viral genomes but also increased the proportion of empty capsids compared to 37°C harvests. Using material generated from both infection temperature setpoints, chromatographic parameters and mobile phase compositions were studied at the laboratory scale to maximize infectious particle yields and cell culture impurity clearance. Empty capsids that co-eluted with full capsids from 34°C infection temperature harvests were poorly resolved across the conditions tested, but subsequent polishing anion exchange and cation exchange chromatography steps were developed to clear residual empty capsids and other impurities. Oncolytic CVA21 production was scaled-up 75-fold from the laboratory scale and demonstrated across seven batches in 250 L single-use microcarrier bioreactors and purified with customized, prepacked, single-use 1.5 L GSH affinity chromatography columns. The large-scale bioreactors controlled at 34°C during infection maintained a three-fold increase in productivity in the GSH elution, and excellent clearance of host cell and media impurities was observed across all batches. This study presents a robust method for the manufacture of an oncolytic virus immunotherapy application that may be implemented for the scalable production of other viruses and viral vectors which interact with glutathione.
Collapse
Affiliation(s)
- Andrew R. Swartz
- Process Research and Development, Merck & Co., Inc., Rahway, NJ, United States
| | - Yvonne Shieh
- Process Research and Development, Merck & Co., Inc., Rahway, NJ, United States
| | - Amanda Gulasarian
- Process Research and Development, Merck & Co., Inc., Rahway, NJ, United States
| | - Erik Curtis
- Process Research and Development, Merck & Co., Inc., Rahway, NJ, United States
| | - Carl F. Hofmann
- Analytical Research and Development, Merck & Co., Inc., Rahway, NJ, United States
| | - Jack B. Baker
- Analytical Research and Development, Merck & Co., Inc., Rahway, NJ, United States
| | - Neil Templeton
- Process Research and Development, Merck & Co., Inc., Rahway, NJ, United States
| | - Jessica W. Olson
- Process Research and Development, Merck & Co., Inc., Rahway, NJ, United States
| |
Collapse
|
15
|
An efficient capture strategy for the purification of human adenovirus type 5 from cell lysates. J Biotechnol 2023; 361:49-56. [PMID: 36494010 DOI: 10.1016/j.jbiotec.2022.11.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 11/03/2022] [Accepted: 11/26/2022] [Indexed: 12/12/2022]
Abstract
An efficient capture step for human adenovirus type 5 from cell lysate was developed as an initial virus purification step from cell debris supernatant. Organosilane-based polymer particles were synthesized and experimental monomer screening allowed the selection of appropriate functionalities for the development of particles for virus binding. After elution, virus recoveries of 83 % were obtained with significant reduction of matrix proteins and residual host cell DNA. Therefore, the implemented capture strategy for adenovirus via polymer particles provides a scalable and reproducible approach to reduce time and cost during virus purification processes.
Collapse
|
16
|
Yi S, McCracken R, Davide J, Salovich DR, Whitmer T, Bhat A, Vlasak J, Ha S, Sehlin D, Califano J, Ploeger K, Mukherjee M. Development of process analytical tools for rapid monitoring of live virus vaccines in manufacturing. Sci Rep 2022; 12:15494. [PMID: 36109543 PMCID: PMC9476422 DOI: 10.1038/s41598-022-19744-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 09/02/2022] [Indexed: 11/23/2022] Open
Abstract
In the development of end-to-end large-scale live virus vaccine (LVV) manufacturing, process analytical technology (PAT) tools enable timely monitoring of critical process parameters (CPP) and significantly guide process development and characterization. In a commercial setting, these very same tools can enable real time monitoring of CPPs on the shop floor and inform harvest decisions, predict peak potency, and serve as surrogates for release potency assays. Here we introduce the development of four advanced PAT tools for upstream and downstream process monitoring in LVV manufacturing. The first tool explores the application of capacitance probes for real time monitoring of viable cell density in bioreactors. The second tool utilizes high content imaging to determine optimum time of infection in a microcarrier process. The third tool uses flow virometry (or nanoscale flow cytometry) to monitor total virus particle counts across upstream and downstream process steps and establishes a robust correlation to virus potency. The fourth and final tool explores the use of nucleic acid dye staining to discriminate between “good” and “damaged” virus particles and uses this strategy to also monitor virus aggregates generated sometimes during downstream processing. Collectively, these tools provide a comprehensive monitoring toolbox and represent a significantly enhanced control strategy for the manufacturing of LVVs.
Collapse
|
17
|
Cryo-electron microscopy and image classification reveal the existence and structure of the coxsackievirus A6 virion. Commun Biol 2022; 5:898. [PMID: 36056184 PMCID: PMC9438360 DOI: 10.1038/s42003-022-03863-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 08/18/2022] [Indexed: 12/18/2022] Open
Abstract
Coxsackievirus A6 (CV-A6) has recently overtaken enterovirus A71 and CV-A16 as the primary causative agent of hand, foot, and mouth disease worldwide. Virions of CV-A6 were not identified in previous structural studies, and it was speculated that the virus is unique among enteroviruses in using altered particles with expanded capsids to infect cells. In contrast, the virions of other enteroviruses are required for infection. Here we used cryo-electron microscopy (cryo-EM) to determine the structures of the CV-A6 virion, altered particle, and empty capsid. We show that the CV-A6 virion has features characteristic of virions of other enteroviruses, including a compact capsid, VP4 attached to the inner capsid surface, and fatty acid-like molecules occupying the hydrophobic pockets in VP1 subunits. Furthermore, we found that in a purified sample of CV-A6, the ratio of infectious units to virions is 1 to 500. Therefore, it is likely that virions of CV-A6 initiate infection, like those of other enteroviruses. Our results provide evidence that future vaccines against CV-A6 should target its virions instead of the antigenically distinct altered particles. Furthermore, the structure of the virion provides the basis for the rational development of capsid-binding inhibitors that block the genome release of CV-A6. A cryo-EM structure for the three conformers of coxsackievirus A6 provides insight into the infection process of this enterovirus, which is responsible for numerous cases of hand, foot, and mouth disease.
Collapse
|
18
|
Saccani C, Pellegrini M, Guzzini A. Perspective Chapter: Analysis of SARS-CoV-2 Indirect Spreading Routes and Possible Countermeasures. Infect Dis (Lond) 2022. [DOI: 10.5772/intechopen.105914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The research community agrees that the main indirect way the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spreads among people who do not keep social distance is through the emission of infected respiratory droplets. Infected people exhale droplets of different sizes and emission velocities while breathing, talking, sneezing, or coughing. Complex two-phase flow modeling considering evaporation and condensation phenomena describes droplets’ trajectories under the specific thermofluid dynamic boundary conditions, including air temperature, relative humidity, and velocity. However, public health organizations simply suggest a safe distance in the range of 1–2 m regardless of the effect of boundary conditions on droplets’ motion. This chapter aims to highlight open research questions to be addressed and clarify how framework conditions can influence safe distance in an indoor environment and which technical countermeasures (such as face masks wearing or heating, ventilation, and air conditioning (HVAC) control) can be adopted to minimize the infection risk.
Collapse
|
19
|
Rapid high-throughput compatible label-free virus particle quantification method based on time-resolved luminescence. Anal Bioanal Chem 2022; 414:4509-4518. [PMID: 35581427 PMCID: PMC9113738 DOI: 10.1007/s00216-022-04104-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 04/14/2022] [Accepted: 04/27/2022] [Indexed: 11/17/2022]
Abstract
Viruses play a major role in modern society and create risks from global pandemics and bioterrorism to challenges in agriculture. Virus infectivity assays and genome copy number determination methods are often used to obtain information on virus preparations used in diagnostics and vaccine development. However, these methods do not provide information on virus particle count. Current methods to measure the number of viral particles are often cumbersome and require highly purified virus preparations and expensive instrumentation. To tackle these problems, we developed a simple and cost-effective time-resolved luminescence-based method for virus particle quantification. This mix-and-measure technique is based on the recognition of the virus particles by an external Eu3+-peptide probe, providing results on virus count in minutes. The method enables the detection of non-enveloped and enveloped viruses, having over tenfold higher detectability for enveloped, dynamic range from 5E6 to 3E10 vp/mL, than non-enveloped viruses. Multiple non-enveloped and enveloped viruses were used to demonstrate the functionality and robustness of the Protein-Probe method.
Collapse
|
20
|
Arbaciauskaite S, Babakhani P, Sandetskaya N, Vitkus D, Jancoriene L, Karosiene D, Karciauskaite D, Zablockiene B, Kuhlmeier D. Self-Sampled Gargle Water Direct RT-LAMP as a Screening Method for the Detection of SARS-CoV-2 Infections. Diagnostics (Basel) 2022; 12:diagnostics12040775. [PMID: 35453823 PMCID: PMC9030430 DOI: 10.3390/diagnostics12040775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/17/2022] [Accepted: 03/19/2022] [Indexed: 11/16/2022] Open
Abstract
We assessed the viability of self-sampled gargle water direct RT-LAMP (LAMP) for detecting SARS-CoV-2 infections by estimating its sensitivity with respect to the gold standard indirect RT-PCR of paired oro-nasopharyngeal swab samples. We also assessed the impact of symptom onset to test time (STT)—i.e., symptom days at sampling, on LAMP. In addition, we appraised the viability of gargle water self-sampling versus oro-nasopharyngeal swab sampling, by comparing paired indirect RT-PCR results. 202 oro-nasopharyngeal swab and paired self-sampled gargle water samples were collected from hospital patients with COVID-19 associated symptoms. LAMP, indirect and direct RT-PCR were performed on all gargle water samples, and indirect RT-PCR was performed on all oro-nasopharyngeal samples. LAMP presented a sensitivity of 80.8% (95% CI: 70.8–90.8%) for sample pairs with sub-25 Ct oro-nasopharyngeal indirect RT-PCR results, and 77.6% (66.2–89.1%) sensitivity for sub-30 Ct samples with STT ≤ 7 days. STT, independently of Ct value, correlated negatively with LAMP performance. 80.7% agreement was observed between gargle water and oro-nasopharyngeal indirect RT-PCR results. In conclusion, LAMP presents an acceptable sensitivity for low Ct and low STT samples. Gargle water may be considered as a viable sampling method, and LAMP as a screening method, especially for symptomatic persons with low STT values.
Collapse
Affiliation(s)
- Skaiste Arbaciauskaite
- Department of Diagnostics, Fraunhofer Institute for Cell Therapy and Immunology IZI, Perlickstraße 1, 04103 Leipzig, Germany; (N.S.); (D.K.)
- Institute of Cell Biology and Neurobiology, Charité—Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
- Correspondence:
| | - Pouya Babakhani
- Department of Computer Science, University of Bath, Claverton Down, Bath BA2 7AY, UK;
| | - Natalia Sandetskaya
- Department of Diagnostics, Fraunhofer Institute for Cell Therapy and Immunology IZI, Perlickstraße 1, 04103 Leipzig, Germany; (N.S.); (D.K.)
| | - Dalius Vitkus
- Institute of Biomedical Sciences, Vilnius University Faculty of Medicine, M.K. Ciurlionio 21, LT-03101 Vilnius, Lithuania; (D.V.); (D.K.)
- Centre of Laboratory Medicine, Vilnius University Hospital Santaros Klinikos, Santariskiu 14, LT-08406 Vilnius, Lithuania;
| | - Ligita Jancoriene
- Clinic of Infectious Diseases and Dermatovenerology, Institute of Clinical Medicine, Vilnius University Faculty of Medicine, M.K. Ciurlionio 21, LT-03101 Vilnius, Lithuania; (L.J.); (B.Z.)
- Center of Infectious Diseases, Vilnius University Hospital Santaros Klinikos, Santariskiu 14, LT-08406 Vilnius, Lithuania
| | - Dovile Karosiene
- Centre of Laboratory Medicine, Vilnius University Hospital Santaros Klinikos, Santariskiu 14, LT-08406 Vilnius, Lithuania;
| | - Dovile Karciauskaite
- Institute of Biomedical Sciences, Vilnius University Faculty of Medicine, M.K. Ciurlionio 21, LT-03101 Vilnius, Lithuania; (D.V.); (D.K.)
- Centre of Laboratory Medicine, Vilnius University Hospital Santaros Klinikos, Santariskiu 14, LT-08406 Vilnius, Lithuania;
| | - Birute Zablockiene
- Clinic of Infectious Diseases and Dermatovenerology, Institute of Clinical Medicine, Vilnius University Faculty of Medicine, M.K. Ciurlionio 21, LT-03101 Vilnius, Lithuania; (L.J.); (B.Z.)
- Center of Infectious Diseases, Vilnius University Hospital Santaros Klinikos, Santariskiu 14, LT-08406 Vilnius, Lithuania
| | - Dirk Kuhlmeier
- Department of Diagnostics, Fraunhofer Institute for Cell Therapy and Immunology IZI, Perlickstraße 1, 04103 Leipzig, Germany; (N.S.); (D.K.)
| |
Collapse
|
21
|
Jbara-Agbaria D, Blondzik S, Burger-Kentischer A, Agbaria M, Nordling-David MM, Giterman A, Aizik G, Rupp S, Golomb G. Liposomal siRNA Formulations for the Treatment of Herpes Simplex Virus-1: In Vitro Characterization of Physicochemical Properties and Activity, and In Vivo Biodistribution and Toxicity Studies. Pharmaceutics 2022; 14:633. [PMID: 35336008 PMCID: PMC8948811 DOI: 10.3390/pharmaceutics14030633] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/09/2022] [Accepted: 03/11/2022] [Indexed: 02/04/2023] Open
Abstract
Herpes simplex virus-1 (HSV-1) is highly contagious, and there is a need for a therapeutic means to eradicate it. We have identified an siRNA (siHSV) that knocks down gene expression of the infected cell protein 0 (ICP0), which is important in the regulation of HSV infection. The selected siHSV was encapsulated in liposomes to overcome its poor stability, increase cell permeability, and prolonging siRNA circulation time. Several siRNAs against ICP0 have been designed and identified. We examined the role of various parameters, including formulation technique, lipids composition, and ratio. An optimal liposomal siHSV formulation (LipDOPE-siHSV) was characterized with desirable physiochemical properties, in terms of nano-size, low polydispersity index (PDI), neutral surface charge, high siHSV loading, spherical shape, high stability in physiologic conditions in vitro, and long-term shelf-life stability (>1 year, 4 °C). The liposomes exhibited profound internalization by human keratinocytes, no cytotoxicity in cell cultures, no detrimental effect on mice liver enzymes, and a gradual endo-lysosomal escape. Mice biodistribution studies in intact mice revealed accumulation, mainly in visceral organs but also in the trigeminal ganglion. The therapeutic potential of siHSV liposomes was demonstrated by significant antiviral activity both in the plaque reduction assay and in the 3D epidermis model, and the mechanism of action was validated by the reduction of ICP0 expression levels.
Collapse
Affiliation(s)
- Doaa Jbara-Agbaria
- Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112001, Israel; (D.J.-A.); (M.A.); (M.M.N.-D.); (A.G.); (G.A.)
| | - Saskia Blondzik
- Fraunhofer Institute for Interfacial Engineering and Biotechnology, 70569 Stuttgart, Germany; (S.B.); (A.B.-K.); (S.R.)
| | - Anke Burger-Kentischer
- Fraunhofer Institute for Interfacial Engineering and Biotechnology, 70569 Stuttgart, Germany; (S.B.); (A.B.-K.); (S.R.)
| | - Majd Agbaria
- Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112001, Israel; (D.J.-A.); (M.A.); (M.M.N.-D.); (A.G.); (G.A.)
| | - Mirjam M. Nordling-David
- Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112001, Israel; (D.J.-A.); (M.A.); (M.M.N.-D.); (A.G.); (G.A.)
| | - Anna Giterman
- Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112001, Israel; (D.J.-A.); (M.A.); (M.M.N.-D.); (A.G.); (G.A.)
| | - Gil Aizik
- Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112001, Israel; (D.J.-A.); (M.A.); (M.M.N.-D.); (A.G.); (G.A.)
| | - Steffen Rupp
- Fraunhofer Institute for Interfacial Engineering and Biotechnology, 70569 Stuttgart, Germany; (S.B.); (A.B.-K.); (S.R.)
| | - Gershon Golomb
- Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112001, Israel; (D.J.-A.); (M.A.); (M.M.N.-D.); (A.G.); (G.A.)
- The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| |
Collapse
|
22
|
Bhat T, Cao A, Yin J. Virus-like Particles: Measures and Biological Functions. Viruses 2022; 14:383. [PMID: 35215979 PMCID: PMC8877645 DOI: 10.3390/v14020383] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/10/2022] [Accepted: 02/10/2022] [Indexed: 12/25/2022] Open
Abstract
Virus-like particles resemble infectious virus particles in size, shape, and molecular composition; however, they fail to productively infect host cells. Historically, the presence of virus-like particles has been inferred from total particle counts by microscopy, and infectious particle counts or plaque-forming-units (PFUs) by plaque assay; the resulting ratio of particles-to-PFUs is often greater than one, easily 10 or 100, indicating that most particles are non-infectious. Despite their inability to hijack cells for their reproduction, virus-like particles and the defective genomes they carry can exhibit a broad range of behaviors: interference with normal virus growth during co-infections, cell killing, and activation or inhibition of innate immune signaling. In addition, some virus-like particles become productive as their multiplicities of infection increase, a sign of cooperation between particles. Here, we review established and emerging methods to count virus-like particles and characterize their biological functions. We take a critical look at evidence for defective interfering virus genomes in natural and clinical isolates, and we review their potential as antiviral therapeutics. In short, we highlight an urgent need to better understand how virus-like genomes and particles interact with intact functional viruses during co-infection of their hosts, and their impacts on the transmission, severity, and persistence of virus-associated diseases.
Collapse
Affiliation(s)
| | | | - John Yin
- Department of Chemical and Biological Engineering, Wisconsin Institute for Discovery, University of Wisconsin-Madison, 330 N. Orchard Street, Madison, WI 53715, USA; (T.B.); (A.C.)
| |
Collapse
|
23
|
Kim GN, Choi JA, Wu K, Saeedian N, Yang E, Park H, Woo SJ, Lim G, Kim SG, Eo SK, Jeong HW, Kim T, Chang JH, Seo SH, Kim NH, Choi E, Choo S, Lee S, Winterborn A, Li Y, Parham K, Donovan JM, Fenton B, Dikeakos JD, Dekaban GA, Haeryfar SMM, Troyer RM, Arts EJ, Barr SD, Song M, Kang CY. A vesicular stomatitis virus-based prime-boost vaccination strategy induces potent and protective neutralizing antibodies against SARS-CoV-2. PLoS Pathog 2021; 17:e1010092. [PMID: 34914812 PMCID: PMC8675757 DOI: 10.1371/journal.ppat.1010092] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 11/04/2021] [Indexed: 12/17/2022] Open
Abstract
The development of safe and effective vaccines to prevent SARS-CoV-2 infections remains an urgent priority worldwide. We have used a recombinant vesicular stomatitis virus (rVSV)-based prime-boost immunization strategy to develop an effective COVID-19 vaccine candidate. We have constructed VSV genomes carrying exogenous genes resulting in the production of avirulent rVSV carrying the full-length spike protein (SF), the S1 subunit, or the receptor-binding domain (RBD) plus envelope (E) protein of SARS-CoV-2. Adding the honeybee melittin signal peptide (msp) to the N-terminus enhanced the protein expression, and adding the VSV G protein transmembrane domain and the cytoplasmic tail (Gtc) enhanced protein incorporation into pseudotype VSV. All rVSVs expressed three different forms of SARS-CoV-2 spike proteins, but chimeras with VSV-Gtc demonstrated the highest rVSV-associated expression. In immunized mice, rVSV with chimeric S protein-Gtc derivatives induced the highest level of potent neutralizing antibodies and T cell responses, and rVSV harboring the full-length msp-SF-Gtc proved to be the superior immunogen. More importantly, rVSV-msp-SF-Gtc vaccinated animals were completely protected from a subsequent SARS-CoV-2 challenge. Overall, we have developed an efficient strategy to induce a protective response in SARS-CoV-2 challenged immunized mice. Vaccination with our rVSV-based vector may be an effective solution in the global fight against COVID-19. The COVID-19 pandemic has had unprecedented global health, economic and societal impact globally. Vaccinating the majority of the world’s population is the best way to help prevent new infections. Many vaccines have been developed to prevent various viral diseases that are currently in use around the world. This has generated a high demand for these vaccines, putting a strain on production capacity and delivery. With new variants of concern starting to dominate the human pandemic, new derivatives of the current vaccines may be necessary for continued protection from SARS-CoV-2 infection. We have developed a vaccine that uses a safe vesicular stomatitis virus-based delivery vehicle to present a key SARS-CoV-2 protein to our immune system in order to train it to recognize and prevent SARS-CoV-2 infection. Our vaccine completely protected vaccinated animals from SARS-CoV-2 infection and significantly reduced lung damage, a major hallmark of COVID-19.
Collapse
Affiliation(s)
- Gyoung Nyoun Kim
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario, Canada
| | - Jung-ah Choi
- International Vaccine Institute, SNU Research Park, 1 Gwanak-ro, Gwanak-gu, Seoul, Korea
| | - Kunyu Wu
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario, Canada
| | - Nasrin Saeedian
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario, Canada
| | - Eunji Yang
- International Vaccine Institute, SNU Research Park, 1 Gwanak-ro, Gwanak-gu, Seoul, Korea
| | - Hayan Park
- International Vaccine Institute, SNU Research Park, 1 Gwanak-ro, Gwanak-gu, Seoul, Korea
| | - Sun-Je Woo
- International Vaccine Institute, SNU Research Park, 1 Gwanak-ro, Gwanak-gu, Seoul, Korea
| | - Gippeum Lim
- International Vaccine Institute, SNU Research Park, 1 Gwanak-ro, Gwanak-gu, Seoul, Korea
| | - Seong-Gyu Kim
- International Vaccine Institute, SNU Research Park, 1 Gwanak-ro, Gwanak-gu, Seoul, Korea
| | - Su-Kyeong Eo
- International Vaccine Institute, SNU Research Park, 1 Gwanak-ro, Gwanak-gu, Seoul, Korea
| | - Hoe Won Jeong
- International Vaccine Institute, SNU Research Park, 1 Gwanak-ro, Gwanak-gu, Seoul, Korea
| | - Taewoo Kim
- International Vaccine Institute, SNU Research Park, 1 Gwanak-ro, Gwanak-gu, Seoul, Korea
| | - Jae-Hyung Chang
- International Vaccine Institute, SNU Research Park, 1 Gwanak-ro, Gwanak-gu, Seoul, Korea
| | - Sang Hwan Seo
- International Vaccine Institute, SNU Research Park, 1 Gwanak-ro, Gwanak-gu, Seoul, Korea
| | - Na Hyung Kim
- Sumagen, 4F Dongwon Bldg, Teheran-ro 77-gil, Gangnam-gu, Seoul, Korea
| | - Eunsil Choi
- Sumagen, 4F Dongwon Bldg, Teheran-ro 77-gil, Gangnam-gu, Seoul, Korea
| | - Seungho Choo
- Sumagen, 4F Dongwon Bldg, Teheran-ro 77-gil, Gangnam-gu, Seoul, Korea
| | - Sangkyun Lee
- Sumagen, 4F Dongwon Bldg, Teheran-ro 77-gil, Gangnam-gu, Seoul, Korea
| | | | - Yue Li
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario, Canada
| | - Kate Parham
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario, Canada
| | - Justin M. Donovan
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario, Canada
| | - Brock Fenton
- Department of Biology, Faculty of Science, The University of Western Ontario, London, Ontario, Canada
| | - Jimmy D. Dikeakos
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario, Canada
| | - Gregory A. Dekaban
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario, Canada
- Molecular Medicine Research Laboratories, Robarts Research Institute, University of Western Ontario, London, Ontario, Canada
| | - S. M. Mansour Haeryfar
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario, Canada
| | - Ryan M. Troyer
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario, Canada
| | - Eric J. Arts
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario, Canada
| | - Stephen D. Barr
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario, Canada
| | - Manki Song
- International Vaccine Institute, SNU Research Park, 1 Gwanak-ro, Gwanak-gu, Seoul, Korea
| | - C. Yong Kang
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario, Canada
- * E-mail:
| |
Collapse
|
24
|
McClelland RD, Culp TN, Marchant DJ. Imaging Flow Cytometry and Confocal Immunofluorescence Microscopy of Virus-Host Cell Interactions. Front Cell Infect Microbiol 2021; 11:749039. [PMID: 34712624 PMCID: PMC8546218 DOI: 10.3389/fcimb.2021.749039] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 09/27/2021] [Indexed: 11/25/2022] Open
Abstract
Viruses are diverse pathogens that use host factors to enter cells and cause disease. Imaging the entry and replication phases of viruses and their interactions with host factors is key to fully understanding viral infections. This review will discuss how confocal microscopy and imaging flow cytometry are used to investigate virus entry and replication mechanisms in fixed and live cells. Quantification of viral images and the use of cryo-electron microscopy to gather structural information of viruses is also explored. Using imaging to understand how viruses replicate and interact with host factors, we gain insight into cellular processes and identify novel targets to develop antiviral therapeutics and vaccines.
Collapse
Affiliation(s)
- Ryley D McClelland
- Department of Medical Microbiology and Immunology, Li Ka Shing Institute of Virology, Katz Center for Health Research, University of Alberta, Edmonton, AB, Canada
| | - Tyce N Culp
- Department of Medical Microbiology and Immunology, Li Ka Shing Institute of Virology, Katz Center for Health Research, University of Alberta, Edmonton, AB, Canada
| | - David J Marchant
- Department of Medical Microbiology and Immunology, Li Ka Shing Institute of Virology, Katz Center for Health Research, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
25
|
Baker AN, Richards SJ, Pandey S, Guy CS, Ahmad A, Hasan M, Biggs CI, Georgiou PG, Zwetsloot AJ, Straube A, Dedola S, Field RA, Anderson NR, Walker M, Grammatopoulos D, Gibson MI. Glycan-Based Flow-Through Device for the Detection of SARS-COV-2. ACS Sens 2021; 6:3696-3705. [PMID: 34634204 PMCID: PMC8525701 DOI: 10.1021/acssensors.1c01470] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 09/23/2021] [Indexed: 12/12/2022]
Abstract
The COVID-19 pandemic, and future pandemics, require diagnostic tools to track disease spread and guide the isolation of (a)symptomatic individuals. Lateral-flow diagnostics (LFDs) are rapid and of lower cost than molecular (genetic) tests, with current LFDs using antibodies as their recognition units. Herein, we develop a prototype flow-through device (related, but distinct to LFDs), utilizing N-acetyl neuraminic acid-functionalized, polymer-coated, gold nanoparticles as the detection/capture unit for SARS-COV-2, by targeting the sialic acid-binding site of the spike protein. The prototype device can give rapid results, with higher viral loads being faster than lower viral loads. The prototype's effectiveness is demonstrated using spike protein, lentiviral models, and a panel of heat-inactivated primary patient nasal swabs. The device was also shown to retain detection capability toward recombinant spike proteins from several variants (mutants) of concern. This study provides the proof of principle that glyco-lateral-flow devices could be developed to be used in the tracking monitoring of infectious agents, to complement, or as alternatives to antibody-based systems.
Collapse
Affiliation(s)
| | | | - Sarojini Pandey
- Institute of Precision Diagnostics and Translational
Medicine, University Hospitals Coventry and Warwickshire NHS
Trust, Clifford Bridge Road, Coventry CV2 2DX,
U.K.
| | - Collette S. Guy
- Department of Chemistry, University of
Warwick, Coventry CV4 7AL, U.K.
- School of Life Sciences, University of
Warwick, Coventry CV4 7AL, U.K.
| | - Ashfaq Ahmad
- Department of Chemistry, University of
Warwick, Coventry CV4 7AL, U.K.
- Warwick Medical School, University of
Warwick, Coventry CV4 7AL, U.K.
| | - Muhammad Hasan
- Department of Chemistry, University of
Warwick, Coventry CV4 7AL, U.K.
- Warwick Medical School, University of
Warwick, Coventry CV4 7AL, U.K.
| | - Caroline I. Biggs
- Department of Chemistry, University of
Warwick, Coventry CV4 7AL, U.K.
| | | | | | - Anne Straube
- Warwick Medical School, University of
Warwick, Coventry CV4 7AL, U.K.
| | - Simone Dedola
- Iceni Diagnostics Ltd., Norwich
Research Park, Norwich NR4 7GJ, U.K.
| | - Robert A. Field
- Iceni Diagnostics Ltd., Norwich
Research Park, Norwich NR4 7GJ, U.K.
- Department of Chemistry and Manchester Institute of
Biotechnology, University of Manchester, Manchester M1 7DN,
U.K.
| | - Neil R. Anderson
- Institute of Precision Diagnostics and Translational
Medicine, University Hospitals Coventry and Warwickshire NHS
Trust, Clifford Bridge Road, Coventry CV2 2DX,
U.K.
| | - Marc Walker
- Department of Physics, University of
Warwick, Coventry CV4 7AL, U.K.
| | - Dimitris Grammatopoulos
- Warwick Medical School, University of
Warwick, Coventry CV4 7AL, U.K.
- Institute of Precision Diagnostics and Translational
Medicine, University Hospitals Coventry and Warwickshire NHS
Trust, Clifford Bridge Road, Coventry CV2 2DX,
U.K.
| | - Matthew I. Gibson
- Department of Chemistry, University of
Warwick, Coventry CV4 7AL, U.K.
- Warwick Medical School, University of
Warwick, Coventry CV4 7AL, U.K.
| |
Collapse
|
26
|
Tea F, Ospina Stella A, Aggarwal A, Ross Darley D, Pilli D, Vitale D, Merheb V, Lee FXZ, Cunningham P, Walker GJ, Fichter C, Brown DA, Rawlinson WD, Isaacs SR, Mathivanan V, Hoffmann M, Pöhlman S, Mazigi O, Christ D, Dwyer DE, Rockett RJ, Sintchenko V, Hoad VC, Irving DO, Dore GJ, Gosbell IB, Kelleher AD, Matthews GV, Brilot F, Turville SG. SARS-CoV-2 neutralizing antibodies: Longevity, breadth, and evasion by emerging viral variants. PLoS Med 2021; 18:e1003656. [PMID: 34228725 PMCID: PMC8291755 DOI: 10.1371/journal.pmed.1003656] [Citation(s) in RCA: 90] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 07/20/2021] [Accepted: 05/12/2021] [Indexed: 01/12/2023] Open
Abstract
The Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) antibody neutralization response and its evasion by emerging viral variants and variant of concern (VOC) are unknown, but critical to understand reinfection risk and breakthrough infection following vaccination. Antibody immunoreactivity against SARS-CoV-2 antigens and Spike variants, inhibition of Spike-driven virus-cell fusion, and infectious SARS-CoV-2 neutralization were characterized in 807 serial samples from 233 reverse transcription polymerase chain reaction (RT-PCR)-confirmed Coronavirus Disease 2019 (COVID-19) individuals with detailed demographics and followed up to 7 months. A broad and sustained polyantigenic immunoreactivity against SARS-CoV-2 Spike, Membrane, and Nucleocapsid proteins, along with high viral neutralization, was associated with COVID-19 severity. A subgroup of "high responders" maintained high neutralizing responses over time, representing ideal convalescent plasma donors. Antibodies generated against SARS-CoV-2 during the first COVID-19 wave had reduced immunoreactivity and neutralization potency to emerging Spike variants and VOC. Accurate monitoring of SARS-CoV-2 antibody responses would be essential for selection of optimal responders and vaccine monitoring and design.
Collapse
Affiliation(s)
- Fiona Tea
- Brain Autoimmunity Group, Kids Neuroscience Centre, Kids Research at the Children’s Hospital at Westmead, Sydney, New South Wales, Australia
| | - Alberto Ospina Stella
- The Kirby Institute, The University of New South Wales, Sydney, New South Wales, Australia
| | - Anupriya Aggarwal
- The Kirby Institute, The University of New South Wales, Sydney, New South Wales, Australia
| | - David Ross Darley
- St Vincent’s Hospital, Sydney, New South Wales, Australia
- School of Medicine, St Vincent’s Clinical School, The University of New South Wales, Sydney, New South Wales, Australia
| | - Deepti Pilli
- Brain Autoimmunity Group, Kids Neuroscience Centre, Kids Research at the Children’s Hospital at Westmead, Sydney, New South Wales, Australia
| | - Daniele Vitale
- Westmead Institute for Medical Research, Sydney, New South Wales, Australia
| | - Vera Merheb
- Brain Autoimmunity Group, Kids Neuroscience Centre, Kids Research at the Children’s Hospital at Westmead, Sydney, New South Wales, Australia
| | - Fiona X. Z. Lee
- Brain Autoimmunity Group, Kids Neuroscience Centre, Kids Research at the Children’s Hospital at Westmead, Sydney, New South Wales, Australia
| | - Philip Cunningham
- St Vincent’s Applied Medical Research, Sydney, New South Wales, Australia
| | | | - Christina Fichter
- The Kirby Institute, The University of New South Wales, Sydney, New South Wales, Australia
| | - David A. Brown
- Westmead Institute for Medical Research, Sydney, New South Wales, Australia
- New South Wales Health Pathology, Sydney, Australia
| | - William D. Rawlinson
- New South Wales Health Pathology, Sydney, Australia
- School of Medical Sciences, Biotechnology and Biomolecular Sciences and School of Women’s and Children’s Health, The University of New South Wales Sydney, New South Wales, Australia
- Serology and Virology Division (SAViD), NSW HP SEALS, Randwick, Australia
| | | | - Vennila Mathivanan
- The Kirby Institute, The University of New South Wales, Sydney, New South Wales, Australia
| | - Markus Hoffmann
- Infection Biology Unit, German Primate Center, Göttingen, Germany
- Faculty of Biology and Psychology, Georg-August-University Göttingen, Göttingen, Germany
| | - Stefan Pöhlman
- Infection Biology Unit, German Primate Center, Göttingen, Germany
- Faculty of Biology and Psychology, Georg-August-University Göttingen, Göttingen, Germany
| | - Ohan Mazigi
- School of Medicine, St Vincent’s Clinical School, The University of New South Wales, Sydney, New South Wales, Australia
- Garvan Institute of Medical Research, Sydney, New South Wales, Australia
| | - Daniel Christ
- School of Medicine, St Vincent’s Clinical School, The University of New South Wales, Sydney, New South Wales, Australia
- Garvan Institute of Medical Research, Sydney, New South Wales, Australia
| | - Dominic E. Dwyer
- New South Wales Health Pathology, Sydney, Australia
- Centre for Infectious Diseases & Microbiology, Public Health, New South Wales Health Pathology, Institute of Clinical Pathology & Medical Research (ICPMR), Westmead, Sydney, New South Wales, Australia
- Marie Bashir Institute for Biosecurity, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Rebecca J. Rockett
- Centre for Infectious Diseases & Microbiology, Public Health, New South Wales Health Pathology, Institute of Clinical Pathology & Medical Research (ICPMR), Westmead, Sydney, New South Wales, Australia
- Marie Bashir Institute for Biosecurity, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Vitali Sintchenko
- New South Wales Health Pathology, Sydney, Australia
- Centre for Infectious Diseases & Microbiology, Public Health, New South Wales Health Pathology, Institute of Clinical Pathology & Medical Research (ICPMR), Westmead, Sydney, New South Wales, Australia
- Marie Bashir Institute for Biosecurity, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
- Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | | | - David O. Irving
- Australian Red Cross Lifeblood, Melbourne, Victoria, Australia
- Faculty of Health, University of Technology, Sydney, New South Wales, Australia
| | - Gregory J. Dore
- The Kirby Institute, The University of New South Wales, Sydney, New South Wales, Australia
- St Vincent’s Hospital, Sydney, New South Wales, Australia
| | - Iain B. Gosbell
- Australian Red Cross Lifeblood, Melbourne, Victoria, Australia
- School of Medicine, Western Sydney University, Sydney, New South Wales, Australia
| | - Anthony D. Kelleher
- The Kirby Institute, The University of New South Wales, Sydney, New South Wales, Australia
| | - Gail V. Matthews
- The Kirby Institute, The University of New South Wales, Sydney, New South Wales, Australia
- St Vincent’s Hospital, Sydney, New South Wales, Australia
| | - Fabienne Brilot
- Brain Autoimmunity Group, Kids Neuroscience Centre, Kids Research at the Children’s Hospital at Westmead, Sydney, New South Wales, Australia
- Marie Bashir Institute for Biosecurity, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
- Brain and Mind Centre, The University of Sydney, Sydney, New South Wales, Australia
| | - Stuart G. Turville
- The Kirby Institute, The University of New South Wales, Sydney, New South Wales, Australia
| |
Collapse
|
27
|
The basic reproductive number and particle-to-plaque ratio: comparison of these two parameters of viral infectivity. Virol J 2021; 18:92. [PMID: 33931090 PMCID: PMC8085655 DOI: 10.1186/s12985-021-01566-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 04/23/2021] [Indexed: 12/19/2022] Open
Abstract
The COVID-19 pandemic has brought more widespread attention to the basic reproductive number (Ro), an epidemiologic measurement. A lesser-known measure of virologic infectivity is the particle-to-plaque ratio (P:PFU). We suggest that comparison between the two parameters may assist in better understanding viral transmission dynamics.
Collapse
|
28
|
Müller TG, Zila V, Peters K, Schifferdecker S, Stanic M, Lucic B, Laketa V, Lusic M, Müller B, Kräusslich HG. HIV-1 uncoating by release of viral cDNA from capsid-like structures in the nucleus of infected cells. eLife 2021; 10:64776. [PMID: 33904396 PMCID: PMC8169111 DOI: 10.7554/elife.64776] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 04/21/2021] [Indexed: 12/11/2022] Open
Abstract
HIV-1 replication commences inside the cone-shaped viral capsid, but timing, localization, and mechanism of uncoating are under debate. We adapted a strategy to visualize individual reverse-transcribed HIV-1 cDNA molecules and their association with viral and cellular proteins using fluorescence and correlative-light-and-electron-microscopy (CLEM). We specifically detected HIV-1 cDNA inside nuclei, but not in the cytoplasm. Nuclear cDNA initially co-localized with a fluorescent integrase fusion (IN-FP) and the viral CA (capsid) protein, but cDNA-punctae separated from IN-FP/CA over time. This phenotype was conserved in primary HIV-1 target cells, with nuclear HIV-1 complexes exhibiting strong CA-signals in all cell types. CLEM revealed cone-shaped HIV-1 capsid-like structures and apparently broken capsid-remnants at the position of IN-FP signals and elongated chromatin-like structures in the position of viral cDNA punctae lacking IN-FP. Our data argue for nuclear uncoating by physical disruption rather than cooperative disassembly of the CA-lattice, followed by physical separation from the pre-integration complex.
Collapse
Affiliation(s)
- Thorsten G Müller
- Department of Infectious Diseases Virology, University Hospital Heidelberg, Heidelberg, Germany
| | - Vojtech Zila
- Department of Infectious Diseases Virology, University Hospital Heidelberg, Heidelberg, Germany
| | - Kyra Peters
- Department of Infectious Diseases Virology, University Hospital Heidelberg, Heidelberg, Germany
| | - Sandra Schifferdecker
- Department of Infectious Diseases Virology, University Hospital Heidelberg, Heidelberg, Germany
| | - Mia Stanic
- Department of Infectious Diseases Integrative Virology, University Hospital Heidelberg, Heidelberg, Germany
| | - Bojana Lucic
- Department of Infectious Diseases Integrative Virology, University Hospital Heidelberg, Heidelberg, Germany
| | - Vibor Laketa
- Department of Infectious Diseases Virology, University Hospital Heidelberg, Heidelberg, Germany.,German Center for Infection Research, partner site Heidelberg, Heidelberg, Germany
| | - Marina Lusic
- Department of Infectious Diseases Integrative Virology, University Hospital Heidelberg, Heidelberg, Germany.,German Center for Infection Research, partner site Heidelberg, Heidelberg, Germany
| | - Barbara Müller
- Department of Infectious Diseases Virology, University Hospital Heidelberg, Heidelberg, Germany
| | - Hans-Georg Kräusslich
- Department of Infectious Diseases Virology, University Hospital Heidelberg, Heidelberg, Germany.,German Center for Infection Research, partner site Heidelberg, Heidelberg, Germany
| |
Collapse
|
29
|
Sexton NR, Bellis ED, Murrieta RA, Spangler MC, Cline PJ, Weger-Lucarelli J, Ebel GD. Genome Number and Size Polymorphism in Zika Virus Infectious Units. J Virol 2021; 95:e00787-20. [PMID: 33328311 PMCID: PMC8094933 DOI: 10.1128/jvi.00787-20] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Accepted: 12/04/2020] [Indexed: 12/18/2022] Open
Abstract
Zika virus (ZIKV; Flaviviridae, Flavivirus) is an arthropod-borne infection that can result in severe outcomes, particularly in fetuses infected in utero It has been assumed that infection by ZIKV, as well as other viruses, is largely initiated by individual virus particles binding to and entering a cell. However, recent studies have demonstrated that multiple virus particles are frequently delivered to a cell simultaneously and that this collective particle delivery enhances infection. ZIKV is maintained in nature between Aedes aegypti mosquitos and vertebrate hosts, including humans. Human infection is initiated through the injection of a relatively small initial inoculum comprised of a genetically complex virus population. Since most mutations decrease virus fitness, collective particle transmission could benefit ZIKV and other arthropod-borne diseases by facilitating the maintenance of genetic complexity and adaptability during infection or through other mechanisms. Therefore, we utilized a barcoded ZIKV to quantify the number of virus genomes that initiate a plaque. We found that individual plaques contain a mean of 10 infecting viral genomes (range, 1 to 212). Few plaques contained more than two dominant genomes. To determine whether multigenome infectious units consist of collectively transmitting virions, infectious units of ZIKV were then separated mechanically by centrifugation, and heavier fractions were found to contain more genomes per plaque-forming unit, with larger diameters. Finally, larger/heavier infectious units reformed after removal. These data suggest that ZIKV populations consist of a variety of infectious unit sizes, likely mostly made up of aggregates, and only rarely begin with a single virus genome.IMPORTANCE The arthropod-borne Zika virus (ZIKV) infects humans and can cause severe neurological sequelae, particularly in fetuses infected in utero How this virus has been able to spread across vast geological ranges and evolve in new host populations is not yet understood. This research demonstrates a novel mechanism of ZIKV transmission through multigenome aggregates, providing insight into ZIKV evolution, immunologic evasion, and better future therapeutic design. This study shows that ZIKV plaques result from collections of genomes rather than individual genomes, increasing the potential for interactions between ZIKV genotypes.
Collapse
Affiliation(s)
- Nicole R Sexton
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - Eric D Bellis
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - Reyes A Murrieta
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - Mark Cole Spangler
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - Parker J Cline
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - James Weger-Lucarelli
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, USA
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, Virginia, USA
| | - Gregory D Ebel
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, USA
| |
Collapse
|
30
|
Larremore DB, Wilder B, Lester E, Shehata S, Burke JM, Hay JA, Tambe M, Mina MJ, Parker R. Test sensitivity is secondary to frequency and turnaround time for COVID-19 screening. SCIENCE ADVANCES 2021; 7:eabd5393. [PMID: 33219112 PMCID: PMC7775777 DOI: 10.1126/sciadv.abd5393] [Citation(s) in RCA: 652] [Impact Index Per Article: 217.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 10/28/2020] [Indexed: 05/05/2023]
Abstract
The COVID-19 pandemic has created a public health crisis. Because SARS-CoV-2 can spread from individuals with presymptomatic, symptomatic, and asymptomatic infections, the reopening of societies and the control of virus spread will be facilitated by robust population screening, for which virus testing will often be central. After infection, individuals undergo a period of incubation during which viral titers are too low to detect, followed by exponential viral growth, leading to peak viral load and infectiousness and ending with declining titers and clearance. Given the pattern of viral load kinetics, we model the effectiveness of repeated population screening considering test sensitivities, frequency, and sample-to-answer reporting time. These results demonstrate that effective screening depends largely on frequency of testing and speed of reporting and is only marginally improved by high test sensitivity. We therefore conclude that screening should prioritize accessibility, frequency, and sample-to-answer time; analytical limits of detection should be secondary.
Collapse
Affiliation(s)
- Daniel B Larremore
- Department of Computer Science, University of Colorado Boulder.
- BioFrontiers Institute, University of Colorado Boulder
| | - Bryan Wilder
- Center for Research on Computation and Society, Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University
| | - Evan Lester
- Department of Biochemistry, University of Colorado Boulder
- Medical Scientist Training Program, University of Colorado Anschutz Medical Campus
| | - Soraya Shehata
- Medical Scientist Training Program, University of Colorado Anschutz Medical Campus
- Department of Molecular, Cellular and Developmental Biology, University of Colorado Boulder
| | - James M Burke
- Department of Biochemistry, University of Colorado Boulder
| | - James A Hay
- Center for Communicable Disease Dynamics, Department of Epidemiology, Harvard T.H. Chan School of Public Health
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health
| | - Milind Tambe
- Center for Research on Computation and Society, Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University
| | - Michael J Mina
- Center for Communicable Disease Dynamics, Department of Epidemiology, Harvard T.H. Chan School of Public Health.
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School
| | - Roy Parker
- BioFrontiers Institute, University of Colorado Boulder.
- Department of Biochemistry, University of Colorado Boulder
- Department of Molecular, Cellular and Developmental Biology, University of Colorado Boulder
- Howard Hughes Medical Institute
| |
Collapse
|
31
|
Boersma S, Rabouw HH, Bruurs LJM, Pavlovič T, van Vliet ALW, Beumer J, Clevers H, van Kuppeveld FJM, Tanenbaum ME. Translation and Replication Dynamics of Single RNA Viruses. Cell 2020; 183:1930-1945.e23. [PMID: 33188777 PMCID: PMC7664544 DOI: 10.1016/j.cell.2020.10.019] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 08/14/2020] [Accepted: 10/11/2020] [Indexed: 01/09/2023]
Abstract
RNA viruses are among the most prevalent pathogens and are a major burden on society. Although RNA viruses have been studied extensively, little is known about the processes that occur during the first several hours of infection because of a lack of sensitive assays. Here we develop a single-molecule imaging assay, virus infection real-time imaging (VIRIM), to study translation and replication of individual RNA viruses in live cells. VIRIM uncovered a striking heterogeneity in replication dynamics between cells and revealed extensive coordination between translation and replication of single viral RNAs. Furthermore, using VIRIM, we identify the replication step of the incoming viral RNA as a major bottleneck of successful infection and identify host genes that are responsible for inhibition of early virus replication. Single-molecule imaging of virus infection is a powerful tool to study virus replication and virus-host interactions that may be broadly applicable to RNA viruses.
Collapse
Affiliation(s)
- Sanne Boersma
- Oncode Institute, Hubrecht Institute-KNAW and University Medical Center Utrecht, 3584 CT Utrecht, the Netherlands
| | - Huib H Rabouw
- Oncode Institute, Hubrecht Institute-KNAW and University Medical Center Utrecht, 3584 CT Utrecht, the Netherlands; Virology Division, Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, 3584 CL Utrecht, the Netherlands
| | - Lucas J M Bruurs
- Oncode Institute, Hubrecht Institute-KNAW and University Medical Center Utrecht, 3584 CT Utrecht, the Netherlands
| | - Tonja Pavlovič
- Oncode Institute, Hubrecht Institute-KNAW and University Medical Center Utrecht, 3584 CT Utrecht, the Netherlands
| | - Arno L W van Vliet
- Virology Division, Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, 3584 CL Utrecht, the Netherlands
| | - Joep Beumer
- Oncode Institute, Hubrecht Institute-KNAW and University Medical Center Utrecht, 3584 CT Utrecht, the Netherlands
| | - Hans Clevers
- Oncode Institute, Hubrecht Institute-KNAW and University Medical Center Utrecht, 3584 CT Utrecht, the Netherlands
| | - Frank J M van Kuppeveld
- Virology Division, Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, 3584 CL Utrecht, the Netherlands.
| | - Marvin E Tanenbaum
- Oncode Institute, Hubrecht Institute-KNAW and University Medical Center Utrecht, 3584 CT Utrecht, the Netherlands.
| |
Collapse
|
32
|
Freppel W, Merindol N, Rallu F, Bergevin M. Efficient SARS-CoV-2 detection in unextracted oro-nasopharyngeal specimens by rRT-PCR with the Seegene Allplex™ 2019-nCoV assay. Virol J 2020; 17:196. [PMID: 33339539 PMCID: PMC7746916 DOI: 10.1186/s12985-020-01468-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 12/04/2020] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND The fight against the COVID-19 pandemic has created an urgent need to rapidly detect infected people. The challenge for clinical laboratories has been finding a high throughput, cost-efficient, and accurate testing method in the context of extraction reagents shortage on a global scale. To answer this need, we studied SARS-CoV-2 detection in oro-nasopharyngeal (ONP) swabs stored in Universal Transport Media (UTM) or in RNase-free water by rRT-PCR with Seegene Allplex™ 2019-nCoV assay without RNA extraction. RESULTS Optimal results were obtained when swabs stored in UTM were diluted 1/5 and 1/2 in RNase-free water. Thermal lysis before rRT-PCR testing slightly improved detection rate. In addition, proteinase K (PK) treatment allowed for a significant reduction of invalid results and increased sensitivity for detection of low viral load specimens. In a panel of positive samples with all 3 viral genes amplified and N gene Cycle threshold values (Ct values) from 15 to 40, our detection rate was 98.9% with PK and 94.4% without. In a challenging panel of low positive samples with only the N gene being detectable at Ct values > 30, detection rate was increased from 53.3 to 76.7% with the addition of PK, and invalid rate fell off from 18.3 to 0%. Furthermore, we demonstrated that our method reliably detects specimens with Ct values up to 35, whereas false negative samples become frequent above this range. Finally, we show that swabs should be stored at - 70 °C rather than 4 °C when testing cannot be performed within 72 h of collection. CONCLUSION We successfully optimized the unextracted rRT-PCR process using the Seegene Allplex™ 2019-nCoV assay to detect SARS-CoV-2 RNAs in nasopharyngeal swabs. This improved method offers cost savings and turnaround time advantages compared to automated extraction, with high efficiency of detection that could play an important role in the surveillance of Covid-19.
Collapse
Affiliation(s)
- Wesley Freppel
- Institut national de la recherche scientifique, Centre Armand-Frappier Santé Biotechnologie, Laval, QC, H7V 1B7, Canada
| | - Natacha Merindol
- Département de chimie, biochimie et physique, Université du Québec à Trois-Rivières, Trois-Rivières, QC, Canada
- Centre Intégré Universitaire de santé et services sociaux de la Mauricie et Centre du Québec, Trois-Rivières, QC, Canada
| | - Fabien Rallu
- Microbiology Department, Sainte-Justine Mother and Child University Hospital, Montréal, QC, Canada
| | - Marco Bergevin
- Département de biologie médicale Hôpital Cité-de-la-Santé, Laval, QC, H7M 3L9, Canada.
| |
Collapse
|
33
|
Jones JE, Le Sage V, Lakdawala SS. Viral and host heterogeneity and their effects on the viral life cycle. Nat Rev Microbiol 2020; 19:272-282. [PMID: 33024309 PMCID: PMC7537587 DOI: 10.1038/s41579-020-00449-9] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/03/2020] [Indexed: 02/08/2023]
Abstract
Traditionally, the viral replication cycle is envisioned as a single, well-defined loop with four major steps: attachment and entry into a target cell, replication of the viral genome, maturation of viral proteins and genome packaging into infectious progeny, and egress and dissemination to the next target cell. However, for many viruses, a growing body of evidence points towards extreme heterogeneity in each of these steps. In this Review, we reassess the major steps of the viral replication cycle by highlighting recent advances that show considerable variability during viral infection. First, we discuss heterogeneity in entry receptors, followed by a discussion on error-prone and low-fidelity polymerases and their impact on viral diversity. Next, we cover the implications of heterogeneity in genome packaging and assembly on virion morphology. Last, we explore alternative egress mechanisms, including tunnelling nanotubes and host microvesicles. In summary, we discuss the implications of viral phenotypic, morphological and genetic heterogeneity on pathogenesis and medicine. This Review highlights common themes and unique features that give nuance to the viral replication cycle.
Collapse
Affiliation(s)
- Jennifer E Jones
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Valerie Le Sage
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Seema S Lakdawala
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA. .,Center for Vaccine Research, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| |
Collapse
|
34
|
Berchtikou A, Sokullu E, Nahar S, Tijssen P, Gauthier MA, Ozaki T. Comparative study on the inactivation of MS2 and M13 bacteriophages using energetic femtosecond lasers. JOURNAL OF BIOPHOTONICS 2020; 13:e202000109. [PMID: 32701195 DOI: 10.1002/jbio.202000109] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 05/18/2020] [Accepted: 05/19/2020] [Indexed: 06/11/2023]
Abstract
Femtosecond (fs) laser irradiation techniques are emerging tools for inactivating viruses that do not involve ionizing radiation. In this work, the inactivation of two bacteriophages representing protective capsids with different geometric constraints, that is, the near-spherical MS2 (with a diameter of 27 nm) and the filamentous M13 (with a length of 880 nm) is compared using energetic visible and near-infrared fs laser pulses with various energies, pulse durations, and exposure times. Intriguingly, the results show that inactivation using 400 nm lasers is substantially more efficient for MS2 compared to M13. In contrast, using 800 nm lasers, M13 was slightly more efficiently inactivated. For both viruses, the genome was exposed to a harmful environment upon fs-laser irradiation. However, in addition to the protection of the genome, the metastable capsids differ in many properties required for stepwise cell entry that may explain their dissimilar behavior after (partial) disassembly. For MS2, the dominant mechanism of fs-laser inactivation was the aggregation of the viral capsid proteins, whereas aggregation did not affect M13 inactivation, suggesting that the dominant mechanism of M13 inactivation was related to breaking of secondary protein links.
Collapse
Affiliation(s)
- Aziz Berchtikou
- INRS - Centre Énergie Matériaux Télécommunications, Varennes, Québec, Canada
| | - Esen Sokullu
- INRS - Centre Énergie Matériaux Télécommunications, Varennes, Québec, Canada
| | - Sharifun Nahar
- INRS - Centre Énergie Matériaux Télécommunications, Varennes, Québec, Canada
| | - Peter Tijssen
- INRS - Centre Armand-Frappier Santé Biotechnologie, Laval, Québec, Canada
| | - Marc A Gauthier
- INRS - Centre Énergie Matériaux Télécommunications, Varennes, Québec, Canada
| | - Tsuneyuki Ozaki
- INRS - Centre Énergie Matériaux Télécommunications, Varennes, Québec, Canada
| |
Collapse
|
35
|
Sayedahmed EE, Mittal SK. A potential approach for assessing the quality of human and nonhuman adenoviral vector preparations. CANADIAN JOURNAL OF VETERINARY RESEARCH = REVUE CANADIENNE DE RECHERCHE VETERINAIRE 2020; 84:314-318. [PMID: 33012981 PMCID: PMC7491003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 11/22/2019] [Indexed: 06/11/2023]
Abstract
Various types of human and nonhuman adenoviral (AdV) vectors are being used as gene delivery vectors in preclinical and clinical investigations. The objective of this study was to determine the ratio between the 2 best assays that would effectively address the variability in the titration of various AdV vectors in different cell lines and help obtain consistent results in preclinical and clinical studies using different AdV vectors. Here, we compared plaque-forming units, tissue culture infectious dose 50, focus-forming units (FFU), virus particle (VP) count, and genome copy number (GCN) of purified preparations of human AdV type C5, bovine AdV type 3, and porcine AdV type 3 to determine a correlation between infectious and noninfectious virus particles. Our results suggest that a VP:FFU or a VP:GCN ratio could accurately reflect the quality of an AdV preparation and could serve as an indicator to control batch-to-batch variability.
Collapse
Affiliation(s)
- Ekramy E Sayedahmed
- Department of Comparative Pathobiology, Purdue Institute for Immunology, Inflammation and Infectious Disease and Purdue University Center for Cancer Research, College of Veterinary Medicine, Purdue University, West Lafayette, Indiana 47907, USA
| | - Suresh K Mittal
- Department of Comparative Pathobiology, Purdue Institute for Immunology, Inflammation and Infectious Disease and Purdue University Center for Cancer Research, College of Veterinary Medicine, Purdue University, West Lafayette, Indiana 47907, USA
| |
Collapse
|
36
|
Lanteri MC, Santa-Maria F, Laughhunn A, Girard YA, Picard-Maureau M, Payrat JM, Irsch J, Stassinopoulos A, Bringmann P. Inactivation of a broad spectrum of viruses and parasites by photochemical treatment of plasma and platelets using amotosalen and ultraviolet A light. Transfusion 2020; 60:1319-1331. [PMID: 32333396 PMCID: PMC7317863 DOI: 10.1111/trf.15807] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 03/12/2020] [Accepted: 03/13/2020] [Indexed: 12/15/2022]
Abstract
BACKGROUND The INTERCEPT Blood System pathogen reduction technology (PRT), which uses amotosalen and ultraviolet A light treatment (amotosalen/UV-PRT), inactivates pathogens in plasma and platelet components (PCs). This review summarizes data describing the inactivation efficacy of amotosalen/UVA-PRT for a broad spectrum of viruses and parasites. METHODS Twenty-five enveloped viruses, six nonenveloped viruses (NEVs), and four parasites species were evaluated for sensitivity to amotosalen/UVA-PRT. Pathogens were spiked into plasma and PC at high titers. Samples were collected before and after PRT and assessed for infectivity with cell cultures or animal models. Log reduction factors (LRFs) were defined as the difference in infectious titers before and after amotosalen/UV-PRT. RESULTS LRFs of ≥4.0 log were reported for 19 pathogens in plasma (range, ≥4.0 to ≥7.6), 28 pathogens in PC in platelet additive solution (PC-PAS; ≥4.1-≥7.8), and 14 pathogens in PC in 100% plasma (PC-100%; (≥4.3->8.4). Twenty-five enveloped viruses and two NEVs were sensitive to amotosalen/UV-PRT; LRF ranged from >2.9 to ≥7.6 in plasma, 2.4 or greater to greater than 6.9 in PC-PAS and >3.5 to >6.5 in PC-100%. Infectious titers for four parasites were reduced by >4.0 log in all PC and plasma (≥4.9 to >8.4). CONCLUSION Amotosalen/UVA-PRT demonstrated effective infectious titer reduction for a broad spectrum of viruses and parasites. This confirms the capacity of this system to reduce the risk of viral and parasitic transfusion-transmitted infections by plasma and PCs in various geographies.
Collapse
Affiliation(s)
- Marion C Lanteri
- Department of Scientific Affairs, Cerus Corporation, Concord, California, USA
| | | | - Andrew Laughhunn
- Department of Microbiology, Cerus Corporation, Concord, California, USA
| | - Yvette A Girard
- Department of Microbiology, Cerus Corporation, Concord, California, USA
| | | | - Jean-Marc Payrat
- Department of Scientific Affairs, Cerus Europe BV, Amersfoort, The Netherlands
| | - Johannes Irsch
- Department of Scientific Affairs, Cerus Europe BV, Amersfoort, The Netherlands
| | | | - Peter Bringmann
- Department of Microbiology, Cerus Corporation, Concord, California, USA
| |
Collapse
|
37
|
Ramanathan HN, Zhang S, Douam F, Mar KB, Chang J, Yang PL, Schoggins JW, Ploss A, Lindenbach BD. A Sensitive Yellow Fever Virus Entry Reporter Identifies Valosin-Containing Protein (VCP/p97) as an Essential Host Factor for Flavivirus Uncoating. mBio 2020; 11:e00467-20. [PMID: 32291299 PMCID: PMC7157815 DOI: 10.1128/mbio.00467-20] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 03/16/2020] [Indexed: 01/17/2023] Open
Abstract
While the basic mechanisms of flavivirus entry and fusion are understood, little is known about the postfusion events that precede RNA replication, such as nucleocapsid disassembly. We describe here a sensitive, conditionally replication-defective yellow fever virus (YFV) entry reporter, YFVΔSK/Nluc, to quantitively monitor the translation of incoming, virus particle-delivered genomes. We validated that YFVΔSK/Nluc gene expression can be neutralized by YFV-specific antisera and requires known flavivirus entry pathways and cellular factors, including clathrin- and dynamin-mediated endocytosis, endosomal acidification, YFV E glycoprotein-mediated fusion, and cellular LY6E and RPLP1 expression. The initial round of YFV translation was shown to require cellular ubiquitylation, consistent with recent findings that dengue virus capsid protein must be ubiquitylated in order for nucleocapsid uncoating to occur. Importantly, translation of incoming YFV genomes also required valosin-containing protein (VCP)/p97, a cellular ATPase that unfolds and extracts ubiquitylated client proteins from large complexes. RNA transfection and washout experiments showed that VCP/p97 functions at a postfusion, pretranslation step in YFV entry. Finally, VCP/p97 activity was required by other flaviviruses in mammalian cells and by YFV in mosquito cells. Together, these data support a critical role for VCP/p97 in the disassembly of incoming flavivirus nucleocapsids during a postfusion step in virus entry.IMPORTANCE Flaviviruses are an important group of RNA viruses that cause significant human disease. The mechanisms by which flavivirus nucleocapsids are disassembled during virus entry remain unclear. Here, we used a yellow fever virus entry reporter, which expresses a sensitive reporter enzyme but does not replicate, to show that nucleocapsid disassembly requires the cellular protein-disaggregating enzyme valosin-containing protein, also known as p97.
Collapse
Affiliation(s)
- Harish N Ramanathan
- Department of Microbial Pathogenesis, Yale University, New Haven, Connecticut, USA
| | - Shuo Zhang
- Department of Microbial Pathogenesis, Yale University, New Haven, Connecticut, USA
| | - Florian Douam
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, USA
| | - Katrina B Mar
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Jinhong Chang
- Department of Experimental Therapeutics, The Baruch S. Blumberg Institute, Doylestown, Pennsylvania, USA
| | - Priscilla L Yang
- Department of Microbiology and the Blavatnik Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - John W Schoggins
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Alexander Ploss
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, USA
| | - Brett D Lindenbach
- Department of Microbial Pathogenesis, Yale University, New Haven, Connecticut, USA
| |
Collapse
|
38
|
Afrough S, Rhodes S, Evans T, White R, Benest J. Immunologic Dose-Response to Adenovirus-Vectored Vaccines in Animals and Humans: A Systematic Review of Dose-Response Studies of Replication Incompetent Adenoviral Vaccine Vectors when Given via an Intramuscular or Subcutaneous Route. Vaccines (Basel) 2020; 8:E131. [PMID: 32192058 PMCID: PMC7157626 DOI: 10.3390/vaccines8010131] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 03/09/2020] [Accepted: 03/10/2020] [Indexed: 12/21/2022] Open
Abstract
Optimal vaccine dosing is important to ensure the greatest protection and safety. Analysis of dose-response data, from previous studies, may inform future studies to determine the optimal dose. Implementing more quantitative modelling approaches in vaccine dose finding have been recently suggested to accelerate vaccine development. Adenoviral vectored vaccines are in advanced stage of development for a variety of prophylactic and therapeutic indications, however dose-response has not yet been systematically determined. To further inform adenoviral vectored vaccines dose identification, historical dose-response data should be systematically reviewed. A systematic literature review was conducted to collate and describe the available dose-response studies for adenovirus vectored vaccines. Of 2787 papers identified by Medline search strategy, 35 were found to conform to pre-defined criteria. The majority of studies were in mice or humans and studied adenovirus serotype 5. Dose-response data were available for 12 different immunological responses. The majority of papers evaluated three dose levels, only two evaluated more than five dose levels. The most common dosing range was 107-1010 viral particles in mouse studies and 108-1011 viral particles in human studies. Data were available on adenovirus vaccine dose-response, primarily on adenovirus serotype 5 backbones and in mice and humans. These data could be used for quantitative adenoviral vectored vaccine dose optimisation analysis.
Collapse
Affiliation(s)
- Sara Afrough
- Vaccitech Ltd., The Schrodinger Building, Heatley Road, The Oxford Science Park, Oxford OX4 4GE, UK;
| | - Sophie Rhodes
- Department of Infectious Disease Epidemiology, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, UK; (S.R.); (R.W.); (J.B.)
| | - Thomas Evans
- Vaccitech Ltd., The Schrodinger Building, Heatley Road, The Oxford Science Park, Oxford OX4 4GE, UK;
| | - Richard White
- Department of Infectious Disease Epidemiology, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, UK; (S.R.); (R.W.); (J.B.)
| | - John Benest
- Department of Infectious Disease Epidemiology, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, UK; (S.R.); (R.W.); (J.B.)
| |
Collapse
|
39
|
Segredo-Otero E, Sanjuán R. The role of spatial structure in the evolution of viral innate immunity evasion: A diffusion-reaction cellular automaton model. PLoS Comput Biol 2020; 16:e1007656. [PMID: 32040504 PMCID: PMC7034925 DOI: 10.1371/journal.pcbi.1007656] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 02/21/2020] [Accepted: 01/14/2020] [Indexed: 12/20/2022] Open
Abstract
Most viruses have evolved strategies for preventing interferon (IFN) secretion and evading innate immunity. Recent work has shown that viral shutdown of IFN secretion can be viewed as a social trait, since the ability of a given virus to evade IFN-mediated immunity depends on the phenotype of neighbor viruses. Following this idea, we investigate the role of spatial structure in the evolution of innate immunity evasion. For this, we model IFN signaling and viral spread using a spatially explicit approximation that combines a diffusion-reaction model and cellular automaton. Our results indicate that the benefits of preventing IFN secretion for a virus are strongly determined by spatial structure through paracrine IFN signaling. Therefore, innate immunity evasion can evolve as a cooperative or even altruistic trait based on indirect fitness effects that IFN shutdown exerts on other members of the viral population. We identify key factors determining whether evasion from IFN-mediated immunity should evolve, such as population bottlenecks occurring during viral transmission, the relative speed of cellular infection and IFN secretion, and the diffusion properties of the medium.
Collapse
Affiliation(s)
- Ernesto Segredo-Otero
- Institute for Integrative Systems Biology (I2SysBio), Consejo Superior de Investigaciones Científicas-Universitat de València, València, Spain
| | - Rafael Sanjuán
- Institute for Integrative Systems Biology (I2SysBio), Consejo Superior de Investigaciones Científicas-Universitat de València, València, Spain
| |
Collapse
|
40
|
Intact Viral Particle Counts Measured by Flow Virometry Provide Insight into the Infectivity and Genome Packaging Efficiency of Moloney Murine Leukemia Virus. J Virol 2020; 94:JVI.01600-19. [PMID: 31694951 DOI: 10.1128/jvi.01600-19] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 10/22/2019] [Indexed: 02/06/2023] Open
Abstract
Murine leukemia viruses (MLVs) have long been used as a research model to further our understanding of retroviruses. These simple gammaretroviruses have been studied extensively in various facets of science for nearly half a century, yet we have surprisingly little quantitative information about some of the basic features of these viral particles. These include parameters such as the genome packaging efficiency and the number of particles required for a productive infection. The reason for this knowledge gap relies primarily on the technical challenge of accurately measuring intact viral particles from infected cell supernatants. Virus-infected cells are well known to release soluble viral proteins, defective viruses, and extracellular vesicles (EVs) harboring viral proteins that may mimic viruses, all of which can skew virus titer quantifications. Flow virometry, also known as nanoscale flow cytometry or simply small-particle flow cytometry, is an emerging analytical method enabling high-throughput single-virus phenotypic characterizations. By utilizing the viral envelope glycoprotein (Env) and monodisperse light scattering characteristics as discerning parameters of intact virus particles, here, we analyzed the basic properties of Moloney MLV (M-MLV). We show that <24% of the total p30 capsid protein measured in infected cell supernatants is associated with intact viruses. We calculate that about one in five M-MLV particles contains a viral RNA genome pair and that individual intact particle infectivity is about 0.4%. These findings provide new insights into the characteristics of an extensively studied prototypical retrovirus while highlighting the benefits of flow virometry for the field of virology.IMPORTANCE Gammaretroviruses, or, more specifically, murine leukemia viruses (MLVs), have been a longstanding model for studying retroviruses. Although being extensively analyzed and dissected for decades, several facets of MLV biology are still poorly understood. One of the primary challenges has been enumerating total intact virus particles in a sample. While several analytical methods can precisely measure virus protein amounts, MLVs are known to induce the secretion of soluble and vesicle-associated viral proteins that can skew these measurements. With recent technological advances in flow cytometry, it is now possible to analyze viruses down to 90 nm in diameter with an approach called flow virometry. The technique has the added benefit of being able to discriminate viruses from extracellular vesicles and free viral proteins in order to confidently provide an intact viral particle count. Here, we used flow virometry to provide new insights into the basic characteristics of Moloney MLV.
Collapse
|
41
|
Khadivjam B, El Bilali N, Lippé R. Analysis and Sorting of Individual HSV-1 Particles by Flow Virometry. Methods Mol Biol 2020; 2060:289-303. [PMID: 31617185 DOI: 10.1007/978-1-4939-9814-2_16] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Flow cytometry has been instrumental in characterizing normal and infected cells. However, until recently, it was not possible to use such an approach to analyze small entities such as bacteria, let alone viruses, owing to the 0.5 μm resolution of most instruments. To circumvent this limitation, some laboratories decorate pathogens with antibodies or nanoparticles. Our laboratory instead exploits an alternative approach that relies on the staining of internal viral constituents with permeable SYTO dyes or the fluorescent tagging of individual viral proteinaceous components, whether capsid, tegument or glycoproteins. This opens up a range of new research avenues and, for example, enabled us to characterize individual herpes simplex virus type 1 particles, discern their different subpopulations, measure the heterogeneity of mature virions in terms of protein content, sort these viral particles with >90% purity and, for the first time, directly address the impact of this heterogeneity on viral fitness. This approach, coined flow virometry or nanoscale flow cytometry, allows for the study of a wide variety of pathogens with high statistical significance and the potential discovery of novel virulence factors.
Collapse
Affiliation(s)
- Bita Khadivjam
- Department of Pathology and Cell Biology, University of Montreal, Montreal, QC, Canada
| | - Nabil El Bilali
- Department of Pathology and Cell Biology, University of Montreal, Montreal, QC, Canada
| | - Roger Lippé
- Department of Pathology and Cell Biology, University of Montreal, Montreal, QC, Canada.
| |
Collapse
|
42
|
Cassidy T, Craig M. Determinants of combination GM-CSF immunotherapy and oncolytic virotherapy success identified through in silico treatment personalization. PLoS Comput Biol 2019; 15:e1007495. [PMID: 31774808 PMCID: PMC6880985 DOI: 10.1371/journal.pcbi.1007495] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 10/20/2019] [Indexed: 12/15/2022] Open
Abstract
Oncolytic virotherapies, including the modified herpes simplex virus talimogene laherparepvec (T-VEC), have shown great promise as potent instigators of anti-tumour immune effects. The OPTiM trial, in particular, demonstrated the superior anti-cancer effects of T-VEC as compared to systemic immunotherapy treatment using exogenous administration of granulocyte-macrophage colony-stimulating factor (GM-CSF). Theoretically, a combined approach leveraging exogenous cytokine immunotherapy and oncolytic virotherapy would elicit an even greater immune response and improve patient outcomes. However, regimen scheduling of combination immunostimulation and T-VEC therapy has yet to be established. Here, we calibrate a computational biology model of sensitive and resistant tumour cells and immune interactions for implementation into an in silico clinical trial to test and individualize combination immuno- and virotherapy. By personalizing and optimizing combination oncolytic virotherapy and immunostimulatory therapy, we show improved simulated patient outcomes for individuals with late-stage melanoma. More crucially, through evaluation of individualized regimens, we identified determinants of combination GM-CSF and T-VEC therapy that can be translated into clinically-actionable dosing strategies without further personalization. Our results serve as a proof-of-concept for interdisciplinary approaches to determining combination therapy, and suggest promising avenues of investigation towards tailored combination immunotherapy/oncolytic virotherapy. The advent of biological therapies for anti-cancer treatment has had a significant impact on patient outcomes. Targeted xenobiotics, including oncolytic viruses, in combination with existing, more general, immunotherapies like exogenous cytokines show great promise for continuing to improve cancer care. However, determining optimal combination regimens can be difficult, given that testing proposed schedules would require large cohorts of patients enrolled in clinical trials. Fortunately, computational biology can help to address treatment scheduling while simultaneously helping to unravel the mechanisms driving therapeutic responses. In this work, we integrate a mathematical model of GM-CSF and talimogene laherparepvec (T-VEC) oncolytic virotherapy into a virtual clinical trial to optimize their administration in combination. Using this platform, we inferred a clinically-actionable combination schedule for patients with late-stage melanoma that significantly improved virtual patient outcome when compared to GM-CSF and T-VEC monotherapies, and a standard combination strategy. Our results outline a rational approach to therapy optimization with meaningful consequences for how we effectively design and implement clinical trials to maximize their success, and how we treat melanoma with combined immuno- and virotherapy.
Collapse
Affiliation(s)
- Tyler Cassidy
- Department of Mathematics and Statistics, McGill University, Montreal, Quebec, Canada
| | - Morgan Craig
- Département de mathématiques et de statistique, Université de Montréal, Montreal, Quebec, Canada.,Department of Physiology, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
43
|
The Effects of Statistical Multiplicity of Infection on Virus Quantification and Infectivity Assays. Biophys J 2019; 114:2974-2985. [PMID: 29925033 DOI: 10.1016/j.bpj.2018.05.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 03/24/2018] [Accepted: 05/02/2018] [Indexed: 12/28/2022] Open
Abstract
Many biological assays are employed in virology to quantify parameters of interest. Two such classes of assays, virus quantification assays (VQAs) and infectivity assays (IAs), aim to estimate the number of viruses present in a solution and the ability of a viral strain to successfully infect a host cell, respectively. VQAs operate at extremely dilute concentrations, and results can be subject to stochastic variability in virus-cell interactions. At the other extreme, high viral-particle concentrations are used in IAs, resulting in large numbers of viruses infecting each cell, enough for measurable change in total transcription activity. Furthermore, host cells can be infected at any concentration regime by multiple particles, resulting in a statistical multiplicity of infection and yielding potentially significant variability in the assay signal and parameter estimates. We develop probabilistic models for statistical multiplicity of infection at low and high viral-particle-concentration limits and apply them to the plaque (VQA), endpoint dilution (VQA), and luciferase reporter (IA) assays. A web-based tool implementing our models and analysis is also developed and presented. We test our proposed new methods for inferring experimental parameters from data using numerical simulations and show improvement on existing procedures in all limits.
Collapse
|
44
|
Beier KT. Hitchhiking on the neuronal highway: Mechanisms of transsynaptic specificity. J Chem Neuroanat 2019; 99:9-17. [PMID: 31075318 PMCID: PMC6701464 DOI: 10.1016/j.jchemneu.2019.05.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 04/20/2019] [Accepted: 05/06/2019] [Indexed: 01/28/2023]
Abstract
Transsynaptic viral tracers are an invaluable neuroanatomical tool to define neuronal circuit connectivity across single or multiple synapses. There are variants that label either inputs or outputs of defined starter populations, most of which are based on the herpes and rabies viruses. However, we still have an incomplete understanding of the factors influencing specificity of neuron-neuron transmission and labeling of inputs vs. outputs. This article will touch on three topics: First, how specific are the directional transmission patterns of these viruses? Second, what are the properties that confer synaptic specificity of viral transmission? Lastly, what can we learn from this specificity, and can we use it to devise better transsynaptic tracers?
Collapse
Affiliation(s)
- Kevin T Beier
- Department of Physiology and Biophysics, Center for the Neurobiology of Learning and Memory, University of California, Irvine, Irvine, CA, 92697, United States.
| |
Collapse
|
45
|
Abstract
Many organisms disperse in groups, yet this process is understudied in viruses. Recent work, however, has uncovered different types of collective infectious units, all of which lead to the joint delivery of multiple viral genome copies to target cells, favoring co-infections. Collective spread of viruses can occur through widely different mechanisms, including virion aggregation driven by specific extracellular components, cloaking inside lipid vesicles, encasement in protein matrices, or binding to cell surfaces. Cell-to-cell viral spread, which allows the transmission of individual virions in a confined environment, is yet another mode of clustered virus dissemination. Nevertheless, the selective advantages of dispersing in groups remain poorly understood in most cases. Collective dispersal might have emerged as a means of sharing efficacious viral transmission vehicles. Alternatively, increasing the cellular multiplicity of infection may confer certain short-term benefits to viruses, such as overwhelming antiviral responses, avoiding early stochastic loss of viral components required for initiating infection, or complementing genetic defects present in different viral genomes. However, increasing infection multiplicity may also entail long-term costs, such as mutation accumulation and the evolution of defective particles or other types of cheater viruses. These costs and benefits, in turn, should depend on the genetic relatedness among collective infectious unit members. Establishing the genetic basis of collective viral dispersal and performing controlled experiments to pinpoint fitness effects at different spatial and temporal scales should help us clarify the implications of these spread modes for viral fitness, pathogenicity, and evolution.
Collapse
Affiliation(s)
- Rafael Sanjuán
- Institute for Integrative Systems Biology (I2SysBio), Consejo Superior de Investigaciones Científicas-Universitat de València, C/Catedrático Agustín Escardino 9, Paterna, València, Spain
| | - María-Isabel Thoulouze
- Institut Pasteur, Structural Virology Unit, Biofilm & Viral Transmission Group, Paris, France
| |
Collapse
|
46
|
Dunbar CA, Rayaprolu V, Wang JCY, Brown CJ, Leishman E, Jones-Burrage S, Trinidad JC, Bradshaw HB, Clemmer DE, Mukhopadhyay S, Jarrold MF. Dissecting the Components of Sindbis Virus from Arthropod and Vertebrate Hosts: Implications for Infectivity Differences. ACS Infect Dis 2019; 5:892-902. [PMID: 30986033 DOI: 10.1021/acsinfecdis.8b00356] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Sindbis virus (SINV) is an enveloped, single-stranded RNA virus, which is transmitted via mosquitos to a wide range of vertebrate hosts. SINV produced by vertebrate, baby hamster kidney (BHK) cells is more than an order of magnitude less infectious than SINV produced from mosquito (C6/36) cells. The cause of this difference is poorly understood. In this study, charge detection mass spectrometry was used to determine the masses of intact SINV particles isolated from BHK and C6/36 cells. The measured masses are substantially different: 52.88 MDa for BHK derived SINV and 50.69 MDa for C6/36 derived. Further analysis using several mass spectrometry-based methods and biophysical approaches indicates that BHK derived SINV has a substantially higher mass than C6/36 derived because in the lipid bilayer, there is a higher portion of lipids containing long chain fatty acids. The difference in lipid composition could influence the organization of the lipid bilayer. As a result, multiple stages of the viral lifecycle may be affected including assembly and budding, particle stability during transmission, and fusion events, all of which could contribute to the differences in infectivity.
Collapse
Affiliation(s)
- Carmen A. Dunbar
- Department of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Vamseedhar Rayaprolu
- Department of Biology, Indiana University, Jordan Hall, 1001 East Third Street, Bloomington, Indiana 47405, United States
| | - Joseph C.-Y. Wang
- Department of Molecular and Cellular Biochemistry, Indiana University, Simon Hall, 212 South Hawthorne Drive, Bloomington, Indiana 47405, United States
| | - Christopher J. Brown
- Department of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Emma Leishman
- Department of Psychological and Brain Sciences, Indiana University, 1101 East Tenth Street, Bloomington, Indiana 47405, United States
| | - Sara Jones-Burrage
- Department of Biology, Indiana University, Jordan Hall, 1001 East Third Street, Bloomington, Indiana 47405, United States
| | - Jonathan C. Trinidad
- Department of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Heather B. Bradshaw
- Department of Psychological and Brain Sciences, Indiana University, 1101 East Tenth Street, Bloomington, Indiana 47405, United States
| | - David E. Clemmer
- Department of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Suchetana Mukhopadhyay
- Department of Biology, Indiana University, Jordan Hall, 1001 East Third Street, Bloomington, Indiana 47405, United States
| | - Martin F. Jarrold
- Department of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, Indiana 47405, United States
| |
Collapse
|
47
|
Kalemera M, Mincheva D, Grove J, Illingworth CJR. Building a mechanistic mathematical model of hepatitis C virus entry. PLoS Comput Biol 2019; 15:e1006905. [PMID: 30883541 PMCID: PMC6445459 DOI: 10.1371/journal.pcbi.1006905] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 04/02/2019] [Accepted: 02/28/2019] [Indexed: 12/12/2022] Open
Abstract
The mechanism by which hepatitis C virus (HCV) gains entry into cells is a complex one, involving a broad range of host proteins. Entry is a critical phase of the viral lifecycle, and a potential target for therapeutic or vaccine-mediated intervention. However, the mechanics of HCV entry remain poorly understood. Here we describe a novel computational model of viral entry, encompassing the relationship between HCV and the key host receptors CD81 and SR-B1. We conduct experiments to thoroughly quantify the influence of an increase or decrease in receptor availability upon the extent of viral entry. We use these data to build and parameterise a mathematical model, which we then validate by further experiments. Our results are consistent with sequential HCV-receptor interactions, whereby initial interaction between the HCV E2 glycoprotein and SR-B1 facilitates the accumulation CD81 receptors, leading to viral entry. However, we also demonstrate that a small minority of viruses can achieve entry in the absence of SR-B1. Our model estimates the impact of the different obstacles that viruses must surmount to achieve entry; among virus particles attaching to the cell surface, around one third of viruses accumulate sufficient CD81 receptors, of which 4-8% then complete the subsequent steps to achieve productive infection. Furthermore, we make estimates of receptor stoichiometry; in excess of 10 receptors are likely to be required to achieve viral entry. Our model provides a tool to investigate the entry characteristics of HCV variants and outlines a framework for future quantitative studies of the multi-receptor dynamics of HCV entry.
Collapse
Affiliation(s)
- Mphatso Kalemera
- Institute of Immunity and Transplantation, Division of Infection and Immunity, University College London, United Kingdom
| | - Dilyana Mincheva
- Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| | - Joe Grove
- Institute of Immunity and Transplantation, Division of Infection and Immunity, University College London, United Kingdom
| | | |
Collapse
|
48
|
Andreu-Moreno I, Sanjuán R. Collective Infection of Cells by Viral Aggregates Promotes Early Viral Proliferation and Reveals a Cellular-Level Allee Effect. Curr Biol 2018; 28:3212-3219.e4. [PMID: 30318351 PMCID: PMC6783297 DOI: 10.1016/j.cub.2018.08.028] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 07/17/2018] [Accepted: 08/10/2018] [Indexed: 10/28/2022]
Abstract
In addition to the conventional release of free, individual virions, virus dispersal can involve multi-virion assemblies that collectively infect cells. However, the implications of collective infection for viral fitness remain largely unexplored. Using vesicular stomatitis virus, here, we compare the fitness of free versus saliva-aggregated viral particles. We find that aggregation has a positive effect on early progeny production, conferring a fitness advantage relative to equal numbers of free particles in most cell types. The advantage of aggregation resides, at least partially, in increasing the cellular multiplicity of infection. In mouse embryonic fibroblasts, the per capita, short-term viral progeny production peaked for a dose of ca. three infectious particles per cell. This reveals an Allee effect restricting early viral proliferation at the cellular level, which should select for dispersal in groups. We find that genetic complementation between deleterious mutants is probably not the mechanism underlying the fitness advantage of collective infection. Instead, this advantage is cell type dependent and correlates with cellular permissivity to the virus, as well as with the ability of host cells to mount an antiviral innate immune response.
Collapse
Affiliation(s)
- Iván Andreu-Moreno
- Institute for Integrative Systems Biology (I2SysBio), Universitat de València, C/Catedrático Agustín Escardino 9, Paterna, València 46980, Spain
| | - Rafael Sanjuán
- Institute for Integrative Systems Biology (I2SysBio), Universitat de València, C/Catedrático Agustín Escardino 9, Paterna, València 46980, Spain.
| |
Collapse
|
49
|
Sanjuán R. Collective properties of viral infectivity. Curr Opin Virol 2018; 33:1-6. [PMID: 30015082 DOI: 10.1016/j.coviro.2018.06.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 06/14/2018] [Accepted: 06/19/2018] [Indexed: 12/22/2022]
Abstract
Individual virions typically fail to infect cells. Such decoupling between virions and infectious units is most evident in multicomponent and other segmented viruses, but is also frequent in non-segmented viruses. Despite being a well-known observation, the causes and implications of low single-virion infectivity often remain unclear. In principle, this can originate from intrinsic genetic and/or structural virion defects, but also from host infection barriers that limit early viral proliferation. Hence, viruses may have evolved strategies to increase the per-virion likelihood of establishing successful infections. This can be achieved by adopting spread modes that elevate the multiplicity of infection at the cellular level, including direct cell-to-cell viral transfer, encapsulation of multiple virions in microvesicles or other intercellular vehicles, virion aggregation, and virion binding to microbiota. In turn, increasing the multiplicity of infection could favor the evolution of defective viruses, hence modifying the fitness value of these spread modes.
Collapse
Affiliation(s)
- Rafael Sanjuán
- Institute for Integrative Systems Biology (I2SysBio), Universitat de València, València 46980, Spain.
| |
Collapse
|
50
|
Leeks A, Segredo-Otero EA, Sanjuán R, West SA. Beneficial coinfection can promote within-host viral diversity. Virus Evol 2018; 4:vey028. [PMID: 30288300 PMCID: PMC6166523 DOI: 10.1093/ve/vey028] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
In many viral infections, a large number of different genetic variants can coexist within a host, leading to more virulent infections that are better able to evolve antiviral resistance and adapt to new hosts. But how is this diversity maintained? Why do faster-growing variants not outcompete slower-growing variants, and erode this diversity? One hypothesis is if there are mutually beneficial interactions between variants, with host cells infected by multiple different viral genomes producing more, or more effective, virions. We modelled this hypothesis with both mathematical models and simulations, and found that moderate levels of beneficial coinfection can maintain high levels of coexistence, even when coinfection is relatively rare, and when there are significant fitness differences between competing variants. Rare variants are more likely to be coinfecting with a different variant, and hence beneficial coinfection increases the relative fitness of rare variants through negative frequency dependence, and maintains diversity. We further find that coexisting variants sometimes reach unequal frequencies, depending on the extent to which different variants benefit from coinfection, and the ratio of variants which leads to the most productive infected cells. These factors could help drive the evolution of defective interfering particles, and help to explain why the different segments of multipartite viruses persist at different equilibrium frequencies.
Collapse
Affiliation(s)
- Asher Leeks
- Department of Zoology, University of Oxford, Oxford, UK
| | - Ernesto A Segredo-Otero
- Institute for Integrative Systems Biology (I2SysBio), Universitat de València, València, Spain
| | - Rafael Sanjuán
- Institute for Integrative Systems Biology (I2SysBio), Universitat de València, València, Spain
| | - Stuart A West
- Department of Zoology, University of Oxford, Oxford, UK
| |
Collapse
|