1
|
Schiano ME, Edo C, Blázquez-Blázquez E, Cerrada ML, Fernández-Piñas F, Rosal R. Use of a nanoplastic carrier for assessing the aquatic toxicity of an organo-phosphite polymer additive. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 361:124837. [PMID: 39209056 DOI: 10.1016/j.envpol.2024.124837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/24/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
This work reports the production of nanoplastics (NPs) from polypropylene (PP) free of the antioxidant Irgafos® 168 (IRG) and alkane oligomers (ALK). PP pellets were milled into a powder with particle sizes in the 100-500 μm range. Additives and oligomers were removed using dichloromethane, and the powder exposed to UV irradiation, followed by filtration through 1 μm filters. PP suspensions, free of antioxidant and oligomers, were reloaded with IRG and ALK to their original commercial concentrations. This approach allowed testing the aquatic toxicity of IRG at concentrations compromised by water solubility limits. Toxicity assays using the cladoceran Daphnia magna with 24-48 h immobilization of neonates as endpoint showed toxicity for NPs containing IRG, with EC20 (48 h) in the 1.8-3.5 mg/L range, that corresponded to IRG exposure <1.2 μg/L. Suspensions of PP containing ALK, but not IRG, exhibited low toxicity (EC20 > 20 mg/L). The results allowed estimating the toxicity of IRG with a EC50 value of 3.3 ± 1.1 μg/L. Assays with different proportions of IRG and its oxidized form showed no differences. This work demonstrated the aquatic toxicity of IRG, for which there were no previous data, and developed a method for testing the toxicity of non-polar additives without being limited by their solubility.
Collapse
Affiliation(s)
- Marica E Schiano
- Dipartimento di Farmacia, Università Degli Studi di Napoli Federico II, Via D. Montesano, 49, I-80131, Naples, Italy
| | - Carlos Edo
- Department of Chemical Engineering, Universidad de Alcalá, E-28871, Alcalá de Henares, Madrid, Spain
| | - Enrique Blázquez-Blázquez
- Instituto de Ciencia y Tecnología de Polímeros (ICTP-CSIC), Juan de la Cierva 3, 28006, Madrid, Spain
| | - María L Cerrada
- Instituto de Ciencia y Tecnología de Polímeros (ICTP-CSIC), Juan de la Cierva 3, 28006, Madrid, Spain
| | - Francisca Fernández-Piñas
- Department of Biology, Faculty of Science, Universidad Autónoma de Madrid, E-28049, Madrid, Spain; Centro de Investigación en Biodiversidad y Cambio Global (CIBC-UAM), Universidad Autónoma de Madrid, C Darwin 2, 28049, Madrid, Spain
| | - Roberto Rosal
- Department of Chemical Engineering, Universidad de Alcalá, E-28871, Alcalá de Henares, Madrid, Spain.
| |
Collapse
|
2
|
Pérez-Bondía E, Domeño C, Nerín C, Aznar M. Evaluation of new safety decontamination approaches at lab scale for recycled highdensity polyethylene (rHDPE) intended for food contact. J Chromatogr A 2024; 1736:465348. [PMID: 39260154 DOI: 10.1016/j.chroma.2024.465348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 09/03/2024] [Accepted: 09/04/2024] [Indexed: 09/13/2024]
Abstract
BACKGROUND The increasing use of plastic packaging materials generates concerns related to the environmental problem generated by their waste. As a result, the search for new recycling methodologies to extend the lifecycle of plastic packaging is becoming more important, without forgetting to ensure the safety of these materials. Currently, the use of recycled polyolefins as food contact materials is not widespread yet. This is because the decontamination processes currently available are insufficient to produce clean, safe materials suitable for such applications. This work is focused on the evaluation of the safety of recycled high-density polyethylene (rHDPE), and the search for strategies to achieve its decontamination. RESULTS To this end, three batches of flakes and three batches of pellets of rHDPE coming from the mechanical recycling of post-consumer milk bottles were analyzed. The analysis of the volatile and semi-volatile compounds present in the samples was carried out using gas chromatography-mass spectrometry (GC-MS), finding a total of 67 compounds. The strategy to achieve the decontamination of flakes and pellets of this material has been based on the application of high temperature and vacuum at lab scale, obtaining a clear decrease in volatile compounds, below 50% of the initial value in most cases when applying 120 °C during 5 h. The migration test performed in the samples (treated and untreated) to different food simulants (10 % ethanol and 3 % acetic acid, 95 % ethanol) revealed also a clear decrease of concentrations of volatiles. SIGNIFICANCE The findings are highly encouraging, demonstrating substantial progress toward the safe and effective use of rHDPE in specific food packaging applications. This indicates a significant step forward in the potential uses of rHDPE. Nevertheless, the lack of toxicity data for many migrants necessitates additional toxicological testing to obtain a more precise risk assessment.
Collapse
Affiliation(s)
- Estela Pérez-Bondía
- Analytical Chemistry Department, GUIA Group, I3A, University of Zaragoza, Mª de Luna 3, 50018 Zaragoza, Spain
| | - Celia Domeño
- Analytical Chemistry Department, GUIA Group, I3A, University of Zaragoza, Mª de Luna 3, 50018 Zaragoza, Spain
| | - Cristina Nerín
- Analytical Chemistry Department, GUIA Group, I3A, University of Zaragoza, Mª de Luna 3, 50018 Zaragoza, Spain
| | - Margarita Aznar
- Analytical Chemistry Department, GUIA Group, I3A, University of Zaragoza, Mª de Luna 3, 50018 Zaragoza, Spain.
| |
Collapse
|
3
|
Moro H, Vaya R, Casado M, Piña B, Domínguez-García P, Gómez-Canela C, Barata C. Biomonitoring emerging hazards of pharmaceuticals in river water using gut microbiome and behavioural Daphnia magna responses. CHEMOSPHERE 2024; 367:143612. [PMID: 39447773 DOI: 10.1016/j.chemosphere.2024.143612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/18/2024] [Accepted: 10/21/2024] [Indexed: 10/26/2024]
Abstract
A cost-effective Daphnia magna testing framework was applied to identify emerging hazards such as neurological and cardiovascular defects as well as antibiotic resistant genes (ARGs), related to pharmaceuticals present in waste water treated (WWTP) effluent discharged into rivers. D. magna juveniles were exposed during 48 h to water samples from three rivers in the vicinity of Barcelona (NE Spain), Besós, Llobregat and Onyar, upstream and downstream of WWTP discharging points. The analyses included measuring levels of 80 pharmaceutical residues in water samples by HPLC-MS, determination of the loads of different clinically relevant antibiotic resistant genes (ARGs) in both water samples and exposed animals, and assessment of toxic effects in feeding, heartbeat responses, and behavioural indicators. ARG prevalence in water, but not in gut microbiomes, was associated with the presence of bactericides in water. These results suggest that their levels were high enough to put a selective pressure over river microbial populations, but that Daphnia guts were not easily populated by environmental bacteria. Toxic effects were found in 20-43% of water samples, depending on the river, and related to water quality parameters and to pollutant levels. For example, heartbeats were correlated with salinity, whereas feeding impairment did so with high loads of suspended solids. In contrast, behavioural alterations were associated to the concentration of neuroactive chemicals. Accordingly, we hypothesize that measured neuroactive chemicals have caused the observed effects. If this also applies to local invertebrate populations, the environmental consequences may be severe and unpredictable.
Collapse
Affiliation(s)
- Hugo Moro
- Institute for Environmental Assessment and Water Research (IDAEA-CSIC), Jordi Girona 18, 08034, Barcelona, Spain
| | - Raquel Vaya
- Institute for Environmental Assessment and Water Research (IDAEA-CSIC), Jordi Girona 18, 08034, Barcelona, Spain
| | - Marta Casado
- Institute for Environmental Assessment and Water Research (IDAEA-CSIC), Jordi Girona 18, 08034, Barcelona, Spain
| | - Benjamín Piña
- Institute for Environmental Assessment and Water Research (IDAEA-CSIC), Jordi Girona 18, 08034, Barcelona, Spain
| | - Pol Domínguez-García
- Department of Analytical and Applied Chemistry, School of Engineering, Institut Químic de Sarrià-Universitat Ramon Llull, Via Augusta 390, 08017, Barcelona, Spain
| | - Cristian Gómez-Canela
- Department of Analytical and Applied Chemistry, School of Engineering, Institut Químic de Sarrià-Universitat Ramon Llull, Via Augusta 390, 08017, Barcelona, Spain
| | - Carlos Barata
- Institute for Environmental Assessment and Water Research (IDAEA-CSIC), Jordi Girona 18, 08034, Barcelona, Spain.
| |
Collapse
|
4
|
Gündoğdu S, Bour A, Köşker AR, Walther BA, Napierska D, Mihai FC, Syberg K, Hansen SF, Walker TR. Review of microplastics and chemical risk posed by plastic packaging on the marine environment to inform the Global Plastics Treaty. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:174000. [PMID: 38901589 DOI: 10.1016/j.scitotenv.2024.174000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 06/04/2024] [Accepted: 06/12/2024] [Indexed: 06/22/2024]
Abstract
Plastic overproduction and the resulting increase in consumption has made plastic pollution ubiquitous in all ecosystems. Recognizing this, the United Nations (UN) has started negotiations to establish a global treaty to end plastic pollution, especially in the marine environment. The basis of the treaty has been formulated in terms of turning off the tap, signaling the will to prevent plastic pollution at its source. Based on the distribution of plastic production by sector, the plastic packaging sector consumes the most plastic. The volume and variety of chemicals used in plastic packaging, most of which is single-use, is a major concern. Single-use plastics including packaging is one of the most dominant sources of plastic pollution. Plastic waste causes pollution in water, air and soil by releasing harmful chemicals into the environment and can also lead to exposure through contamination of food with micro- and nano-plastic particles and chemicals through packaging. Marine life and humans alike face risks from plastic uptake through bioaccumulation and biomagnification. While the contribution of plastics ingested to chemical pollution is relatively minor in comparison to other pathways of exposure, the effect of plastic waste on marine life and human consumption of seafood is beyond question. To reduce the long-term impact of plastic, it is crucial to establish a global legally binding instrument to ensure the implementation of upstream rather than downstream solutions. This will help to mitigate the impact of both chemicals and microplastics, including from packaging, on the environment.
Collapse
Affiliation(s)
- Sedat Gündoğdu
- Cukurova University Faculty of Fisheries Department of Basic Science, 01330 Adana, Türkiye.
| | - Agathe Bour
- Dept. of Science and Environment, Roskilde University, 4000 Roskilde, Denmark
| | - Ali Rıza Köşker
- Cukurova University Faculty of Fisheries Department of Seafood Processing, 01330 Adana, Türkiye
| | - Bruno Andreas Walther
- Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und Meeresforschung, Am Handelshafen 12, D-27570 Bremerhaven, Germany
| | | | - Florin-Constantin Mihai
- CERNESIM Center, Department of Exact Sciences and Natural Sciences, Institute of Interdisciplinary Research "Alexandru Ioan Cuza" University, Carol I Blvd 11, 700506 Iași, Romania
| | - Kristian Syberg
- Dept. of Science and Environment, Roskilde University, 4000 Roskilde, Denmark
| | - Steffen Foss Hansen
- Department of Environmental and Resource Engineering, Technical University of Denmark, Bygningstorvet, Building 115, 2800 Kongens Lyngby, Denmark
| | - Tony R Walker
- School for Resource and Environmental Studies, Dalhousie University, Halifax, NS B3H 4R2, Canada
| |
Collapse
|
5
|
Aljawish A, Souton E, Dahbi L, Severin I. Chemical and toxicological characterization of food contact recycled paperboard extracts. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2024; 41:1368-1384. [PMID: 39102379 DOI: 10.1080/19440049.2024.2387201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/17/2024] [Accepted: 07/25/2024] [Indexed: 08/07/2024]
Abstract
Food contact paperboard poses a potential risk of food contamination due to the possible release of chemicals (intentionally added or not), particularly in recycled paperboard. Water extractions were performed, according to wet food procedures, of paperboard samples collected from a manufacturer at the beginning and the end of a recycling production chain. Chemical analysis and hormonal activities in vitro of water extracts were studied. ICP-MS analysis confirmed the presence of 15 trace elements with lower concentrations after the recycling process, with the exception of chlorine. The chromatographic analyses demonstrated that the identified substances in the starting paperboard, before the recycling process, were approximately twice as high as in the end paperboard, after the recycling process. These substances included also natural wood products, chemical additives, and undesirable substances such as phthalates. Two major products (3,5-di-tert-butylphenol and methyl-2-pyrrolidone) were found in the starting and the end paperboard extracts, respectively. Two common substances were identified in both extracts: 2,4-di-tert-buthylphenol and dehydroabietic acid. Evaluation of potential endocrine disruption showed that the starting paperboard extract exhibited oestrogenic and antiandrogenic effects, while these effects nearly disappeared in the end paperboard extract. These results confirmed that the recycling process was effective in removing most of the contaminant substances.
Collapse
Affiliation(s)
- Abdulhadi Aljawish
- Conservatoire National des Arts et Métiers (CNAM), UMR SayFood, Paris, France
| | | | | | | |
Collapse
|
6
|
Kirchkeszner C, Petrovics N, Széles A, Koshman Y, Szabó BS, Nyiri Z, Novák M, Rikker T, Eke Z. Comprehensive study of retention influencing gas chromatographic parameters affecting linear retention indices. J Chromatogr A 2024; 1729:465052. [PMID: 38852268 DOI: 10.1016/j.chroma.2024.465052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 05/31/2024] [Accepted: 06/04/2024] [Indexed: 06/11/2024]
Abstract
Retention in gas chromatographic systems has a central role in the identification of compounds even if detectors providing spectral information are used. But linear retention indices (LRI) of a single compound originating from multiple sources tend to vary greatly, probably due to differences in the experimental settings of the determinations. The effect of gas chromatographic parameters on LRI has been investigated using 41 compounds - previously identified from food contact plastics - and n-alkanes (n-C7-n-C40) used as reference series. As the reproducibility of LRIs under the same conditions is generally very good, the smallest changes in the settings often caused statistically significant, though irrelevant changes in the LRI values. Therefore, a multicriterial scoring-ranking system has been worked out to highlight the LRI value differences. Our results highlight that column length, heating rate, and film thickness can all be the reasons of the varying published LRI values. We also demonstrated that for the reproduction of LRI data, the chemistry (and not simply the polarity) of the stationary phase is crucial.
Collapse
Affiliation(s)
- Csaba Kirchkeszner
- Hevesy György PhD School of Chemistry, Eötvös Loránd University, Pázmány Péter stny. 1/A, H-1117 Budapest, Hungary; Joint Research and Training Laboratory on Separation Techniques, Institute of Chemistry, Eötvös Loránd University, Pázmány Péter stny. 1/A, H-1117 Budapest, Hungary
| | - Noémi Petrovics
- Hevesy György PhD School of Chemistry, Eötvös Loránd University, Pázmány Péter stny. 1/A, H-1117 Budapest, Hungary; Joint Research and Training Laboratory on Separation Techniques, Institute of Chemistry, Eötvös Loránd University, Pázmány Péter stny. 1/A, H-1117 Budapest, Hungary
| | - Aliz Széles
- Joint Research and Training Laboratory on Separation Techniques, Institute of Chemistry, Eötvös Loránd University, Pázmány Péter stny. 1/A, H-1117 Budapest, Hungary
| | - Yelena Koshman
- Joint Research and Training Laboratory on Separation Techniques, Institute of Chemistry, Eötvös Loránd University, Pázmány Péter stny. 1/A, H-1117 Budapest, Hungary
| | - Bálint Sámuel Szabó
- Hevesy György PhD School of Chemistry, Eötvös Loránd University, Pázmány Péter stny. 1/A, H-1117 Budapest, Hungary; Joint Research and Training Laboratory on Separation Techniques, Institute of Chemistry, Eötvös Loránd University, Pázmány Péter stny. 1/A, H-1117 Budapest, Hungary
| | - Zoltán Nyiri
- Joint Research and Training Laboratory on Separation Techniques, Institute of Chemistry, Eötvös Loránd University, Pázmány Péter stny. 1/A, H-1117 Budapest, Hungary
| | - Márton Novák
- Joint Research and Training Laboratory on Separation Techniques, Institute of Chemistry, Eötvös Loránd University, Pázmány Péter stny. 1/A, H-1117 Budapest, Hungary; Doctoral School of Environmental Sciences, Eötvös Loránd University, Pázmány Péter stny. 1/A, H-1117 Budapest, Hungary
| | - Tamás Rikker
- Wessling International Research and Educational Center, Anonymus u. 6, H-1045 Budapest, Hungary
| | - Zsuzsanna Eke
- Joint Research and Training Laboratory on Separation Techniques, Institute of Chemistry, Eötvös Loránd University, Pázmány Péter stny. 1/A, H-1117 Budapest, Hungary; Wessling International Research and Educational Center, Anonymus u. 6, H-1045 Budapest, Hungary.
| |
Collapse
|
7
|
Rupérez D, Rivière M, Lebreton J, Aznar M, Silva F, Tessier A, Cariou R, Nerín C. Synthesis and quantification of oligoesters migrating from starch-based food packaging materials. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:135202. [PMID: 39029188 DOI: 10.1016/j.jhazmat.2024.135202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/06/2024] [Accepted: 07/12/2024] [Indexed: 07/21/2024]
Abstract
The term oligomer refers to structurally diverse compounds coming from incomplete polymerisation or polymer degradation. Their ability to migrate into foodstuffs along with recent studies about their bioavailability and toxicity have risen concerns about the scarcity of standards needed to perform thorough analytical and toxicological studies. In this work, migration extracts of three starch-based biopolymers films for the packaging of fruits and vegetables were analysed according to European legislation 10/2011. Oligoesters analysed by UPLC-MS(QTOF) were the main non-intentionally added substances (NIAS) identified in the food simulants. A stepwise synthesis approach was used to synthesise and isolate eleven cyclic and linear oligoester standards ranging from 2 to 8 monomers based on adipic acid, 1,4-butanediol, isophtalic acid and propylene glycol monomers. These standards were characterised by 1H and 13C NMR as well as high resolution mass spectrometry. An overall high purity of > 98 % was achieved as detected by UPLC-MS(Orbitrap). The standards were then used to unequivocally identify the oligoesters in the migration assay samples by comparing their UPLC-MS/MS spectra, and to semi-quantify or fully quantify these migrant oligoesters. The oligoester quantification results deemed safe only one out of the three biopolymer films according to their threshold of toxicological concern concept. The work herein described aims to contribute towards the oligomers knowledge gaps, opening the door for comprehensive toxicological risk and absorption, distribution, metabolism, excretion and toxicity (ADMET) studies.
Collapse
Affiliation(s)
- David Rupérez
- I3A - Aragon Institute of Engineering Research, University of Zaragoza, Zaragoza, Spain; Nantes Université, CNRS, CEISAM, UMR 6230, F-44000 Nantes, France
| | - Matthieu Rivière
- Nantes Université, CNRS, CEISAM, UMR 6230, F-44000 Nantes, France
| | - Jacques Lebreton
- Nantes Université, CNRS, CEISAM, UMR 6230, F-44000 Nantes, France
| | - Margarita Aznar
- I3A - Aragon Institute of Engineering Research, University of Zaragoza, Zaragoza, Spain
| | - Filomena Silva
- I3A - Aragon Institute of Engineering Research, University of Zaragoza, Zaragoza, Spain; ARAID - Agencia Aragonesa para la Investigación y el Desarrollo, Zaragoza, Spain; Faculty of Veterinary Medicine, University of Zaragoza, Spain
| | - Arnaud Tessier
- Nantes Université, CNRS, CEISAM, UMR 6230, F-44000 Nantes, France
| | | | - Cristina Nerín
- I3A - Aragon Institute of Engineering Research, University of Zaragoza, Zaragoza, Spain.
| |
Collapse
|
8
|
Stevens S, Bartosova Z, Völker J, Wagner M. Migration of endocrine and metabolism disrupting chemicals from plastic food packaging. ENVIRONMENT INTERNATIONAL 2024; 189:108791. [PMID: 38838488 DOI: 10.1016/j.envint.2024.108791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/22/2024] [Accepted: 05/30/2024] [Indexed: 06/07/2024]
Abstract
Plastics constitute a vast array of substances, with over 16000 known plastic chemicals, including intentionally and non-intentionally added substances. Thousands of chemicals, including toxic ones, are extractable from plastics, however, the extent to which these compounds migrate from everyday products into food or water remains poorly understood. This study aims to characterize the endocrine and metabolism disrupting activity, as well as the chemical composition of migrates from plastic food contact articles (FCAs) from four countries as significant sources of human exposure. Fourteen plastic FCAs covering seven polymer types with high global market shares were migrated into water and a water-ethanol mixture as food simulants according to European regulations. The migrates were analyzed using reporter gene assays for nuclear receptors relevant to human health and non-target chemical analysis to characterize the chemical composition. Chemicals migrating from each FCA interfered with at least two nuclear receptors, predominantly targeting pregnane X receptor (24/28 migrates). Moreover, peroxisome proliferator receptor gamma was activated by 19 out of 28 migrates, though mostly with lower potencies. Estrogenic and antiandrogenic activity was detected in eight and seven migrates, respectively. Fewer chemicals and less toxicity migrated into water compared to the water-ethanol mixture. However, 73 % of the 15 430 extractable chemical features also transferred into food simulants, and the water-ethanol migrates exhibited a similar toxicity prevalence compared to methanol extracts. The chemical complexity differed largely between FCAs, with 8 to 10631 chemical features migrating into food simulants. Using stepwise partial least squares regressions, we successfully narrowed down the list of potential active chemicals, identified known endocrine disrupting chemicals, such as triphenyl phosphate, and prioritized chemical features for further identification. This study demonstrates the migration of endocrine and metabolism disrupting chemicals from plastic FCAs into food simulants, rendering a migration of these compounds into food and beverages probable.
Collapse
Affiliation(s)
- Sarah Stevens
- Norwegian University of Science and Technology (NTNU), Department of Biology, 7491 Trondheim, Norway.
| | - Zdenka Bartosova
- Norwegian University of Science and Technology (NTNU), Department of Biology, 7491 Trondheim, Norway
| | - Johannes Völker
- Norwegian University of Science and Technology (NTNU), Department of Biology, 7491 Trondheim, Norway; Innovative Environmental Services (IES) Ltd, Benkenstrasse 260, 4108 Witterswill, Switzerland
| | - Martin Wagner
- Norwegian University of Science and Technology (NTNU), Department of Biology, 7491 Trondheim, Norway.
| |
Collapse
|
9
|
Megha KB, Anvitha D, Parvathi S, Neeraj A, Sonia J, Mohanan PV. Environmental impact of microplastics and potential health hazards. Crit Rev Biotechnol 2024:1-31. [PMID: 38915217 DOI: 10.1080/07388551.2024.2344572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 02/23/2024] [Indexed: 06/26/2024]
Abstract
Microscopic plastic (microplastic) pollutants threaten the earth's biodiversity and ecosystems. As a result of the progressive fragmentation of oversized plastic containers and products or manufacturing in small sizes, microplastics (particles of a diameter of 5 mm with no lower limit) are used in medicines, personal care products, and industry. The incidence of microplastics is found everywhere in the air, marine waters, land, and even food that humans and animals consume. One of the greatest concerns is the permanent damage that is created by plastic waste to our fragile ecosystem. The impossibility of the complete removal of all microplastic contamination from the oceans is one of the principal tasks of our governing body, research scientists, and individuals. Implementing the necessary measures to reduce the levels of plastic consumption is the only way to protect our environment. Cutting off the plastic flow is the key remedy to reducing waste and pollution, and such an approach could show immense significance. This review offers a comprehensive exploration of the various aspects of microplastics, encompassing their composition, types, properties, origins, health risks, and environmental impacts. Furthermore, it delves into strategies for comprehending the dynamics of microplastics within oceanic ecosystems, with a focus on averting their integration into every tier of the food chain.
Collapse
Affiliation(s)
- K B Megha
- Toxicology Division, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology (Govt. of India), Thiruvananthapuram, India
| | - D Anvitha
- Toxicology Division, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology (Govt. of India), Thiruvananthapuram, India
| | - S Parvathi
- Toxicology Division, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology (Govt. of India), Thiruvananthapuram, India
| | - A Neeraj
- Toxicology Division, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology (Govt. of India), Thiruvananthapuram, India
| | - J Sonia
- Toxicology Division, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology (Govt. of India), Thiruvananthapuram, India
| | - P V Mohanan
- Toxicology Division, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology (Govt. of India), Thiruvananthapuram, India
| |
Collapse
|
10
|
Hernández-Fernández J, Martinez-Trespalacios J, Marquez E. Development of a Measurement System Using Infrared Spectroscopy-Attenuated Total Reflectance, Principal Component Analysis and Artificial Intelligence for the Safe Quantification of the Nucleating Agent Sorbitol in Food Packaging. Foods 2024; 13:1200. [PMID: 38672873 PMCID: PMC11049462 DOI: 10.3390/foods13081200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/21/2023] [Accepted: 11/25/2023] [Indexed: 04/28/2024] Open
Abstract
Sorbitol derivatives and other additives are commonly used in various products, such as packaging or food packaging, to improve their mechanical, physical, and optical properties. To accurately and precisely evaluate the efficacy of adding sorbitol-type nucleating agents to these articles, their quantitative determination is essential. This study systematically investigated the quantification of sorbitol-type nucleating agents in food packaging made from impact copolymers of polypropylene (PP) and polyethylene (PE) using attenuated total reflectance infrared spectroscopy (ATR-FTIR) together with analysis of principal components (PCA) and machine learning algorithms. The absorption spectra revealed characteristic bands corresponding to the C-O-C bond and hydroxyl groups attached to the cyclohexane ring of the molecular structure of sorbitol, providing crucial information for identifying and quantifying sorbitol derivatives. PCA analysis showed that with the selected FTIR spectrum range and only the first two components, 99.5% of the variance could be explained. The resulting score plot showed a clear pattern distinguishing different concentrations of the nucleating agent, affirming the predictability of concentrations based on an impact copolymer. The study then employed machine learning algorithms (NN, SVR) to establish prediction models, evaluating their quality using metrics such as RMSE, R2, and RMSECV. Hyperparameter optimization was performed, and SVR showed superior performance, achieving near-perfect predictions (R2 = 0.9999) with an RMSE of 0.100 for both calibration and prediction. The chosen SVR model features two hidden layers with 15 neurons each and uses the Adam algorithm, balanced precision, and computational efficiency. The innovative ATR-FTIR coupled SVR model presented a novel and rapid approach to accurately quantify sorbitol-type nucleating agents in polymer production processes for polymer research and in the analysis of nucleating agent derivatives. The analytical performance of this method surpassed traditional methods (PCR, NN).
Collapse
Affiliation(s)
- Joaquín Hernández-Fernández
- Chemistry Program, Department of Natural and Exact Sciences, San Pablo Campus, University of Cartagena, Cartagena 130015, Colombia
- Department of Natural and Exact Sciences, Universidad de la Costa, Barranquilla 080002, Colombia
- Chemical Engineering Program, School of Engineering, Universidad Tecnológica de Bolivar, Parque Industrial y Tecnológico Carlos Vélez Pombo, Km 1 Vía Turbaco, Turbaco 130001, Colombia;
| | - Jose Martinez-Trespalacios
- Chemical Engineering Program, School of Engineering, Universidad Tecnológica de Bolivar, Parque Industrial y Tecnológico Carlos Vélez Pombo, Km 1 Vía Turbaco, Turbaco 130001, Colombia;
- Facultad de Arquitectura e Ingeniería, Institución Universitaria Mayor de Cartagena, Cartagena 130015, Colombia
| | - Edgar Marquez
- Grupo de Investigaciones en Química Y Biología, Departamento de Química Y Biología, Facultad de Ciencias Básicas, Universidad del Norte, Barranquilla 081007, Colombia
| |
Collapse
|
11
|
Jansen MAK, Andrady AL, Bornman JF, Aucamp PJ, Bais AF, Banaszak AT, Barnes PW, Bernhard GH, Bruckman LS, Busquets R, Häder DP, Hanson ML, Heikkilä AM, Hylander S, Lucas RM, Mackenzie R, Madronich S, Neale PJ, Neale RE, Olsen CM, Ossola R, Pandey KK, Petropavlovskikh I, Revell LE, Robinson SA, Robson TM, Rose KC, Solomon KR, Andersen MPS, Sulzberger B, Wallington TJ, Wang QW, Wängberg SÅ, White CC, Young AR, Zepp RG, Zhu L. Plastics in the environment in the context of UV radiation, climate change and the Montreal Protocol: UNEP Environmental Effects Assessment Panel, Update 2023. Photochem Photobiol Sci 2024; 23:629-650. [PMID: 38512633 DOI: 10.1007/s43630-024-00552-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 02/05/2024] [Indexed: 03/23/2024]
Abstract
This Assessment Update by the Environmental Effects Assessment Panel (EEAP) of the United Nations Environment Programme (UNEP) considers the interactive effects of solar UV radiation, global warming, and other weathering factors on plastics. The Assessment illustrates the significance of solar UV radiation in decreasing the durability of plastic materials, degradation of plastic debris, formation of micro- and nanoplastic particles and accompanying leaching of potential toxic compounds. Micro- and nanoplastics have been found in all ecosystems, the atmosphere, and in humans. While the potential biological risks are not yet well-established, the widespread and increasing occurrence of plastic pollution is reason for continuing research and monitoring. Plastic debris persists after its intended life in soils, water bodies and the atmosphere as well as in living organisms. To counteract accumulation of plastics in the environment, the lifetime of novel plastics or plastic alternatives should better match the functional life of products, with eventual breakdown releasing harmless substances to the environment.
Collapse
Affiliation(s)
- Marcel A K Jansen
- School of Biological, Earth and Environmental Sciences, University College, Cork, Ireland.
| | - Anthony L Andrady
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, USA
| | - Janet F Bornman
- Food Futures Institute, Murdoch University, Perth, Australia.
| | | | - Alkiviadis F Bais
- Laboratory of Atmospheric Physics, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Anastazia T Banaszak
- Unidad Académica Sistemas Arrecifales, Universidad Nacional Autónoma de México, Puerto Morelos, Mexico
| | - Paul W Barnes
- Department of Biological Sciences and Environment Program, Loyola University New Orleans, New Orleans, LA, USA
| | | | - Laura S Bruckman
- Department of Materials Science and Engineering, Case Western Reserve University, Cleveland, OH, USA
| | - Rosa Busquets
- Chemical and Pharmaceutical Sciences, Kingston University London, Kingston Upon Thames, UK
| | | | - Mark L Hanson
- Department of Environment and Geography, University of Manitoba, Winnipeg, MB, Canada
| | | | - Samuel Hylander
- Centre for Ecology and Evolution in Microbial Model Systems, Linnaeus University, Kalmar, Sweden
| | - Robyn M Lucas
- National Centre for Epidemiology and Population Health, College of Health and Medicine, Australian National University, Canberra, Australia
| | - Roy Mackenzie
- Centro Universitario Cabo de Hornos, Universidad de Magallanes, Puerto Williams, Chile
- Millennium Institute Biodiversity of Antarctic and Subantarctic Ecosystems BASE, Santiago, Chile
- Cape Horn International Center CHIC, Puerto Williams, Chile
| | - Sasha Madronich
- UV-B Monitoring and Research Program, Colorado State University, Fort Collins, CO, USA
| | - Patrick J Neale
- Smithsonian Environmental Research Center, Edgewater, MD, USA
| | - Rachel E Neale
- Population Health Program, QIMR Berghofer Medical Research Institute, Brisbane, Australia
- School of Public Health, University of Queensland, Brisbane, Australia
| | - Catherine M Olsen
- Population Health Program, QIMR Berghofer Medical Research Institute, Brisbane, Australia
- Frazer Institute, University of Queensland, Brisbane, Australia
| | - Rachele Ossola
- Department of Chemistry, Colorado State University, Fort Collins, CO, USA
| | | | - Irina Petropavlovskikh
- Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, CO, USA
- Ozone and Water Vapor Division, NOAA ESRL Global Monitoring Laboratory, Boulder, CO, USA
| | - Laura E Revell
- School of Physical and Chemical Sciences, University of Canterbury, Christchurch, New Zealand
| | - Sharon A Robinson
- Securing Antarctica's Environmental Future, University of Wollongong, Wollongong, Australia
- School of Earth, Atmospheric and Life Sciences, University of Wollongong, Wollongong, Australia
| | - T Matthew Robson
- UK National School of Forestry, University of Cumbria, Ambleside Campus, Ambleside, UK
- Organismal & Evolutionary Ecology, Viikki Plant Science Centre, Faculty of Biological & Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Kevin C Rose
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Keith R Solomon
- School of Environmental Sciences, University of Guelph, Guelph, Canada
| | - Mads P Sulbæk Andersen
- Department of Chemistry and Biochemistry, California State University Northridge, Northridge, CA, USA
- Department of Chemistry, University of Copenhagen, Copenhagen, Denmark
| | - Barbara Sulzberger
- Retired From Eawag: Swiss Federal Institute of Aquatic Science and Technology, Dubendorf, Switzerland
| | - Timothy J Wallington
- Center for Sustainable Systems, School for Environment and Sustainability, University of Michigan, Ann Arbor, MI, USA
| | - Qing-Wei Wang
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China
| | - Sten-Åke Wängberg
- Department of Marine Sciences, University of Gothenburg, Gothenburg, Sweden
| | | | | | - Richard G Zepp
- ORD/CEMM, US Environmental Protection Agency, Athens, GA, USA
| | - Liping Zhu
- State Key Lab for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, China
| |
Collapse
|
12
|
Wu X, Su QZ, Yue X, Li H, Yang J, Wu S, Zhong HN, Li D, Jianguo Z, Chen S, Dong B. Occurrence and prioritization of non-volatile substances in recycled PET flakes produced in China. CHEMOSPHERE 2024; 352:141508. [PMID: 38387658 DOI: 10.1016/j.chemosphere.2024.141508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 12/18/2023] [Accepted: 02/19/2024] [Indexed: 02/24/2024]
Abstract
Recycled PET (rPET) is gaining popularity for use in the production of new food contact materials (FCMs) under the context of circular economy. However, the limited information on contaminants in rPET from China and concerns about their potential risk are major obstacles to their use in FCM in China. Fifty-five non-volatile compounds were tentatively identified in 126 batches of hot-washed rPET flakes aimed for food packaging applications in China. Although the 55 substances are not necessarily migratable and may not end up in the contacting media, their presence indicates a need for proper management and control across the value chain. For this reason, the 55 substances prioritized on the basis of level of concerns and in-silico genotoxicity profiler. Among them, dimethoxyethyl phthalate, dibutyl phthalate, bis(2-ethylhexyl) phthalate were classified as level V substances, and Michler's ketone and 4-nitrophenol were both categorized as level V substances and had the genotoxic structure alert, while 2,4,5-trimethylaniline was specified with genotoxic structure alert. The above substances have high priority and may pose a potential risk to human health, therefore special attention should be paid to their migration from rPET. Aside from providing valuable information on non-volatile contaminants present in hot-washed rPET flakes coming from China, this article proposed a prioritization workflow that can be of great help to identify priority substances deserving special attention across the value chain.
Collapse
Affiliation(s)
- Xuefeng Wu
- National Reference Laboratory for Food Contact Material (Guangdong), Guangzhou Customs Technology Center, Guangzhou 510075, China
| | - Qi-Zhi Su
- National Reference Laboratory for Food Contact Material (Guangdong), Guangzhou Customs Technology Center, Guangzhou 510075, China
| | - Xin Yue
- Danone open science research center (OSRC), Shanghai, 201204, China
| | - Hanke Li
- National Reference Laboratory for Food Contact Material (Guangdong), Guangzhou Customs Technology Center, Guangzhou 510075, China
| | - Jinghua Yang
- Danone open science research center (OSRC), Shanghai, 201204, China
| | - Siliang Wu
- National Reference Laboratory for Food Contact Material (Guangdong), Guangzhou Customs Technology Center, Guangzhou 510075, China
| | - Huai-Ning Zhong
- National Reference Laboratory for Food Contact Material (Guangdong), Guangzhou Customs Technology Center, Guangzhou 510075, China; State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou, 510640, China.
| | - Dan Li
- National Reference Laboratory for Food Contact Material (Guangdong), Guangzhou Customs Technology Center, Guangzhou 510075, China
| | - Zheng Jianguo
- National Reference Laboratory for Food Contact Material (Guangdong), Guangzhou Customs Technology Center, Guangzhou 510075, China
| | - Sheng Chen
- National Reference Laboratory for Food Contact Material (Guangdong), Guangzhou Customs Technology Center, Guangzhou 510075, China
| | - Ben Dong
- National Reference Laboratory for Food Contact Material (Guangdong), Guangzhou Customs Technology Center, Guangzhou 510075, China.
| |
Collapse
|
13
|
Tumu K, Vorst K, Curtzwiler G. Understanding intentionally and non-intentionally added substances and associated threshold of toxicological concern in post-consumer polyolefin for use as food packaging materials. Heliyon 2024; 10:e23620. [PMID: 38187279 PMCID: PMC10770487 DOI: 10.1016/j.heliyon.2023.e23620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 10/27/2023] [Accepted: 12/08/2023] [Indexed: 01/09/2024] Open
Abstract
The use of post-consumer recycled (PCR) polymers in food contact materials (FCMs) can facilitate achieving a circular economy by reducing environmental waste and landfill accumulation. This study aimed to identify potentially harmful substances, including non-intentionally added substances (NIAS) and unapproved intentionally added substances (IAS), in polyolefin samples from material recovery facilities using gas-chromatography mass-spectrometry. Selected phthalates and bisphenols were quantified by targeted gas-chromatography tandem mass-spectrometry. The analysis detected 9 compounds in virgin polymers and 52 different compounds including alcohols, hydrocarbons, phenols in virgin and hydrocarbons, aromatic, phthalates, organic acids, per- and polyfluoroalkyl substances (PFAS) in PCR polymers. The Cramer classification system was used to assesses the Threshold of Toxicological Concern associated with the detected compounds. The PCR sample showed a slightly higher proportion of Cramer Class III compounds (48.08 %) than the virgin sample (44.44 %), indicating higher toxicity potential. Quantification detected bisphenols only in PCR material including BPA (2.88 ± 0.53 μg/g), BPS (5.12 ± 0.003 μg/g), BPF (3.42 ± 0.01 μg/g), and BADGE (4.638 μg/g). Phthalate concentrations were higher in PCR than virgin samples, with the highest levels detected as DIDP, at 6.18 ± 0.31 μg/g for PCR and 6.04 ± 0.02 for virgin. This study provides critical understanding of the safety and potential risks associated with using PCR polyolefins from different sources in food contact applications.
Collapse
Affiliation(s)
- Khairun Tumu
- Polymer and Food Protection Consortium, Iowa State University, Ames, IA 50011, USA
- Department of Food Science and Human Nutrition, Iowa State University, Ames, IA 50011, USA
| | - Keith Vorst
- Polymer and Food Protection Consortium, Iowa State University, Ames, IA 50011, USA
- Department of Food Science and Human Nutrition, Iowa State University, Ames, IA 50011, USA
| | - Greg Curtzwiler
- Polymer and Food Protection Consortium, Iowa State University, Ames, IA 50011, USA
- Department of Food Science and Human Nutrition, Iowa State University, Ames, IA 50011, USA
| |
Collapse
|
14
|
Bridson JH, Masterton H, Theobald B, Risani R, Doake F, Wallbank JA, Maday SDM, Lear G, Abbel R, Smith DA, Kingsbury JM, Pantos O, Northcott GL, Gaw S. Leaching and transformation of chemical additives from weathered plastic deployed in the marine environment. MARINE POLLUTION BULLETIN 2024; 198:115810. [PMID: 38006872 DOI: 10.1016/j.marpolbul.2023.115810] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 11/12/2023] [Accepted: 11/14/2023] [Indexed: 11/27/2023]
Abstract
Plastic pollution causes detrimental environmental impacts, which are increasingly attributed to chemical additives. However, the behaviour of plastic additives in the marine environment is poorly understood. We used a marine deployment experiment to examine the impact of weathering on the extractables profile, analysed by liquid chromatography-mass spectrometry, of four plastics at two locations over nine months in Aotearoa/New Zealand. The concentration of additives in polyethylene and oxo-degradable polyethylene were strongly influenced by artificial weathering, with deployment location and time less influential. By comparison, polyamide 6 and polyethylene terephthalate were comparatively inert with minimal change in response to artificial weathering or deployment time. Non-target analysis revealed extensive differentiation between non-aged and aged polyethylene after deployment, concordant with the targeted analysis. These observations highlight the need to consider the impact of leaching and weathering on plastic composition when quantifying the potential impact and risk of plastic pollution within receiving environments.
Collapse
Affiliation(s)
- James H Bridson
- Scion, Titokorangi Drive, Private Bag 3020, Rotorua 3046, New Zealand; School of Physical and Chemical Sciences, University of Canterbury, Christchurch 8041, New Zealand.
| | - Hayden Masterton
- Institute of Environmental Science and Research, 27 Creyke Road, Christchurch 8041, New Zealand
| | - Beatrix Theobald
- Scion, Titokorangi Drive, Private Bag 3020, Rotorua 3046, New Zealand
| | - Regis Risani
- Scion, Titokorangi Drive, Private Bag 3020, Rotorua 3046, New Zealand
| | - Fraser Doake
- Institute of Environmental Science and Research, 27 Creyke Road, Christchurch 8041, New Zealand
| | - Jessica A Wallbank
- School of Biological Sciences, University of Auckland, 3a Symonds Street, Auckland 1010, New Zealand
| | - Stefan D M Maday
- School of Biological Sciences, University of Auckland, 3a Symonds Street, Auckland 1010, New Zealand
| | - Gavin Lear
- School of Biological Sciences, University of Auckland, 3a Symonds Street, Auckland 1010, New Zealand
| | - Robert Abbel
- Scion, Titokorangi Drive, Private Bag 3020, Rotorua 3046, New Zealand
| | - Dawn A Smith
- Scion, Titokorangi Drive, Private Bag 3020, Rotorua 3046, New Zealand
| | - Joanne M Kingsbury
- Institute of Environmental Science and Research, 27 Creyke Road, Christchurch 8041, New Zealand
| | - Olga Pantos
- Institute of Environmental Science and Research, 27 Creyke Road, Christchurch 8041, New Zealand
| | - Grant L Northcott
- Northcott Research Consultants Limited, 20 River Oaks Place, Hamilton 3200, New Zealand
| | - Sally Gaw
- School of Physical and Chemical Sciences, University of Canterbury, Christchurch 8041, New Zealand
| |
Collapse
|
15
|
Song XC, Canellas E, Dreolin N, Goshawk J, Lv M, Qu G, Nerin C, Jiang G. Application of Ion Mobility Spectrometry and the Derived Collision Cross Section in the Analysis of Environmental Organic Micropollutants. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:21485-21502. [PMID: 38091506 PMCID: PMC10753811 DOI: 10.1021/acs.est.3c03686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 11/09/2023] [Accepted: 11/09/2023] [Indexed: 12/27/2023]
Abstract
Ion mobility spectrometry (IMS) is a rapid gas-phase separation technique, which can distinguish ions on the basis of their size, shape, and charge. The IMS-derived collision cross section (CCS) can serve as additional identification evidence for the screening of environmental organic micropollutants (OMPs). In this work, we summarize the published experimental CCS values of environmental OMPs, introduce the current CCS prediction tools, summarize the use of IMS and CCS in the analysis of environmental OMPs, and finally discussed the benefits of IMS and CCS in environmental analysis. An up-to-date CCS compendium for environmental contaminants was produced by combining CCS databases and data sets of particular types of environmental OMPs, including pesticides, drugs, mycotoxins, steroids, plastic additives, per- and polyfluoroalkyl substances (PFAS), polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), and polybrominated diphenyl ethers (PBDEs), as well as their well-known transformation products. A total of 9407 experimental CCS values from 4170 OMPs were retrieved from 23 publications, which contain both drift tube CCS in nitrogen (DTCCSN2) and traveling wave CCS in nitrogen (TWCCSN2). A selection of publicly accessible and in-house CCS prediction tools were also investigated; the chemical space covered by the training set and the quality of CCS measurements seem to be vital factors affecting the CCS prediction accuracy. Then, the applications of IMS and the derived CCS in the screening of various OMPs were summarized, and the benefits of IMS and CCS, including increased peak capacity, the elimination of interfering ions, the separation of isomers, and the reduction of false positives and false negatives, were discussed in detail. With the improvement of the resolving power of IMS and enhancements of experimental CCS databases, the practicability of IMS in the analysis of environmental OMPs will continue to improve.
Collapse
Affiliation(s)
- Xue-Chao Song
- School
of the Environment, Hangzhou Institute for Advanced Study, University of the Chinese Academy of Sciences, Hangzhou 310024, China
- State
Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese
Academy of Sciences, Beijing 100085, China
- Department
of Analytical Chemistry, Aragon Institute of Engineering Research
I3A, EINA, University of Zaragoza, Maria de Luna 3, 50018 Zaragoza, Spain
| | - Elena Canellas
- Department
of Analytical Chemistry, Aragon Institute of Engineering Research
I3A, EINA, University of Zaragoza, Maria de Luna 3, 50018 Zaragoza, Spain
| | - Nicola Dreolin
- Waters
Corporation, Stamford
Avenue, Altrincham Road, SK9 4AX Wilmslow, United Kingdom
| | - Jeff Goshawk
- Waters
Corporation, Stamford
Avenue, Altrincham Road, SK9 4AX Wilmslow, United Kingdom
| | - Meilin Lv
- State
Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese
Academy of Sciences, Beijing 100085, China
- Research
Center for Analytical Sciences, Department of Chemistry, College of
Sciences, Northeastern University, 110819 Shenyang, China
| | - Guangbo Qu
- School
of the Environment, Hangzhou Institute for Advanced Study, University of the Chinese Academy of Sciences, Hangzhou 310024, China
- State
Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese
Academy of Sciences, Beijing 100085, China
- Institute
of Environment and Health, Jianghan University, Wuhan 430056, China
| | - Cristina Nerin
- Department
of Analytical Chemistry, Aragon Institute of Engineering Research
I3A, EINA, University of Zaragoza, Maria de Luna 3, 50018 Zaragoza, Spain
| | - Guibin Jiang
- School
of the Environment, Hangzhou Institute for Advanced Study, University of the Chinese Academy of Sciences, Hangzhou 310024, China
- State
Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese
Academy of Sciences, Beijing 100085, China
- Institute
of Environment and Health, Jianghan University, Wuhan 430056, China
| |
Collapse
|
16
|
Chen Y, Li H, Huang H, Zhang B, Ye Z, Yu X, Shentu X. Recent Advances in Non-Targeted Screening of Compounds in Plastic-Based/Paper-Based Food Contact Materials. Foods 2023; 12:4135. [PMID: 38002192 PMCID: PMC10670899 DOI: 10.3390/foods12224135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 11/11/2023] [Accepted: 11/14/2023] [Indexed: 11/26/2023] Open
Abstract
Ensuring the safety of food contact materials has become a pressing concern in recent times. However, detecting hazardous compounds in such materials can be a complex task, and traditional screening methods may not be sufficient. Non-targeted screening technologies can provide comprehensive information on all detectable compounds, thereby supporting the identification, detection, and risk assessment of food contact materials. Nonetheless, the non-targeted screening of food contact materials remains a challenging issue. This paper presents a detailed review of non-targeted screening technologies relying on high-resolution mass spectrometry for plastic-based and paper-based food contact materials over the past five years. Methods of extracting, separating, concentrating, and enriching compounds, as well as migration experiments related to non-targeted screening, are examined in detail. Furthermore, instruments and devices of high-resolution mass spectrometry used in non-targeted screening technologies for food contact materials are discussed and summarized. The research findings aim to provide a theoretical basis and practical reference for the risk management of food contact materials and the development of relevant regulations and standards.
Collapse
Affiliation(s)
- Ya Chen
- College of Life Science, China Jiliang University, Hangzhou 310018, China;
| | - Hongyan Li
- Zhejiang Institute of Product Quality and Safety Science, Hangzhou 310018, China;
| | - Haizhi Huang
- College of Life Science, China Jiliang University, Hangzhou 310018, China;
| | - Biao Zhang
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, China Jiliang University, Hangzhou 310018, China; (B.Z.); (Z.Y.); (X.Y.)
| | - Zihong Ye
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, China Jiliang University, Hangzhou 310018, China; (B.Z.); (Z.Y.); (X.Y.)
| | - Xiaoping Yu
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, China Jiliang University, Hangzhou 310018, China; (B.Z.); (Z.Y.); (X.Y.)
| | - Xuping Shentu
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, China Jiliang University, Hangzhou 310018, China; (B.Z.); (Z.Y.); (X.Y.)
| |
Collapse
|
17
|
Canellas E, Vera P, Nerin C, Goshawk J, Dreolin N. Migration of contaminants from printed masks for children to saliva simulant using liquid chromatography coupled to ion mobility-time of flight-mass spectrometry and gas chromatography-mass spectrometry. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 267:115644. [PMID: 37924803 DOI: 10.1016/j.ecoenv.2023.115644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 10/22/2023] [Accepted: 10/26/2023] [Indexed: 11/06/2023]
Abstract
The COVID-19 pandemic has led to children using polymeric FFP2 and polymeric surgical masks on a daily basis. Children often bite and suck on such masks as they wear them closed to their mouths. In this work, the migration of contaminants from printed and unprinted children`s masks to a saliva simulant has been studied. Liquid chromatography coupled to ion-mobility quadrupole time-of-flight mass spectrometry has been used for the detection and identification of non-volatile migrants. An orthogonal projection to latent structures - discriminant analysis (OPLS-DA) was applied to compare the data from the printed masks against the data from the unprinted ones. Headspace solid phase microextraction coupled to gas chromatography mass spectrometry was used to assess the migration of volatile compounds. Thirteen compounds were found in the masks with concentrations ranging from 5 ng/g to 254 ng/g. Toluene, chlorobenzene, irganox 1076 and 2-(2-butoxyethoxy)ethyl acetate were all found to migrate from the masks studied. Moreover, differences between the migrants from printed and unprinted FFP2 masks were found. Octocrylene, 4-(dimethylamine)benzoate, methyl 3-(3,5-di-tert-butyl-4-hydroxyphenyl)propionate and tris(3-methylphenyl)phosphate were found to migrate only from printed masks. Toluene that migrated from all the masks studied and tris(3-methylphenyl)phosphate, that migrated only from printed masks, have been listed as hazardous priority substances.
Collapse
Affiliation(s)
- Elena Canellas
- GUIA Group, Department of Analytical Chemistry, University of Zaragoza, I3A, María de Luna, 3, 50018 Zaragoza, Spain.
| | - Paula Vera
- GUIA Group, Department of Analytical Chemistry, University of Zaragoza, I3A, María de Luna, 3, 50018 Zaragoza, Spain
| | - Cristina Nerin
- GUIA Group, Department of Analytical Chemistry, University of Zaragoza, I3A, María de Luna, 3, 50018 Zaragoza, Spain
| | - Jeff Goshawk
- Waters Corporation, Wilmslow, Stamford Avenue, Altrincham Road, SK9 4AX, United Kingdom
| | - Nicola Dreolin
- Waters Corporation, Wilmslow, Stamford Avenue, Altrincham Road, SK9 4AX, United Kingdom
| |
Collapse
|
18
|
Peñalver R, Pérez-Álvarez MD, Arroyo-Manzanares N, Campillo N, Viñas P. Determination of extractable pollutants from microplastics to vegetables: Accumulation and incorporation into the food chain. CHEMOSPHERE 2023; 341:140141. [PMID: 37696477 DOI: 10.1016/j.chemosphere.2023.140141] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 02/13/2023] [Accepted: 09/09/2023] [Indexed: 09/13/2023]
Abstract
The presence and impacts of microplastics (MPs) are being extensively researched and reviewed, especially in the marine environment. However, mobility, transportation routes, and accumulation of leaching compounds such as additives in plastic waste including MPs are scarcely studied. Information regarding ecotoxicity and leachability of compounds related to MPs contamination in the environment is limited. Current work presents the levels of leachates from plastic materials in edible-root and non-edible root vegetables. Samples were analyzed by static headspace and gas chromatography-mass spectrometry (SHS-GC-MS) and the presence of 93 putative compounds was accurately monitored in the samples by the usage of Mass Spectrometry-Data Independent Analysis software. The application of chemometrics to the SHS-GC-MS dataset allowed differentiation between the levels of plastic related compounds in edible root and non-edible root vegetables, the former showing a higher content of plastic leachates. For SHS sampling, 3 g of the sample were incubated at 130 °C for 35 min in the HS vial and toluene and naphthalene were added as internal standards for quantification purposes. The developed SHS-GC-MS methodology is straightforward, reliable, and robust and allowed the quantification of sixteen plastic associated compounds in the samples studied in a range from 0.14 to 28800 ng g-1 corresponding to 2,4-di-tert-butylphenol and p,α-dimethylstyrene, respectively. Several of the quantified compounds pointed out to potential contamination of polystyrene and/or polyvinyl chloride MPs.
Collapse
Affiliation(s)
- Rosa Peñalver
- Department of Analytical Chemistry, Faculty of Chemistry, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, E-30100, Murcia, Spain
| | - María Dolores Pérez-Álvarez
- Department of Analytical Chemistry, Faculty of Chemistry, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, E-30100, Murcia, Spain
| | - Natalia Arroyo-Manzanares
- Department of Analytical Chemistry, Faculty of Chemistry, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, E-30100, Murcia, Spain
| | - Natalia Campillo
- Department of Analytical Chemistry, Faculty of Chemistry, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, E-30100, Murcia, Spain
| | - Pilar Viñas
- Department of Analytical Chemistry, Faculty of Chemistry, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, E-30100, Murcia, Spain.
| |
Collapse
|
19
|
Ba F, Peng P, Zhang Y, Zhao Y. Classification and Identification of Contaminants in Recyclable Containers Based on a Recursive Feature Elimination-Light Gradient Boosting Machine Algorithm Using an Electronic Nose. MICROMACHINES 2023; 14:2047. [PMID: 38004904 PMCID: PMC10673532 DOI: 10.3390/mi14112047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 10/29/2023] [Accepted: 10/30/2023] [Indexed: 11/26/2023]
Abstract
Establishing an excellent recycling mechanism for containers is of great importance for environmental protection, so many technical approaches applied during the whole recycling stage have become popular research issues. Among them, classification is considered a key step, but this work is mostly achieved manually in practical applications. Due to the influence of human subjectivity, the classification accuracy often varies significantly. In order to overcome this shortcoming, this paper proposes an identification method based on a Recursive Feature Elimination-Light Gradient Boosting Machine (RFE-LightGBM) algorithm using electronic nose. Firstly, odor features were extracted, and feature datasets were then constructed based on the response data of the electronic nose to the detected gases. Afterwards, a principal component analysis (PCA) and the RFE-LightGBM algorithm were applied to reduce the dimensionality of the feature datasets, and the differences between these two methods were analyzed, respectively. Finally, the differences in the classification accuracies on the three datasets (the original feature dataset, PCA dimensionality reduction dataset, and RFE-LightGBM dimensionality reduction dataset) were discussed. The results showed that the highest classification accuracy of 95% could be obtained by using the RFE-LightGBM algorithm in the classification stage of recyclable containers, compared to the original feature dataset (88.38%) and PCA dimensionality reduction dataset (92.02%).
Collapse
Affiliation(s)
| | | | | | - Yongli Zhao
- School of Mechanical and Automotive Engineering, Shanghai University of Engineering Science, Shanghai 201620, China
| |
Collapse
|
20
|
Lee J, Jeong S. Approach to an answer to "How dangerous microplastics are to the human body": A systematic review of the quantification of MPs and simultaneously exposed chemicals. JOURNAL OF HAZARDOUS MATERIALS 2023; 460:132404. [PMID: 37672992 DOI: 10.1016/j.jhazmat.2023.132404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 08/08/2023] [Accepted: 08/24/2023] [Indexed: 09/08/2023]
Abstract
This review aims to facilitate future research on microplastics (MPs) in the environment using systematic and analytical protocols, ultimately contributing to assessment of the risk to human health due to continuous daily exposure to MPs. Despite extensive studies on MP abundance in environment, identification, and treatment, their negative effects on human health remain unknown due to the lack of proof from clinical studies and limited technology on the MP identification. To assess the risk of MPs to human health, the first step is to estimate MP intake via ingestion, inhalation, and dermal contact under standardized exposure conditions in daily life. Furthermore, rather than focusing on the sole MPs, migrating chemicals from plastic products should be quantified and their health risk be assessed concurrently with MP release. The critical factors influencing MP release and simultaneously exposed chemicals (SECs) must be investigated using a standardized identification method. This review summarises release sources, factors, and possible routes of MPs from the environment to the human body, and the quantification methods used in risk assessment. We also discussed the issues encountered in MP release and SEC migration. Consequently, this review provides directions for future MP studies that can answer questions about MP toxicity to human health.
Collapse
Affiliation(s)
- Jieun Lee
- Institute for Environment and Energy, Pusan National University, Busan 46241, South Korea
| | - Sanghyun Jeong
- Department of Environmental Engineering, Pusan National University, Busan 46241, South Korea.
| |
Collapse
|
21
|
Bou-Maroun E, Dahbi L, Dujourdy L, Ferret PJ, Chagnon MC. Migration Studies and Endocrine Disrupting Activities: Chemical Safety of Cosmetic Plastic Packaging. Polymers (Basel) 2023; 15:4009. [PMID: 37836058 PMCID: PMC10574997 DOI: 10.3390/polym15194009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 10/02/2023] [Accepted: 10/03/2023] [Indexed: 10/15/2023] Open
Abstract
The endocrine activity and endocrine disruptor (ED) chemical profiles of eleven plastic packaging materials covering five major polymer types (3PET, 1HDPE, 4LDPE, 2 PP, and 1SAN) were investigated using in vitro cell-based reporter-gene assays and a non-targeted chemical analysis using gas chromatography coupled to mass spectrometry (GC-MS). To mimic cosmetic contact, six simulants (acidic, alkaline, neutral water, ethanol 30%, glycerin, and paraffin) were used in migration assays performed by filling the packaging with simulant. After 1 month at 50 °C, simulants were concentrated by Solid Phase Extraction (SPE) or Liquid-Liquid Extraction (LLE). The migration profiles of seven major endocrine disrupting chemicals detected from GC-MS in the different materials and simulants were compared with Estrogen Receptor (ER) and Androgen Receptor (AR) activities. With low extraction of ED chemicals in aqueous simulants, no endocrine activities were recorded in the leachates. Paraffin was shown to be the most extracting simulant of antiandrogenic chemicals, while glycerin has estrogenic activities. Overall, ED chemical migration in paraffin was correlated with hormonal activity. The NIAS 2,4-di-tert-butyl phenol and 7,9-di-tert-butyl1-oxaspiro (4,5) deca-6,9-diene-2,8-dione were two major ED chemicals present in all polymers (principally in PP and PE) and in the highest quantity in paraffin simulant. The use of glycerin and liquid paraffin as cosmetic product simulants was demonstrated to be relevant and complementary for the safety assessment of released compounds with endocrine activities in this integrated strategy combining bioassays and analytical chemistry approaches.
Collapse
Affiliation(s)
- Elias Bou-Maroun
- PAM UMR A 02.102, Food and Microbiological Processes, Institut Agro, Université Bourgogne Franche-Comté, 1 Esplanade Erasme, F-21000 Dijon, France
| | - Laurence Dahbi
- Derttech “Packtox”, NUTOX, INSERM U1231, Université Bourgogne Franche-Comté, F-21000 Dijon, France; (L.D.); (M.-C.C.)
| | - Laurence Dujourdy
- Institut Agro Dijon, Service d’Appui à la Recherche, F-21000 Dijon, France;
| | - Pierre-Jacques Ferret
- Safety Assessment Department, Pierre Fabre Dermo-Cosmétique, 3 Avenue Hubert Curien, 31035 Toulouse, France;
| | - Marie-Christine Chagnon
- Derttech “Packtox”, NUTOX, INSERM U1231, Université Bourgogne Franche-Comté, F-21000 Dijon, France; (L.D.); (M.-C.C.)
| |
Collapse
|
22
|
Muncke J, Andersson AM, Backhaus T, Belcher SM, Boucher JM, Carney Almroth B, Collins TJ, Geueke B, Groh KJ, Heindel JJ, von Hippel FA, Legler J, Maffini MV, Martin OV, Peterson Myers J, Nadal A, Nerin C, Soto AM, Trasande L, Vandenberg LN, Wagner M, Zimmermann L, Thomas Zoeller R, Scheringer M. A vision for safer food contact materials: Public health concerns as drivers for improved testing. ENVIRONMENT INTERNATIONAL 2023; 180:108161. [PMID: 37758599 DOI: 10.1016/j.envint.2023.108161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 08/17/2023] [Accepted: 08/17/2023] [Indexed: 09/29/2023]
Abstract
Food contact materials (FCMs) and food contact articles are ubiquitous in today's globalized food system. Chemicals migrate from FCMs into foodstuffs, so called food contact chemicals (FCCs), but current regulatory requirements do not sufficiently protect public health from hazardous FCCs because only individual substances used to make FCMs are tested and mostly only for genotoxicity while endocrine disruption and other hazard properties are disregarded. Indeed, FCMs are a known source of a wide range of hazardous chemicals, and they likely contribute to highly prevalent non-communicable diseases. FCMs can also include non-intentionally added substances (NIAS), which often are unknown and therefore not subject to risk assessment. To address these important shortcomings, we outline how the safety of FCMs may be improved by (1) testing the overall migrate, including (unknown) NIAS, of finished food contact articles, and (2) expanding toxicological testing beyond genotoxicity to multiple endpoints associated with non-communicable diseases relevant to human health. To identify mechanistic endpoints for testing, we group chronic health outcomes associated with chemical exposure into Six Clusters of Disease (SCOD) and we propose that finished food contact articles should be tested for their impacts on these SCOD. Research should focus on developing robust, relevant, and sensitive in-vitro assays based on mechanistic information linked to the SCOD, e.g., through Adverse Outcome Pathways (AOPs) or Key Characteristics of Toxicants. Implementing this vision will improve prevention of chronic diseases that are associated with hazardous chemical exposures, including from FCMs.
Collapse
Affiliation(s)
- Jane Muncke
- Food Packaging Forum Foundation, Zurich, Switzerland.
| | - Anna-Maria Andersson
- Dept. of Growth and Reproduction, Rigshospitalet and Centre for Research and Research Training in Male Reproduction and Child Health (EDMaRC), Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Thomas Backhaus
- Dept of Biological and Environmental Sciences, University of Gothenburg, Sweden
| | - Scott M Belcher
- Dept. of Biological Sciences, North Carolina State University, Raleigh, NC, USA
| | | | | | | | - Birgit Geueke
- Food Packaging Forum Foundation, Zurich, Switzerland
| | - Ksenia J Groh
- Department of Environmental Toxicology, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
| | - Jerrold J Heindel
- Healthy Environment and Endocrine Disruptor Strategies, Durham, NC, USA
| | - Frank A von Hippel
- Mel & Enid Zuckerman College of Public Health, University of Arizona, Tucson, AZ, USA
| | - Juliette Legler
- Dept. of Population Health Sciences, Faculty of Veterinary Medicine, University of Utrecht, Netherlands
| | | | - Olwenn V Martin
- Plastic Waste Innovation Hub, Department of Arts and Science, University College London, UK
| | - John Peterson Myers
- Dept. of Chemistry, Carnegie Mellon University, Pittsburgh, PA, USA; Environmental Health Sciences, Charlottesville, VA, USA
| | - Angel Nadal
- IDiBE and CIBERDEM, Miguel Hernández University of Elche, Alicante, Spain
| | - Cristina Nerin
- Dept. of Analytical Chemistry, I3A, University of Zaragoza, Zaragoza, Spain
| | - Ana M Soto
- Department of Immunology, Tufts University School of Medicine, Boston, MA, USA; Centre Cavaillès, Ecole Normale Supérieure, Paris, France
| | - Leonardo Trasande
- College of Global Public Health and Grossman School of Medicine and Wagner School of Public Service, New York University, New York, NY, USA
| | - Laura N Vandenberg
- Department of Environmental Health Sciences, School of Public Health & Health Sciences, University of Massachusetts Amherst, Amherst, MA, USA
| | - Martin Wagner
- Dept. of Biology, Faculty of Natural Sciences, Norwegian University of Science and Technology, Trondheim, Norway
| | | | - R Thomas Zoeller
- Department of Environmental Health Sciences, School of Public Health & Health Sciences, University of Massachusetts Amherst, Amherst, MA, USA
| | - Martin Scheringer
- RECETOX, Masaryk University, Brno, Czech Republic; Department of Environmental Systems Science, ETH Zurich, Switzerland.
| |
Collapse
|
23
|
Diamantidou D, Tsochatzis E, Kalogiannis S, Alberto Lopes J, Theodoridis G, Gika H. Analysis of Migrant Cyclic PET Oligomers in Olive Oil and Food Simulants Using UHPLC-qTOF-MS. Foods 2023; 12:2739. [PMID: 37509830 PMCID: PMC10379823 DOI: 10.3390/foods12142739] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/10/2023] [Accepted: 07/14/2023] [Indexed: 07/30/2023] Open
Abstract
Oligomers are a particular category of non-intentionally added substances (NIAS) that may be present in food contact materials (FCMs), such as polyethylene terephthalate (PET), and consequently migrate into foods. Here, an ultra-high-pressure liquid chromatography quadruple time-of-flight mass spectrometry (UHPLC-qTOF-MS) method was developed for the analysis of 1st series cyclic PET oligomers in virgin olive oil (VOO) following a QuEChERS clean-up protocol. Oligomer migration was evaluated with two different migration experiments using bottles from virgin and recycled PET: one with VOO samples stored in household conditions for a year and one using the food simulant D2 (95% v/v ethanol in water) at 60 °C for 10 days. Calibration curves were constructed with fortified VOO samples, with the LOQs ranging from 10 to 50 µg L-1 and the recoveries ranging from 86.6 to 113.0%. Results showed no migration of PET oligomers in VOO. However, in the simulated study, significant amounts of all oligomers were detected, with the migration of cyclic PET trimers from recycled bottles being the most abundant. Additional substances were tentatively identified as linear derivatives of PET oligomers. Again, open trimer structures in recycled bottles gave the most significant signals.
Collapse
Affiliation(s)
- Dimitra Diamantidou
- Laboratory of Analytical Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
- Biomic_AUTh, Center for Interdisciplinary Research and Innovation (CIRI-AUTH), Balkan Center, B1.4, Thessaloniki, 10th km Thessaloniki-Thermi Rd, P.O. Box 8318, 57001 Thermi, Greece
| | - Emmanouil Tsochatzis
- Department of Food Science, iFOOD, Centre for Innovative Food Research, Aarhus University, Agro Food Park 48, 8200 Aarhus N, Denmark
| | - Stavros Kalogiannis
- Biomic_AUTh, Center for Interdisciplinary Research and Innovation (CIRI-AUTH), Balkan Center, B1.4, Thessaloniki, 10th km Thessaloniki-Thermi Rd, P.O. Box 8318, 57001 Thermi, Greece
- Department of Nutritional Sciences and Dietetics, International Hellenic University, 57400 Thessaloniki, Greece
| | - Joao Alberto Lopes
- European Innovation Council and SMEs Executive Agency (EISMEA), 1210 Brussels, Belgium
| | - Georgios Theodoridis
- Laboratory of Analytical Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
- Biomic_AUTh, Center for Interdisciplinary Research and Innovation (CIRI-AUTH), Balkan Center, B1.4, Thessaloniki, 10th km Thessaloniki-Thermi Rd, P.O. Box 8318, 57001 Thermi, Greece
| | - Helen Gika
- Biomic_AUTh, Center for Interdisciplinary Research and Innovation (CIRI-AUTH), Balkan Center, B1.4, Thessaloniki, 10th km Thessaloniki-Thermi Rd, P.O. Box 8318, 57001 Thermi, Greece
- School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| |
Collapse
|
24
|
Su QZ, Vera P, Nerín C. Combination of Structure Databases, In Silico Fragmentation, and MS/MS Libraries for Untargeted Screening of Non-Volatile Migrants from Recycled High-Density Polyethylene Milk Bottles. Anal Chem 2023. [PMID: 37262310 DOI: 10.1021/acs.analchem.2c05389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Chemical contamination is one of the major obstacles for mechanical recycling of plastics. In this article, we built and open-sourced an in-house MS/MS library containing more than 500 plastic-related chemicals and developed mspcompiler, an R package, for the compilation of various libraries. We then proposed a workflow to process untargeted screening data acquired by liquid chromatography high-resolution mass spectrometry. These tools were subsequently employed to data originating from recycled high-density polyethylene (rHDPE) obtained from milk bottles. A total of 83 compounds were identified, with 66 easily annotated by making use of our in-house MS/MS libraries and the mspcompiler R package. In silico fragmentation combined with data obtained from gas chromatography-mass spectrometry and lists of chemicals related to plastics were used to identify those remaining unknown. A pseudo-multiple reaction monitoring method was also applied to sensitively target and screen the identified chemicals in the samples. Quantification results demonstrated that a good sorting of postconsumer materials and a better recycling technology may be necessary for food contact applications. Removal or reduction of non-volatile substances, such as octocrylene and 2-ethylhexyl-4-methoxycinnamate, is still challenging but vital for the safe use of rHDPE as food contact materials.
Collapse
Affiliation(s)
- Qi-Zhi Su
- Department of Analytical Chemistry, GUIA Group, I3A, EINA, University of Zaragoza, María de Luna 3, 50018 Zaragoza, Spain
- National Reference Laboratory for Food Contact Material (Guangdong), Guangzhou Customs Technology Center, Guangzhou 510075, China
| | - Paula Vera
- Department of Analytical Chemistry, GUIA Group, I3A, EINA, University of Zaragoza, María de Luna 3, 50018 Zaragoza, Spain
| | - Cristina Nerín
- Department of Analytical Chemistry, GUIA Group, I3A, EINA, University of Zaragoza, María de Luna 3, 50018 Zaragoza, Spain
| |
Collapse
|
25
|
Tsochatzis ED, Vidal NP, Bai W, Diamantidou D, Theodoridis G, Martinez MM. Untargeted screening and in silico toxicity assessment of semi- and non-volatile compounds migrating from polysaccharide-based food contact materials. Food Chem 2023; 425:136499. [PMID: 37285625 DOI: 10.1016/j.foodchem.2023.136499] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 05/05/2023] [Accepted: 05/29/2023] [Indexed: 06/09/2023]
Abstract
The chemical safety of representative polysaccharide films made with pea starch, organocatalytic acetylated pea starch and pectin was investigated at different migration conditions (20 °C/10 days, 70 °C/2 h) using two official simulants signifying hydrophilic (simulant A, 10% ethanol) or lipophilic (simulant D1, 50% ethanol) foods. Migrating semi-volatile and non-volatile compounds were identified and semi-quantified by ultra-high performance liquid chromatography-trap ion mobility time-of-flight mass spectrometry (UHPLC-TIMS-TOF-MS/MS), whereas their toxicity was evaluated by in silico models based on qualitative structure activity (QSAR). Physicochemical analysis revealed polymer wash-off into the simulants. Migration testing at 70 °C for 2 h using simulant D1 resulted in detectable concentrations of glycerol (≤72.1 mg/kg), monoacetylated maltose (≤6.5 mg/kg), and dibutyl phthalate (DBP) (≤0.5 mg/kg, compliant with the existing legislative migration limits) in samples containing acetylated starch. Migrating 3-β-galactopyranosyl glucose (≤8.9 mg/kg) and 2,5-diketo-d-gluconic acid (≤4.9 mg/kg) were detected at 20 °C/10 days. In-silico toxicity emphasized no significant toxicity and categorized organocatalytic acetylated pea starch of no safety concern.
Collapse
Affiliation(s)
- Emmanouil D Tsochatzis
- Centre for Innovative Food (CiFOOD), Department of Food Science, Aarhus University, Agro Food Park 48, Aarhus N 8200, Denmark
| | - Natalia P Vidal
- Centre for Innovative Food (CiFOOD), Department of Food Science, Aarhus University, Agro Food Park 48, Aarhus N 8200, Denmark; Aarhus Institute of Advanced Studies (AIAS), Aarhus University, DK-8000 Aarhus, Denmark
| | - Wenqiang Bai
- Centre for Innovative Food (CiFOOD), Department of Food Science, Aarhus University, Agro Food Park 48, Aarhus N 8200, Denmark
| | - Dimitra Diamantidou
- Laboratory of Analytical Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; Biomic_AUTh, Center for Interdisciplinary Research and Innovation (CIRI-AUTH), Balkan Center B1.4, 10th Km Thessaloniki-Thermi Rd, P.O. Box 8318, Thessaloniki, Greece
| | - Georgios Theodoridis
- Laboratory of Analytical Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; Biomic_AUTh, Center for Interdisciplinary Research and Innovation (CIRI-AUTH), Balkan Center B1.4, 10th Km Thessaloniki-Thermi Rd, P.O. Box 8318, Thessaloniki, Greece
| | - Mario M Martinez
- Centre for Innovative Food (CiFOOD), Department of Food Science, Aarhus University, Agro Food Park 48, Aarhus N 8200, Denmark.
| |
Collapse
|
26
|
Feng D, Li X, Fan X, Guo Y, Zhang J, Yuan H, Wang W, Zhao T, Han T. Cytotoxicity, endocrine disrupting activity, and chemical analysis of 42 food contact silicone rubber products. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 872:162298. [PMID: 36801328 DOI: 10.1016/j.scitotenv.2023.162298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 01/28/2023] [Accepted: 02/13/2023] [Indexed: 06/18/2023]
Abstract
After migration in 95 % ethanol (food simulant) at 70 °C for 2 h (accelerated conditions), the cytotoxicity and endocrine-disruption activity of 42 food contact silicone products (FCSPs) obtained from the Chinese market were studied. Of 31 kitchenwares, 96 % showed mild or above cytotoxicity (relative growth rate < 80 %) using the HeLa neutral red uptake test; and 84 % showed estrogenic (64 %), anti-estrogenic (19 %), androgenic (42 %), and anti-androgenic (39 %) activities by the Dual-luciferase reporter gene assay. The mold sample induced late phase HeLa apoptosis as detected by Annexin V-FITC/PI double staining flow cytometry, in addition, the migration of mold sample has a higher risk of endocrine disruption at high temperature usage. Encouragingly, 11 bottle nipples had neither cytotoxic nor hormonal activity. Utilizing multiple mass spectrometry techniques, non-intentionally added substances (NIASs) in 31 kitchenwares were analyzed, and the migration levels of 26 organic compounds and 21 metals were quantified, furthermore, the safe risk of single migrant was evaluated through their special migration limit (SML) or threshold of toxicological concern (TTC). Using "nchoosek" statement and Spearman's correlation analysis in MATLAB, the migration of 38 compounds or combinations including metals, plasticizers, methylsiloxanes, and lubricants, had strong correlation with cytotoxicity or hormonal activity. The coexistence of various chemical substances in migrants leads to complex biological toxicity of FCSPs, so it is very important to detect the toxicity of the final products. The combination of bioassays and chemical analyses are valuable tools to facilitate the identification and analyses of FCSPs and migrants that have potential safety risks.
Collapse
Affiliation(s)
- Di Feng
- School of Light Industry, Beijing Technology and Business University, Beijing, China.
| | - Xueyan Li
- School of Light Industry, Beijing Technology and Business University, Beijing, China.
| | - Xiaojie Fan
- School of Light Industry, Beijing Technology and Business University, Beijing, China
| | - Yifan Guo
- School of Light Industry, Beijing Technology and Business University, Beijing, China
| | - Jingwei Zhang
- School of Light Industry, Beijing Technology and Business University, Beijing, China
| | - Hang Yuan
- School of Light Industry, Beijing Technology and Business University, Beijing, China
| | - Wenjuan Wang
- School of Light Industry, Beijing Technology and Business University, Beijing, China
| | - Tingting Zhao
- Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, China
| | - Tian Han
- School of Light Industry, Beijing Technology and Business University, Beijing, China.
| |
Collapse
|
27
|
Guo J, Luo C, Wittkowski C, Fehr I, Chong Z, Kitzberger M, Alassali A, Zhao X, Leineweber R, Feng Y, Kuchta K. Screening the Impact of Surfactants and Reaction Conditions on the De-Inkability of Different Printing Ink Systems for Plastic Packaging. Polymers (Basel) 2023; 15:2220. [PMID: 37177366 PMCID: PMC10180929 DOI: 10.3390/polym15092220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/27/2023] [Accepted: 05/04/2023] [Indexed: 05/15/2023] Open
Abstract
One of the major applications (40% in Europe) of plastic is packaging, which is often printed to display required information and to deliver an attractive aesthetic for marketing purposes. However, printing ink can cause contamination in the mechanical recycling process. To mitigate this issue, the use of surfactants in an alkaline washing process, known as de-inking, has been employed to remove printing ink and improve the quality of recyclates. Despite the existence of this technology, there are currently no data linking the de-inking efficiency with typical printing ink compositions. Additionally, it is necessary to investigate the de-inking process under the process parameters of existing recycling plants, including temperature, NaOH concentration, and retention time. This study aims to evaluate the performance of commonly used printing inks with different compositions under various washing scenarios for plastic recycling in conjunction with different de-inking detergents containing surfactants or mixtures of surfactants. The results indicate that the pigments applied to the ink have no significant effect on the de-inking process, except for carbon black (PBk 7). Nitrocellulose (NC) binder systems exhibit high de-inkability (over 95%) under the condition of 55 °C and 1 wt.% NaOH. However, crosslinked binder systems can impede the de-inking effect, whether used as a binder system or as an overprint varnish (OPV). The de-inking process requires heating to 55 °C with 1 wt.% NaOH to achieve a substantial effect. Based on the findings in this work, breaking the Van der Waals forces, hydrogen bonds, and covalent bonds between the printing ink and plastic film is an essential step to achieve the de-inking effect. Further research is needed to understand the interaction between surfactants and printing inks, enabling the development of de-inkable printing inks and high-performance surfactants that allow for de-inking with less energy consumption. The surfactant and NaOH have a synergistic effect in cleaning the printing ink. NaOH provides a negative surface charge for the adsorption of the cationic head of the surfactant and can hydrolyze the covalent bonds at higher concentrations (>2 wt.%).
Collapse
Affiliation(s)
- Jinyang Guo
- Circular Resource Engineering and Management (CREM), Hamburg University of Technology (TUHH), Blohm Str. 15, 21079 Hamburg, Germany
| | - Cong Luo
- Circular Resource Engineering and Management (CREM), Hamburg University of Technology (TUHH), Blohm Str. 15, 21079 Hamburg, Germany
| | | | - Ingo Fehr
- Siegwerk Druckfarben AG_Co.KGaA, Alfred-Keller-Str. 55, 53721 Siegburg, Germany
| | - Zhikai Chong
- Circular Resource Engineering and Management (CREM), Hamburg University of Technology (TUHH), Blohm Str. 15, 21079 Hamburg, Germany
| | - Magdalena Kitzberger
- Circular Resource Engineering and Management (CREM), Hamburg University of Technology (TUHH), Blohm Str. 15, 21079 Hamburg, Germany
| | - Ayah Alassali
- Circular Resource Engineering and Management (CREM), Hamburg University of Technology (TUHH), Blohm Str. 15, 21079 Hamburg, Germany
| | - Xuezhi Zhao
- Polymer Research Institute, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Ralf Leineweber
- Siegwerk Druckfarben AG_Co.KGaA, Alfred-Keller-Str. 55, 53721 Siegburg, Germany
| | - Yujun Feng
- Polymer Research Institute, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Kerstin Kuchta
- Circular Resource Engineering and Management (CREM), Hamburg University of Technology (TUHH), Blohm Str. 15, 21079 Hamburg, Germany
| |
Collapse
|
28
|
Meng W, Sun H, Su G. Plastic packaging-associated chemicals and their hazards - An overview of reviews. CHEMOSPHERE 2023; 331:138795. [PMID: 37116723 DOI: 10.1016/j.chemosphere.2023.138795] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/02/2023] [Accepted: 04/25/2023] [Indexed: 05/10/2023]
Abstract
Plastic packaging contains residues from substances used during manufacturing, such as solvents, as well as non-intentionally added substances (NIAS), such as impurities, oligomers, or degradation products. By searching peer-reviewed literature, we found that at least 10,259 chemicals were related to plastic packaging materials, which include chemicals used during manufacturing and/or present in final packaging items. We then summarized and discussed their chemical structures, analytical instruments, migration characteristics, and hazard categories where possible. For plastic packaging chemicals, examination of the literature reveals gas and liquid chromatography hyphenated to a variety of accurate mass analyzers based on the use of high-resolution mass spectrometry is usually used for the identification of unknown migrants coming from plastic packaging. Chemical migration from food packaging is affected by several parameters, including the nature and complexity of the food, contact time, temperature of the system, type of packaging contact layer, and properties of the migrants. A review of the literature reveals that information on adverse effects is only available for approximately 1600 substances. Among them, it appears that additives are more toxic than monomers to wildlife and humans. Neurotoxicity accounted for the highest proportion of toxicity of all types of chemicals, while benzenoids, organic acids, and derivatives were the most toxic types of chemicals. Furthermore, studies have demonstrated that hydrocarbon derivatives, organic nitrogen compounds, and organometallic compounds have the highest proportions of dermatotoxicity, and organohalogen compounds have the highest proportions of hepatotoxicity. The main contributors to skin sensitization are organic salts. This study provides a basis for comprehensively publicizing information on chemicals in plastics, and could be helpful to better understand their potential risks to the environment and humans.
Collapse
Affiliation(s)
- Weikun Meng
- Key Laboratory of Environmental Remediation and Ecological Health, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Hao Sun
- Key Laboratory of Environmental Remediation and Ecological Health, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Guanyong Su
- Key Laboratory of Environmental Remediation and Ecological Health, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China.
| |
Collapse
|
29
|
Riboni N, Bianchi F, Cavazza A, Piergiovanni M, Mattarozzi M, Careri M. Mass Spectrometry-Based Techniques for the Detection of Non-Intentionally Added Substances in Bioplastics. SEPARATIONS 2023. [DOI: 10.3390/separations10040222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023] Open
Abstract
The safety of food contact materials is a hot topic since chemicals can migrate from packaging into food, thus raising health concerns about and/or producing changes in the organoleptic properties of foodstuffs. Migration tests are required to demonstrate the compliance with current regulations and to investigate the transferred compounds. In this context, mass spectrometry is the analytical technique of choice for the detection and quantitation of both intentionally added substances, such as antioxidants, stabilizers, processing aids, and non-intentionally added substances (NIAS). Untargeted strategies represent a major analytical challenge, providing a comprehensive fingerprinting of the packaging material and migrating components, allowing for NIAS identification. Hyphenated mass spectrometry-based techniques have been devised for screening the presence of migrating contaminants and for quantitation purposes. Both low-resolution (LRMS) and high-resolution (HRMS) methods were screened, with a special emphasis on the latter because of its capability to directly characterize food contact materials with minimal/no sample preparation, avoiding chromatographic separation, and reducing sample handling, analysis costs, and time. Examples related to the migration of contaminants from existing or newly developed bioplastic materials will be discussed, providing an overview of the most used MS-based methods, covering the state-of-the-art approaches from 2012 up to 2022.
Collapse
|
30
|
Landrigan PJ, Raps H, Cropper M, Bald C, Brunner M, Canonizado EM, Charles D, Chiles TC, Donohue MJ, Enck J, Fenichel P, Fleming LE, Ferrier-Pages C, Fordham R, Gozt A, Griffin C, Hahn ME, Haryanto B, Hixson R, Ianelli H, James BD, Kumar P, Laborde A, Law KL, Martin K, Mu J, Mulders Y, Mustapha A, Niu J, Pahl S, Park Y, Pedrotti ML, Pitt JA, Ruchirawat M, Seewoo BJ, Spring M, Stegeman JJ, Suk W, Symeonides C, Takada H, Thompson RC, Vicini A, Wang Z, Whitman E, Wirth D, Wolff M, Yousuf AK, Dunlop S. The Minderoo-Monaco Commission on Plastics and Human Health. Ann Glob Health 2023; 89:23. [PMID: 36969097 PMCID: PMC10038118 DOI: 10.5334/aogh.4056] [Citation(s) in RCA: 89] [Impact Index Per Article: 89.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 02/14/2023] [Indexed: 03/29/2023] Open
Abstract
Background Plastics have conveyed great benefits to humanity and made possible some of the most significant advances of modern civilization in fields as diverse as medicine, electronics, aerospace, construction, food packaging, and sports. It is now clear, however, that plastics are also responsible for significant harms to human health, the economy, and the earth's environment. These harms occur at every stage of the plastic life cycle, from extraction of the coal, oil, and gas that are its main feedstocks through to ultimate disposal into the environment. The extent of these harms not been systematically assessed, their magnitude not fully quantified, and their economic costs not comprehensively counted. Goals The goals of this Minderoo-Monaco Commission on Plastics and Human Health are to comprehensively examine plastics' impacts across their life cycle on: (1) human health and well-being; (2) the global environment, especially the ocean; (3) the economy; and (4) vulnerable populations-the poor, minorities, and the world's children. On the basis of this examination, the Commission offers science-based recommendations designed to support development of a Global Plastics Treaty, protect human health, and save lives. Report Structure This Commission report contains seven Sections. Following an Introduction, Section 2 presents a narrative review of the processes involved in plastic production, use, and disposal and notes the hazards to human health and the environment associated with each of these stages. Section 3 describes plastics' impacts on the ocean and notes the potential for plastic in the ocean to enter the marine food web and result in human exposure. Section 4 details plastics' impacts on human health. Section 5 presents a first-order estimate of plastics' health-related economic costs. Section 6 examines the intersection between plastic, social inequity, and environmental injustice. Section 7 presents the Commission's findings and recommendations. Plastics Plastics are complex, highly heterogeneous, synthetic chemical materials. Over 98% of plastics are produced from fossil carbon- coal, oil and gas. Plastics are comprised of a carbon-based polymer backbone and thousands of additional chemicals that are incorporated into polymers to convey specific properties such as color, flexibility, stability, water repellence, flame retardation, and ultraviolet resistance. Many of these added chemicals are highly toxic. They include carcinogens, neurotoxicants and endocrine disruptors such as phthalates, bisphenols, per- and poly-fluoroalkyl substances (PFAS), brominated flame retardants, and organophosphate flame retardants. They are integral components of plastic and are responsible for many of plastics' harms to human health and the environment.Global plastic production has increased almost exponentially since World War II, and in this time more than 8,300 megatons (Mt) of plastic have been manufactured. Annual production volume has grown from under 2 Mt in 1950 to 460 Mt in 2019, a 230-fold increase, and is on track to triple by 2060. More than half of all plastic ever made has been produced since 2002. Single-use plastics account for 35-40% of current plastic production and represent the most rapidly growing segment of plastic manufacture.Explosive recent growth in plastics production reflects a deliberate pivot by the integrated multinational fossil-carbon corporations that produce coal, oil and gas and that also manufacture plastics. These corporations are reducing their production of fossil fuels and increasing plastics manufacture. The two principal factors responsible for this pivot are decreasing global demand for carbon-based fuels due to increases in 'green' energy, and massive expansion of oil and gas production due to fracking.Plastic manufacture is energy-intensive and contributes significantly to climate change. At present, plastic production is responsible for an estimated 3.7% of global greenhouse gas emissions, more than the contribution of Brazil. This fraction is projected to increase to 4.5% by 2060 if current trends continue unchecked. Plastic Life Cycle The plastic life cycle has three phases: production, use, and disposal. In production, carbon feedstocks-coal, gas, and oil-are transformed through energy-intensive, catalytic processes into a vast array of products. Plastic use occurs in every aspect of modern life and results in widespread human exposure to the chemicals contained in plastic. Single-use plastics constitute the largest portion of current use, followed by synthetic fibers and construction.Plastic disposal is highly inefficient, with recovery and recycling rates below 10% globally. The result is that an estimated 22 Mt of plastic waste enters the environment each year, much of it single-use plastic and are added to the more than 6 gigatons of plastic waste that have accumulated since 1950. Strategies for disposal of plastic waste include controlled and uncontrolled landfilling, open burning, thermal conversion, and export. Vast quantities of plastic waste are exported each year from high-income to low-income countries, where it accumulates in landfills, pollutes air and water, degrades vital ecosystems, befouls beaches and estuaries, and harms human health-environmental injustice on a global scale. Plastic-laden e-waste is particularly problematic. Environmental Findings Plastics and plastic-associated chemicals are responsible for widespread pollution. They contaminate aquatic (marine and freshwater), terrestrial, and atmospheric environments globally. The ocean is the ultimate destination for much plastic, and plastics are found throughout the ocean, including coastal regions, the sea surface, the deep sea, and polar sea ice. Many plastics appear to resist breakdown in the ocean and could persist in the global environment for decades. Macro- and micro-plastic particles have been identified in hundreds of marine species in all major taxa, including species consumed by humans. Trophic transfer of microplastic particles and the chemicals within them has been demonstrated. Although microplastic particles themselves (>10 µm) appear not to undergo biomagnification, hydrophobic plastic-associated chemicals bioaccumulate in marine animals and biomagnify in marine food webs. The amounts and fates of smaller microplastic and nanoplastic particles (MNPs <10 µm) in aquatic environments are poorly understood, but the potential for harm is worrying given their mobility in biological systems. Adverse environmental impacts of plastic pollution occur at multiple levels from molecular and biochemical to population and ecosystem. MNP contamination of seafood results in direct, though not well quantified, human exposure to plastics and plastic-associated chemicals. Marine plastic pollution endangers the ocean ecosystems upon which all humanity depends for food, oxygen, livelihood, and well-being. Human Health Findings Coal miners, oil workers and gas field workers who extract fossil carbon feedstocks for plastic production suffer increased mortality from traumatic injury, coal workers' pneumoconiosis, silicosis, cardiovascular disease, chronic obstructive pulmonary disease, and lung cancer. Plastic production workers are at increased risk of leukemia, lymphoma, hepatic angiosarcoma, brain cancer, breast cancer, mesothelioma, neurotoxic injury, and decreased fertility. Workers producing plastic textiles die of bladder cancer, lung cancer, mesothelioma, and interstitial lung disease at increased rates. Plastic recycling workers have increased rates of cardiovascular disease, toxic metal poisoning, neuropathy, and lung cancer. Residents of "fenceline" communities adjacent to plastic production and waste disposal sites experience increased risks of premature birth, low birth weight, asthma, childhood leukemia, cardiovascular disease, chronic obstructive pulmonary disease, and lung cancer.During use and also in disposal, plastics release toxic chemicals including additives and residual monomers into the environment and into people. National biomonitoring surveys in the USA document population-wide exposures to these chemicals. Plastic additives disrupt endocrine function and increase risk for premature births, neurodevelopmental disorders, male reproductive birth defects, infertility, obesity, cardiovascular disease, renal disease, and cancers. Chemical-laden MNPs formed through the environmental degradation of plastic waste can enter living organisms, including humans. Emerging, albeit still incomplete evidence indicates that MNPs may cause toxicity due to their physical and toxicological effects as well as by acting as vectors that transport toxic chemicals and bacterial pathogens into tissues and cells.Infants in the womb and young children are two populations at particularly high risk of plastic-related health effects. Because of the exquisite sensitivity of early development to hazardous chemicals and children's unique patterns of exposure, plastic-associated exposures are linked to increased risks of prematurity, stillbirth, low birth weight, birth defects of the reproductive organs, neurodevelopmental impairment, impaired lung growth, and childhood cancer. Early-life exposures to plastic-associated chemicals also increase the risk of multiple non-communicable diseases later in life. Economic Findings Plastic's harms to human health result in significant economic costs. We estimate that in 2015 the health-related costs of plastic production exceeded $250 billion (2015 Int$) globally, and that in the USA alone the health costs of disease and disability caused by the plastic-associated chemicals PBDE, BPA and DEHP exceeded $920 billion (2015 Int$). Plastic production results in greenhouse gas (GHG) emissions equivalent to 1.96 gigatons of carbon dioxide (CO2e) annually. Using the US Environmental Protection Agency's (EPA) social cost of carbon metric, we estimate the annual costs of these GHG emissions to be $341 billion (2015 Int$).These costs, large as they are, almost certainly underestimate the full economic losses resulting from plastics' negative impacts on human health and the global environment. All of plastics' economic costs-and also its social costs-are externalized by the petrochemical and plastic manufacturing industry and are borne by citizens, taxpayers, and governments in countries around the world without compensation. Social Justice Findings The adverse effects of plastics and plastic pollution on human health, the economy and the environment are not evenly distributed. They disproportionately affect poor, disempowered, and marginalized populations such as workers, racial and ethnic minorities, "fenceline" communities, Indigenous groups, women, and children, all of whom had little to do with creating the current plastics crisis and lack the political influence or the resources to address it. Plastics' harmful impacts across its life cycle are most keenly felt in the Global South, in small island states, and in disenfranchised areas in the Global North. Social and environmental justice (SEJ) principles require reversal of these inequitable burdens to ensure that no group bears a disproportionate share of plastics' negative impacts and that those who benefit economically from plastic bear their fair share of its currently externalized costs. Conclusions It is now clear that current patterns of plastic production, use, and disposal are not sustainable and are responsible for significant harms to human health, the environment, and the economy as well as for deep societal injustices.The main driver of these worsening harms is an almost exponential and still accelerating increase in global plastic production. Plastics' harms are further magnified by low rates of recovery and recycling and by the long persistence of plastic waste in the environment.The thousands of chemicals in plastics-monomers, additives, processing agents, and non-intentionally added substances-include amongst their number known human carcinogens, endocrine disruptors, neurotoxicants, and persistent organic pollutants. These chemicals are responsible for many of plastics' known harms to human and planetary health. The chemicals leach out of plastics, enter the environment, cause pollution, and result in human exposure and disease. All efforts to reduce plastics' hazards must address the hazards of plastic-associated chemicals. Recommendations To protect human and planetary health, especially the health of vulnerable and at-risk populations, and put the world on track to end plastic pollution by 2040, this Commission supports urgent adoption by the world's nations of a strong and comprehensive Global Plastics Treaty in accord with the mandate set forth in the March 2022 resolution of the United Nations Environment Assembly (UNEA).International measures such as a Global Plastics Treaty are needed to curb plastic production and pollution, because the harms to human health and the environment caused by plastics, plastic-associated chemicals and plastic waste transcend national boundaries, are planetary in their scale, and have disproportionate impacts on the health and well-being of people in the world's poorest nations. Effective implementation of the Global Plastics Treaty will require that international action be coordinated and complemented by interventions at the national, regional, and local levels.This Commission urges that a cap on global plastic production with targets, timetables, and national contributions be a central provision of the Global Plastics Treaty. We recommend inclusion of the following additional provisions:The Treaty needs to extend beyond microplastics and marine litter to include all of the many thousands of chemicals incorporated into plastics.The Treaty needs to include a provision banning or severely restricting manufacture and use of unnecessary, avoidable, and problematic plastic items, especially single-use items such as manufactured plastic microbeads.The Treaty needs to include requirements on extended producer responsibility (EPR) that make fossil carbon producers, plastic producers, and the manufacturers of plastic products legally and financially responsible for the safety and end-of-life management of all the materials they produce and sell.The Treaty needs to mandate reductions in the chemical complexity of plastic products; health-protective standards for plastics and plastic additives; a requirement for use of sustainable non-toxic materials; full disclosure of all components; and traceability of components. International cooperation will be essential to implementing and enforcing these standards.The Treaty needs to include SEJ remedies at each stage of the plastic life cycle designed to fill gaps in community knowledge and advance both distributional and procedural equity.This Commission encourages inclusion in the Global Plastic Treaty of a provision calling for exploration of listing at least some plastic polymers as persistent organic pollutants (POPs) under the Stockholm Convention.This Commission encourages a strong interface between the Global Plastics Treaty and the Basel and London Conventions to enhance management of hazardous plastic waste and slow current massive exports of plastic waste into the world's least-developed countries.This Commission recommends the creation of a Permanent Science Policy Advisory Body to guide the Treaty's implementation. The main priorities of this Body would be to guide Member States and other stakeholders in evaluating which solutions are most effective in reducing plastic consumption, enhancing plastic waste recovery and recycling, and curbing the generation of plastic waste. This Body could also assess trade-offs among these solutions and evaluate safer alternatives to current plastics. It could monitor the transnational export of plastic waste. It could coordinate robust oceanic-, land-, and air-based MNP monitoring programs.This Commission recommends urgent investment by national governments in research into solutions to the global plastic crisis. This research will need to determine which solutions are most effective and cost-effective in the context of particular countries and assess the risks and benefits of proposed solutions. Oceanographic and environmental research is needed to better measure concentrations and impacts of plastics <10 µm and understand their distribution and fate in the global environment. Biomedical research is needed to elucidate the human health impacts of plastics, especially MNPs. Summary This Commission finds that plastics are both a boon to humanity and a stealth threat to human and planetary health. Plastics convey enormous benefits, but current linear patterns of plastic production, use, and disposal that pay little attention to sustainable design or safe materials and a near absence of recovery, reuse, and recycling are responsible for grave harms to health, widespread environmental damage, great economic costs, and deep societal injustices. These harms are rapidly worsening.While there remain gaps in knowledge about plastics' harms and uncertainties about their full magnitude, the evidence available today demonstrates unequivocally that these impacts are great and that they will increase in severity in the absence of urgent and effective intervention at global scale. Manufacture and use of essential plastics may continue. However, reckless increases in plastic production, and especially increases in the manufacture of an ever-increasing array of unnecessary single-use plastic products, need to be curbed.Global intervention against the plastic crisis is needed now because the costs of failure to act will be immense.
Collapse
Affiliation(s)
- Philip J. Landrigan
- Global Observatory on Planetary Health, Boston College, Chestnut Hill, MA, US
- Centre Scientifique de Monaco, Medical Biology Department, MC
| | - Hervé Raps
- Centre Scientifique de Monaco, Medical Biology Department, MC
| | - Maureen Cropper
- Economics Department, University of Maryland, College Park, US
| | - Caroline Bald
- Global Observatory on Planetary Health, Boston College, Chestnut Hill, MA, US
| | | | | | | | | | | | | | - Patrick Fenichel
- Université Côte d’Azur
- Centre Hospitalier, Universitaire de Nice, FR
| | - Lora E. Fleming
- European Centre for Environment and Human Health, University of Exeter Medical School, UK
| | | | | | | | - Carly Griffin
- Global Observatory on Planetary Health, Boston College, Chestnut Hill, MA, US
| | - Mark E. Hahn
- Biology Department, Woods Hole Oceanographic Institution, US
- Woods Hole Center for Oceans and Human Health, US
| | - Budi Haryanto
- Department of Environmental Health, Universitas Indonesia, ID
- Research Center for Climate Change, Universitas Indonesia, ID
| | - Richard Hixson
- College of Medicine and Health, University of Exeter, UK
| | - Hannah Ianelli
- Global Observatory on Planetary Health, Boston College, Chestnut Hill, MA, US
| | - Bryan D. James
- Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution
- Department of Biology, Woods Hole Oceanographic Institution, US
| | | | - Amalia Laborde
- Department of Toxicology, School of Medicine, University of the Republic, UY
| | | | - Keith Martin
- Consortium of Universities for Global Health, US
| | - Jenna Mu
- Global Observatory on Planetary Health, Boston College, Chestnut Hill, MA, US
| | | | - Adetoun Mustapha
- Nigerian Institute of Medical Research, Lagos, Nigeria
- Lead City University, NG
| | - Jia Niu
- Department of Chemistry, Boston College, US
| | - Sabine Pahl
- University of Vienna, Austria
- University of Plymouth, UK
| | | | - Maria-Luiza Pedrotti
- Laboratoire d’Océanographie de Villefranche sur mer (LOV), Sorbonne Université, FR
| | | | | | - Bhedita Jaya Seewoo
- Minderoo Foundation, AU
- School of Biological Sciences, The University of Western Australia, AU
| | | | - John J. Stegeman
- Biology Department and Woods Hole Center for Oceans and Human Health, Woods Hole Oceanographic Institution, US
| | - William Suk
- Superfund Research Program, National Institutes of Health, National Institute of Environmental Health Sciences, US
| | | | - Hideshige Takada
- Laboratory of Organic Geochemistry (LOG), Tokyo University of Agriculture and Technology, JP
| | | | | | - Zhanyun Wang
- Technology and Society Laboratory, WEmpa-Swiss Federal Laboratories for Materials and Technology, CH
| | - Ella Whitman
- Global Observatory on Planetary Health, Boston College, Chestnut Hill, MA, US
| | | | | | - Aroub K. Yousuf
- Global Observatory on Planetary Health, Boston College, Chestnut Hill, MA, US
| | - Sarah Dunlop
- Minderoo Foundation, AU
- School of Biological Sciences, The University of Western Australia, AU
| |
Collapse
|
31
|
Dong B, Wu X, Wu S, Li H, Su QZ, Li D, Lin Q, Chen S, Zheng J, Zhu L, Zhong HN. Occurrence of volatile contaminants in recycled poly(ethylene terephthalate) by HS-SPME-GC×GC-QTOF-MS combined with chemometrics for authenticity assessment of geographical recycling regions. JOURNAL OF HAZARDOUS MATERIALS 2023; 445:130407. [PMID: 36444813 DOI: 10.1016/j.jhazmat.2022.130407] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 11/10/2022] [Accepted: 11/14/2022] [Indexed: 06/16/2023]
Abstract
A comparison was performed on various methods detecting the volatile contaminants (VCs) in recycled poly(ethylene terephthalate) (rPET) flakes, the results demonstrated that head-space solid phase micro-extraction combined with comprehensive two-dimensional gas chromatograph-tandem quadrupole-time-of-flight mass spectrometry (HS-SPME-GC×GC-QTOF-MS) was a sensitive, effective, accurate method, and successfully applied to analyze 57 rPET flakes collected from different recycling plants in China. A total of 212 VCs were tentatively identified, and the possible source were associated with plastic, food, and cosmetics. 45 VCs are classified as high-priority compounds with toxicity level IV or V and may pose a risk to human health. Combined chemometrics for further analysis revealed that significant differences among these three geographical recycling regions. 6, 7, and 6 volatile markers were chosen based on VIP values and S-plot among plant1 plant 2 and plant 3, respectively. The markers differed significantly between recycled rPET samples in three geographical recycling regions based on chemometrics analysis. The initial classification rate and cross-validation accuracy were 100% on the identified VCs. These significant differences demonstrate that a systematic study is needed to obtain a comprehensive data on the contamination of rPET for food contact applications in China.
Collapse
Affiliation(s)
- Ben Dong
- National Reference Laboratory for Food Contact Material (Guangdong), Guangzhou Customs Technology Center, Guangzhou 510075, China
| | - Xuefeng Wu
- National Reference Laboratory for Food Contact Material (Guangdong), Guangzhou Customs Technology Center, Guangzhou 510075, China
| | - Siliang Wu
- National Reference Laboratory for Food Contact Material (Guangdong), Guangzhou Customs Technology Center, Guangzhou 510075, China
| | - Hanke Li
- National Reference Laboratory for Food Contact Material (Guangdong), Guangzhou Customs Technology Center, Guangzhou 510075, China
| | - Qi-Zhi Su
- National Reference Laboratory for Food Contact Material (Guangdong), Guangzhou Customs Technology Center, Guangzhou 510075, China
| | - Dan Li
- National Reference Laboratory for Food Contact Material (Guangdong), Guangzhou Customs Technology Center, Guangzhou 510075, China
| | - Qinbao Lin
- Key Laboratory of Product Packaging and Logistics, Packaging Engineering Institute, Jinan University, Zhuhai 519070, China; Working Group on Sustainable Food Contact Materials, Guangzhou 510070, China
| | - Sheng Chen
- National Reference Laboratory for Food Contact Material (Guangdong), Guangzhou Customs Technology Center, Guangzhou 510075, China; Working Group on Sustainable Food Contact Materials, Guangzhou 510070, China
| | - Jianguo Zheng
- National Reference Laboratory for Food Contact Material (Guangdong), Guangzhou Customs Technology Center, Guangzhou 510075, China
| | - Lei Zhu
- China National Center for Food Safety Risk Assessment, Beijing 100022, China.
| | - Huai-Ning Zhong
- National Reference Laboratory for Food Contact Material (Guangdong), Guangzhou Customs Technology Center, Guangzhou 510075, China; Working Group on Sustainable Food Contact Materials, Guangzhou 510070, China; State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China.
| |
Collapse
|
32
|
Guan MY, Zhong HN, Wang ZW, Yu WW, Hu CY. Chemical contaminants from food contact materials and articles made from or containing wood and bamboo - a review. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2023; 40:434-453. [PMID: 36693199 DOI: 10.1080/19440049.2023.2167003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Due to recently introduced 'so-called' bio- and plant-based friendly food contact materials and articles (FCM/FCA), some neglected safety issues need to be raised. In this review, potential chemical contaminants from FCM/FCA made from or containing wood and bamboo are presented. Sources, migration, and analytical issues in determining contaminants including intentionally and non-intentionally added substances (IAS and NIAS, respectively) are reviewed. Most of the contaminants are components from melamine-formaldehyde-resin (MFR), paints and coatings, preservatives, and bleaching agents. Tableware made of MFR containing bamboo fibres as a filler are not always suitable for use as tableware since harmful amounts of melamine and formaldehyde can migrate from the tableware into food and even accelerate the degradation of certain polymers with which they are mixed. In addition, in the EU bamboo in plastic FCM is not authorized under Regulation (EU) 10/2011. Paints and coatings used to provide surface coverage for bamboo and wooden articles also pose a risk of migration of heavy metals. Limits on preservatives in wood FCM are covered by legislation in many countries, nevertheless their contamination should not be ignored. Some wood species are considered 'toxic' or contain 'toxic' constituents that should not be used in contact with food, which are worth considering for legislation. IAS analyses in bamboo and wooden FCM is generally not a problem, but has proven to be more challenging for NIAS. Due to a complex mixture of substances contained in plant-based materials, there is a need to improve databases for non-target screening of such chemicals.
Collapse
Affiliation(s)
- Mu-Ying Guan
- Department of Food Science & Engineering, Jinan University, Guangzhou City, China
| | - Huai-Ning Zhong
- National Reference Laboratory for Food Contact Material (Guangdong), Guangzhou Customs Technology Center, Guangzhou City, China
| | - Zhi-Wei Wang
- Packing Engineering Institute, Jinan University, Zhuhai, China
| | - Wen-Wen Yu
- Department of Food Science & Engineering, Jinan University, Guangzhou City, China
| | - Chang-Ying Hu
- Department of Food Science & Engineering, Jinan University, Guangzhou City, China
| |
Collapse
|
33
|
Tsochatzis ED, Lopes JA, Kappenstein O. Study of the ionic strength effect on the migration of polyamide 6 and 66 oligomers into liquid simulants by a LC-qTOF-MS method. Food Packag Shelf Life 2023. [DOI: 10.1016/j.fpsl.2022.101015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
34
|
Kim HS, Lee KY, Jung JS, Sin HS, Lee HG, Jang DY, Lee SH, Lim KM, Choi D. Comparison of migration and cumulative risk assessment of antioxidants, antioxidant degradation products, and other non-intentionally added substances from plastic food contact materials. Food Packag Shelf Life 2023. [DOI: 10.1016/j.fpsl.2023.101037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
35
|
Yang QH, Lin QB, Liao J, Ma HS, Wei XF, Wang Y, Xu X. Non-targeted screening for contaminants derived from food contact water-borne coatings and risk assessment based on (Q)SAR matrix. Food Packag Shelf Life 2023. [DOI: 10.1016/j.fpsl.2023.101036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
36
|
Gopal J, Muthu M. The COVID-19 pandemic redefining the mundane food packaging material industry? THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 861:160463. [PMID: 36503651 PMCID: PMC9701582 DOI: 10.1016/j.scitotenv.2022.160463] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 10/15/2022] [Accepted: 11/20/2022] [Indexed: 06/17/2023]
Abstract
COVID-19 pandemic has been the talk of the globe, as it swept across the world population, changing enumerable aspects. The pandemic affected all sectors directly or indirectly. The food sector took a direct hit. The food packaging sector rose to the occasion to serve and feed the pandemic affected, but there were interactions, reactions, and consequences that evolved through the course of the journey through the pandemic. The aim of this perspective is to address the importance of the food packaging industry (from the COVID-19 point of view) and to highlight the unpreparedness of the food packaging materials, for times as these. As the world has been asked to learn to live with Corona, improvisations are definitely necessary, the lapses in the system need to be rectified, and the entire packaging industry has to go through fortification to co-exist with Corona or confront something worse than Corona. This discussion is set out to understand the gravity of the actual situation, assimilating information available from the scattered shreds of reports. Food packaging materials were used, and plastic wastes were generated in bulks, single-use plastics for fear of contamination gained prominence, leading to an enormous turnover of wastes. Fear of Corona, sprayed overloads of sanitizers and disinfectants on food package material surfaces for surface sterilization. The food packages were tailored for food containment needs, never were they planned for sanitizer sprays. The consequences of these sanitization procedures are unprecedented, neglected and in the post-COVID-19 phase no action appears to have been taken. Corona took us by surprise this time, but next time atleast the food packaging industry needs to be fully equipped. Speculated consequences have been reviewed and plausible suggestions have been proposed. The need for extensive research focus in this direction in exploring the ground-reality has been highlighted.
Collapse
Affiliation(s)
- Judy Gopal
- Department of Research and Innovation, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Thandalam, Chennai 602105, Tamil Nadu, India
| | - Manikandan Muthu
- Department of Research and Innovation, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Thandalam, Chennai 602105, Tamil Nadu, India.
| |
Collapse
|
37
|
Zhang H, Su QZ, Shang GQ, Weng YX, Zhu L. Elucidation of Non-Intentionally Added Substances from Plant Fiber/Plastic Composites by UPLC-QTOF/MS. Foods 2023; 12:foods12030678. [PMID: 36766206 PMCID: PMC9913899 DOI: 10.3390/foods12030678] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 01/30/2023] [Accepted: 01/31/2023] [Indexed: 02/09/2023] Open
Abstract
Plant fiber/plastic composites (PPCs) have been widely used in food contact materials (FCMs) for many benefits, such as their claimed better environmental footprint compared to conventional plastics. However, their safety is still not fully understood and must be comprehensively evaluated. Non-volatiles extracted from six PPCs with different plant fibers and polymer matrices were characterized by employing ultra-high-performance liquid chromatography coupled to quadrupole time-of-flight mass spectrometry in combination with various spectral libraries and manual elucidation, taking into account spectral similarity and characteristic product ions. A total of 115 compounds were tentatively identified, 50 of which were oligomers or their derivatives from the sample with polylactic acid (PLA) and polybutylene adipate terephthalate (PBAT) as the polymer matrix, and some of them were Cramer rules class III substances based on the threshold of toxicological concern (TTC). Seven reaction products between PLA and PBAT monomers, as well as four derivatives of melamine, were elucidated and well detailed for the first time. In addition, bisphenol S was detected in all samples even though its origin remains to be further explored. Isoprothiolane, as an insecticide and fungicide used to control a range of rice pests, was identified in the sample with rice husk as fillers, experimentally confirming the presence of agrochemicals in samples containing plant fibers.
Collapse
Affiliation(s)
- Hong Zhang
- School of Light Industry, Beijing Technology and Business University, Beijing 100048, China
- China National Center for Food Safety Risk Assessment, Beijing 100022, China
| | - Qi-Zhi Su
- National Reference Laboratory for Food Contact Material (Guangdong), Guangzhou Customs Technology Center, Guangzhou 510623, China
| | - Gui-Qin Shang
- Nanjing Customs Testing Center for Dangerous Goods and Packaging, Changzhou 213000, China
| | - Yun-Xuan Weng
- College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, China
- Beijing Key Laboratory of Plastic Hygiene and Safety Quality Evaluation Technology, Beijing 100048, China
- Correspondence: (Y.-X.W.); (L.Z.)
| | - Lei Zhu
- China National Center for Food Safety Risk Assessment, Beijing 100022, China
- Correspondence: (Y.-X.W.); (L.Z.)
| |
Collapse
|
38
|
Xu Z, Chughtai H, Tian L, Liu L, Roy JF, Bayen S. Development of quantitative structure-retention relationship models to improve the identification of leachables in food packaging using non-targeted analysis. Talanta 2023; 253:123861. [PMID: 36095943 DOI: 10.1016/j.talanta.2022.123861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 08/15/2022] [Accepted: 08/17/2022] [Indexed: 12/13/2022]
Abstract
Quantitative structure-retention relationship (QSRR) models can be used to predict the chromatographic retention time of chemicals and facilitate the identification of unknown compounds, notably with non-targeted analysis. In this study, QSRR models were developed from the data obtained for 178 pure chemical standards and four types of analytical columns (C18, phenylhexyl, pentafluorophenyl, cyano) in liquid chromatography quadrupole time-of-flight mass spectrometry (LC-Q-TOF-MS). First, different data partitioning ratios and feature selection methods [random forest (RF) and support vector machine (SVM)] were tested to build models to predict chromatographic retention times based on 2D molecular descriptors. The internal and external performances of the non-linear (RF) and corresponding linear predictive models were systematically compared, and RF models resulted in better predictive capacities [p < 0.05, with an average PVE (proportion of variance explained) value of 0.89 ± 0.02] than linear models (0.79 ± 0.03). For each column, the resulting model was applied to identify leachables from actual plastic packaging samples. An in-depth investigation of the top 20 most intense molecular features revealed that all false-positives could be identified as outliers in the QSRR models (outside of the 95% prediction bands). Furthermore, analyzing a sample on multiple chromatographic columns and applying the associated QSRR models increased the capacity to filter false positives. Such an approach will contribute to a more effective identification of unknown or unexpected leachables in plastics (e.g. non-intended added substances), therefore refining our understanding of the chemical risks associated with food contact materials.
Collapse
Affiliation(s)
- Ziyun Xu
- Department of Food Science and Agricultural Chemistry, McGill University, Ste-Anne-de-Bellevue, QC, Canada
| | - Hamza Chughtai
- Department of Food Science and Agricultural Chemistry, McGill University, Ste-Anne-de-Bellevue, QC, Canada
| | - Lei Tian
- Department of Food Science and Agricultural Chemistry, McGill University, Ste-Anne-de-Bellevue, QC, Canada
| | - Lan Liu
- Department of Food Science and Agricultural Chemistry, McGill University, Ste-Anne-de-Bellevue, QC, Canada
| | | | - Stéphane Bayen
- Department of Food Science and Agricultural Chemistry, McGill University, Ste-Anne-de-Bellevue, QC, Canada.
| |
Collapse
|
39
|
Characterization of odors and volatile organic compounds changes to recycled high-density polyethylene through mechanical recycling. Polym Degrad Stab 2023. [DOI: 10.1016/j.polymdegradstab.2023.110263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
40
|
Schreier VN, Odermatt A, Welle F. Migration Modeling as a Valuable Tool for Exposure Assessment and Risk Characterization of Polyethylene Terephthalate Oligomers. MOLECULES (BASEL, SWITZERLAND) 2022; 28:molecules28010173. [PMID: 36615365 PMCID: PMC9822255 DOI: 10.3390/molecules28010173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/20/2022] [Accepted: 12/23/2022] [Indexed: 12/28/2022]
Abstract
Polyethylene terephthalate (PET) is one of the most widely used food contact materials due to its excellent mechanical properties and recyclability. Migration of substances from PET and assessment of compliance are usually determined by experimental testing, which can be challenging depending on the migrants of interest. Low concentrations and missing reference standards, among other factors, have led to inadequate investigation of the migration potential of PET oligomers. Migration modeling can overcome such limitations and is therefore a suitable starting point for exposure and risk assessment. In this study, the activation energy-based (EA) model and the AP model were used to systematically evaluate the migration potential of 52 PET oligomers for 12 different application scenarios. Modeling parameters and conditions were evaluated to investigate their impact and relevance on the assessment of realistic exposures. Obtained results were compared with safety thresholds known from the concept of toxicological thresholds of concern. This allowed the evaluation and identification of oligomers and/or applications where migration or exposure levels may be associated with a potential risk because they exceed these safety thresholds. Overall, this study demonstrated that migration modeling can be a high-throughput, fast, flexible, and suitable approach for comprehensive exposure assessment.
Collapse
Affiliation(s)
- Verena N. Schreier
- Division of Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, University of Basel, 4056 Basel, Switzerland
- Swiss Centre for Applied Human Toxicology (SCAHT), University of Basel, 4055 Basel, Switzerland
| | - Alex Odermatt
- Division of Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, University of Basel, 4056 Basel, Switzerland
- Swiss Centre for Applied Human Toxicology (SCAHT), University of Basel, 4055 Basel, Switzerland
| | - Frank Welle
- Product Safety and Analytics Department, Fraunhofer Institute for Process Engineering and Packaging (IVV), 85354 Freising, Germany
- Correspondence:
| |
Collapse
|
41
|
Abdullahi M, Li X, Abdallah MAE, Stubbings W, Yan N, Barnard M, Guo LH, Colbourne JK, Orsini L. Daphnia as a Sentinel Species for Environmental Health Protection: A Perspective on Biomonitoring and Bioremediation of Chemical Pollution. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:14237-14248. [PMID: 36169655 PMCID: PMC9583619 DOI: 10.1021/acs.est.2c01799] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Indexed: 05/14/2023]
Abstract
Despite available technology and the knowledge that chemical pollution damages human and ecosystem health, chemical pollution remains rampant, ineffectively monitored, rarely prevented, and only occasionally mitigated. We present a framework that helps address current major challenges in the monitoring and assessment of chemical pollution by broadening the use of the sentinel species Daphnia as a diagnostic agent of water pollution. And where prevention has failed, we propose the application of Daphnia as a bioremediation agent to help reduce hazards from chemical mixtures in the environment. By applying "omics" technologies to Daphnia exposed to real-world ambient chemical mixtures, we show improvements at detecting bioactive components of chemical mixtures, determining the potential effects of untested chemicals within mixtures, and identifying targets of toxicity. We also show that using Daphnia strains that naturally adapted to chemical pollution as removal agents of ambient chemical mixtures can sustainably improve environmental health protection. Expanding the use of Daphnia beyond its current applications in regulatory toxicology has the potential to improve both the assessment and the remediation of environmental pollution.
Collapse
Affiliation(s)
- Muhammad Abdullahi
- Environmental
Genomics Group, School of Biosciences, the
University of Birmingham, Birmingham B15 2TT, U.K.
| | - Xiaojing Li
- Environmental
Genomics Group, School of Biosciences, the
University of Birmingham, Birmingham B15 2TT, U.K.
| | | | - William Stubbings
- School
of Geography, Earth and Environmental Sciences, the University of Birmingham, Birmingham B15 2TT, U.K.
| | - Norman Yan
- Department
of Biology, York University, and Friends of the Muskoka Watershed, Bracebridge, Ontario P1L 1T7, Canada
| | - Marianne Barnard
- Environmental
Genomics Group, School of Biosciences, the
University of Birmingham, Birmingham B15 2TT, U.K.
| | - Liang-Hong Guo
- Institute
of Environmental and Health Sciences, China
Jiliang University, 258 Xueyuan Street, Hangzhou, Zhejiang 310018, People’s Republic of China
| | - John K. Colbourne
- Environmental
Genomics Group, School of Biosciences, the
University of Birmingham, Birmingham B15 2TT, U.K.
| | - Luisa Orsini
- Environmental
Genomics Group, School of Biosciences, the
University of Birmingham, Birmingham B15 2TT, U.K.
- The
Alan Turing Institute, British Library, 96 Euston Road, London NW1 2DB, U.K.
| |
Collapse
|
42
|
Kirchkeszner C, Petrovics N, Nyiri Z, Sámuel Szabó B, Eke Z. Role of gas chromatography–single quadrupole mass spectrometry in the identification of compounds migrating from polypropylene-based food contact plastics. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
43
|
Schreier VN, Appenzeller-Herzog C, Brüschweiler BJ, Geueke B, Wilks MF, Simat TJ, Schilter B, Smieško M, Muncke J, Odermatt A, Roth N. Evaluating the food safety and risk assessment evidence-base of polyethylene terephthalate oligomers: Protocol for a systematic evidence map. ENVIRONMENT INTERNATIONAL 2022; 167:107387. [PMID: 35841728 DOI: 10.1016/j.envint.2022.107387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 06/22/2022] [Accepted: 06/29/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Polyethylene terephthalate (PET) oligomers are ubiquitous in PET used in food contact applications. Consumer exposure by migration of PET oligomers into food and beverages is documented. However, no specific risk assessment framework or guidance for the safety evaluating of PET oligomers exist to date. AIM The aim of this systematic evidence map (SEM) is to identify and organize existing knowledge clusters and associated gaps in hazard and exposure information of PET oligomers. Research needs will be identified as an input for chemical risk assessment, and to support future toxicity testing strategies of PET oligomers and regulatory decision-making. SEARCH STRATEGY AND ELIGIBILITY CRITERIA Multiple bibliographic databases (incl. Embase, Medline, Scopus, and Web of Science Core Collection), chemistry databases (SciFinder-n, Reaxys), and gray literature sources will be searched, and the search results will be supplemented by backward and forward citation tracking on eligible records. The search will be based on a single-concept PET oligomer-focused strategy to ensure sensitive and unbiased coverage of all evidence related to hazard and exposure in a data-poor environment. A scoping exercise conducted during planning identified 34 relevant PET oligomers. Eligible work of any study type must include primary research data on at least one relevant PET oligomer with regard to exposure, health, or toxicological outcomes. STUDY SELECTION For indexed scientific literature, title and abstract screening will be performed by one reviewer. Selected studies will be screened in full-text by two independent reviewers. Gray literature will be screened by two independent reviewers for inclusion and exclusion. STUDY QUALITY ASSESSMENT Risk of bias analysis will not be conducted as part of this SEM. DATA EXTRACTION AND CODING Will be performed by one reviewer and peer-checked by a second reviewer for indexed scientific literature or by two independent reviewers for gray literature. SYNTHESIS AND VISUALIZATION The extracted and coded information will be synthesized in different formats, including narrative synthesis, tables, and heat maps. SYSTEMATIC MAP PROTOCOL REGISTRY AND REGISTRATION NUMBER Zenodo: https://doi.org/10.5281/zenodo.6224302.
Collapse
Affiliation(s)
- Verena N Schreier
- Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland; Swiss Centre for Applied Human Toxicology (SCAHT), University of Basel, Basel, Switzerland.
| | | | - Beat J Brüschweiler
- Federal Food Safety and Veterinary Office (FSVO), Risk Assessment Division, Bern, Switzerland.
| | - Birgit Geueke
- Food Packaging Forum Foundation, Zurich, Switzerland.
| | - Martin F Wilks
- Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland; Swiss Centre for Applied Human Toxicology (SCAHT), University of Basel, Basel, Switzerland.
| | - Thomas J Simat
- Chair of Food Contact Materials, Dresden University of Technology, Dresden, Germany.
| | - Benoit Schilter
- Nestlé Institute of Food Safety and Analytical Sciences, Lausanne, Switzerland.
| | - Martin Smieško
- Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland; Swiss Centre for Applied Human Toxicology (SCAHT), University of Basel, Basel, Switzerland.
| | - Jane Muncke
- Food Packaging Forum Foundation, Zurich, Switzerland.
| | - Alex Odermatt
- Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland; Swiss Centre for Applied Human Toxicology (SCAHT), University of Basel, Basel, Switzerland.
| | - Nicolas Roth
- Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland; Swiss Centre for Applied Human Toxicology (SCAHT), University of Basel, Basel, Switzerland.
| |
Collapse
|
44
|
Klun B, Rozman U, Ogrizek M, Kalčíková G. The first plastic produced, but the latest studied in microplastics research: The assessment of leaching, ecotoxicity and bioadhesion of Bakelite microplastics. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 307:119454. [PMID: 35568290 DOI: 10.1016/j.envpol.2022.119454] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 04/26/2022] [Accepted: 05/07/2022] [Indexed: 06/15/2023]
Abstract
Bakelite, the first synthetic plastic, is a rather unexplored material in the field of ecotoxicology, despite its long production and use. The aim of this study was to investigate the ecotoxicity of Bakelite microplastics (before and after leaching) and its leachates on four aquatic organisms: the crustacean Daphnia magna, the plant Lemna minor, the bacterium Allivibrio fischeri and the alga Pseudokirchneriella subcapitata. Bakelite microplastics before and after leaching and leachates affected all organisms, but to varying degrees. Leachates showed increased ecotoxicity to Daphnia magna, while Pseudokirchneriella subcapitata was more affected by particles. For Lemna minor and Allivibrio fischeri, the effects of particles before leaching and leachate were comparable, while the negative effect of particles after leaching was minimal or not present. All leachates were analysed, and phenol and phenol-like compounds were the predominant organics found. In addition, bioadhesion of Bakelite microplastics to the surface of Daphnia magna and Lemna minor was confirmed, but the particles were mainly weakly adhered. Results of this study suggest that, in addition to the recently studied microplastics from consumer products (e.g. from polyethylene and polystyrene), microplastics from industrial plastics such as Bakelite may be of increasing concern, primarily due to leaching of toxic chemicals.
Collapse
Affiliation(s)
- Barbara Klun
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, 1000, Ljubljana, Slovenia
| | - Ula Rozman
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, 1000, Ljubljana, Slovenia
| | - Monika Ogrizek
- National Institute of Chemistry, Hajdrihova ulica 19, 1000, Ljubljana, Slovenia
| | - Gabriela Kalčíková
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, 1000, Ljubljana, Slovenia.
| |
Collapse
|
45
|
Cariou R, Rivière M, Hutinet S, Tebbaa A, Dubreuil D, Mathé-Allainmat M, Lebreton J, Le Bizec B, Tessier A, Dervilly G. Thorough investigation of non-volatile substances extractible from inner coatings of metallic cans and their occurrence in the canned vegetables. JOURNAL OF HAZARDOUS MATERIALS 2022; 435:129026. [PMID: 35525007 DOI: 10.1016/j.jhazmat.2022.129026] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 04/13/2022] [Accepted: 04/25/2022] [Indexed: 06/14/2023]
Abstract
Since the decline of the use of bisphenol A, the chemistry of the varnishes and coatings which are applied to the inner surfaces of metallic food contact materials is poorly documented. We hypothesised that can coatings are now diverse and bring forth various non-intentionally added substances (NIAS) to be described. Investigating complex components such as NIAS requires demanding non-targeted approaches. We investigated the coatings of 12 vegetable cans from the French market. More than 125 substances were pinpointed, among them 84 oligoester combinations from 8 diols and 4 diacids. Thus, oligoesters were the dominant family. Additives such as epoxidised soybean oil, bisphenol A diglycidyl ether and benzoguanamine derivatives and phenol-formaldehyde oligomers were also identified. A software for exploring databases of theoretical combinations of polyester and phenol-formaldehyde resin components (NIAS-db 1.0) was made available. The stepwise organic synthesis of native and deuterated combinations of neopentyl glycol and isophthalic acid (4 and 8 units, linear and cyclic) enabled a higher confidence level and monitoring in vegetable extracts. Migration of oligoesters averaged 330 µg/kg in the drained vegetables (43-1600 µg/kg). This study sheds light on the need to fulfil a proper risk assessment on this NIAS family (exposure and hazard characterisation).
Collapse
Affiliation(s)
| | - Matthieu Rivière
- Nantes Université, CNRS, CEISAM, UMR 6230, F-44000 Nantes, France
| | | | - Asmaa Tebbaa
- Oniris, INRAE, LABERCA, F-44300 Nantes, France; Nantes Université, CNRS, CEISAM, UMR 6230, F-44000 Nantes, France
| | - Didier Dubreuil
- Nantes Université, CNRS, CEISAM, UMR 6230, F-44000 Nantes, France
| | | | - Jacques Lebreton
- Nantes Université, CNRS, CEISAM, UMR 6230, F-44000 Nantes, France
| | | | - Arnaud Tessier
- Nantes Université, CNRS, CEISAM, UMR 6230, F-44000 Nantes, France
| | | |
Collapse
|
46
|
Song XC, Dreolin N, Canellas E, Goshawk J, Nerin C. Prediction of Collision Cross-Section Values for Extractables and Leachables from Plastic Products. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:9463-9473. [PMID: 35730527 PMCID: PMC9261268 DOI: 10.1021/acs.est.2c02853] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
The use of ion mobility separation (IMS) in conjunction with high-resolution mass spectrometry has proved to be a reliable and useful technique for the characterization of small molecules from plastic products. Collision cross-section (CCS) values derived from IMS can be used as a structural descriptor to aid compound identification. One limitation of the application of IMS to the identification of chemicals from plastics is the lack of published empirical CCS values. As such, machine learning techniques can provide an alternative approach by generating predicted CCS values. Herein, experimental CCS values for over a thousand chemicals associated with plastics were collected from the literature and used to develop an accurate CCS prediction model for extractables and leachables from plastic products. The effect of different molecular descriptors and machine learning algorithms on the model performance were assessed. A support vector machine (SVM) model, based on Chemistry Development Kit (CDK) descriptors, provided the most accurate prediction with 93.3% of CCS values for [M + H]+ adducts and 95.0% of CCS values for [M + Na]+ adducts in testing sets predicted with <5% error. Median relative errors for the CCS values of the [M + H]+ and [M + Na]+ adducts were 1.42 and 1.76%, respectively. Subsequently, CCS values for the compounds in the Chemicals associated with Plastic Packaging Database and the Food Contact Chemicals Database were predicted using the SVM model developed herein. These values were integrated in our structural elucidation workflow and applied to the identification of plastic-related chemicals in river water. False positives were reduced, and the identification confidence level was improved by the incorporation of predicted CCS values in the suspect screening workflow.
Collapse
Affiliation(s)
- Xue-Chao Song
- Department
of Analytical Chemistry, Aragon Institute of Engineering Research
I3A, CPS-University of Zaragoza, Maria de Luna 3, 50018 Zaragoza, Spain
| | - Nicola Dreolin
- Waters
Corporation, Altrincham
Road, SK9 4AX Wilmslow, U.K.
| | - Elena Canellas
- Department
of Analytical Chemistry, Aragon Institute of Engineering Research
I3A, CPS-University of Zaragoza, Maria de Luna 3, 50018 Zaragoza, Spain
| | - Jeff Goshawk
- Waters
Corporation, Altrincham
Road, SK9 4AX Wilmslow, U.K.
| | - Cristina Nerin
- Department
of Analytical Chemistry, Aragon Institute of Engineering Research
I3A, CPS-University of Zaragoza, Maria de Luna 3, 50018 Zaragoza, Spain
- .
Phone: +34 976761873
| |
Collapse
|
47
|
Lestido-Cardama A, Sendón R, Bustos J, Nieto MT, Paseiro-Losada P, Rodríguez-Bernaldo de Quirós A. Food and beverage can coatings: A review on chemical analysis, migration, and risk assessment. Compr Rev Food Sci Food Saf 2022; 21:3558-3611. [PMID: 35687326 DOI: 10.1111/1541-4337.12976] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 03/24/2022] [Accepted: 04/20/2022] [Indexed: 11/30/2022]
Abstract
The internal surface of food and beverage cans is generally covered with polymeric coatings to preserve food and protect metal substrate from corrosion. Coating materials are complex formulations that contain different starting substances (e.g., monomers, prepolymers, additives, etc.) and in addition during the manufacture of the material several compounds can be formed (e.g., reaction products, degradation products, etc.). These substances have the potential to migrate into the food. Many of them have not been identified and only some have been toxicologically evaluated. This article aims to provide a comprehensive review on the analytical methods used for the identification of potential migrants in can coatings. The migration and exposure to chemicals migrating from can coatings are also reviewed and discussed so far, which is essential for risk assessment. Moreover, a brief section on the current status of the legislation on varnishes and coatings for food contact in Europe is also presented. Liquid chromatography coupled to diode array and fluorescence detectors and particularly to mass spectrometry and gas chromatography-tandem mass spectrometry seem to be the techniques of choice for the identification of potential migrants in can coatings. Some studies have reported migration levels of BPA (bisphenol A) and BADGE (bisphenol A diglycidyl ether) and derivatives exceeding the specific migration limits set in the European legislation. On the whole, low dietary exposure to migrants from can coatings has been reported. However, it is interesting to highlight that in these studies the combined exposure to multiple chemicals has not been considered.
Collapse
Affiliation(s)
- Antía Lestido-Cardama
- Department of Analytical Chemistry, Nutrition and Food Science, Faculty of Pharmacy, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Raquel Sendón
- Department of Analytical Chemistry, Nutrition and Food Science, Faculty of Pharmacy, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Juana Bustos
- National Food Centre, Spanish Agency for Food Safety and Nutrition, Majadahonda, Spain
| | - María Teresa Nieto
- National Food Centre, Spanish Agency for Food Safety and Nutrition, Majadahonda, Spain
| | - Perfecto Paseiro-Losada
- Department of Analytical Chemistry, Nutrition and Food Science, Faculty of Pharmacy, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Ana Rodríguez-Bernaldo de Quirós
- Department of Analytical Chemistry, Nutrition and Food Science, Faculty of Pharmacy, University of Santiago de Compostela, Santiago de Compostela, Spain
| |
Collapse
|
48
|
Geueke B, Groh KJ, Maffini MV, Martin OV, Boucher JM, Chiang YT, Gwosdz F, Jieh P, Kassotis CD, Łańska P, Myers JP, Odermatt A, Parkinson LV, Schreier VN, Srebny V, Zimmermann L, Scheringer M, Muncke J. Systematic evidence on migrating and extractable food contact chemicals: Most chemicals detected in food contact materials are not listed for use. Crit Rev Food Sci Nutr 2022; 63:9425-9435. [PMID: 35585831 DOI: 10.1080/10408398.2022.2067828] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Food packaging is important for today's globalized food system, but food contact materials (FCMs) can also be a source of hazardous chemicals migrating into foodstuffs. Assessing the impacts of FCMs on human health requires a comprehensive identification of the chemicals they contain, the food contact chemicals (FCCs). We systematically compiled the "database on migrating and extractable food contact chemicals" (FCCmigex) using information from 1210 studies. We found that to date 2881 FCCs have been detected, in a total of six FCM groups (Plastics, Paper & Board, Metal, Multi-materials, Glass & Ceramic, and Other FCMs). 65% of these detected FCCs were previously not known to be used in FCMs. Conversely, of the more than 12'000 FCCs known to be used, only 1013 are included in the FCCmigex database. Plastic is the most studied FCM with 1975 FCCs detected. Our findings expand the universe of known FCCs to 14,153 chemicals. This knowledge contributes to developing non-hazardous FCMs that lead to safer food and support a circular economy.
Collapse
Affiliation(s)
- Birgit Geueke
- Food Packaging Forum Foundation, Zurich, Switzerland
| | - Ksenia J Groh
- Department Environmental Toxicology, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Duebendorf, Switzerland
| | | | | | | | - Yu-Ting Chiang
- Institute of Environmental Health Sciences and Department of Pharmacology, Wayne State University, Detroit, MI, USA
| | | | - Phoenix Jieh
- Food Packaging Forum Foundation, Zurich, Switzerland
| | - Christopher D Kassotis
- Institute of Environmental Health Sciences and Department of Pharmacology, Wayne State University, Detroit, MI, USA
| | - Paulina Łańska
- Centre for Pollution Research and Policy, Brunel University, Uxbridge, UK
| | - John Peterson Myers
- Environmental Health Sciences and Department of Chemistry, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Alex Odermatt
- Division of Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | | | - Verena N Schreier
- Division of Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Vanessa Srebny
- Biointerfaces Lab, EMPA, Swiss Federal Laboratories for Materials Science and Technology, St. Gallen, Switzerland
| | | | - Martin Scheringer
- Institute of Biogeochemistry and Pollutant Dynamics, ETH Zurich, Zurich, Switzerland
| | - Jane Muncke
- Food Packaging Forum Foundation, Zurich, Switzerland
| |
Collapse
|
49
|
Gerassimidou S, Lanska P, Hahladakis JN, Lovat E, Vanzetto S, Geueke B, Groh KJ, Muncke J, Maffini M, Martin OV, Iacovidou E. Unpacking the complexity of the PET drink bottles value chain: A chemicals perspective. JOURNAL OF HAZARDOUS MATERIALS 2022; 430:128410. [PMID: 35295000 DOI: 10.1016/j.jhazmat.2022.128410] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/28/2022] [Accepted: 01/30/2022] [Indexed: 05/04/2023]
Abstract
Chemicals can migrate from polyethylene terephthalate (PET) drink bottles to their content and recycling processes may concentrate or introduce new chemicals to the PET value chain. Therefore, even though recycling PET bottles is key in reducing plastic pollution, it may raise concerns about safety and quality. This study provides a systematic evidence map of the food contact chemicals (FCCs) that migrate from PET drink bottles aiming to identify challenges in closing the plastic packaging loop. The migration potential of 193 FCCs has been investigated across the PET drink bottles lifecycle, of which 150 have been detected to migrate from PET bottles into food simulants/food samples. The study reveals that much research has focused on the migration of antimony (Sb), acetaldehyde and some well-known endocrine-disrupting chemicals (EDCs). It indicates and discusses the key influential factors on FCCs migration, such as physical characteristics and geographical origin of PET bottles, storage conditions, and reprocessing efficiency . Although, safety and quality implications arising from the recycling of PET bottles remain underexplored, the higher migration of Sb and Bishphenol A has been reported in recycled (rPET) compared to virgin PET. This is attributed to multiple contamination sources and the variability in the collection, sorting, and decontamination efficiency. Better collaboration among stakeholders across the entire PET bottles lifecycle is needed to ensure sustainable resource management and food contact safety of rPET.
Collapse
Affiliation(s)
- Spyridoula Gerassimidou
- Sustainable Plastics Research Group (SPlasH), Brunel University London, Uxbridge UB8 3PH, United Kingdom
| | - Paulina Lanska
- Sustainable Plastics Research Group (SPlasH), Brunel University London, Uxbridge UB8 3PH, United Kingdom
| | - John N Hahladakis
- Waste Management Program, Center for Sustainable Development, College of Arts and Sciences, Qatar University, P.O. Box: 2713, Doha, Qatar
| | - Elena Lovat
- Italian Agency for Development Cooperation (AICS), Addis Ababa Office, Kebena, Addis Ababa, Ethiopia
| | - Silvia Vanzetto
- Centro Internazionale per l'Infanzia e la Famiglia (CIFA) Onlus, Hawassa Field Office, Hawassa, Ethiopia
| | - Birgit Geueke
- Food Packaging Forum (FPF), Zurich 8045, Switzerland
| | - Ksenia J Groh
- Eawag - Swiss Federal Institute of Aquatic Science and Technology, Dübendorf 8600, Switzerland
| | - Jane Muncke
- Food Packaging Forum (FPF), Zurich 8045, Switzerland
| | | | - Olwenn V Martin
- Sustainable Plastics Research Group (SPlasH), Brunel University London, Uxbridge UB8 3PH, United Kingdom; Centre for Pollution Research and Policy, Brunel University London, Uxbridge UB8 3PH, United Kingdom.
| | - Eleni Iacovidou
- Sustainable Plastics Research Group (SPlasH), Brunel University London, Uxbridge UB8 3PH, United Kingdom; Division of Environmental Sciences, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge UB8 3PH, United Kingdom.
| |
Collapse
|
50
|
Martins CP, Ramos GL, Pimentel TC, Freitas MQ, Duarte MCK, Azeredo DP, Silva MC, Cavalcanti RN, Esmerino EA, Cruz AG. How microwave technology is perceived? A food safety cross-cultural study between Brazil and Portugal. Food Control 2022. [DOI: 10.1016/j.foodcont.2021.108763] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|