1
|
Kale R, Das MK, Gowda AD, Raut SA, Pannikkandathil J, Bodake S, Borkar RM, Pahal S, Kumar S. Direct Printing of an Electrochemical Device and Its Interface with Paper for Uric Acid Detection in Human Sweat. ACS APPLIED BIO MATERIALS 2025. [PMID: 39783631 DOI: 10.1021/acsabm.4c01706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
Using a laser-scribed (direct printing) technique, we have fabricated an enzymeless, mediatorless, and paper-interfaced electrochemical device (P-LSG) for uric acid detection on a flexible polyimide sheet. Various paper substrates were investigated, and it was found that Whatman filter paper-1 is promising to obtain the best electrochemical signals at the small volume of electrolyte, i.e., 20 μL. Furthermore, the Whatman filter paper-1 was modified with gold nanoparticles (AuNPs) to improve the electrocatalytic activity of the P-LSG device. The fabricated AuNP-modified P-LSG biosensor exhibited excellent electrocatalytic activity for the detection of uric acid over a wide range of 10 to 750 μM, with sensitivity of ∼0.214 μA μM-1 cm-2, and a limit of detection of ∼1.4 μM. The sensor was further validated by using the UHPLC-ESI-MS/MS technique, and the observed percentage recovery was less than 10%. This work opens the window to modified paper substrates with various nanomaterials to improve the sensing parameters. The electrolyte storage capacity and rich chemistry of paper additionally provide an efficient immobilization platform for biorecognition elements to diagnose other metabolites. Furthermore, it has the potential to analyze the volume of small samples (like sweat, tears, urine, etc.) using paper to develop noninvasive wearable biosensors.
Collapse
Affiliation(s)
- Rutuja Kale
- Department of Medical Devices, National Institute of Pharmaceutical Education and Research, Guwahati, Assam 781101, India
| | - Mayur Krishna Das
- Department of Medical Devices, National Institute of Pharmaceutical Education and Research, Guwahati, Assam 781101, India
| | - Arun Dodde Gowda
- Department of Medical Devices, National Institute of Pharmaceutical Education and Research, Guwahati, Assam 781101, India
| | - Sagar A Raut
- Department of Medical Devices, National Institute of Pharmaceutical Education and Research, Guwahati, Assam 781101, India
| | - Jasirali Pannikkandathil
- Department of Medical Devices, National Institute of Pharmaceutical Education and Research, Guwahati, Assam 781101, India
| | - Saurabh Bodake
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, Assam 781101, India
| | - Roshan M Borkar
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, Assam 781101, India
| | - Suman Pahal
- Institute for Stem Cell Science and Regenerative Medicine (inStem), Bengaluru, Karnataka 560065, India
| | - Saurabh Kumar
- Department of Medical Devices, National Institute of Pharmaceutical Education and Research, Guwahati, Assam 781101, India
| |
Collapse
|
2
|
Zhao Z, Zhu B, Li X, Cao J, Qi M, Zhou L, Su B. Microneedle Electrode Patch Modified with Graphene Oxide and Carbon Nanotubes for Continuous Uric Acid Monitoring and Diet Management in Hyperuricemia. ACS APPLIED BIO MATERIALS 2024; 7:8456-8464. [PMID: 39636040 DOI: 10.1021/acsabm.4c01286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
Hyperuricemia is a common disorder induced by purine metabolic abnormality, which will further cause chronic kidney disease, cardiovascular disease, and gout. Its main pathological characteristic is the high uric acid (UA) level in the blood, so that the detection of UA is highly important for hyperuricemia diagnosis and therapy. Herein, we report a biocompatible and minimally invasive microneedle electrode patch (MEP) for continuous UA monitoring and diet management in hyperuricemia. The composite of graphene oxide and carboxylated multiwalled carbon nanotubes was modified on the microneedle electrode surface to enhance its sensitivity, selectivity, and stability, thus realizing the continuous detection of UA in the interstitial fluid to accurately predict the UA level in the blood. This further allowed us to study the hypouricemic effect of anthocyanins on the hyperuricemia model mouse. It was found that anthocyanins extracted from blueberry can effectively inhibit the activity of xanthine oxidase to reduce the production of UA. The UA level of hyperuricemia model mice fed with anthocyanins is ∼1.7 fold lower than that of the control group. We believe that this MEP offers enormous promise for continuous UA monitoring and diet management in hyperuricemia.
Collapse
Affiliation(s)
- Ziyi Zhao
- Department of Chemistry, Institute of Analytical Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Boyu Zhu
- Department of Chemistry, Institute of Analytical Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Xinru Li
- Department of Chemistry, Institute of Analytical Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Jiayi Cao
- Department of Chemistry, Institute of Analytical Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Min Qi
- Department of Chemistry, Institute of Analytical Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Lin Zhou
- Department of Chemistry, Institute of Analytical Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Bin Su
- Department of Chemistry, Institute of Analytical Chemistry, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
3
|
Zhang Y, Han M, Peng D, Qin H, Zheng H, Xiao J, Yang N. MOF-derived high-density carbon nanotubes "tentacle" with boosting electrocatalytic activity for detecting ascorbic acid. Talanta 2024; 279:126578. [PMID: 39032458 DOI: 10.1016/j.talanta.2024.126578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 07/15/2024] [Accepted: 07/16/2024] [Indexed: 07/23/2024]
Abstract
Accurate detection of ascorbic acid (AA) plays a significant role in food and human physiological processes. Herein, a three-dimensional flexible leaf-like nitrogen-doped hierarchical carbon nanoarrays with high-density carbon nanotube "tentacle" architecture (NC/CNT-Co), which possesses high specific surface area, plenty of active defect sites, and various pore size distributions, was synthesized by the pyrolysis of zeolitic imidazolate framework (ZIF(Co)), while g-C3N4 acted as carbon source and heteroatom doping agent. Benefiting from its unique structure and surface properties, a selective and highly sensitive AA sensor was developed using this material. Compared to powder materials, NC/CNT-Co modified CF (CF@NC/CNT-Co) which don't be extra decorated, exhibits lower detection limit (1 μM), a wider linear range (20-1400 μM), and better stability, showing higher performance in electrocatalysis and detection of AA. Furthermore, CF@NC/CNT-Co also demonstrates high resistance to interference and fouling in AA detection. Particularly, the prepared CF@NC/CNT-Co electrode could determine AA in beverage samples with a recovery rate of 96.3-103.5 %. Therefore, the three-dimensional NC/CNT-Co hierarchical structure can be provided as an original electrode nanomaterial suitable for the selective and sensitive detection of AA, with a wide range of practical applications from food analysis to the pharmaceutical industry.
Collapse
Affiliation(s)
- Yan Zhang
- Glyn O. Phillips Hydrocolloid Research Centre, National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering of Ministry of Education, Key Laboratory of Industrial Microbiology in Hubei Province, School of Life and Health Sciences, Hubei University of Technology, Wuhan, 430068, China; Food Hydrocolloid International Science and Technology Cooperation Base of Hubei Province, Hubei University of Technology, Wuhan, 430068, China
| | - Minghui Han
- Glyn O. Phillips Hydrocolloid Research Centre, National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering of Ministry of Education, Key Laboratory of Industrial Microbiology in Hubei Province, School of Life and Health Sciences, Hubei University of Technology, Wuhan, 430068, China; Food Hydrocolloid International Science and Technology Cooperation Base of Hubei Province, Hubei University of Technology, Wuhan, 430068, China
| | - Danni Peng
- Glyn O. Phillips Hydrocolloid Research Centre, National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering of Ministry of Education, Key Laboratory of Industrial Microbiology in Hubei Province, School of Life and Health Sciences, Hubei University of Technology, Wuhan, 430068, China; Food Hydrocolloid International Science and Technology Cooperation Base of Hubei Province, Hubei University of Technology, Wuhan, 430068, China
| | - Haowen Qin
- Glyn O. Phillips Hydrocolloid Research Centre, National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering of Ministry of Education, Key Laboratory of Industrial Microbiology in Hubei Province, School of Life and Health Sciences, Hubei University of Technology, Wuhan, 430068, China; Food Hydrocolloid International Science and Technology Cooperation Base of Hubei Province, Hubei University of Technology, Wuhan, 430068, China
| | - Hehaoming Zheng
- Glyn O. Phillips Hydrocolloid Research Centre, National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering of Ministry of Education, Key Laboratory of Industrial Microbiology in Hubei Province, School of Life and Health Sciences, Hubei University of Technology, Wuhan, 430068, China; Food Hydrocolloid International Science and Technology Cooperation Base of Hubei Province, Hubei University of Technology, Wuhan, 430068, China
| | - Jian Xiao
- School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, LiuFang Campus, Wuhan, 430205, Hubei Province, China
| | - Nan Yang
- Glyn O. Phillips Hydrocolloid Research Centre, National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering of Ministry of Education, Key Laboratory of Industrial Microbiology in Hubei Province, School of Life and Health Sciences, Hubei University of Technology, Wuhan, 430068, China; Food Hydrocolloid International Science and Technology Cooperation Base of Hubei Province, Hubei University of Technology, Wuhan, 430068, China.
| |
Collapse
|
4
|
Bian L, Su X, Wang J. Carbon cloth surface engineering for simultaneous detection of ascorbic acid, dopamine, and uric acid in fetal bovine serum. Sci Rep 2024; 14:24759. [PMID: 39433932 PMCID: PMC11494046 DOI: 10.1038/s41598-024-76495-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 10/14/2024] [Indexed: 10/23/2024] Open
Abstract
Carbon cloth (CC) was electrochemically activated using three electrochemical methods in different electrolytes. The gases released during the activation process etched the surface of the CC, thereby increasing its surface area of the activated CC (FCC). Moreover, functional groups such as oxygen-containing groups and N-doping have been introduced. The quantity and type of functional groups introduced during the activation process were related to the anions in the solution. FCC electrodes were used to construct electrochemical sensors for the simultaneous determination of ascorbic acid (AA), dopamine (DA), and uric acid (UA). The PFCC electrode activated by advanced cyclic voltammetry in (NH4)2HPO4 showed linear ranges for AA, DA, and UA concentrations of 0.1 to 2.1 mM, 0.5 to 11 µM, and 0.5 to 11 µM, respectively. The detection limits are 72.93, 0.22, and 0.42 µM, respectively. The good flexibility the PFCC electrode made it suitable for the preparation of flexible sensors. The simultaneous determination of AA, DA, and UA in fetal bovine serum showed a reliable recovery ratio. This study provides a simple and green approach for activating carbon cloth and constructing flexible electrochemical sensors with the potential to simultaneously detect AA, DA, and UA.
Collapse
Affiliation(s)
- Lijun Bian
- Department of Chemistry, Northeastern University, Shenyang, 110819, China.
| | - Xinglin Su
- Department of Chemistry, Northeastern University, Shenyang, 110819, China
| | - Jialu Wang
- Department of Chemistry, Northeastern University, Shenyang, 110819, China
| |
Collapse
|
5
|
Emran MY, Kotb A, Ganganboina AB, Okamoto A, Abolibda TZ, Alzahrani HAH, Gomha SM, Ma C, Zhou M, Shenashen MA. Tailored portable electrochemical sensor for dopamine detection in human fluids using heteroatom-doped three-dimensional g-C 3N 4 hornet nest structure. Anal Chim Acta 2024; 1320:342985. [PMID: 39142767 DOI: 10.1016/j.aca.2024.342985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/13/2024] [Accepted: 07/15/2024] [Indexed: 08/16/2024]
Abstract
BACKGROUND There is widespread interest in the design of portable electrochemical sensors for the selective monitoring of biomolecules. Dopamine (DA) is one of the neurotransmitter molecules that play a key role in the monitoring of some neuronal disorders such as Alzheimer's and Parkinson's diseases. Facile synthesis of the highly active surface interface to design a portable electrochemical sensor for the sensitive and selective monitoring of biomolecules (i.e., DA) in its resources such as human fluids is highly required. RESULTS The designed sensor is based on a three-dimensional phosphorous and sulfur resembling a g-C3N4 hornet's nest (3D-PS-doped CNHN). The morphological structure of 3D-PS-doped CNHN features multi-open gates and numerous vacant voids, presenting a novel design reminiscent of a hornet's nest. The outer surface exhibits a heterogeneous structure with a wave orientation and rough surface texture. Each gate structure takes on a hexagonal shape with a wall size of approximately 100 nm. These structural characteristics, including high surface area and hierarchical design, facilitate the diffusion of electrolytes and enhance the binding and high loading of DA molecules on both inner and outer surfaces. The multifunctional nature of g-C3N4, incorporating phosphorous and sulfur atoms, contributes to a versatile surface that improves DA binding. Additionally, the phosphate and sulfate groups' functionalities enhance sensing properties, thereby outlining selectivity. The resulting portable 3D-PS-doped CNHN sensor demonstrates high sensitivity with a low limit of detection (7.8 nM) and a broad linear range spanning from 10 to 500 nM. SIGNIFICANCE The portable DA sensor based on the 3D-PS-doped CNHN/SPCE exhibits excellent recovery of DA molecules in human fluids, such as human serum and urine samples, demonstrating high stability and good reproducibility. The designed portable DA sensor could find utility in the detection of DA in clinical samples, showcasing its potential for practical applications in medical settings.
Collapse
Affiliation(s)
- Mohammed Y Emran
- Research Center for Macromolecules and Biomaterials, National Institute for Materials Science, Tsukuba, 305-0044, Ibaraki, Japan.
| | - Ahmed Kotb
- Chemistry Department, Faculty of Science, Al-Azhar University, Assiut, 71524, Egypt
| | - Akhilesh Babu Ganganboina
- International Center for Young Scientists ICYS-NAMIKI, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
| | - Akihiro Okamoto
- Research Center for Macromolecules and Biomaterials, National Institute for Materials Science, Tsukuba, 305-0044, Ibaraki, Japan
| | - Tariq Z Abolibda
- Department of Chemistry, Faculty of Science, Islamic University of Madinah, Madinah, 42351, Saudi Arabia
| | - Hassan A H Alzahrani
- Department of Chemistry, College of Science and Arts at Khulis, University of Jeddah, P.O. Box 355, Jeddah, Saudi Arabia
| | - Sobhi M Gomha
- Department of Chemistry, Faculty of Science, Islamic University of Madinah, Madinah, 42351, Saudi Arabia
| | - Chongbo Ma
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province, Analysis and Testing Center, Department of Chemistry, Northeast Normal University, Changchun, Jilin Province, 130024, China
| | - Ming Zhou
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province, Analysis and Testing Center, Department of Chemistry, Northeast Normal University, Changchun, Jilin Province, 130024, China
| | - Mohamed A Shenashen
- Department of Chemistry, Faculty of Science, Islamic University of Madinah, Madinah, 42351, Saudi Arabia.
| |
Collapse
|
6
|
Ruiyi L, Mengyu W, Xinyi Z, Zaijun L, Xiaohao L. Self-powered sensing platform for monitoring uric acid in sweat using cobalt nanocrystal-graphene quantum dot-Ti 3C 2T X monolithic film electrode with excellent supercapacitor and sensing behavior. Mikrochim Acta 2024; 191:530. [PMID: 39127988 DOI: 10.1007/s00604-024-06611-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 08/05/2024] [Indexed: 08/12/2024]
Abstract
The synthesis of cobalt nanocrystal-graphene quantum dot-Ti3C2TX monolithic film electrode (Co-GQD-Ti3C2TX) is reported via self-assembly of Ti3C2TX nanosheets induced by protonated arginine-functionalized graphene quantum dot and subsequent reduction of cobalt (III). The resulting Co-GQD-Ti3C2TX shows good monolithic architecture, mechanical property, dispersibility and conductivity. The structure achieves excellent supercapacitor and sensing behavior. The self-charging supercapacitor produced by printing viscous Co-GQD-Ti3C2TX hydrogel on the back of flexible solar cell surface provides high specific capacitance (296 F g-1 at 1 A g-1), high-rate capacity (153 F g-1 at 20 A g-1), capacity retention (98.1% over 10,000-cycle) and energy density (29.6 W h kg-1 at 299.9 W kg-1). The electrochemical chip produced by printing Co-GQD-Ti3C2TX hydrogel on paper exhibits sensitive electrochemical response towards uric acid. The increase of uric acid between 0.01 and 800 μM causes a linear increase in differential pulse voltammetry signal with a detection limit of 0.0032 μM. The self-powered sensing platform integrating self-charging supercapacitor, electrochemical chip and micro electrochemical workstation was contentedly applied to monitoring uric acid in sweats and shows one broad application prospect in wearable electronic health monitoring device.
Collapse
Affiliation(s)
- Li Ruiyi
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, School of Life Science and Health Engineering, Jiangnan University, Wuxi, 214122, China
| | - Wei Mengyu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, School of Life Science and Health Engineering, Jiangnan University, Wuxi, 214122, China
| | - Zhou Xinyi
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, School of Life Science and Health Engineering, Jiangnan University, Wuxi, 214122, China
| | - Li Zaijun
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, School of Life Science and Health Engineering, Jiangnan University, Wuxi, 214122, China.
| | - Liu Xiaohao
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, School of Life Science and Health Engineering, Jiangnan University, Wuxi, 214122, China
| |
Collapse
|
7
|
Chen JY, Huang S, Liu SJ, Liu ZJ, Xu XY, He MY, Yao CJ, Zhang T, Yang HQ, Huang XS, Liu J, Zhang XD, Xie X, Chen HJ. Au 24Cd Nanoenzyme Coating for Enhancing Electrochemical Sensing Performance of Metal Wire Microelectrodes. BIOSENSORS 2024; 14:328. [PMID: 39056604 PMCID: PMC11274932 DOI: 10.3390/bios14070328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 06/28/2024] [Accepted: 06/29/2024] [Indexed: 07/28/2024]
Abstract
Dopamine (DA), ascorbic acid (AA), and uric acid (UA) are crucial neurochemicals, and their abnormal levels are involved in various neurological disorders. While electrodes for their detection have been developed, achieving the sensitivity required for in vivo applications remains a challenge. In this study, we proposed a synthetic Au24Cd nanoenzyme (ACNE) that significantly enhanced the electrochemical performance of metal electrodes. ACNE-modified electrodes demonstrated a remarkable 10-fold reduction in impedance compared to silver microelectrodes. Furthermore, we validated their excellent electrocatalytic activity and sensitivity using five electrochemical detection methods, including cyclic voltammetry, differential pulse voltammetry, square-wave pulse voltammetry, normal pulse voltammetry, and linear scanning voltammetry. Importantly, the stability of gold microelectrodes (Au MEs) modified with ACNEs was significantly improved, exhibiting a 30-fold enhancement compared to Au MEs. This improved performance suggests that ACNE functionalization holds great promise for developing micro-biosensors with enhanced sensitivity and stability for detecting small molecules.
Collapse
Affiliation(s)
- Jia-Yi Chen
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology, Guangdong Province Key Laboratory of Display Material and Technology, Sun Yat-Sen University, Guangzhou 510006, China; (J.-Y.C.); (Z.-J.L.); (X.-Y.X.); (M.-Y.H.); (C.-J.Y.); (T.Z.); (H.-Q.Y.); (X.-S.H.)
| | - Shuang Huang
- Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument, School of Biomedical Engineering, Sun Yat-Sen University, Shenzhen 518107, China;
| | - Shuang-Jie Liu
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China; (S.-J.L.); (X.-D.Z.)
| | - Zheng-Jie Liu
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology, Guangdong Province Key Laboratory of Display Material and Technology, Sun Yat-Sen University, Guangzhou 510006, China; (J.-Y.C.); (Z.-J.L.); (X.-Y.X.); (M.-Y.H.); (C.-J.Y.); (T.Z.); (H.-Q.Y.); (X.-S.H.)
| | - Xing-Yuan Xu
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology, Guangdong Province Key Laboratory of Display Material and Technology, Sun Yat-Sen University, Guangzhou 510006, China; (J.-Y.C.); (Z.-J.L.); (X.-Y.X.); (M.-Y.H.); (C.-J.Y.); (T.Z.); (H.-Q.Y.); (X.-S.H.)
| | - Meng-Yi He
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology, Guangdong Province Key Laboratory of Display Material and Technology, Sun Yat-Sen University, Guangzhou 510006, China; (J.-Y.C.); (Z.-J.L.); (X.-Y.X.); (M.-Y.H.); (C.-J.Y.); (T.Z.); (H.-Q.Y.); (X.-S.H.)
| | - Chuan-Jie Yao
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology, Guangdong Province Key Laboratory of Display Material and Technology, Sun Yat-Sen University, Guangzhou 510006, China; (J.-Y.C.); (Z.-J.L.); (X.-Y.X.); (M.-Y.H.); (C.-J.Y.); (T.Z.); (H.-Q.Y.); (X.-S.H.)
| | - Tao Zhang
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology, Guangdong Province Key Laboratory of Display Material and Technology, Sun Yat-Sen University, Guangzhou 510006, China; (J.-Y.C.); (Z.-J.L.); (X.-Y.X.); (M.-Y.H.); (C.-J.Y.); (T.Z.); (H.-Q.Y.); (X.-S.H.)
| | - Han-Qi Yang
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology, Guangdong Province Key Laboratory of Display Material and Technology, Sun Yat-Sen University, Guangzhou 510006, China; (J.-Y.C.); (Z.-J.L.); (X.-Y.X.); (M.-Y.H.); (C.-J.Y.); (T.Z.); (H.-Q.Y.); (X.-S.H.)
| | - Xin-Shuo Huang
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology, Guangdong Province Key Laboratory of Display Material and Technology, Sun Yat-Sen University, Guangzhou 510006, China; (J.-Y.C.); (Z.-J.L.); (X.-Y.X.); (M.-Y.H.); (C.-J.Y.); (T.Z.); (H.-Q.Y.); (X.-S.H.)
| | - Jing Liu
- The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510080, China;
| | - Xiao-Dong Zhang
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China; (S.-J.L.); (X.-D.Z.)
| | - Xi Xie
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology, Guangdong Province Key Laboratory of Display Material and Technology, Sun Yat-Sen University, Guangzhou 510006, China; (J.-Y.C.); (Z.-J.L.); (X.-Y.X.); (M.-Y.H.); (C.-J.Y.); (T.Z.); (H.-Q.Y.); (X.-S.H.)
- Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument, School of Biomedical Engineering, Sun Yat-Sen University, Shenzhen 518107, China;
| | - Hui-Jiuan Chen
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology, Guangdong Province Key Laboratory of Display Material and Technology, Sun Yat-Sen University, Guangzhou 510006, China; (J.-Y.C.); (Z.-J.L.); (X.-Y.X.); (M.-Y.H.); (C.-J.Y.); (T.Z.); (H.-Q.Y.); (X.-S.H.)
| |
Collapse
|
8
|
Hammami A, Bardaoui A, Eissa S, Elgaher WAM, Chtourou R, Messaoud O. Novel and Extremely Sensitive NiAl 2O 4-NiO Nanostructures on an ITO Sensing Electrode for Enhanced Detection of Ascorbic Acid. Molecules 2024; 29:2837. [PMID: 38930902 PMCID: PMC11206516 DOI: 10.3390/molecules29122837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 06/10/2024] [Accepted: 06/12/2024] [Indexed: 06/28/2024] Open
Abstract
The current study focused on the design of an extremely sensitive electrochemical sensor of ascorbic acid based on a mixture of NiAl2O4-NiO nanoparticles that, produced in a single step using the sol-gel method, on an ITO electrode. This new sensing platform is useful for the detection of ascorbic acid with a wide range of concentrations extending from the attomolar to the molar. SEM micrographs show the porous structure of the NiAl2O4-NiO sample, with a high specific surface area, which is beneficial for the catalytic performance of the nanocomposite. An XRD diffractogram confirmed the existence of two phases, NiAl2O4 and NiO, both corresponding to the face-centred cubic crystal structure. The performances of the modified electrode, as a biomolecule, in the detection of ascorbic acid was evaluated electrochemically by cyclic voltammetry and chronoamperometry. The sensor exhibited a sensitive electrocatalytic response at a working potential of E = +0.3 V vs. Ag/Ag Cl, reaching a steady-state current within 30 s after each addition of ascorbic acid solution with a wide dynamic range of concentrations extending from attolevels (10-18 M) to molar (10 mM) and limits of detection and quantification of 1.2 × 10-18 M and 3.96 × 10-18 M, respectively. This detection device was tested for the quantification of ascorbic acid in a 500 mg vitamin C commercialized tablet that was not pre-treated.
Collapse
Affiliation(s)
- Asma Hammami
- Laboratoire de Chimie, Ecole Supérieure des Sciences et Techniques de la Santé de Tunis, Université de Tunis El Manar, Tunis 1068, Tunisia
- U.R Traitement et Dessalement des Eaux, Département de Chimie, Faculté des Sciences de Tunis, 2092 Manar II, Tunisie, Université de Tunis El Manar, Tunis 1068, Tunisia
| | - Afrah Bardaoui
- Laboratory of Nanomaterials and Systems for Renewable Energies (LaNSER), Research and Technology Center of Energy (CRTEn), Techno-Park Borj Cedria, Bp 95, Hammam-Lif, Tunis 2050, Tunisia (R.C.)
| | - Shimaa Eissa
- Department of Chemistry, Khalifa University of Science and Technology, Abu Dhabi P.O. Box 127788, United Arab Emirates;
- Center for Catalysis and Separations, Khalifa University of Science and Technology, Abu Dhabi P.O. Box 127788, United Arab Emirates
| | - Walid A. M. Elgaher
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)—Helmholtz Centre for Infection Research (HZI), Saarland University, Campus E8.1, 66123 Saarbrücken, Germany;
| | - Radhouane Chtourou
- Laboratory of Nanomaterials and Systems for Renewable Energies (LaNSER), Research and Technology Center of Energy (CRTEn), Techno-Park Borj Cedria, Bp 95, Hammam-Lif, Tunis 2050, Tunisia (R.C.)
| | - Olfa Messaoud
- Biomedical Genomics and Oncogenetics Laboratory, Institut Pasteur de Tunis, University Tunis El-Manar, Tunis 1068, Tunisia;
| |
Collapse
|
9
|
Liu R, Zhang C, Wu T, Liu R, Sun Y, Ma J. Fabrication of a novel HKUST-1/CoFe 2O 4/g-C 3N 4 electrode for the electrochemical detection of ciprofloxacin in physiological samples. Talanta 2024; 273:125882. [PMID: 38513472 DOI: 10.1016/j.talanta.2024.125882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 03/02/2024] [Accepted: 03/06/2024] [Indexed: 03/23/2024]
Abstract
In this work, a novel HKUST-1/CoFe2O4/g-C3N4 electrode was successfully prepared via the hydrothermal method and the high-temperature calcination method, which can be applied as an electrochemical sensor for the precise detection of ciprofloxacin (CIP) in physiological samples. The novel electrode was characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD) and Fourier-transform infrared spectroscopy (FT-IR), and its electrochemical performance was further evaluated via the cyclic voltammetry (CV) and differential pulse voltammetry (DPV) techniques. The results demonstrated that the HKUST-1/CoFe2O4/g-C3N4 electrode exhibited an optimal linear range of 0.05-180 μmol L-1 for the CIP detection, which demonstrated a low limit of detection (LOD) of 0.0026 μmol L-1 and a low limit of quantitation (LOQ) of 0.0087 μmol L-1, respectively. Additionally, the novel semiconductor sensors exhibited exceptional selectivity, stability and repeatability in the determination of CIP. The recovery rate of CIP was found to range from 98.00% to 104.00% in serum, with the relative standard deviations (RSD) below 2.62% (n = 5), while the recovery rate of CIP was found to range from 96.00% to 105.00%, with the RSD less than 3.23% (n = 5) in urine. The current study extends to the application of the semiconductor-based electrochemical sensors and offers a new approach for the clinical pharmaceutical analysis to ensure medication safety, which could provide valuable insights into the potential of semiconductor sensors for future clinical applications.
Collapse
Affiliation(s)
- Rui Liu
- Center of Pharmaceutical Engineering and Technology, Harbin University of Commerce, Harbin, 150076, China.
| | - Chaojun Zhang
- Center of Pharmaceutical Engineering and Technology, Harbin University of Commerce, Harbin, 150076, China
| | - Tianheng Wu
- Center of Pharmaceutical Engineering and Technology, Harbin University of Commerce, Harbin, 150076, China
| | - Rijia Liu
- Center of Pharmaceutical Engineering and Technology, Harbin University of Commerce, Harbin, 150076, China
| | - Yuan Sun
- Center of Pharmaceutical Engineering and Technology, Harbin University of Commerce, Harbin, 150076, China.
| | - Jing Ma
- Department of Chemical Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China.
| |
Collapse
|
10
|
Zhang W, Li X, Liu X, Song K, Wang H, Wang J, Li R, Liu S, Peng Z. A Novel Electrochemical Sensor Based on Pd Confined Mesoporous Carbon Hollow Nanospheres for the Sensitive Detection of Ascorbic Acid, Dopamine, and Uric Acid. Molecules 2024; 29:2427. [PMID: 38893303 PMCID: PMC11173461 DOI: 10.3390/molecules29112427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/08/2024] [Accepted: 05/17/2024] [Indexed: 06/21/2024] Open
Abstract
In this study, we designed a novel electrochemical sensor by modifying a glass carbon electrode (GCE) with Pd confined mesoporous carbon hollow nanospheres (Pd/MCHS) for the simultaneous detection of ascorbic acid (AA), dopamine (DA), and uric acid (UA). The structure and morphological characteristics of the Pd/MCHS nanocomposite and the Pd/MCHS/GCE sensor are comprehensively examined using SEM, TEM, XRD and EDX. The electrochemical properties of the prepared sensor are investigated through CV and DPV, which reveal three resolved oxidation peaks for AA, DA, and UA, thereby verifying the simultaneous detection of the three analytes. Benefiting from its tailorable properties, the Pd/MCHS nanocomposite provides a large surface area, rapid electron transfer ability, good catalytic activity, and high conductivity with good electrochemical behavior for the determination of AA, DA, and UA. Under optimized conditions, the Pd/MCHS/GCE sensor exhibited a linear response in the concentration ranges of 300-9000, 2-50, and 20-500 µM for AA, DA, and UA, respectively. The corresponding limit of detection (LOD) values were determined to be 51.03, 0.14, and 4.96 µM, respectively. Moreover, the Pd/MCHS/GCE sensor demonstrated outstanding selectivity, reproducibility, and stability. The recovery percentages of AA, DA, and UA in real samples, including a vitamin C tablet, DA injection, and human urine, range from 99.8-110.9%, 99.04-100.45%, and 98.80-100.49%, respectively. Overall, the proposed sensor can serve as a useful reference for the construction of a high-performance electrochemical sensing platform.
Collapse
Affiliation(s)
- Wanqing Zhang
- School of Chemistry and Chemical Engineering, Henan Institute of Science and Technology, Xinxiang 453003, China (J.W.)
| | - Xijiao Li
- School of Chemistry and Chemical Engineering, Henan Institute of Science and Technology, Xinxiang 453003, China (J.W.)
| | - Xiaoxue Liu
- School of Chemistry and Chemical Engineering, Henan Institute of Science and Technology, Xinxiang 453003, China (J.W.)
| | - Kaixuan Song
- School of Chemistry and Chemical Engineering, Henan Institute of Science and Technology, Xinxiang 453003, China (J.W.)
| | - Haiyang Wang
- School of Chemistry and Chemical Engineering, Henan Institute of Science and Technology, Xinxiang 453003, China (J.W.)
| | - Jichao Wang
- School of Chemistry and Chemical Engineering, Henan Institute of Science and Technology, Xinxiang 453003, China (J.W.)
| | - Renlong Li
- School of Chemistry and Chemical Engineering, Henan Institute of Science and Technology, Xinxiang 453003, China (J.W.)
| | - Shanqin Liu
- School of Chemistry and Chemical Engineering, Henan Institute of Science and Technology, Xinxiang 453003, China (J.W.)
| | - Zhikun Peng
- China Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
11
|
Xing Y, Lv C, Fu Y, Luo L, Liu J, Xie X, Chen F. Sensitive sensing platform based on Co, Mo doped electrospun nanofibers for simultaneous electrochemical detection of dopamine and uric acid. Talanta 2024; 271:125674. [PMID: 38245960 DOI: 10.1016/j.talanta.2024.125674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 01/04/2024] [Accepted: 01/13/2024] [Indexed: 01/23/2024]
Abstract
Abnormal levels of dopamine (DA) and uric acid (UA) in the human body are valuable indicators for monitoring human health, as they are associated with certain diseases. Therefore, it is crucial to develop sensitive and simultaneous analytical techniques for DA and UA in diagnosing the related diseases. Herein, the Co- and Mo- doped carbon nanofibers (Co, Mo@CNFs) electrochemical biosensor was developed successfully for the sensitive and accurate simultaneous detection of DA and UA. A straightforward electrospinning technique followed by a carbonization process was employed for the synthesis of Co, Mo@CNFs, and the encapsulation of Co and Mo within CNFs served to not only prevent nanoparticle agglomeration, thus providing more active sites, but also to facilitate rapid electron transfer. By incorporating Co and Mo into CNFs, the electrocatalytic activity of the modified electrode was greatly improved due to the beneficial conductivity and synergistic effects of transition metals. This enhancement effectively addressed issues such as the overlapping anodic peaks that occur when DA and UA are oxidized concurrently. Due to the mentioned synergistic contributions, the modified Co, Mo@CNFs electrode (Co, Mo@CNFs/GCE) achieved remarkable sensitivity for the simultaneous detection of DA and UA, while also exhibiting strong anti-interference ability. The detection limits for DA and UA were 2.35 nmol L-1 and 0.16 μmol L-1, respectively. We applied the developed Co, Mo@CNFs/GCE electrochemical biosensor to detect DA and UA in 50-fold diluted serum and urine samples. The results affirm the biosensor's reliability and precision. Moreover, the developed Co, Mo@CNFs/GCE biosensor demonstrated excellent performance in simultaneously detecting DA and UA, providing an efficient and dependable detection approach for clinical diagnosis and bioanalysis.
Collapse
Affiliation(s)
- Yukun Xing
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, 710069, Xi'an, China
| | - Chengkai Lv
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, 710069, Xi'an, China
| | - Yue Fu
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, 710069, Xi'an, China
| | - Lan Luo
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, 710069, Xi'an, China
| | - Jixiang Liu
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, 710069, Xi'an, China
| | - Xiaoyu Xie
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Fangfang Chen
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, 710069, Xi'an, China.
| |
Collapse
|
12
|
Shang L, Li R, Li H, Yu S, Sun X, Yu Y, Ren Q. The Simultaneous Detection of Dopamine and Uric Acid In Vivo Based on a 3D Reduced Graphene Oxide-MXene Composite Electrode. Molecules 2024; 29:1936. [PMID: 38731427 PMCID: PMC11085402 DOI: 10.3390/molecules29091936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 04/16/2024] [Accepted: 04/22/2024] [Indexed: 05/13/2024] Open
Abstract
Dopamine (DA) and uric acid (UA) are essential for many physiological processes in the human body. Abnormal levels of DA and UA can lead to multiple diseases, such as Parkinson's disease and gout. In this work, a three-dimensional reduced graphene oxide-MXene (3D rGO-Ti3C2) composite electrode was prepared using a simple one-step hydrothermal reduction process, which could separate the oxidation potentials of DA and UA, enabling the simultaneous detection of DA and UA. The 3D rGO-Ti3C2 electrode exhibited excellent electrocatalytic activity towards both DA and UA. In 0.01 M PBS solution, the linear range of DA was 0.5-500 µM with a sensitivity of 0.74 µA·µM-1·cm-2 and a detection limit of 0.056 µM (S/N = 3), while the linear range of UA was 0.5-60 µM and 80-450 µM, with sensitivity of 2.96 and 0.81 µA·µM-1·cm-2, respectively, and a detection limit of 0.086 µM (S/N = 3). In 10% fetal bovine serum (FBS) solution, the linear range of DA was 0.5-500 µM with a sensitivity of 0.41 µA·µM-1·cm-2 and a detection limit of 0.091 µM (S/N = 3). The linear range of UA was 2-500 µM with a sensitivity of 0.11 µA·µM-1·cm-2 and a detection limit of 0.6 µM (S/N = 3). The modified electrode exhibited advantages such as high sensitivity, a strong anti-interference capability, and good repeatability. Furthermore, the modified electrode was successfully used for DA measurement in vivo. This could present a simple reliable route for neurotransmitter detection in neuroscience.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Qiongqiong Ren
- School of Medical Engineering, Xinxiang Medical University, Xinxiang 453003, China; (L.S.); (R.L.); (H.L.); (S.Y.); (X.S.); (Y.Y.)
| |
Collapse
|
13
|
Habibi MM, Mousavi M, Shekofteh-Gohari M, Parsaei-Khomami A, Hosseini MA, Haghani E, Salahandish R, Ghasemi JB. Machine learning-enhanced drug testing for simultaneous morphine and methadone detection in urinary biofluids. Sci Rep 2024; 14:8099. [PMID: 38582770 PMCID: PMC10998919 DOI: 10.1038/s41598-024-58843-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 04/03/2024] [Indexed: 04/08/2024] Open
Abstract
The simultaneous identification of drugs has considerable difficulties due to the intricate interplay of analytes and the interference present in biological matrices. In this study, we introduce an innovative electrochemical sensor that overcomes these hurdles, enabling the precise and simultaneous determination of morphine (MOR), methadone (MET), and uric acid (UA) in urine samples. The sensor harnesses the strategically adapted carbon nanotubes (CNT) modified with graphitic carbon nitride (g-C3N4) nanosheets to ensure exceptional precision and sensitivity for the targeted analytes. Through systematic optimization of pivotal parameters, we attained accurate and quantitative measurements of the analytes within intricate matrices employing the fast Fourier transform (FFT) voltammetry technique. The sensor's performance was validated using 17 training and 12 test solutions, employing the widely acclaimed machine learning method, partial least squares (PLS), for predictive modeling. The root mean square error of cross-validation (RMSECV) values for morphine, methadone, and uric acid were significantly low, measuring 0.1827 µM, 0.1951 µM, and 0.1584 µM, respectively, with corresponding root mean square error of prediction (RMSEP) values of 0.1925 µM, 0.2035 µM, and 0.1659 µM. These results showcased the robust resiliency and reliability of our predictive model. Our sensor's efficacy in real urine samples was demonstrated by the narrow range of relative standard deviation (RSD) values, ranging from 3.71 to 5.26%, and recovery percentages from 96 to 106%. This performance underscores the potential of the sensor for practical and clinical applications, offering precise measurements even in complex and variable biological matrices. The successful integration of g-C3N4-CNT nanocomposites and the robust PLS method has driven the evolution of sophisticated electrochemical sensors, initiating a transformative era in drug analysis.
Collapse
Affiliation(s)
- Mohammad Mehdi Habibi
- School of Chemistry, University College of Science, University of Tehran, P.O. Box 14155-6455, Tehran, Iran
| | - Mitra Mousavi
- School of Chemistry, University College of Science, University of Tehran, P.O. Box 14155-6455, Tehran, Iran
| | - Maryam Shekofteh-Gohari
- School of Chemistry, University College of Science, University of Tehran, P.O. Box 14155-6455, Tehran, Iran
| | - Anita Parsaei-Khomami
- School of Chemistry, University College of Science, University of Tehran, P.O. Box 14155-6455, Tehran, Iran
| | - Monireh-Alsadat Hosseini
- School of Chemistry, University College of Science, University of Tehran, P.O. Box 14155-6455, Tehran, Iran
| | - Elnaz Haghani
- Laboratory of Advanced Biotechnologies for Health Assessments (Lab-HA), Lassonde School of Engineering, York University, Toronto, ON, M3J 1P3, Canada
- Department of Electrical Engineering and Computer Science, Biomedical Engineering Program, York University, 4700 Keele Street, Toronto, ON, M3J 1P3, Canada
| | - Razieh Salahandish
- Laboratory of Advanced Biotechnologies for Health Assessments (Lab-HA), Lassonde School of Engineering, York University, Toronto, ON, M3J 1P3, Canada.
- Department of Electrical Engineering and Computer Science, Biomedical Engineering Program, York University, 4700 Keele Street, Toronto, ON, M3J 1P3, Canada.
| | - Jahan B Ghasemi
- School of Chemistry, University College of Science, University of Tehran, P.O. Box 14155-6455, Tehran, Iran.
- Laboratory of Advanced Biotechnologies for Health Assessments (Lab-HA), Lassonde School of Engineering, York University, Toronto, ON, M3J 1P3, Canada.
| |
Collapse
|
14
|
Cao W, Guo T, Wang J, Ding Y, Fan B, Liu D. Hierarchical N-doped porous carbon scaffold Cu/Co-oxide with enhanced electrochemical sensing properties for the detection of glucose in beverages and ascorbic acid in vitamin C tablets. Food Chem 2024; 436:137750. [PMID: 37862993 DOI: 10.1016/j.foodchem.2023.137750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/07/2023] [Accepted: 10/11/2023] [Indexed: 10/22/2023]
Abstract
This research focuses on the development of a highly efficient electrocatalyst, CuxO/NPC@Co3O4/NPC-10-7, for detecting glucose and ascorbic acid. In a 0.1 M NaOH solution, the modified electrode exhibits a sensitivity of 3314.29 μA mM-1 cm-2 for glucose detection. The linear range for ascorbic acid sensing is 0.5 μM - 23.332 mM, with a detection limit as low as 0.24 μM. In a 0.1 M PBS solution, the linear range for ascorbic acid detection extends to 43.328 mM, which represents the best performance reported to date by chronoamperometry. Moreover, the electrode demonstrates high accuracy, with a recovery rate of 96.80 % - 103.60 % for glucose detection and a recovery rate of 95.25 % - 104.83 % for ascorbic acid detection. These results suggest that the CuxO/NPC@Co3O4/NPC-10-7 modified electrode shows significant potential for practical applications in food detection.
Collapse
Affiliation(s)
- Wenbin Cao
- School of Chemistry and Environmental Engineering, Hubei Key Laboratory of Novel Reactor and Green Chemistry Technology, Wuhan Institute of Technology, Wuhan 430205, PR China
| | - Tong Guo
- School of Chemistry and Environmental Engineering, Hubei Key Laboratory of Novel Reactor and Green Chemistry Technology, Wuhan Institute of Technology, Wuhan 430205, PR China
| | - Jialiang Wang
- School of Chemistry and Environmental Engineering, Hubei Key Laboratory of Novel Reactor and Green Chemistry Technology, Wuhan Institute of Technology, Wuhan 430205, PR China
| | - Yigang Ding
- School of Chemistry and Environmental Engineering, Hubei Key Laboratory of Novel Reactor and Green Chemistry Technology, Wuhan Institute of Technology, Wuhan 430205, PR China
| | - Baoming Fan
- School of Materials and Mechanical Engineering, Key Laboratory of Processing and Quality Evaluation Technology of Green Plastics of China National Light Industry Council, Beijing Technology and Business University, Beijing 100048, PR China
| | - Dong Liu
- School of Chemistry and Environmental Engineering, Hubei Key Laboratory of Novel Reactor and Green Chemistry Technology, Wuhan Institute of Technology, Wuhan 430205, PR China; School of Materials and Mechanical Engineering, Key Laboratory of Processing and Quality Evaluation Technology of Green Plastics of China National Light Industry Council, Beijing Technology and Business University, Beijing 100048, PR China.
| |
Collapse
|
15
|
Zhang L, Yu L, Peng J, Hou X, Du H. Highly sensitive and simultaneous detection of ascorbic acid, dopamine, and uric acid using Pt@g-C 3N 4/N-CNTs nanocomposites. iScience 2024; 27:109241. [PMID: 38433909 PMCID: PMC10907839 DOI: 10.1016/j.isci.2024.109241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/21/2023] [Accepted: 02/12/2024] [Indexed: 03/05/2024] Open
Abstract
The detection of ascorbic acid (AA), dopamine (DA), and uric acid (UA) is crucial for understanding and managing various illnesses. In this research, Pt@g-C3N4 nanoparticles were synthesized via hydrothermal method and combined with N-doped carbon nanotubes (N-CNTs). The Pt@g-C3N4/N-CNTs-modified glassy carbon (GC) electrode was fabricated as an electrochemical sensor for the determination of AA, DA, and UA. The linear response range of AA, DA, and UA in the optimal condition was 100-3,000 μM, 1-100 μM, and 2-215 μM boasting a low detection limit (S/N = 3) of 29.44 μM (AA), 0.21 μM (UA), and 2.99 μM (DA), respectively. Additionally, the recoveries of AA, DA, and UA in serum sample were 100.4%-106.7%. These results corroborate the feasibility of the proposed method for the simultaneous, sensitive, and reliable detection of AA, DA, and UA. Our Pt@g-C3N4/N-CNTs/GC electrode can provide a potential strategy for disease diagnosis and health monitoring in clinical settings.
Collapse
Affiliation(s)
- Lin Zhang
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China
- Hubei Shizhen Laboratory, Wuhan 430065, China
| | - Liu Yu
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Junyang Peng
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Xiaoying Hou
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China
- Cancer Institute, School of Medicine, Jianghan University, Wuhan, China
| | - Hongzhi Du
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China
- Hubei Shizhen Laboratory, Wuhan 430065, China
| |
Collapse
|
16
|
Mao A, Zhang Y, Xu Q, Li J, Li H. Superoxide dismutase-like cerium dioxide hollow sphere-based highly specific photoelectrochemical biosensing for ascorbic acid. Talanta 2024; 269:125472. [PMID: 38039673 DOI: 10.1016/j.talanta.2023.125472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 11/10/2023] [Accepted: 11/22/2023] [Indexed: 12/03/2023]
Abstract
Conventional N-type semiconductor-based photoelectrochemical (PEC) sensors are difficult to achieve high selectivity for ascorbic acid (AA) detection in real samples because co-existing reducing agents act as hole sacrificial agents like AA to promote the increase of photocurrent. Cerium dioxide (CeO2) is a superoxide dismutase-like nanozyme with the reversible Ce3+/Ce4+ redox pair as well as one of alternative N-type semiconductors. To address the problem of PEC detection selectivity of AA, bifunctional CeO2 is a good choice. Herein, a novel and rational PEC biosensor for AA is constructed based on CeO2 hollow spheres as both AA superoxide dismutase-like nanozyme and the photoelectric beacon, which enable the PEC approach with high selectivity. In this protocol, AA can selectively induce a decrease in the CeO2-based photoanode current, which is significantly different from the conventional N-type semiconductor-based PEC sensor, this unique working mechanism is also proposed. The results show that the CeO2-based photocurrent response decreases linearly with AA concentrations in the ranges of 1 μM-600 μM and 600 μM-3000 μM, with a limit of detection of 0.33 μM. Moreover, the fabricated PEC biosensor has advantages of cost-effectiveness, replicability, and stability. Additionally, the sensor is competent for AA determination in practical settings and has achieved satisfactory results.
Collapse
Affiliation(s)
- Airong Mao
- School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng, 224051, PR China
| | - Yanxin Zhang
- School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng, 224051, PR China
| | - Qin Xu
- College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, PR China
| | - Jing Li
- School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng, 224051, PR China.
| | - Hongbo Li
- School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng, 224051, PR China.
| |
Collapse
|
17
|
Muthukutty B, Doan TC, Yoo H. Binary metal oxide (NiO/SnO 2) composite with electrochemical bifunction: Detection of neuro transmitting drug and catalysis for hydrogen evolution reaction. ENVIRONMENTAL RESEARCH 2024; 241:117655. [PMID: 37980995 DOI: 10.1016/j.envres.2023.117655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 10/22/2023] [Accepted: 11/11/2023] [Indexed: 11/21/2023]
Abstract
The synergetic effect between dual oxides in binary metal oxides (BMO) makes them promising electrode materials for the detection of toxic chemicals, and biological compounds. In addition, the interaction between the cations and anions of diverse metals in BMO tends to create more oxygen vacancies which are beneficial for energy storage devices. However, specifically targeted synthesis of BMO is still arduous. In this work, we prepared a nickel oxide/tin oxide composite (NiO/SnO2) through a simple solvothermal technique. The crystallinity, specific surface area, and morphology were fully characterized. The synthesized BMO is used as a bifunctional electrocatalyst for the electrochemical detection of dopamine (DPA) and for the hydrogen evolution reaction (HER). As expected, the active metals in the NiO/SnO2 composite afforded a higher redox current at a reduced redox potential with a nanomolar level detection limit (4 nm) and excellent selectivity. Moreover, a better recovery rate is achieved in the real-time detection of DPA in human urine and DPA injection solution. Compared to other metal oxides, NiO/SnO2 composite afforded lower overpotential (157 mV @10 mA cm-2), Tafel slope (155 mV dec-1), and long-term durability, with a minimum retention rate. These studies conclude that NiO/SnO2 composite can act as a suitable electrode modifier for electrochemical sensing and the HER.
Collapse
Affiliation(s)
- Balamurugan Muthukutty
- Department of Materials Science and Chemical Engineering, Hanyang University ERICA, Ansan, Gyeonggi-do, 15588, Republic of Korea.
| | - Thang Cao Doan
- Department of Materials Science and Chemical Engineering, Hanyang University ERICA, Ansan, Gyeonggi-do, 15588, Republic of Korea.
| | - Hyojong Yoo
- Department of Materials Science and Chemical Engineering, Hanyang University ERICA, Ansan, Gyeonggi-do, 15588, Republic of Korea.
| |
Collapse
|
18
|
Zhang M, Tan W, Wu X, Wan C, Wen C, Feng L, Zhang F, Qu F. A dual-functional cuprum coordination framework for high proton conduction and electrochemical dopamine detection. Mikrochim Acta 2023; 191:67. [PMID: 38159131 DOI: 10.1007/s00604-023-06133-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 11/26/2023] [Indexed: 01/03/2024]
Abstract
The present study selected 5, 5'-((6-(ethylamino)-1, 3, 5-triazine-2, 4-diyl) bis(azanediyl))diisophthalic acid (H4EATDIA) as ligand and an amino-functionalized cuprum-based MOF (EA-JUC-1000), successfully synthesized by microwave-assisted method, for proton conduction and dopamine sensing applications. In order to enhance the proton-conducting potential of EA-JUC-1000, the Brönsted acid (BA) encapsulated composites (BA@EA-JUC-1000) are dopped into chitosan (CS) to form a series of hybrid membranes (BA@EA-JUC-1000/CS). The impedance results display that the best proton conductivity of CF3SO3H@EA-JUC-1000/CS-8% reaches up to 1.23 × 10-3 S∙cm-1 at 338 K and ~ 98% RH, 2.6-fold than that of CS. Moreover, the EA-JUC-1000 is in-situ combined with reduced graphene oxide (rGO) (rGO/EA-JUC-1000), which makes EA-JUC-1000 have a wide detection range (0.1 ~ 500 μM) and a low limit of detection (50 nM), together with good anti-interference performance, reproducibility and repeatability. In addition, the electrochemical sensing method has been successfully applied to detect DA in bovine serum samples. The dual-functional MOF-based hybrid membrane and composites including proton conduction and DA sensing would provide an example of practical application for MOFs.
Collapse
Affiliation(s)
- Mingxia Zhang
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials, Heilongjiang Province, Key Laboratory of Photonic and Electronic Bandgap Materials, Ministry of Education, Harbin Normal University, Harbin, 150025, People's Republic of China
| | - Wei Tan
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials, Heilongjiang Province, Key Laboratory of Photonic and Electronic Bandgap Materials, Ministry of Education, Harbin Normal University, Harbin, 150025, People's Republic of China
| | - Xiaodan Wu
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials, Heilongjiang Province, Key Laboratory of Photonic and Electronic Bandgap Materials, Ministry of Education, Harbin Normal University, Harbin, 150025, People's Republic of China.
| | - Chengan Wan
- Beijing Spacecrafts Manufacturing Factory Co. Ltd., Beijing, 100094, China
| | - Chen Wen
- Beijing Spacecrafts Manufacturing Factory Co. Ltd., Beijing, 100094, China.
| | - Lei Feng
- Beijing Spacecrafts Manufacturing Factory Co. Ltd., Beijing, 100094, China
| | - Feng Zhang
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials, Heilongjiang Province, Key Laboratory of Photonic and Electronic Bandgap Materials, Ministry of Education, Harbin Normal University, Harbin, 150025, People's Republic of China.
| | - Fengyu Qu
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials, Heilongjiang Province, Key Laboratory of Photonic and Electronic Bandgap Materials, Ministry of Education, Harbin Normal University, Harbin, 150025, People's Republic of China
| |
Collapse
|
19
|
Park H, Chai K, Kim W, Park J, Lee W, Park J. Asterias forbesi-Inspired SERS Substrates for Wide-Range Detection of Uric Acid. BIOSENSORS 2023; 14:8. [PMID: 38248385 PMCID: PMC10813034 DOI: 10.3390/bios14010008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/17/2023] [Accepted: 12/20/2023] [Indexed: 01/23/2024]
Abstract
Uric acid (UA), the final metabolite of purine, is primarily excreted through urine to maintain an appropriate concentration in the bloodstream. However, any malfunction in this process can lead to complications due to either deficiency or excess amount of UA. Hence, the development of a sensor platform with a wide-range detection is crucial. To realize this, we fabricated a surface-enhanced Raman spectroscopy (SERS) substrate inspired by a type of starfish with numerous protrusions, Asterias forbesi. The Asterias forbesi-inspired SERS (AF-SERS) substrate utilized an Au@Ag nanostructure and gold nanoparticles to mimic the leg and protrusion morphology of the starfish. This substrate exhibited excellent Raman performance due to numerous hotspots, demonstrating outstanding stability, reproducibility, and repeatability. In laboratory settings, we successfully detected UA down to a concentration of 1.16 nM (limit of detection) and demonstrated selectivity against various metabolites. In the experiments designed for real-world application, the AF-SERS substrate detected a broad range of UA concentrations, covering deficiencies and excesses, in both serum and urine samples. These results underscore the potential of the developed AF-SERS substrate as a practical detection platform for UA in real-world applications.
Collapse
Affiliation(s)
- Hyunjun Park
- Department of Biomechatronic Engineering, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon 16419, Republic of Korea; (H.P.); (K.C.); (W.K.); (J.P.)
| | - Kyunghwan Chai
- Department of Biomechatronic Engineering, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon 16419, Republic of Korea; (H.P.); (K.C.); (W.K.); (J.P.)
| | - Woochang Kim
- Department of Biomechatronic Engineering, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon 16419, Republic of Korea; (H.P.); (K.C.); (W.K.); (J.P.)
| | - Joohyung Park
- Department of Biomechatronic Engineering, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon 16419, Republic of Korea; (H.P.); (K.C.); (W.K.); (J.P.)
| | - Wonseok Lee
- Department of Electrical Engineering, Korea National University of Transportation, Chungju 27469, Republic of Korea
| | - Jinsung Park
- Department of Biomechatronic Engineering, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon 16419, Republic of Korea; (H.P.); (K.C.); (W.K.); (J.P.)
| |
Collapse
|
20
|
Yulkifli Y, Yandes WP, Isa IM, Hashim N, Ulianas A, Sharif SNM, Saidin MI, Ahmad MS, Yazid SNAM, Suyanta S, Nuryadi R, Abd Azis N. A Nanocomposite Paste Electrode Sensor for Simultaneous Detection of Uric Acid and Bisphenol A Using Zinc Hydroxide Nitrate-Sodium Dodecylsulfate Bispyribac. SENSORS (BASEL, SWITZERLAND) 2023; 23:8366. [PMID: 37896460 PMCID: PMC10610553 DOI: 10.3390/s23208366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/29/2023] [Accepted: 10/07/2023] [Indexed: 10/29/2023]
Abstract
The fabrication of a zinc hydroxide nitrate-sodium dodecylsulfate bispyribac modified with multi-walled carbon nanotube (ZHN-SDS-BP/MWCNT) paste electrode for uric acid and bisphenol A detection was presented in this study. Electrochemical impedance spectroscopy, chronocoulometry, square-wave voltammetry, and cyclic voltammetry were all used to examine the electrocatalytic activities of modified paste electrodes. The modified electrode's sensitivity and selectivity have been considered in terms of the composition of the modifier in percentages, the types of supporting electrolytes used, the pH of the electrolyte, and square-wave voltammetry parameters like frequency, pulse size, and step increment. Square-wave voltammetry is performed by applying a small amplitude square-wave voltage to a scanning potential from -0.3 V to +1.0 V, demonstrating a quick response time and high sensitivity. The ZHN-SDS-BP/MWCNT sensor demonstrated a linear range for uric acid and bisphenol A from 5.0 µM to 0.7 mM, with a limit of detection of 0.4 µM and 0.8 µM, respectively, with good reproducibility, repeatability, and stability as well. The modified paste electrode was successfully used in the determination of uric acid and bisphenol A in samples of human urine and lake water.
Collapse
Affiliation(s)
- Yulkifli Yulkifli
- Department of Physics, Faculty of Mathematics and Natural Sciences, Universitas Negeri Padang, Padang 25131, Indonesia
| | - Widya Putri Yandes
- Department of Chemistry, Faculty of Science and Mathematics, Universiti Pendidikan Sultan Idris, Tanjong Malim 35900, Perak, Malaysia; (W.P.Y.); (N.H.); (S.N.M.S.); (M.I.S.); (M.S.A.); (S.N.A.M.Y.)
| | - Illyas Md Isa
- Department of Chemistry, Faculty of Science and Mathematics, Universiti Pendidikan Sultan Idris, Tanjong Malim 35900, Perak, Malaysia; (W.P.Y.); (N.H.); (S.N.M.S.); (M.I.S.); (M.S.A.); (S.N.A.M.Y.)
| | - Norhayati Hashim
- Department of Chemistry, Faculty of Science and Mathematics, Universiti Pendidikan Sultan Idris, Tanjong Malim 35900, Perak, Malaysia; (W.P.Y.); (N.H.); (S.N.M.S.); (M.I.S.); (M.S.A.); (S.N.A.M.Y.)
| | - Alizar Ulianas
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Negeri Padang, Padang 25131, Indonesia;
| | - Sharifah Norain Mohd Sharif
- Department of Chemistry, Faculty of Science and Mathematics, Universiti Pendidikan Sultan Idris, Tanjong Malim 35900, Perak, Malaysia; (W.P.Y.); (N.H.); (S.N.M.S.); (M.I.S.); (M.S.A.); (S.N.A.M.Y.)
| | - Mohamad Idris Saidin
- Department of Chemistry, Faculty of Science and Mathematics, Universiti Pendidikan Sultan Idris, Tanjong Malim 35900, Perak, Malaysia; (W.P.Y.); (N.H.); (S.N.M.S.); (M.I.S.); (M.S.A.); (S.N.A.M.Y.)
| | - Mohamad Syahrizal Ahmad
- Department of Chemistry, Faculty of Science and Mathematics, Universiti Pendidikan Sultan Idris, Tanjong Malim 35900, Perak, Malaysia; (W.P.Y.); (N.H.); (S.N.M.S.); (M.I.S.); (M.S.A.); (S.N.A.M.Y.)
| | - Siti Nur Akmar Mohd Yazid
- Department of Chemistry, Faculty of Science and Mathematics, Universiti Pendidikan Sultan Idris, Tanjong Malim 35900, Perak, Malaysia; (W.P.Y.); (N.H.); (S.N.M.S.); (M.I.S.); (M.S.A.); (S.N.A.M.Y.)
| | - Suyanta Suyanta
- Department of Chemistry Education, Faculty of Mathematics and Natural Science, Yogyakarta State University, Yogyakarta 55281, Indonesia;
| | - Ratno Nuryadi
- Center for Materials Technology, Agency for the Assessment and Application of Technology, Puspiptek Building #224, South Tangerang, Banten 15314, Indonesia;
| | - Nurashikin Abd Azis
- Department of Academic Affairs, North Borneo University College, Wisma Angkatan Hebat, 1 Borneo, Jalan Sulaman, Kota Kinabalu 88400, Sabah, Malaysia;
| |
Collapse
|
21
|
Meng Q, Yao J, Chen M, Dong Y, Liu X, Zhao S, Qiao R, Bai C, Qu C, Miao H. Using Cu 2+ to regulate the emission feature of near-infrared fluorescent sensor with AIE: To detect ascorbic acid in food samples and its application in bioimaging. Anal Chim Acta 2023; 1276:341602. [PMID: 37573096 DOI: 10.1016/j.aca.2023.341602] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 07/02/2023] [Accepted: 07/07/2023] [Indexed: 08/14/2023]
Abstract
Conventional ascorbic acid (AA) detection methods such as chromatography, capillary electrophoresis, colorimetry, electrochemical detection, and enzymatic analysis require expensive equipment and complicated operation. Simple, rapid, and accurate AA detection is essential to inspect food quality, diagnose diseases, and assess immunity in humans. In this study, the first near-infrared fluorescence sensor DBHM with aggregation-induced emission was developed to detect AA under the involvement of Cu2+. The DBHM + Cu2+ sensor showed high sensitivity to AA with a limit of detection of 2.37 μM. The AA detection mechanism was investigated by optical studies, 1H NMR titration, high-resolution mass spectrometry, and infrared spectroscopy. AA was detected qualitatively and quantitatively by the DBHM + Cu2+ sensor in beverages, fruits, and Vitamin C tablets using a dual-mode (fluorescence and smartphone app) sensing platform. The new sensing system also showed low toxicity and excellent bioimaging in HeLa cells, C. elegans, and mice. This sensor could advance AA detection technology in the food industry and has potential bioimaging applications.
Collapse
Affiliation(s)
- Qian Meng
- School of Chemistry and Materials Engineering, Engineering Research Center of Biomass Conversion and Pollution Prevention of Anhui Educational Institutions, Anhui Provincical Key Laboratory for Degradation and Monitoring of Pollution of the Environment, Fuyang Normal University, Fuyang, Anhui Province, 236037, PR China
| | - Junxiong Yao
- School of Chemistry and Materials Engineering, Engineering Research Center of Biomass Conversion and Pollution Prevention of Anhui Educational Institutions, Anhui Provincical Key Laboratory for Degradation and Monitoring of Pollution of the Environment, Fuyang Normal University, Fuyang, Anhui Province, 236037, PR China
| | - Mengyu Chen
- School of Chemistry and Materials Engineering, Engineering Research Center of Biomass Conversion and Pollution Prevention of Anhui Educational Institutions, Anhui Provincical Key Laboratory for Degradation and Monitoring of Pollution of the Environment, Fuyang Normal University, Fuyang, Anhui Province, 236037, PR China
| | - Yajie Dong
- School of Chemistry and Materials Engineering, Engineering Research Center of Biomass Conversion and Pollution Prevention of Anhui Educational Institutions, Anhui Provincical Key Laboratory for Degradation and Monitoring of Pollution of the Environment, Fuyang Normal University, Fuyang, Anhui Province, 236037, PR China
| | - Xinyi Liu
- School of Chemistry and Materials Engineering, Engineering Research Center of Biomass Conversion and Pollution Prevention of Anhui Educational Institutions, Anhui Provincical Key Laboratory for Degradation and Monitoring of Pollution of the Environment, Fuyang Normal University, Fuyang, Anhui Province, 236037, PR China
| | - Shuyang Zhao
- School of Chemistry and Materials Engineering, Engineering Research Center of Biomass Conversion and Pollution Prevention of Anhui Educational Institutions, Anhui Provincical Key Laboratory for Degradation and Monitoring of Pollution of the Environment, Fuyang Normal University, Fuyang, Anhui Province, 236037, PR China
| | - Rui Qiao
- School of Chemistry and Materials Engineering, Engineering Research Center of Biomass Conversion and Pollution Prevention of Anhui Educational Institutions, Anhui Provincical Key Laboratory for Degradation and Monitoring of Pollution of the Environment, Fuyang Normal University, Fuyang, Anhui Province, 236037, PR China; Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, PR China.
| | - Cuibing Bai
- School of Chemistry and Materials Engineering, Engineering Research Center of Biomass Conversion and Pollution Prevention of Anhui Educational Institutions, Anhui Provincical Key Laboratory for Degradation and Monitoring of Pollution of the Environment, Fuyang Normal University, Fuyang, Anhui Province, 236037, PR China; Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, PR China.
| | - Changqing Qu
- Research Center of Anti-aging Chinese Herbal Medicine of Anhui Province, Fuyang, Anhui, 236037, PR China
| | - Hui Miao
- School of Chemistry and Materials Engineering, Engineering Research Center of Biomass Conversion and Pollution Prevention of Anhui Educational Institutions, Anhui Provincical Key Laboratory for Degradation and Monitoring of Pollution of the Environment, Fuyang Normal University, Fuyang, Anhui Province, 236037, PR China.
| |
Collapse
|
22
|
Zaidi SA, Sheikh H, Al-Mahasna M, Elsin F. Crumpled MXene nanosheets for sensing of ascorbic acid in food, biological fluids, and erythrocytes in-vitro microenvironment. Int J Biol Macromol 2023; 249:126024. [PMID: 37506798 DOI: 10.1016/j.ijbiomac.2023.126024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 06/14/2023] [Accepted: 07/25/2023] [Indexed: 07/30/2023]
Abstract
In this work, a simple and facile method was developed to achieve controlled oxidation and enhance the surface area of MXene nanosheets and their utilization in the efficient sensing of ascorbic acid (AA or vitamin C). After etching of MAX phase to MXene via the MILD technique, controlled flash oxidation was carried out in the open air environment for 1.5 h, followed by flocculation of oxidized MXene nanosheets by using H2SO4, consequently achieving crumpled MXene possessing anatase phase, porosity, and improved surface area as revealed and confirmed by SEM, TEM, Raman, and BET analysis results. The as-prepared crumpled MXene was coated over a glassy carbon electrode (GCE) and used to determine AA successfully via cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and differential pulse voltammetry (DPV) with a linear concentration range of 300 μM to 0.005 μM with a detection limit (LOD) of 2 nM (2.8 % RSD and S/N = 3). The developed electrochemical sensor was used to determine the AA in various actual samples such as juice, urine, serum, and erythrocytes spiked with AA with excellent recoveries in the 94-103 % range. The sensor also demonstrated excellent reproducibility (~1 % RSD for five repetitive assays) and a shelf life of nearly one month with a negligible decrease in response. Furthermore, it lost only 10 % of its response for the next ten days. It also showed satisfactory selectivity toward AA in the presence of other similar compounds, including uric acid (UA), dopamine (DA), and glucose.
Collapse
Affiliation(s)
- Shabi Abbas Zaidi
- Department of Chemistry and Earth Sciences, College of Arts and Sciences, Qatar University, P.O. Box 2713, Doha, Qatar.
| | - Hanan Sheikh
- Department of Chemistry and Earth Sciences, College of Arts and Sciences, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Muna Al-Mahasna
- Department of Chemistry and Earth Sciences, College of Arts and Sciences, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Fathiya Elsin
- Department of Chemistry and Earth Sciences, College of Arts and Sciences, Qatar University, P.O. Box 2713, Doha, Qatar
| |
Collapse
|
23
|
Zhang L, Zhang M, Yang P, Zhang Y, Fei J, Xie Y. Electrochemical Behavior of β-Cyclodextrin-Ni-MOF-74/Reduced Graphene Oxide Sensors for the Ultrasensitive Detection of Rutin. Molecules 2023; 28:4604. [PMID: 37375159 DOI: 10.3390/molecules28124604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/30/2023] [Accepted: 06/03/2023] [Indexed: 06/29/2023] Open
Abstract
Rutin, as a biological flavonoid glycoside, has very important medicinal value. The accurate and rapid detection of rutin is of great significance. Herein, an ultrasensitive electrochemical rutin sensor based on β-cyclodextrin metal-organic framework/reduced graphene oxide (β-CD-Ni-MOF-74/rGO) was constructed. The obtained β-CD-Ni-MOF-74 was characterized by X-ray diffraction spectroscopy (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FT-IR), and nitrogen adsorption and desorption. The β-CD-Ni-MOF-74/rGO presented good electrochemical properties benefiting from the large specific surface area and good adsorption enrichment effect of β-CD-Ni-MOF-74 and the good conductivity of rGO. Under optimal conditions for the detection of rutin, the β-CD-Ni-MOF-74/rGO/GCE showed a wider linear range (0.06-1.0 μM) and lower detection limit (LOD, 0.68 nM, (S/N = 3)). Furthermore, the sensor shows good accuracy and stability for the detection of rutin in actual samples.
Collapse
Affiliation(s)
- Li Zhang
- Hunan Engineering Laboratory for Preparation Technology of Polyvinyl Alcohol Fiber Material, College of Chemistry and Materials Engineering, Huaihua University, Huaihua 418000, China
- Key Laboratory of Research and Utilization of Ethnomedicinal Plant Resources of Hunan Province, Huaihua University, Huaihua 418008, China
- Hunan Provincial Higher Education Key Laboratory of Intensive Processing Research on Mountain Ecological Food, Huaihua 418008, China
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China
| | - Mengting Zhang
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Xiangtan University, Xiangtan 411105, China
| | - Pingping Yang
- Hunan Engineering Laboratory for Preparation Technology of Polyvinyl Alcohol Fiber Material, College of Chemistry and Materials Engineering, Huaihua University, Huaihua 418000, China
| | - Yin Zhang
- Junior Education Department, Changsha Normal University, Changsha 410100, China
| | - Junjie Fei
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Xiangtan University, Xiangtan 411105, China
| | - Yixi Xie
- Key Laboratory of Research and Utilization of Ethnomedicinal Plant Resources of Hunan Province, Huaihua University, Huaihua 418008, China
- Hunan Provincial Higher Education Key Laboratory of Intensive Processing Research on Mountain Ecological Food, Huaihua 418008, China
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Xiangtan University, Xiangtan 411105, China
| |
Collapse
|
24
|
Zhang L, Tang J, Li J, Li Y, Yang P, Zhao P, Fei J, Xie Y. A novel dopamine electrochemical sensor based on 3D flake nickel oxide/ cobalt oxide @ porous carbon nanosheets/carbon nanotubes/electrochemical reduced of graphene oxide composites modified glassy carbon electrode. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2023.131284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
25
|
Choi Y, Jeon CS, Kim KB, Kim HJ, Pyun SH, Park YM. Quantitative detection of dopamine in human serum with surface-enhanced Raman scattering (SERS) of constrained vibrational mode. Talanta 2023; 260:124590. [PMID: 37146455 DOI: 10.1016/j.talanta.2023.124590] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 04/04/2023] [Accepted: 04/23/2023] [Indexed: 05/07/2023]
Abstract
Dopamine (DA) is a crucial neurotransmitter involved in the hormonal, nervous, and vascular systems being considered as an index to diagnose neurodegenerative diseases, including Parkinson's and Alzheimer's disease. Herein, we demonstrate the quantitative sensing of DA using the peak shift in surface-enhanced Raman scattering (SERS) of 4-mercaptophenylboronic acid (4-MPBA), resulting from the concentration of DA. To enable the signal enhancement of Raman scattering, Ag nanostructure was built with one-step gas-flow sputtering. 4-MPBA was then introduced using vapor-based deposition, acting as a reporter molecule for bonding with DA. The gradual peak-shift from 1075.6 cm-1 to 1084.7 cm-1 was observed with the increasing concentration of DA from 1 pM to 100nM. The numerical simulation revealed that DA bonding induced a constrained vibrational mode corresponding to 1084.7 cm-1 instead of a C-S-coupled C-ring in-plane bending mode of 4-MPBA corresponding to 1075.6 cm-1. Proposed SERS sensors depicted reliable DA detection in human serum and good selectivity against other analytes, including glucose, creatinine, and uric acid.
Collapse
Affiliation(s)
- Yongheum Choi
- Heat and Surface Technology R&D Department, Korea Institute of Industrial Technology (KITECH), Incheon, 21999, Republic of Korea
| | - Chang Su Jeon
- R&D Center, Speclipse Inc., Seongnam-si, Gyeonggi-do, 13461, Republic of Korea
| | - Kwang Bok Kim
- Digital Health Care R&D Department, Korea Institute of Industrial Technology (KITECH), Cheonan, 31056, Republic of Korea
| | - Hyun-Jong Kim
- Heat and Surface Technology R&D Department, Korea Institute of Industrial Technology (KITECH), Incheon, 21999, Republic of Korea
| | - Sung Hyun Pyun
- R&D Center, Speclipse Inc., Seongnam-si, Gyeonggi-do, 13461, Republic of Korea.
| | - Young Min Park
- Heat and Surface Technology R&D Department, Korea Institute of Industrial Technology (KITECH), Incheon, 21999, Republic of Korea.
| |
Collapse
|
26
|
Zhu C, Bing Y, Chen Q, Pang B, Li J, Zhang T. Nonenzymatic Flexible Wearable Biosensors for Vitamin C Monitoring in Sweat. ACS APPLIED MATERIALS & INTERFACES 2023; 15:19384-19392. [PMID: 37036913 DOI: 10.1021/acsami.2c22345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Nutritional status monitoring plays an important role in the maintenance of human health and disease prevention. Monitoring the intake of vitamins can support the improvement of diet behavior. In this work, a polyaniline (PANI) film-based nonenzymatic electrochemical sensor was prepared to track the vitamin C level in sweat. The PANI film was modified with organic acids (ethylformic acid, malic acid, tartaric acid, and phytic acid). The phytic acid-modified PANI film based on sensor has a wide detection range (0.5-500 μmol·L-1), high sensitivity (665.5 and 326.2 μA·(mmol·L-1)-1·cm-2), and low detection limit (0.17 μmol·L-1) toward vitamin C in sweat. The phytate enhances the band transport between PANI chains, which increases the electrical conductivity of the film to improve the electrochemical properties of the sensor. In addition, we monitored changes of vitamin C levels in human body after taking vitamin C pills by detecting sweat or saliva. The ability to track the pharmacological profile demonstrates the potential of PANI film-based sensors for applications in personalized nutritional intake and tracking. And a simple and portable vitamin C detection system was developed to improve the practicability of the sensor. This work provides an idea for the application of wearable electrochemical sensing devices in nutrition guidance.
Collapse
Affiliation(s)
- Chonghui Zhu
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, China
| | - Yu Bing
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, China
| | - Qidai Chen
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, China
| | - Bo Pang
- School of Public Health, Jilin University, Changchun 130021, China
| | - Juan Li
- School of Public Health, Jilin University, Changchun 130021, China
| | - Tong Zhang
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, China
| |
Collapse
|
27
|
Su Z, Zhang L, Yu Y, Lin B, Wang Y, Guo M, Cao Y. An electrochemical determination strategy for miRNA based on bimetallic nanozyme and toehold-mediated DNA replacement procedure. Mikrochim Acta 2023; 190:149. [PMID: 36952059 DOI: 10.1007/s00604-023-05720-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 02/24/2023] [Indexed: 03/24/2023]
Abstract
An electrochemical strategy based on bimetallic nanozyme in collaboration with toehold-mediated DNA replacement effect is proposed for the sensitive determination of miRNA-21. The AuPt nanoparticles (AuPt NPs) are prepared as a catalytic beacon; it shows favorable peroxidase properties with a Michaelis contant (Km) of 0.072 mM for H2O2, which is capable of catalyzing H2O2 to induce an intense redox reaction, and causing a measurable electrochemical signal. To further enhance the strength of the signal response, a novel toehold-mediated DNA replacement strategy is employed. DNA strands with specific sequences are modified on electrodes and AuPt NPs, respectively. In the presence of miRNA-21, a cyclic substitution effect is subsequently activated via a specific toehold sequence and leads to a large accumulation of AuPt NPs on the electrodes. Subsequently, a strong signal depending on the amount of miRNA-21 is obtained after adding a small amount of H2O2. The analytical range of this determination method is from 0.1 pM to 1.0 nM, and the LOD is 84.1 fM. The spike recoveries for serum samples are 95.0 to 102.4% and the RSD values are 3.7 to 5.8%. The results suggests a promising application of the established method in clinical testing and disease diagnosis.
Collapse
Affiliation(s)
- Zhanying Su
- School of Chemistry, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, South China Normal University, Guangzhou, 510006, People's Republic of China
| | - Li Zhang
- School of Environmental and Chemical Engineering, Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang, 330063, People's Republic of China.
| | - Ying Yu
- School of Chemistry, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, South China Normal University, Guangzhou, 510006, People's Republic of China.
| | - Bixia Lin
- School of Chemistry, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, South China Normal University, Guangzhou, 510006, People's Republic of China
| | - Yumin Wang
- School of Chemistry, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, South China Normal University, Guangzhou, 510006, People's Republic of China
| | - Manli Guo
- School of Chemistry, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, South China Normal University, Guangzhou, 510006, People's Republic of China
| | - Yujuan Cao
- School of Chemistry, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, South China Normal University, Guangzhou, 510006, People's Republic of China
| |
Collapse
|
28
|
Ultrasensitive and Simple Dopamine Electrochemical Sensor Based on the Synergistic Effect of Cu-TCPP Frameworks and Graphene Nanosheets. Molecules 2023; 28:molecules28062687. [PMID: 36985659 PMCID: PMC10051941 DOI: 10.3390/molecules28062687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/09/2023] [Accepted: 03/13/2023] [Indexed: 03/19/2023] Open
Abstract
Dopamine (DA) is an important neurotransmitter. Abnormal concentration of DA can result in many neurological diseases. Developing reliable determination methods for DA is of great significance for the diagnosis and monitoring of neurological diseases. Here, a novel and simple electrochemical sensing platform for quantitative analysis of DA was constructed based on the Cu-TCPP/graphene composite (TCPP: Tetrakis(4-carboxyphenyl)porphyrin). Cu-TCPP frameworks were selected in consideration of their good electrochemical sensing potential. The graphene nanosheets with excellent conductivity were then added to further improve the sensing efficiency and stability of Cu-TCPP frameworks. The electrochemical properties of the Cu-TCPP/graphene composite were characterized, showing its large electrode active area, fast electron transfer, and good sensing performance toward DA. The signal enhancement mechanism of DA was explored. Strong accumulation ability and high electrocatalytic rate were observed on the surface of Cu-TCPP/graphene-modified glassy carbon electrode (Cu-TCPP/graphene/GCE). Based on the synergistic sensitization effect, an ultrasensitive and simple DA electrochemical sensor was developed. The linear range is 0.02–100 and 100–1000 µM, and the detection limit is 3.6 nM for the first linear range. It was also successfully used in detecting DA in serum samples, and a satisfactory recovery was obtained.
Collapse
|
29
|
Zhang Q, Wang C, Tian Y, Liu Y, You F, Wang K, Wei J, Long L, Qian J. Growth of AgI semiconductors on tailored 3D porous Ti 3C 2 MXene/graphene oxide aerogel to develop sensitive and selective "signal-on" photoelectrochemical sensor for H 2S determination. Anal Chim Acta 2023; 1245:340845. [PMID: 36737133 DOI: 10.1016/j.aca.2023.340845] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 01/09/2023] [Accepted: 01/16/2023] [Indexed: 01/19/2023]
Abstract
Long term exposure to hydrogen sulfide (H2S) even in low concentration poses a serious threat to human health and the ecosystem, pointing to the significance for its effective supervision. In this study, we report a sensitive and selective "signal-on" photoelectrochemical (PEC) sensor for the determination of toxic H2S in aqueous solution by in situ growth of AgI semiconductors on tailored three-dimensional (3D) porous Ti3C2 MXene/graphene oxide aerogel (MGA). Our research demonstrated that the resultant MGA with the starting feeding mass ratio of MXene and graphene oxide (GO) of 1:8 (MGA1:8) possessed the most excellent PEC performance after the growth of AgI semiconductors than their monomers (Ti3C2 MXene and GO) and the MGAs with other starting feeding mass ratio. Such designed PEC sensor based on MGA1:8/AgI heterojunction showed dramatically strengthened PEC responses with increasing concentrations of S2-. Correspondingly, a wide linear range of 5 nM-200 μM, a low limit of detection of 1.54 nM (S/N = 3), and exclusively unique selectivity have been achieved. Our research illustrates that the PEC sensor designed with tailored MGA constitutes is an effective pathway to enhance the overall sensing performance, which will envision to boost more efforts for advanced 3D porous aerogel using in PEC sensors.
Collapse
Affiliation(s)
- Qi Zhang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, PR China
| | - Chengquan Wang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, PR China.
| | - Yunmeng Tian
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, PR China
| | - Yue Liu
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, PR China
| | - Fuheng You
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, PR China
| | - Kun Wang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, PR China
| | - Jie Wei
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, PR China
| | - Lingliang Long
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, PR China
| | - Jing Qian
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, PR China.
| |
Collapse
|
30
|
Jin B, Liu S, Jin D. Electrochemical sensor based on carbon material derived from
Physalis alkekengi
L. husks for the analysis of ascorbic acid. ASIA-PAC J CHEM ENG 2022. [DOI: 10.1002/apj.2871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Biao Jin
- Analysis and Testing Center Yanbian University Yanji China
| | - Shanshan Liu
- Department of Chemistry, College of Science Yanbian University Yanji China
| | - Dongri Jin
- Department of Chemistry, College of Science Yanbian University Yanji China
| |
Collapse
|
31
|
Li D, Lu Y, Zhang C. Superhydrophobic and Electrochemical Performance of CF 2-Modified g-C 3N 4/Graphene Composite Film Deposited by PECVD. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:4387. [PMID: 36558242 PMCID: PMC9782866 DOI: 10.3390/nano12244387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/06/2022] [Accepted: 12/07/2022] [Indexed: 06/17/2023]
Abstract
The physicochemical properties of functional graphene are regulated by compositing with other nano-carbon materials or modifying functional groups on the surface through plasma processes. The functional graphene films with g-C3N4 and F-doped groups were produced by controlling the deposition steps and plasma gases via radio frequency plasma-enhanced chemical vapor deposition (RF-PECVD). The first principles calculation and electrochemistry characteristic of the functional graphene films were performed on Materials Studio software and an electrochemical workstation, respectively. It is found that the nanostructures of functional graphene films with g-C3N4 and F-doped groups were significantly transformed. The introduction of fluorine atoms led to severe deformation of the g-C3N4 nanostructure, which created gaps in the electrostatic potential of the graphene surface and provided channels for electron transport. The surface of the roving fabric substrate covered by pure graphene is hydrophilic with a static contact angle of 79.4°, but the surface is transformed to a hydrophobic state for the g-C3N4/graphene film with an increased static contact angle of 131.3° which is further improved to 156.2° for CF2-modified g-C3N4/graphene film exhibiting the stable superhydrophobic property. The resistance of the electron movement of CF2-modified g-C3N4/graphene film was reduced by 2% and 76.7%, respectively, compared with graphene and g-C3N4/graphene.
Collapse
Affiliation(s)
- Dayu Li
- Correspondence: (D.L.); (C.Z.)
| | | | | |
Collapse
|
32
|
Han B, Guan H, Peng B, Zhang Y, Liu Y. Fe 3O 4@Au-metal organic framework nanozyme with peroxidase-like activity and its application for colorimetric ascorbic acid detection. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:4832-4841. [PMID: 36385195 DOI: 10.1039/d2ay01460b] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
A free radical scavenging system based on Fe3O4@Au/MOF-ABTS˙+ has formed the basis of a novel method for the highly sensitive and specific spectrophotometric determination of ascorbic acid (AA). The Fe3O4@Au/MOF nanozyme with magnetic separation properties was effectively prepared and evaluated using an environmentally friendly technique. Nanomaterials have the advantages of superparamagnetism, biocompatibility, chemical stability, and enhanced synergistic peroxidase-like activity, which can be utilized in catalysis to oxidise the peroxidase substrate 2,2'-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid) (ABTS) into a green-colored product in the presence of H2O2. AA as an antioxidant has scavenging effects on ABTS radicals and can reduce green ABTS˙+ to uncolored ABTS2-, contributing to a substantial reduction in green color. Based on such a premise, a highly selective and sensitive chromogenic sensing method depending on the peroxidase-like activity of the nanocomposites was developed in order to achieve the efficient detection of AA in real samples. Under optimum conditions, the proposed technique had a detection range of 0.001-0.1 mmol L-1, a limit of detection of 0.098 μmol L-1, and a detection time of only 30 seconds. The newly proposed colorimetric analysis method devoid of enzymes has broad application potential in the areas of quality control and quality and safety detection.
Collapse
Affiliation(s)
- Bolin Han
- College of Food Engineering, Harbin University of Commerce, Harbin 150028, Heilongjiang Province, People's Republic of China.
| | - Huanan Guan
- College of Food Engineering, Harbin University of Commerce, Harbin 150028, Heilongjiang Province, People's Republic of China.
| | - Bo Peng
- College of Food Engineering, Harbin University of Commerce, Harbin 150028, Heilongjiang Province, People's Republic of China.
| | - Yue Zhang
- College of Food Engineering, Harbin University of Commerce, Harbin 150028, Heilongjiang Province, People's Republic of China.
| | - Ying Liu
- College of Food Engineering, Harbin University of Commerce, Harbin 150028, Heilongjiang Province, People's Republic of China.
| |
Collapse
|
33
|
Hu Z, Zhao P, Li J, Chen Y, Yang H, Zhao J, Dong J, Qi N, Yang M, Huo D, Hou C. Metal-organic framework-derived porous ternary ZnCo 2O 4 nanoplate arrays grown on carbon cloth for simultaneous electrochemical determination of ascorbic acid, dopamine, and uric acid. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:4330-4337. [PMID: 36260019 DOI: 10.1039/d2ay01058e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Metal-organic frameworks derived from ternary metal oxide directly grown on the conductive substrate have attracted great interest in electrochemical sensing. In this work, metal-organic framework-derived ternary ZnCo2O4 nanoplate arrays that were grown on carbon cloth (ZnCo2O4 NA/CC) are fabricated and applied for the electrochemical determination of ascorbic acid (AA), dopamine (DA), and uric acid (UA). Field emission scanning electron microscope (FESEM) reveals that a network-like CC substrate is covered with considerable nanoplate arrays, presenting a large specific area. X-ray photoelectron spectroscopy (XPS) demonstrates the nanoplate arrays to be composed of ZnCo2O4. Benefiting from the unique array morphology and ternary element composition, the ZnCo2O4 NA/CC shows desirable performances for simultaneous detection of AA, DA, and UA. The individual detection limits are 7.14 μM for AA, 0.25 μM for DA, and 0.33 μM for UA. Additionally, the ZnCo2O4 NA/CC is successfully applied for the quantitative determination of AA, DA, and UA in spiked serum samples, showing its great application potential.
Collapse
Affiliation(s)
- Zhikun Hu
- Key Laboratory for Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, PR China.
| | - Peng Zhao
- Key Laboratory for Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, PR China.
| | - Jiawei Li
- Key Laboratory for Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, PR China.
- Chongqing University Three Gorges Hospital, Chongqing, 404000, PR China
| | - Yuanyuan Chen
- Key Laboratory for Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, PR China.
| | - Huisi Yang
- Key Laboratory for Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, PR China.
| | - Jiaying Zhao
- Key Laboratory for Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, PR China.
| | - Jiangbo Dong
- Key Laboratory for Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, PR China.
| | - Na Qi
- Key Laboratory for Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, PR China.
| | - Mei Yang
- Key Laboratory for Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, PR China.
| | - Danqun Huo
- Key Laboratory for Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, PR China.
| | - Changjun Hou
- Key Laboratory for Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, PR China.
- Chongqing Key Laboratory of Bio-perception & Intelligent Information Processing, School of Microelectronics and Communication Engineering, Chongqing University, Chongqing, 400044, PR China
| |
Collapse
|
34
|
Su J, Jin X, Chen H, Xue F, Li J, Yang Q, Yang Z. Constructing Ni 4/Fe@Fe 3O 4-g-C 3N 4 nanocomposites for highly efficient degradation of carbon tetrachloride from aqueous solution. CHEMOSPHERE 2022; 307:136169. [PMID: 36037964 DOI: 10.1016/j.chemosphere.2022.136169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 07/15/2022] [Accepted: 08/20/2022] [Indexed: 06/15/2023]
Abstract
Catalytic hydrodechlorination is one of the most potential remediation methods for chlorinated organic pollutants. In this study, Ni4/Fe@Fe3O4-g-C3N4 (NFFOCN) nanocomposites were synthesized for carbon tetrachloride (CT) removal and characterized by SEM, XPS and FTIR. The characterization results demonstrated that the special functional groups of g-C3N4, especially NH groups, effectively alleviated the aggregation of nanoparticles. In addition, the C and N groups of g-C3N4 enhanced the catalytic dechlorination of CT by providing binding sites. The experimental results showed that NFFOCN could effectively remove CT over a wide initial pH range of 3-9, and the CT removal efficiency reached 94.7% after 35 min with only 0.15 g/L of NFFOCN at pH 5.5. The Cl-, SO42-, and HCO3- promoted the removal of CT, while HA and NO3- had the opposite effect. Furthermore, good sequential CT removal by NFFOCN nanocomposites was observed, and the CT removal efficiency reached 77.3% after four cycles. Based on the identification of products, a possible degradation pathway of CT was proposed. Moreover, the main mechanisms regarding CT removal included the direct reduction of nZVI (about 40.51%), adsorption (around 34.79%), and hydrodechlorination of CT by Ni0 using H2 (about 19.40%).
Collapse
Affiliation(s)
- Junjie Su
- Beijing Key Laboratory of Water Resources & Environmental Engineering, China University of Geosciences (Beijing), Beijing, 100083, PR China.
| | - Xin Jin
- Department of Architecture and Civil Engineering, West Anhui University, Liu An, 237012, PR China.
| | - Hai Chen
- CGN Dasheng Technology Co., Ltd., Suzhou, 215214, PR China.
| | - Fenglan Xue
- Beijing Key Laboratory of Water Resources & Environmental Engineering, China University of Geosciences (Beijing), Beijing, 100083, PR China; Beijing Drainage Equipment Co., Ltd., Beijing 100176, PR China.
| | - Jingran Li
- Beijing Key Laboratory of Water Resources & Environmental Engineering, China University of Geosciences (Beijing), Beijing, 100083, PR China.
| | - Qi Yang
- Beijing Key Laboratory of Water Resources & Environmental Engineering, China University of Geosciences (Beijing), Beijing, 100083, PR China.
| | - Zhilin Yang
- Department of Biological and Agricultural Engineering, Texas A&M University, 126 Hobgood, 2117 TAMU, College Station, TX, 77843-2117, USA.
| |
Collapse
|
35
|
Ultrasensitive detection of Hg(II) by small-sized Mn3O4 loaded on g-C3N4 nanosheets: Heterojunction facilitates electron transfer and Mn(II)/Mn(III)/Mn(IV) cycle. Anal Chim Acta 2022; 1230:340404. [DOI: 10.1016/j.aca.2022.340404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 08/28/2022] [Accepted: 09/12/2022] [Indexed: 11/23/2022]
|
36
|
Nanomaterials-based electrochemical sensors for the detection of natural antioxidants in food and biological samples: research progress. Mikrochim Acta 2022; 189:318. [PMID: 35931898 DOI: 10.1007/s00604-022-05403-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 07/02/2022] [Indexed: 10/16/2022]
Abstract
Antioxidants are healthy substances that are beneficial to the human body and exist mainly in natural and synthetic forms. Among many kinds of antioxidants, the natural antioxidants have great applications in many fields such as food chemistry, medical care, and clinical application. In recent years, many efforts have been made for the determination of natural antioxidants. Nano-electrochemical sensors combining electrochemistry and nanotechnology have been widely used in the determination of natural antioxidants due to their unique advantages. Therefore, a large number of nanomaterials such as metal oxide, carbon materials, and conducting polymer have attracted much attention in the field of electrochemical sensors due to their good catalytic effect and stable performance. This review mainly introduces the construction of electrochemical sensors based on different nanomaterials, such as metallic nanomaterials, metal oxide nanomaterials, carbon nanomaterials, metal-organic frameworks, polymer nanomaterials, and other nanocomposites, and their application to the detection of natural antioxidants, including ascorbic acid, phenolic acids, flavonoid, tryptophan, citric acid, and other natural antioxidants. In the end, the limitations of the existing nano-sensing technology, the latest development trend, and the application prospect for various natural antioxidant substances are summarized and analyzed. We expect that this review will be helpful to researchers engaged in electrochemical sensors.
Collapse
|