1
|
Kovach TJ, Kilpatrick AM. Irrigation increases and stabilizes mosquito populations and increases West Nile virus incidence. Sci Rep 2024; 14:19913. [PMID: 39198498 PMCID: PMC11358498 DOI: 10.1038/s41598-024-70592-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 08/19/2024] [Indexed: 09/01/2024] Open
Abstract
Humans have greatly altered earth's terrestrial water cycle with the majority of fresh water being used for agriculture. Irrigation changes spatial and temporal water availability and alters mosquito abundance and phenology. Previous studies evaluating the effect of irrigation on mosquito abundance and mosquito-borne disease have shown inconsistent results and little is known about the effect of irrigation on variability in mosquito abundance. We examined the effect of irrigation, climate and land cover on mosquito abundance and human West Nile virus (WNV) disease cases across California. Irrigation made up nearly a third of total water inputs, and exceeded precipitation in some regions. Abundance of two key vectors of several arboviruses, including WNV, Culex tarsalis and the Culex pipiens complex, increased 17-21-fold with irrigation. Irrigation reduced seasonal variability in C. tarsalis abundance by 36.1%. Human WNV incidence increased with irrigation, which explained more than a third (34.2%) of the variation in WNV incidence among California counties. These results suggest that irrigation can increase and decouple mosquito populations from natural precipitation variability, resulting in sustained and increased disease burdens. Shifts in precipitation due to climate change are likely to result in increased irrigation in many arid regions which could increase mosquito populations and disease.
Collapse
Affiliation(s)
- Tony J Kovach
- Department of Ecology and Evolutionary Biology, University of California Santa Cruz, Santa Cruz, CA, USA.
| | - A Marm Kilpatrick
- Department of Ecology and Evolutionary Biology, University of California Santa Cruz, Santa Cruz, CA, USA.
| |
Collapse
|
2
|
Shinde DP, Plante JA, Scharton D, Mitchell B, Walker J, Azar SR, Campos RK, Sacchetto L, Drumond BP, Vasilakis N, Plante KS, Weaver SC. Yellow Fever Emergence: Role of Heterologous Flavivirus Immunity in Preventing Urban Transmission. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.03.583168. [PMID: 38463973 PMCID: PMC10925309 DOI: 10.1101/2024.03.03.583168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
During major, recent yellow fever (YF) epidemics in Brazil, human cases were attributed only to spillover infections from sylvatic transmission with no evidence of human amplification. Furthermore, the historic absence of YF in Asia, despite abundant peridomestic Aedes aegypti and naive human populations, represents a longstanding enigma. We tested the hypothesis that immunity from dengue (DENV) and Zika (ZIKV) flaviviruses limits YF virus (YFV) viremia and transmission by Ae. aegypti . Prior DENV and ZIKV immunity consistently suppressed YFV viremia in experimentally infected macaques, leading to reductions in Ae. aegypti infection when mosquitoes were fed on infected animals. These results indicate that, in DENV- and ZIKV-endemic regions such as South America and Asia, flavivirus immunity suppresses YFV human amplification potential, reducing the risk of urban outbreaks. One-Sentence Summary Immunity from dengue and Zika viruses suppresses yellow fever viremia, preventing infection of mosquitoes and reducing the risk of epidemics.
Collapse
|
3
|
Viral agents (2nd section). Transfusion 2024; 64 Suppl 1:S19-S207. [PMID: 38394038 DOI: 10.1111/trf.17630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 12/02/2023] [Indexed: 02/25/2024]
|
4
|
Lau CL, Mills DJ, Mayfield H, Gyawali N, Johnson BJ, Lu H, Allel K, Britton PN, Ling W, Moghaddam T, Furuya-Kanamori L. A decision support tool for risk-benefit analysis of Japanese encephalitis vaccine in travellers. J Travel Med 2023; 30:taad113. [PMID: 37602668 DOI: 10.1093/jtm/taad113] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 08/02/2023] [Accepted: 08/04/2023] [Indexed: 08/22/2023]
Abstract
BACKGROUND During pre-travel consultations, clinicians and travellers face the challenge of weighing the risks verus benefits of Japanese encephalitis (JE) vaccination due to the high cost of the vaccine, low incidence in travellers (~1 in 1 million), but potentially severe consequences (~30% case-fatality rate). Personalised JE risk assessment based on the travellers' demographics and travel itinerary is challenging using standard risk matrices. We developed an interactive digital tool to estimate risks of JE infection and severe health outcomes under different scenarios to facilitate shared decision-making between clinicians and travellers. METHODS A Bayesian network (conditional probability) model risk-benefit analysis of JE vaccine in travellers was developed. The model considers travellers' characteristics (age, sex, co-morbidities), itinerary (destination, departure date, duration, setting of planned activities) and vaccination status to estimate the risks of JE infection, the development of symptomatic disease (meningitis, encephalitis), clinical outcomes (hospital admission, chronic neurological complications, death) and adverse events following immunization. RESULTS In low-risk travellers (e.g. to urban areas for <1 month), the risk of developing JE and dying is low (<1 per million) irrespective of the destination; thus, the potential impact of JE vaccination in reducing the risk of clinical outcomes is limited. In high-risk travellers (e.g. to rural areas in high JE incidence destinations for >2 months), the risk of developing symptomatic disease and mortality is estimated at 9.5 and 1.4 per million, respectively. JE vaccination in this group would significantly reduce the risk of symptomatic disease and mortality (by ~80%) to 1.9 and 0.3 per million, respectively. CONCLUSION The JE tool may assist decision-making by travellers and clinicians and could increase JE vaccine uptake. The tool will be updated as additional evidence becomes available. Future work needs to evaluate the usability of the tool. The interactive, scenario-based, personalised JE vaccine risk-benefit tool is freely available on www.VaxiCal.com.
Collapse
Affiliation(s)
- Colleen L Lau
- School of Public Health, Faculty of Medicine, The University of Queensland, Herston, QLD, Australia
- Dr Deb The Travel Doctor, Travel Medicine Alliance, Brisbane, QLD, Australia
| | - Deborah J Mills
- Dr Deb The Travel Doctor, Travel Medicine Alliance, Brisbane, QLD, Australia
| | - Helen Mayfield
- School of Public Health, Faculty of Medicine, The University of Queensland, Herston, QLD, Australia
| | - Narayan Gyawali
- Mosquito Control Laboratory, QIMR Berghofer Medical Research Institute, Herston, QLD, Australia
| | - Brian J Johnson
- Mosquito Control Laboratory, QIMR Berghofer Medical Research Institute, Herston, QLD, Australia
| | - Hongen Lu
- School of Public Health, Faculty of Medicine, The University of Queensland, Herston, QLD, Australia
| | - Kasim Allel
- Department of Disease Control, London School of Hygiene and Tropical Medicine, London, UK
| | - Philip N Britton
- Department of Infectious Diseases and Microbiology, Children's Hospital Westmead, Westmead, NSW, Australia
- Child and Adolescent Health and Sydney ID, Sydney Medical School, University of Sydney, Sydney, NSW, Australia
| | - Weiping Ling
- UQ Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Herston, QLD, Australia
| | - Tina Moghaddam
- School of Information Technology and Electrical Engineering, Faculty of Science, The University of Queensland, St Lucia, QLD, Australia
| | - Luis Furuya-Kanamori
- School of Public Health, Faculty of Medicine, The University of Queensland, Herston, QLD, Australia
| |
Collapse
|
5
|
Beke OAH, Assi SB, Kokrasset APH, Dibo KJD, Tanoh MA, Danho M, Remoué F, Koudou GB, Poinsignon A. Implication of agricultural practices in the micro-geographic heterogeneity of malaria transmission in Bouna, Côte d'Ivoire. Malar J 2023; 22:313. [PMID: 37848895 PMCID: PMC10583306 DOI: 10.1186/s12936-023-04748-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 10/10/2023] [Indexed: 10/19/2023] Open
Abstract
BACKGROUND Wetlands and irrigated agricultural crops create potential breeding sites for Anopheles mosquitoes, leading to a heterogeneity in malaria transmission. In agricultural areas, heterogeneity of malaria transmission is often associated with the presence of hotspots consisting of localized clusters of higher transmission intensity. This study aims to identify micro-geographic hotspots of malaria transmission in an agricultural setting using a multidisciplinary approach. METHODS Two cross-sectional surveys were conducted at the end of the dry season and at the peak of the rainy season in rural and urban sites in Bouna, northeastern Côte d'Ivoire. A total of 296 individuals from 148 farming households were randomly selected and sociological, geographical, entomological, and clinical data as well as blood samples were collected during each visit. Parasitological data and Anopheles exposure (measured using entomological and immunological methods) were compared with demographic, agricultural, and geographic data to identify drivers of malaria transmission. Heat maps combining these data were used to identify households with ongoing malaria transmission throughout the year. RESULTS In rural areas, Plasmodium prevalence was consistent between the dry and the rainy seasons, with roughly half of the population infected. In urban areas, malaria transmission indicators were lower, with a parasite prevalence of less than 20%, which remained comparable between the dry and the rainy season. The presence of irrigated crops and proximity to wetlands were associated with increased Anopheles exposure. By mapping Plasmodium infection and Anopheles exposure, two different types of hotspots of malaria transmission were identified: micro-geographical scale and local scale hotspots. CONCLUSIONS The presence of wetlands in urban areas and irrigated agriculture in rural areas resulted in heterogeneity in malaria transmission on a micro-geographical scale. These specific households present particular risk of malaria transmission and could fuel malaria transmission in surrounding households. The identification of micro-geographical areas using heat maps combining several epidemiological parameters can help to identify hotspots of malaria transmission. The implementation of malaria control measures, such as seasonal chemoprophylaxis or vector control, in these areas could help to reduce the incidence of malaria and facilitate its elimination.
Collapse
Affiliation(s)
- Obo Armel-Hermann Beke
- National Malaria Control Programme, Abidjan, Côte d'Ivoire.
- Swiss Center of Scientific Research, Abidjan, Côte d'Ivoire.
- Institut National Polytechnique Houphouët Boigny, Yamoussoukro, Côte d'Ivoire.
- Institut National de Santé Publique / Institut Pierre Richet, Bouaké, Côte d'Ivoire.
| | - Serge-Brice Assi
- National Malaria Control Programme, Abidjan, Côte d'Ivoire
- Institut National de Santé Publique / Institut Pierre Richet, Bouaké, Côte d'Ivoire
| | | | | | | | - Mathias Danho
- Institut National Polytechnique Houphouët Boigny, Yamoussoukro, Côte d'Ivoire
| | - Franck Remoué
- MIVEGEC, University of Montpellier, IRD, CNRS, Montpellier, France
| | | | - Anne Poinsignon
- MIVEGEC, University of Montpellier, IRD, CNRS, Montpellier, France
| |
Collapse
|
6
|
Brindle HE, Bastos LS, Christley R, Contamin L, Dang LH, Anh DD, French N, Griffiths M, Nadjm B, van Doorn HR, Thai PQ, Duong TN, Choisy M. The spatio-temporal distribution of acute encephalitis syndrome and its association with climate and landcover in Vietnam. BMC Infect Dis 2023; 23:403. [PMID: 37312047 PMCID: PMC10262680 DOI: 10.1186/s12879-023-08300-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Accepted: 05/03/2023] [Indexed: 06/15/2023] Open
Abstract
BACKGROUND Acute encephalitis syndrome (AES) differs in its spatio-temporal distribution in Vietnam with the highest incidence seen during the summer months in the northern provinces. AES has multiple aetiologies, and the cause remains unknown in many cases. While vector-borne disease such as Japanese encephalitis and dengue virus and non-vector-borne diseases such as influenza and enterovirus show evidence of seasonality, associations with climate variables and the spatio-temporal distribution in Vietnam differs between these. The aim of this study was therefore to understand the spatio-temporal distribution of, and risk factors for AES in Vietnam to help hypothesise the aetiology. METHODS The number of monthly cases per province for AES, meningitis and diseases including dengue fever; influenza-like-illness (ILI); hand, foot, and mouth disease (HFMD); and Streptococcus suis were obtained from the General Department for Preventive Medicine (GDPM) from 1998-2016. Covariates including climate, normalized difference vegetation index (NDVI), elevation, the number of pigs, socio-demographics, JEV vaccination coverage and the number of hospitals were also collected. Spatio-temporal multivariable mixed-effects negative binomial Bayesian models with an outcome of the number of cases of AES, a combination of the covariates and harmonic terms to determine the magnitude of seasonality were developed. RESULTS The national monthly incidence of AES declined by 63.3% over the study period. However, incidence increased in some provinces, particularly in the Northwest region. In northern Vietnam, the incidence peaked in the summer months in contrast to the southern provinces where incidence remained relatively constant throughout the year. The incidence of meningitis, ILI and S. suis infection; temperature, relative humidity with no lag, NDVI at a lag of one month, and the number of pigs per 100,000 population were positively associated with the number of cases of AES in all models in which these covariates were included. CONCLUSIONS The positive correlation of AES with temperature and humidity suggest that a number of cases may be due to vector-borne diseases, suggesting a need to focus on vaccination campaigns. However, further surveillance and research are recommended to investigate other possible aetiologies such as S. suis or Orientia tsutsugamushi.
Collapse
Affiliation(s)
- Hannah E Brindle
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK.
- Oxford University Clinical Research Unit, Hanoi City, Vietnam.
| | - Leonardo S Bastos
- Scientific Computing Programme, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Robert Christley
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Lucie Contamin
- Institut de Recherche Pour Le Développement, Hanoi, Vietnam
| | - Le Hai Dang
- National Institute of Hygiene and Epidemiology, Hanoi, Vietnam
| | - Dang Duc Anh
- National Institute of Hygiene and Epidemiology, Hanoi, Vietnam
| | - Neil French
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Michael Griffiths
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Behzad Nadjm
- Oxford University Clinical Research Unit, Hanoi City, Vietnam
- MRC Unit The Gambia at the London, School of Hygiene & Tropical Medicine, Fajara, The Gambia
| | - H Rogier van Doorn
- Oxford University Clinical Research Unit, Hanoi City, Vietnam
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Pham Quang Thai
- National Institute of Hygiene and Epidemiology, Hanoi, Vietnam
- School Preventive Medicine and Public Health, Hanoi Medical University, Hanoi, Vietnam
| | - Tran Nhu Duong
- National Institute of Hygiene and Epidemiology, Hanoi, Vietnam
| | - Marc Choisy
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
| |
Collapse
|
7
|
Tong Y, Jiang H, Xu N, Wang Z, Xiong Y, Yin J, Huang J, Chen Y, Jiang Q, Zhou Y. Global Distribution of Culex tritaeniorhynchus and Impact Factors. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:4701. [PMID: 36981610 PMCID: PMC10048298 DOI: 10.3390/ijerph20064701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/04/2023] [Accepted: 03/06/2023] [Indexed: 06/18/2023]
Abstract
Culex tritaeniorhynchus is the primary vector of Japanese encephalitis (JE) and has a wide global distribution. However, the current and future geographic distribution maps of Cx. tritaeniorhynchus in global are still incomplete. Our study aims to predict the potential distribution of Cx. tritaeniorhynchus in current and future conditions to provide a guideline for the formation and implementation of vector control strategies all over the world. We collected and screened the information on the occurrence of Cx. tritaeniorhynchus by searching the literature and online databases and used ten algorithms to investigate its global distribution and impact factors. Cx. tritaeniorhynchus had been detected in 41 countries from 5 continents. The final ensemble model (TSS = 0.864 and AUC = 0.982) indicated that human footprint was the most important factor for the occurrence of Cx. tritaeniorhynchus. The tropics and subtropics, including southeastern Asia, Central Africa, southeastern North America and eastern South America, showed high habitat suitability for Cx. tritaeniorhynchus. Cx. tritaeniorhynchus is predicted to have a wider distribution in all the continents, especially in Western Europe and South America in the future under two extreme emission scenarios (SSP5-8.5 and SSP1-2.6). Targeted strategies for the control and prevention of Cx. tritaeniorhynchus should be further strengthened.
Collapse
Affiliation(s)
- Yixin Tong
- School of Public Health, Fudan University, Building 8, 130 Dong’an Road, Shanghai 200032, China
- Key Laboratory of Public Health Safety, Fudan University, Ministry of Education, Building 8, 130 Dong’an Road, Shanghai 200032, China
- Center for Tropical Disease Research, Fudan University, Building 8, 130 Dong’an Road, Shanghai 200032, China
| | - Honglin Jiang
- School of Public Health, Fudan University, Building 8, 130 Dong’an Road, Shanghai 200032, China
- Key Laboratory of Public Health Safety, Fudan University, Ministry of Education, Building 8, 130 Dong’an Road, Shanghai 200032, China
- Center for Tropical Disease Research, Fudan University, Building 8, 130 Dong’an Road, Shanghai 200032, China
| | - Ning Xu
- School of Public Health, Fudan University, Building 8, 130 Dong’an Road, Shanghai 200032, China
- Key Laboratory of Public Health Safety, Fudan University, Ministry of Education, Building 8, 130 Dong’an Road, Shanghai 200032, China
- Center for Tropical Disease Research, Fudan University, Building 8, 130 Dong’an Road, Shanghai 200032, China
| | - Zhengzhong Wang
- School of Public Health, Fudan University, Building 8, 130 Dong’an Road, Shanghai 200032, China
- Key Laboratory of Public Health Safety, Fudan University, Ministry of Education, Building 8, 130 Dong’an Road, Shanghai 200032, China
- Center for Tropical Disease Research, Fudan University, Building 8, 130 Dong’an Road, Shanghai 200032, China
| | - Ying Xiong
- School of Public Health, Fudan University, Building 8, 130 Dong’an Road, Shanghai 200032, China
- Key Laboratory of Public Health Safety, Fudan University, Ministry of Education, Building 8, 130 Dong’an Road, Shanghai 200032, China
- Center for Tropical Disease Research, Fudan University, Building 8, 130 Dong’an Road, Shanghai 200032, China
| | - Jiangfan Yin
- School of Public Health, Fudan University, Building 8, 130 Dong’an Road, Shanghai 200032, China
- Key Laboratory of Public Health Safety, Fudan University, Ministry of Education, Building 8, 130 Dong’an Road, Shanghai 200032, China
- Center for Tropical Disease Research, Fudan University, Building 8, 130 Dong’an Road, Shanghai 200032, China
| | - Junhui Huang
- School of Public Health, Fudan University, Building 8, 130 Dong’an Road, Shanghai 200032, China
- Key Laboratory of Public Health Safety, Fudan University, Ministry of Education, Building 8, 130 Dong’an Road, Shanghai 200032, China
- Center for Tropical Disease Research, Fudan University, Building 8, 130 Dong’an Road, Shanghai 200032, China
| | - Yue Chen
- School of Epidemiology and Public Health, Faculty of Medicine, University of Ottawa, 600 Peter Morand Crescent, Ottawa, ON K1G 5Z3, Canada
| | - Qingwu Jiang
- School of Public Health, Fudan University, Building 8, 130 Dong’an Road, Shanghai 200032, China
- Key Laboratory of Public Health Safety, Fudan University, Ministry of Education, Building 8, 130 Dong’an Road, Shanghai 200032, China
- Center for Tropical Disease Research, Fudan University, Building 8, 130 Dong’an Road, Shanghai 200032, China
| | - Yibiao Zhou
- School of Public Health, Fudan University, Building 8, 130 Dong’an Road, Shanghai 200032, China
- Key Laboratory of Public Health Safety, Fudan University, Ministry of Education, Building 8, 130 Dong’an Road, Shanghai 200032, China
- Center for Tropical Disease Research, Fudan University, Building 8, 130 Dong’an Road, Shanghai 200032, China
| |
Collapse
|
8
|
Pinapati KK, Tandon R, Tripathi P, Srivastava N. Recent advances to overcome the burden of Japanese encephalitis: A zoonotic infection with problematic early detection. Rev Med Virol 2023; 33:e2383. [PMID: 35983697 DOI: 10.1002/rmv.2383] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 07/21/2022] [Accepted: 07/29/2022] [Indexed: 01/28/2023]
Abstract
Japanese encephalitis (JE) is a vector-borne neurotropic disease caused by Japanese encephalitis virus (JEV) associated with high mortality rate distributed from Eastern and Southern Asia to Northern Queensland (Australia). The challenges in early detection and lack of point-of-care biomarkers make it the most important Flavivirus causing encephalitis. There is no specific treatment for the disease, although vaccines are licenced. In this review, we focussed on point-of-care biomarkers as early detection tools and developing the effective therapeutic agents that could halt JE. We have also provided molecular details of JEV, disease progression, and its pathogenesis with recent findings which might bring insights to overcome the disease burden.
Collapse
Affiliation(s)
- Kishore Kumar Pinapati
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research-Raebareli (NIPER-R), Lucknow, Uttra Pradesh, India
| | - Reetika Tandon
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research-Raebareli (NIPER-R), Lucknow, Uttra Pradesh, India
| | - Pratima Tripathi
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research-Raebareli (NIPER-R), Lucknow, Uttra Pradesh, India
| | - Nidhi Srivastava
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research-Raebareli (NIPER-R), Lucknow, Uttra Pradesh, India
| |
Collapse
|
9
|
Huynh LN, Tran LB, Nguyen HS, Ho VH, Parola P, Nguyen XQ. Mosquitoes and Mosquito-Borne Diseases in Vietnam. INSECTS 2022; 13:1076. [PMID: 36554986 PMCID: PMC9781666 DOI: 10.3390/insects13121076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 10/31/2022] [Accepted: 11/17/2022] [Indexed: 06/17/2023]
Abstract
Mosquito-borne diseases pose a significant threat to humans in almost every part of the world. Key factors such as global warming, climatic conditions, rapid urbanisation, frequent human relocation, and widespread deforestation significantly increase the number of mosquitoes and mosquito-borne diseases in Vietnam, and elsewhere around the world. In southeast Asia, and notably in Vietnam, national mosquito control programmes contribute to reducing the risk of mosquito-borne disease transmission, however, malaria and dengue remain a threat to public health. The aim of our review is to provide a complete checklist of all Vietnamese mosquitoes that have been recognised, as well as an overview of mosquito-borne diseases in Vietnam. A total of 281 mosquito species of 42 subgenera and 22 genera exist in Vietnam. Of those, Anopheles, Aedes, and Culex are found to be potential vectors for mosquito-borne diseases. Major mosquito-borne diseases in high-incidence areas of Vietnam include malaria, dengue, and Japanese encephalitis. This review may be useful to entomological researchers for future surveys of Vietnamese mosquitoes and to decision-makers responsible for vector control tactics.
Collapse
Affiliation(s)
- Ly Na Huynh
- Aix Marseille Univ, IRD, AP-HM, SSA, VITROME, 13005 Marseille, France
- IHU-Méditerranée Infection, 19-21 Boulevard Jean Moulin, 13005 Marseille, France
- Institute of Malariology, Parasitology and Entomology, Quy Nhon (IMPE-QN), MoH Vietnam, Zone 8, Nhon Phu Ward, Quy Nhon City 590000, Vietnam
| | - Long Bien Tran
- Institute of Malariology, Parasitology and Entomology, Quy Nhon (IMPE-QN), MoH Vietnam, Zone 8, Nhon Phu Ward, Quy Nhon City 590000, Vietnam
| | - Hong Sang Nguyen
- Institute of Malariology, Parasitology and Entomology, Quy Nhon (IMPE-QN), MoH Vietnam, Zone 8, Nhon Phu Ward, Quy Nhon City 590000, Vietnam
| | - Van Hoang Ho
- Institute of Malariology, Parasitology and Entomology, Quy Nhon (IMPE-QN), MoH Vietnam, Zone 8, Nhon Phu Ward, Quy Nhon City 590000, Vietnam
| | - Philippe Parola
- Aix Marseille Univ, IRD, AP-HM, SSA, VITROME, 13005 Marseille, France
- IHU-Méditerranée Infection, 19-21 Boulevard Jean Moulin, 13005 Marseille, France
| | - Xuan Quang Nguyen
- Institute of Malariology, Parasitology and Entomology, Quy Nhon (IMPE-QN), MoH Vietnam, Zone 8, Nhon Phu Ward, Quy Nhon City 590000, Vietnam
| |
Collapse
|
10
|
Furlong M, Adamu A, Hickson RI, Horwood P, Golchin M, Hoskins A, Russell T. Estimating the Distribution of Japanese Encephalitis Vectors in Australia Using Ecological Niche Modelling. Trop Med Infect Dis 2022; 7:tropicalmed7120393. [PMID: 36548648 PMCID: PMC9782987 DOI: 10.3390/tropicalmed7120393] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 11/12/2022] [Accepted: 11/15/2022] [Indexed: 11/25/2022] Open
Abstract
Recent Japanese encephalitis virus (JEV) outbreaks in southeastern Australia have sparked interest into epidemiological factors surrounding the virus' novel emergence in this region. Here, the geographic distribution of mosquito species known to be competent JEV vectors in the country was estimated by combining known mosquito occurrences and ecological drivers of distribution to reveal insights into communities at highest risk of infectious disease transmission. Species distribution models predicted that Culex annulirostris and Culex sitiens presence was mostly likely along Australia's eastern and northern coastline, while Culex quinquefasciatus presence was estimated to be most likely near inland regions of southern Australia as well as coastal regions of Western Australia. While Culex annulirostris is considered the dominant JEV vector in Australia, our ecological niche models emphasise the need for further entomological surveillance and JEV research within Australia.
Collapse
Affiliation(s)
- Morgan Furlong
- Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, QLD 4811, Australia
- College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, QLD 4811, Australia
- Correspondence: (M.F.); (P.H.)
| | - Andrew Adamu
- Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, QLD 4811, Australia
- College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, QLD 4811, Australia
| | - Roslyn I. Hickson
- Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, QLD 4811, Australia
- College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, QLD 4811, Australia
- Commonwealth Scientific Industrial Research Organisation (CSIRO), Townsville, QLD 4811, Australia
| | - Paul Horwood
- Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, QLD 4811, Australia
- College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, QLD 4811, Australia
- Correspondence: (M.F.); (P.H.)
| | - Maryam Golchin
- Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, QLD 4811, Australia
- College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, QLD 4811, Australia
- Commonwealth Scientific Industrial Research Organisation (CSIRO), Townsville, QLD 4811, Australia
| | - Andrew Hoskins
- Commonwealth Scientific Industrial Research Organisation (CSIRO), Townsville, QLD 4811, Australia
| | - Tanya Russell
- Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, QLD 4811, Australia
| |
Collapse
|
11
|
Ellwanger JH, Fearnside PM, Ziliotto M, Valverde-Villegas JM, Veiga ABGDA, Vieira GF, Bach E, Cardoso JC, Müller NFD, Lopes G, Caesar L, Kulmann-Leal B, Kaminski VL, Silveira ES, Spilki FR, Weber MN, Almeida SEDEM, Hora VPDA, Chies JAB. Synthesizing the connections between environmental disturbances and zoonotic spillover. AN ACAD BRAS CIENC 2022; 94:e20211530. [PMID: 36169531 DOI: 10.1590/0001-3765202220211530] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 03/03/2022] [Indexed: 11/22/2022] Open
Abstract
Zoonotic spillover is a phenomenon characterized by the transfer of pathogens between different animal species. Most human emerging infectious diseases originate from non-human animals, and human-related environmental disturbances are the driving forces of the emergence of new human pathogens. Synthesizing the sequence of basic events involved in the emergence of new human pathogens is important for guiding the understanding, identification, and description of key aspects of human activities that can be changed to prevent new outbreaks, epidemics, and pandemics. This review synthesizes the connections between environmental disturbances and increased risk of spillover events based on the One Health perspective. Anthropogenic disturbances in the environment (e.g., deforestation, habitat fragmentation, biodiversity loss, wildlife exploitation) lead to changes in ecological niches, reduction of the dilution effect, increased contact between humans and other animals, changes in the incidence and load of pathogens in animal populations, and alterations in the abiotic factors of landscapes. These phenomena can increase the risk of spillover events and, potentially, facilitate new infectious disease outbreaks. Using Brazil as a study model, this review brings a discussion concerning anthropogenic activities in the Amazon region and their potential impacts on spillover risk and spread of emerging diseases in this region.
Collapse
Affiliation(s)
- Joel Henrique Ellwanger
- Universidade Federal do Rio Grande do Sul/UFRGS, Laboratório de Imunobiologia e Imunogenética, Departmento de Genética, Campus do Vale, Avenida Bento Gonçalves, 9500, Agronomia, 91501-970 Porto Alegre, RS, Brazil.,Programa de Pós-Graduação em Genética e Biologia Molecular/PPGBM, Universidade Federal do Rio Grande do Sul/UFRGS, Departmento de Genética, Campus do Vale, Avenida Bento Gonçalves, 9500, Agronomia, 91501-970 Porto Alegre, RS, Brazil
| | - Philip Martin Fearnside
- Instituto Nacional de Pesquisas da Amazônia/INPA, Avenida André Araújo, 2936, Aleixo, 69067-375 Manaus, AM, Brazil
| | - Marina Ziliotto
- Universidade Federal do Rio Grande do Sul/UFRGS, Laboratório de Imunobiologia e Imunogenética, Departmento de Genética, Campus do Vale, Avenida Bento Gonçalves, 9500, Agronomia, 91501-970 Porto Alegre, RS, Brazil.,Programa de Pós-Graduação em Genética e Biologia Molecular/PPGBM, Universidade Federal do Rio Grande do Sul/UFRGS, Departmento de Genética, Campus do Vale, Avenida Bento Gonçalves, 9500, Agronomia, 91501-970 Porto Alegre, RS, Brazil
| | - Jacqueline María Valverde-Villegas
- Institut de Génétique Moléculaire de Montpellier/IGMM, Centre National de la Recherche Scientifique/CNRS, Laboratoire coopératif IGMM/ABIVAX, 1919, route de Mende, 34090 Montpellier, Montpellier, France
| | - Ana Beatriz G DA Veiga
- Universidade Federal de Ciências da Saúde de Porto Alegre/UFCSPA, Departamento de Ciências Básicas de Saúde, Rua Sarmento Leite, 245, Centro Histórico, 90050-170 Porto Alegre, RS, Brazil
| | - Gustavo F Vieira
- Programa de Pós-Graduação em Genética e Biologia Molecular/PPGBM, Universidade Federal do Rio Grande do Sul/UFRGS, Departmento de Genética, Campus do Vale, Avenida Bento Gonçalves, 9500, Agronomia, 91501-970 Porto Alegre, RS, Brazil.,Universidade Federal do Rio Grande do Sul/UFRGS, Laboratório de Imunoinformática, Núcleo de Bioinformática do Laboratório de Imunogenética/NBLI, Departmento de Genética, Campus do Vale, Avenida Bento Gonçalves, 9500, Agronomia, 91501-970 Porto Alegre, RS, Brazil.,Programa de Pós-Graduação em Saúde e Desenvolvimento Humano, Universidade La Salle, Laboratório de Saúde Humana in silico, Avenida Victor Barreto, 2288, Centro, 92010-000 Canoas, RS, Brazil
| | - Evelise Bach
- Universidade Federal do Rio Grande do Sul/UFRGS, Laboratório de Imunobiologia e Imunogenética, Departmento de Genética, Campus do Vale, Avenida Bento Gonçalves, 9500, Agronomia, 91501-970 Porto Alegre, RS, Brazil.,Programa de Pós-Graduação em Genética e Biologia Molecular/PPGBM, Universidade Federal do Rio Grande do Sul/UFRGS, Departmento de Genética, Campus do Vale, Avenida Bento Gonçalves, 9500, Agronomia, 91501-970 Porto Alegre, RS, Brazil
| | - Jáder C Cardoso
- Centro Estadual de Vigilância em Saúde/CEVS, Divisão de Vigilância Ambiental em Saúde, Secretaria da Saúde do Estado do Rio Grande do Sul, Avenida Ipiranga, 5400, Jardim Botânico, 90610-000 Porto Alegre, RS, Brazil
| | - Nícolas Felipe D Müller
- Centro Estadual de Vigilância em Saúde/CEVS, Divisão de Vigilância Ambiental em Saúde, Secretaria da Saúde do Estado do Rio Grande do Sul, Avenida Ipiranga, 5400, Jardim Botânico, 90610-000 Porto Alegre, RS, Brazil
| | - Gabriel Lopes
- Fundação Oswaldo Cruz/FIOCRUZ, Casa de Oswaldo Cruz, Avenida Brasil, 4365, Manguinhos, 21040-900 Rio de Janeiro, RJ, Brazil
| | - Lílian Caesar
- Programa de Pós-Graduação em Genética e Biologia Molecular/PPGBM, Universidade Federal do Rio Grande do Sul/UFRGS, Departmento de Genética, Campus do Vale, Avenida Bento Gonçalves, 9500, Agronomia, 91501-970 Porto Alegre, RS, Brazil.,Indiana University/IU, Department of Biology, 915 East 3rd Street, Bloomington, IN 47405, USA
| | - Bruna Kulmann-Leal
- Universidade Federal do Rio Grande do Sul/UFRGS, Laboratório de Imunobiologia e Imunogenética, Departmento de Genética, Campus do Vale, Avenida Bento Gonçalves, 9500, Agronomia, 91501-970 Porto Alegre, RS, Brazil.,Programa de Pós-Graduação em Genética e Biologia Molecular/PPGBM, Universidade Federal do Rio Grande do Sul/UFRGS, Departmento de Genética, Campus do Vale, Avenida Bento Gonçalves, 9500, Agronomia, 91501-970 Porto Alegre, RS, Brazil
| | - Valéria L Kaminski
- Programa de Pós-Graduação em Biotecnologia, Universidade Federal de São Paulo/UNIFESP, Instituto de Ciência e Tecnologia/ICT, Laboratório de Imunologia Aplicada, Rua Talim, 330, Vila Nair, 12231-280 São José dos Campos, SP, Brazil
| | - Etiele S Silveira
- Programa de Pós-Graduação em Genética e Biologia Molecular/PPGBM, Universidade Federal do Rio Grande do Sul/UFRGS, Departmento de Genética, Campus do Vale, Avenida Bento Gonçalves, 9500, Agronomia, 91501-970 Porto Alegre, RS, Brazil.,Universidade Federal do Rio Grande do Sul/UFRGS, Laboratório de Imunoinformática, Núcleo de Bioinformática do Laboratório de Imunogenética/NBLI, Departmento de Genética, Campus do Vale, Avenida Bento Gonçalves, 9500, Agronomia, 91501-970 Porto Alegre, RS, Brazil
| | - Fernando R Spilki
- Universidade Feevale, Laboratório de Saúde Única, Instituto de Ciências da Saúde/ICS, Rodovia ERS-239, 2755, Vila Nova, 93525-075 Novo Hamburgo, RS, Brazil
| | - Matheus N Weber
- Universidade Feevale, Laboratório de Saúde Única, Instituto de Ciências da Saúde/ICS, Rodovia ERS-239, 2755, Vila Nova, 93525-075 Novo Hamburgo, RS, Brazil
| | - Sabrina E DE Matos Almeida
- Universidade Feevale, Laboratório de Saúde Única, Instituto de Ciências da Saúde/ICS, Rodovia ERS-239, 2755, Vila Nova, 93525-075 Novo Hamburgo, RS, Brazil
| | - Vanusa P DA Hora
- Programa de Pós-Graduação em Ciências da Saúde, Universidade Federal do Rio Grande/FURG, Faculdade de Medicina, Rua Visconde de Paranaguá, 102, Centro, 96203-900, Rio Grande, RS, Brazil
| | - José Artur B Chies
- Universidade Federal do Rio Grande do Sul/UFRGS, Laboratório de Imunobiologia e Imunogenética, Departmento de Genética, Campus do Vale, Avenida Bento Gonçalves, 9500, Agronomia, 91501-970 Porto Alegre, RS, Brazil.,Programa de Pós-Graduação em Genética e Biologia Molecular/PPGBM, Universidade Federal do Rio Grande do Sul/UFRGS, Departmento de Genética, Campus do Vale, Avenida Bento Gonçalves, 9500, Agronomia, 91501-970 Porto Alegre, RS, Brazil
| |
Collapse
|
12
|
Paulraj PS, Rajamannar V, Renu G, Kumar A. Changing Paradigm in the epidemiology of Japanese encephalitis in India. J Vector Borne Dis 2022; 59:312-319. [PMID: 36751762 DOI: 10.4103/0972-9062.345180] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Japanese encephalitis (JE) is a very serious public health problem in India and the conducive environment permit its emergence in non-endemic areas in the country. There are constant changes taking place in the pattern of current agricultural practices and vector breeding habitats which had far-reaching consequences on the epidemiology of JE and the severity of epidemic outbreaks today. Due to the continuous ecological changes taking place, vectors changed in their breeding dynamics, feeding, and resting behavior and started invading previously non-endemic areas. JE has recently spread to new territories due to land-use changes, including forest fragmentation and concentrated livestock production. Changes in the livestock population decreased the cattle pig ratio which enhanced the Japanese encephalitis virus (JEV) infection. This review brings forth the present widespread changes encountered that grossly impact the risk of infection in many places for the emergence of Japanese encephalitis and to address the implications for its control.
Collapse
Affiliation(s)
| | | | - Govindarajan Renu
- ICMR-Vector Control Research Centre, Field Station, Madurai, Tamil Nadu, India
| | - Ashwani Kumar
- ICMR Vector Control Research Centre, Puducherry, India
| |
Collapse
|
13
|
Aure WE, Sayama Y, Saito-Obata M, Salazar NP, Malbas FF, Galang HO, Imamura T, Zuasula CL, Oshitani H. Japanese encephalitis virus genotype III from mosquitoes in Tarlac, Philippines. IJID REGIONS 2022; 4:59-65. [PMID: 36093364 PMCID: PMC9453045 DOI: 10.1016/j.ijregi.2022.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 05/12/2022] [Accepted: 05/12/2022] [Indexed: 11/27/2022]
Abstract
Japanese encephalitis is endemic in the Philippines. Japanese encephalitis virus genotype III was detected in Culex tritaeniorhynchus. Mosquitoes breed in inundated rice fields close to human habitation. Epidemiological surveillance and immunization of children are identified needs.
Objectives The aim of this study was to investigate the presence of Japanese encephalitis virus (JEV) in a rice-farming community in the Philippines and to determine its implications regarding the epidemiology of viral encephalitides in the Asia-Pacific Region. Methods Mosquitoes were collected monthly from animal-baited traps close to flooded rice fields in two barangays (villages) in the Municipality of San Jose, Tarlac Province in Luzon, from May 2009 to July 2010. Virus was detected by nested reverse transcription PCR. Phylogenetic analysis of the amplified virus envelope gene was done using the maximum-likelihood method. Results A total of 28 700 known vector mosquitoes were collected, namely Culex vishnui, Culex fuscocephala, Culex tritaeniorhynchus, and Culex gelidus. JEV genotype III was detected in C. tritaeniorhynchus, belonging to the same genotype but form a different clade from those reported in the 1980s and in 2020 in this country. Conclusions Japanese encephalitis is associated with rice cultivation and the presence of infected mosquitoes in Tarlac, Philippines. It remains to be seen whether the observed genetic shift of genotype III to genotype I in Asia will in time have an impact on the epidemiology of Japanese encephalitis in the Philippines. For long-term disease control, regular surveillance and Japanese encephalitis immunization in children and travelers in high risk areas are recommended.
Collapse
|
14
|
Maquart PO, Chann L, Boyer S. Culex vishnui (Diptera: Culicidae): An Overlooked Vector of Arboviruses in South-East Asia. JOURNAL OF MEDICAL ENTOMOLOGY 2022; 59:1144-1153. [PMID: 35522221 DOI: 10.1093/jme/tjac044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Indexed: 06/14/2023]
Abstract
Culex vishnui Theobald, 1901, a main vector of Japanese encephalitis virus (JEV), is widely distributed in the Oriental region where it often accounts for a great part of the culicid fauna. This species also has been found naturally infected with at least 13 other arboviruses of medical and veterinary importance. Females blood feed predominantly upon pigs and birds, but may readily bite cattle and humans. Because of its abundance, medical importance, and presence throughout ecological gradients among urban, peri-urban, and rural areas, Cx. vishnui potentially may serve as a bridge vector transmitting viruses from natural and wild hosts to humans. Being zoo- and anthropophagic, omnipresent in the Oriental region, and presenting strong resistance to many insecticide families, this overlooked mosquito species may pose a serious health risk in one of the most densely populated regions of the world.
Collapse
Affiliation(s)
- Pierre-Olivier Maquart
- Medical and Veterinary Entomology Unit, Institut Pasteur du Cambodge, Phnom Penh, Cambodia
| | - Leakena Chann
- Medical and Veterinary Entomology Unit, Institut Pasteur du Cambodge, Phnom Penh, Cambodia
| | - Sebastien Boyer
- Medical and Veterinary Entomology Unit, Institut Pasteur du Cambodge, Phnom Penh, Cambodia
| |
Collapse
|
15
|
Franklinos LHV, Redding DW, Lucas TCD, Gibb R, Abubakar I, Jones KE. Joint spatiotemporal modelling reveals seasonally dynamic patterns of Japanese encephalitis vector abundance across India. PLoS Negl Trop Dis 2022; 16:e0010218. [PMID: 35192626 PMCID: PMC8896663 DOI: 10.1371/journal.pntd.0010218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 03/04/2022] [Accepted: 02/01/2022] [Indexed: 11/21/2022] Open
Abstract
Predicting vector abundance and seasonality, key components of mosquito-borne disease (MBD) hazard, is essential to determine hotspots of MBD risk and target interventions effectively. Japanese encephalitis (JE), an important MBD, is a leading cause of viral encephalopathy in Asia with 100,000 cases estimated annually, but data on the principal vector Culex tritaeniorhynchus is lacking. We developed a Bayesian joint-likelihood model that combined information from available vector occurrence and abundance data to predict seasonal vector abundance for C. tritaeniorhynchus (a constituent of JE hazard) across India, as well as examining the environmental drivers of these patterns. Using data collated from 57 locations from 24 studies, we find distinct seasonal and spatial patterns of JE vector abundance influenced by climatic and land use factors. Lagged precipitation, temperature and land use intensity metrics for rice crop cultivation were the main drivers of vector abundance, independent of seasonal, or spatial variation. The inclusion of environmental factors and a seasonal term improved model prediction accuracy (mean absolute error [MAE] for random cross validation = 0.48) compared to a baseline model representative of static hazard predictions (MAE = 0.95), signalling the importance of seasonal environmental conditions in predicting JE vector abundance. Vector abundance varied widely across India with high abundance predicted in northern, north-eastern, eastern, and southern regions, although this ranged from seasonal (e.g., Uttar Pradesh, West Bengal) to perennial (e.g., Assam, Tamil Nadu). One-month lagged predicted vector abundance was a significant predictor of JE outbreaks (odds ratio 2.45, 95% confidence interval: 1.52–4.08), highlighting the possible development of vector abundance as a proxy for JE hazard. We demonstrate a novel approach that leverages information from sparse vector surveillance data to predict seasonal vector abundance–a key component of JE hazard–over large spatial scales, providing decision-makers with better guidance for targeting vector surveillance and control efforts. Japanese encephalitis (JE) is the leading cause of viral encephalopathy in Asia with an estimated 100,000 annual cases and 25,000 deaths. However, insufficient data on the predominant mosquito vector Culex tritaeniorhynchus–a key component of JE hazard–precludes hazard estimation required to target public health interventions. Previous studies have provided limited estimates of JE hazard, often predicting geographic distributions of potential vector occurrence without accounting for vector abundance, seasonality, or uncertainty in predictions. This study details a novel approach to predict spatiotemporal patterns in JE vector abundance using a joint-likelihood modelling technique that leverages information from sparse vector surveillance data. We showed that patterns in JE vector abundance were driven by seasonality and environmental factors and so demonstrated the limitations of previously available static vector distribution maps in estimating the vector population component of JE hazard. One-month lagged vector abundance predictions showed a positive relationship with JE outbreaks, signalling the potential use of vector abundance as a proxy for JE hazard. While vector surveillance data are limited, joint-likelihood models offer a useful approach to inform vector abundance predictions. This study provides decision-makers with a more complete picture of the distribution of JE vector abundance and can be used to target vector surveillance and control efforts and enhance the allocation of resources.
Collapse
Affiliation(s)
- Lydia H. V. Franklinos
- Centre for Biodiversity and Environment Research, University College London, London, United Kingdom
- Institute for Global Health, University College London, London, United Kingdom
- * E-mail:
| | - David W. Redding
- Institute of Zoology, Zoological Society of London, London, United Kingdom
| | - Tim C. D. Lucas
- School of Public Health, Imperial College London, London, United Kingdom
| | - Rory Gibb
- Centre for Mathematical Modelling of Infectious Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
- Centre on Climate Change and Planetary Health, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Ibrahim Abubakar
- Institute for Global Health, University College London, London, United Kingdom
| | - Kate E. Jones
- Centre for Biodiversity and Environment Research, University College London, London, United Kingdom
- Institute of Zoology, Zoological Society of London, London, United Kingdom
| |
Collapse
|
16
|
Jones IJ, Sokolow SH, De Leo GA. Three reasons why expanded use of natural enemy solutions may offer sustainable control of human infections. PEOPLE AND NATURE 2022; 4:32-43. [PMID: 35450207 PMCID: PMC9017516 DOI: 10.1002/pan3.10264] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
1. Many infectious pathogens spend a significant portion of their life cycles in the environment or in animal hosts, where ecological interactions with natural enemies may influence pathogen transmission to people. Yet, our understanding of natural enemy opportunities for human disease control is lacking, despite widespread uptake and success of natural enemy solutions for pest and parasite management in agriculture. 2. Here we explore three reasons why conserving, restoring, or augmenting specific natural enemies in the environment could offer a promising complement to conventional clinical strategies to fight environmentally mediated pathogens and parasites. (1) Natural enemies of human infections abound in nature, largely understudied and undiscovered. (2) Natural enemy solutions could provide ecological options for infectious disease control where conventional interventions are lacking. And, (3) Many natural enemy solutions could provide important co-benefits for conservation and human well-being. 3. We illustrate these three arguments with a broad set of examples whereby natural enemies of human infections have been used or proposed to curb human disease burden, with some clear successes. However, the evidence base for most proposed solutions is sparse, and many opportunities likely remain undiscovered, highlighting opportunities for future research.
Collapse
Affiliation(s)
- IJ Jones
- Hopkins Marine Station of Stanford University, Pacific Grove, CA, 93950,Corresponding Author: Isabel J. Jones, , 415-309-3125
| | - SH Sokolow
- Woods Institute for the Environment, Stanford University, Stanford, CA, 94305,Marine Science Institute, University of California, Santa Barbara, Santa Barbara, CA 93106
| | - GA De Leo
- Hopkins Marine Station of Stanford University, Pacific Grove, CA, 93950,Woods Institute for the Environment, Stanford University, Stanford, CA, 94305
| |
Collapse
|
17
|
Mulvey P, Duong V, Boyer S, Burgess G, Williams DT, Dussart P, Horwood PF. The Ecology and Evolution of Japanese Encephalitis Virus. Pathogens 2021; 10:1534. [PMID: 34959489 PMCID: PMC8704921 DOI: 10.3390/pathogens10121534] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/16/2021] [Accepted: 11/18/2021] [Indexed: 11/16/2022] Open
Abstract
Japanese encephalitis virus (JEV) is a mosquito-borne flavivirus mainly spread by Culex mosquitoes that currently has a geographic distribution across most of Southeast Asia and the Western Pacific. Infection with JEV can cause Japanese encephalitis (JE), a severe disease with a high mortality rate, which also results in ongoing sequalae in many survivors. The natural reservoir of JEV is ardeid wading birds, such as egrets and herons, but pigs commonly play an important role as an amplifying host during outbreaks in human populations. Other domestic animals and wildlife have been detected as hosts for JEV, but their role in the ecology and epidemiology of JEV is uncertain. Safe and effective JEV vaccines are available, but unfortunately, their use remains low in most endemic countries where they are most needed. Increased surveillance and diagnosis of JE is required as climate change and social disruption are likely to facilitate further geographical expansion of Culex vectors and JE risk areas.
Collapse
Affiliation(s)
- Peter Mulvey
- Australian Institute of Tropical Health and Medicine, James Cook University, Townsville 4811, Australia;
| | - Veasna Duong
- Institut Pasteur du Cambodge, Institut Pasteur International Network, Phnom Penh 12201, Cambodia; (V.D.); (S.B.); (P.D.)
| | - Sebastien Boyer
- Institut Pasteur du Cambodge, Institut Pasteur International Network, Phnom Penh 12201, Cambodia; (V.D.); (S.B.); (P.D.)
| | - Graham Burgess
- College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville 4811, Australia;
| | - David T. Williams
- Australian Centre for Disease Preparedness, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Geelong 3220, Australia;
| | - Philippe Dussart
- Institut Pasteur du Cambodge, Institut Pasteur International Network, Phnom Penh 12201, Cambodia; (V.D.); (S.B.); (P.D.)
| | - Paul F. Horwood
- Australian Institute of Tropical Health and Medicine, James Cook University, Townsville 4811, Australia;
- College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville 4811, Australia;
| |
Collapse
|
18
|
Zhao S, Li Y, Fu S, Liu M, Li F, Liu C, Yu J, Rui L, Wang D, Wang H. Environmental factors and spatiotemporal distribution of Japanese encephalitis after vaccination campaign in Guizhou Province, China (2004-2016). BMC Infect Dis 2021; 21:1172. [PMID: 34809606 PMCID: PMC8607706 DOI: 10.1186/s12879-021-06857-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 11/10/2021] [Indexed: 11/17/2022] Open
Abstract
Background Although a vaccination campaign has been conducted since 2004, Japanese encephalitis (JE) is still a public health problem in Guizhou, one of the provinces with the highest incidence of JE in China. The aim of this study was to understand the spatiotemporal distribution of JE and its relationship with environmental factors in Guizhou Province in the post-vaccination era, 2004–2016. Methods We collected data on human JE cases in Guizhou Province from 2004 to 2016 from the national infectious disease reporting system. A Poisson regression model was used to analyze the relationship between JE occurrence and environmental factors amongst counties. Results Our results showed that the incidence and mortality of JE decreased after the initiation of vaccination. JE cases were mainly concentrated in preschool and school-age children and the number of cases in children over age 15 years was significantly decreased compared with the previous 10 years; the seasonality of JE before and after the use of vaccines was unchanged. JE incidence was positively associated with cultivated land and negatively associated with gross domestic product (GDP) per capita, vegetation coverage, and developed land. In areas with cultivated land coverage < 25%, vegetation coverage > 55%, and urban area coverage > 25%, the JE risk was lower. The highest JE incidence was among mid-level GDP areas and in moderately urbanized areas. Conclusions This study assessed the relationship between incidence of JE and environmental factors in Guizhou Province. Our results highlight that the highest risk of JE transmission in the post-vaccination era is in mid-level developed areas. Supplementary Information The online version contains supplementary material available at 10.1186/s12879-021-06857-3.
Collapse
Affiliation(s)
- Suye Zhao
- Guizhou Provincial Center for Disease Control and Prevention, 101, Ba Ge Yan road, Yunyan District, Guiyang, 550004, Guizhou, China
| | - Yidan Li
- State Key Laboratory of Remote Sensing Science, College of Global Change and Earth System Science, Beijing Normal University, Beijing, 100875, China.,School of National Security and Emergency Management, Beijing Normal University, Beijing, 100875, China
| | - Shihong Fu
- Department of Viral Encephalitis, NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, 155 Changbai Road, Changping District, Beijing, 102206, China.,State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, 155 Changbai Road, Changping District, Beijing, 102206, China
| | - Ming Liu
- Guizhou Provincial Center for Disease Control and Prevention, 101, Ba Ge Yan road, Yunyan District, Guiyang, 550004, Guizhou, China
| | - Fan Li
- Department of Viral Encephalitis, NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, 155 Changbai Road, Changping District, Beijing, 102206, China.,State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, 155 Changbai Road, Changping District, Beijing, 102206, China
| | - Chunting Liu
- Guizhou Provincial Center for Disease Control and Prevention, 101, Ba Ge Yan road, Yunyan District, Guiyang, 550004, Guizhou, China
| | - Jing Yu
- State Key Laboratory of Remote Sensing Science, College of Global Change and Earth System Science, Beijing Normal University, Beijing, 100875, China
| | - Liping Rui
- Guizhou Provincial Center for Disease Control and Prevention, 101, Ba Ge Yan road, Yunyan District, Guiyang, 550004, Guizhou, China
| | - Dingming Wang
- Guizhou Provincial Center for Disease Control and Prevention, 101, Ba Ge Yan road, Yunyan District, Guiyang, 550004, Guizhou, China.
| | - Huanyu Wang
- Department of Viral Encephalitis, NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, 155 Changbai Road, Changping District, Beijing, 102206, China. .,State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, 155 Changbai Road, Changping District, Beijing, 102206, China.
| |
Collapse
|
19
|
Cuenca PR, Key S, Jumail A, Surendra H, Ferguson HM, Drakeley CJ, Fornace K. Epidemiology of the zoonotic malaria Plasmodium knowlesi in changing landscapes. ADVANCES IN PARASITOLOGY 2021; 113:225-286. [PMID: 34620384 DOI: 10.1016/bs.apar.2021.08.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Within the past two decades, incidence of human cases of the zoonotic malaria Plasmodium knowlesi has increased markedly. P. knowlesi is now the most common cause of human malaria in Malaysia and threatens to undermine malaria control programmes across Southeast Asia. The emergence of zoonotic malaria corresponds to a period of rapid deforestation within this region. These environmental changes impact the distribution and behaviour of the simian hosts, mosquito vector species and human populations, creating new opportunities for P. knowlesi transmission. Here, we review how landscape changes can drive zoonotic disease emergence, examine the extent and causes of these changes across Southeast and identify how these mechanisms may be impacting P. knowlesi dynamics. We review the current spatial epidemiology of reported P. knowlesi infections in people and assess how these demographic and environmental changes may lead to changes in transmission patterns. Finally, we identify opportunities to improve P. knowlesi surveillance and develop targeted ecological interventions within these landscapes.
Collapse
Affiliation(s)
- Pablo Ruiz Cuenca
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Stephanie Key
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | | | - Henry Surendra
- Eijkman-Oxford Clinical Research Unit, Jakarta, Indonesia; Centre for Tropical Medicine, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Heather M Ferguson
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, Scotland, United Kingdom
| | - Chris J Drakeley
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Kimberly Fornace
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom; Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, Scotland, United Kingdom.
| |
Collapse
|
20
|
Ha TV, Kim W, Nguyen-Tien T, Lindahl J, Nguyen-Viet H, Thi NQ, Nguyen HV, Unger F, Lee HS. Spatial distribution of Culex mosquito abundance and associated risk factors in Hanoi, Vietnam. PLoS Negl Trop Dis 2021; 15:e0009497. [PMID: 34153065 PMCID: PMC8248591 DOI: 10.1371/journal.pntd.0009497] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 07/01/2021] [Accepted: 05/21/2021] [Indexed: 12/19/2022] Open
Abstract
Japanese encephalitis (JE) is the major cause of viral encephalitis (VE) in most Asian-Pacific countries. In Vietnam, there is no nationwide surveillance system for JE due to lack of medical facilities and diagnoses. Culex tritaeniorhynchus, Culex vishnui, and Culex quinquefasciatus have been identified as the major JE vectors in Vietnam. The main objective of this study was to forecast a risk map of Culex mosquitoes in Hanoi, which is one of the most densely populated cities in Vietnam. A total of 10,775 female adult Culex mosquitoes were collected from 513 trapping locations. We collected temperature and precipitation information during the study period and its preceding month. In addition, the other predictor variables (e.g., normalized difference vegetation index [NDVI], land use/land cover and human population density), were collected for our analysis. The final model selected for estimating the Culex mosquito abundance included centered rainfall, quadratic term rainfall, rice cover ratio, forest cover ratio, and human population density variables. The estimated spatial distribution of Culex mosquito abundance ranged from 0 to more than 150 mosquitoes per 900m2. Our model estimated that 87% of the Hanoi area had an abundance of mosquitoes from 0 to 50, whereas approximately 1.2% of the area showed more than 100 mosquitoes, which was mostly in the rural/peri-urban districts. Our findings provide better insight into understanding the spatial distribution of Culex mosquitoes and its associated environmental risk factors. Such information can assist local clinicians and public health policymakers to identify potential areas of risk for JE virus. Risk maps can be an efficient way of raising public awareness about the virus and further preventive measures need to be considered in order to prevent outbreaks and onwards transmission of JE virus.
Collapse
Affiliation(s)
- Tuyen V. Ha
- Faculty of Resources Management, Thai Nguyen University of Agriculture and Forestry (TUAF), Thai Nguyen, Vietnam
| | - Wonkook Kim
- Pusan National University, Busan, South Korea
| | | | - Johanna Lindahl
- International Livestock Research Institute (ILRI), Hanoi, Vietnam
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
- Department of Clinical Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Hung Nguyen-Viet
- International Livestock Research Institute (ILRI), Hanoi, Vietnam
| | - Nguyen Quang Thi
- Faculty of Resources Management, Thai Nguyen University of Agriculture and Forestry (TUAF), Thai Nguyen, Vietnam
| | - Huy Van Nguyen
- Faculty of Resources Management, Thai Nguyen University of Agriculture and Forestry (TUAF), Thai Nguyen, Vietnam
| | - Fred Unger
- International Livestock Research Institute (ILRI), Hanoi, Vietnam
| | - Hu Suk Lee
- International Livestock Research Institute (ILRI), Hanoi, Vietnam
| |
Collapse
|
21
|
Henriksson E, Söderberg R, Ström Hallenberg G, Kroesna K, Ly S, Sear B, Unger F, Tum S, Nguyen-Viet H, Lindahl JF. Japanese Encephalitis in Small-Scale Pig Farming in Rural Cambodia: Pig Seroprevalence and Farmer Awareness. Pathogens 2021; 10:pathogens10050578. [PMID: 34068673 PMCID: PMC8150308 DOI: 10.3390/pathogens10050578] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 05/03/2021] [Accepted: 05/06/2021] [Indexed: 12/03/2022] Open
Abstract
Japanese encephalitis (JE) is endemic in Cambodia, but circulation of JE virus (JEV) among domestic pigs has previously only been studied in the southern part of the country. The main purpose of this study was to determine the seroprevalence of JEV antibodies in smallholder pigs held in rural areas of Kampong Thom, Preah Vihear, Ratanakiri, and Stung Treng provinces, northeastern Cambodia. Another purpose was to identify possible associations between serologic status and other factors, such as reproductive disorders, and to investigate the farmers’ knowledge of mosquito-borne diseases and use of preventive measures. In October 2019, 139 households were visited throughout the study area, and 242 pigs were sampled for blood. The sera were analysed with ELISA for JEV antibodies. Household representatives were interviewed, and data were recorded for each sampled pig. The apparent seroprevalence was 89.1% in pigs between 3 and 6 months of age, and 100% in pigs over 6 months of age. In total, 93.0% of the pigs tested positive. Province appeared to be the only factor significantly associated with serologic status (p < 0.001). Almost all (97.8%) respondents knew that mosquitos could transmit diseases, and 70.5% had heard of JE. However, only one respondent knew that JEV is transmitted to people through mosquito bites. Very few respondents knew that pigs can become infected with JEV, and no one knew that mosquitos transmit the virus. All families used some sort of mosquito protection for themselves, but only 15.1% protected their pigs from mosquito bites. The children were vaccinated against JE in 93 households, while adults only were vaccinated in eight households. The results suggest that JEV transmission is intense in northeastern Cambodia, and that people’s knowledge about the transmission route of JEV and the role of pigs in the transmission cycle is low. Fortunately, people are well aware of mosquito-borne diseases in general and use mosquito protection, and many children are vaccinated against JE. Nonetheless, it is important that national vaccination is continued, and that people—especially in rural areas where pigs are commonly kept—are educated on the ecology and transmission of JEV.
Collapse
Affiliation(s)
- Ellinor Henriksson
- Department of Clinical Sciences, Swedish University of Agricultural Sciences, 750 07 Uppsala, Sweden; (E.H.); (R.S.); (G.S.H.)
| | - Rebecca Söderberg
- Department of Clinical Sciences, Swedish University of Agricultural Sciences, 750 07 Uppsala, Sweden; (E.H.); (R.S.); (G.S.H.)
| | - Gunilla Ström Hallenberg
- Department of Clinical Sciences, Swedish University of Agricultural Sciences, 750 07 Uppsala, Sweden; (E.H.); (R.S.); (G.S.H.)
- Public Health Agency Sweden, 171 65 Stockholm, Sweden
| | - Kang Kroesna
- Faculty of Veterinary Medicine, Royal University of Agriculture, Phnom Penh 12201, Cambodia; (K.K.); (S.L.); (B.S.)
| | - Sokong Ly
- Faculty of Veterinary Medicine, Royal University of Agriculture, Phnom Penh 12201, Cambodia; (K.K.); (S.L.); (B.S.)
| | - Borin Sear
- Faculty of Veterinary Medicine, Royal University of Agriculture, Phnom Penh 12201, Cambodia; (K.K.); (S.L.); (B.S.)
| | - Fred Unger
- Animal and Human Health Program, International Livestock Research Institute, Hanoi 100 000, Vietnam; (F.U.); (H.N.-V.)
| | - Sothyra Tum
- National Animal Health and Production Research Institute, General Directorate of Animal Health and Production, Phnom Penh 12350, Cambodia;
| | - Hung Nguyen-Viet
- Animal and Human Health Program, International Livestock Research Institute, Hanoi 100 000, Vietnam; (F.U.); (H.N.-V.)
| | - Johanna F. Lindahl
- Department of Clinical Sciences, Swedish University of Agricultural Sciences, 750 07 Uppsala, Sweden; (E.H.); (R.S.); (G.S.H.)
- Animal and Human Health Program, International Livestock Research Institute, Hanoi 100 000, Vietnam; (F.U.); (H.N.-V.)
- Department of Medical Biochemistry and Microbiology, Uppsala University, 751 23 Uppsala, Sweden
- Correspondence:
| |
Collapse
|
22
|
Thongsripong P, Chandler JA, Kittayapong P, Wilcox BA, Kapan DD, Bennett SN. Metagenomic shotgun sequencing reveals host species as an important driver of virome composition in mosquitoes. Sci Rep 2021; 11:8448. [PMID: 33875673 PMCID: PMC8055903 DOI: 10.1038/s41598-021-87122-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 03/18/2021] [Indexed: 02/02/2023] Open
Abstract
High-throughput nucleic acid sequencing has greatly accelerated the discovery of viruses in the environment. Mosquitoes, because of their public health importance, are among those organisms whose viromes are being intensively characterized. Despite the deluge of sequence information, our understanding of the major drivers influencing the ecology of mosquito viromes remains limited. Using methods to increase the relative proportion of microbial RNA coupled with RNA-seq we characterize RNA viruses and other symbionts of three mosquito species collected along a rural to urban habitat gradient in Thailand. The full factorial study design allows us to explicitly investigate the relative importance of host species and habitat in structuring viral communities. We found that the pattern of virus presence was defined primarily by host species rather than by geographic locations or habitats. Our result suggests that insect-associated viruses display relatively narrow host ranges but are capable of spreading through a mosquito population at the geographical scale of our study. We also detected various single-celled and multicellular microorganisms such as bacteria, alveolates, fungi, and nematodes. Our study emphasizes the importance of including ecological information in viromic studies in order to gain further insights into viral ecology in systems where host specificity is driving both viral ecology and evolution.
Collapse
Affiliation(s)
- Panpim Thongsripong
- Department of Microbiology, Institute for Biodiversity Science and Sustainability, California Academy of Sciences, San Francisco, CA, USA.
| | - James Angus Chandler
- Department of Microbiology, Institute for Biodiversity Science and Sustainability, California Academy of Sciences, San Francisco, CA, USA
| | - Pattamaporn Kittayapong
- Center of Excellence for Vectors and Vector-Borne Diseases, Faculty of Science, Mahidol University At Salaya, Nakhon Pathom, Thailand
| | - Bruce A Wilcox
- Global Health Group International, ASEAN Institute for Health Development, Mahidol University At Salaya, Nakhon Pathom, Thailand
| | - Durrell D Kapan
- Department of Entomology and Center for Comparative Genomics, Institute for Biodiversity Sciences and Sustainability, California Academy of Sciences, San Francisco, CA, USA
- Center for Conservation and Research Training, Pacific Biosciences Research Center, University of Hawai'i At Manoa, Honolulu, HI, USA
| | - Shannon N Bennett
- Department of Microbiology, Institute for Biodiversity Science and Sustainability, California Academy of Sciences, San Francisco, CA, USA
| |
Collapse
|
23
|
Athni TS, Shocket MS, Couper LI, Nova N, Caldwell IR, Caldwell JM, Childress JN, Childs ML, De Leo GA, Kirk DG, MacDonald AJ, Olivarius K, Pickel DG, Roberts SO, Winokur OC, Young HS, Cheng J, Grant EA, Kurzner PM, Kyaw S, Lin BJ, López RC, Massihpour DS, Olsen EC, Roache M, Ruiz A, Schultz EA, Shafat M, Spencer RL, Bharti N, Mordecai EA. The influence of vector-borne disease on human history: socio-ecological mechanisms. Ecol Lett 2021; 24:829-846. [PMID: 33501751 PMCID: PMC7969392 DOI: 10.1111/ele.13675] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 12/08/2020] [Accepted: 12/09/2020] [Indexed: 01/14/2023]
Abstract
Vector-borne diseases (VBDs) are embedded within complex socio-ecological systems. While research has traditionally focused on the direct effects of VBDs on human morbidity and mortality, it is increasingly clear that their impacts are much more pervasive. VBDs are dynamically linked to feedbacks between environmental conditions, vector ecology, disease burden, and societal responses that drive transmission. As a result, VBDs have had profound influence on human history. Mechanisms include: (1) killing or debilitating large numbers of people, with demographic and population-level impacts; (2) differentially affecting populations based on prior history of disease exposure, immunity, and resistance; (3) being weaponised to promote or justify hierarchies of power, colonialism, racism, classism and sexism; (4) catalysing changes in ideas, institutions, infrastructure, technologies and social practices in efforts to control disease outbreaks; and (5) changing human relationships with the land and environment. We use historical and archaeological evidence interpreted through an ecological lens to illustrate how VBDs have shaped society and culture, focusing on case studies from four pertinent VBDs: plague, malaria, yellow fever and trypanosomiasis. By comparing across diseases, time periods and geographies, we highlight the enormous scope and variety of mechanisms by which VBDs have influenced human history.
Collapse
Affiliation(s)
- Tejas S. Athni
- Department of Biology, Stanford University, Stanford, CA, USA
| | - Marta S. Shocket
- Department of Biology, Stanford University, Stanford, CA, USA
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA, USA
| | - Lisa I. Couper
- Department of Biology, Stanford University, Stanford, CA, USA
| | - Nicole Nova
- Department of Biology, Stanford University, Stanford, CA, USA
| | - Iain R. Caldwell
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland, Australia
| | - Jamie M. Caldwell
- Department of Biology, Stanford University, Stanford, CA, USA
- Department of Biology, University of Hawaii at Manoa, Honolulu, HI, USA
| | - Jasmine N. Childress
- Department of Ecology, Evolution, and Marine Biology, University of California Santa Barbara, Santa Barbara, CA, USA
| | - Marissa L. Childs
- Emmett Interdisciplinary Program in Environment and Resources, Stanford University, Stanford, CA, USA
| | - Giulio A. De Leo
- Hopkins Marine Station of Stanford University, Pacific Grove, CA, USA
- Woods Institute for the Environment, Stanford University, Stanford, CA, USA
| | - Devin G. Kirk
- Department of Biology, Stanford University, Stanford, CA, USA
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada
| | - Andrew J. MacDonald
- Bren School of Environmental Science and Management, University of California, Santa Barbara, CA, USA
- Earth Research Institute, University of California, Santa Barbara, CA, USA
| | | | - David G. Pickel
- Department of Classics, Stanford University, Stanford, CA, USA
| | | | - Olivia C. Winokur
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California, Davis, CA, USA
| | - Hillary S. Young
- Department of Ecology, Evolution, and Marine Biology, University of California Santa Barbara, Santa Barbara, CA, USA
| | - Julian Cheng
- Department of Biology, Stanford University, Stanford, CA, USA
| | | | | | - Saw Kyaw
- Department of Biology, Stanford University, Stanford, CA, USA
| | - Bradford J. Lin
- Department of Biology, Stanford University, Stanford, CA, USA
| | | | | | - Erica C. Olsen
- Department of Biology, Stanford University, Stanford, CA, USA
| | - Maggie Roache
- Department of Biology, Stanford University, Stanford, CA, USA
| | - Angie Ruiz
- Department of Biology, Stanford University, Stanford, CA, USA
| | | | - Muskan Shafat
- Department of Biology, Stanford University, Stanford, CA, USA
| | | | - Nita Bharti
- Department of Biology, Center for Infectious Disease Dynamics, Penn State University, University Park, PA, USA
| | | |
Collapse
|
24
|
Diptyanusa A, Herini ES, Indarjulianto S, Satoto TBT. The detection of Japanese encephalitis virus in Megachiropteran bats in West Kalimantan, Indonesia: A potential enzootic transmission pattern in the absence of pig holdings. INTERNATIONAL JOURNAL FOR PARASITOLOGY-PARASITES AND WILDLIFE 2021; 14:280-286. [PMID: 33898229 PMCID: PMC8056122 DOI: 10.1016/j.ijppaw.2021.03.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 03/15/2021] [Accepted: 03/15/2021] [Indexed: 11/16/2022]
Abstract
The West Kalimantan province in Borneo island, Indonesia belongs to endemic area of Japanese encephalitis (JE) that accounts for approximately 30% of total cases yearly. As the presence of pig holdings is uncommon in West Kalimantan, another reservoir host might have played a role in the local transmission of JE virus in this area. Current study aimed to identify the potential role of bats in the local transmission of JE by performing molecular detection of JE virus in bats and mosquitoes using RT-PCR. Sample collection was performed in 3 districts in West Kalimantan, covering 3 different ecosystems: forest, coastal, and residential areas. Bat collection was performed using mist net and harp net, while mosquito collection was carried out using animal-baited trap and human landing collection. A total of 373 blood samples from bats were tested for JE virus, among which 21 samples (5.6%) showed positive results, mainly from Cynopterus brachyotis (lesser short-nosed fruit bat) found in residential areas. Out of 53 mosquito pools, 3 JE-positive pools of Culex tritaeniorhynchus and Cx. vishnui were collected at the same location as JE-positive bats. Current study showed the first evidence of JE virus detection in several species of Megachiropteran bats in Indonesia, demonstrated the potential role of frugivorous bats in local transmission of JE in West Kalimantan. More aggressive measures are required in JE risk mitigation, particularly in initiating JE vaccination campaign and in avoiding disruption of bats’ natural habitats through changes in land-use. First evidence of JE virus detection in Megachiropteran bats in Indonesia. Molecular detection of JE virus using RT-PCR instead of using antibodies. Collection of JE-positive bats and mosquitoes at the same site. Involvement of bats in JE transmission cycle in the absence of pig holdings.
Collapse
Affiliation(s)
- Ajib Diptyanusa
- Doctoral Study Program of Health and Medical Sciences, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Indonesia.,Department of Parasitology, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Indonesia
| | - Elisabeth Siti Herini
- Department of Child Health, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Indonesia
| | | | - Tri Baskoro Tunggul Satoto
- Department of Parasitology, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Indonesia
| |
Collapse
|
25
|
Boyer S, Durand B, Yean S, Brengues C, Maquart PO, Fontenille D, Chevalier V. Host-Feeding Preference and Diel Activity of Mosquito Vectors of the Japanese Encephalitis Virus in Rural Cambodia. Pathogens 2021; 10:pathogens10030376. [PMID: 33800999 PMCID: PMC8003966 DOI: 10.3390/pathogens10030376] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/11/2021] [Accepted: 03/11/2021] [Indexed: 12/22/2022] Open
Abstract
Japanese Encephalitis (JE) is the most important cause of human encephalitis in Southeast Asia, and this zoonosis is mainly transmitted from pigs to human by mosquitoes. A better understanding of the host-feeding preference of Japanese encephalitis virus (JEV) major vectors is crucial for identifying risk areas, defining bridge vector species and targeting adapted vector control strategies. To assess host-feeding preference of JE vectors in a rural Cambodian area where JE is known to circulate, in 2017, we implemented four sessions of mosquito trapping (March, June, September, December), during five consecutive nights, collecting four times a night (6 p.m. to 6 a.m.), and using five baited traps simultaneously, i.e., cow, chicken, pig, human, and a blank one for control. In addition, blood meals of 157 engorged females trapped at the same location were opportunistically analyzed with polymerase chain reaction (PCR), using cow, pig, human, and dog blood primers. More than 95% of the 36,709 trapped mosquitoes were potential JE vectors. These vectors were trapped in large numbers throughout the year, including during the dry season, and from 6 p.m. to 6 a.m. Despite the apparent host-feeding preference of Culex vishnui, Cx. gelidus, and Cx. tritaenhyorhincus for cows, statistical analysis suggested that the primary target of these three mosquito species were pigs. Dog blood was detected in eight mosquitoes of the 157 tested, showing that mosquitoes also bite dogs, and suggesting that dogs may be used as proxy of the risk for human to get infected by JE virus.
Collapse
Affiliation(s)
- Sébastien Boyer
- Medical and Veterinary Entomology Unit, Institut Pasteur du Cambodge, 5 Boulevard Monivong, Phnom Penh 12201, Cambodia; (S.Y.); (P.-O.M.); (D.F.)
- Correspondence:
| | - Benoit Durand
- Laboratory for Animal Health, Epidemiology Unit, French Agency for Food, Environmental and Occupational Health and Safety (ANSES), University Paris-Est, 94701 Maisons-Alfort, France;
| | - Sony Yean
- Medical and Veterinary Entomology Unit, Institut Pasteur du Cambodge, 5 Boulevard Monivong, Phnom Penh 12201, Cambodia; (S.Y.); (P.-O.M.); (D.F.)
| | - Cécile Brengues
- MIVEGEC Unit, Institut de Recherche pour le Développement (IRD), Université de Montpellier, CNRS, BP 64501, 34394 Montpellier, France;
| | - Pierre-Olivier Maquart
- Medical and Veterinary Entomology Unit, Institut Pasteur du Cambodge, 5 Boulevard Monivong, Phnom Penh 12201, Cambodia; (S.Y.); (P.-O.M.); (D.F.)
| | - Didier Fontenille
- Medical and Veterinary Entomology Unit, Institut Pasteur du Cambodge, 5 Boulevard Monivong, Phnom Penh 12201, Cambodia; (S.Y.); (P.-O.M.); (D.F.)
- MIVEGEC Unit, Institut de Recherche pour le Développement (IRD), Université de Montpellier, CNRS, BP 64501, 34394 Montpellier, France;
| | - Véronique Chevalier
- Epidemiology and Public Health Unit, Institut Pasteur du Cambodge, 5 Boulevard Monivong, Phnom Penh 12201, Cambodia;
- International Center of Research in Agriculture for Development (CIRAD), UMR AS TRE, 34090 Montpellier, France
| |
Collapse
|
26
|
Lord JS. Changes in Rice and Livestock Production and the Potential Emergence of Japanese Encephalitis in Africa. Pathogens 2021; 10:pathogens10030294. [PMID: 33806470 PMCID: PMC8000791 DOI: 10.3390/pathogens10030294] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 02/15/2021] [Accepted: 03/02/2021] [Indexed: 11/16/2022] Open
Abstract
The known distribution of Japanese encephalitis (JE) is limited to Asia and Australasia. However, autochthonous transmission of Japanese encephalitis virus was reported in Africa for the first time in 2016. Reasons for the current geographic restriction of JE and the circumstances that may permit emergence in non-endemic areas are not well known. Here, I assess potential changes in vector breeding habitat and livestock production in Africa that are conducive to JEV transmission, using open-source data available from the Food and Agriculture Organization between 1961 and 2019. For 16 of 57 countries in Africa, there was evidence of existing, or an increase in, conditions potentially suitable for JE emergence. This comprised the area used for rice production and the predicted proportion of blood meals on pigs. Angola, where autochthonous transmission was reported, was one of these 16 countries. Studies to better quantify the role of alternative hosts, including domestic birds in transmission in endemic regions, would help to determine the potential for emergence elsewhere. In Africa, surveillance programs for arboviruses should not rule out the possibility of Japanese encephalitis virus (JEV) circulation in areas with high pig or bird density coincident with Culicine breeding habitats.
Collapse
Affiliation(s)
- Jennifer S Lord
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK
| |
Collapse
|
27
|
Lopez AL, Raguindin PF, Aldaba JG, Avelino F, Sy AK, Heffelfinger JD, Silva MWT. Epidemiology of Japanese encephalitis in the Philippines prior to routine immunization. Int J Infect Dis 2021; 102:344-351. [DOI: 10.1016/j.ijid.2020.10.061] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 10/15/2020] [Accepted: 10/21/2020] [Indexed: 10/23/2022] Open
|
28
|
Hameed M, Khan S, Xu J, Zhang J, Wang X, Di D, Chen Z, Naveed Anwar M, Wahaab A, Ma X, Nawaz M, Liu K, Li B, Shao D, Qiu Y, Wei J, Ma Z. Detection of Japanese encephalitis virus in mosquitoes from Xinjiang during next-generation sequencing arboviral surveillance. Transbound Emerg Dis 2020; 68:467-476. [PMID: 32614516 DOI: 10.1111/tbed.13697] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 06/14/2020] [Accepted: 06/16/2020] [Indexed: 01/10/2023]
Abstract
A total of 548 mosquitoes were collected from different animal farms located near to highly populated cities in Xinjiang and were subjected to metagenomic next-generation sequencing (mNGS). The mNGS data demonstrated that 18,842 (XJ1 strain) and 1,077 (XJ2 strain) of Japanese encephalitis virus (JEV)-related reads were detected in XJ1 and XJ2 mosquito samples collected from Wushi and Wensu counties of Aksu area, which accounted for 0.032% and 0.006% of the total clean reads generated from XJ1 and XJ2 samples, respectively. The Bayesian molecular phylogenetic analysis suggested that XJ1 and XJ2 strains belonged to JEV genotype III and were clustered with JEV strains isolated in China. Notably, Bayesian molecular time line phylogeny revealed that XJ1 strain shared its MRCA with JEV GSS strain about 67 YA, suggesting that XJ1 strain likely originated from linages closely related to GSS strain and spread to Xinjiang later. Overall, these findings suggest that Xinjiang was probably not free from JEV, and thus, a further surveillance of JEV is required in Xinjiang.
Collapse
Affiliation(s)
- Muddassar Hameed
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai, PR China
| | - Sawar Khan
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai, PR China
| | - Jinpeng Xu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai, PR China
| | - Junjie Zhang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai, PR China
| | - Xin Wang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai, PR China
| | - Di Di
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai, PR China
| | - Zheng Chen
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, PR China
| | - Muhammad Naveed Anwar
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai, PR China
| | - Abdul Wahaab
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai, PR China
| | - Xiaochun Ma
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai, PR China
| | - Mohsin Nawaz
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai, PR China
| | - Ke Liu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai, PR China
| | - Beibei Li
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai, PR China
| | - Donghua Shao
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai, PR China
| | - Yafeng Qiu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai, PR China
| | - Jianchao Wei
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai, PR China
| | - Zhiyong Ma
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai, PR China
| |
Collapse
|
29
|
Kumar D, Kumar P, Singh H, Agrawal V. Biocontrol of mosquito vectors through herbal-derived silver nanoparticles: prospects and challenges. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:25987-26024. [PMID: 32385820 DOI: 10.1007/s11356-020-08444-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Accepted: 03/13/2020] [Indexed: 05/25/2023]
Abstract
Mosquitoes spread several life-threatening diseases such as malaria, filaria, dengue, Japanese encephalitis, West Nile fever, chikungunya, and yellow fever and are associated with millions of deaths every year across the world. However, insecticides of synthetic origin are conventionally used for controlling various vector-borne diseases but they have various associated drawbacks like impact on non-targeted species, negative effects on the environment, and development of resistance in vector species by alteration of the target site. Plant extracts, phytochemicals, and their nanoformulations can serve as ovipositional attractants, insect growth regulators, larvicides, and repellents with least effects on the environment. Such plant-derived products exhibit broad-spectrum resistance against various mosquito species and are relatively cheaper, environmentally safer, biodegradable, easily accessible, and are non-toxic to non-targeted organisms. Therefore, in this review article, the current knowledge of phytochemical sources exhibiting larvicidal activity and their variations in response to solvents used for their extraction is underlined. Also, different methods such as physical, chemical, and biological for silver nanoparticle (AgNPs) synthesis, their mechanism of synthesis using plant extract, their potent larvicidal activity, and the possible mechanism by which these particles kill mosquito larvae are discussed. In addition, constraints related to commercialization of nanoherbal products at government and academic or research level and barriers from laboratory experiments to field trial have also been discussed. This comprehensive information can be gainfully employed for the development of herbal larvicidal formulations and nanopesticides against insecticide-resistant vector species in the near future. Graphical abstract.
Collapse
Affiliation(s)
- Dinesh Kumar
- National Institute of Malaria Research, Dwarka, Delhi, 110077, India
- Medicinal Plant Biotechnology Lab, Department of Botany, University of Delhi, Delhi, 110007, India
| | - Pawan Kumar
- National Institute of Malaria Research, Dwarka, Delhi, 110077, India
| | - Himmat Singh
- National Institute of Malaria Research, Dwarka, Delhi, 110077, India
| | - Veena Agrawal
- Medicinal Plant Biotechnology Lab, Department of Botany, University of Delhi, Delhi, 110007, India.
| |
Collapse
|
30
|
Investigation of Japanese encephalitis virus as a cause of acute encephalitis in southern Pakistan, April 2015-January 2018. PLoS One 2020; 15:e0234584. [PMID: 32530966 PMCID: PMC7292402 DOI: 10.1371/journal.pone.0234584] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Accepted: 05/28/2020] [Indexed: 12/18/2022] Open
Abstract
Background Japanese encephalitis (JE) occurs in fewer than 1% of JE virus (JEV) infections, often with catastrophic sequelae including death and neuropsychiatric disability. JEV transmission in Pakistan was documented in 1980s and 1990s, but recent evidence is lacking. Our objective was to investigate JEV as a cause of acute encephalitis in Pakistan. Methods Persons aged ≥1 month with possible JE admitted to two acute care hospitals in Karachi, Pakistan from April 2015 to January 2018 were enrolled. Cerebrospinal fluid (CSF) or serum samples were tested for JEV immunoglobulin M (IgM) using the InBios JE DetectTM assay. Positive or equivocal samples had confirmatory testing using plaque reduction neutralization tests. Results Among 227 patients, testing was performed on CSF in 174 (77%) and on serum in 53 (23%) patients. Six of eight patient samples positive or equivocal for JEV IgM had sufficient volume for confirmatory testing. One patient had evidence of recent West Nile virus (WNV) neurologic infection based on CSF testing. One patient each had recent dengue virus (DENV) infection and WNV infection based on serum results. Recent flavivirus infections were identified in two persons, one each based on CSF and serum results. Specific flaviviruses could not be identified due to serologic cross-reactivity. For the sixth person, JEV neutralizing antibodies were confirmed in CSF but there was insufficient volume for further testing. Conclusions Hospital-based JE surveillance in Karachi, Pakistan could not confirm or exclude local JEV transmission. Nonetheless, Pakistan remains at risk for JE due to presence of the mosquito vector, amplifying hosts, and rice irrigation. Laboratory surveillance for JE should continue among persons with acute encephalitis. However, in view of serological cross-reactivity, confirmatory testing of JE IgM positive samples at a reference laboratory is essential.
Collapse
|
31
|
Oliveira ARS, Cohnstaedt LW, Noronha LE, Mitzel D, McVey DS, Cernicchiaro N. Perspectives Regarding the Risk of Introduction of the Japanese Encephalitis Virus (JEV) in the United States. Front Vet Sci 2020; 7:48. [PMID: 32118069 PMCID: PMC7019853 DOI: 10.3389/fvets.2020.00048] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 01/20/2020] [Indexed: 12/15/2022] Open
Abstract
Japanese encephalitis (JE) is a zoonotic, emerging disease transmitted by mosquito vectors infected with the Japanese encephalitis virus (JEV). Its potential for emergence into susceptible regions is high, including in the United States (US), and is a reason of economic concern among the agricultural community, and to public health due to high morbidity and mortality rates in humans. While exploring the complexities of interactions involved with viral transmission, we proposed a new outlook on the role of vectors, hosts and the environment under changing conditions. For instance, the role of feral pigs may have been underappreciated in our previous work, given research keeps pointing to the importance of susceptible populations of wild swine in naïve regions as key elements for the introduction of emergent vector-borne diseases. High risk of JEV introduction has been associated with the transportation of infected mosquitoes via aircraft. Nonetheless, no JEV outbreaks have been reported in the US to date and results from a qualitative risk assessment considered the risk of establishment to be negligible under the current conditions (environmental, vector, pathogen, and host). In this work, we discuss virus-vector-host interactions and ecological factors important for virus transmission and spread, review research on the risk of JEV introduction to the US considering the implications of risk dismissal as it relates to past experiences with similar arboviruses, and reflect on future directions, challenges, and implications of a JEV incursion.
Collapse
Affiliation(s)
- Ana R S Oliveira
- Center for Outcomes Research and Epidemiology, Department of Diagnostic Medicine and Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, United States
| | - Lee W Cohnstaedt
- Arthropod-Borne Animal Diseases Research, Agricultural Research Service, United States Department of Agriculture, Manhattan, KS, United States
| | - Leela E Noronha
- Arthropod-Borne Animal Diseases Research, Agricultural Research Service, United States Department of Agriculture, Manhattan, KS, United States
| | - Dana Mitzel
- Arthropod-Borne Animal Diseases Research, Agricultural Research Service, United States Department of Agriculture, Manhattan, KS, United States
| | - D Scott McVey
- Arthropod-Borne Animal Diseases Research, Agricultural Research Service, United States Department of Agriculture, Manhattan, KS, United States
| | - Natalia Cernicchiaro
- Center for Outcomes Research and Epidemiology, Department of Diagnostic Medicine and Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, United States
| |
Collapse
|
32
|
Auerswald H, Ruget AS, Ladreyt H, In S, Mao S, Sorn S, Tum S, Duong V, Dussart P, Cappelle J, Chevalier V. Serological Evidence for Japanese Encephalitis and West Nile Virus Infections in Domestic Birds in Cambodia. Front Vet Sci 2020; 7:15. [PMID: 32064271 PMCID: PMC7000427 DOI: 10.3389/fvets.2020.00015] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 01/09/2020] [Indexed: 12/30/2022] Open
Abstract
Mosquito-borne flaviviruses with an enzootic transmission cycle like Japanese encephalitis virus (JEV) and West Nile virus (WNV) are a major public health concern. The circulation of JEV in Southeast Asia is well-documented, and the important role of pigs as amplification hosts for the virus is long known. The influence of other domestic animals especially poultry that lives in high abundance and close proximity to humans is not intensively analyzed. Another understudied field in Asia is the presence of the closely related WNV. Such analyses are difficult to perform due to the intense antigenic cross-reactivity between these viruses and the lack of suitable standardized serological assays. The main objective of this study was to assess the prevalence of JEV and WNV flaviviruses in domestic birds, detailed in chickens and ducks, in three different Cambodian provinces. We determined the flavivirus seroprevalence using an hemagglutination inhibition assay (HIA). Additionally, we investigated in positive samples the presence of JEV and WNV neutralizing antibodies (nAb) using foci reduction neutralization test (FRNT). We found 29% (180/620) of the investigated birds positive for flavivirus antibodies with an age-depended increase of the seroprevalence (OR = 1.04) and a higher prevalence in ducks compared to chicken (OR = 3.01). Within the flavivirus-positive birds, we found 43% (28/65) with nAb against JEV. We also observed the expected cross-reactivity between JEV and WNV, by identifying 18.5% double-positive birds that had higher titers of nAb than single-positive birds. Additionally, seven domestic birds (10.7%) showed only nAb against WNV and no nAb against JEV. Our study provides evidence for an intense JEV circulation in domestic birds in Cambodia, and the first serological evidence for WNV presence in Southeast Asia since decades. These findings mark the need for a re-definition of areas at risk for JEV and WNV transmission, and the need for further and intensified surveillance of mosquito-transmitted diseases in domestic animals.
Collapse
Affiliation(s)
- Heidi Auerswald
- Virology Unit, Institut Pasteur du Cambodge, Institut Pasteur International Network, Phnom Penh, Cambodia
| | - Anne-Sophie Ruget
- Epidemiology and Public Health Unit, Institut Pasteur du Cambodge, Institut Pasteur International Network, Phnom Penh, Cambodia.,Centre de Coopération Internationale en Recherche Agronomique pour le Développement (CIRAD), Unité Mixte de Recherche ASTRE, Montpellier, France
| | - Helena Ladreyt
- Centre de Coopération Internationale en Recherche Agronomique pour le Développement (CIRAD), Unité Mixte de Recherche ASTRE, Montpellier, France.,ASTRE, Université Montpellier, CIRAD, INRAE, Montpellier, France.,Epidemiology Unit, Laboratory for Animal Health, French Agency for Food, Environmental and Occupational Health and Safety (ANSES), University Paris-Est, Maisons-Alfort, France
| | - Saraden In
- Virology Unit, Institut Pasteur du Cambodge, Institut Pasteur International Network, Phnom Penh, Cambodia
| | - Sokthearom Mao
- Virology Unit, Institut Pasteur du Cambodge, Institut Pasteur International Network, Phnom Penh, Cambodia
| | - San Sorn
- General Directorate for Animal Health and Production, Ministry of Agriculture, Forestry and Fisheries, Phnom Penh, Cambodia
| | - Sothyra Tum
- National Animal Health and Production Research Institute, General Directorate for Animal Health and Production, Ministry of Agriculture, Forestry and Fisheries, Phnom Penh, Cambodia
| | - Veasna Duong
- Virology Unit, Institut Pasteur du Cambodge, Institut Pasteur International Network, Phnom Penh, Cambodia
| | - Philippe Dussart
- Virology Unit, Institut Pasteur du Cambodge, Institut Pasteur International Network, Phnom Penh, Cambodia
| | - Julien Cappelle
- Epidemiology and Public Health Unit, Institut Pasteur du Cambodge, Institut Pasteur International Network, Phnom Penh, Cambodia.,Centre de Coopération Internationale en Recherche Agronomique pour le Développement (CIRAD), Unité Mixte de Recherche ASTRE, Montpellier, France.,ASTRE, Université Montpellier, CIRAD, INRAE, Montpellier, France.,UMR EpiA, INRAE, VetAgro Sup, Marcy lÉtoile, France
| | - Véronique Chevalier
- Epidemiology and Public Health Unit, Institut Pasteur du Cambodge, Institut Pasteur International Network, Phnom Penh, Cambodia.,Centre de Coopération Internationale en Recherche Agronomique pour le Développement (CIRAD), Unité Mixte de Recherche ASTRE, Montpellier, France.,ASTRE, Université Montpellier, CIRAD, INRAE, Montpellier, France
| |
Collapse
|
33
|
McClure M, Machalaba C, Zambrana-Torrelio C, Feferholtz Y, Lee KD, Daszak P, Karesh WB. Incorporating Health Outcomes into Land-Use Planning. ECOHEALTH 2019; 16:627-637. [PMID: 31705335 DOI: 10.1007/s10393-019-01439-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 09/03/2019] [Accepted: 09/03/2019] [Indexed: 06/10/2023]
Abstract
The global trend toward increased agricultural production puts pressure on undeveloped areas, raising the question of how to optimally allocate land. Land-use change has recently been linked to a number of human health outcomes, but these are not routinely considered in land-use decision making. We review examples of planners' currently used strategies to evaluate land use and present a conceptual model of optimal land use that incorporates health outcomes. We then present a framework for evaluating the health outcomes of land-use scenarios that can be used by decision makers in an integrated approach to land-use planning.
Collapse
Affiliation(s)
- Max McClure
- EcoHealth Alliance, 460 West 34th Street 1701, New York, NY, 10001, USA
- Future Earth oneHEALTH International Project Office, New York, NY, USA
- Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Catherine Machalaba
- EcoHealth Alliance, 460 West 34th Street 1701, New York, NY, 10001, USA
- Future Earth oneHEALTH International Project Office, New York, NY, USA
| | - Carlos Zambrana-Torrelio
- EcoHealth Alliance, 460 West 34th Street 1701, New York, NY, 10001, USA
- Future Earth oneHEALTH International Project Office, New York, NY, USA
| | - Yasha Feferholtz
- EcoHealth Alliance, 460 West 34th Street 1701, New York, NY, 10001, USA
- Future Earth oneHEALTH International Project Office, New York, NY, USA
| | - Katherine D Lee
- EcoHealth Alliance, 460 West 34th Street 1701, New York, NY, 10001, USA
- University of Idaho, Moscow, ID, USA
| | - Peter Daszak
- EcoHealth Alliance, 460 West 34th Street 1701, New York, NY, 10001, USA
- Future Earth oneHEALTH International Project Office, New York, NY, USA
| | - William B Karesh
- EcoHealth Alliance, 460 West 34th Street 1701, New York, NY, 10001, USA.
- Future Earth oneHEALTH International Project Office, New York, NY, USA.
| |
Collapse
|
34
|
Ladreyt H, Durand B, Dussart P, Chevalier V. How Central Is the Domestic Pig in the Epidemiological Cycle of Japanese Encephalitis Virus? A Review of Scientific Evidence and Implications for Disease Control. Viruses 2019; 11:E949. [PMID: 31618959 PMCID: PMC6832429 DOI: 10.3390/v11100949] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 10/04/2019] [Accepted: 10/11/2019] [Indexed: 11/17/2022] Open
Abstract
Despite the existence of human vaccines, Japanese encephalitis (JE) remains the leading cause of human encephalitis in Asia. Pigs are described as the main amplifying host, but their role in JE epidemiology needs to be reassessed in order to identify and implement efficient control strategies, for both human and animal health. We aimed to provide a systematic review of publications linked to JE in swine, in terms of both individual and population characteristics of JE virus (JEV) infection and circulation, as well as observed epidemiological patterns. We used the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement to select and analyze relevant articles from the Scopus database, 127 of which were included in the review. Pigs are central, but the implication of secondary hosts cannot be ruled out and should be further investigated. Although human vaccination cannot eradicate the virus, it is clearly the most important means of preventing human disease. However, a better understanding of the actual involvement of domestic pigs as well as other potential JEV hosts in different JEV epidemiological cycles and patterns could help to identify additional/complementary control measures, either by targeting pigs or not, and in some specific epidemiological contexts, contribute to reduce virus circulation and protect humans from JEV infection.
Collapse
Affiliation(s)
- Héléna Ladreyt
- Epidemiology Unit, Laboratory for Animal Health, French Agency for Food, Environmental and Occupational Health and Safety (ANSES), University Paris-Est, 94700 Maisons-Alfort, France.
- Agricultural Research for Development (CIRAD), UMR ASTRE, F-34090 Montpellier, France.
| | - Benoit Durand
- Epidemiology Unit, Laboratory for Animal Health, French Agency for Food, Environmental and Occupational Health and Safety (ANSES), University Paris-Est, 94700 Maisons-Alfort, France.
| | - Philippe Dussart
- Virology Unit, Institut Pasteur du Cambodge, Institut Pasteur International Network, PO Box 983, Phnom Penh 12201, Cambodia.
| | - Véronique Chevalier
- Agricultural Research for Development (CIRAD), UMR ASTRE, F-34090 Montpellier, France.
- Epidemiology and Public Health Unit, Institut Pasteur du Cambodge, Institut Pasteur International Network, PO Box 983, Phnom Penh 12201, Cambodia.
- Agricultural Research for Development (CIRAD), UMR ASTRE, Phnom Penh 12201, Cambodia.
| |
Collapse
|
35
|
Shah HA, Huxley P, Elmes J, Murray KA. Agricultural land-uses consistently exacerbate infectious disease risks in Southeast Asia. Nat Commun 2019; 10:4299. [PMID: 31541099 PMCID: PMC6754503 DOI: 10.1038/s41467-019-12333-z] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 08/31/2019] [Indexed: 12/14/2022] Open
Abstract
Agriculture has been implicated as a potential driver of human infectious diseases. However, the generality of disease-agriculture relationships has not been systematically assessed, hindering efforts to incorporate human health considerations into land-use and development policies. Here we perform a meta-analysis with 34 eligible studies and show that people who live or work in agricultural land in Southeast Asia are on average 1.74 (CI 1.47-2.07) times as likely to be infected with a pathogen than those unexposed. Effect sizes are greatest for exposure to oil palm, rubber, and non-poultry based livestock farming and for hookworm (OR 2.42, CI 1.56-3.75), malaria (OR 2.00, CI 1.46-2.73), scrub typhus (OR 2.37, CI 1.41-3.96) and spotted fever group diseases (OR 3.91, CI 2.61-5.85). In contrast, no change in infection risk is detected for faecal-oral route diseases. Although responses vary by land-use and disease types, results suggest that agricultural land-uses exacerbate many infectious diseases in Southeast Asia.
Collapse
Affiliation(s)
- Hiral A Shah
- MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London, London, UK.
- Grantham Institute-Climate Change and the Environment-Imperial College London, London, UK.
| | - Paul Huxley
- MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London, London, UK
- Grantham Institute-Climate Change and the Environment-Imperial College London, London, UK
| | - Jocelyn Elmes
- MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London, London, UK
- Department of Global Health and Development, London School of Hygiene and Tropical Medicine, London, UK
| | - Kris A Murray
- MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London, London, UK
- Grantham Institute-Climate Change and the Environment-Imperial College London, London, UK
| |
Collapse
|
36
|
Franklinos LHV, Jones KE, Redding DW, Abubakar I. The effect of global change on mosquito-borne disease. THE LANCET. INFECTIOUS DISEASES 2019; 19:e302-e312. [PMID: 31227327 DOI: 10.1016/s1473-3099(19)30161-6] [Citation(s) in RCA: 233] [Impact Index Per Article: 46.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 02/19/2019] [Accepted: 03/21/2019] [Indexed: 01/01/2023]
Abstract
More than 80% of the global population is at risk of a vector-borne disease, with mosquito-borne diseases being the largest contributor to human vector-borne disease burden. Although many global processes, such as land-use and socioeconomic change, are thought to affect mosquito-borne disease dynamics, research to date has strongly focused on the role of climate change. Here, we show, through a review of contemporary modelling studies, that no consensus on how future changes in climatic conditions will impact mosquito-borne diseases exists, possibly due to interacting effects of other global change processes, which are often excluded from analyses. We conclude that research should not focus solely on the role of climate change but instead consider growing evidence for additional factors that modulate disease risk. Furthermore, future research should adopt new technologies, including developments in remote sensing and system dynamics modelling techniques, to enable a better understanding and mitigation of mosquito-borne diseases in a changing world.
Collapse
Affiliation(s)
- Lydia H V Franklinos
- Centre for Biodiversity and Environment Research, Division of Biosciences, University College London, London, UK; Institute for Global Health, University College London, London, UK.
| | - Kate E Jones
- Centre for Biodiversity and Environment Research, Division of Biosciences, University College London, London, UK; Institute of Zoology, Zoological Society of London, London, UK
| | - David W Redding
- Centre for Biodiversity and Environment Research, Division of Biosciences, University College London, London, UK
| | - Ibrahim Abubakar
- Institute for Global Health, University College London, London, UK
| |
Collapse
|
37
|
Nguyen-Tien T, Lundkvist Å, Lindahl J. Urban transmission of mosquito-borne flaviviruses - a review of the risk for humans in Vietnam. Infect Ecol Epidemiol 2019; 9:1660129. [PMID: 31528273 PMCID: PMC6735309 DOI: 10.1080/20008686.2019.1660129] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 08/20/2019] [Indexed: 01/18/2023] Open
Abstract
Vietnam is a tropical country where mosquito-borne diseases are common. This review explores the transmission of mosquito-borne flaviviruses in urban areas of Vietnam. It concludes that urban transmission has mainly been studied for Dengue virus, and so far, much less for Japanese encephalitis virus. Dengue is the most common flavivirus in Vietnam. Due to fast urbanization and favorable climatic conditions, the viral transmission concentrates mainly to large cities with high population density including Ha Noi, Nha Trang and Ho Chi Minh. Human cases of Japanese encephalitis have been controlled by an expanded immunization program. However, this virus is still circulating throughout the country, also in cities due to the pig rearing practices in urban and peri-urban areas. Zika virus is an additional major concern because it has long circulated in the Northern area and is now increasingly diagnosed in urban areas of the Central, Central Highlands and Southern regions using the same mosquito vectors as Dengue virus. There was alarge outbreak of Zika disease from 2016 to early 2017, with most infections observed in Ho Chi Minh city, the largest town in Vietnam. Other flaviviruses circulate in Vietnam but have not been investigated in terms of urban transmission.
Collapse
Affiliation(s)
- Thang Nguyen-Tien
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
- International Livestock Research Institute, Hanoi, Vietnam
| | - Åke Lundkvist
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Johanna Lindahl
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
- International Livestock Research Institute, Hanoi, Vietnam
- Department of Clinical Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
| |
Collapse
|
38
|
Hills SL, Walter EB, Atmar RL, Fischer M. Japanese Encephalitis Vaccine: Recommendations of the Advisory Committee on Immunization Practices. MMWR Recomm Rep 2019; 68:1-33. [PMID: 31518342 PMCID: PMC6659993 DOI: 10.15585/mmwr.rr6802a1] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
This report updates the 2010 recommendations from the CDC Advisory Committee on Immunization Practices (ACIP) regarding prevention of Japanese encephalitis (JE) among U.S. travelers and laboratory workers (Fischer M, Lindsey N, Staples JE, Hills S. Japanese encephalitis vaccines: recommendations of the Advisory Committee on Immunization Practices (ACIP). MMWR Recomm Rep 2010;59[No. RR-1]). The report summarizes the epidemiology of JE, describes the JE vaccine that is licensed and available in the United States, and provides recommendations for its use among travelers and laboratory workers.JE virus, a mosquitoborne flavivirus, is the most common vaccine-preventable cause of encephalitis in Asia. JE occurs throughout most of Asia and parts of the western Pacific. Approximately 20%-30% of patients die, and 30%-50% of survivors have neurologic, cognitive, or behavioral sequelae. No antiviral treatment is available.Inactivated Vero cell culture-derived JE vaccine (Ixiaro [JE-VC]) is the only JE vaccine that is licensed and available in the United States. In 2009, the U.S. Food and Drug Administration (FDA) licensed JE-VC for use in persons aged ≥17 years; in 2013, licensure was extended to include children aged ≥2 months.Most travelers to countries where the disease is endemic are at very low risk for JE. However, some travelers are at increased risk for infection on the basis of their travel plans. Factors that increase the risk for JE virus exposure include 1) traveling for a longer period; 2) travel during the JE virus transmission season; 3) spending time in rural areas; 4) participating in extensive outdoor activities; and 5) staying in accommodations without air conditioning, screens, or bed nets. All travelers to countries where JE is endemic should be advised to take precautions to avoid mosquito bites to reduce the risk for JE and other vectorborne diseases. For some persons who might be at increased risk for JE, the vaccine can further reduce the risk for infection. The decision about whether to vaccinate should be individualized and consider the 1) risks related to the specific travel itinerary, 2) likelihood of future travel to countries where JE is endemic, 3) high morbidity and mortality of JE, 4) availability of an effective vaccine, 5) possibility (but low probability) of serious adverse events after vaccination, and 6) the traveler's personal perception and tolerance of risk.JE vaccine is recommended for persons moving to a JE-endemic country to take up residence, longer-term (e.g., ≥1 month) travelers to JE-endemic areas, and frequent travelers to JE-endemic areas. JE vaccine also should be considered for shorter-term (e.g., <1 month) travelers with an increased risk for JE on the basis of planned travel duration, season, location, activities, and accommodations and for travelers to JE-endemic areas who are uncertain about their specific travel duration, destinations, or activities. JE vaccine is not recommended for travelers with very low-risk itineraries, such as shorter-term travel limited to urban areas or outside of a well-defined JE virus transmission season.
Collapse
|
39
|
Water and health: From environmental pressures to integrated responses. Acta Trop 2019; 193:217-226. [PMID: 30857860 DOI: 10.1016/j.actatropica.2019.03.011] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 03/01/2019] [Accepted: 03/07/2019] [Indexed: 12/20/2022]
Abstract
The water-related exposome is a significant determinant of human health. The disease burden through water results from water-associated communicable and non-communicable diseases and is influenced by water pollution with chemicals, solid waste (mainly plastics), pathogens, insects and other disease vectors. This paper analyses a range of water practitioner-driven health issues, including infectious diseases and chemical intoxication, using the conceptual framework of Drivers, Pressures, State, Impacts, and Responses (DPSIR), complemented with a selective literature review. Pressures in the environment result in changes in the State of the water body: chemical pollution, microbiological contamination and the presence of vectors. These and other health hazards affect the State of human health. The resulting Impacts in an exposed population or affected ecosystem, in turn incite Responses. Pathways from Drivers to Impacts are quite divergent for chemical pollution, microbiological contamination and the spread of antimicrobial resistance, in vectors of disease and for the combined effects of plastics. Potential Responses from the water sector, however, show remarkable similarities. Integrated water management interventions have the potential to address Drivers, Pressures, Impacts, and State of several health issues at the same time. Systematic and integrated planning and management of water resources, with an eye for human health, could contribute to reducing or preventing negative health impacts and enhancing the health benefits.
Collapse
|
40
|
Samy AM, Alkishe AA, Thomas SM, Wang L, Zhang W. Mapping the potential distributions of etiological agent, vectors, and reservoirs of Japanese Encephalitis in Asia and Australia. Acta Trop 2018; 188:108-117. [PMID: 30118701 DOI: 10.1016/j.actatropica.2018.08.014] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 08/11/2018] [Accepted: 08/12/2018] [Indexed: 12/15/2022]
Abstract
Japanese encephalitis virus (JEV) is a substantial cause of viral encephalitis, morbidity, and mortality in South-East Asia and the Western Pacific. World Health Organization recognized Japanese Encephalitis (JE) as a public health priority in demands to initiate active vaccination programs. Recently, the geographic distribution of JEV has apparently expanded into other areas in the Pacific islands and northern Australia; however, major gaps exist in knowledge in regard to its current distribution. Here, we mapped the potential distribution of mosquito vectors of JEV (Culex tritaeniorhynchus, Cx. pseudovishnui, Cx. vishnui, Cx. fuscocephala, Cx. gelidus), and reservoirs (Egretta garzetta, E. intermedia, Nycticorax nycticorax) based on ecological niche modeling approach. Ecological niche models predicted all species to occur across Central, South and South East Asia; however, Cx. tritaeniorhynchus, E. garzetta, E. intermedia, and N. nycticorax had broader potential distributions extending west to parts of the Arabian Peninsula. All predictions were robust and significantly better than random (P < 0.001). We also tested the JEV prediction based on 4335 additional independent human case records collected by the Chinese Information System for Disease Control and Prevention (CISDCP); 4075 cases were successfully predicted by the model (P < 0.001). Finally, we tested the ecological niche similarity among JEV, vector, and reservoir species and could not reject any of the null hypotheses of niche similarity in all combination pairs.
Collapse
|
41
|
Liu B, Gao X, Ma J, Jiao Z, Xiao J, Wang H. Influence of Host and Environmental Factors on the Distribution of the Japanese Encephalitis Vector Culex tritaeniorhynchus in China. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2018; 15:ijerph15091848. [PMID: 30150565 PMCID: PMC6165309 DOI: 10.3390/ijerph15091848] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 08/23/2018] [Accepted: 08/25/2018] [Indexed: 12/16/2022]
Abstract
Culex tritaeniorhynchus is an important vector that transmits a variety of human and animal diseases. Japanese encephalitis (JE), an endemic disease in the Asia-Pacific region, is primarily transmitted by Cx. tritaeniorhynchus. Insufficient monitoring of vector mosquitoes has led to a poor understanding of the distribution of Cx. tritaeniorhynchus in China. To delineate the habitat of Cx. tritaeniorhynchus and any host and environmental factors that affect its distribution, we used a maximum entropy modeling method to predict its distribution in China. Our models provided high resolution predictions on the potential distribution of Cx. tritaeniorhynchus. The predicted suitable habitats of the JE vector were correlated with areas of high JE incidence in parts of China. Factors driving the distribution of Cx. tritaeniorhynchus in China were also revealed by our models. Furthermore, human population density and the maximum NDVI were the most important predictors in our models. Bioclimate factors and elevation also significantly impacted the distribution of Cx. tritaeniorhynchus. Our findings may serve as a reference for vector and disease control.
Collapse
Affiliation(s)
- Boyang Liu
- Department of Veterinary Surgery, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China.
| | - Xiang Gao
- Department of Veterinary Surgery, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China.
| | - Jun Ma
- Department of Veterinary Surgery, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China.
| | - Zhihui Jiao
- Department of Veterinary Surgery, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China.
| | - Jianhua Xiao
- Department of Veterinary Surgery, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China.
| | - Hongbin Wang
- Department of Veterinary Surgery, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
42
|
Di Francesco J, Choeung R, Peng B, Pring L, Pang S, Duboz R, Ong S, Sorn S, Tarantola A, Fontenille D, Duong V, Dussart P, Chevalier V, Cappelle J. Comparison of the dynamics of Japanese encephalitis virus circulation in sentinel pigs between a rural and a peri-urban setting in Cambodia. PLoS Negl Trop Dis 2018; 12:e0006644. [PMID: 30138381 PMCID: PMC6107123 DOI: 10.1371/journal.pntd.0006644] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Accepted: 06/28/2018] [Indexed: 11/18/2022] Open
Abstract
Japanese encephalitis is mainly considered a rural disease, but there is growing evidence of a peri-urban and urban transmission in several countries, including Cambodia. We, therefore, compared the epidemiologic dynamic of Japanese encephalitis between a rural and a peri-urban setting in Cambodia. We monitored two cohorts of 15 pigs and determined the force of infection-rate at which seronegative pigs become positive-in two study farms located in a peri-urban and rural area, respectively. We also studied the mosquito abundance and diversity in proximity of the pigs, as well as the host densities in both areas. All the pigs seroconverted before the age of 6 months. The force of infection was 0.061 per day (95% confidence interval = 0.034-0.098) in the peri-urban cohort and 0.069 per day (95% confidence interval = 0.047-0.099) in the rural cohort. Several differences in the epidemiologic dynamic of Japanese encephalitis between both study sites were highlighted. The later virus amplification in the rural cohort may be linked to the later waning of maternal antibodies, but also to the higher pig density in direct proximity of the studied pigs, which could have led to a dilution of mosquito bites at the farm level. The force of infection was almost identical in both the peri-urban and the rural farms studied, which shifts the classic epidemiologic cycle of the virus. This study is a first step in improving our understanding of Japanese encephalitis virus ecology in different environments with distinct landscapes, human and animal densities.
Collapse
Affiliation(s)
- Juliette Di Francesco
- Institut Pasteur du Cambodge, Epidemiology and Public Health Unit, Phnom Penh, Cambodia
- University of Calgary, Faculty of Veterinary Medicine, Department of Ecosystem and Public Health, Calgary, Canada
- * E-mail:
| | - Rithy Choeung
- Institut Pasteur du Cambodge, Virology Unit, Phnom Penh, Cambodia
| | - Borin Peng
- Institut Pasteur du Cambodge, Virology Unit, Phnom Penh, Cambodia
| | - Long Pring
- Royal University of Agriculture, Phnom Penh, Cambodia
| | - Senglong Pang
- Institut Pasteur du Cambodge, Virology Unit, Phnom Penh, Cambodia
| | - Raphaël Duboz
- Institut Pasteur du Cambodge, Epidemiology and Public Health Unit, Phnom Penh, Cambodia
- UMR ASTRE, CIRAD, INRA, Université de Montpellier, Montpellier, France
| | - Sivuth Ong
- Institut Pasteur du Cambodge, Virology Unit, Phnom Penh, Cambodia
| | - San Sorn
- Ministry of Agriculture, Forestry, and Fisheries, Department of Animal Health and Production, Phnom Penh, Cambodia
| | - Arnaud Tarantola
- Institut Pasteur du Cambodge, Epidemiology and Public Health Unit, Phnom Penh, Cambodia
| | | | - Veasna Duong
- Institut Pasteur du Cambodge, Virology Unit, Phnom Penh, Cambodia
| | - Philippe Dussart
- Institut Pasteur du Cambodge, Virology Unit, Phnom Penh, Cambodia
| | - Véronique Chevalier
- Institut Pasteur du Cambodge, Epidemiology and Public Health Unit, Phnom Penh, Cambodia
- UMR ASTRE, CIRAD, INRA, Université de Montpellier, Montpellier, France
| | - Julien Cappelle
- Institut Pasteur du Cambodge, Epidemiology and Public Health Unit, Phnom Penh, Cambodia
- UMR ASTRE, CIRAD, INRA, Université de Montpellier, Montpellier, France
- UMR EpiA, VetAgro Sup, INRA, Marcy l’étoile, France
| |
Collapse
|
43
|
Pearce JC, Learoyd TP, Langendorf BJ, Logan JG. Japanese encephalitis: the vectors, ecology and potential for expansion. J Travel Med 2018; 25:S16-S26. [PMID: 29718435 DOI: 10.1093/jtm/tay009] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Accepted: 02/20/2018] [Indexed: 01/09/2023]
Abstract
BACKGROUND Japanese encephalitis (JE) is a viral disease predominantly located in South East Asia and commonly associated with transmission between amplifying hosts, such as pigs, and the mosquito Culex tritaeniorhynchus, where human infection represents a dead end in the life cycle of the virus. The expansion of JE beyond an Asiatic confine is dependent on a multitude of complex factors that stem back to genetic subtype variation. A complex interplay of the genetic variation and vector competencies combine with variables such as geography, climate change and urbanization. METHODS Our understanding of JE is still at an early stage with long-term longitudinal vector surveillance necessary to better understand the dynamics of JE transmission and to characterize the role of potential secondary vectors such as Cx. pipiens and Cx. bitaeniorhynchus. The authors review the vectors indicated in transmission and the ecological, genetic and anthropological factors that affect the disease's range and epidemiology. CONCLUSION Monitoring for the presence of JE virus in mosquitoes in general can be used to estimate levels of potential JE exposure, intensity of viral activity and genetic variation of JEV throughout surveyed areas. Increased surveillance and diagnosis of viral encephalitis caused by genotype 5 JE virus is required in particular, with the expansion in epidemiology and disease prevalence in new geographic areas an issue of great concern. Additional studies that measure the impact of vectors (e.g. bionomics and vector competence) in the transmission of JEV and that incorporate environmental factors (e.g. weekly rainfall) are needed to define the roles of Culex species in the viral pathogenesis during outbreak and non-outbreak years.
Collapse
Affiliation(s)
- James C Pearce
- ARCTEC, Keppel Street, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, UK
| | - Tristan P Learoyd
- Valneva UK Ltd, Centaur House, Ancells Business Park, Ancells Road, Fleet, Hampshire GU51 2UJ, UK
| | - Benjamin J Langendorf
- ARCTEC, Keppel Street, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, UK
| | - James G Logan
- ARCTEC, Keppel Street, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, UK.,Department of Disease Control, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, UK
| |
Collapse
|
44
|
Kovach TJ, Kilpatrick AM. Increased Human Incidence of West Nile Virus Disease near Rice Fields in California but Not in Southern United States. Am J Trop Med Hyg 2018; 99:222-228. [PMID: 29714160 DOI: 10.4269/ajtmh.18-0120] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Anthropogenic land use change, including agriculture, can alter mosquito larval habitat quality, increase mosquito abundance, and increase incidence of vector-borne disease. Rice is a staple food crop for more than half of the world's population, with ∼1% of global production occurring within the United States (US). Flooded rice fields provide enormous areas of larval habitat for mosquito species and may be hotspots for mosquito-borne pathogens, including West Nile virus (WNV). West Nile virus was introduced into the Americas in 1999 and causes yearly epidemics in the US with an average of approximately 1,400 neuroinvasive cases and 130 deaths per year. We examined correlations between rice cultivation and WNV disease incidence in rice-growing regions within the US. Incidence of WNV disease increased with the fraction of each county under rice cultivation in California but not in the southern US. We show that this is likely due to regional variation in the mosquitoes transmitting WNV. Culex tarsalis was an important vector of WNV in California, and its abundance increased with rice cultivation, whereas in rice-growing areas of the southern US, the dominant WNV vector was Culex quinquefasciatus, which rarely breeds in rice fields. These results illustrate how cultivation of particular crops can increase disease risk and how spatial variation in vector ecology can alter the relationship between land cover and disease.
Collapse
Affiliation(s)
- Tony J Kovach
- Department of Ecology and Evolutionary Biology, University of California Santa Cruz, Santa Cruz, California
| | - A Marm Kilpatrick
- Department of Ecology and Evolutionary Biology, University of California Santa Cruz, Santa Cruz, California
| |
Collapse
|
45
|
Kakkar M, Chaturvedi S, Saxena VK, Dhole TN, Kumar A, Rogawski ET, Abbas S, Venkataramanan VV, Chatterjee P. Identifying sources, pathways and risk drivers in ecosystems of Japanese Encephalitis in an epidemic-prone north Indian district. PLoS One 2017; 12:e0175745. [PMID: 28463989 PMCID: PMC5412994 DOI: 10.1371/journal.pone.0175745] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Accepted: 03/30/2017] [Indexed: 11/23/2022] Open
Abstract
Japanese Encephalitis (JE) has caused repeated outbreaks in endemic pockets of India. This study was conducted in Kushinagar, a highly endemic district, to understand the human-animal-ecosystem interactions, and the drivers that influence disease transmission. Utilizing the ecosystems approach, a cross-sectional, descriptive study, employing mixed methods design was employed. Four villages (two with pig-rearing and two without) were randomly selected from a high, a medium and a low burden (based on case counts) block of Kushinagar. Children, pigs and vectors were sampled from these villages. A qualitative arm was incorporated to explain the findings from the quantitative surveys. All human serum samples were screened for JE-specific IgM using MAC ELISA and negative samples for JE RNA by rRT-PCR in peripheral blood mononuclear cells. In pigs, IgG ELISA and rRT-PCR for viral RNA were used. Of the 242 children tested, 24 tested positive by either rRT-PCR or MAC ELISA; in pigs, 38 out of the 51 pigs were positive. Of the known vectors, Culex vishnui was most commonly isolated across all biotopes. Analysis of 15 blood meals revealed human blood in 10 samples. Univariable analysis showed that gender, religion, lack of indoor residual spraying of insecticides in the past year, indoor vector density (all species), and not being vaccinated against JE in children were significantly associated with JE positivity. In multivariate analysis, only male gender remained as a significant risk factor. Based on previous estimates of symptomatic: asymptomatic cases of JE, we estimate that there should have been 618 cases from Kushinagar, although only 139 were reported. Vaccination of children and vector control measures emerged as major control activities; they had very poor coverage in the studied villages. In addition, lack of awareness about the cause of JE, lack of faith in the conventional medical healthcare system and multiple referral levels causing delay in diagnosis and treatment emerged as factors likely to result in adverse clinical outcomes.
Collapse
Affiliation(s)
- Manish Kakkar
- Public Health Foundation of India, Gurgaon, Haryana, India
| | - Sanjay Chaturvedi
- Department of Community Medicine, University College of Medical Sciences, Delhi, India
| | | | - Tapan N. Dhole
- Department of Microbiology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, Uttar Pradesh, India
| | - Ashok Kumar
- Department of Veterinary Public Health, Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh, India
| | | | - Syed Abbas
- Public Health Foundation of India, Gurgaon, Haryana, India
| | | | | |
Collapse
|
46
|
Longbottom J, Browne AJ, Pigott DM, Sinka ME, Golding N, Hay SI, Moyes CL, Shearer FM. Mapping the spatial distribution of the Japanese encephalitis vector, Culex tritaeniorhynchus Giles, 1901 (Diptera: Culicidae) within areas of Japanese encephalitis risk. Parasit Vectors 2017; 10:148. [PMID: 28302156 PMCID: PMC5356256 DOI: 10.1186/s13071-017-2086-8] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 03/10/2017] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Japanese encephalitis (JE) is one of the most significant aetiological agents of viral encephalitis in Asia. This medically important arbovirus is primarily spread from vertebrate hosts to humans by the mosquito vector Culex tritaeniorhynchus. Knowledge of the contemporary distribution of this vector species is lacking, and efforts to define areas of disease risk greatly depend on a thorough understanding of the variation in this mosquito's geographical distribution. RESULTS We assembled a contemporary database of Cx. tritaeniorhynchus presence records within Japanese encephalitis risk areas from formal literature and other relevant resources, resulting in 1,045 geo-referenced, spatially and temporally unique presence records spanning from 1928 to 2014 (71.9% of records obtained between 2001 and 2014). These presence data were combined with a background dataset capturing sample bias in our presence dataset, along with environmental and socio-economic covariates, to inform a boosted regression tree model predicting environmental suitability for Cx. tritaeniorhynchus at each 5 × 5 km gridded cell within areas of JE risk. The resulting fine-scale map highlights areas of high environmental suitability for this species across India, Nepal and China that coincide with areas of high JE incidence, emphasising the role of this vector in disease transmission and the utility of the map generated. CONCLUSIONS Our map contributes towards efforts determining the spatial heterogeneity in Cx. tritaeniorhynchus distribution within the limits of JE transmission. Specifically, this map can be used to inform vector control programs and can be used to identify key areas where the prevention of Cx. tritaeniorhynchus establishment should be a priority.
Collapse
Affiliation(s)
- Joshua Longbottom
- Spatial Ecology & Epidemiology Group, Oxford Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford, UK
| | - Annie J. Browne
- Spatial Ecology & Epidemiology Group, Oxford Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford, UK
| | - David M. Pigott
- Institute for Health Metrics and Evaluation, University of Washington, Seattle, WA USA
| | - Marianne E. Sinka
- Oxford Long Term Ecology Laboratory, Department of Zoology, University of Oxford, Oxford, UK
| | - Nick Golding
- Quantitative & Applied Ecology Group, School of BioSciences, University of Melbourne, Parkville, VIC Australia
| | - Simon I. Hay
- Institute for Health Metrics and Evaluation, University of Washington, Seattle, WA USA
- Oxford Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford, UK
| | - Catherine L. Moyes
- Spatial Ecology & Epidemiology Group, Oxford Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford, UK
| | - Freya M. Shearer
- Spatial Ecology & Epidemiology Group, Oxford Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford, UK
| |
Collapse
|
47
|
Govindarajan M, Rajeswary M, Veerakumar K, Muthukumaran U, Hoti SL, Mehlhorn H, Barnard DR, Benelli G. Novel synthesis of silver nanoparticles using Bauhinia variegata: a recent eco-friendly approach for mosquito control. Parasitol Res 2016; 115:723-33. [PMID: 26490683 DOI: 10.1007/s00436-015-4794-3] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2015] [Accepted: 10/12/2015] [Indexed: 11/30/2022]
Abstract
Mosquito vectors are responsible for transmitting diseases such as malaria, dengue, chikungunya, Japanese encephalitis, dengue, and lymphatic filariasis. The use of synthetic insecticides to control mosquito vectors has caused physiological resistance and adverse environmental effects, in addition to high operational cost. Biosynthesis of silver nanoparticles has been proposed as an alternative to traditional control tools. In the present study, green synthesis of silver nanoparticles (AgNPs) using aqueous leaf extract of Bauhinia variegata by reduction of Ag(+) ions from silver nitrate solution has been investigated. The bioreduced silver nanoparticles were characterized by UV–visible spectrophotometry, Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy-dispersive X-ray analysis (EDX), and X-ray diffraction analysis (XRD). Leaf extract and synthesized AgNPs were evaluated against the larvae of Anopheles subpictus, Aedes albopictus, and Culex tritaeniorhynchus. Compared to aqueous extract, synthesized AgNPs showed higher toxicity against An. subpictus, Ae. albopictus, and Cx. tritaeniorhynchus with LC50 and LC90 values of 41.96, 46.16, and 51.92 μg/mL and 82.93, 89.42, and 97.12 μg/mL, respectively. Overall, this study proves that B. variegata is a potential bioresource for stable, reproducible nanoparticle synthesis and may be proposed as an efficient mosquito control agent.
Collapse
|
48
|
Vincent S, Kovendan K, Chandramohan B, Kamalakannan S, Kumar PM, Vasugi C, Praseeja C, Subramaniam J, Govindarajan M, Murugan K, Benelli G. Swift Fabrication of Silver Nanoparticles Using Bougainvillea glabra: Potential Against the Japanese Encephalitis Vector, Culex tritaeniorhynchus Giles (Diptera: Culicidae). J CLUST SCI 2016. [DOI: 10.1007/s10876-016-1038-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
49
|
Baylis M, Barker CM, Caminade C, Joshi BR, Pant GR, Rayamajhi A, Reisen WK, Impoinvil DE. Emergence or improved detection of Japanese encephalitis virus in the Himalayan highlands? Trans R Soc Trop Med Hyg 2016; 110:209-11. [PMID: 26956778 PMCID: PMC4830403 DOI: 10.1093/trstmh/trw012] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 01/26/2016] [Indexed: 01/17/2023] Open
Abstract
The emergence of Japanese encephalitis virus (JEV) in the Himalayan highlands is of significant veterinary and public health concern and may be related to climate warming and anthropogenic landscape change, or simply improved surveillance. To investigate this phenomenon, a One Health approach focusing on the phylogeography of JEV, the distribution and abundance of the mosquito vectors, and seroprevalence in humans and animal reservoirs would be useful to understand the epidemiology of Japanese encephalitis in highland areas.
Collapse
Affiliation(s)
- Matthew Baylis
- Institute of Infection and global Health, University of Liverpool, Liverpool, UK Health Protection Research Unit in Emerging and Zoonotic Infections, University of Liverpool, UK
| | - Christopher M Barker
- Davis Arbovirus Research and Training, Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California, Davis, CA 95616, USA
| | - Cyril Caminade
- Institute of Infection and global Health, University of Liverpool, Liverpool, UK Health Protection Research Unit in Emerging and Zoonotic Infections, University of Liverpool, UK
| | - Bhoj R Joshi
- Centre for Environmental and Agricultural Policy Research, Extension and Development (CEAPRED), Nayabato, Lalitpur, Nepal
| | - Ganesh R Pant
- Department of Animal Science, Veterinary Science and Fisheries, Agriculture and Forestry University, Chitwan, Nepal
| | - Ajit Rayamajhi
- Institute of Infection and global Health, University of Liverpool, Liverpool, UK Department of Pediatrics, National Academy of Medical Sciences, Kanti Children's Hospital, Maharajgunj, Kathmandu, Nepal
| | - William K Reisen
- Davis Arbovirus Research and Training, Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California, Davis, CA 95616, USA
| | - Daniel E Impoinvil
- Institute of Infection and global Health, University of Liverpool, Liverpool, UK
| |
Collapse
|
50
|
Nain M, Abdin MZ, Kalia M, Vrati S. Japanese encephalitis virus invasion of cell: allies and alleys. Rev Med Virol 2015; 26:129-41. [PMID: 26695690 DOI: 10.1002/rmv.1868] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Revised: 11/18/2015] [Accepted: 12/02/2015] [Indexed: 12/19/2022]
Abstract
The mosquito-borne flavivirus, Japanese encephalitis virus (JEV), is the leading cause of virus-induced encephalitis globally and a major public health concern of several countries in Southeast Asia, with the potential to become a global pathogen. The virus is neurotropic, and the disease ranges from mild fever to severe hemorrhagic and encephalitic manifestations and death. The early steps of the virus life cycle, binding, and entry into the cell are crucial determinants of infection and are potential targets for the development of antiviral therapies. JEV can infect multiple cell types; however, the key receptor molecule(s) still remains elusive. JEV also has the capacity to utilize multiple endocytic pathways for entry into cells of different lineages. This review not only gives a comprehensive update on what is known about the virus attachment and receptor system (allies) and the endocytic pathways (alleys) exploited by the virus to gain entry into the cell and establish infection but also discusses crucial unresolved issues. We also highlight common themes and key differences between JEV and other flaviviruses in these contexts.
Collapse
Affiliation(s)
- Minu Nain
- Vaccine and Infectious Disease Research Center, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, India.,Department of Biotechnology, Faculty of Science, Jamia Hamdard, New Delhi, India
| | - Malik Z Abdin
- Department of Biotechnology, Faculty of Science, Jamia Hamdard, New Delhi, India
| | - Manjula Kalia
- Vaccine and Infectious Disease Research Center, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, India
| | - Sudhanshu Vrati
- Vaccine and Infectious Disease Research Center, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, India
| |
Collapse
|