1
|
Luo L, Li J, Shen X, Li X, Peng C, Li S, Kuai R. A Bioinspired Nanovaccine for Personalized Cancer Immunotherapy. NANO LETTERS 2024; 24:15758-15766. [PMID: 39585971 DOI: 10.1021/acs.nanolett.4c04557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2024]
Abstract
Poly I:C (pIC) can act on endosomal and cytosolic pathogen recognition receptors to enhance T cell immunity. However, the poor cytosolic delivery of pIC and lack of facile methods for codelivery with antigens limit its efficacy. Inspired by the structure of a virus, we developed a liponanogel (LNG) consisting of a nanogel core and lipid shell to address these challenges. An LNG-based vaccine increases the endosomal membrane permeability in a nanogel core-dependent manner, thus enhancing cytosolic sensing of pIC. LNG induces 44.9-fold stronger CD8+ T cell responses than soluble pIC or Hiltonol adjuvanted vaccines and even induces stronger CD8+ T cell responses than state-of-the-art lipid nanoparticle adjuvanted vaccines. Remarkably, the LNG vaccine regresses 100% TC1 tumors and even regresses 60% aggressive B16F10 tumors upon combination with αPD-L1. Our study provides a safe and effective strategy for enhancing T cell immunity and may inspire new approaches for cancer immunotherapy.
Collapse
Affiliation(s)
- Lanqing Luo
- School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China
- Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| | - Junyao Li
- School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China
- Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| | - Xueying Shen
- School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China
- Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| | - Xinyan Li
- School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China
- Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| | - Cheng Peng
- Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
- School of Life Sciences, Tsinghua University, Beijing 100084, China
- Frontier Research Center for Biological Structure & State Key Laboratory of Membrane Biology, Beijing 100084, China
| | - Sai Li
- Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
- School of Life Sciences, Tsinghua University, Beijing 100084, China
- Frontier Research Center for Biological Structure & State Key Laboratory of Membrane Biology, Beijing 100084, China
| | - Rui Kuai
- School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China
- Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| |
Collapse
|
2
|
Xu P, Zhu Y, Yang R, Zhao Q, Zhao X, Wang X, Zhang T, Bao Y, Shi W, Gu P. Poria cocos polysaccharide-honeycomb manganese oxide nanoparticles as a vaccine adjuvant to induce potent immune responses. Int J Biol Macromol 2024; 286:138396. [PMID: 39643183 DOI: 10.1016/j.ijbiomac.2024.138396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 11/18/2024] [Accepted: 12/03/2024] [Indexed: 12/09/2024]
Abstract
As indispensable components of vaccines, adjuvants play a critical role in inducing potent immune responses. In our previous study, we isolated and purified a water-soluble polysaccharide from Poria cocos (PCP), and found that the PCP had the potential to act as an immunostimulant to induce a balanced Th1/Th2 immune response. However, the PCP showed effective immunomodulatory activity only at high concentrations. Herein, we prepared a novel and biodegradable adjuvant system (PCP-hMnOx), in which the PCP was loaded onto the honeycomb manganese oxide nanoparticles (hMnOx). The developed PCP-hMnOx adjuvant system not only acted as an immunostimulant, but also as a delivery system to enhance antigen uptake by antigen-presenting cells (APCs), stimulate the activation of APCs and facilitate the formation of germinal center in draining lymph nodes. Furthermore, the PCP-hMnOx adjuvant system facilitated the antibody production, the activation of CD4+ and CD8+ T cells, and the generation of IFN-γ, thus inducing a robust and durable immune response with a balanced Th1/Th2 response in comparison to commercial alum adjuvant. Our results demonstrated that the PCP-hMnOx adjuvant system improved the immunomodulatory activity of the PCP, and had the potential to provide a simple, safe, and efficient nanoparticles-based strategy to induce potent immune responses.
Collapse
Affiliation(s)
- Panpan Xu
- College of Traditional Chinese Veterinary Medicine, Hebei Agricultural University, Baoding 071001, China
| | - Yixuan Zhu
- College of Traditional Chinese Veterinary Medicine, Hebei Agricultural University, Baoding 071001, China
| | - Runyu Yang
- College of Traditional Chinese Veterinary Medicine, Hebei Agricultural University, Baoding 071001, China
| | - Qi Zhao
- College of Traditional Chinese Veterinary Medicine, Hebei Agricultural University, Baoding 071001, China
| | - Xinghua Zhao
- College of Traditional Chinese Veterinary Medicine, Hebei Agricultural University, Baoding 071001, China
| | - Xiao Wang
- College of Traditional Chinese Veterinary Medicine, Hebei Agricultural University, Baoding 071001, China
| | - Tie Zhang
- College of Traditional Chinese Veterinary Medicine, Hebei Agricultural University, Baoding 071001, China
| | - Yongzhan Bao
- College of Traditional Chinese Veterinary Medicine, Hebei Agricultural University, Baoding 071001, China
| | - Wanyu Shi
- College of Traditional Chinese Veterinary Medicine, Hebei Agricultural University, Baoding 071001, China.
| | - Pengfei Gu
- College of Traditional Chinese Veterinary Medicine, Hebei Agricultural University, Baoding 071001, China.
| |
Collapse
|
3
|
Ren D, Xiong S, Ren Y, Yang X, Zhao X, Jin J, Xu M, Liang T, Guo L, Weng L. Advances in therapeutic cancer vaccines: Harnessing immune adjuvants for enhanced efficacy and future perspectives. Comput Struct Biotechnol J 2024; 23:1833-1843. [PMID: 38707540 PMCID: PMC11066472 DOI: 10.1016/j.csbj.2024.04.054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/19/2024] [Accepted: 04/20/2024] [Indexed: 05/07/2024] Open
Abstract
Preventive cancer vaccines are highly effective in preventing viral infection-induced cancer, but advances in therapeutic cancer vaccines with a focus on eliminating cancer cells through immunotherapy are limited. To develop therapeutic cancer vaccines, the integration of optimal adjuvants is a potential strategy to enhance or complement existing therapeutic approaches. However, conventional adjuvants do not satisfy the criteria of clinical trials for therapeutic cancer vaccines. To improve the effects of adjuvants in therapeutic cancer vaccines, effective vaccination strategies must be formulated and novel adjuvants must be identified. This review offers an overview of the current advancements in therapeutic cancer vaccines and highlights in situ vaccination approaches that can be synergistically combined with other immunotherapies by harnessing the adjuvant effects. Additionally, the refinement of adjuvant systems using cutting-edge technologies and the elucidation of molecular mechanisms underlying immunogenic cell death to facilitate the development of innovative adjuvants have been discussed.
Collapse
Affiliation(s)
- Dekang Ren
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Shizheng Xiong
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Yujie Ren
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Xueni Yang
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Xinmiao Zhao
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Jiaming Jin
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Miaomiao Xu
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Tingming Liang
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, School of Life Science, Nanjing Normal University, Nanjing 210023, China
| | - Li Guo
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Lixing Weng
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| |
Collapse
|
4
|
Luo J, Mo F, Zhang Z, Hong W, Lan T, Cheng Y, Fang C, Bi Z, Qin F, Yang J, Zhang Z, Li X, Que H, Wang J, Chen S, Wu Y, Yang L, Li J, Wang W, Chen C, Wei X. Engineered mitochondria exert potent antitumor immunity as a cancer vaccine platform. Cell Mol Immunol 2024; 21:1251-1265. [PMID: 39164536 PMCID: PMC11528120 DOI: 10.1038/s41423-024-01203-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 07/03/2024] [Indexed: 08/22/2024] Open
Abstract
The preferable antigen delivery profile accompanied by sufficient adjuvants favors vaccine efficiency. Mitochondria, which feature prokaryotic characteristics and contain various damage-associated molecular patterns (DAMPs), are easily taken up by phagocytes and simultaneously activate innate immunity. In the current study, we established a mitochondria engineering platform for generating antigen-enriched mitochondria as cancer vaccine. Ovalbumin (OVA) and tyrosinase-related protein 2 (TRP2) were used as model antigens to synthesize fusion proteins with mitochondria-localized signal peptides. The lentiviral infection system was then employed to produce mitochondrial vaccines containing either OVA or TRP2. Engineered OVA- and TRP2-containing mitochondria (OVA-MITO and TRP2-MITO) were extracted and evaluated as potential cancer vaccines. Impressively, the engineered mitochondria vaccine demonstrated efficient antitumor effects when used as both prophylactic and therapeutic vaccines in murine tumor models. Mechanistically, OVA-MITO and TRP2-MITO potently recruited and activated dendritic cells (DCs) and induced a tumor-specific cell-mediated immunity. Moreover, DC activation by mitochondria vaccine critically involves TLR2 pathway and its lipid agonist, namely, cardiolipin derived from the mitochondrial membrane. The results demonstrated that engineered mitochondria are natively well-orchestrated carriers full of immune stimulants for antigen delivery, which could preferably target local dendritic cells and exert strong adaptive cellular immunity. This proof-of-concept study established a universal platform for vaccine construction with engineered mitochondria bearing alterable antigens for cancers as well as other diseases.
Collapse
Affiliation(s)
- Jingwen Luo
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Fei Mo
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Department of Medical Oncology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Zhe Zhang
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Weiqi Hong
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Tianxia Lan
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yuan Cheng
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Chunju Fang
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Zhenfei Bi
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Furong Qin
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jingyun Yang
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Ziqi Zhang
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xue Li
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Haiying Que
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jiayu Wang
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Siyuan Chen
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yiming Wu
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Li Yang
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jiong Li
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Wei Wang
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Chong Chen
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xiawei Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
5
|
Liu X, Min Q, Li Y, Chen S. Enhanced Cellular Immunity for Hepatitis B Virus Vaccine: A Novel Polyinosinic-Polycytidylic Acid-Incorporated Adjuvant Leveraging Cytoplasmic Retinoic Acid-Inducible Gene-Like Receptor Activation and Increased Antigen Uptake. Biomater Res 2024; 28:0096. [PMID: 39469105 PMCID: PMC11513446 DOI: 10.34133/bmr.0096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 10/02/2024] [Accepted: 10/08/2024] [Indexed: 10/30/2024] Open
Abstract
Conventional aluminum adjuvants exhibit limited cellular immunity. Polyinosinic-polycytidylic acid (poly I:C) activates cytoplasmic retinoic acid-inducible gene-like receptor (RLR), triggering strong T cell activation and cellular responses. However, when applied as an adjuvant, its limited endocytosis and restricted cytoplasmic delivery diminish its effectiveness and increase its toxicity. Hybrid polymer-lipid nanoparticle (PLNP) possesses numerous benefits such as good stability, reduced drug leakage, simple fabrication, easy property modulation, and excellent reproducibility compared to the lipid nanoparticle or the polymeric vector. Here, we developed a novel cationic polymer-lipid hybrid adjuvant capable of incorporating poly I:C to enhance cellular immunity. The hepatitis B surface antigen (HBsAg) was immobilized onto poly I:C-incorprated PLNP (PPLNP) via electrostatic interactions, forming the HBsAg/PPLNP vaccine formulation. The PPLNP adjuvant largely enhanced the cellular endocytosis and cytoplasmic transport of poly I:C, activating RLR followed by promoting type I interferon (IFN) secretion. Meanwhile, PPLNP obviously enhanced the antigen uptake, prolonged antigen retention at the site of administration, and facilitated enhanced transport of antigens to lymph nodes. The HBsAg/PPLNP nanovaccine led to amplified concentrations of antigen-specific immunoglobulin G (IgG), IFN-γ, granzyme B, and an enhanced IgG2a/IgG1 ratio, alongside the FasL+/CD8+ T cell activation, favoring a T helper 1 (TH1)-driven immune response. PPLNP, distinguished by its biocompatibility, ease of fabrication, and effectiveness in augmenting cellular immunity, holds significant promise as a new adjuvant.
Collapse
Affiliation(s)
- Xuhan Liu
- Guangdong Provincial Key Laboratory of Chinese Medicine Ingredients and Gut Microbiomics, Institute for Inheritance-Based Innovation of Chinese Medicine, Marshall Laboratory of Biomedical Engineering, School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China
| | - Qiuxia Min
- Department of Pharmacy, First People’s Hospital of Yunnan Province,
Kunming University of Science and Technology, Kunming, 650034 Yunnan, China
| | - Yihui Li
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Siyuan Chen
- Research Institute for Biomaterials, Tech Institute for Advanced Materials, Bioinspired Biomedical Materials & Devices Center, College of Materials Science and Engineering, Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites, Suqian Advanced Materials Industry Technology Innovation Center, Nanjing Tech University, Nanjing 211816 China
| |
Collapse
|
6
|
Liao L, Wang Q, Feng Y, Li G, Lai R, Jameela F, Zhan X, Liu B. Advances and challenges in the development of periodontitis vaccines: A comprehensive review. Int Immunopharmacol 2024; 140:112650. [PMID: 39079346 DOI: 10.1016/j.intimp.2024.112650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 06/28/2024] [Accepted: 07/05/2024] [Indexed: 09/01/2024]
Abstract
Periodontitis is a prevalent polymicrobial disease. It damages soft tissues and alveolar bone, and causes a significant public-health burden. Development of an advanced therapeutic approach and exploration of vaccines against periodontitis hold promise as potential treatment avenues. Clinical trials for a periodontitis vaccine are lacking. Therefore, it is crucial to address the urgent need for developing strategies to implement vaccines at the primary level of prevention in public health. A deep understanding of the principles and mechanisms of action of vaccines plays a crucial role in the successful development of vaccines and their clinical translation. This review aims to provide a comprehensive summary of potential directions for the development of highly efficacious periodontitis vaccines. In addition, we address the limitations of these endeavors and explore future possibilities for the development of an efficacious vaccine against periodontitis.
Collapse
Affiliation(s)
- Lingzi Liao
- Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing, School and Hospital of Stomatology, Lanzhou University, Lanzhou, China
| | - Qi Wang
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, College of Chemistry and Chemical Engineering, Linyi University, Linyi, China
| | - Yujia Feng
- School of Stomatology, Jinan University, Guangzhou, China
| | - Guojiang Li
- School of Stomatology, Jinan University, Guangzhou, China
| | - Renfa Lai
- Hospital of Stomatology, the First Affiliated Hospital of Jinan University, Guangzhou, China; School of Stomatology, Jinan University, Guangzhou, China
| | - Fatima Jameela
- Modern American Dental Clinic, West Warren Avenue, MI, USA
| | - Xiaozhen Zhan
- Hospital of Stomatology, the First Affiliated Hospital of Jinan University, Guangzhou, China; School of Stomatology, Jinan University, Guangzhou, China.
| | - Bin Liu
- Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing, School and Hospital of Stomatology, Lanzhou University, Lanzhou, China.
| |
Collapse
|
7
|
Li X, Wu C, Li J, Yu J, Yang X, Yu L, Wang C, Kuai R. An immunostimulatory liponanogel reveals immune activation-enhanced drug delivery and therapeutic efficacy in cancer. J Control Release 2024; 376:167-183. [PMID: 39384154 DOI: 10.1016/j.jconrel.2024.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 09/28/2024] [Accepted: 10/03/2024] [Indexed: 10/11/2024]
Abstract
The clinical use of immunostimulatory polyinosinic:polycytidylic acid (pIC) for cancer therapy has been notably limited by its low tumor accumulation and poor cytosolic delivery to activate innate immune sensors. Here, we report a liponanogel (LNG)-based platform to address these challenges. The immunostimulatory LNG consists of an ionizable lipid shell coating a nanogel made of hyaluronic acid (HA), Mn2+ and pIC, which is denoted as LNG-Mn-pIC (LMP). The protonation of internal HA within acidic endosomes increases the endosomal membrane permeability and facilitates the cytosolic delivery of pIC. Moreover, Mn2+, previously reported to activate the cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) pathway, synergizes with pIC to activate innate immune cells. Remarkably, intravenously injected LMP significantly induces tumor vasculature disruption and tumor cell apoptosis in an innate immune activation-dependent manner, facilitating the LMP delivery into tumors and leading to enhanced antitumor immunity that potently inhibits or even completely regresses the established tumors. In summary, this immunostimulatory LNG platform not only serves as a useful tool to uncover the immune activation-enhanced drug delivery profile but also represents a broadly applicable platform for effective cancer immunotherapy.
Collapse
Affiliation(s)
- Xinyan Li
- School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China; Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| | - Chengcheng Wu
- School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China; Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| | - Junyao Li
- School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China; Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| | - Jinchao Yu
- School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China; Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| | - Xiuxiu Yang
- School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China; Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| | - Lvshan Yu
- School of Basic Medical Sciences, Tsinghua University, Beijing 10084, China; Peking University-Tsinghua University-National Institute Biological Science Joint Graduate Program, Beijing 100084, China
| | - Chaoyu Wang
- School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China; Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| | - Rui Kuai
- School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China; Tsinghua-Peking Center for Life Sciences, Beijing 100084, China.
| |
Collapse
|
8
|
Xinxin Z, Xianzhou L, Dandan P, Yan W, Zhenyu L. Immunization with the glutathione S-transferase Sj26GST with Chi-CpG NP against Schistosoma japonicum in mice. Microb Pathog 2024; 195:106847. [PMID: 39127365 DOI: 10.1016/j.micpath.2024.106847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 08/02/2024] [Accepted: 08/07/2024] [Indexed: 08/12/2024]
Abstract
Schistosomiasis caused by Schistosoma japonicum (S. japonicum) is a major public health problem in the Philippines, China and Indonesia. In this study, the immunopotentiator CpG-ODN was encapsulated within chitosan nanoparticles (Chi NPs) to create a combination adjuvant (Chi-CpG NP). This approach was employed to enhance the immunogenicity of 26 kDa glutathione S-transferase (Sj26GST) from S. japonicum through intranasal immunization. The results demonstrated higher levels of specific anti-Sj26GST antibodies and Sj26GST-specific splenocyte proliferation compared to mice that were immunized with Sj26GST + Chi-CpG NP. Cytokine analysis of splenocytes revealed that the Sj26GST + Chi-CpG NP induced a slight Th1-biased immune response, with increased production of IFN-γ by CD4+ T-cells in the spleen. Subsequently, mice were intradermally inoculated with 1 × 107 organisms in the Coeliac cavity. The bacterial organ burden detected in the liver of immunized mice suggested that Sj26GST + Chi-CpG NP enhances protective immunity to inhibit S. japonicum colonization. Therefore, Sj26GST + Chi-CpG NP vaccination enhances Sj26GST-specific immunogenicity and provides protection against S. japonicum.
Collapse
Affiliation(s)
- Zhou Xinxin
- The First Hospital of Hunan University of Chinese Medicine, Changsha, 410000, China
| | - Lu Xianzhou
- Affiliated Nanhua Hospital, University of South China, Hengyang Medical School, Hengyang, 421001, China
| | - Pan Dandan
- Operating Room, The Second Affiliated Hospital of University of South China, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Wang Yan
- Operating Room, The Second Affiliated Hospital of University of South China, Hengyang Medical School, University of South China, Hengyang, 421001, China.
| | - Li Zhenyu
- Affiliated Nanhua Hospital, University of South China, Hengyang Medical School, Hengyang, 421001, China; Hengnan People's Hospital, Hengyang, 421001, China.
| |
Collapse
|
9
|
Gonzalez-Melero L, Santos-Vizcaino E, Varela-Calvino R, Gomez-Tourino I, Asumendi A, Boyano MD, Igartua M, Hernandez RM. PLGA-PEI nanoparticle covered with poly(I:C) for personalised cancer immunotherapy. Drug Deliv Transl Res 2024; 14:2788-2803. [PMID: 38427275 PMCID: PMC11525302 DOI: 10.1007/s13346-024-01557-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/19/2024] [Indexed: 03/02/2024]
Abstract
Melanoma is the main cause of death among skin cancers and its incidence worldwide has been experiencing an appalling increase. However, traditional treatments lack effectiveness in advanced or metastatic patients. Immunotherapy, meanwhile, has been shown to be an effective treatment option, but the rate of cancers responding remains far from ideal. Here we have developed a personalized neoantigen peptide-based cancer vaccine by encapsulating patient derived melanoma neoantigens in polyethylenimine (PEI)-functionalised poly(lactic-co-glycolic acid) (PLGA) nanoparticles (NPs) and coating them with polyinosinic:polycytidylic acid (poly(I:C)). We found that PLGA NPs can be effectively modified to be coated with the immunoadjuvant poly(I:C), as well as to encapsulate neoantigens. In addition, we found that both dendritic cells (DCs) and lymphocytes were effectively stimulated. Moreover, the developed NP was found to have a better immune activation profile than NP without poly(I:C) or without antigen. Our results demonstrate that the developed vaccine has a high capacity to activate the immune system, efficiently maturing DCs to present the antigen of choice and promoting the activity of lymphocytes to exert their cytotoxic function. Therefore, the immune response generated is optimal and specific for the elimination of melanoma tumour cells.
Collapse
Affiliation(s)
- Lorena Gonzalez-Melero
- NanoBioCel Research Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain
- Bioaraba, NanoBioCel Research Group, Vitoria-Gasteiz, Spain
| | - Edorta Santos-Vizcaino
- NanoBioCel Research Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain
- Bioaraba, NanoBioCel Research Group, Vitoria-Gasteiz, Spain
- Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Institute of Health Carlos III, Madrid, Spain
| | - Ruben Varela-Calvino
- Department of Biochemistry and Molecular Biology, School of Pharmacy, University of Santiago de Compostela, Santiago, Spain
| | - Iria Gomez-Tourino
- Centre for Research in Molecular Medicine and Chronic Diseases (CiMUS), University of Santiago de Compostela, Santiago, Spain
- Health Research Institute of Santiago de Compostela (IDIS), Santiago, Spain
| | - Aintzane Asumendi
- Biocruces Bizkaia Health Research Institute, 48903, Barakaldo, Spain
- Department of Cell Biology and Histology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), 48940, Leioa, Spain
| | - Maria Dolores Boyano
- Biocruces Bizkaia Health Research Institute, 48903, Barakaldo, Spain
- Department of Cell Biology and Histology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), 48940, Leioa, Spain
| | - Manoli Igartua
- NanoBioCel Research Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain.
- Bioaraba, NanoBioCel Research Group, Vitoria-Gasteiz, Spain.
- Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Institute of Health Carlos III, Madrid, Spain.
| | - Rosa Maria Hernandez
- NanoBioCel Research Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain.
- Bioaraba, NanoBioCel Research Group, Vitoria-Gasteiz, Spain.
- Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Institute of Health Carlos III, Madrid, Spain.
| |
Collapse
|
10
|
Zhang Y, Wu Y, Zhang X, Wang X, Pu L, Xu J, Wen Z, Wen M. Poly I: C Alleviated Duck Intestinal Injury Infected with Duck Viral Enteritis by Inhibiting Apoptosis. Curr Microbiol 2024; 81:296. [PMID: 39105989 DOI: 10.1007/s00284-024-03716-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 04/25/2024] [Indexed: 08/07/2024]
Abstract
Duck enteritis virus (DEV) may lead to vascular injury, gastrointestinal mucosal erosion, lymphoid organ injury, and Polyinosinic-polycytidylic acid (Poly I:C) has an antiviral effect by inducing low levels of interferon. The purpose of this study was to explore the pathogenesis of DEV-induced intestinal injury in ducks and to verify the therapeutic effects of different concentrations of Poly I:C. In this study, duck enteritis model was established by infecting healthy Pekin ducks with DEV. Duck intestinal tissues were extracted from normal control group, model group, and treatment group with different doses of Poly I:C. In vivo, HE and TUNEL staining were used to observe the morphological changes and apoptosis. In vitro, the proliferation and apoptosis of duck intestinal epithelial cells were evaluated by MTT assay, TUNEL staining, and flow cytometry. The results showed that Poly I:C protected ducks from DEV toxicity by improving intestinal morphology and inhibiting apoptosis. In addition, the antiviral effect of Poly I:C on DEV was found in a dose-dependent manner, with a more relatively obvious effect at a high dose of Poly I:C. All in all, these results demonstrated that Poly I:C played a vital role in the apoptosis induced by DEV in ducks and modest dose of Poly I:C treatment worked well and may provide important reference for the development of new antiviral drugs in the future.
Collapse
Affiliation(s)
- Yangzi Zhang
- The Blight of Livestock and Poultry Research Laboratory, Institute of Animal Husbandry and Veterinary Medicine of Guizhou Academy of Agricultural Sciences, No. 1, Laolipo Nanming District, Guiyang, 550025, Guizhou, China
| | - Yutong Wu
- The Blight of Livestock and Poultry Research Laboratory, Institute of Animal Husbandry and Veterinary Medicine of Guizhou Academy of Agricultural Sciences, No. 1, Laolipo Nanming District, Guiyang, 550025, Guizhou, China
| | - Xiaoke Zhang
- The Blight of Livestock and Poultry Research Laboratory, Institute of Animal Husbandry and Veterinary Medicine of Guizhou Academy of Agricultural Sciences, No. 1, Laolipo Nanming District, Guiyang, 550025, Guizhou, China
| | - Xuan Wang
- The Blight of Livestock and Poultry Research Laboratory, Institute of Animal Husbandry and Veterinary Medicine of Guizhou Academy of Agricultural Sciences, No. 1, Laolipo Nanming District, Guiyang, 550025, Guizhou, China
| | - Ling Pu
- The Blight of Livestock and Poultry Research Laboratory, Institute of Animal Husbandry and Veterinary Medicine of Guizhou Academy of Agricultural Sciences, No. 1, Laolipo Nanming District, Guiyang, 550025, Guizhou, China
| | - Jinge Xu
- The Blight of Livestock and Poultry Research Laboratory, Institute of Animal Husbandry and Veterinary Medicine of Guizhou Academy of Agricultural Sciences, No. 1, Laolipo Nanming District, Guiyang, 550025, Guizhou, China
| | - Zhengchang Wen
- The Blight of Livestock and Poultry Research Laboratory, Institute of Animal Husbandry and Veterinary Medicine of Guizhou Academy of Agricultural Sciences, No. 1, Laolipo Nanming District, Guiyang, 550025, Guizhou, China.
| | - Ming Wen
- College of Animal Science, Guizhou University, Guiyang, Guizhou, China.
| |
Collapse
|
11
|
Yao Z, Liang Z, Li M, Wang H, Ma Y, Guo Y, Chen C, Xue C, Sun B. Aluminum oxyhydroxide-Poly(I:C) combination adjuvant with balanced immunostimulatory potentials for prophylactic vaccines. J Control Release 2024; 372:482-493. [PMID: 38914205 DOI: 10.1016/j.jconrel.2024.06.054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/20/2024] [Accepted: 06/21/2024] [Indexed: 06/26/2024]
Abstract
The development of high-purity antigens promotes the urgent need of novel adjuvant with the capability to trigger high levels of immune response. Polyinosinic-polycytidylic (Poly(I:C)) is a synthetic double-stranded RNA (dsRNA) that can engage Toll-like receptor 3 (TLR3) to initiate immune responses. However, the Poly(I:C)-induced toxicity and inefficient delivery prevent its applications. In our study, combination adjuvants are formulated by aluminum oxyhydroxide nanorods (AlOOH NRs) and Poly(I:C), named Al-Poly(I:C), and the covalent interaction between the two components is further demonstrated. Al-Poly(I:C) mediates enhanced humoral and cellular immune responses in three antigen models, i.e., HBsAg virus-like particles (VLPs), human papilloma virus (HPV) VLPs and varicella-zoster virus (VZV) glycoprotein E (gE). Further mechanistic studies demonstrate that the dose and molecular weight (MW) of Poly(I:C) determine the physicochemical properties and adjuvanticity of the Al-Poly(I:C) combination adjuvants. Al-Poly(I:C) with higher Poly(I:C) dose promotes antigen-bearing dendritic cells (DCs) recruitment and B cells proliferation in lymph nodes. Al-Poly(I:C) formulated with higher MW Poly(I:C) induces higher activation of helper T cells, B cells, and CTLs. This study demonstrates that Al-Poly(I:C) potentiates the humoral and cellular responses in vaccine formulations. It offers insights for adjuvant design to meet the formulation requirements in both prophylactic and therapeutic vaccines.
Collapse
Affiliation(s)
- Zhiying Yao
- School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, 116024 Dalian, China; Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, 2 Linggong Road, 116024 Dalian, China
| | - Zhihui Liang
- School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, 116024 Dalian, China; Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, 2 Linggong Road, 116024 Dalian, China
| | - Min Li
- School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, 116024 Dalian, China; Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, 2 Linggong Road, 116024 Dalian, China
| | - Huiyang Wang
- School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, 116024 Dalian, China; Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, 2 Linggong Road, 116024 Dalian, China
| | - Yubin Ma
- School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, 116024 Dalian, China; Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, 2 Linggong Road, 116024 Dalian, China
| | - Yiyang Guo
- School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, 116024 Dalian, China; Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, 2 Linggong Road, 116024 Dalian, China
| | - Chen Chen
- School of Bioengineering, Dalian University of Technology, 2 Linggong Road, 116024 Dalian, China; MOE Key Laboratory Bio-Intelligent Manufacturing, Dalian University of Technology, 2 Linggong Road, 116024 Dalian, China
| | - Changying Xue
- School of Bioengineering, Dalian University of Technology, 2 Linggong Road, 116024 Dalian, China; MOE Key Laboratory Bio-Intelligent Manufacturing, Dalian University of Technology, 2 Linggong Road, 116024 Dalian, China
| | - Bingbing Sun
- School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, 116024 Dalian, China; Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, 2 Linggong Road, 116024 Dalian, China.
| |
Collapse
|
12
|
Li J, Luo L, He J, Yu J, Li X, Shen X, Zhang J, Li S, Karp JM, Kuai R. A Virus-Inspired Inhalable Liponanogel Induces Potent Antitumor Immunity and Regression in Metastatic Lung Tumors. Cancer Res 2024; 84:2352-2363. [PMID: 38718316 PMCID: PMC11247319 DOI: 10.1158/0008-5472.can-23-3414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 02/27/2024] [Accepted: 05/02/2024] [Indexed: 07/16/2024]
Abstract
Pulmonary delivery of immunostimulatory agents such as poly(I:C) to activate double-stranded RNA sensors MDA5 and RIG-I within lung-resident antigen-presenting cells is a potential strategy to enhance antitumor immunity by promoting type I interferon secretion. Nevertheless, following pulmonary delivery, poly(I:C) suffers from rapid degradation and poor endosomal escape, thus limiting its potency. Inspired by the structure of a virus that utilizes internal viral proteins to tune the loading and cytosolic delivery of viral nucleic acids, we developed a liponanogel (LNG)-based platform to overcome the delivery challenges of poly(I:C). The LNG comprised an anionic polymer hyaluronic acid-based nanogel core coated by a lipid shell, which served as a protective layer to stabilize the nanogel core in the lungs. The nanogel core was protonated within acidic endosomes to enhance the endosomal membrane permeability and cytosolic delivery of poly(I:C). After pulmonary delivery, LNG-poly(I:C) induced 13.7-fold more IFNβ than poly(I:C) alone and two-fold more than poly(I:C) loaded in the state-of-art lipid nanoparticles [LNP-poly(I:C)]. Additionally, LNG-poly(I:C) induced more potent CD8+ T-cell immunity and stronger therapeutic effects than LNP-poly(I:C). The combination of LNG-poly(I:C) and PD-L1 targeting led to regression of established lung metastases. Due to the ease of manufacturing and the high biocompatibility of LNG, pulmonary delivery of LNG may be broadly applicable to the treatment of different lung tumors and may spur the development of innovative strategies for cancer immunotherapy. Significance: Pulmonary delivery of poly(I:C) with a virus-inspired inhalable liponanogel strongly activates cytosolic MDA5 and RIG-I and stimulates antitumor immunity, representing a promising strategy for safe and effective treatment of metastatic lung tumors.
Collapse
Affiliation(s)
- Junyao Li
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, China.
- Tsinghua-Peking Center for Life Sciences, Beijing, China.
| | - Lanqing Luo
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, China.
- Tsinghua-Peking Center for Life Sciences, Beijing, China.
| | - Jia He
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, China.
- Tsinghua-Peking Center for Life Sciences, Beijing, China.
| | - Jinchao Yu
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, China.
- Tsinghua-Peking Center for Life Sciences, Beijing, China.
| | - Xinyan Li
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, China.
- Tsinghua-Peking Center for Life Sciences, Beijing, China.
| | - Xueying Shen
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, China.
- Tsinghua-Peking Center for Life Sciences, Beijing, China.
| | - Junxia Zhang
- Tsinghua-Peking Center for Life Sciences, Beijing, China.
- School of Life Sciences, Tsinghua University, Beijing, China.
- Frontier Research Center for Biological Structure & State Key Laboratory of Membrane Biology, Beijing, China.
| | - Sai Li
- Tsinghua-Peking Center for Life Sciences, Beijing, China.
- School of Life Sciences, Tsinghua University, Beijing, China.
- Frontier Research Center for Biological Structure & State Key Laboratory of Membrane Biology, Beijing, China.
| | - Jeffrey M. Karp
- Department of Anesthesiology, Perioperative, and Pain Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts.
- Harvard-MIT Program in Health Sciences and Technology, MIT, Cambridge, Massachusetts.
- Harvard Stem Cell Institute, Harvard University, Cambridge, Massachusetts.
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts.
| | - Rui Kuai
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, China.
- Tsinghua-Peking Center for Life Sciences, Beijing, China.
| |
Collapse
|
13
|
Guo F, Wei J, Song Y, Song J, Wang Y, Li K, Li B, Qian Z, Wang X, Wang H, Xu T. Immune responses induced by Mycobacterium tuberculosis heat-resistant antigen (Mtb-HAg) upon co-administration with Bacillus Calmette-Guérin in mice. Cytokine 2024; 179:156610. [PMID: 38640558 DOI: 10.1016/j.cyto.2024.156610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/01/2024] [Accepted: 04/06/2024] [Indexed: 04/21/2024]
Abstract
OBJECTIVES To preliminarily assess the immunogenicity of Mtb-HAg in mice and the synergistic effect provided by HAg when co-immunised with BCG. METHODS Mice were randomly grouped for different immunisations and then spleens were aseptically removed and lymphocytes were extracted for immediate detection of cytokines transcript levels and stimulation index(SI), cytokine secretion and multifunctional antigen-specific T cells were detected after incubation for different times. RESULTS HAg extracted from active Mtb is a group of mixed polypeptides with molecular weights of (10-14) kDa. It can significantly stimulate lymphocytes proliferation and increase SI. Injection of HAg alone and in combination with BCG induced significantly higher numbers of multifunctional antigen-specific T cells including CD4+ IFN-γ+, CD4+ IL-2+, CD8+ IFN-γ+, and CD8+ IL-2+ cells than that in BCG-treated mice. Co-immunisation induced the secretion of higher levels of IFN-γ, TNF-α, IL-2 and IL-4 and increased their mRNA expression levels. Significant increases in the transcription levels of IL-10, IL-12 and IL-17 were observed in the co-immunised group with the assistance of HAg. CONCLUSION We demonstrated that HAg has favourable immunogenicity, triggers a stronger Th1-type immune response and proposed the hypothesis that HAg can be used as a BCG booster to further enhance the benefits of BCG.
Collapse
Affiliation(s)
- Fangzheng Guo
- Anhui Province Key Laboratory of Immunology in Chronic Diseases, Research Center of Laboratory, School of Laboratory, Bengbu Medical University, Bengbu 233000, China; Anhui Province Key Laboratory of Clinical and Preclinical Research in Respiratory Disease, Molecular Diagnosis Center, First Affiliated Hospital of Bengbu Medical University, China.
| | - Jing Wei
- Anhui Province Key Laboratory of Immunology in Chronic Diseases, Research Center of Laboratory, School of Laboratory, Bengbu Medical University, Bengbu 233000, China; Anhui Province Key Laboratory of Clinical and Preclinical Research in Respiratory Disease, Molecular Diagnosis Center, First Affiliated Hospital of Bengbu Medical University, China.
| | - Yamin Song
- Anhui Province Key Laboratory of Immunology in Chronic Diseases, Research Center of Laboratory, School of Laboratory, Bengbu Medical University, Bengbu 233000, China; Anhui Province Key Laboratory of Clinical and Preclinical Research in Respiratory Disease, Molecular Diagnosis Center, First Affiliated Hospital of Bengbu Medical University, China.
| | - Jianhan Song
- Anhui Province Key Laboratory of Clinical and Preclinical Research in Respiratory Disease, Molecular Diagnosis Center, First Affiliated Hospital of Bengbu Medical University, China.
| | - Ying Wang
- Anhui Province Key Laboratory of Clinical and Preclinical Research in Respiratory Disease, Molecular Diagnosis Center, First Affiliated Hospital of Bengbu Medical University, China.
| | - Kangsheng Li
- Anhui Province Key Laboratory of Clinical and Preclinical Research in Respiratory Disease, Molecular Diagnosis Center, First Affiliated Hospital of Bengbu Medical University, China.
| | - Baiqing Li
- Anhui Province Key Laboratory of Immunology in Chronic Diseases, Research Center of Laboratory, School of Laboratory, Bengbu Medical University, Bengbu 233000, China; Anhui Province Key Laboratory of Clinical and Preclinical Research in Respiratory Disease, Molecular Diagnosis Center, First Affiliated Hospital of Bengbu Medical University, China; Department of Clinical Laboratory, School of Laboratory, Bengbu Medical University, Bengbu 233000, China.
| | - Zhongqing Qian
- Anhui Province Key Laboratory of Immunology in Chronic Diseases, Research Center of Laboratory, School of Laboratory, Bengbu Medical University, Bengbu 233000, China; Anhui Province Key Laboratory of Clinical and Preclinical Research in Respiratory Disease, Molecular Diagnosis Center, First Affiliated Hospital of Bengbu Medical University, China; Department of Clinical Laboratory, School of Laboratory, Bengbu Medical University, Bengbu 233000, China.
| | - Xiaojing Wang
- Anhui Province Key Laboratory of Immunology in Chronic Diseases, Research Center of Laboratory, School of Laboratory, Bengbu Medical University, Bengbu 233000, China; Anhui Province Key Laboratory of Clinical and Preclinical Research in Respiratory Disease, Molecular Diagnosis Center, First Affiliated Hospital of Bengbu Medical University, China.
| | - Hongtao Wang
- Anhui Province Key Laboratory of Immunology in Chronic Diseases, Research Center of Laboratory, School of Laboratory, Bengbu Medical University, Bengbu 233000, China; Anhui Province Key Laboratory of Clinical and Preclinical Research in Respiratory Disease, Molecular Diagnosis Center, First Affiliated Hospital of Bengbu Medical University, China; Department of Immunology, School of Laboratory, Bengbu Medical University, Bengbu 233000, China; Department of Laboratory Medicine and Rehabilitation, College of Xinjiang Uyghur Medicine, Hetian 848000, China.
| | - Tao Xu
- Anhui Province Key Laboratory of Immunology in Chronic Diseases, Research Center of Laboratory, School of Laboratory, Bengbu Medical University, Bengbu 233000, China; Anhui Province Key Laboratory of Clinical and Preclinical Research in Respiratory Disease, Molecular Diagnosis Center, First Affiliated Hospital of Bengbu Medical University, China; Department of Clinical Laboratory, School of Laboratory, Bengbu Medical University, Bengbu 233000, China.
| |
Collapse
|
14
|
Shetty S, Alvarado PC, Pettie D, Collier JH. Next-Generation Vaccine Development with Nanomaterials: Recent Advances, Possibilities, and Challenges. Annu Rev Biomed Eng 2024; 26:273-306. [PMID: 38959389 DOI: 10.1146/annurev-bioeng-110122-124359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
Nanomaterials are becoming important tools for vaccine development owing to their tunable and adaptable nature. Unique properties of nanomaterials afford opportunities to modulate trafficking through various tissues, complement or augment adjuvant activities, and specify antigen valency and display. This versatility has enabled recent work designing nanomaterial vaccines for a broad range of diseases, including cancer, inflammatory diseases, and various infectious diseases. Recent successes of nanoparticle vaccines during the coronavirus disease 2019 (COVID-19) pandemic have fueled enthusiasm further. In this review, the most recent developments in nanovaccines for infectious disease, cancer, inflammatory diseases, allergic diseases, and nanoadjuvants are summarized. Additionally, challenges and opportunities for clinical translation of this unique class of materials are discussed.
Collapse
Affiliation(s)
- Shamitha Shetty
- Department of Biomedical Engineering, Duke University, Durham, North Carolina, USA; , , ,
| | - Pablo Cordero Alvarado
- Department of Biomedical Engineering, Duke University, Durham, North Carolina, USA; , , ,
| | - Deleah Pettie
- Department of Biomedical Engineering, Duke University, Durham, North Carolina, USA; , , ,
| | - Joel H Collier
- Department of Biomedical Engineering, Duke University, Durham, North Carolina, USA; , , ,
| |
Collapse
|
15
|
Cao LM, Yu YF, Li ZZ, Zhong NN, Wang GR, Xiao Y, Liu B, Wu QJ, Feng C, Bu LL. Adjuvants for cancer mRNA vaccines in the era of nanotechnology: strategies, applications, and future directions. J Nanobiotechnology 2024; 22:308. [PMID: 38825711 PMCID: PMC11145938 DOI: 10.1186/s12951-024-02590-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Accepted: 05/28/2024] [Indexed: 06/04/2024] Open
Abstract
Research into mRNA vaccines is advancing rapidly, with proven efficacy against coronavirus disease 2019 and promising therapeutic potential against a variety of solid tumors. Adjuvants, critical components of mRNA vaccines, significantly enhance vaccine effectiveness and are integral to numerous mRNA vaccine formulations. However, the development and selection of adjuvant platforms are still in their nascent stages, and the mechanisms of many adjuvants remain poorly understood. Additionally, the immunostimulatory capabilities of certain novel drug delivery systems (DDS) challenge the traditional definition of adjuvants, suggesting that a revision of this concept is necessary. This review offers a comprehensive exploration of the mechanisms and applications of adjuvants and self-adjuvant DDS. It thoroughly addresses existing issues mentioned above and details three main challenges of immune-related adverse event, unclear mechanisms, and unsatisfactory outcomes in old age group in the design and practical application of cancer mRNA vaccine adjuvants. Ultimately, this review proposes three optimization strategies which consists of exploring the mechanisms of adjuvant, optimizing DDS, and improving route of administration to improve effectiveness and application of adjuvants and self-adjuvant DDS.
Collapse
Affiliation(s)
- Lei-Ming Cao
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| | - Yi-Fu Yu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| | - Zi-Zhan Li
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| | - Nian-Nian Zhong
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| | - Guang-Rui Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| | - Yao Xiao
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| | - Bing Liu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
- Department of Oral & Maxillofacial - Head Neck Oncology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| | - Qiu-Ji Wu
- Department of Radiation and Medical Oncology, Hubei Key Laboratory of Tumor Biological Behavior, Hubei Provincial Clinical Research Center for Cancer, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan, 430071, China.
| | - Chun Feng
- Department of Gynecology, Maternal and Child Health Hospital of Hubei Province, Tongii Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Lin-Lin Bu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China.
- Department of Oral & Maxillofacial - Head Neck Oncology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China.
| |
Collapse
|
16
|
Saleemi MA, Zhang Y, Zhang G. Current Progress in the Science of Novel Adjuvant Nano-Vaccine-Induced Protective Immune Responses. Pathogens 2024; 13:441. [PMID: 38921739 PMCID: PMC11206999 DOI: 10.3390/pathogens13060441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/14/2024] [Accepted: 05/21/2024] [Indexed: 06/27/2024] Open
Abstract
Vaccinations are vital as they protect us from various illness-causing agents. Despite all the advancements in vaccine-related research, developing improved and safer vaccines against devastating infectious diseases including Ebola, tuberculosis and acquired immune deficiency syndrome (AIDS) remains a significant challenge. In addition, some of the current human vaccines can cause adverse reactions in some individuals, which limits their use for massive vaccination program. Therefore, it is necessary to design optimal vaccine candidates that can elicit appropriate immune responses but do not induce side effects. Subunit vaccines are relatively safe for the vaccination of humans, but they are unable to trigger an optimal protective immune response without an adjuvant. Although different types of adjuvants have been used for the formulation of vaccines to fight pathogens that have high antigenic diversity, due to the toxicity and safety issues associated with human-specific adjuvants, there are only a few adjuvants that have been approved for the formulation of human vaccines. Recently, nanoparticles (NPs) have gain specific attention and are commonly used as adjuvants for vaccine development as well as for drug delivery due to their excellent immune modulation properties. This review will focus on the current state of adjuvants in vaccine development, the mechanisms of human-compatible adjuvants and future research directions. We hope this review will provide valuable information to discovery novel adjuvants and drug delivery systems for developing novel vaccines and treatments.
Collapse
Affiliation(s)
| | | | - Guoquan Zhang
- Department of Molecular Microbiology and Immunology, College of Sciences, University of Texas at San Antonio, San Antonio, TX 78249, USA; (M.A.S.); (Y.Z.)
| |
Collapse
|
17
|
Qi SY, Yang MM, Li CY, Yu K, Deng SL. The HPV viral regulatory mechanism of TLRs and the related treatments for HPV-associated cancers. Front Immunol 2024; 15:1407649. [PMID: 38812510 PMCID: PMC11133576 DOI: 10.3389/fimmu.2024.1407649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 05/01/2024] [Indexed: 05/31/2024] Open
Abstract
Infection with human papillomavirus (HPV) typically leads to cervical cancer, skin related cancers and many other tumors. HPV is mainly responsible for evading immune tumor monitoring in HPV related cancers. Toll like receptors (TLRs) are particular pattern recognition molecules. When the body is facing immune danger, it can lead to innate and direct adaptive immunity. TLR plays an important role in initiating antiviral immune responses. HPV can affect the expression level of TLR and interfere with TLR related signaling pathways, resulting in sustained viral infection and even carcinogenesis. This paper introduces the HPV virus and HPV related cancers. We discussed the present comprehension of TLR, its expression and signaling, as well as its role in HPV infection. We also provided a detailed introduction to immunotherapy methods for HPV related diseases based on TLR agonists. This will provide insights into methods that support the therapeutic method of HPV related conditions with TLR agonists.
Collapse
Affiliation(s)
- Shi-Yu Qi
- College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Miao-Miao Yang
- College of Chemical and Pharmaceutical Engineering, Jilin Institute of Chemical Technology, Jilin, China
| | - Chong-Yang Li
- Institute of Animal Sciences (IAS), Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Kun Yu
- College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Shou-Long Deng
- National Center of Technology Innovation for animal model, National Health Commission of China (NHC) Key Laboratory of Comparative Medicine, Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, China
| |
Collapse
|
18
|
Wang Q, Bu C, Dai Q, Chen J, Zhang R, Zheng X, Ren H, Xin X, Li X. Recent Progress in Nucleic Acid Pulmonary Delivery toward Overcoming Physiological Barriers and Improving Transfection Efficiency. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2309748. [PMID: 38460157 PMCID: PMC11095210 DOI: 10.1002/advs.202309748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 02/04/2024] [Indexed: 03/11/2024]
Abstract
Pulmonary delivery of therapeutic agents has been considered the desirable administration route for local lung disease treatment. As the latest generation of therapeutic agents, nucleic acid has been gradually developed as gene therapy for local diseases such as asthma, chronic obstructive pulmonary diseases, and lung fibrosis. The features of nucleic acid, specific physiological structure, and pathophysiological barriers of the respiratory tract have strongly affected the delivery efficiency and pulmonary bioavailability of nucleic acid, directly related to the treatment outcomes. The development of pharmaceutics and material science provides the potential for highly effective pulmonary medicine delivery. In this review, the key factors and barriers are first introduced that affect the pulmonary delivery and bioavailability of nucleic acids. The advanced inhaled materials for nucleic acid delivery are further summarized. The recent progress of platform designs for improving the pulmonary delivery efficiency of nucleic acids and their therapeutic outcomes have been systematically analyzed, with the application and the perspectives of advanced vectors for pulmonary gene delivery.
Collapse
Affiliation(s)
- Qiyue Wang
- School of Pharmaceutical ScienceNanjing Tech UniversityNanjing211816China
- NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparation and ExcipientsNanjing210009China
| | - Chaozhi Bu
- Wuxi Maternity and Child Health Care HospitalAffiliated Women's Hospital of Jiangnan UniversityWuxi214002China
| | - Qihao Dai
- School of Pharmaceutical ScienceNanjing Tech UniversityNanjing211816China
| | - Jinhua Chen
- NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparation and ExcipientsNanjing210009China
- Center for Research Development and Evaluation of Pharmaceutical Excipients and Generic Drugs, Department of PharmaceuticsChina Pharmaceutical UniversityNanjing210009China
| | - Ruitao Zhang
- NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparation and ExcipientsNanjing210009China
- Center for Research Development and Evaluation of Pharmaceutical Excipients and Generic Drugs, Department of PharmaceuticsChina Pharmaceutical UniversityNanjing210009China
| | - Xiaomin Zheng
- Wuxi Maternity and Child Health Care HospitalAffiliated Women's Hospital of Jiangnan UniversityWuxi214002China
| | - Hao Ren
- School of Pharmaceutical ScienceNanjing Tech UniversityNanjing211816China
| | - Xiaofei Xin
- Center for Research Development and Evaluation of Pharmaceutical Excipients and Generic Drugs, Department of PharmaceuticsChina Pharmaceutical UniversityNanjing210009China
| | - Xueming Li
- School of Pharmaceutical ScienceNanjing Tech UniversityNanjing211816China
| |
Collapse
|
19
|
Bruun N, Laursen MF, Carmelo R, Christensen E, Jensen TS, Christiansen G, Birkelund S, Agger R, Kofod-Olsen E. Novel nucleotide-packaging vaccine delivers antigen and poly(I:C) to dendritic cells and generate a potent antibody response in vivo. Vaccine 2024; 42:2909-2918. [PMID: 38538405 DOI: 10.1016/j.vaccine.2024.03.058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 03/10/2024] [Accepted: 03/22/2024] [Indexed: 04/16/2024]
Abstract
An issue with many current vaccines is the dependency on broadly inflammatory adjuvants, such as aluminum hydroxide or aluminum salts that affect many immune- and non-immune cells. These adjuvants are not necessarily activating all antigen-presenting cells (APCs) that take up the antigen and most likely they also activate APCs with no antigen uptake, as well as many non-immune cells. Conjugation of antigen and adjuvant would enable the use of smaller amounts of adjuvant and avoid unnecessary tissue damage and activation of bystander cells. It would ensure that all APCs that take up the antigen would also become activated and avoid that immature and non-activated APCs present the antigen to T cells without a co-stimulatory signal, leading to tolerogenesis. We have developed a novel vaccine that co-deliver antigen and a nucleotide adjuvant to the same APC and lead to a strong activation response in dendritic cells and macrophages. The vaccine is constructed as a fusion-protein with an antigen fused to the DNA/RNA-binding domain from the Hc2 protein from Chlamydia trachomatis. We have found that the fusion protein is able to package polyinosinic:polycytidylic acid (poly(I:C)) or dsDNA into small particles. These particles were taken up by macrophages and dendritic cells and led to strong activation and maturation of these cells. Immunization of mice with the fusion protein packaged poly(I:C) led to a stronger antibody response compared to immunization with a combination of poly(I:C) and antigen without the Hc2 DNA/RNA-binding domain.
Collapse
Affiliation(s)
- Natasja Bruun
- Aalborg University, Department of Health Science and Technology, Denmark
| | - Marlene F Laursen
- Aalborg University, Department of Health Science and Technology, Denmark
| | - Rita Carmelo
- Aalborg University, Department of Health Science and Technology, Denmark
| | - Esben Christensen
- Aalborg University, Department of Health Science and Technology, Denmark
| | - Trine S Jensen
- Aalborg University, Department of Health Science and Technology, Denmark
| | - Gunna Christiansen
- Aalborg University, Department of Health Science and Technology, Denmark
| | - Svend Birkelund
- Aalborg University, Department of Health Science and Technology, Denmark
| | - Ralf Agger
- Aalborg University, Department of Health Science and Technology, Denmark
| | - Emil Kofod-Olsen
- Aalborg University, Department of Health Science and Technology, Denmark.
| |
Collapse
|
20
|
Adams CS, Kim H, Burtner AE, Lee DS, Dobbins C, Criswell C, Coventry B, Kim HM, King NP. De novo design of protein minibinder agonists of TLR3. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.17.589973. [PMID: 38659926 PMCID: PMC11042314 DOI: 10.1101/2024.04.17.589973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Toll-like Receptor 3 (TLR3) is a pattern recognition receptor that initiates antiviral immune responses upon binding double-stranded RNA (dsRNA). Several nucleic acid-based TLR3 agonists have been explored clinically as vaccine adjuvants in cancer and infectious disease, but present substantial manufacturing and formulation challenges. Here, we use computational protein design to create novel miniproteins that bind to human TLR3 with nanomolar affinities. Cryo-EM structures of two minibinders in complex with TLR3 reveal that they bind the target as designed, although one partially unfolds due to steric competition with a nearby N-linked glycan. Multimeric forms of both minibinders induce NF-κB signaling in TLR3-expressing cell lines, demonstrating that they may have therapeutically relevant biological activity. Our work provides a foundation for the development of specific, stable, and easy-to-formulate protein-based agonists of TLRs and other pattern recognition receptors.
Collapse
Affiliation(s)
- Chloe S. Adams
- Institute for Protein Design, University of Washington, Seattle, WA, 98195 USA
- Department of Biochemistry, University of Washington, Seattle, WA, 98195 USA
| | - Hyojin Kim
- Center for Biomolecular & Cellular Structure, Institute for Basic Science (IBS), Daejeon 34126, South Korea
| | - Abigail E. Burtner
- Institute for Protein Design, University of Washington, Seattle, WA, 98195 USA
- Department of Biochemistry, University of Washington, Seattle, WA, 98195 USA
| | - Dong Sun Lee
- Center for Biomolecular & Cellular Structure, Institute for Basic Science (IBS), Daejeon 34126, South Korea
| | - Craig Dobbins
- Institute for Protein Design, University of Washington, Seattle, WA, 98195 USA
- Department of Biochemistry, University of Washington, Seattle, WA, 98195 USA
| | - Cameron Criswell
- Institute for Protein Design, University of Washington, Seattle, WA, 98195 USA
- Department of Biochemistry, University of Washington, Seattle, WA, 98195 USA
| | - Brian Coventry
- Institute for Protein Design, University of Washington, Seattle, WA, 98195 USA
- Department of Biochemistry, University of Washington, Seattle, WA, 98195 USA
| | - Ho Min Kim
- Center for Biomolecular & Cellular Structure, Institute for Basic Science (IBS), Daejeon 34126, South Korea
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea
| | - Neil P. King
- Institute for Protein Design, University of Washington, Seattle, WA, 98195 USA
- Department of Biochemistry, University of Washington, Seattle, WA, 98195 USA
| |
Collapse
|
21
|
Hasani-Sadrabadi MM, Majedi FS, Zarubova J, Thauland TJ, Arumugaswami V, Hsiai TK, Bouchard LS, Butte MJ, Li S. Harnessing Biomaterials to Amplify Immunity in Aged Mice through T Memory Stem Cells. ACS NANO 2024; 18:6908-6926. [PMID: 38381620 DOI: 10.1021/acsnano.3c08559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
The durability of a protective immune response generated by a vaccine depends on its ability to induce long-term T cell immunity, which tends to decline in aging populations. The longest protection appears to arise from T memory stem cells (TMSCs) that confer high expandability and effector functions when challenged. Here we engineered artificial antigen presenting cells (aAPC) with optimized size, stiffness and activation signals to induce human and mouse CD8+ TMSCs in vitro. This platform was optimized as a vaccine booster of TMSCs (Vax-T) with prolonged release of small-molecule blockade of the glycogen synthase kinase-3β together with target antigens. By using SARS-CoV-2 antigen as a model, we show that a single injection of Vax-T induces durable antigen-specific CD8+ TMSCs in young and aged mice, and generates humoral responses at a level stronger than or similar to soluble vaccines. This Vax-T approach can boost long-term immunity to fight infectious diseases, cancer, and other diseases.
Collapse
Affiliation(s)
| | - Fatemeh S Majedi
- Department of Bioengineering, University of California Los Angeles; Los Angeles, California 90095 United States
| | - Jana Zarubova
- Department of Bioengineering, University of California Los Angeles; Los Angeles, California 90095 United States
| | - Timothy J Thauland
- Department of Pediatrics, Division of Immunology, Allergy, and Rheumatology, University of California Los Angeles, Los Angeles, California 90095 United States
| | - Vaithilingaraja Arumugaswami
- Jonsson Comprehensive Cancer Center, University of California Los Angeles; Los Angeles, California 90095 United States
- Department of Molecular and Medical Pharmacology, University of California Los Angeles; Los Angeles, California 90095 United States
| | - Tzung K Hsiai
- Department of Bioengineering, University of California Los Angeles; Los Angeles, California 90095 United States
| | - Louis-S Bouchard
- Department of Bioengineering, University of California Los Angeles; Los Angeles, California 90095 United States
- Jonsson Comprehensive Cancer Center, University of California Los Angeles; Los Angeles, California 90095 United States
- Department of Chemistry and Biochemistry, University of California Los Angeles; Los Angeles, California 90095 United States
- The Molecular Biology Institute, University of California Los Angeles; Los Angeles, California 90095 United States
| | - Manish J Butte
- Department of Pediatrics, Division of Immunology, Allergy, and Rheumatology, University of California Los Angeles, Los Angeles, California 90095 United States
- Jonsson Comprehensive Cancer Center, University of California Los Angeles; Los Angeles, California 90095 United States
- Department of Microbiology, Immunology, and Molecular Genetics, University of California Los Angeles; Los Angeles, California 90095 United States
| | - Song Li
- Department of Bioengineering, University of California Los Angeles; Los Angeles, California 90095 United States
- Jonsson Comprehensive Cancer Center, University of California Los Angeles; Los Angeles, California 90095 United States
- Department of Medicine, David Geffen School of Medicine, University of California Los Angeles; Los Angeles, California 90095 United States
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California Los Angeles; Los Angeles, California 90095 United States
| |
Collapse
|
22
|
Lamoot A, Jangra S, Laghlali G, Warang P, Singh G, Chang LA, Park SC, Singh G, De Swarte K, Zhong Z, Louage B, De Lombaerde E, Ye T, Chen Y, Cuadrado-Castano S, Lienenklaus S, Sanders N, Lambrecht BN, García-Sastre A, Schotsaert M, De Geest BG. Lipid Nanoparticle Encapsulation Empowers Poly(I:C) to Activate Cytoplasmic RLRs and Thereby Increases Its Adjuvanticity. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306892. [PMID: 37867244 PMCID: PMC7617129 DOI: 10.1002/smll.202306892] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 10/05/2023] [Indexed: 10/24/2023]
Abstract
Poly(I:C) is a synthetic analogue of dsRNA capable of activating both TLR3 and RLRs, such as MDA-5 and RIG-I, as pathogen recognition receptors. While poly(I:C) is known to provoke a robust type I IFN, type III IFN, and Th1 cytokine response, its therapeutic use as a vaccine adjuvant is limited due to its vulnerability to nucleases and poor uptake by immune cells. is encapsulated poly(I:C) into lipid nanoparticles (LNPs) containing an ionizable cationic lipid that can electrostatically interact with poly(I:C). LNP-formulated poly(I:C) triggered both lysosomal TLR3 and cytoplasmic RLRs, in vitro and in vivo, whereas poly(I:C) in an unformulated soluble form only triggered endosomal-localized TLR3. Administration of LNP-formulated poly(I:C) in mouse models led to efficient translocation to lymphoid tissue and concurrent innate immune activation following intramuscular (IM) administration, resulting in a significant increase in innate immune activation compared to unformulated soluble poly(I:C). When used as an adjuvant for recombinant full-length SARS-CoV-2 spike protein, LNP-formulated poly(I:C) elicited potent anti-spike antibody titers, surpassing those of unformulated soluble poly(I:C) by orders of magnitude and offered complete protection against a SARS-CoV-2 viral challenge in vivo, and serum from these mice are capable of significantly reducing viral infection in vitro.
Collapse
Affiliation(s)
- Alexander Lamoot
- Department of Pharmaceutics, Ghent University, 9000 Ghent, Belgium
| | - Sonia Jangra
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Gabriel Laghlali
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Prajakta Warang
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Gagandeep Singh
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Lauren A. Chang
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Seok-Chan Park
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Laboratory of Pathology, College of Veterinary Medicine, Jeonbuk National University, Iksan, 54596, Korea
- Biosafety Research Institute, College of Veterinary Medicine, Jeonbuk National University, Iksan, 54596, Korea
| | - Gagandeep Singh
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Kim De Swarte
- Laboratory of Mucosal Immunology, VIB-UGent Center for Inflammation Research, Ghent University, 9000 Ghent, Belgium
- Department of Internal Medicine and Pediatrics, Faculty of Medicine and Health Sciences, Ghent University, 9000 Ghent, Belgium; Department of Respiratory Medicine, Ghent University Hospital, 9000 Ghent, Belgium
| | - Zifu Zhong
- Department of Pharmaceutics, Ghent University, 9000 Ghent, Belgium
| | - Benoit Louage
- Department of Pharmaceutics, Ghent University, 9000 Ghent, Belgium
| | | | - Tingting Ye
- Department of Pharmaceutics, Ghent University, 9000 Ghent, Belgium
| | - Yong Chen
- Department of Pharmaceutics, Ghent University, 9000 Ghent, Belgium
| | - Sara Cuadrado-Castano
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Stefan Lienenklaus
- Institute for Laboratory Animal Science and Institute of Immunology, Hannover Medical School, 30625 Hannover, Germany
| | - Niek Sanders
- Laboratory of Gene Therapy, Ghent University, 9820 Merelbeke, Belgium
| | - Bart N. Lambrecht
- Laboratory of Mucosal Immunology, VIB-UGent Center for Inflammation Research, Ghent University, 9000 Ghent, Belgium
- Department of Internal Medicine and Pediatrics, Faculty of Medicine and Health Sciences, Ghent University, 9000 Ghent, Belgium; Department of Respiratory Medicine, Ghent University Hospital, 9000 Ghent, Belgium
| | - Adolfo García-Sastre
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Michael Schotsaert
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | | |
Collapse
|
23
|
Piva-Amaral R, Augusto Pires de Souza G, Carlos Vilela Vieira Júnior J, Fróes Goulart de Castro R, Permagnani Gozzi W, Pereira Lima Neto S, Cauvilla Dos Santos AL, Pavani Cassiano H, Christine Ferreira da Silva L, Dias Novaes R, Santos Abrahão J, Ervolino de Oliveira C, de Mello Silva B, de Paula Costa G, Cosme Cotta Malaquias L, Felipe Leomil Coelho L. Bovine serum albumin nanoparticles containing Poly (I:C) can enhance the neutralizing antibody response induced by envelope protein of Orthoflavivirus zikaense. Int Immunopharmacol 2024; 128:111523. [PMID: 38219440 DOI: 10.1016/j.intimp.2024.111523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/21/2023] [Accepted: 01/06/2024] [Indexed: 01/16/2024]
Abstract
Since the Orthoflavivirus zikaense (ZIKV) has been considered a risk for Zika congenital syndrome development, developing a safe and effective vaccine has become a high priority. Numerous research groups have developed strategies to prevent ZIKV infection and have identified the domain III of the ZIKV envelope protein (zEDIII) as a promising target. Subunit antigens are often poorly immunogenic, necessitating the use of adjuvants and/or delivery systems to induce optimal immune responses. The subject of nanotechnology has substantial expansion in recent years in terms of research and applications. Nanoparticles could be used as drug delivery systems and to increase the immunogenicity and stability of a given antigen. This work aims to characterize and validate the potential of a vaccine formulation composed of domain zEDIII and bovine serum albumin nanoparticles containing polyinosinic-polycytidylic acid (NPPI). NPPI were uptake in vitro by immature bone marrow dendritic cells and histological analysis of the skin of mice treated with NPPI showed an increase in cellularity. Immunization assay showed that mice immunized with zEDIII in the presence of NPPI produced neutralizing antibodies. Through the passive transfer of sera from immunized mice to ZIKV-infected neonatal mice, it was demonstrated that these antibodies provide protection, mitigating weight loss, clinical or neurological signs induced by infection, and significantly increased survival rates. Protection was further substantiated by the reduction in the number of viable infectious ZIKV, as well as a decrease in inflammatory cytokines and tissue alterations in the brains of infected mice. Taken together, data presented in this study shows that NPPI + zEDIII is a promising vaccine candidate for ZIKV.
Collapse
Affiliation(s)
- Raíne Piva-Amaral
- Laboratório de Vacinas, Departamento de Microbiologia e Imunologia, Instituto de Ciências Biomédicas, Universidade Federal de Alfenas, Rua Gabriel Monteiro da Silva, 700, Alfenas 37130-001, Brazil.
| | - Gabriel Augusto Pires de Souza
- Laboratório de Vacinas, Departamento de Microbiologia e Imunologia, Instituto de Ciências Biomédicas, Universidade Federal de Alfenas, Rua Gabriel Monteiro da Silva, 700, Alfenas 37130-001, Brazil; Laboratório de Vírus, Instituto de Ciências Biológicas, Departamento de Microbiologia, Universidade Federal de Minas Gerais, Brazil
| | - João Carlos Vilela Vieira Júnior
- Laboratório de Vacinas, Departamento de Microbiologia e Imunologia, Instituto de Ciências Biomédicas, Universidade Federal de Alfenas, Rua Gabriel Monteiro da Silva, 700, Alfenas 37130-001, Brazil
| | - Renato Fróes Goulart de Castro
- Laboratório de Vacinas, Departamento de Microbiologia e Imunologia, Instituto de Ciências Biomédicas, Universidade Federal de Alfenas, Rua Gabriel Monteiro da Silva, 700, Alfenas 37130-001, Brazil
| | - William Permagnani Gozzi
- Laboratório de Vacinas, Departamento de Microbiologia e Imunologia, Instituto de Ciências Biomédicas, Universidade Federal de Alfenas, Rua Gabriel Monteiro da Silva, 700, Alfenas 37130-001, Brazil
| | - Sergio Pereira Lima Neto
- Laboratório de Vacinas, Departamento de Microbiologia e Imunologia, Instituto de Ciências Biomédicas, Universidade Federal de Alfenas, Rua Gabriel Monteiro da Silva, 700, Alfenas 37130-001, Brazil
| | - Ana Luisa Cauvilla Dos Santos
- Laboratório de Vacinas, Departamento de Microbiologia e Imunologia, Instituto de Ciências Biomédicas, Universidade Federal de Alfenas, Rua Gabriel Monteiro da Silva, 700, Alfenas 37130-001, Brazil
| | - Helena Pavani Cassiano
- Laboratório de Vacinas, Departamento de Microbiologia e Imunologia, Instituto de Ciências Biomédicas, Universidade Federal de Alfenas, Rua Gabriel Monteiro da Silva, 700, Alfenas 37130-001, Brazil
| | | | - Romulo Dias Novaes
- Instituto de Ciências Biomédicas, Departamento de Biologia Estrutural, Universidade Federal de Alfenas, 37130-001 Minas Gerais, Brazil
| | - Jônatas Santos Abrahão
- Laboratório de Vírus, Instituto de Ciências Biológicas, Departamento de Microbiologia, Universidade Federal de Minas Gerais, Brazil
| | - Carine Ervolino de Oliveira
- Instituto de Ciências Biomédicas, Departamento de Patologia e Parasitologia, Universidade Federal de Alfenas, 37130-001 Minas Gerais, Brazil
| | - Breno de Mello Silva
- Núcleo de Pesquisas em Ciências Biológicas, NUPEB, Universidade Federal de Ouro Preto, Ouro Preto 35400-000, Brazil
| | - Guilherme de Paula Costa
- Núcleo de Pesquisas em Ciências Biológicas, NUPEB, Universidade Federal de Ouro Preto, Ouro Preto 35400-000, Brazil
| | - Luiz Cosme Cotta Malaquias
- Laboratório de Vacinas, Departamento de Microbiologia e Imunologia, Instituto de Ciências Biomédicas, Universidade Federal de Alfenas, Rua Gabriel Monteiro da Silva, 700, Alfenas 37130-001, Brazil
| | - Luiz Felipe Leomil Coelho
- Laboratório de Vacinas, Departamento de Microbiologia e Imunologia, Instituto de Ciências Biomédicas, Universidade Federal de Alfenas, Rua Gabriel Monteiro da Silva, 700, Alfenas 37130-001, Brazil.
| |
Collapse
|
24
|
Lee J, Neustrup MA, Slütter B, O'Mahony C, Bouwstra JA, van der Maaden K. Intradermal Vaccination with PLGA Nanoparticles via Dissolving Microneedles and Classical Injection Needles. Pharm Res 2024; 41:305-319. [PMID: 38332390 PMCID: PMC10879229 DOI: 10.1007/s11095-024-03665-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 01/19/2024] [Indexed: 02/10/2024]
Abstract
PURPOSE A dissolving microneedle array (dMNA) is a vaccine delivery device with several advantages over conventional needles. By incorporating particulate adjuvants in the form of poly(D,L-lactic-co-glycolic acid) (PLGA) nanoparticles (NPs) into the dMNA, the immune response against the antigen might be enhanced. This study aimed to prepare PLGA-NP-loaded dMNA and to compare T-cell responses induced by either intradermally injected aqueous-PLGA-NP formulation or PLGA-NP-loaded dMNA in mice. METHODS PLGA NPs were prepared with microfluidics, and their physicochemical characteristics with regard to encapsulation efficiencies of ovalbumin (OVA) and CpG oligonucleotide (CpG), zeta potentials, polydispersity indexes, and sizes were analysed. PLGA NPs incorporated dMNA was produced with three different dMNA formulations by using the centrifugation method, and the integrity of PLGA NPs in dMNAs was evaluated. The immunogenicity was evaluated in mice by comparing the T-cell responses induced by dMNA and aqueous formulations containing ovalbumin and CpG (OVA/CpG) with and without PLGA NP. RESULTS Prepared PLGA NPs had a size of around 100 nm. The dMNA formulations affected the particle integrity, and the dMNA with poly(vinyl alcohol) (PVA) showed almost no aggregation of PLGA NPs. The PLGA:PVA weight ratio of 1:9 resulted in 100% of penetration efficiency and the fastest dissolution in ex-vivo human skin (< 30 min). The aqueous formulation with soluble OVA/CpG and the aqueous-PLGA-NP formulation with OVA/CpG induced the highest CD4 + T-cell responses in blood and spleen cells. CONCLUSIONS PLGA NPs incorporated dMNA was successfully fabricated and the aqueous formulation containing PLGA NPs induce superior CD4+ and CD8+ T-cell responses.
Collapse
Affiliation(s)
- Jihui Lee
- Division of Biotherapeutics, Leiden Academic Centre for Drug Research, Leiden University, 2333CC, Leiden, the Netherlands
| | - Malene A Neustrup
- Division of Biotherapeutics, Leiden Academic Centre for Drug Research, Leiden University, 2333CC, Leiden, the Netherlands
| | - Bram Slütter
- Division of Biotherapeutics, Leiden Academic Centre for Drug Research, Leiden University, 2333CC, Leiden, the Netherlands
| | - Conor O'Mahony
- Tyndall National Institute, Lee Maltings, Prospect Row, Cork, Ireland
| | - Joke A Bouwstra
- Division of Biotherapeutics, Leiden Academic Centre for Drug Research, Leiden University, 2333CC, Leiden, the Netherlands
| | - Koen van der Maaden
- Division of Biotherapeutics, Leiden Academic Centre for Drug Research, Leiden University, 2333CC, Leiden, the Netherlands.
- Department of Immunology, Leiden University Medical Center, 2300RC, Leiden, the Netherlands.
| |
Collapse
|
25
|
Zhang J, Wang P, Li Z, Xie Y, Jin N, Han J, Zhang H, Lu H. Construction and immunogenicity of Senecavirus A virus-like particle vaccine with adjuvant. Vet Microbiol 2024; 289:109971. [PMID: 38181599 DOI: 10.1016/j.vetmic.2023.109971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 12/24/2023] [Accepted: 12/28/2023] [Indexed: 01/07/2024]
Abstract
Senecavirus A (SVA) is constantly associated with vesicular disease in pigs, and the clinical symptoms of pig infection with SVA are indistinguishable from other porcine vesicular diseases. Vaccine is one of the best methods to eliminate and control the spread of SVA. Virus-like particles (VLPs) can play important roles in prevention for infectious diseases. Here, the SVA VLPs was assembled by the baculovirus expression vector system, and the immunogenicity of the SVA VLPs mixed with different adjuvants were evaluated in mice and pigs. Two recombinant baculoviruses (rPFBD-VP1-VP3 and rPFBD-VP2-VP4) were constructed, which co-infected with Sf9 suspension cells to assemble SVA VLPs successfully. SVA VLPs mixed with ISA201 adjuvant and ISA201 +Poly(I:C) adjuvant produced higher levels of neutralizing antibody, specific antibody (total IgG, IgG1, IgG2a and IgG2b) and cytokines in the T cells. And there was no significant difference between SVA VLPs+ 201 group and SVA VLPs+Poly(I:C)+ 201 group. Pigs immunized with high dose of SVA VLPs mixed with ISA201 adjuvant could produce higher titers of neutralizing antibody and SVA-specific antibody. Furthermore, the protection rates of SVA VLPs-H and SVA VLPs-L were 100% and 80%, and the viral load of SVA VLPs-H group is the lowest in all SVA VLPs groups. It is the first time to develop the SVA VLPs using the baculovirus expression vector system, which may lay the foundation for the research and development of SVA vaccine.
Collapse
Affiliation(s)
- Jinyong Zhang
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Peng Wang
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Zhuoxin Li
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Yubiao Xie
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Ningyi Jin
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China; Academician Workstation of Jilin Province, Changchun University of Chinese Medicine, Changchun, China
| | - Jicheng Han
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China; Academician Workstation of Jilin Province, Changchun University of Chinese Medicine, Changchun, China.
| | - He Zhang
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China.
| | - Huijun Lu
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China.
| |
Collapse
|
26
|
Wang Z, You X, Zhang Y, Liu Q, Yang D. Poly(I:C) induces anti-inflammatory response against secondary LPS challenge in zebrafish larvae. FISH & SHELLFISH IMMUNOLOGY 2024; 144:109285. [PMID: 38092095 DOI: 10.1016/j.fsi.2023.109285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/23/2023] [Accepted: 12/07/2023] [Indexed: 12/17/2023]
Abstract
Poly(I:C) is known as an agonist of the TLR3 receptor which could prime inflammation and elicit the host immune response, which is widely applied as adjuvant or antivirus treatment. However, the negative effects of poly(I:C) on regulating immune response to protect the host from inflammatory diseases remain largely unknown. Here, we establish an in vivo model to pre-treat zebrafish larvae with poly(I:C) at 2 dpf, then challenge them with LPS at 6 dpf, and find that poly(I:C) training could significantly alleviate the LPS challenge-induced septic shock and inflammatory phenotypes. Moreover, the poly(I:C)-trained larvae exhibit decreased number of macrophages, but not neutrophils, after secondary LPS challenge. Furthermore, training the larvae with poly(I:C) could elevate the transcripts of mTOR signaling and heighten the H3K4me3-mediated epigenetic modifications. And interestingly, we find that inhibiting the H3K4me3 modification, rather than mTOR signaling, could recover the number of macrophages in poly(I:C)-trained larvae, which is consistent with the observations of inflammatory phenotypes. Taken together, these results suggest that poly(I:C) training could induce epigenetic rewiring to mediate the anti-inflammatory response against secondary LPS challenge-induced septic shock through decreasing macrophages' number in vivo, which might expand our understanding of poly(I:C) in regulating fish immune response.
Collapse
Affiliation(s)
- Zhuang Wang
- State Key Laboratory of Bioreactor Engineering, Laboratory for Aquatic Animal Diseases, East China University of Science and Technology, Shanghai, 200237, China
| | - Xinwei You
- State Key Laboratory of Bioreactor Engineering, Laboratory for Aquatic Animal Diseases, East China University of Science and Technology, Shanghai, 200237, China
| | - Yuanxing Zhang
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519000, China; Shanghai Engineering Research Center of Maricultured Animal Vaccines, Shanghai, 200237, China
| | - Qin Liu
- State Key Laboratory of Bioreactor Engineering, Laboratory for Aquatic Animal Diseases, East China University of Science and Technology, Shanghai, 200237, China; Shanghai Engineering Research Center of Maricultured Animal Vaccines, Shanghai, 200237, China
| | - Dahai Yang
- State Key Laboratory of Bioreactor Engineering, Laboratory for Aquatic Animal Diseases, East China University of Science and Technology, Shanghai, 200237, China; Shanghai Engineering Research Center of Maricultured Animal Vaccines, Shanghai, 200237, China.
| |
Collapse
|
27
|
Sun B, Li M, Yao Z, Yu G, Ma Y. Advances in Vaccine Adjuvants: Nanomaterials and Small Molecules. Handb Exp Pharmacol 2024; 284:113-132. [PMID: 37059911 DOI: 10.1007/164_2023_652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2023]
Abstract
Adjuvants have been extensively and essentially formulated in subunits and certain inactivated vaccines for enhancing and prolonging protective immunity against infections and diseases. According to the types of infectious diseases and the required immunity, adjuvants with various acting mechanisms have been designed and applied in human vaccines. In this chapter, we introduce the advances in vaccine adjuvants based on nanomaterials and small molecules. By reviewing the immune mechanisms induced by adjuvants with different characteristics, we aim to establish structure-activity relationships between the physicochemical properties of adjuvants and their immunostimulating capability for the development of adjuvants for more effective preventative and therapeutic vaccines.
Collapse
Affiliation(s)
- Bingbing Sun
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering and Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, Dalian, China.
| | - Min Li
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering and Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, Dalian, China
| | - Zhiying Yao
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering and Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, Dalian, China
| | - Ge Yu
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering and Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, Dalian, China
| | - Yubin Ma
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering and Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, Dalian, China
| |
Collapse
|
28
|
Liu X, Lu Y, Li X, Luo L, You J. Nanoplatform-enhanced photodynamic therapy for the induction of immunogenic cell death. J Control Release 2024; 365:1058-1073. [PMID: 38056695 DOI: 10.1016/j.jconrel.2023.11.058] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 11/28/2023] [Accepted: 11/29/2023] [Indexed: 12/08/2023]
Abstract
As an efficient, non-invasive, low-side-effect, and highly selective cancer therapy, photodynamic therapy (PDT) is used to treat various malignant tumors. However, the inefficiency of dealing with deep tumors and metastatic lesions highly limits the use of PDT. Immunogenic cell death (ICD) is a particular form of tumor cell death that could elicit a tumor-special immune response, leading to a systemic anti-tumor effect and providing therapeutic benefits for metastatic lesions. In this regard, it is crucial to enhance the ability of PDT to induce ICD. Luckily, advanced nanotechnology created many promising ways to improve the immunogenicity of PDT and achieve photoimmunotherapy. This review summarizes the emerging strategies for triggering immunogenic cell death via nanoplatform-enhanced PDT, with particular emphasis on their advantages in photoimmunotherapy. We highlight the nanoplatforms classified according to the basic principles of photodynamic therapy and immunogenic cell death, which provides a valuable reference for the design of nanoplatform for photoimmunotherapy. In addition, we also discuss the current situation and prospect of nano-based photoimmunotherapy in clinical studies.
Collapse
Affiliation(s)
- Xu Liu
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, P. R. China
| | - Yichao Lu
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, P. R. China
| | - Xiang Li
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, P. R. China
| | - Lihua Luo
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, P. R. China; Jinhua Institute of Zhejiang University, 498 Yiwu Street, Jinhua, Zhejiang 321299, P. R. China.
| | - Jian You
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, P. R. China; State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, 79 Qingchun Road, Shangcheng District, Hangzhou, Zhejiang 310006, P. R. China; The First Affiliated Hospital, College of Medicine, Zhejiang University, 79 QingChun Road, Hangzhou, Zhejiang 310000, P. R. China; Jinhua Institute of Zhejiang University, 498 Yiwu Street, Jinhua, Zhejiang 321299, P. R. China.
| |
Collapse
|
29
|
Vergara EJ, Tran AC, Kim MY, Mussá T, Paul MJ, Harrison T, Reljic R. Mucosal and systemic immune responses after a single intranasal dose of nanoparticle and spore-based subunit vaccines in mice with pre-existing lung mycobacterial immunity. Front Immunol 2023; 14:1306449. [PMID: 38130713 PMCID: PMC10733481 DOI: 10.3389/fimmu.2023.1306449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 11/15/2023] [Indexed: 12/23/2023] Open
Abstract
Tuberculosis (TB) is a major global health threat that claims more than one million lives annually. With a quarter of the global population harbouring latent TB, post-exposure vaccination aimed at high-risk populations that could develop active TB disease would be of great public health benefit. Mucosal vaccination is an attractive approach for a predominantly lung disease like TB because it elicits both local and systemic immunity. However, the immunological consequence of mucosal immunisation in the presence of existing lung immunity remains largely unexplored. Using a mycobacterial pre-exposure mouse model, we assessed whether pre-existing mucosal and systemic immune responses can be boosted and/or qualitatively altered by intranasal administration of spore- and nanoparticle-based subunit vaccines. Analysis of lung T cell responses revealed an increasing trend in the frequency of important CD4 and CD8 T cell subsets, and T effector memory cells with a Th1 cytokine (IFNγ and TNFα) signature among immunised mice. Additionally, significantly greater antigen specific Th1, Th17 and IL-10 responses, and antigen-induced T cell proliferation were seen from the spleens of immunised mice. Measurement of antigen-specific IgG and IgA from blood and bronchoalveolar lavage fluid also revealed enhanced systemic and local humoral immune responses among immunised animals. Lastly, peripheral blood mononuclear cells (PBMCs) obtained from the TB-endemic country of Mozambique show that individuals with LTBI showed significantly greater CD4 T cell reactivity to the vaccine candidate as compared to healthy controls. These results support further testing of Spore-FP1 and Nano-FP1 as post-exposure TB vaccines.
Collapse
Affiliation(s)
- Emil Joseph Vergara
- Institute for Infection and Immunity, St. George’s University of London, London, United Kingdom
| | - Andy Cano Tran
- Institute for Infection and Immunity, St. George’s University of London, London, United Kingdom
| | - Mi-Young Kim
- Institute for Infection and Immunity, St. George’s University of London, London, United Kingdom
- Department of Molecular Biology, Jeonbuk National University, Jeonju, Republic of Korea
| | - Tufária Mussá
- Department of Microbiology, Faculty of Medicine, Eduardo Mondlane University, Maputo, Mozambique
| | - Matthew J. Paul
- Institute for Infection and Immunity, St. George’s University of London, London, United Kingdom
| | - Thomas Harrison
- Institute for Infection and Immunity, St. George’s University of London, London, United Kingdom
| | - Rajko Reljic
- Institute for Infection and Immunity, St. George’s University of London, London, United Kingdom
| |
Collapse
|
30
|
Vakili B, Karami-Darehnaranji M, Mirzaei E, Hosseini F, Nezafat N. Graphene oxide as novel vaccine adjuvant. Int Immunopharmacol 2023; 125:111062. [PMID: 37866317 DOI: 10.1016/j.intimp.2023.111062] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/30/2023] [Accepted: 10/10/2023] [Indexed: 10/24/2023]
Abstract
To improve antigen immunogenicity and promote long-lasting immunity, vaccine formulations have been appropriately supplemented with adjuvants. Graphene has been found to enhance the presentation of antigens to CD8+ T cells, as well as stimulating innate immune responses and inflammatory factors. Its properties, such as large surface area, water stability, and high aspect ratio, make it a suitable candidate for delivering biological substances. Graphene-based nanomaterials have recently attracted significant attention as a new type of vaccine adjuvants due to their potential role in the activation of immune responses. Due to the limited functionality of some approved human adjuvants for use, the development of new all-purpose adjuvants is urgently required. Research on the immunological and biomedical use of graphene oxide (GO) indicates that these nanocarriers possess excellent physicochemical properties, acceptable biocompatibility, and a high capacity for drug loading. Graphene-based nanocarriers also could improve the function of some immune cells such as dendritic cells and macrophages through specific signaling pathways. However, GO injection can lead to significant oxidative stress and inflammation. Various surface functionalization protocols have been employed to reduce possible adverse effects of GO, such as aggregation of GO in biological liquids and induce cell death. Furthermore, these modifications enhance the properties of functionalized-GO's qualities, making it an excellent carrier and adjuvant. Shedding light on different physicochemical and structural properties of GO and its derivatives has led to their application in various therapeutic and drug delivery fields. In this review, we have endeavored to elaborate on different aspects of GO.
Collapse
Affiliation(s)
- Bahareh Vakili
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mahboubeh Karami-Darehnaranji
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Esmaeil Mirzaei
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Farnaz Hosseini
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Navid Nezafat
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Computational Vaccine and Drug Design Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
31
|
Zhang SW, Wang H, Ding XH, Xiao YL, Shao ZM, You C, Gu YJ, Jiang YZ. Bidirectional crosstalk between therapeutic cancer vaccines and the tumor microenvironment: Beyond tumor antigens. FUNDAMENTAL RESEARCH 2023; 3:1005-1024. [PMID: 38933006 PMCID: PMC11197801 DOI: 10.1016/j.fmre.2022.03.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 03/13/2022] [Accepted: 03/20/2022] [Indexed: 11/20/2022] Open
Abstract
Immunotherapy has rejuvenated cancer therapy, especially after anti-PD-(L)1 came onto the scene. Among the many therapeutic options, therapeutic cancer vaccines are one of the most essential players. Although great progress has been made in research on tumor antigen vaccines, few phase III trials have shown clinical benefits. One of the reasons lies in obstruction from the tumor microenvironment (TME). Meanwhile, the therapeutic cancer vaccine reshapes the TME in an ambivalent way, leading to immune stimulation or immune escape. In this review, we summarize recent progress on the interaction between therapeutic cancer vaccines and the TME. With respect to vaccine resistance, innate immunosuppressive TME components and acquired resistance caused by vaccination are both involved. Understanding the underlying mechanism of this crosstalk provides insight into the treatment of cancer by directly targeting the TME or synergizing with other therapeutics.
Collapse
Affiliation(s)
- Si-Wei Zhang
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Han Wang
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
| | - Xiao-Hong Ding
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Yu-Ling Xiao
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Zhi-Ming Shao
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
| | - Chao You
- Department of Radiology, Fudan University Shanghai Cancer Center, 270 Dong'an Road, Shanghai 200032, China
| | - Ya-Jia Gu
- Department of Radiology, Fudan University Shanghai Cancer Center, 270 Dong'an Road, Shanghai 200032, China
| | - Yi-Zhou Jiang
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| |
Collapse
|
32
|
Elewa YHA, Khalifa AM, Zahran MH. Impact of intravenous/intranasal polyinosinic-polycytidylic acid administration on the mediastinal fat-associated lymphoid clusters and lung tissue in healthy mice. Ann Anat 2023; 250:152158. [PMID: 37666464 DOI: 10.1016/j.aanat.2023.152158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 08/23/2023] [Accepted: 08/24/2023] [Indexed: 09/06/2023]
Abstract
BACKGROUND Polyinosinic-polycytidylic acid (pIC) is a synthetic analog of double-stranded RNA. It is used as a synthetic adjuvant to induce an adaptive immune response. However, the effect of pIC on the development of mediastinal fat-associated lymphoid clusters (MFALCs) that regulate intrathoracic hemostasis has remained unidentified. METHODS We investigated the impact of intranasal (i.n.) administration (pIC i.n. group) and intravenous (i.v.) administration (pIC i.v. group) of pIC on both MFALCs and lung tissue. RESULTS Compared with the control phosphate-buffered saline (PBS) groups, both pIC-administered groups displayed a significant increase in the MFALC size (particularly in the pIC i.n. group), area of MFALC high endothelial venules (HEVs), area of lymphatic vessels (LVs), number of proliferating cells (particularly in the pIC i.v. group), and number of immune cells (B220+ B-lymphocytes, CD3+ T-lymphocytes, Iba1+ macrophages, and Gr-1+ granulocytes) in both MFALCs and lung tissues. In addition, a positive correlation was detected between MFALC size and proliferating cells, immune cell population, LVs, and HEVs within MFALCs in both groups. Except for the proliferating cell and B-lymphocyte populations in the i.n. administered group and granulocyte populations in both i.n. and i.v. administered routes, such correlations were significant. CONCLUSION In all, our data indicate that local or systemic administration of pIC induces the development of MFALCs and can be used as an immunostimulant therapeutic strategy.
Collapse
Affiliation(s)
- Yaser Hosny Ali Elewa
- Faculty of Veterinary Medicine, Hokkaido University, Hokkaido 060-0818, Japan; Department of Histology and Cytology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt.
| | - Alaa M Khalifa
- Laboratory of Innovative Nanomedicine, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | - Mahmoud Hosny Zahran
- Internal Medicine Department, Faculty of Medicine, Zagazig University, Zagazig 44519, Egypt
| |
Collapse
|
33
|
Yan W, Li Y, Zou Y, Zhu R, Wu T, Sun X, Yuan W, Lang T, Yin Q, Li Y. Breaking Tumor Immunosuppressive Network by Regulating Multiple Nodes with Triadic Drug Delivery Nanoparticles. ACS NANO 2023; 17:17826-17844. [PMID: 37690028 DOI: 10.1021/acsnano.3c03387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Inside the tumor microenvironment, a complicated immunosuppressive network is constituted by tumor cells and suppressive immune cells as its nodes, including myeloid-derived suppressor cells (MDSCs), tumor-associated macrophages (TAMs), and regulatory T cells, which have mutual promotion on each other and superimposed inhibition on natural killer (NK) cells and cytotoxic T cells. Breaking the whole balance of this web is critical to tumor immunotherapy since modulation on a single node may be diluted by other factors in the network. To achieve multifaceted regulation on antitumor immunity against triple-negative breast cancer, in this work, a micelle, termed BEM, co-delivering the MDSC inhibitor, entinostat (ENT), and the immune checkpoint inhibitor, BMS-1, was constructed with pH-sensitive amphiphilic poly(β-amino ester) derivatives. Then, BEM and the scavenger receptor A (SR-A) ligand dextran sulfate (DXS) formed a negatively charged nanoparticle (BEN). DXS detached from BEN in the weakly acidic tumor microenvironment and blocked SR-A on TAMs, reprogramming TAMs toward the M1 type. The positively charged BEM with facilitated intratumoral penetration and cellular uptake dissociated in the lysosomes, accompanied by the release of ENT and BMS-1 to suppress MDSCs and block the programmed cell death protein (PD)-1/PD-ligand 1 pathway, respectively. As a result, NK cells and CD8+ T cells in tumors were increased, as were their effector cytokines. The activated innate and adaptive antitumor immune responses suppressed the growth and metastasis of tumors and prolonged survival of 4T1 tumor-bearing mice. BEN provides a reliable approach for improving cancer immunotherapy by destroying the immunosuppression web in tumors via multinode regulation.
Collapse
Affiliation(s)
- Wenlu Yan
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- School of Pharmacy, University of Chinese Academy of Sciences, Beijing 100049, China
- Yantai Key Laboratory of Nanomedicine & Advanced Preparations, Yantai Institute of Materia Medica, Yantai 264000, China
| | - Yu Li
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yiting Zou
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Runqi Zhu
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- School of Pharmacy, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ting Wu
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- Department of Pharmaceutics, School of Pharmacy, Nanjing Medical University, Nanjing 211116, China
| | - Xujie Sun
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- School of Pharmacy, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenhui Yuan
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- School of Pharmacy, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tianqun Lang
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Qi Yin
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- School of Pharmacy, University of Chinese Academy of Sciences, Beijing 100049, China
- Yantai Key Laboratory of Nanomedicine & Advanced Preparations, Yantai Institute of Materia Medica, Yantai 264000, China
| | - Yaping Li
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- School of Pharmacy, University of Chinese Academy of Sciences, Beijing 100049, China
- Yantai Key Laboratory of Nanomedicine & Advanced Preparations, Yantai Institute of Materia Medica, Yantai 264000, China
- Shandong Laboratory of Yantai Drug Discovery, Bohai rim Advanced Research Institute for Drug Discovery, Yantai 264117, China
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
| |
Collapse
|
34
|
Yamamoto T, Tanji M, Mitsunaga F, Nakamura S. SARS-CoV-2 sublingual vaccine with RBD antigen and poly(I:C) adjuvant: Preclinical study in cynomolgus macaques. Biol Methods Protoc 2023; 8:bpad017. [PMID: 37711440 PMCID: PMC10497375 DOI: 10.1093/biomethods/bpad017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 08/16/2023] [Accepted: 08/21/2023] [Indexed: 09/16/2023] Open
Abstract
Mucosal vaccine for sublingual route was prepared with recombinant SARS-CoV-2 spike protein receptor binding domain (RBD) antigen and poly(I:C) adjuvant components. The efficacy of this sublingual vaccine was examined using Cynomolgus macaques. Nine of the macaque monkeys were divided into three groups of three animals: control [just 400 µg poly(I:C) per head], low dose [30 µg RBD and 400 µg poly(I:C) per head], and high dose [150 µg RBD and 400 µg poly(I:C) per head], respectively. N-acetylcysteine (NAC), a mild reducing agent losing mucin barrier, was used to enhance vaccine delivery to mucosal immune cells. RBD-specific IgA antibody secreted in pituita was detected in two of three monkeys of the high dose group and one of three animals of the low dose group. RBD-specific IgG and/or IgA antibodies in plasma were also detected in these monkeys. These indicated that the sublingual vaccine stimulated mucosal immune response to produce antigen-specific secretory IgA antibodies in pituita and/or saliva. This sublingual vaccine also affected systemic immune response to produce IgG (IgA) in plasma. Little RBD-specific IgE was detected in plasma, suggesting no allergic antigenicity of this sublingual vaccine. Thus, SARS-CoV-2 sublingual vaccine consisting of poly(I:C) adjuvant showed reasonable efficacy in a non-human primate model.
Collapse
Affiliation(s)
- Tetsuro Yamamoto
- Innovation Research Center, EPS Holdings, Inc., 1-8 Tsukudocho, Shinjuku-ku, Tokyo 162-0821, Japan
- EP Mediate Co., Ltd, 1-8 Tsukudocho, Shinjuku-ku, Tokyo 162-0821, Japan
- Research Center, EPS Innovative Medicine Co., Ltd, 2-1 Tsukudohachimancho, Shinjuku-ku, Tokyo 162-0821, Japan
| | - Masanori Tanji
- Innovation Research Center, EPS Holdings, Inc., 1-8 Tsukudocho, Shinjuku-ku, Tokyo 162-0821, Japan
- EP Mediate Co., Ltd, 1-8 Tsukudocho, Shinjuku-ku, Tokyo 162-0821, Japan
| | - Fusako Mitsunaga
- Biomedical Institute, NPO Primate Agora, 52-2 Fukue, Kaizu-cho, Kaizu 503-0628, Japan
- Intelligence & Technology Lab, Inc., 52-1 Fukue, Kaizu-cho, Kaizu 503-0628, Japan
| | - Shin Nakamura
- Biomedical Institute, NPO Primate Agora, 52-2 Fukue, Kaizu-cho, Kaizu 503-0628, Japan
- Intelligence & Technology Lab, Inc., 52-1 Fukue, Kaizu-cho, Kaizu 503-0628, Japan
| |
Collapse
|
35
|
Qin Y, Zhang H, Li Y, Xie T, Yan S, Wang J, Qu J, Ouyang F, Lv S, Guo Z, Wei H, Yu CY. Promotion of ICD via Nanotechnology. Macromol Biosci 2023; 23:e2300093. [PMID: 37114599 DOI: 10.1002/mabi.202300093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/17/2023] [Indexed: 04/29/2023]
Abstract
Immunotherapy represents the most promising treatment strategy for cancer, but suffers from compromised therapeutic efficiency due to low immune activity of tumor cells and an immunosuppressive microenvironment, which significantly hampers the clinical translations of this treatment strategy. To promote immunotherapy with desired therapeutic efficiency, immunogenic cell death (ICD), a particular type of death capable of reshaping body's antitumor immune activity, has drawn considerable attention due to the potential to stimulate a potent immune response. Still, the potential of ICD effect remains unsatisfactory because of the intricate tumor microenvironment and multiple drawbacks of the used inducing agents. ICD has been thoroughly reviewed so far with a general classification of ICD as a kind of immunotherapy strategy and repeated discussion of the related mechanism. However, there are no published reviews, to the authors' knowledge, providing a systematic summarization on the enhancement of ICD via nanotechnology. For this purpose, this review first discusses the four stages of ICD according to the development mechanisms, followed by a comprehensive description on the use of nanotechnology to enhance ICD in the corresponding four stages. The challenges of ICD inducers and possible solutions are finally summarized for future ICD-based enhanced immunotherapy.
Collapse
Affiliation(s)
- Yang Qin
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Institute of Pharmacy & Pharmacology, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Haitao Zhang
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Institute of Pharmacy & Pharmacology, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Yunxian Li
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Institute of Pharmacy & Pharmacology, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Ting Xie
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Institute of Pharmacy & Pharmacology, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Shuang Yan
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Institute of Pharmacy & Pharmacology, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Jiaqi Wang
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Institute of Pharmacy & Pharmacology, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Jun Qu
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Institute of Pharmacy & Pharmacology, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Feijun Ouyang
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Institute of Pharmacy & Pharmacology, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Shaoyang Lv
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Institute of Pharmacy & Pharmacology, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Zifen Guo
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Institute of Pharmacy & Pharmacology, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Hua Wei
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Institute of Pharmacy & Pharmacology, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Cui-Yun Yu
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Institute of Pharmacy & Pharmacology, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, 421001, China
| |
Collapse
|
36
|
Zhang Y, Xu JC, Hu ZD, Fan XY. Advances in protein subunit vaccines against tuberculosis. Front Immunol 2023; 14:1238586. [PMID: 37654500 PMCID: PMC10465801 DOI: 10.3389/fimmu.2023.1238586] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 07/25/2023] [Indexed: 09/02/2023] Open
Abstract
Tuberculosis (TB), also known as the "White Plague", is caused by Mycobacterium tuberculosis (Mtb). Before the COVID-19 epidemic, TB had the highest mortality rate of any single infectious disease. Vaccination is considered one of the most effective strategies for controlling TB. Despite the limitations of the Bacille Calmette-Guérin (BCG) vaccine in terms of protection against TB among adults, it is currently the only licensed TB vaccine. Recently, with the evolution of bioinformatics and structural biology techniques to screen and optimize protective antigens of Mtb, the tremendous potential of protein subunit vaccines is being exploited. Multistage subunit vaccines obtained by fusing immunodominant antigens from different stages of TB infection are being used both to prevent and to treat TB. Additionally, the development of novel adjuvants is compensating for weaknesses of immunogenicity, which is conducive to the flourishing of subunit vaccines. With advances in the development of animal models, preclinical vaccine protection assessments are becoming increasingly accurate. This review summarizes progress in the research of protein subunit TB vaccines during the past decades to facilitate the further optimization of protein subunit vaccines that may eradicate TB.
Collapse
Affiliation(s)
- Ying Zhang
- Shanghai Public Health Clinical Center, Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, China
| | - Jin-chuan Xu
- Shanghai Public Health Clinical Center, Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, China
| | - Zhi-dong Hu
- Shanghai Public Health Clinical Center, Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, China
- TB Center, Shanghai Emerging and Re-emerging Infectious Disease Institute, Fudan University, Shanghai, China
| | - Xiao-yong Fan
- Shanghai Public Health Clinical Center, Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, China
- TB Center, Shanghai Emerging and Re-emerging Infectious Disease Institute, Fudan University, Shanghai, China
| |
Collapse
|
37
|
Zhao T, Cai Y, Jiang Y, He X, Wei Y, Yu Y, Tian X. Vaccine adjuvants: mechanisms and platforms. Signal Transduct Target Ther 2023; 8:283. [PMID: 37468460 PMCID: PMC10356842 DOI: 10.1038/s41392-023-01557-7] [Citation(s) in RCA: 137] [Impact Index Per Article: 68.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 06/19/2023] [Accepted: 06/27/2023] [Indexed: 07/21/2023] Open
Abstract
Adjuvants are indispensable components of vaccines. Despite being widely used in vaccines, their action mechanisms are not yet clear. With a greater understanding of the mechanisms by which the innate immune response controls the antigen-specific response, the adjuvants' action mechanisms are beginning to be elucidated. Adjuvants can be categorized as immunostimulants and delivery systems. Immunostimulants are danger signal molecules that lead to the maturation and activation of antigen-presenting cells (APCs) by targeting Toll-like receptors (TLRs) and other pattern recognition receptors (PRRs) to promote the production of antigen signals and co-stimulatory signals, which in turn enhance the adaptive immune responses. On the other hand, delivery systems are carrier materials that facilitate antigen presentation by prolonging the bioavailability of the loaded antigens, as well as targeting antigens to lymph nodes or APCs. The adjuvants' action mechanisms are systematically summarized at the beginning of this review. This is followed by an introduction of the mechanisms, properties, and progress of classical vaccine adjuvants. Furthermore, since some of the adjuvants under investigation exhibit greater immune activation potency than classical adjuvants, which could compensate for the deficiencies of classical adjuvants, a summary of the adjuvant platforms under investigation is subsequently presented. Notably, we highlight the different action mechanisms and immunological properties of these adjuvant platforms, which will provide a wide range of options for the rational design of different vaccines. On this basis, this review points out the development prospects of vaccine adjuvants and the problems that should be paid attention to in the future.
Collapse
Affiliation(s)
- Tingmei Zhao
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, 610041, Sichuan, People's Republic of China
| | - Yulong Cai
- Division of Biliary Tract Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Yujie Jiang
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, 610041, Sichuan, People's Republic of China
| | - Xuemei He
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, 610041, Sichuan, People's Republic of China
| | - Yuquan Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, 610041, Sichuan, People's Republic of China
| | - Yifan Yu
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, 610041, Sichuan, People's Republic of China
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaohe Tian
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, 610041, Sichuan, People's Republic of China.
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
38
|
Laotee S, Duangkaew M, Jivapetthai A, Tharakhet K, Kaewpang P, Prompetchara E, Phumiamorn S, Sapsutthipas S, Trisiriwanich S, Somsaard T, Roytrakul S, Duangkhae P, Ongpipattanakul B, Limpikirati P, Pornputtapong N, Arunmanee W. CHO-produced RBD-Fc subunit vaccines with alternative adjuvants generate immune responses against SARS-CoV-2. PLoS One 2023; 18:e0288486. [PMID: 37450510 PMCID: PMC10348575 DOI: 10.1371/journal.pone.0288486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 06/28/2023] [Indexed: 07/18/2023] Open
Abstract
Subunit vaccines feature critical advantages over other vaccine platforms such as stability, price, and minimal adverse effects. To maximize immunological protection of subunit vaccines, adjuvants are considered as main components that are formulated within the subunit vaccine. They can modulate adverse effects and enhance immune outcomes. However, the most suitable formulation providing the best immunological outcomes and safety are still under investigation. In this report, we combined recombinant RBD with human IgG1 Fc to create an RBD dimer. This fusion protein was expressed in CHO and formulated with alternative adjuvants with different immune activation including Montanide ISA51, Poly (I:C), and MPLA/Quil-A® as potential vaccine candidate formulations. Using the murine model, a potent induction of anti-RBD IgG antibodies in immunized mice sera were observed. IgG subclass analyses (IgG1/IgG2a) illustrated that all adjuvanted formulations could stimulate both Th1 and Th2-type immune responses in particular Poly (I:C) and MPLA/Quil-A®, eliciting greater balance. In addition, Montanide ISA51-formulated RBD-Fc vaccination provided a promising level of neutralizing antibodies against live wild-type SARS-CoV-2 in vitro followed by Poly (I:C) and MPLA/Quil-A®, respectively. Also, mice sera from adjuvanted formulations could strongly inhibit RBD:ACE2 interaction. This study offers immunogenicity profiles, forecasted safety based on Vaccine-associated enhanced disease (VAED) caused by Th1-skewed immunity, and neutralizing antibody analysis of candidates of RBD-Fc-based subunit vaccine formulations to obtain an alternative subunit vaccine formulation against SARS-CoV-2.
Collapse
Affiliation(s)
- Sedthawut Laotee
- Department of Biochemistry and Microbiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Methawee Duangkaew
- Department of Biochemistry and Microbiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Araya Jivapetthai
- Department of Biochemistry and Microbiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Kittipan Tharakhet
- Center of Excellence in Vaccine Research and Development (Chula Vaccine Research Center, Chula VRC), Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Department of Laboratory Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Papatsara Kaewpang
- Center of Excellence in Vaccine Research and Development (Chula Vaccine Research Center, Chula VRC), Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Eakachai Prompetchara
- Center of Excellence in Vaccine Research and Development (Chula Vaccine Research Center, Chula VRC), Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Department of Laboratory Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Integrated Frontier Biotechnology for Emerging Disease, Chulalongkorn University, Bangkok, Thailand
| | - Supaporn Phumiamorn
- Institute of Biological Products, Department of Medical Sciences, Ministry of Public Health, Nonthaburi, Thailand
| | - Sompong Sapsutthipas
- Institute of Biological Products, Department of Medical Sciences, Ministry of Public Health, Nonthaburi, Thailand
| | - Sakalin Trisiriwanich
- Institute of Biological Products, Department of Medical Sciences, Ministry of Public Health, Nonthaburi, Thailand
| | - Thitiporn Somsaard
- Institute of Biological Products, Department of Medical Sciences, Ministry of Public Health, Nonthaburi, Thailand
| | - Sittiruk Roytrakul
- Functional Proteomics Technology Laboratory, National Center for Genetic Engineering and Biotechnology, National Science and Technology for Development Agency, Pathumthani, Thailand
| | - Parichat Duangkhae
- Viral Vaccine Unit, Biologics Research Group, Research and Development Institute, The Government Pharmaceutical Organization, Bangkok, Thailand
| | - Boonsri Ongpipattanakul
- Department of Biochemistry and Microbiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Patanachai Limpikirati
- Department of Food and Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Natapol Pornputtapong
- Department of Biochemistry and Microbiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Wanatchaporn Arunmanee
- Department of Biochemistry and Microbiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
- Center of Excellence in Cancer Cell and Molecular Biology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
39
|
Choudhary P, Boamah B, Hon Ng S, White A, Weber LP, Wilson HL. Solidified saturated fats coating subunit vaccines greatly extended vaccine booster release and contributed to a Th1/Th2 mixed immune response in mice. Vaccine 2023; 41:3989-4001. [PMID: 37230887 DOI: 10.1016/j.vaccine.2023.05.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 05/02/2023] [Accepted: 05/08/2023] [Indexed: 05/27/2023]
Abstract
Delayed release of vaccine coupled with a soluble vaccine acts as a primer and a booster with only a single administration, which would be very beneficial to livestock producers. We developed a subdermal pellet consisting of solid-phase pure stearic acid (SA) or palmitic acid (PA) that was used to encapsulate a small volume liquid vaccine consisting of fluorescently labeled *Ovalbumin (Cy5-*OVA) formulated with Emulsigen-D +/- Poly I:C (EMP) adjuvants. Mice were also immunized via the subcutaneous route with Cy5-*OVA-EMP (soluble liquid). The vaccine leached out of the pellet with very little dissolution of the fat itself resulting in the sustained subdermal delivery of antigens and adjuvants. Cy5-*OVA was still visible 60 days post administration in mice immunized with stearic acid-coated or palmitic acid-coated pellets. In these mice, persistently high IgG1 and IgG2a antibody titres were detected as well as significant IFNγ production at least 60 days post-injection. These responses were significantly higher than those observed after a single subcutaneous injection of the vaccine. A repeat trial with the pellets alone +/- the soluble vaccine showed comparable immune responses after surgical implantation of the pellet, suggesting that pellet alone may be sufficient. The PA-coated vaccines led to dermal inflammation in the mice that would limit usefulness of this vehicle, but this was largely absent when SA was used to coat the pellets. These data suggest that the SA-coated adjuvanted vaccine prolonged the release of the vaccine and triggered a comparable immune response to the mice that received the two liquid injections, and a single pellet vaccine should be tested as a novel immunization method for livestock.
Collapse
Affiliation(s)
- Pooja Choudhary
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, 120 Veterinary Road, Saskatoon, Saskatchewan S7N5E3, Canada
| | - Bright Boamah
- Toxicology Graduate Program, University of Saskatchewan, 44 Campus Drive, Saskatoon, Saskatchewan S7N 5B3, Canada
| | - Siew Hon Ng
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, 120 Veterinary Road, Saskatoon, Saskatchewan S7N5E3, Canada
| | - Aaron White
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, 120 Veterinary Road, Saskatoon, Saskatchewan S7N5E3, Canada; Department of Veterinary Microbiology Sciences, Western College of Veterinary Medicine, University of Saskatchewan, 52 Campus Drive, Saskatoon, Saskatchewan S7N 5B4, Canada
| | - Lynn P Weber
- Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, 52 Campus Drive, Saskatoon, Saskatchewan S7N 5B4, Canada
| | - Heather L Wilson
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, 120 Veterinary Road, Saskatoon, Saskatchewan S7N5E3, Canada; Department of Veterinary Microbiology Sciences, Western College of Veterinary Medicine, University of Saskatchewan, 52 Campus Drive, Saskatoon, Saskatchewan S7N 5B4, Canada; School of Public Health, Vaccinology and Immunotherapeutics, University of Saskatchewan, 52 Campus Drive, Saskatoon, Saskatchewan, Canada.
| |
Collapse
|
40
|
Qin G, Zhao Y, Gan Y, Yu X, Zhao Y, Peng H, Fang S. Alterations in gene expressions of Caco-2 cell responses to LPS and ploy(I:C) stimulation. PeerJ 2023; 11:e15459. [PMID: 37304876 PMCID: PMC10257391 DOI: 10.7717/peerj.15459] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 05/03/2023] [Indexed: 06/13/2023] Open
Abstract
The intestinal epithelium barrier serves as a highly dynamic immunologic frontier in the defense against invading pathogenic bacteria and viruses. Hence, understanding of the complicated underlying relationship between enteric pathogens and the intestinal epithelium barrier is vital for developing strategies to improve the intestinal health of farm animals. To this end, Caco-2 cells were stimulated by 1 µg/ml lipopolysaccharide (LPS) for 24 h and 5 µg/ml polyinosinic-polycytidylic acid (ploy(I:C)) for 4 h to imitate bacterial and viral infection processes, respectively. The specific alterations in gene expression of Caco-2 cells after stimulation were characterized by transcriptome sequencing. Seventy differentially expressed genes (DEGs) were identified under LPS exposure, and 17 DEGs were observed under ploy(I:C) exposure. We found that most DEGs were specific, and only one common DEG SPAG7 was observed. Gene Ontology (GO) annotation analysis indicated that all DEGs identified in the different treatments were mainly derived from GO terms related to the maintenance of cellular homeostasis. Moreover, specific DEGs such as SLC39A10, MT2A, and MT1E regulated by LPS treatment, while IFIT2 and RUNX2 mediated by ploy(I:C) treatment, which are derived from immune function modulation related GO terms, were confirmed by both transcriptome sequencing and qRT-PCR. In addition, both transcriptome sequencing and qRT-PCR results verified that LPS specifically down-regulated the DEGs INHBE and ARF6, which are involved in inflammation responses related to the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway including the TGF-beta signaling pathways and the Ras signaling pathway. Ploy(I:C) uniquely suppressed the DEGs GABARAP and LAMTOR3, which participated in viral replication-associated pathways including autophagy and mTOR signaling pathway.
Collapse
Affiliation(s)
- Ge Qin
- Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yuanjie Zhao
- Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yating Gan
- Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xiaomei Yu
- Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yifan Zhao
- Fujian Agriculture and Forestry University, Fuzhou, China
| | - Hui Peng
- Hainan University, Haikou, China
| | - Shaoming Fang
- Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
41
|
Sun H, Wang XK, Li JR, Tang M, Li H, Lei L, Li HY, Jiang J, Li JY, Dong B, Jiang JD, Peng ZG. Establishment and application of a high-throughput screening model for cell adhesion inhibitors. Front Pharmacol 2023; 14:1140163. [PMID: 36909195 PMCID: PMC9995855 DOI: 10.3389/fphar.2023.1140163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Accepted: 02/10/2023] [Indexed: 02/25/2023] Open
Abstract
The cell adhesion between leukocytes and endothelial cells plays an important balanced role in the pathophysiological function, while excessive adhesion caused by etiological agents is associated with the occurrence and development of many acute and chronic diseases. Cell adhesion inhibitors have been shown to have a potential therapeutic effect on these diseases, therefore, efficient and specific inhibitors against cell adhesion are highly desirable. Here, using lipopolysaccharide-induced human umbilical vein endothelial cells (HUVECs) and calcein-AM-labeled human monocytic cell THP-1, we established a high-throughput screening model for cell adhesion inhibitors with excellent model evaluation parameters. Using the drug repurposing strategy, we screened out lifitegrast, a potent cell adhesion inhibitor, which inhibited cell adhesion between HUVEC and THP-1 cells by directly interrupting the adhesion interaction between HUVEC and THP-1 cells and showed a strong therapeutic effect on the mouse acute liver injury induced by poly (I:C)/D-GalN. Therefore, the screening model is suitable for screening and validating cell adhesion inhibitors, which will promote the research and development of inhibitors for the treatment of diseases caused by excessive cell adhesion.
Collapse
Affiliation(s)
- Han Sun
- CAMS Key Laboratory of Antiviral Drug Research, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xue-Kai Wang
- CAMS Key Laboratory of Antiviral Drug Research, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jian-Rui Li
- CAMS Key Laboratory of Antiviral Drug Research, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Mei Tang
- CAMS Key Laboratory of Antiviral Drug Research, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hu Li
- CAMS Key Laboratory of Antiviral Drug Research, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Key Laboratory of Biotechnology of Antibiotics, The National Health and Family Planning Commission (NHFPC), Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lei Lei
- CAMS Key Laboratory of Antiviral Drug Research, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hong-Ying Li
- CAMS Key Laboratory of Antiviral Drug Research, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jing Jiang
- CAMS Key Laboratory of Antiviral Drug Research, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jia-Yu Li
- CAMS Key Laboratory of Antiviral Drug Research, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Biao Dong
- CAMS Key Laboratory of Antiviral Drug Research, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Key Laboratory of Biotechnology of Antibiotics, The National Health and Family Planning Commission (NHFPC), Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jian-Dong Jiang
- CAMS Key Laboratory of Antiviral Drug Research, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Key Laboratory of Biotechnology of Antibiotics, The National Health and Family Planning Commission (NHFPC), Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zong-Gen Peng
- CAMS Key Laboratory of Antiviral Drug Research, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Key Laboratory of Biotechnology of Antibiotics, The National Health and Family Planning Commission (NHFPC), Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
42
|
Horvath D, Basler M. PLGA Particles in Immunotherapy. Pharmaceutics 2023; 15:pharmaceutics15020615. [PMID: 36839937 PMCID: PMC9965784 DOI: 10.3390/pharmaceutics15020615] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/06/2023] [Accepted: 02/07/2023] [Indexed: 02/16/2023] Open
Abstract
Poly(lactic-co-glycolic acid) (PLGA) particles are a widely used and extensively studied drug delivery system. The favorable properties of PLGA such as good bioavailability, controlled release, and an excellent safety profile due to the biodegradable polymer backbone qualified PLGA particles for approval by the authorities for the application as a drug delivery platform in humas. In recent years, immunotherapy has been established as a potent treatment option for a variety of diseases. However, immunomodulating drugs rely on targeted delivery to specific immune cell subsets and are often rapidly eliminated from the system. Loading of PLGA particles with drugs for immunotherapy can protect the therapeutic compounds from premature degradation, direct the drug delivery to specific tissues or cells, and ensure sustained and controlled drug release. These properties present PLGA particles as an ideal platform for immunotherapy. Here, we review recent advances of particulate PLGA delivery systems in the application for immunotherapy in the fields of allergy, autoimmunity, infectious diseases, and cancer.
Collapse
Affiliation(s)
- Dennis Horvath
- Division of Immunology, Department of Biology, University of Konstanz, D-78457 Konstanz, Germany
- Centre for the Advanced Study of Collective Behaviour, University of Konstanz, D-78457 Konstanz, Germany
| | - Michael Basler
- Division of Immunology, Department of Biology, University of Konstanz, D-78457 Konstanz, Germany
- Biotechnology Institute Thurgau (BITg) at the University of Konstanz, CH-8280 Kreuzlingen, Switzerland
- Correspondence:
| |
Collapse
|
43
|
Ko KH, Cha SB, Lee SH, Bae HS, Ham CS, Lee MG, Kim DH, Han SH. A novel defined TLR3 agonist as an effective vaccine adjuvant. Front Immunol 2023; 14:1075291. [PMID: 36761735 PMCID: PMC9902914 DOI: 10.3389/fimmu.2023.1075291] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 01/06/2023] [Indexed: 01/25/2023] Open
Abstract
Synthetic double-stranded RNA analogs recognized by Toll-like receptor 3 (TLR3) are an attractive adjuvant candidate for vaccines, especially against intracellular pathogens or tumors, because of their ability to enhance T cell and antibody responses. Although poly(I:C) is a representative dsRNA with potent adjuvanticity, its clinical application has been limited due to heterogeneous molecular size, inconsistent activity, poor stability, and toxicity. To overcome these limitations, we developed a novel dsRNA-based TLR3 agonist named NexaVant (NVT) by using PCR-coupled bidirectional in vitro transcription. Agarose gel electrophoresis and reverse phase-HPLC analysis demonstrated that NVT is a single 275-kDa homogeneous molecule. NVT appears to be stable since its appearance, concentration, and molecular size were unaffected under 6 months of accelerated storage conditions. Moreover, preclinical evaluation of toxicity under good laboratory practices showed that NVT is a safe substance without any signs of serious toxicity. NVT stimulated TLR3 and increased the expression of viral nucleic acid sensors TLR3, MDA-5, and RIG-1. When intramuscularly injected into C57BL/6 mice, ovalbumin (OVA) plus NVT highly increased the migration of dendritic cells (DCs), macrophages, and neutrophils into inguinal lymph node (iLN) compared with OVA alone. In addition, NVT substantially induced the phenotypic markers of DC maturation and activation including MHC-II, CD40, CD80, and CD86 together with IFN-β production. Furthermore, NVT exhibited an appropriate adjuvanticity because it elevated OVA-specific IgG, in particular, higher levels of IgG2c (Th1-type) but lower IgG1 (Th2-type). Concomitantly, NVT increased the levels of Th1-type T cells such as IFN-γ+CD4+ and IFN-γ+CD8+ cells in response to OVA stimulation. Collectively, we suggest that NVT with appropriate safety and effectiveness is a novel and promising adjuvant for vaccines, especially those requiring T cell mediated immunity such as viral and cancer vaccines.
Collapse
Affiliation(s)
- Kwang Hyun Ko
- Research and Development Center, NA Vaccine Institute, Seoul, Republic of Korea.,Interdisciplinary Program in Genetic Engineering, College of Natural Sciences, Seoul National University, Seoul, Republic of Korea
| | - Seung Bin Cha
- Research and Development Center, NA Vaccine Institute, Seoul, Republic of Korea
| | - Seung-Hwan Lee
- Research and Development Center, NA Vaccine Institute, Seoul, Republic of Korea
| | - Hyun Shik Bae
- Research and Development Center, NA Vaccine Institute, Seoul, Republic of Korea
| | - Chul Soo Ham
- Research and Development Center, NA Vaccine Institute, Seoul, Republic of Korea
| | - Min-Gyu Lee
- Research and Development Center, NA Vaccine Institute, Seoul, Republic of Korea
| | - Dong-Ho Kim
- Research and Development Center, NA Vaccine Institute, Seoul, Republic of Korea
| | - Seung Hyun Han
- Interdisciplinary Program in Genetic Engineering, College of Natural Sciences, Seoul National University, Seoul, Republic of Korea.,Department of Oral Microbiology and Immunology, and Dental Research Institute, School of Dentistry, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
44
|
Neagu M, Constantin C, Jugulete G, Cauni V, Dubrac S, Szöllősi AG, Zurac S. Langerhans Cells-Revising Their Role in Skin Pathologies. J Pers Med 2022; 12:2072. [PMID: 36556292 PMCID: PMC9782496 DOI: 10.3390/jpm12122072] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/09/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022] Open
Abstract
Langerhans cells (LCs) constitute a cellular immune network across the epidermis. Because they are located at the skin barrier, they are considered immune sentinels of the skin. These antigen-presenting cells are capable of migrating to skin draining lymph nodes to prime adaptive immune cells, namely T- and B-lymphocytes, which will ultimately lead to a broad range of immune responses. Moreover, LCs have been shown to possess important roles in the anti-cancer immune responses. Indeed, the literature nicely highlights the role of LCs in melanoma. In line with this, LCs have been found in melanoma tissues where they contribute to the local immune response. Moreover, the immunogenic properties of LCs render them attractive targets for designing vaccines to treat melanoma and autoimmune diseases. Overall, future studies will help to enlarge the portfolio of immune properties of LCs, and aid the prognosis and development of novel therapeutic approaches to treating skin pathologies, including cancers.
Collapse
Affiliation(s)
- Monica Neagu
- Immunology Department, “Victor Babes” National Institute of Pathology, 050096 Bucharest, Romania
- Department of Pathology, Colentina Clinical Hospital, 020125 Bucharest, Romania
- Faculty of Biology, University of Bucharest, 76201 Bucharest, Romania
| | - Carolina Constantin
- Immunology Department, “Victor Babes” National Institute of Pathology, 050096 Bucharest, Romania
- Department of Pathology, Colentina Clinical Hospital, 020125 Bucharest, Romania
| | - Gheorghita Jugulete
- Department of Infectious Diseases, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Clinical Section IX—Pediatrics, “Prof. Dr. Matei Balş” National Institute for Infectious Diseases, 050474 Bucharest, Romania
| | - Victor Cauni
- Department of Urology, Colentina University Hospital, 050474 Bucharest, Romania
| | - Sandrine Dubrac
- Department of Dermatology, Venereology and Allergology, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Attila Gábor Szöllősi
- Department of Immunology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - Sabina Zurac
- Department of Pathology, Colentina Clinical Hospital, 020125 Bucharest, Romania
- Department of Pathology, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
| |
Collapse
|
45
|
Song C, Xu J, Gao C, Zhang W, Fang X, Shang Y. Nanomaterials targeting macrophages in sepsis: A promising approach for sepsis management. Front Immunol 2022; 13:1026173. [PMID: 36569932 PMCID: PMC9780679 DOI: 10.3389/fimmu.2022.1026173] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 11/28/2022] [Indexed: 12/13/2022] Open
Abstract
Sepsis is a life-threatening organ dysfunction resulting from dysregulated host responses to infection. Macrophages play significant roles in host against pathogens and the immunopathogenesis of sepsis, such as phagocytosis of pathogens, secretion of cytokines, and phenotype reprogramming. However, the rapid progression of sepsis impairs macrophage function, and conventional antimicrobial and supportive treatment are not sufficient to restore dysregulated macrophages roles. Nanoparticles own unique physicochemical properties, surface functions, localized surface plasmon resonance phenomenon, passive targeting in vivo, good biocompatibility and biodegradability, are accessible for biomedical applications. Once into the body, NPs are recognized by host immune system. Macrophages are phagocytes in innate immunity dedicated to the recognition of foreign substances, including nanoparticles, with which an immune response subsequently occurs. Various design strategies, such as surface functionalization, have been implemented to manipulate the recognition of nanoparticles by monocytes/macrophages, and engulfed by them to regulate their function in sepsis, compensating for the shortcomings of sepsis traditional methods. The review summarizes the mechanism of nanomaterials targeting macrophages and recent advances in nanomedicine targeting macrophages in sepsis, which provides good insight for exploring macrophage-based nano-management in sepsis.
Collapse
|
46
|
Guo C, Ye JZ, Song M, Peng XX, Li H. Poly I:C promotes malate to enhance innate immune response against bacterial infection. FISH & SHELLFISH IMMUNOLOGY 2022; 131:172-180. [PMID: 36210004 DOI: 10.1016/j.fsi.2022.09.064] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 09/19/2022] [Accepted: 09/28/2022] [Indexed: 06/16/2023]
Abstract
Polyinosinic-polycytidylic acid (poly I:C) is a synthetic analog of double-stranded RNA (dsRNA) that activates anti-infective innate immunity. The underlying mechanisms are identified as targeting pattern recognition receptors and Th1-inducing. However, whether poly I:C manipulates metabolism to implement this anti-infective function is unknown. Here, GC-MS based metabolomics was used to characterize metabolic profiles induced by different doses of poly I:C. Analysis on the dose-dependent metabolomes shows that elevation of the TCA cycle and malate with the increasing dose of ploy I:C forms the most characteristic feature of the poly I:C stimulation. Exogenous malate activates the TCA cycle and elevates survival of zebrafish infected with Vibrio alginolyticus, which is related to the elevated expression of il-1b, il-6, il-8, tnf-a, and c3b. These results reveal a previously unknown regulation of poly I:C that boosts the TCA cycle to enhance innate immunity against bacterial infection.
Collapse
Affiliation(s)
- Chang Guo
- State Key Laboratory of Bio-Control, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, University City, Guangzhou, 510006, China; School of Life Sciences, Fujian Provincial Key Laboratory for the Prevention and Control of Animal Infectious Diseases and Biotechnology, Key Laboratory of Preventive Veterinary Medicine and Biotechnology, Longyan University, Longyan, 364012, China
| | - Jing-Zhou Ye
- State Key Laboratory of Bio-Control, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, University City, Guangzhou, 510006, China
| | - Min Song
- State Key Laboratory of Bio-Control, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, University City, Guangzhou, 510006, China
| | - Xuan-Xian Peng
- State Key Laboratory of Bio-Control, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, University City, Guangzhou, 510006, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China
| | - Hui Li
- State Key Laboratory of Bio-Control, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, University City, Guangzhou, 510006, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China.
| |
Collapse
|
47
|
Qiao D, Li L, Liu L, Chen Y. Universal and Translational Nanoparticulate CpG Adjuvant. ACS APPLIED MATERIALS & INTERFACES 2022; 14:50592-50600. [PMID: 36334044 DOI: 10.1021/acsami.2c15644] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
CpG, an agonist of toll-like receptor 9 (TLR9), has become a novel adjuvant that substantially potentiates cellular immunity. However, this agonist may increase systemic toxicity by diffusing into blood after administration and is difficult to be internalized by immune cells to reach TLR9 located in endosomes as a result of the characteristics of negative charge of CpG. Here, we applied a scalable and controllable flash nanocomplexation technology to prepare nanoparticulate CpG adjuvant (npCpG), CpG encapsulated in a physical cross-linking network of protamine and TPP. The nanoadjuvant could redirect CpG into draining lymph nodes to reduce systemic diffusion to improve safety. Further, a combination of npCpG and influenza H1N1 hemagglutinin antigen showed excellent humoral and cellular immunity, evoking high levels of antibodies and cytokines and inducing a great expansion of splenocytes in immunized mice. Also, the nanoadjuvant combined with ovalbumin antigen led to a potent cytotoxic T-cell response, substantially inhibited tumor growth, and improved the survival rate of mice in a melanoma model. This study showed the universal performances of npCpG in infectious disease prevention and tumor immunotherapy to demonstrate the translational potential.
Collapse
Affiliation(s)
- Dongdong Qiao
- School of Materials Science and Engineering, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Sun Yat-sen University, Guangzhou, Guangdong 510275, People's Republic of China
- Department of Basic Medicine, Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou, Guangdong 515041, People's Republic of China
| | - Liyan Li
- School of Materials Science and Engineering, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Sun Yat-sen University, Guangzhou, Guangdong 510275, People's Republic of China
| | - Lixin Liu
- School of Materials Science and Engineering, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Sun Yat-sen University, Guangzhou, Guangdong 510275, People's Republic of China
- State Key Laboratory of Oncology in Southern China, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, People's Republic of China
| | - Yongming Chen
- School of Materials Science and Engineering, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Sun Yat-sen University, Guangzhou, Guangdong 510275, People's Republic of China
- State Key Laboratory of Oncology in Southern China, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, People's Republic of China
- The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510630, People's Republic of China
| |
Collapse
|
48
|
Gong X, Gao Y, Shu J, Zhang C, Zhao K. Chitosan-Based Nanomaterial as Immune Adjuvant and Delivery Carrier for Vaccines. Vaccines (Basel) 2022; 10:1906. [PMID: 36423002 PMCID: PMC9696061 DOI: 10.3390/vaccines10111906] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/05/2022] [Accepted: 11/08/2022] [Indexed: 08/26/2023] Open
Abstract
With the support of modern biotechnology, vaccine technology continues to iterate. The safety and efficacy of vaccines are some of the most important areas of development in the field. As a natural substance, chitosan is widely used in numerous fields-such as immune stimulation, drug delivery, wound healing, and antibacterial procedures-due to its good biocompatibility, low toxicity, biodegradability, and adhesion. Chitosan-based nanoparticles (NPs) have attracted extensive attention with respect to vaccine adjuvants and delivery systems due to their excellent properties, which can effectively enhance immune responses. Here, we list the classifications and mechanisms of action of vaccine adjuvants. At the same time, the preparation methods of chitosan, its NPs, and their mechanism of action in the delivery system are introduced. The extensive applications of chitosan and its NPs in protein vaccines and nucleic acid vaccines are also introduced. This paper reviewed the latest research progress of chitosan-based NPs in vaccine adjuvant and drug delivery systems.
Collapse
Affiliation(s)
- Xiaochen Gong
- Institute of Nanobiomaterials and Immunology, School of Pharmaceutical Sciences & School of Life Science, Taizhou University, Taizhou 318000, China
- School of Medical Technology, Qiqihar Medical University, Qiqihar 161006, China
| | - Yuan Gao
- Institute of Nanobiomaterials and Immunology, School of Pharmaceutical Sciences & School of Life Science, Taizhou University, Taizhou 318000, China
| | - Jianhong Shu
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
- Zhejiang Hom-Sun Biotechnology Co., Ltd., Shaoxing 312366, China
| | - Chunjing Zhang
- School of Medical Technology, Qiqihar Medical University, Qiqihar 161006, China
| | - Kai Zhao
- Institute of Nanobiomaterials and Immunology, School of Pharmaceutical Sciences & School of Life Science, Taizhou University, Taizhou 318000, China
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
- Zhejiang Hom-Sun Biotechnology Co., Ltd., Shaoxing 312366, China
| |
Collapse
|
49
|
AbdelKhalek A, Ostafe R, Olave C, HogenEsch H, Turner JW. Effect of different adjuvant formulations on the antibody response of horses to porcine zona pellucida proteins. Vet Immunol Immunopathol 2022; 253:110507. [DOI: 10.1016/j.vetimm.2022.110507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 10/10/2022] [Accepted: 10/26/2022] [Indexed: 11/06/2022]
|
50
|
Balmert SC, Ghozloujeh ZG, Carey CD, Williams LH, Zhang J, Shahi P, Amer M, Sumpter TL, Erdos G, Korkmaz E, Falo LD. A microarray patch SARS-CoV-2 vaccine induces sustained antibody responses and polyfunctional cellular immunity. iScience 2022; 25:105045. [PMID: 36062075 PMCID: PMC9425707 DOI: 10.1016/j.isci.2022.105045] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 04/19/2022] [Accepted: 08/25/2022] [Indexed: 12/01/2022] Open
Abstract
Sustainable global immunization campaigns against COVID-19 and other emerging infectious diseases require effective, broadly deployable vaccines. Here, we report a dissolvable microarray patch (MAP) SARS-CoV-2 vaccine that targets the immunoresponsive skin microenvironment, enabling efficacious needle-free immunization. Multicomponent MAPs delivering both SARS-CoV-2 S1 subunit antigen and the TLR3 agonist Poly(I:C) induce robust antibody and cellular immune responses systemically and in the respiratory mucosa. MAP vaccine-induced antibodies bind S1 and the SARS-CoV-2 receptor-binding domain, efficiently neutralize the virus, and persist at high levels for more than a year. The MAP platform reduces systemic toxicity of the delivered adjuvant and maintains vaccine stability without refrigeration. When applied to human skin, MAP vaccines activate skin-derived migratory antigen-presenting cells, supporting the feasibility of human translation. Ultimately, this shelf-stable MAP vaccine improves immunogenicity and safety compared to traditional intramuscular vaccines and offers an attractive alternative for global immunization efforts against a range of infectious pathogens.
Collapse
Affiliation(s)
- Stephen C. Balmert
- Department of Dermatology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | | | - Cara Donahue Carey
- Department of Dermatology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Li’an H. Williams
- Department of Dermatology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Jiying Zhang
- Department of Dermatology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Preeti Shahi
- Department of Dermatology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Maher Amer
- Department of Dermatology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Tina L. Sumpter
- Department of Dermatology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Geza Erdos
- Department of Dermatology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Emrullah Korkmaz
- Department of Dermatology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
- Department of Bioengineering, University of Pittsburgh Swanson School of Engineering, Pittsburgh, PA 15261, USA
| | - Louis D. Falo
- Department of Dermatology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
- Department of Bioengineering, University of Pittsburgh Swanson School of Engineering, Pittsburgh, PA 15261, USA
- UPMC Hillman Cancer Center, Pittsburgh, PA 15232, USA
- Clinical and Translational Science Institute, University of Pittsburgh, Pittsburgh, PA 15213, USA
- The McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA
| |
Collapse
|