1
|
Berkenfeld K, Carneiro S, Corzo C, Laffleur F, Salar-Behzadi S, Winkeljann B, Esfahani G. Formulation strategies, preparation methods, and devices for pulmonary delivery of biologics. Eur J Pharm Biopharm 2024; 204:114530. [PMID: 39393712 DOI: 10.1016/j.ejpb.2024.114530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 10/07/2024] [Accepted: 10/08/2024] [Indexed: 10/13/2024]
Abstract
Biological products, including vaccines, blood components, and recombinant therapeutic proteins, are derived from natural sources such as humans, animals, or microorganisms and are typically produced using advanced biotechnological methods. The success of biologics, particularly monoclonal antibodies, can be attributed to their favorable safety profiles and target specificity. However, their large molecular size presents significant challenges in drug delivery, particularly in overcoming biological barriers. Pulmonary delivery has emerged as a promising route for administering biologics, offering non-invasive delivery with rapid absorption, high systemic bioavailability, and avoidance of first-pass metabolism. This review first details the anatomy and physiological barriers of the respiratory tract and the associated challenges of pulmonary drug delivery (PDD). It further discusses innovations in PDD, the impact of particle size on drug deposition, and the use of secondary particles, such as nanoparticles, to enhance bioavailability and targeting. The review also explains various devices used for PDD, including dry powder inhalers (DPIs) and nebulizers, highlighting their advantages and limitations in delivering biologics. The role of excipients in improving the stability and performance of inhalation products is also addressed. Since dry powders are considered the suitable format for delivering biomolecules, particular emphasis is placed on the excipients used in DPI development. The final section of the article reviews and compares various dry powder manufacturing methods, clarifying their clinical relevance and potential for future applications in the field of inhalable drug formulation.
Collapse
Affiliation(s)
- Kai Berkenfeld
- Laboratory of Pharmaceutical Technology and Biopharmaceutics, Institute of Pharmacy, University of Bonn, Gerhard-Domagk-Street 3, 53121 Bonn, Germany; Pharmaceutical Engineering and Technology Research Scientists (PETRS)
| | - Simone Carneiro
- Department of Pharmacy, Ludwig-Maximilians-Universität Munich, Butenandtstrasse 5-13, Haus B, 81377 München, Germany; Center for NanoScience (CeNS), Ludwig-Maximilians-Universität München, München 80799, Germany; Pharmaceutical Engineering and Technology Research Scientists (PETRS)
| | - Carolina Corzo
- Research Center Pharmaceutical Engineering GmbH, Graz, Austria; Pharmaceutical Engineering and Technology Research Scientists (PETRS)
| | - Flavia Laffleur
- Department of Pharmaceutical Technology, Institute of Pharmacy, Center for Chemistry and Biomedicine, University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria; Pharmaceutical Engineering and Technology Research Scientists (PETRS)
| | - Sharareh Salar-Behzadi
- Research Center Pharmaceutical Engineering GmbH, Graz, Austria; Institute of Pharmaceutical Sciences, Department of Pharmaceutical Technology, University of Graz, Graz, Austria; Pharmaceutical Engineering and Technology Research Scientists (PETRS)
| | - Benjamin Winkeljann
- Department of Pharmacy, Ludwig-Maximilians-Universität Munich, Butenandtstrasse 5-13, Haus B, 81377 München, Germany; Center for NanoScience (CeNS), Ludwig-Maximilians-Universität München, München 80799, Germany; RNhale GmbH, München 81371, Germany; Comprehensive Pneumology Center Munich (CPC-M), Helmholtz Munich, German Center for Lung Research (DZL), 81377 Munich, Germany; Pharmaceutical Engineering and Technology Research Scientists (PETRS)
| | - Golbarg Esfahani
- Department of Pharmaceutical Technology, Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Wolfgang-Langenbeck-Straße 4, Halle 06120, Saale, Germany; Pharmaceutical Engineering and Technology Research Scientists (PETRS).
| |
Collapse
|
2
|
Baldry M, Costa C, Zeroual Y, Cayet D, Pardessus J, Soulard D, Wallet F, Beury D, Hot D, MacLoughlin R, Heuzé-Vourc'h N, Sirard JC, Carnoy C. Targeted delivery of flagellin by nebulization offers optimized respiratory immunity and defense against pneumococcal pneumonia. Antimicrob Agents Chemother 2024:e0086624. [PMID: 39480071 DOI: 10.1128/aac.00866-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 10/03/2024] [Indexed: 11/02/2024] Open
Abstract
Novel therapeutic strategies are urgently needed to combat pneumonia caused by Streptococcus pneumoniae strains resistant to standard-of-care antibiotics. Previous studies have shown that targeted stimulation of lung innate immune defenses through intranasal administration of the Toll-like receptor 5 agonist flagellin improves the treatment of pneumonia when combined with antibiotics. To promote translation to the clinic application, this study assessed the direct delivery of flagellin to the airways through nebulization using a vibrating mesh nebulizer in mice. Intranasal delivery achieved approximately 40% lung deposition of the administered flagellin dose, whereas nebulization yielded less than 1%. Despite these differences, nebulized flagellin induced transient activation of lung innate immunity characterized by cytokine/chemokine production and neutrophil infiltration into airways analogous to intranasal administration. Furthermore, inhalation by nebulization resulted in an accelerated resolution of systemic pro-inflammatory responses. Lastly, adjunct therapy combining nebulized flagellin and amoxicillin proved effective against antibiotic-resistant pneumococcal pneumonia in mice. We posit that flagellin aerosol therapy represents a safe and promising approach to address bacterial pneumonia within the context of antimicrobial resistance.
Collapse
Affiliation(s)
- Mara Baldry
- Univ. Lille CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, Lille, France
| | - Charlotte Costa
- Univ. Lille CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, Lille, France
| | - Yasmine Zeroual
- Univ. Lille CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, Lille, France
| | - Delphine Cayet
- Univ. Lille CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, Lille, France
| | - Jeoffrey Pardessus
- INSERM, Respiratory Disease Research Centre, Tours, France
- University of Tours, Tours, France
| | - Daphnée Soulard
- Univ. Lille CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, Lille, France
| | - Frédéric Wallet
- Univ. Lille CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, Lille, France
| | - Delphine Beury
- Univ. Lille CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, US 41 - UAR 2014 - PLBS - Plateformes Lilloises de Biologie & Santé, Lille, France
| | - David Hot
- Univ. Lille CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, US 41 - UAR 2014 - PLBS - Plateformes Lilloises de Biologie & Santé, Lille, France
| | | | - Nathalie Heuzé-Vourc'h
- INSERM, Respiratory Disease Research Centre, Tours, France
- University of Tours, Tours, France
| | - Jean-Claude Sirard
- Univ. Lille CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, Lille, France
| | - Christophe Carnoy
- Univ. Lille CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, Lille, France
| |
Collapse
|
3
|
Zhai Y, Wang T, Chen Q, Guo J. Low-field NMR Works as a Rapid, Automatic, Non-Invasive and Wide-Scale Coverage Technique for Aggregates Indication in Biomacromolecule Development. J Pharm Sci 2024; 113:3034-3044. [PMID: 39098520 DOI: 10.1016/j.xphs.2024.07.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 07/27/2024] [Accepted: 07/27/2024] [Indexed: 08/06/2024]
Abstract
Protein aggregation is challenging for biopharmaceutical drug, because it affects the stability of protein formulations in real-time. However, current techniques for protein aggregate indication meet a number of limitations including limited aggregate size range, complex pre-treatments and lack of chromatographic approaches. Herein, a rapid, automatic, non-invasive and wide-scale coverage technique for aggregates indication is developed to overcome these challenges. Firstly, the response of low-field nuclear magnetic resonance (LF-NMR) to the aggregates is explored by making a comparison with certain established techniques. LF-NMR achieves a high sensitivity of water proton transverse relaxation rate (R2 of H2O, hereinafter referred as R2(H2O)) to protein aggregates from nanometer to micrometer. Then, the quantitative relationship between R2(H2O) and aggregates is investigated furtherly. R2(H2O) could serve as an all-size coverage protein aggregates indicator during development. As a non-invasive method, LF-NMR does not need any sample handling. It takes only 44 s for one test, and saves a lot of manpower, materials and costs. Compared with other established analytical techniques, the technique developed here could be a powerful tool for a rapid, automatic, non-invasive and wide-scale coverage technique for aggregates indication in biomacromolecule development.
Collapse
Affiliation(s)
- Yihui Zhai
- WuXi Biologics, 190 Hedan Road, Waigaoqiao Free Trade Zone, Shanghai, 200131, China
| | - Tingting Wang
- WuXi Biologics, 190 Hedan Road, Waigaoqiao Free Trade Zone, Shanghai, 200131, China.
| | - Quanmin Chen
- WuXi Biologics, 190 Hedan Road, Waigaoqiao Free Trade Zone, Shanghai, 200131, China
| | - Jeremy Guo
- WuXi Biologics, 190 Hedan Road, Waigaoqiao Free Trade Zone, Shanghai, 200131, China.
| |
Collapse
|
4
|
Seidl LL, Moog R, Graeser KA. Antisense oligonucleotides and their technical suitability to nebulization. Int J Pharm 2024; 661:124390. [PMID: 38936443 DOI: 10.1016/j.ijpharm.2024.124390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 06/17/2024] [Accepted: 06/24/2024] [Indexed: 06/29/2024]
Abstract
In vivo studies investigating the inhalative efficacy of biotherapeutics, such as nucleic acids, usually do not perform an aerosolization step, rather the solution is directly administered into the lungs e.g. intratracheally. In addition, there is currently very little information on the behavior of nucleic acid solutions when subjected to the physical stress of the nebulization process. In this study, the aim was to assess the technical suitability of Locked Nucleic Acids (LNAs), as a model antisense oligonucleotide, towards nebulization using two commercially available nebulizers. A jet nebulizer (Pari LC Plus) and a vibrating mesh nebulizer (Aerogen Solo) were employed and solutions of five different LNAs investigated in terms of their physical and chemical stability to nebulization and the quality of the generated aerosols. The aerosol properties of the Aerogen Solo were mainly influenced by the viscosity of the solutions with the output rate and the droplet size decreasing with increasing viscosity. The Pari LC Plus was less susceptible to viscosity and overall the droplet size was smaller. The LNAs tolerated both nebulization processes and the integrity of the molecules was shown. Chemical stability of the molecules from the Aerogen Solo was confirmed, whereas aerosol generation with the Pari LC Plus jet nebulizer led to a slight increase of phosphodiester groups in a fully phosphorothiolated backbone of the LNAs. Overall, it could be shown that nebulization of different LNAs is possible and inhalation can therefore be considered a potential route of administration.
Collapse
Affiliation(s)
- Leonardo L Seidl
- Roche Pharma Research and Early Development, Therapeutic Modalities, pCMC, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, 4070 Basel, Switzerland; Technical University of Munich, TUM School of Natural Sciences, Boltzmannstr. 10, 85748 Garching, Germany
| | - Regina Moog
- Roche Pharma Research and Early Development, Therapeutic Modalities, pCMC, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Kirsten A Graeser
- Roche Pharma Research and Early Development, Therapeutic Modalities, pCMC, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, 4070 Basel, Switzerland.
| |
Collapse
|
5
|
Liu J, Zheng Q, Yao R, Wang M. Lung-specific supramolecular nanoparticles for efficient delivery of therapeutic proteins and genome editing nucleases. Proc Natl Acad Sci U S A 2024; 121:e2406654121. [PMID: 39116129 PMCID: PMC11331071 DOI: 10.1073/pnas.2406654121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 07/12/2024] [Indexed: 08/10/2024] Open
Abstract
Protein therapeutics play a critical role in treating a large variety of diseases, ranging from infections to genetic disorders. However, their delivery to target tissues beyond the liver, such as the lungs, remains a great challenge. Here, we report a universally applicable strategy for lung-targeted protein delivery by engineering Lung-Specific Supramolecular Nanoparticles (LSNPs). These nanoparticles are designed through the hierarchical self-assembly of metal-organic polyhedra (MOP), featuring a customized surface chemistry that enables protein encapsulation and specific lung affinity after intravenous administration. Our design of LSNPs not only addresses the hurdles of cell membrane impermeability of protein and nonspecific tissue distribution of protein delivery, but also shows exceptional versatility in delivering various proteins, including those vital for anti-inflammatory and CRISPR-based genome editing to the lung, and across multiple animal species, including mice, rabbits, and dogs. Notably, the delivery of antimicrobial proteins using LSNPs effectively alleviates acute bacterial pneumonia, demonstrating a significant therapeutic potential. Our strategy not only surmounts the obstacles of tissue-specific protein delivery but also paves the way for targeted treatments in genetic disorders and combating antibiotic resistance, offering a versatile solution for precision protein therapy.
Collapse
Affiliation(s)
- Ji Liu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing100190, China
- University of Chinese Academy of Sciences, Beijing100049, China
| | - Qizhen Zheng
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing100190, China
- University of Chinese Academy of Sciences, Beijing100049, China
| | - Rui Yao
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing100190, China
- University of Chinese Academy of Sciences, Beijing100049, China
| | - Ming Wang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing100190, China
- University of Chinese Academy of Sciences, Beijing100049, China
| |
Collapse
|
6
|
Bai X, Chen Q, Li F, Teng Y, Tang M, Huang J, Xu X, Zhang XQ. Optimized inhaled LNP formulation for enhanced treatment of idiopathic pulmonary fibrosis via mRNA-mediated antibody therapy. Nat Commun 2024; 15:6844. [PMID: 39122711 PMCID: PMC11315999 DOI: 10.1038/s41467-024-51056-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 07/24/2024] [Indexed: 08/12/2024] Open
Abstract
Lipid nanoparticle-assisted mRNA inhalation therapy necessitates addressing challenges such as resistance to shear force damage, mucus penetration, cellular internalization, rapid lysosomal escape, and target protein expression. Here, we introduce the innovative "LOOP" platform with a four-step workflow to develop inhaled lipid nanoparticles specifically for pulmonary mRNA delivery. iLNP-HP08LOOP featuring a high helper lipid ratio, acidic dialysis buffer, and excipient-assisted nebulization buffer, demonstrates exceptional stability and enhanced mRNA expression in the lungs. By incorporating mRNA encoding IL-11 single chain fragment variable (scFv), scFv@iLNP-HP08LOOP effectively delivers and secretes IL-11 scFv to the lungs of male mice, significantly inhibiting fibrosis. This formulation surpasses both inhaled and intravenously injected IL-11 scFv in inhibiting fibroblast activation and extracellular matrix deposition. The HP08LOOP system is also compatible with commercially available ALC0315 LNPs. Thus, the "LOOP" method presents a powerful platform for developing inhaled mRNA nanotherapeutics with potential for treating various respiratory diseases, including idiopathic pulmonary fibrosis.
Collapse
Affiliation(s)
- Xin Bai
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai, China
- National Key Laboratory of Innovative Immunotherapy, Shanghai Jiao Tong University, Shanghai, China
| | - Qijing Chen
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai, China
- National Key Laboratory of Innovative Immunotherapy, Shanghai Jiao Tong University, Shanghai, China
| | - Fengqiao Li
- Department of Chemical and Materials Engineering, New Jersey Institute of Technology, Newark, NJ, USA
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, USA
| | - Yilong Teng
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai, China
- National Key Laboratory of Innovative Immunotherapy, Shanghai Jiao Tong University, Shanghai, China
| | - Maoping Tang
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai, China
- National Key Laboratory of Innovative Immunotherapy, Shanghai Jiao Tong University, Shanghai, China
| | - Jia Huang
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai, China
- National Key Laboratory of Innovative Immunotherapy, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaoyang Xu
- Department of Chemical and Materials Engineering, New Jersey Institute of Technology, Newark, NJ, USA.
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, USA.
| | - Xue-Qing Zhang
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai, China.
- National Key Laboratory of Innovative Immunotherapy, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
7
|
Behzadipour Y, Hemmati S. Covalent conjugation and non-covalent complexation strategies for intracellular delivery of proteins using cell-penetrating peptides. Biomed Pharmacother 2024; 176:116910. [PMID: 38852512 DOI: 10.1016/j.biopha.2024.116910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 06/03/2024] [Accepted: 06/06/2024] [Indexed: 06/11/2024] Open
Abstract
Therapeutic proteins provided new opportunities for patients and high sales volumes. However, they are formulated for extracellular targets. The lipophilic barrier of the plasma membrane renders the vast array of intracellular targets out of reach. Peptide-based delivery systems, namely cell-penetrating peptides (CPPs), have few safety concerns, and low immunogenicity, with control over administered doses. This study investigates CPP-based protein delivery systems by classifying them into CPP-protein "covalent conjugation" and CPP: protein "non-covalent complexation" categories. Covalent conjugates ensure the proximity of the CPP to the cargo, which can improve cellular uptake and endosomal escape. We will discuss various aspects of covalent conjugates through non-cleavable (stable) or cleavable bonds. Non-cleavable CPP-protein conjugates are produced by recombinant DNA technology to express the complete fusion protein in a host cell or by chemical ligation of CPP and protein, which ensures stability during the delivery process. CPP-protein cleavable bonds are classified into pH-sensitive and redox-sensitive bonds, enzyme-cleavable bonds, and physical stimuli cleavable linkers (light radiation, ultrasonic waves, and thermo-responsive). We have highlighted the key characteristics of non-covalent complexes through electrostatic and hydrophobic interactions to preserve the conformational integrity of the CPP and cargo. CPP-mediated protein delivery by non-covalent complexation, such as zippers, CPP adaptor methods, and avidin-biotin technology, are featured. Conclusively, non-covalent complexation methods are appropriate when a high number of CPP or protein samples are to be screened. In contrast, when the high biological activity of the protein is critical in the intracellular compartment, conjugation protocols are preferred.
Collapse
Affiliation(s)
- Yasaman Behzadipour
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Islamic Republic of Iran; Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Islamic Republic of Iran
| | - Shiva Hemmati
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Islamic Republic of Iran; Biotechnology Research Center, Shiraz University of Medical Sciences, Shiraz, Islamic Republic of Iran.
| |
Collapse
|
8
|
de Andres PJ, Ferreiro S, Flores A, Garcia A, Henriquez-Camacho C. Histological Assessment of Respiratory Tract and Liver of BALB/c Mice Nebulized with Tocilizumab. Pharmaceutics 2024; 16:862. [PMID: 39065559 PMCID: PMC11280351 DOI: 10.3390/pharmaceutics16070862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 06/12/2024] [Accepted: 06/25/2024] [Indexed: 07/28/2024] Open
Abstract
Pulmonary drug delivery offers a minimally invasive and efficient method for treating lung conditions, leveraging the lungs' extensive surface area and blood flow for rapid drug absorption. Nebulized therapies aim to deliver drugs directly to the lung tissue. This study investigates the histological impact of nebulized tocilizumab-a monoclonal antibody targeting IL-6, traditionally administered intravenously for rheumatoid arthritis and severe COVID-19-on a murine model. Thirty BALB/c mice were nebulized with tocilizumab (10 mg, 5 mg, and 2.5 mg) and six controls were nebulized with saline solution. They were euthanized 48 h later, and their organs (lungs, nasal mucosa, and liver) were analyzed by a microscopic histological evaluation. The results indicate that all the mice survived the 48 h post-nebulization period without systemic compromise. The macroscopic examination showed no abnormalities, and the histopathological analysis revealed greater lung vascular changes in the control group than in the nebulized animals, which is attributable to the euthanasia with carbon dioxide. Additionally, increased alveolar macrophages were observed in the nebulized groups compared to controls. No significant histological changes were observed in the liver, indicating the safety of nebulized tocilizumab. In conclusion, these findings suggest the potential of nebulized tocilizumab for treating pulmonary inflammation, warranting further research to establish its efficacy and safety in clinical settings.
Collapse
Affiliation(s)
- Paloma Jimena de Andres
- Departamento de Medicina y Cirugía Animal, Facultad de Veterinaria de la, Universidad Complutense de Madrid, 28040 Madrid, Spain;
| | - Sergio Ferreiro
- Unidad de Veterinaria, Radiodiagnóstico y Cirugía Experimental del, Centro de Apoyo Tecnológico de la, Facultad de Ciencias de la Salud de la, Universidad Rey Juan Carlos, 28922 Alcorcon, Spain;
| | - Angela Flores
- Servicio de Farmacia del Hospital Universitario Rey Juan Carlos, 28993 Mostoles, Spain; (A.F.); (A.G.)
| | - Almudena Garcia
- Servicio de Farmacia del Hospital Universitario Rey Juan Carlos, 28993 Mostoles, Spain; (A.F.); (A.G.)
| | - Cesar Henriquez-Camacho
- Servicio de Medicina Interna del Hospital Universitario de Móstoles, 28935 Mostoles, Spain
- Facultad de Ciencias de la Salud, Universidad Rey Juan Carlos, 28922 Alcorcon, Spain
| |
Collapse
|
9
|
Liu ZX, Liu GQ, Lin ZX, Chen YQ, Chen P, Hu YJ, Yu B, Jiang N. Effects of Staphylococcus aureus on stem cells and potential targeted treatment of inflammatory disorders. Stem Cell Res Ther 2024; 15:187. [PMID: 38937829 PMCID: PMC11210046 DOI: 10.1186/s13287-024-03781-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 06/02/2024] [Indexed: 06/29/2024] Open
Abstract
Due to the advanced studies on stem cells in developmental biology, the roles of stem cells in the body and their phenotypes in related diseases have not been covered clearly. Meanwhile, with the intensive research on the mechanisms of stem cells in regulating various diseases, stem cell therapy is increasingly being attention because of its effectiveness and safety. As one of the most widely used stem cell in stem cell therapies, hematopoietic stem cell transplantation shows huge advantage in treatment of leukemia and other blood-malignant diseases. Besides, due to the effect of anti-inflammatory and immunomodulatory, mesenchymal stem cells could be a potential therapeutic strategy for variety infectious diseases. In this review, we summarized the effects of Staphylococcus aureus (S. aureus) and its components on different types of adult stem cells and their downstream signaling pathways. Also, we reviewed the roles of different kinds of stem cells in various disease models caused by S. aureus, providing new insights for applying stem cell therapy to treat infectious diseases.
Collapse
Affiliation(s)
- Zi-Xian Liu
- Division of Orthopaedics & Traumatology, Department of Orthopaedics, Southern Medical University Nanfang Hospital, Guangzhou, 510515, China
- Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Southern Medical University Nanfang Hospital, Guangzhou, 510515, China
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, 730000, China
| | - Guan-Qiao Liu
- Division of Orthopaedics & Traumatology, Department of Orthopaedics, Southern Medical University Nanfang Hospital, Guangzhou, 510515, China
- Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Southern Medical University Nanfang Hospital, Guangzhou, 510515, China
| | - Ze-Xin Lin
- Division of Orthopaedics & Traumatology, Department of Orthopaedics, Southern Medical University Nanfang Hospital, Guangzhou, 510515, China
- Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Southern Medical University Nanfang Hospital, Guangzhou, 510515, China
| | - Ying-Qi Chen
- Division of Orthopaedics & Traumatology, Department of Orthopaedics, Southern Medical University Nanfang Hospital, Guangzhou, 510515, China
- Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Southern Medical University Nanfang Hospital, Guangzhou, 510515, China
| | - Peng Chen
- Division of Orthopaedics & Traumatology, Department of Orthopaedics, Southern Medical University Nanfang Hospital, Guangzhou, 510515, China
- Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Southern Medical University Nanfang Hospital, Guangzhou, 510515, China
| | - Yan-Jun Hu
- Division of Orthopaedics & Traumatology, Department of Orthopaedics, Southern Medical University Nanfang Hospital, Guangzhou, 510515, China
- Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Southern Medical University Nanfang Hospital, Guangzhou, 510515, China
| | - Bin Yu
- Division of Orthopaedics & Traumatology, Department of Orthopaedics, Southern Medical University Nanfang Hospital, Guangzhou, 510515, China.
- Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Southern Medical University Nanfang Hospital, Guangzhou, 510515, China.
| | - Nan Jiang
- Division of Orthopaedics & Traumatology, Department of Orthopaedics, Southern Medical University Nanfang Hospital, Guangzhou, 510515, China.
- Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Southern Medical University Nanfang Hospital, Guangzhou, 510515, China.
| |
Collapse
|
10
|
McSweeney MD, Alnajjar S, Schaefer AM, Richardson Z, Wolf W, Stewart I, Sriboonyapirat P, McCallen J, Farmer E, Nzati B, Lord S, Farrer B, Moench TR, Kumar PA, Arora H, Pickles RJ, Hickey AJ, Ackermann M, Lai SK. Inhaled "Muco-Trapping" Monoclonal Antibody Effectively Treats Established Respiratory Syncytial Virus (RSV) Infections. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306729. [PMID: 38225749 DOI: 10.1002/advs.202306729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 12/12/2023] [Indexed: 01/17/2024]
Abstract
Respiratory syncytial virus (RSV) causes substantial morbidity and mortality in infants, the immunocompromised, and the elderly. RSV infects the airway epithelium via the apical membrane and almost exclusively sheds progeny virions back into the airway mucus (AM), making RSV difficult to target by systemically administered therapies. An inhalable "muco-trapping" variant of motavizumab (Mota-MT), a potent neutralizing mAb against RSV F is engineered. Mota-MT traps RSV in AM via polyvalent Fc-mucin bonds, reducing the fraction of fast-moving RSV particles in both fresh pediatric and adult AM by ≈20-30-fold in a Fc-glycan dependent manner, and facilitates clearance from the airways of mice within minutes. Intranasal dosing of Mota-MT eliminated viral load in cotton rats within 2 days. Daily nebulized delivery of Mota-MT to RSV-infected neonatal lambs, beginning 3 days after infection when viral load is at its maximum, led to a 10 000-fold and 100 000-fold reduction in viral load in bronchoalveolar lavage and lung tissues relative to placebo control, respectively. Mota-MT-treated lambs exhibited reduced bronchiolitis, neutrophil infiltration, and airway remodeling than lambs receiving placebo or intramuscular palivizumab. The findings underscore inhaled delivery of muco-trapping mAbs as a promising strategy for the treatment of RSV and other acute respiratory infections.
Collapse
Affiliation(s)
| | - Sarhad Alnajjar
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, GU2 7AL, UK
| | - Alison M Schaefer
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina-Chapel Hill, Chapel Hill, NC, 27599, USA
| | | | - Whitney Wolf
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina-Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Ian Stewart
- RTI International, Research Triangle Park, NC, 27709, USA
| | | | - Justin McCallen
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina-Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Ellen Farmer
- Inhalon Biopharma, Research Triangle Park, NC, 27707, USA
| | | | - Sam Lord
- Inhalon Biopharma, Research Triangle Park, NC, 27707, USA
| | - Brian Farrer
- Inhalon Biopharma, Research Triangle Park, NC, 27707, USA
| | | | - Priya A Kumar
- Department of Anesthesiology, School of Medicine, University of North Carolina, Chapel Hill, NC, 27599, USA
- Outcomes Research Consortium, Cleveland, OH, 44195, USA
| | - Harendra Arora
- Department of Anesthesiology, University of Mississippi Medical Center, Jackson, MS, 39216, USA
| | - Raymond J Pickles
- Department of Microbiology & Immunology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | | | - Mark Ackermann
- USDA/ARS-National Animal Disease Center, Ames, IA, 50010, USA
| | - Samuel K Lai
- Inhalon Biopharma, Research Triangle Park, NC, 27707, USA
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina-Chapel Hill, Chapel Hill, NC, 27599, USA
- Department of Microbiology & Immunology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| |
Collapse
|
11
|
Cheng N, Zhang X, Wang J, Li D, Li L, Hu H, Qu T. Effect of atomization on the composition and structure of recombinant humanized collagen type III. J Appl Biomater Funct Mater 2024; 22:22808000241261904. [PMID: 38907595 DOI: 10.1177/22808000241261904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/24/2024] Open
Abstract
Atomization is a treatment method to make inhaled liquids into aerosols and transport them to target organs in the form of fog or smoke. It has the advantages of improving the bioavailability of drugs, being painless, and non-invasive, and is now widely used in the treatment of lung and oral lesions. Aerosol inhalation as the route of administration of therapeutic proteins holds significant promise due to its ability to achieve high bioavailability in non-invasive pathways. Currently, a great number of therapeutic proteins such as alpha-1 antitrypsin and Dornase alfa are effective. Recombinant humanized collagen type III (rhCol III) as a therapeutic protein is widely used in the biomedical field, but atomization is not a common route of administration for rhCol III, presenting great potential for development. However, the structural stability of recombinant humanized collagen after atomization needs further investigation. This study demonstrated that the rhCol III subjected to atomization through compressed air had retained its original molecular weights, triple helical structures, and the ability to promote cell adhesion. In other words, the rhCol III can maintain its stability after undergoing atomization. Although more research is required to determine the efficacy and safety of the rhCol III after atomization, this study can lay the groundwork for future research.
Collapse
Affiliation(s)
| | | | - Jian Wang
- Shanxi Key Laboratory of Functional Proteins, Shanxi Jinbo Bio-Pharmaceutical Co., Ltd., Shanxi, China
| | - Danfeng Li
- Shanxi Key Laboratory of Functional Proteins, Shanxi Jinbo Bio-Pharmaceutical Co., Ltd., Shanxi, China
| | - Ling Li
- Shanxi Key Laboratory of Functional Proteins, Shanxi Jinbo Bio-Pharmaceutical Co., Ltd., Shanxi, China
| | - Huan Hu
- Shanxi Medical University, Shanxi, China
| | - Tingli Qu
- Shanxi Medical University, Shanxi, China
| |
Collapse
|
12
|
Togami K, Hazama Y, Nakamura Y, Ishizawa K, Chono S. Development of a Compensated Förster Resonance Energy Transfer Imaging for Improved Assessment of the Intrapulmonary Distribution of Polymeric Nanoparticles. J Pharm Sci 2023; 112:2696-2702. [PMID: 37478971 DOI: 10.1016/j.xphs.2023.07.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 07/14/2023] [Accepted: 07/14/2023] [Indexed: 07/23/2023]
Abstract
Inhalation-based drug delivery systems have gained attention as potential therapeutic options for various respiratory diseases. Among these systems, nanoparticles are being explored as drug carriers because of their ability to deliver therapeutic agents directly to the lungs. It is essential to accurately evaluate the intrapulmonary behavior of nanoparticles to optimize drug delivery and achieve selective targeting of lung lesions. Prior research used the Förster resonance energy transfer (FRET) phenomenon to study the in vivo behavior of nanoparticles as drug carriers. In this study, image reconstruction involving bleed-through compensation was used to quantitatively assess the behavior of FRET nanoparticles in the lungs. When the nanoparticles for FRET fluorescence imaging, which employed 1,1'-dioctadecyl-3,3,3',3'-tetramethylindodicarbocyanine, 4-chlorobenzenesulfonate salt (DiD) as the donor and as 1,1'-dioctadecyl-3,3,3',3'-tetramethylindocarbocyanine iodide (DiR) the acceptor, were administered to mouse lungs, whole-body in vivo imaging could not compensate for the influence of respiration and heartbeat. However, ex vivo imaging of excised lungs enabled the quantitative evaluation of the time-concentration profiles and distribution of nanoparticles within the lungs. This imaging technique is particularly useful for the development of inhalable nanoparticles that specifically target the lesions and exhibit controlled-release capabilities within the lungs.
Collapse
Affiliation(s)
- Kohei Togami
- Division of Pharmaceutics, Hokkaido University of Science, 7-Jo 15-4-1 Maeda, Teine, Sapporo, Hokkaido 006-8585, Japan; Creation Research Institute of Life Science in KITA-no-DAICHI, 7-Jo 15-4-1 Maeda, Teine, Sapporo, Hokkaido 006-8585, Japan.
| | - Yoshiki Hazama
- Division of Pharmaceutics, Hokkaido University of Science, 7-Jo 15-4-1 Maeda, Teine, Sapporo, Hokkaido 006-8585, Japan
| | - Yuki Nakamura
- Division of Pharmaceutics, Hokkaido University of Science, 7-Jo 15-4-1 Maeda, Teine, Sapporo, Hokkaido 006-8585, Japan
| | - Kiyomi Ishizawa
- Division of Pharmaceutics, Hokkaido University of Science, 7-Jo 15-4-1 Maeda, Teine, Sapporo, Hokkaido 006-8585, Japan
| | - Sumio Chono
- Division of Pharmaceutics, Hokkaido University of Science, 7-Jo 15-4-1 Maeda, Teine, Sapporo, Hokkaido 006-8585, Japan; Creation Research Institute of Life Science in KITA-no-DAICHI, 7-Jo 15-4-1 Maeda, Teine, Sapporo, Hokkaido 006-8585, Japan
| |
Collapse
|
13
|
Mahri S, Wilms T, Hagedorm P, Guichard MJ, Vanvarenberg K, Dumoulin M, Frijlink H, Vanbever R. Nebulization of PEGylated recombinant human deoxyribonuclease I using vibrating membrane nebulizers: A technical feasibility study. Eur J Pharm Sci 2023; 189:106522. [PMID: 37423579 DOI: 10.1016/j.ejps.2023.106522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 06/16/2023] [Accepted: 07/06/2023] [Indexed: 07/11/2023]
Abstract
Recombinant human deoxyribonuclease I (rhDNase, Pulmozyme®) is the most frequently used mucolytic agent for the symptomatic treatment of cystic fibrosis (CF) lung disease. Conjugation of rhDNase to polyethylene glycol (PEG) has been shown to greatly prolong its residence time in the lungs and improve its therapeutic efficacy in mice. To present an added value over current rhDNase treatment, PEGylated rhDNase needs to be efficiently and less frequently administrated by aerosolization and possibly at higher concentrations than existing rhDNase. In this study, the effects of PEGylation on the thermodynamic stability of rhDNase was investigated using linear 20 kDa, linear 30 kDa and 2-armed 40 kDa PEGs. The suitability of PEG30-rhDNase to electrohydrodynamic atomization (electrospraying) as well as the feasibility of using two vibrating mesh nebulizers, the optimized eFlow® Technology nebulizer (eFlow) and Innospire Go, at varying protein concentrations were investigated. PEGylation was shown to destabilize rhDNase upon chemical-induced denaturation and ethanol exposure. Yet, PEG30-rhDNase was stable enough to withstand aerosolization stresses using the eFlow and Innospire Go nebulizers even at higher concentrations (5 mg of protein per ml) than conventional rhDNase formulation (1 mg/ml). High aerosol output (up to 1.5 ml per min) and excellent aerosol characteristics (up to 83% fine particle fraction) were achieved while preserving protein integrity and enzymatic activity. This work demonstrates the technical feasibility of PEG-rhDNase nebulization with advanced vibrating membrane nebulizers, encouraging further pharmaceutical and clinical developments of a long-acting PEGylated alternative to rhDNase for treating patients with CF.
Collapse
Affiliation(s)
- Sohaib Mahri
- Université catholique de Louvain (UCLouvain), Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, Brussels, Belgium
| | - Tobias Wilms
- Université catholique de Louvain (UCLouvain), Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, Brussels, Belgium
| | - Paul Hagedorm
- University of Groningen, Groningen Research Institute of Pharmacy, Pharmaceutical Technology and Biopharmacy, Groningen, the Netherlands
| | - Marie-Julie Guichard
- Université catholique de Louvain (UCLouvain), Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, Brussels, Belgium
| | - Kevin Vanvarenberg
- Université catholique de Louvain (UCLouvain), Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, Brussels, Belgium
| | - Mireille Dumoulin
- University of Liège, Center for Protein Engineering, InBioS, Nanobodies to Explore Protein Structure and Functions, Liège, Belgium
| | - Henderik Frijlink
- University of Groningen, Groningen Research Institute of Pharmacy, Pharmaceutical Technology and Biopharmacy, Groningen, the Netherlands
| | - Rita Vanbever
- Université catholique de Louvain (UCLouvain), Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, Brussels, Belgium.
| |
Collapse
|
14
|
Bianchera A, Vilardo V, Giaccari R, Michielon A, Bazzoli G, Buttini F, Aiello M, Chetta A, Bruno S, Bettini R. Nebulizers effectiveness on pulmonary delivery of alpha-1 antitrypsin. Drug Deliv Transl Res 2023; 13:2653-2663. [PMID: 37097606 PMCID: PMC10468431 DOI: 10.1007/s13346-023-01346-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/03/2023] [Indexed: 04/26/2023]
Abstract
The nebulization of alpha-1 antitrypsin (AAT) for its administration to the lung could be an interesting alternative to parenteral infusion for patients suffering from AAT genetic deficiency (AATD). In the case of protein therapeutics, the effect of the nebulization mode and rate on protein conformation and activity must be carefully considered. In this paper two types of nebulizers, i.e., a jet and a mesh vibrating system, were used to nebulize a commercial preparation of AAT for infusion and compared. The aerosolization performance, in terms of mass distribution, respirable fraction, and drug delivery efficiency, as well as the activity and aggregation state of AAT upon in vitro nebulization were investigated. The two nebulizers demonstrated equivalent aerosolization performances, but the mesh nebulizer provided a higher efficiency in the delivery of the dose. The activity of the protein was acceptably preserved by both nebulizers and no aggregation or changes in its conformation were identified. This suggests that nebulization of AAT represents a suitable administration strategy ready to be translated to the clinical practice for delivering the protein directly to the lungs in AATD patients, either as a support therapy to parenteral administration or for subjects with a precocious diagnosis, to prevent the onset of pulmonary symptoms.
Collapse
Affiliation(s)
- Annalisa Bianchera
- Food and Drug Department, University of Parma, Parco Area Delle Scienze 27/a, Parma, Italy
- Interdepartmental Center Biopharmanet-Tec, University of Parma, Parco Area Delle Scienze Building 33, Parma, Italy
| | - Viviana Vilardo
- Food and Drug Department, University of Parma, Parco Area Delle Scienze 27/a, Parma, Italy
| | - Roberta Giaccari
- Food and Drug Department, University of Parma, Parco Area Delle Scienze 27/a, Parma, Italy
| | - Annalisa Michielon
- Food and Drug Department, University of Parma, Parco Area Delle Scienze 27/a, Parma, Italy
| | - Gianluca Bazzoli
- Food and Drug Department, University of Parma, Parco Area Delle Scienze 27/a, Parma, Italy
| | - Francesca Buttini
- Food and Drug Department, University of Parma, Parco Area Delle Scienze 27/a, Parma, Italy
- Interdepartmental Center Biopharmanet-Tec, University of Parma, Parco Area Delle Scienze Building 33, Parma, Italy
| | - Marina Aiello
- Department of Medicine and Surgery, University of Parma, Via Gramsci 14, Parma, Italy
| | - Alfredo Chetta
- Department of Medicine and Surgery, University of Parma, Via Gramsci 14, Parma, Italy
| | - Stefano Bruno
- Food and Drug Department, University of Parma, Parco Area Delle Scienze 27/a, Parma, Italy
- Interdepartmental Center Biopharmanet-Tec, University of Parma, Parco Area Delle Scienze Building 33, Parma, Italy
| | - Ruggero Bettini
- Food and Drug Department, University of Parma, Parco Area Delle Scienze 27/a, Parma, Italy.
- Interdepartmental Center Biopharmanet-Tec, University of Parma, Parco Area Delle Scienze Building 33, Parma, Italy.
| |
Collapse
|
15
|
Roy A, Shi L, Chang A, Dong X, Fernandez A, Kraft JC, Li J, Le VQ, Winegar RV, Cherf GM, Slocum D, Poulson PD, Casper GE, Vallecillo-Zúniga ML, Valdoz JC, Miranda MC, Bai H, Kipnis Y, Olshefsky A, Priya T, Carter L, Ravichandran R, Chow CM, Johnson MR, Cheng S, Smith M, Overed-Sayer C, Finch DK, Lowe D, Bera AK, Matute-Bello G, Birkland TP, DiMaio F, Raghu G, Cochran JR, Stewart LJ, Campbell MG, Van Ry PM, Springer T, Baker D. De novo design of highly selective miniprotein inhibitors of integrins αvβ6 and αvβ8. Nat Commun 2023; 14:5660. [PMID: 37704610 PMCID: PMC10500007 DOI: 10.1038/s41467-023-41272-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 08/18/2023] [Indexed: 09/15/2023] Open
Abstract
The RGD (Arg-Gly-Asp)-binding integrins αvβ6 and αvβ8 are clinically validated cancer and fibrosis targets of considerable therapeutic importance. Compounds that can discriminate between homologous αvβ6 and αvβ8 and other RGD integrins, stabilize specific conformational states, and have high thermal stability could have considerable therapeutic utility. Existing small molecule and antibody inhibitors do not have all these properties, and hence new approaches are needed. Here we describe a generalized method for computationally designing RGD-containing miniproteins selective for a single RGD integrin heterodimer and conformational state. We design hyperstable, selective αvβ6 and αvβ8 inhibitors that bind with picomolar affinity. CryoEM structures of the designed inhibitor-integrin complexes are very close to the computational design models, and show that the inhibitors stabilize specific conformational states of the αvβ6 and the αvβ8 integrins. In a lung fibrosis mouse model, the αvβ6 inhibitor potently reduced fibrotic burden and improved overall lung mechanics, demonstrating the therapeutic potential of de novo designed integrin binding proteins with high selectivity.
Collapse
Affiliation(s)
- Anindya Roy
- Department of Biochemistry and Institute for Protein Design, University of Washington, Seattle, WA, 98195, USA
| | - Lei Shi
- Department of Biochemistry and Institute for Protein Design, University of Washington, Seattle, WA, 98195, USA
- Encodia Inc, 5785 Oberlin Drive, San Diego, CA, 92121, USA
| | - Ashley Chang
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, 84602, USA
| | - Xianchi Dong
- Program in Cellular and Molecular Medicine, Children's Hospital Boston, and Departments of Biological Chemistry and Molecular Pharmacology and of Medicine, Harvard Medical School, Boston, MA, USA
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
- Engineering Research Center of Protein and Peptide Medicine, Ministry of Education, Nanjing, China
| | - Andres Fernandez
- Division of Basic Sciences, Fred Hutchinson Cancer Center, Seattle, WA, 98109, USA
| | - John C Kraft
- Department of Biochemistry and Institute for Protein Design, University of Washington, Seattle, WA, 98195, USA
| | - Jing Li
- Program in Cellular and Molecular Medicine, Children's Hospital Boston, and Departments of Biological Chemistry and Molecular Pharmacology and of Medicine, Harvard Medical School, Boston, MA, USA
| | - Viet Q Le
- Program in Cellular and Molecular Medicine, Children's Hospital Boston, and Departments of Biological Chemistry and Molecular Pharmacology and of Medicine, Harvard Medical School, Boston, MA, USA
| | - Rebecca Viazzo Winegar
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, 84602, USA
| | - Gerald Maxwell Cherf
- Department of Bioengineering, Stanford University, Stanford, CA, 94305, USA
- Denali Therapeutics, South San Francisco, CA, USA
| | - Dean Slocum
- Program in Cellular and Molecular Medicine, Children's Hospital Boston, and Departments of Biological Chemistry and Molecular Pharmacology and of Medicine, Harvard Medical School, Boston, MA, USA
| | - P Daniel Poulson
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, 84602, USA
| | - Garrett E Casper
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, 84602, USA
| | | | - Jonard Corpuz Valdoz
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, 84602, USA
| | - Marcos C Miranda
- Department of Biochemistry and Institute for Protein Design, University of Washington, Seattle, WA, 98195, USA
- Department of Medicine Solna, Division of Immunology and Allergy, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Hua Bai
- Department of Biochemistry and Institute for Protein Design, University of Washington, Seattle, WA, 98195, USA
| | - Yakov Kipnis
- Department of Biochemistry and Institute for Protein Design, University of Washington, Seattle, WA, 98195, USA
- Howard Hughes Medical Institute, University of Washington, Seattle, WA, 98195, USA
| | - Audrey Olshefsky
- Department of Biochemistry and Institute for Protein Design, University of Washington, Seattle, WA, 98195, USA
- Department of Bioengineering, University of Washington, Seattle, WA, 98195, USA
| | - Tanu Priya
- Department of Materials Science and Engineering, University of Washington, Seattle, WA, 98195, USA
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Lauren Carter
- Department of Biochemistry and Institute for Protein Design, University of Washington, Seattle, WA, 98195, USA
| | - Rashmi Ravichandran
- Department of Biochemistry and Institute for Protein Design, University of Washington, Seattle, WA, 98195, USA
| | - Cameron M Chow
- Department of Biochemistry and Institute for Protein Design, University of Washington, Seattle, WA, 98195, USA
| | - Max R Johnson
- Department of Biochemistry and Institute for Protein Design, University of Washington, Seattle, WA, 98195, USA
| | - Suna Cheng
- Department of Biochemistry and Institute for Protein Design, University of Washington, Seattle, WA, 98195, USA
| | - McKaela Smith
- Department of Biochemistry and Institute for Protein Design, University of Washington, Seattle, WA, 98195, USA
| | - Catherine Overed-Sayer
- Research and Early Development, Respiratory and Immunology, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
- Bioscience COPD/IPF, Research and Early Development, Respiratory and Immunology, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Donna K Finch
- Research and Early Development, Respiratory and Immunology, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
- Alchemab Therapeutics Ltd, Cambridge, UK
| | - David Lowe
- Research and Early Development, Respiratory and Immunology, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
- Evox Therapeutics Limited, Oxford Science Park, Medawar Centre, East Building, Robert Robinson Avenue, Oxford, OX4 4HG, England
| | - Asim K Bera
- Department of Biochemistry and Institute for Protein Design, University of Washington, Seattle, WA, 98195, USA
| | - Gustavo Matute-Bello
- Center for Lung Biology, Division of Pulmonary, Critical Care and Sleep Medicine, University of Washington, Seattle, USA
| | - Timothy P Birkland
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Frank DiMaio
- Department of Biochemistry and Institute for Protein Design, University of Washington, Seattle, WA, 98195, USA
| | - Ganesh Raghu
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Washington, Seattle, WA, USA
- Dept of Medicine, University of Washington, Seattle, WA, USA
| | - Jennifer R Cochran
- Department of Bioengineering, Stanford University, Stanford, CA, 94305, USA
| | - Lance J Stewart
- Department of Biochemistry and Institute for Protein Design, University of Washington, Seattle, WA, 98195, USA
| | - Melody G Campbell
- Division of Basic Sciences, Fred Hutchinson Cancer Center, Seattle, WA, 98109, USA.
| | - Pam M Van Ry
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, 84602, USA.
| | - Timothy Springer
- Program in Cellular and Molecular Medicine, Children's Hospital Boston, and Departments of Biological Chemistry and Molecular Pharmacology and of Medicine, Harvard Medical School, Boston, MA, USA.
| | - David Baker
- Department of Biochemistry and Institute for Protein Design, University of Washington, Seattle, WA, 98195, USA.
- Howard Hughes Medical Institute, University of Washington, Seattle, WA, 98195, USA.
| |
Collapse
|
16
|
Roy A, Shi L, Chang A, Dong X, Fernandez A, Kraft JC, Li J, Le VQ, Winegar RV, Cherf GM, Slocum D, Daniel Poulson P, Casper GE, Vallecillo-Zúniga ML, Valdoz JC, Miranda MC, Bai H, Kipnis Y, Olshefsky A, Priya T, Carter L, Ravichandran R, Chow CM, Johnson MR, Cheng S, Smith M, Overed-Sayer C, Finch DK, Lowe D, Bera AK, Matute-Bello G, Birkland TP, DiMaio F, Raghu G, Cochran JR, Stewart LJ, Campbell MG, Van Ry PM, Springer T, Baker D. De novo design of highly selective miniprotein inhibitors of integrins αvβ6 and αvβ8. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.12.544624. [PMID: 37398153 PMCID: PMC10312613 DOI: 10.1101/2023.06.12.544624] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
The RGD (Arg-Gly-Asp)-binding integrins αvβ6 and αvβ8 are clinically validated cancer and fibrosis targets of considerable therapeutic importance. Compounds that can discriminate between the two closely related integrin proteins and other RGD integrins, stabilize specific conformational states, and have sufficient stability enabling tissue restricted administration could have considerable therapeutic utility. Existing small molecules and antibody inhibitors do not have all of these properties, and hence there is a need for new approaches. Here we describe a method for computationally designing hyperstable RGD-containing miniproteins that are highly selective for a single RGD integrin heterodimer and conformational state, and use this strategy to design inhibitors of αvβ6 and αvβ8 with high selectivity. The αvβ6 and αvβ8 inhibitors have picomolar affinities for their targets, and >1000-fold selectivity over other RGD integrins. CryoEM structures are within 0.6-0.7Å root-mean-square deviation (RMSD) to the computational design models; the designed αvβ6 inhibitor and native ligand stabilize the open conformation in contrast to the therapeutic anti-αvβ6 antibody BG00011 that stabilizes the bent-closed conformation and caused on-target toxicity in patients with lung fibrosis, and the αvβ8 inhibitor maintains the constitutively fixed extended-closed αvβ8 conformation. In a mouse model of bleomycin-induced lung fibrosis, the αvβ6 inhibitor potently reduced fibrotic burden and improved overall lung mechanics when delivered via oropharyngeal administration mimicking inhalation, demonstrating the therapeutic potential of de novo designed integrin binding proteins with high selectivity.
Collapse
Affiliation(s)
- Anindya Roy
- Department of Biochemistry and Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Lei Shi
- Department of Biochemistry and Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
- Current Address: Encodia Inc, 5785 Oberlin Drive, San Diego, CA 92121
| | - Ashley Chang
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602, USA
| | - Xianchi Dong
- Program in Cellular and Molecular Medicine, Children’s Hospital Boston, and Departments of Biological Chemistry and Molecular Pharmacology and of Medicine, Harvard Medical School, Boston, United States
- Current address: State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China; Engineering Research Center of Protein and Peptide Medicine,Ministry of Education
| | - Andres Fernandez
- Division of Basic Sciences, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - John C. Kraft
- Department of Biochemistry and Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Jing Li
- Program in Cellular and Molecular Medicine, Children’s Hospital Boston, and Departments of Biological Chemistry and Molecular Pharmacology and of Medicine, Harvard Medical School, Boston, United States
| | - Viet Q. Le
- Program in Cellular and Molecular Medicine, Children’s Hospital Boston, and Departments of Biological Chemistry and Molecular Pharmacology and of Medicine, Harvard Medical School, Boston, United States
| | - Rebecca Viazzo Winegar
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602, USA
| | - Gerald Maxwell Cherf
- Department of Bioengineering, Stanford University, Stanford CA 94305
- Current Address: Denali Therapeutics, South San Francisco, CA, USA
| | - Dean Slocum
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602, USA
| | - P. Daniel Poulson
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602, USA
| | - Garrett E. Casper
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602, USA
| | | | - Jonard Corpuz Valdoz
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602, USA
| | - Marcos C. Miranda
- Department of Biochemistry and Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
- Current Address: Department of Medicine Solna, Division of Immunology and Allergy, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Hua Bai
- Department of Biochemistry and Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Yakov Kipnis
- Department of Biochemistry and Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Washington, Seattle, Washington
| | - Audrey Olshefsky
- Department of Biochemistry and Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
| | - Tanu Priya
- Department of Materials Science and Engineering, University of Washington, Seattle, WA 98195, USA
- Current Address: Department of Pharmacology, Northwestern University Feinberg School of Medicine; Chicago, IL 60611, USA
| | - Lauren Carter
- Department of Biochemistry and Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Rashmi Ravichandran
- Department of Biochemistry and Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Cameron M. Chow
- Department of Biochemistry and Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Max R. Johnson
- Department of Biochemistry and Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Suna Cheng
- Department of Biochemistry and Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - McKaela Smith
- Department of Biochemistry and Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Catherine Overed-Sayer
- Research and Early Development, Respiratory and Immunology, BioPharmaceuticals R&D, AstraZeneca, Cambridge, United Kingdom
- Current Address: Bioscience COPD/IPF, Research and Early Development, Respiratory and Immunology, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Donna K. Finch
- Research and Early Development, Respiratory and Immunology, BioPharmaceuticals R&D, AstraZeneca, Cambridge, United Kingdom
- Current Address: Alchemab Therapeutics Ltd, Cambridge, United Kingdom
| | - David Lowe
- Research and Early Development, Respiratory and Immunology, BioPharmaceuticals R&D, AstraZeneca, Cambridge, United Kingdom
- Current Address: Evox Therapeutics Limited, Oxford Science Park, Medawar Centre, East Building, Robert Robinson Avenue, Oxford, OX4 4HG
| | - Asim K. Bera
- Department of Biochemistry and Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Gustavo Matute-Bello
- Center for Lung Biology, Division of Pulmonary, Critical Care and Sleep Medicine, University of Washington
| | - Timothy P Birkland
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Washington, Seattle, Washington
| | - Frank DiMaio
- Department of Biochemistry and Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Ganesh Raghu
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Washington, Seattle, Washington
| | | | - Lance J. Stewart
- Department of Biochemistry and Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Melody G. Campbell
- Division of Basic Sciences, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Pam M. Van Ry
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602, USA
| | - Timothy Springer
- Program in Cellular and Molecular Medicine, Children’s Hospital Boston, and Departments of Biological Chemistry and Molecular Pharmacology and of Medicine, Harvard Medical School, Boston, United States
| | - David Baker
- Department of Biochemistry and Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
- Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
17
|
Kohl Y, Müller M, Fink M, Mamier M, Fürtauer S, Drexel R, Herrmann C, Dähnhardt-Pfeiffer S, Hornberger R, Arz MI, Metzger C, Wagner S, Sängerlaub S, Briesen H, Meier F, Krebs T. Development and Characterization of a 96-Well Exposure System for Safety Assessment of Nanomaterials. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2207207. [PMID: 36922728 DOI: 10.1002/smll.202207207] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 01/31/2023] [Indexed: 06/08/2023]
Abstract
In this study, a 96-well exposure system for safety assessment of nanomaterials is developed and characterized using an air-liquid interface lung epithelial model. This system is designed for sequential nebulization. Distribution studies verify the reproducible distribution over all 96 wells, with lower insert-to-insert variability compared to non-sequential application. With a first set of chemicals (TritonX), drugs (Bortezomib), and nanomaterials (silver nanoparticles and (non-)fluorescent crystalline nanocellulose), sequential exposure studies are performed with human lung epithelial cells followed by quantification of the deposited mass and of cell viability. The developed exposure system offers for the first time the possibility of exposing an air-liquid interface model in a 96-well format, resulting in high-throughput rates, combined with the feature for sequential dosing. This exposure system allows the possibility of creating dose-response curves resulting in the generation of more reliable cell-based assay data for many types of applications, such as safety analysis. In addition to chemicals and drugs, nanomaterials with spherical shapes, but also morphologically more complex nanostructures can be exposed sequentially with high efficiency. This allows new perspectives on in vivo-like and animal-free approaches for chemical and pharmaceutical safety assessment, in line with the 3R principle of replacing and reducing animal experiments.
Collapse
Affiliation(s)
- Yvonne Kohl
- Bioprocessing & Bioanalytics, Fraunhofer Institute for Biomedical Engineering IBMT, Joseph-von-Fraunhofer-Weg 1, 66280, Sulzbach, Germany
| | - Michelle Müller
- Bioprocessing & Bioanalytics, Fraunhofer Institute for Biomedical Engineering IBMT, Joseph-von-Fraunhofer-Weg 1, 66280, Sulzbach, Germany
| | - Marielle Fink
- VITROCELL Systems GmbH, Fabrik Sonntag 3, 79183, Waldkirch, Germany
| | - Marc Mamier
- VITROCELL Systems GmbH, Fabrik Sonntag 3, 79183, Waldkirch, Germany
| | - Siegfried Fürtauer
- Materials Development, Fraunhofer Institute for Process Engineering & Packaging IVV, Giggenhauser Str. 35, 85354, Freising, Germany
| | - Roland Drexel
- Postnova Analytics GmbH, 86899, Landsberg am Lech, Germany
| | - Christine Herrmann
- Process Systems Engineering, School of Life Sciences, Technical University Munich, Gregor-Mendel-Str. 4, 85354, Freising, Germany
| | | | - Ramona Hornberger
- Materials Development, Fraunhofer Institute for Process Engineering & Packaging IVV, Giggenhauser Str. 35, 85354, Freising, Germany
| | - Marius I Arz
- Materials Development, Fraunhofer Institute for Process Engineering & Packaging IVV, Giggenhauser Str. 35, 85354, Freising, Germany
| | - Christoph Metzger
- Process Systems Engineering, School of Life Sciences, Technical University Munich, Gregor-Mendel-Str. 4, 85354, Freising, Germany
| | - Sylvia Wagner
- Bioprocessing & Bioanalytics, Fraunhofer Institute for Biomedical Engineering IBMT, Joseph-von-Fraunhofer-Weg 1, 66280, Sulzbach, Germany
| | - Sven Sängerlaub
- Materials Development, Fraunhofer Institute for Process Engineering & Packaging IVV, Giggenhauser Str. 35, 85354, Freising, Germany
| | - Heiko Briesen
- Process Systems Engineering, School of Life Sciences, Technical University Munich, Gregor-Mendel-Str. 4, 85354, Freising, Germany
| | - Florian Meier
- Postnova Analytics GmbH, 86899, Landsberg am Lech, Germany
| | - Tobias Krebs
- VITROCELL Systems GmbH, Fabrik Sonntag 3, 79183, Waldkirch, Germany
| |
Collapse
|
18
|
Vizzoni L, Migone C, Grassiri B, Zambito Y, Ferro B, Roncucci P, Mori F, Salvatore A, Ascione E, Crea R, Esin S, Batoni G, Piras AM. Biopharmaceutical Assessment of Mesh Aerosolised Plasminogen, a Step towards ARDS Treatment. Pharmaceutics 2023; 15:1618. [PMID: 37376068 PMCID: PMC10300680 DOI: 10.3390/pharmaceutics15061618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 05/18/2023] [Accepted: 05/26/2023] [Indexed: 06/29/2023] Open
Abstract
Acute respiratory distress syndrome (ARDS) is a severe complication of lung injuries, commonly associated with bacterial, fungal and viral infections, including SARS-CoV-2 viral infections. ARDS is strongly correlated with patient mortality and its clinical management is very complex, with no effective treatment presently available. ARDS involves severe respiratory failure, fibrin deposition in both airways and lung parenchyma, with the development of an obstructing hyaline membrane drastically limiting gas exchange. Moreover, hypercoagulation is related to deep lung inflammation, and a pharmacological action toward both aspects is expected to be beneficial. Plasminogen (PLG) is a main component of the fibrinolytic system playing key roles in various inflammation regulatory processes. The inhalation of PLG has been proposed in the form of the off-label administration of an eyedrop solution, namely, a plasminogen-based orphan medicinal product (PLG-OMP), by means of jet nebulisation. Being a protein, PLG is susceptible to partial inactivation under jet nebulisation. The aim of the present work is to demonstrate the efficacy of the mesh nebulisation of PLG-OMP in an in vitro simulation of clinical off-label administration, considering both the enzymatic and immunomodulating activities of PLG. Biopharmaceutical aspects are also investigated to corroborate the feasibility of PLG-OMP administration by inhalation. The nebulisation of the solution was performed using an Aerogen® SoloTM vibrating-mesh nebuliser. Aerosolised PLG showed an optimal in vitro deposition profile, with 90% of the active ingredient impacting the lower portions of a glass impinger. The nebulised PLG remained in its monomeric form, with no alteration of glycoform composition and 94% of enzymatic activity maintenance. Activity loss was observed only when PLG-OMP nebulisation was performed under simulated clinical oxygen administration. In vitro investigations evidenced good penetration of aerosolised PLG through artificial airway mucus, as well as poor permeation across an Air-Liquid Interface model of pulmonary epithelium. The results suggest a good safety profile of inhalable PLG, excluding high systemic absorption but with good mucus diffusion. Most importantly, the aerosolised PLG was capable of reversing the effects of an LPS-activated macrophage RAW 264.7 cell line, demonstrating the immunomodulating activity of PLG in an already induced inflammatory state. All physical, biochemical and biopharmaceutical assessments of mesh aerosolised PLG-OMP provided evidence for its potential off-label administration as a treatment for ARDS patients.
Collapse
Affiliation(s)
- Lucia Vizzoni
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy
- Department of Life Sciences, University of Siena, 53100 Siena, Italy
| | - Chiara Migone
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy
| | | | - Ylenia Zambito
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy
- Research Centre for Nutraceutical and Healthy Foods “NUTRAFOOD”, University of Pisa, 56124 Pisa, Italy
| | - Baldassare Ferro
- Anestesia e Rianimazione, Azienda USL Toscana Nord Ovest, 57124 Livorno, Italy
| | - Paolo Roncucci
- Anestesia e Rianimazione, Azienda USL Toscana Nord Ovest, 57124 Livorno, Italy
| | - Filippo Mori
- Kedrion S.p.A., Via di Fondovalle, Loc. Bolognana, 55027 Gallicano, Italy
| | - Alfonso Salvatore
- Kedrion S.p.A., Via di Fondovalle, Loc. Bolognana, 55027 Gallicano, Italy
| | - Ester Ascione
- Kedrion S.p.A., Via di Fondovalle, Loc. Bolognana, 55027 Gallicano, Italy
| | - Roberto Crea
- Kedrion S.p.A., Via di Fondovalle, Loc. Bolognana, 55027 Gallicano, Italy
| | - Semih Esin
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy
- Centre for Instrument Sharing of University of Pisa (CISUP), 56126 Pisa, Italy
| | - Giovanna Batoni
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy
- Centre for Instrument Sharing of University of Pisa (CISUP), 56126 Pisa, Italy
| | - Anna Maria Piras
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy
- Centre for Instrument Sharing of University of Pisa (CISUP), 56126 Pisa, Italy
| |
Collapse
|
19
|
Chang KH, Park BJ, Nam KC. Aerosolization Performance of Immunoglobulin G by Jet and Mesh Nebulizers. AAPS PharmSciTech 2023; 24:125. [PMID: 37225929 DOI: 10.1208/s12249-023-02579-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 05/01/2023] [Indexed: 05/26/2023] Open
Abstract
Recently, many preclinical and clinical studies have been conducted on the delivery of therapeutic antibodies to the lungs using nebulizers, but standard treatment guidelines have not yet been established. Our objective was to compare nebulization performance according to the low temperature and concentration of immunoglobulin G (IgG) solutions in different types of nebulizers, and to evaluate the stability of IgG aerosols and the amount delivered to the lungs. The output rate of the mesh nebulizers decreased according to the low temperature and high concentration of IgG solution, whereas the jet nebulizer was unaffected by the temperature and concentration of IgG. An impedance change of the piezoelectric vibrating element in the mesh nebulizers was observed because of the lower temperature and higher viscosity of IgG solution. This affected the resonance frequency of the piezoelectric element and lowered the output rate of the mesh nebulizers. Aggregation assays using a fluorescent probe revealed aggregates in IgG aerosols from all nebulizers. The delivered dose of IgG to the lungs in mice was highest at 95 ng/mL in the jet nebulizer with the smallest droplet size. Evaluation of the performance of IgG solution delivered to the lungs by three types of nebulizers could provide valuable parameter information for determination on dose of therapeutic antibody by nebulizers.
Collapse
Affiliation(s)
- Kyung Hwa Chang
- Department of Medical Engineering, Dongguk University College of Medicine, 32 Dongguk-ro, Ilsandong-gu, Goyang-si, Gyeonggi-do, 10326, South Korea
| | - Bong Joo Park
- Department of Electrical & Biological Physics and Institute of Biomaterials, Kwangwoon University, Seoul, 01897, South Korea
| | - Ki Chang Nam
- Department of Medical Engineering, Dongguk University College of Medicine, 32 Dongguk-ro, Ilsandong-gu, Goyang-si, Gyeonggi-do, 10326, South Korea.
| |
Collapse
|
20
|
He X, Chen X, Wang H, Du G, Sun X. Recent advances in respiratory immunization: A focus on COVID-19 vaccines. J Control Release 2023; 355:655-674. [PMID: 36787821 PMCID: PMC9937028 DOI: 10.1016/j.jconrel.2023.02.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 02/02/2023] [Accepted: 02/07/2023] [Indexed: 02/16/2023]
Abstract
The development of vaccines has always been an essential task worldwide since vaccines are regarded as powerful weapons in protecting the global population. Although the vast majority of currently authorized human vaccinations are administered intramuscularly or subcutaneously, exploring novel routes of immunization has been a prominent area of study in recent years. This is particularly relevant in the face of pandemic diseases, such as COVID-19, where respiratory immunization offers distinct advantages, such as inducing systemic and mucosal responses to prevent viral infections in both the upper and lower respiratory tracts and also leading to higher patient compliance. However, the development of respiratory vaccines confronts challenges due to the physiological barriers of the respiratory tract, with most of these vaccines still in the research and development stage. In this review, we detail the structure of the respiratory tract and the mechanisms of mucosal immunity, as well as the obstacles to respiratory vaccination. We also examine the considerations necessary in constructing a COVID-19 respiratory vaccine, including the dosage form of the vaccines, potential excipients and mucosal adjuvants, and delivery systems and devices for respiratory vaccines. Finally, we present a comprehensive overview of the COVID-19 respiratory vaccines currently under clinical investigation. We hope this review can provide valuable insights and inspiration for the future development of respiratory vaccinations.
Collapse
Affiliation(s)
- Xiyue He
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Xiaoyan Chen
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Hairui Wang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Guangsheng Du
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Xun Sun
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
21
|
Brun EHC, Hong ZY, Hsu YM, Wang CT, Chung DJ, Ng SK, Lee YH, Wei TT. Stability and Activity of Interferon Beta to Treat Idiopathic Pulmonary Fibrosis with Different Nebulizer Technologies. J Aerosol Med Pulm Drug Deliv 2023; 36:55-64. [PMID: 36827329 DOI: 10.1089/jamp.2022.0020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023] Open
Abstract
Background: Idiopathic pulmonary fibrosis (IPF) is a serious lung disease characterized by lung scarring, which results in breathing difficulty. Currently, patients with IPF exhibit a poor survival rate and have access to very limited therapeutic options. Interferon beta (IFN-β) has been approved by the U.S. Food and Drug Administration (FDA) for the treatment of relapsing forms of multiple sclerosis, and it has also been shown to exhibit therapeutic potential in IPF. However, clinical use of IFN-β did not lead to improved overall survival in IPF patients in existing studies. One possibility is the limited efficiency of IFN-β delivery through intravenous or subcutaneous injection. Materials and Methods: The aerosol particle size distribution was determined with a laser diffraction particle size analyzer to characterize the droplet size and fine particle fraction generated by three types of nebulizers: jet, ultrasonic, and mesh. A breathing simulator was used to assess the delivery efficiency of IFN-β, and the temperature in the medication reservoirs was monitored with a thermocouple during nebulization. To further evaluate the antifibrotic activity of IFN-β pre- and postnebulization, bleomycin (BLM)- or transforming growth factor-beta (TGF-β)-treated human lung fibroblast (HLF) cells were used. Cell viability was measured by 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay. Transwell migration assay and Q-PCR analysis were used to evaluate cell migration and the myofibroblast differentiation ability, respectively. IFN-β protein samples were prepared using sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) sample loading buffer, and the expression of IFN-β was assessed by western blotting. Results: Among the current drug delivery systems, aerosolized medication has shown increased efficacy of drug delivery for treating respiratory diseases when compared with parenteral drugs. It was found that neither the structural integrity nor the biological function of nebulized IFN-β was compromised by the nebulization process of the mesh nebulizer. In addition, in BLM dose-response or TGF-β-induced lung fibroblast proliferation assays, these effects could be reversed by both parenteral and inhaled IFN-β nebulized with the mesh nebulizer. Nebulized IFN-β with the mesh nebulizer also significantly inhibited the migration and myofibroblast differentiation ability of TGF-β-treated HLF cells. Conclusions: The investigations revealed the potential efficacy of IFN-β in the treatment of IPF with the mesh nebulizer, demonstrating the higher efficiency of IFN-β delivered through the mesh nebulizer.
Collapse
Affiliation(s)
| | - Zuo-Yi Hong
- Department and Graduate Institute of Pharmacology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | | | | | - Dai-Jung Chung
- Department and Graduate Institute of Pharmacology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Shang-Kok Ng
- Department and Graduate Institute of Pharmacology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Yau-Hsuan Lee
- Department and Graduate Institute of Pharmacology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Tzu-Tang Wei
- Department and Graduate Institute of Pharmacology, College of Medicine, National Taiwan University, Taipei, Taiwan.,Chemical Biology and Molecular Biophysics, Taiwan International Graduate Program in Chemical Biology and Molecular Biophysics (TIGP-CBMB), Academia Sinica, Taipei, Taiwan
| |
Collapse
|
22
|
Fishler R, Ostrovski Y, Frenkel A, Dorfman S, Vaknin M, Waisman D, Korin N, Sznitman J. Exploring pulmonary distribution of intratracheally instilled liquid foams in excised porcine lungs. Eur J Pharm Sci 2023; 181:106359. [PMID: 36521723 PMCID: PMC9850415 DOI: 10.1016/j.ejps.2022.106359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/28/2022] [Accepted: 12/12/2022] [Indexed: 12/15/2022]
Abstract
The applicability of inhalation therapy to some severe pulmonary conditions is often compromised by limited delivery rates (i.e. total dose) and low deposition efficiencies in the respiratory tract, most notably in the deep pulmonary acinar airways. To circumvent such limitations, alternative therapeutic techniques have relied for instance on intratracheal liquid instillations for the delivery of high-dose therapies. Yet, a longstanding mechanistic challenge with such latter methods lies in delivering solutions homogeneously across the whole lungs, despite an inherent tendency of non-uniform spreading driven mainly by gravitational effects. Here, we hypothesize that the pulmonary distribution of instilled liquid solutions can be meaningfully improved by foaming the solution prior to its instillation, owing to the increased volume and the reduced gravitational bias of foams. As a proof-of-concept, we show in excised adult porcine lungs that liquid foams can lead to significant improvement in homogenous pulmonary distributions compared with traditional liquid instillations. Our ex-vivo results suggest that liquid foams can potentially offer an attractive novel pulmonary delivery modality with applications for high-dose regimens of respiratory therapeutics.
Collapse
Affiliation(s)
| | | | | | | | | | - Dan Waisman
- Departments of Neonatology, Carmel Medical Center and the Ruth and Bruce Rappaport Faculty of Medicine
| | | | | |
Collapse
|
23
|
Anderson CF, Wang Q, Stern D, Leonard EK, Sun B, Fergie KJ, Choi CY, Spangler JB, Villano J, Pekosz A, Brayton CF, Jia H, Cui H. Supramolecular filaments for concurrent ACE2 docking and enzymatic activity silencing enable coronavirus capture and infection prevention. MATTER 2023; 6:583-604. [PMID: 36531610 PMCID: PMC9743467 DOI: 10.1016/j.matt.2022.11.027] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 10/11/2022] [Accepted: 11/16/2022] [Indexed: 06/01/2023]
Abstract
Coronaviruses have historically precipitated global pandemics of severe acute respiratory syndrome (SARS) into devastating public health crises. Despite the virus's rapid rate of mutation, all SARS coronavirus 2 (SARS-CoV-2) variants are known to gain entry into host cells primarily through complexation with angiotensin-converting enzyme 2 (ACE2). Although ACE2 has potential as a druggable decoy to block viral entry, its clinical use is complicated by its essential biological role as a carboxypeptidase and hindered by its structural and chemical instability. Here we designed supramolecular filaments, called fACE2, that can silence ACE2's enzymatic activity and immobilize ACE2 to their surface through enzyme-substrate complexation. This docking strategy enables ACE2 to be effectively delivered in inhalable aerosols and improves its structural stability and functional preservation. fACE2 exhibits enhanced and prolonged inhibition of viral entry compared with ACE2 alone while mitigating lung injury in vivo.
Collapse
Affiliation(s)
- Caleb F Anderson
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Qiong Wang
- Division of Pediatric Surgery, Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - David Stern
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Elissa K Leonard
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Boran Sun
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Kyle J Fergie
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Chang-Yong Choi
- Division of Pediatric Surgery, Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Jamie B Spangler
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Oncology and Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Jason Villano
- Molecular and Comparative Pathobiology, The Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Andrew Pekosz
- Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
- Molecular and Comparative Pathobiology, The Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Cory F Brayton
- Molecular and Comparative Pathobiology, The Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Hongpeng Jia
- Division of Pediatric Surgery, Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Honggang Cui
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD 21218, USA
- Department of Oncology and Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Center for Nanomedicine, The Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| |
Collapse
|
24
|
Noverraz F, Robin B, Passemard S, Fauvel B, Presumey J, Rigal E, Cookson A, Chopineau J, Martineau P, Villalba M, Jorgensen C, Aubert-Pouëssel A, Morille M, Gerber-Lemaire S. Novel trehalose-based excipients for stabilizing nebulized anti-SARS-CoV-2 antibody. Int J Pharm 2023; 630:122463. [PMID: 36462738 PMCID: PMC9710110 DOI: 10.1016/j.ijpharm.2022.122463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/23/2022] [Accepted: 11/27/2022] [Indexed: 12/02/2022]
Abstract
COVID-19 is caused by the infection of the lungs by SARS-CoV-2. Monoclonal antibodies, such as sotrovimab, showed great efficiency in neutralizing the virus before its internalization by lung epithelial cells. However, parenteral routes are still the preferred route of administration, even for local infections, which requires injection of high doses of antibody to reach efficacious concentrations in the lungs. Lung administration of antibodies would be more relevant requiring lower doses, thus reducing the costs and the side effects. But aerosolization of therapeutic proteins is very challenging, as the different processes available are harsh and trigger protein aggregation and conformational changes. This decreases the efficiency of the treatment, and can increase its immunogenicity. To address those issues, we developed a series of new excipients composed of a trehalose core, a succinyl side chain and a hydrophobic carbon chain (from 8 to 16 carbons). Succinylation increased the solubility of the excipients, allowing their use at relevant concentrations for protein stabilization. In particular, the excipient with 16 carbons (C16TreSuc) used at 5.6 mM was able to preserve colloidal stability and antigen-binding ability of sotrovimab during the nebulization process. It could also be used as a cryoprotectant, allowing storage of sotrovimab in a lyophilized form during weeks. Finally, we demonstrated that C16TreSuc could be used as an excipient to stabilize antibodies for the treatment against COVID-19, by in vitro and in vivo assays. The presence of C16TreSuc during nebulization preserved the neutralization capacity of sotrovimab against SARS-CoV-2 in vitro; an increase of its efficacy was even observed, compared to the non-nebulized control. The in vivo study also showed the wide distribution of sotrovimab in mice lungs, after nebulization with 5.6 mM of excipient. This work brings a solution to stabilize therapeutic proteins during storage and nebulization, making pulmonary immunotherapy possible in the treatment of COVID-19 and other lung diseases.
Collapse
Affiliation(s)
- François Noverraz
- Group for Functionalized Biomaterials, Institute of Chemical Sciences and Engineering Ecole Polytechnique Fédérale de Lausanne, EPFL SB ISIC SCI-SB-SG, Station 6, CH-1015 Lausanne, Switzerland
| | - Baptiste Robin
- MedXCell Science, Bâtiment Cyborg 1 (IRMB), Hôpital Saint-Eloi, 80 avenue Augustin Fliche, 34295 Montpellier, France
| | - Solène Passemard
- Montpellier Life Science Bâtiment Cyborg 1 (IRMB), Hôpital Saint-Eloi, 80 avenue Augustin Fliche, 34295 Montpellier, France
| | - Bénédicte Fauvel
- CYTEA BIO, Bâtiment Cyborg 1 (IRMB), Hôpital Saint-Eloi, 80 avenue Augustin Fliche, 34295 Montpellier, France
| | - Jessy Presumey
- CYTEA BIO, Bâtiment Cyborg 1 (IRMB), Hôpital Saint-Eloi, 80 avenue Augustin Fliche, 34295 Montpellier, France
| | - Emilie Rigal
- CYTEA BIO, Bâtiment Cyborg 1 (IRMB), Hôpital Saint-Eloi, 80 avenue Augustin Fliche, 34295 Montpellier, France
| | - Alan Cookson
- MedXCell SA, Av. des Planches 20C, 1820 Montreux, Suisse
| | - Joël Chopineau
- ICGM, Univ Montpellier, CNRS, ENSCM, Montpellier, France
| | | | - Martin Villalba
- IRMB, Univ Montpellier, INSERM, CNRS, CHU Montpellier, Montpellier, France
| | | | | | - Marie Morille
- ICGM, Univ Montpellier, CNRS, ENSCM, Montpellier, France.
| | - Sandrine Gerber-Lemaire
- Group for Functionalized Biomaterials, Institute of Chemical Sciences and Engineering Ecole Polytechnique Fédérale de Lausanne, EPFL SB ISIC SCI-SB-SG, Station 6, CH-1015 Lausanne, Switzerland.
| |
Collapse
|
25
|
Man F, Tang J, Swedrowska M, Forbes B, T M de Rosales R. Imaging drug delivery to the lungs: Methods and applications in oncology. Adv Drug Deliv Rev 2023; 192:114641. [PMID: 36509173 PMCID: PMC10227194 DOI: 10.1016/j.addr.2022.114641] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 11/25/2022] [Accepted: 11/26/2022] [Indexed: 12/14/2022]
Abstract
Direct delivery to the lung via inhalation is arguably one of the most logical approaches to treat lung cancer using drugs. However, despite significant efforts and investment in this area, this strategy has not progressed in clinical trials. Imaging drug delivery is a powerful tool to understand and develop novel drug delivery strategies. In this review we focus on imaging studies of drug delivery by the inhalation route, to provide a broad overview of the field to date and attempt to better understand the complexities of this route of administration and the significant barriers that it faces, as well as its advantages. We start with a discussion of the specific challenges for drug delivery to the lung via inhalation. We focus on the barriers that have prevented progress of this approach in oncology, as well as the most recent developments in this area. This is followed by a comprehensive overview of the different imaging modalities that are relevant to lung drug delivery, including nuclear imaging, X-ray imaging, magnetic resonance imaging, optical imaging and mass spectrometry imaging. For each of these modalities, examples from the literature where these techniques have been explored are provided. Finally the different applications of these technologies in oncology are discussed, focusing separately on small molecules and nanomedicines. We hope that this comprehensive review will be informative to the field and will guide the future preclinical and clinical development of this promising drug delivery strategy to maximise its therapeutic potential.
Collapse
Affiliation(s)
- Francis Man
- School of Cancer & Pharmaceutical Sciences, King's College London, London, SE1 9NH, United Kingdom
| | - Jie Tang
- School of Biomedical Engineering & Imaging Sciences, King's College London, London SE1 7EH, United Kingdom
| | - Magda Swedrowska
- School of Cancer & Pharmaceutical Sciences, King's College London, London, SE1 9NH, United Kingdom
| | - Ben Forbes
- School of Cancer & Pharmaceutical Sciences, King's College London, London, SE1 9NH, United Kingdom
| | - Rafael T M de Rosales
- School of Biomedical Engineering & Imaging Sciences, King's College London, London SE1 7EH, United Kingdom.
| |
Collapse
|
26
|
Recombinant Alpha-1 Antitrypsin as Dry Powder for Pulmonary Administration: A Formulative Proof of Concept. Pharmaceutics 2022; 14:pharmaceutics14122754. [PMID: 36559248 PMCID: PMC9784676 DOI: 10.3390/pharmaceutics14122754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/05/2022] [Accepted: 12/06/2022] [Indexed: 12/13/2022] Open
Abstract
Alpha-1 antitrypsin (AAT) deficiency is a genetic disorder associated with pulmonary emphysema and bronchiectasis. Its management currently consists of weekly infusions of plasma-purified human AAT, which poses several issues regarding plasma supplies, possible pathogen transmission, purification costs, and parenteral administration. Here, we investigated an alternative administration strategy for augmentation therapy by combining recombinant expression of AAT in bacteria and the production of a respirable powder by spray drying. The same formulation approach was then applied to plasma-derived AAT for comparison. Purified, active, and endotoxin-free recombinant AAT was produced at high yields and formulated using L-leucine and mannitol as excipients after identifying compromise conditions for protein activity and good aerodynamic performances. An oxygen-free atmosphere, both during formulation and powder storage, slowed down methionine-specific oxidation and AAT inactivation. This work is the first peer-reviewed report of AAT formulated as a dry powder, which could represent an alternative to current treatments.
Collapse
|
27
|
Mayor A, Thibert B, Huille S, Bensaid F, Respaud R, Audat H, Heuzé-Vourc'h N. Inhaled IgG1 antibodies: The buffering system is an important driver of stability during mesh-nebulization. Eur J Pharm Biopharm 2022; 181:173-182. [PMID: 36395981 DOI: 10.1016/j.ejpb.2022.11.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 11/09/2022] [Accepted: 11/10/2022] [Indexed: 11/16/2022]
Abstract
In the past decade, oral inhalation has been a thriving focus of research to administer antibody directly to the lungs as an aerosol, for local treatment of respiratory diseases. Formulation of inhaled antibodies is central for the stability of antibody, lung safety and to ensure inhaler performances. Surfactants have already been shown to prevent antibody degradation during aerosolization, but little is known about the impact of other components of liquid formulations on the structural stability of antibodies. Here, we report for the first time to the best of our knowledge, a significant effect of the buffering system on monoclonal antibodies stability, during mesh-nebulization. While the monoclonal antibody extensively aggregated in citrate buffer after nebulization and required high concentration of polysorbate 80 (PS80) to maintain protein integrity, acetate and histidine buffers resulted in a slight to moderate aggregation without PS80 and low concentration of PS80 was sufficient to stabilize antibody during mesh-nebulization.
Collapse
Affiliation(s)
- Alexie Mayor
- INSERM, Centre D'Etude Des Pathologies Respiratoires, Université François Rabelais de Tours, 10 Boulevard Tonnellé, U1100F-37032 Tours, France; University of Tours, Tours, France; Sanofi, Formulation and Process Development, Impasse Des Ateliers, 94400 Vitry-sur-Seine, France
| | - Béatrice Thibert
- Sanofi, Formulation and Process Development, Impasse Des Ateliers, 94400 Vitry-sur-Seine, France
| | - Sylvain Huille
- Sanofi, Formulation and Process Development, Impasse Des Ateliers, 94400 Vitry-sur-Seine, France
| | - Fethi Bensaid
- Sanofi, Formulation and Process Development, Impasse Des Ateliers, 94400 Vitry-sur-Seine, France
| | - Renaud Respaud
- INSERM, Centre D'Etude Des Pathologies Respiratoires, Université François Rabelais de Tours, 10 Boulevard Tonnellé, U1100F-37032 Tours, France
| | - Héloïse Audat
- Sanofi, Formulation and Process Development, Impasse Des Ateliers, 94400 Vitry-sur-Seine, France
| | - Nathalie Heuzé-Vourc'h
- INSERM, Centre D'Etude Des Pathologies Respiratoires, Université François Rabelais de Tours, 10 Boulevard Tonnellé, U1100F-37032 Tours, France; University of Tours, Tours, France.
| |
Collapse
|
28
|
Reynard O, Gonzalez C, Dumont C, Iampietro M, Ferren M, Le Guellec S, Laurie L, Mathieu C, Carpentier G, Roseau G, Bovier FT, Zhu Y, Le Pennec D, Montharu J, Addetia A, Greninger AL, Alabi CA, Brisebard E, Moscona A, Vecellio L, Porotto M, Horvat B. Nebulized fusion inhibitory peptide protects cynomolgus macaques from measles virus infection. Nat Commun 2022; 13:6439. [PMID: 36307480 PMCID: PMC9616412 DOI: 10.1038/s41467-022-33832-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 10/03/2022] [Indexed: 12/25/2022] Open
Abstract
Measles is the most contagious airborne viral infection and the leading cause of child death among vaccine-preventable diseases. We show here that aerosolized lipopeptide fusion inhibitor, derived from heptad-repeat regions of the measles virus (MeV) fusion protein, blocks respiratory MeV infection in a non-human primate model, the cynomolgus macaque. We use a custom-designed mesh nebulizer to ensure efficient aerosol delivery of peptide to the respiratory tract and demonstrate the absence of adverse effects and lung pathology in macaques. The nebulized peptide efficiently prevents MeV infection, resulting in the complete absence of MeV RNA, MeV-infected cells, and MeV-specific humoral responses in treated animals. This strategy provides an additional means to fight against respiratory infection in non-vaccinated people, that can be readily translated to human trials. It presents a proof-of-concept for the aerosol delivery of fusion inhibitory peptides to protect against measles and other airborne viruses, including SARS-CoV-2, in case of high-risk exposure.
Collapse
Affiliation(s)
- Olivier Reynard
- CIRI, Centre International de Recherche en Infectiologie, INSERM U1111, CNRS, UMR5308, Univ Lyon, Université Claude Bernard Lyon 1, École Normale Supérieure de Lyon, 21 Avenue Tony Garnier, 69007, Lyon, France
| | - Claudia Gonzalez
- CIRI, Centre International de Recherche en Infectiologie, INSERM U1111, CNRS, UMR5308, Univ Lyon, Université Claude Bernard Lyon 1, École Normale Supérieure de Lyon, 21 Avenue Tony Garnier, 69007, Lyon, France
| | - Claire Dumont
- CIRI, Centre International de Recherche en Infectiologie, INSERM U1111, CNRS, UMR5308, Univ Lyon, Université Claude Bernard Lyon 1, École Normale Supérieure de Lyon, 21 Avenue Tony Garnier, 69007, Lyon, France
| | - Mathieu Iampietro
- CIRI, Centre International de Recherche en Infectiologie, INSERM U1111, CNRS, UMR5308, Univ Lyon, Université Claude Bernard Lyon 1, École Normale Supérieure de Lyon, 21 Avenue Tony Garnier, 69007, Lyon, France
| | - Marion Ferren
- CIRI, Centre International de Recherche en Infectiologie, INSERM U1111, CNRS, UMR5308, Univ Lyon, Université Claude Bernard Lyon 1, École Normale Supérieure de Lyon, 21 Avenue Tony Garnier, 69007, Lyon, France
| | - Sandrine Le Guellec
- DTF-Aerodrug, R&D aerosolltherapy department of DTF medical (Saint Etienne, France), Faculté de médecine, Université de Tours, 37032, Tours, France
| | - Lajoie Laurie
- Université de Tours, Institut national de recherche pour l'agriculture, l'alimentation et l'environnement (INRAe), UMR1282, Infectiologie et santé publique (ISP), Tours, France
| | - Cyrille Mathieu
- CIRI, Centre International de Recherche en Infectiologie, INSERM U1111, CNRS, UMR5308, Univ Lyon, Université Claude Bernard Lyon 1, École Normale Supérieure de Lyon, 21 Avenue Tony Garnier, 69007, Lyon, France
| | | | | | - Francesca T Bovier
- Center for Host-Pathogen Interaction, Department of Pediatrics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Yun Zhu
- Center for Host-Pathogen Interaction, Department of Pediatrics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
- Laboratory of Infection and Virology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China
| | - Deborah Le Pennec
- INSERM, Research Center for Respiratory Diseases, CEPR U1100, Université de Tours, 37032, Tours, France
| | | | - Amin Addetia
- Department of Laboratory Medicine and Pathology, University of Washington Medical Center, Seattle, WA, USA
| | - Alexander L Greninger
- Department of Laboratory Medicine and Pathology, University of Washington Medical Center, Seattle, WA, USA
| | - Christopher A Alabi
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, USA
| | | | - Anne Moscona
- Center for Host-Pathogen Interaction, Department of Pediatrics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
- Department of Microbiology and Immunology, Columbia University Vagelos College of Physicians & Surgeons, New York, NY, USA
- Department of Physiology & Cellular Biophysics, Columbia University Vagelos College of Physicians & Surgeons, New York, NY, USA
| | | | - Matteo Porotto
- Center for Host-Pathogen Interaction, Department of Pediatrics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
- Department of Experimental Medicine, University of Studies of Campania 'Luigi Vanvitelli', Naples, Italy
| | - Branka Horvat
- CIRI, Centre International de Recherche en Infectiologie, INSERM U1111, CNRS, UMR5308, Univ Lyon, Université Claude Bernard Lyon 1, École Normale Supérieure de Lyon, 21 Avenue Tony Garnier, 69007, Lyon, France.
| |
Collapse
|
29
|
Hao F, Bai Y, Xie X, Yuan T, Wei Y, Xiong Q, Gan Y, Zhang L, Zhang Z, Shao G, Feng Z. Phenotypic characteristics and protective efficacy of an attenuated Mycoplasma hyopneumoniae vaccine by aerosol administration. Vaccine 2022; 40:6074-6083. [PMID: 36109278 DOI: 10.1016/j.vaccine.2022.08.072] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 07/28/2022] [Accepted: 08/30/2022] [Indexed: 11/16/2022]
Abstract
With the improvement of large-scale breeding in pig farms, conventional head-by-head immunization has disadvantages with low efficiency and high cost. Considering that most pathogens leading to pulmonary diseases circulate from the respiratory mucosa, immunization through the respiratory tract route has been a highly attractive vaccine delivery strategy. In this study, to develop an effective Mycoplasma hyopneumoniae (Mhp) aerosol vaccine, a customized ultrasonic atomizer was developed. The aerodynamic diameter, activity, and content of the Mhp aerosol vaccine were measured. In addition, piglets were immunized with the Mhp aerosol vaccine, and the immunity of the animal challenge protection test was evaluated. At the end of nebulization, the mass median aerodynamic diameters (MMAD) and geometric standard deviation (GSD) of the aerosol were 2.98 ± 0.02 μm and 1.51 ± 0.02, respectively. Moreover, 10 min after nebulization, the MMAD and GSD of the aerosol were 2.76 ± 0.02 μm and 1.51 ± 0.01, respectively, which were hardly changed. Compared with theoretical value, the actual titer of aerosol vaccines presented in 50% color changing unit (CCU50) after nebulization decreased 0.6. The shape, size, and uniformity of collected aerosols are relatively stable. The proportion of Mhp in aerosol produced by vaccine stock solution and 10 times diluted vaccine solution was 76.52% and 58.82%, respectively, and the average number of Mhp in a single aerosol was 3.06 and 1.51, respectively. In addition, the aerosol vaccine antigen particles could be transported to the lower respiratory tract, a local mucosal immune response was induced in piglets. The vaccine colonized the respiratory tract and significantly decline the lung lesion index after aerosol vaccination. In conclusion, an effective aerosol vaccine against Mhp infection was developed. And this is the first effective assessment for Mhp live vaccine with aerosolization against infection in piglets.
Collapse
Affiliation(s)
- Fei Hao
- Key Laboratory for Veterinary Bio-Product Engineering, Ministry of Agriculture and Rural Affairs, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, PR China; Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Nanjing 210014, PR China
| | - Yun Bai
- Key Laboratory for Veterinary Bio-Product Engineering, Ministry of Agriculture and Rural Affairs, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, PR China; Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Nanjing 210014, PR China
| | - Xing Xie
- Key Laboratory for Veterinary Bio-Product Engineering, Ministry of Agriculture and Rural Affairs, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, PR China; Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Nanjing 210014, PR China
| | - Ting Yuan
- Key Laboratory for Veterinary Bio-Product Engineering, Ministry of Agriculture and Rural Affairs, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, PR China
| | - Yanna Wei
- Key Laboratory for Veterinary Bio-Product Engineering, Ministry of Agriculture and Rural Affairs, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, PR China
| | - Qiyan Xiong
- Key Laboratory for Veterinary Bio-Product Engineering, Ministry of Agriculture and Rural Affairs, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, PR China
| | - Yuan Gan
- Key Laboratory for Veterinary Bio-Product Engineering, Ministry of Agriculture and Rural Affairs, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, PR China
| | - Lei Zhang
- Key Laboratory for Veterinary Bio-Product Engineering, Ministry of Agriculture and Rural Affairs, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, PR China
| | - Zhenzhen Zhang
- Key Laboratory for Veterinary Bio-Product Engineering, Ministry of Agriculture and Rural Affairs, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, PR China
| | - Guoqing Shao
- Key Laboratory for Veterinary Bio-Product Engineering, Ministry of Agriculture and Rural Affairs, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, PR China; Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Nanjing 210014, PR China
| | - Zhixin Feng
- Key Laboratory for Veterinary Bio-Product Engineering, Ministry of Agriculture and Rural Affairs, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, PR China; Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Nanjing 210014, PR China.
| |
Collapse
|
30
|
Li C, Marton I, Harari D, Shemesh M, Kalchenko V, Pardo M, Schreiber G, Rudich Y. Gelatin Stabilizes Nebulized Proteins in Pulmonary Drug Delivery against COVID-19. ACS Biomater Sci Eng 2022; 8:2553-2563. [PMID: 35608934 PMCID: PMC9159517 DOI: 10.1021/acsbiomaterials.2c00419] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 05/05/2022] [Indexed: 11/28/2022]
Abstract
Delivering medication to the lungs via nebulization of pharmaceuticals is a noninvasive and efficient therapy route, particularly for respiratory diseases. The recent worldwide severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) pandemic urges the development of such therapies as an effective alternative to vaccines. The main difficulties in using inhalation therapy are the development of effective medicine and methods to stabilize the biological molecules and transfer them to the lungs efficiently following nebulization. We have developed a high-affinity angiotensin-converting enzyme 2 (ACE2) receptor-binding domain (RBD-62) that can be used as a medication to inhibit infection with SARS-CoV-2 and its variants. In this study, we established a nebulization protocol for drug delivery by inhalation using two commercial vibrating mesh (VM) nebulizers (Aerogen Solo and PARI eFlow) that generate similar mist size distribution in a size range that allows efficient deposition in the small respiratory airway. In a series of experiments, we show the high activity of RBD-62, interferon-α2 (IFN-α2), and other proteins following nebulization. The addition of gelatin significantly stabilizes the proteins and enhances the fractions of active proteins after nebulization, minimizing the medication dosage. Furthermore, hamster inhalation experiments verified the feasibility of the protocol in pulmonary drug delivery. In short, the gelatin-modified RBD-62 formulation in coordination with VM nebulizer can be used as a therapy to cure SARS-CoV-2.
Collapse
Affiliation(s)
- Chunlin Li
- Department
of Earth and Planetary Sciences, Weizmann
Institute of Science, Rehovot 76100, Israel
| | - Ira Marton
- Department
of Earth and Planetary Sciences, Weizmann
Institute of Science, Rehovot 76100, Israel
- Department
of Biomolecular Sciences, Weizmann Institute
of Science, Rehovot 76100, Israel
| | - Daniel Harari
- Department
of Biomolecular Sciences, Weizmann Institute
of Science, Rehovot 76100, Israel
| | - Maya Shemesh
- Department
of Biomolecular Sciences, Weizmann Institute
of Science, Rehovot 76100, Israel
| | - Vyacheslav Kalchenko
- Department
of Veterinary Resources, Weizmann Institute
of Science, Rehovot 76100, Israel
| | - Michal Pardo
- Department
of Earth and Planetary Sciences, Weizmann
Institute of Science, Rehovot 76100, Israel
| | - Gideon Schreiber
- Department
of Biomolecular Sciences, Weizmann Institute
of Science, Rehovot 76100, Israel
| | - Yinon Rudich
- Department
of Earth and Planetary Sciences, Weizmann
Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
31
|
Hickey AJ, Stewart IE. Inhaled antibodies: Quality and performance considerations. Hum Vaccin Immunother 2022; 18:1940650. [PMID: 34191682 PMCID: PMC9116391 DOI: 10.1080/21645515.2021.1940650] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 05/11/2021] [Accepted: 06/05/2021] [Indexed: 12/22/2022] Open
Abstract
The use of antibodies in the treatment of lung diseases is of increasing interest especially as the search for COVID-19 therapies has unfolded. Historically, the use of antibody therapy was based on multiple targets including receptors involved in local hyper-reactivity in asthma, viruses and micro-organisms involved in a variety of pulmonary infectious disease. Generally, protein therapeutics pose challenges with respect to formulation and delivery to retain activity and assure therapy. The specificity of antibodies amplifies the need for attention to molecular integrity not only in formulation but also during aerosol delivery for pulmonary administration. Drug product development can be viewed from considerations of route of administration, dosage form, quality, and performance measures. Nebulizers and dry powder inhalers have been used to deliver protein therapeutics and each has its advantages that should be matched to the needs of the drug and the disease. This review offers insight into quality and performance barriers and the opportunities that arise from meeting them effectively.
Collapse
|
32
|
Aggregates Associated with Instability of Antibodies during Aerosolization Induce Adverse Immunological Effects. Pharmaceutics 2022; 14:pharmaceutics14030671. [PMID: 35336045 PMCID: PMC8949695 DOI: 10.3390/pharmaceutics14030671] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 03/11/2022] [Accepted: 03/16/2022] [Indexed: 01/27/2023] Open
Abstract
Background: Immunogenicity refers to the inherent ability of a molecule to stimulate an immune response. Aggregates are one of the major risk factors for the undesired immunogenicity of therapeutic antibodies (Ab) and may ultimately result in immune-mediated adverse effects. For Ab delivered by inhalation, it is necessary to consider the interaction between aggregates resulting from the instability of the Ab during aerosolization and the lung mucosa. The aim of this study was to determine the impact of aggregates produced during aerosolization of therapeutic Ab on the immune system. Methods: Human and murine immunoglobulin G (IgG) were aerosolized using a clinically-relevant nebulizer and their immunogenic potency was assessed, both in vitro using a standard human monocyte-derived dendritic cell (MoDC) reporter assay and in vivo in immune cells in the airway compartment, lung parenchyma and spleen of healthy C57BL/6 mice after pulmonary administration. Results: IgG aggregates, produced during nebulization, induced a dose-dependent activation of MoDC characterized by the enhanced production of cytokines and expression of co-stimulatory markers. Interestingly, in vivo administration of high amounts of nebulization-mediated IgG aggregates resulted in a profound and sustained local and systemic depletion of immune cells, which was attributable to cell death. This cytotoxic effect was observed when nebulized IgG was administered locally in the airways as compared to a systemic administration but was mitigated by improving IgG stability during nebulization, through the addition of polysorbates to the formulation. Conclusion: Although inhalation delivery represents an attractive alternative route for delivering Ab to treat respiratory infections, our findings indicate that it is critical to prevent IgG aggregation during the nebulization process to avoid pro-inflammatory and cytotoxic effects. The optimization of Ab formulation can mitigate adverse effects induced by nebulization.
Collapse
|
33
|
Wang Y, Chang RYK, Britton WJ, Chan HK. Advances in the development of antimicrobial peptides and proteins for inhaled therapy. Adv Drug Deliv Rev 2022; 180:114066. [PMID: 34813794 DOI: 10.1016/j.addr.2021.114066] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 11/18/2021] [Accepted: 11/18/2021] [Indexed: 12/13/2022]
Abstract
Antimicrobial peptides and proteins (APPs) are becoming increasingly important in targeting multidrug-resistant (MDR) bacteria. APPs is a rapidly emerging area with novel molecules being produced and further optimised to enhance antimicrobial efficacy, while overcoming issues associated with biologics such as potential toxicity and low bioavailability resulting from short half-life. Inhalation delivery of these agents can be an effective treatment of respiratory infections owing to the high local drug concentration in the lungs with lower exposure to systemic circulation hence reducing systemic toxicity. This review describes the recent studies on inhaled APPs, including in vitro and in vivo antimicrobial activities, toxicity assessments, and formulation strategies whenever available. The review also includes studies on combination of APPs with other antimicrobial agents to achieve enhanced synergistic antimicrobial effect. Since different APPs have different biological and chemical stabilities, a targeted formulation strategy should be considered for developing stable and inhalable antimicrobial peptides and proteins. These strategies include the use of sodium chloride to reduce electrostatic interaction between APP and extracellular DNA in sputum, the use of D-enantiomers or dendrimers to minimise protease-mediated degradation and or the use of prodrugs to reduce toxicity. Although great effort has been put towards optimising the biological functions of APPs, studies assessing biological stability in inhalable aerosols are scarce, particularly for novel molecules. As such, formulation and manufacture of inhalable liquid and powder formulations of APPs are underexplored, yet they are crucial areas of research for clinical translation.
Collapse
|
34
|
Sharma A, Khamar D, Cullen S, Hayden A, Hughes H. Innovative Drying Technologies for Biopharmaceuticals. Int J Pharm 2021; 609:121115. [PMID: 34547393 DOI: 10.1016/j.ijpharm.2021.121115] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 08/24/2021] [Accepted: 09/15/2021] [Indexed: 01/30/2023]
Abstract
In the past two decades, biopharmaceuticals have been a breakthrough in improving the quality of lives of patients with various cancers, autoimmune, genetic disorders etc. With the growing demand of biopharmaceuticals, the need for reducing manufacturing costs is essential without compromising on the safety, quality, and efficacy of products. Batch Freeze-drying is the primary commercial means of manufacturing solid biopharmaceuticals. However, Freeze-drying is an economically unfriendly means of production with long production cycles, high energy consumption and heavy capital investment, resulting in high overall costs. This review compiles some potential, innovative drying technologies that have not gained popularity for manufacturing parenteral biopharmaceuticals. Some of these technologies such as Spin-freeze-drying, Spray-drying, Lynfinity® Technology etc. offer a paradigm shift towards continuous manufacturing, whereas PRINT® Technology and MicroglassificationTM allow controlled dry particle characteristics. Also, some of these drying technologies can be easily scaled-up with reduced requirement for different validation processes. The inclusion of Process Analytical Technology (PAT) and offline characterization techniques in tandem can provide additional information on the Critical Process Parameters (CPPs) and Critical Quality Attributes (CQAs) during biopharmaceutical processing. These processing technologies can be envisaged to increase the manufacturing capacity for biopharmaceutical products at reduced costs.
Collapse
Affiliation(s)
- Ashutosh Sharma
- Pharmaceutical and Molecular Biotechnology Research Centre (PMBRC), Waterford Institute of Technology, Main Campus, Cork Road, Waterford X91K0EK, Ireland.
| | - Dikshitkumar Khamar
- Sanofi, Manufacturing Science, Analytics and Technology (MSAT), IDA Industrial Park, Waterford X91TP27, Ireland
| | - Sean Cullen
- Gilead Sciences, Commercial Manufacturing, IDA Business & Technology Park, Carrigtwohill, Co. Cork T45DP77, Ireland
| | - Ambrose Hayden
- Pharmaceutical and Molecular Biotechnology Research Centre (PMBRC), Waterford Institute of Technology, Main Campus, Cork Road, Waterford X91K0EK, Ireland
| | - Helen Hughes
- Pharmaceutical and Molecular Biotechnology Research Centre (PMBRC), Waterford Institute of Technology, Main Campus, Cork Road, Waterford X91K0EK, Ireland
| |
Collapse
|
35
|
Su R, Zhang Y, Zhang J, Wang H, Luo Y, Chan HF, Tao Y, Chen Z, Li M. Nanomedicine to advance the treatment of bacteria-induced acute lung injury. J Mater Chem B 2021; 9:9100-9115. [PMID: 34672317 DOI: 10.1039/d1tb01770e] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Bacteria-induced acute lung injury (ALI) is associated with a high mortality rate due to the lack of an effective treatment. Patients often rely on supportive care such as low tidal volume ventilation to alleviate the symptoms. Nanomedicine has recently received much attention owing to its premium benefits of delivering drugs in a sustainable and controllable manner while minimizing the potential side effects. It can effectively improve the prognosis of bacteria-induced ALI through targeted delivery of drugs, regulation of multiple inflammatory pathways, and combating antibiotic resistance. Hence, in this review, we first discuss the pathogenesis of ALI and its potential therapeutics. In particular, the state-of-the-art nanomedicines for the treatment of bacteria-induced ALI are highlighted, including their administration routes, in vivo distribution, and clearance. Furthermore, the available bacteria-induced ALI animal models are also summarized. In the end, future perspectives of nanomedicine for ALI treatment are proposed.
Collapse
Affiliation(s)
- Ruonan Su
- Center for Nanomedicine, Department of Pediatrics and Department of Allergy, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China. .,Laboratory of Biomaterials and Translational Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
| | - Yu Zhang
- Department of Biological and Environmental Engineering, Cornell University, Ithaca 14853, USA
| | - Jiabin Zhang
- Center for Nanomedicine, Department of Pediatrics and Department of Allergy, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China.
| | - Haixia Wang
- Center for Nanomedicine, Department of Pediatrics and Department of Allergy, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China. .,Laboratory of Biomaterials and Translational Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
| | - Yun Luo
- Department of Urology, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510630, China
| | - Hon Fai Chan
- Institute for Tissue Engineering and Regenerative Medicine, School of Biomedical Science, The Chinese University of Hong Kong, Hong Kong 999077, China
| | - Yu Tao
- Center for Nanomedicine, Department of Pediatrics and Department of Allergy, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China. .,Laboratory of Biomaterials and Translational Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
| | - Zhuanggui Chen
- Center for Nanomedicine, Department of Pediatrics and Department of Allergy, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China.
| | - Mingqiang Li
- Center for Nanomedicine, Department of Pediatrics and Department of Allergy, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China. .,Laboratory of Biomaterials and Translational Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China.,Guangdong Provincial Key Laboratory of Liver Disease Research, Guangzhou 510630, China
| |
Collapse
|
36
|
Protein and peptide delivery to lungs by using advanced targeted drug delivery. Chem Biol Interact 2021; 351:109706. [PMID: 34662570 DOI: 10.1016/j.cbi.2021.109706] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 09/16/2021] [Accepted: 10/13/2021] [Indexed: 11/20/2022]
Abstract
The challenges and difficulties associated with conventional drug delivery systems have led to the emergence of novel, advanced targeted drug delivery systems. Therapeutic drug delivery of proteins and peptides to the lungs is complicated owing to the large size and polar characteristics of the latter. Nevertheless, the pulmonary route has attracted great interest today among formulation scientists, as it has evolved into one of the important targeted drug delivery platforms for the delivery of peptides, and related compounds effectively to the lungs, primarily for the management and treatment of chronic lung diseases. In this review, we have discussed and summarized the current scenario and recent developments in targeted delivery of proteins and peptide-based drugs to the lungs. Moreover, we have also highlighted the advantages of pulmonary drug delivery over conventional drug delivery approaches for peptide-based drugs, in terms of efficacy, retention time and other important pharmacokinetic parameters. The review also highlights the future perspectives and the impact of targeted drug delivery on peptide-based drugs in the coming decade.
Collapse
|
37
|
Parray HA, Shukla S, Perween R, Khatri R, Shrivastava T, Singh V, Murugavelu P, Ahmed S, Samal S, Sharma C, Sinha S, Luthra K, Kumar R. Inhalation monoclonal antibody therapy: a new way to treat and manage respiratory infections. Appl Microbiol Biotechnol 2021; 105:6315-6332. [PMID: 34423407 PMCID: PMC8380517 DOI: 10.1007/s00253-021-11488-4] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 07/14/2021] [Accepted: 07/30/2021] [Indexed: 12/23/2022]
Abstract
The route of administration of a therapeutic agent has a substantial impact on its success. Therapeutic antibodies are usually administered systemically, either directly by intravenous route, or indirectly by intramuscular or subcutaneous injection. However, treatment of diseases contained within a specific tissue necessitates a better alternate route of administration for targeting localised infections. Inhalation is a promising non-invasive strategy for antibody delivery to treat respiratory maladies because it provides higher concentrations of antibody in the respiratory airways overcoming the constraints of entry through systemic circulation and uncertainity in the amount reaching the target tissue. The nasal drug delivery route is one of the extensively researched modes of administration, and nasal sprays for molecular drugs are deemed successful and are presently commercially marketed. This review highlights the current state and future prospects of inhaled therapies, with an emphasis on the use of monoclonal antibodies for the treatment of respiratory infections, as well as an overview of their importance, practical challenges, and clinical trial outcomes.Key points• Immunologic strategies for preventing mucosal transmission of respiratory pathogens.• Mucosal-mediated immunoprophylaxis could play a major role in COVID-19 prevention.• Applications of monoclonal antibodies in passive immunisation.
Collapse
Affiliation(s)
- Hilal Ahmad Parray
- Translational Health Science & Technology Institute, NCR Biotech Science Cluster, 3rd Milestone, Faridabad - Gurgaon Expressway, PO Box # 04, Faridabad, Haryana, 121001, India
| | - Shivangi Shukla
- Translational Health Science & Technology Institute, NCR Biotech Science Cluster, 3rd Milestone, Faridabad - Gurgaon Expressway, PO Box # 04, Faridabad, Haryana, 121001, India
| | - Reshma Perween
- Translational Health Science & Technology Institute, NCR Biotech Science Cluster, 3rd Milestone, Faridabad - Gurgaon Expressway, PO Box # 04, Faridabad, Haryana, 121001, India
| | - Ritika Khatri
- Translational Health Science & Technology Institute, NCR Biotech Science Cluster, 3rd Milestone, Faridabad - Gurgaon Expressway, PO Box # 04, Faridabad, Haryana, 121001, India
| | - Tripti Shrivastava
- Translational Health Science & Technology Institute, NCR Biotech Science Cluster, 3rd Milestone, Faridabad - Gurgaon Expressway, PO Box # 04, Faridabad, Haryana, 121001, India
| | - Vanshika Singh
- Translational Health Science & Technology Institute, NCR Biotech Science Cluster, 3rd Milestone, Faridabad - Gurgaon Expressway, PO Box # 04, Faridabad, Haryana, 121001, India
| | - Praveenkumar Murugavelu
- Translational Health Science & Technology Institute, NCR Biotech Science Cluster, 3rd Milestone, Faridabad - Gurgaon Expressway, PO Box # 04, Faridabad, Haryana, 121001, India
| | - Shubbir Ahmed
- Translational Health Science & Technology Institute, NCR Biotech Science Cluster, 3rd Milestone, Faridabad - Gurgaon Expressway, PO Box # 04, Faridabad, Haryana, 121001, India
| | - Sweety Samal
- Translational Health Science & Technology Institute, NCR Biotech Science Cluster, 3rd Milestone, Faridabad - Gurgaon Expressway, PO Box # 04, Faridabad, Haryana, 121001, India
| | - Chandresh Sharma
- Translational Health Science & Technology Institute, NCR Biotech Science Cluster, 3rd Milestone, Faridabad - Gurgaon Expressway, PO Box # 04, Faridabad, Haryana, 121001, India
| | - Subrata Sinha
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Kalpana Luthra
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Rajesh Kumar
- Translational Health Science & Technology Institute, NCR Biotech Science Cluster, 3rd Milestone, Faridabad - Gurgaon Expressway, PO Box # 04, Faridabad, Haryana, 121001, India.
| |
Collapse
|
38
|
Fatima N, Kaushik V, Ayoub A. A Narrative Review of a Pulmonary Aerosolized Formulation or a Nasal Drop Using Sera Containing Neutralizing Antibodies Collected from COVID-19-Recovered Patients as a Probable Therapy for COVID-19. IRANIAN JOURNAL OF MEDICAL SCIENCES 2021; 46:151-168. [PMID: 34083848 PMCID: PMC8163704 DOI: 10.30476/ijms.2020.86417.1624] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 07/29/2020] [Accepted: 09/22/2020] [Indexed: 12/15/2022]
Abstract
Coronavirus disease 2019 (COVID-19) emerged as a new contagion during December 2019, since which time it has triggered a rampant spike in fatality rates worldwide due to insufficient medical treatments and a lack of counteragents and prompted the World Health Organization to declare COVID-19 a public health emergency. It is, therefore, vital to accelerate the screening of new molecules or vaccines to win the battle against this pandemic. Experiences from previous epidemiological data on coronaviruses guide investigators in designing and exploring new compounds for a safe and cost-effective treatment. Several reports on the severe acute respiratory syndrome (SARS) epidemic indicate that severe acute respiratory syndrome coronavirus (SARS-CoV) and the novel COVID-19 use angiotensin-converting enzyme 2 (ACE2) as a receptor for binding to the host cell in the lung epithelia through the spike protein on their virion surface. ACE2 is a mono-carboxypeptidase best known for cleaving major peptides and substrates. Its degree in human airway epithelia positively correlates with coronavirus infection. The treatment approach can be the neutralization of the virus entering lung epithelial cells by using sera containing antibodies collected from COVID-19-recovered patients. Hence, we herein propose a pulmonary aerosolized formulation or a nasal drop using sera, which contain antibodies to prevent, treat, or immunize against COVID-19 infection.
Collapse
Affiliation(s)
- Nishat Fatima
- School of Pharmacy, Al-Hawash Private University, Homs, Syria
| | | | - Amjad Ayoub
- School of Pharmacy, Al-Hawash Private University, Homs, Syria
| |
Collapse
|
39
|
Novel formulations and drug delivery systems to administer biological solids. Adv Drug Deliv Rev 2021; 172:183-210. [PMID: 33705873 DOI: 10.1016/j.addr.2021.02.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/28/2021] [Accepted: 02/18/2021] [Indexed: 12/13/2022]
Abstract
Recent advances in formulation sciences have expanded the previously limited design space for biological modalities, including peptide, protein, and vaccine products. At the same time, the discovery and application of new modalities, such as cellular therapies and gene therapies, have presented formidable challenges to formulation scientists. We explore these challenges and highlight the opportunities to overcome them through the development of novel formulations and drug delivery systems as biological solids. We review the current progress in both industry and academic laboratories, and we provide expert perspectives in those settings. Formulation scientists have made a tremendous effort to accommodate the needs of these novel delivery routes. These include stability-preserving formulations and dehydration processes as well as dosing regimes and dosage forms that improve patient compliance.
Collapse
|
40
|
Mayor A, Thibert B, Huille S, Respaud R, Audat H, Heuzé-Vourc'h N. Inhaled antibodies: formulations require specific development to overcome instability due to nebulization. Drug Deliv Transl Res 2021; 11:1625-1633. [PMID: 33768475 PMCID: PMC7993445 DOI: 10.1007/s13346-021-00967-w] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/22/2021] [Indexed: 12/13/2022]
Abstract
Abstract Respiratory infections are life-threatening and therapeutic antibodies (Ab) have a tremendous opportunity to benefit to patients with pneumonia due to multidrug resistance bacteria or emergent virus, before a vaccine is manufactured. In respiratory infections, inhalation of anti-infectious Ab may be more relevant than intravenous (IV) injection-the standard route-to target the site of infection and improve Ab therapeutic index. One major challenge associated to Ab inhalation is to prevent protein instability during the aerosolization process. Ab drug development for IV injection aims to design a high-quality product, stable to different environment stress. In this study, we evaluated the suitability of Ab formulations developed for IV injection to be extended for inhalation delivery. We studied the aerosol characteristics and the aggregation profile of three Ab formulations developed for IV injection after nebulization, with two mesh nebulizers. Although the formulations for IV injection were compatible with mesh nebulization and deposition into the respiratory tract, the Ab were more unstable during nebulization than exposition to a vigorous shaking. Overall, our findings indicate that Ab formulations developed for IV delivery may not easily be repurposed for inhalation delivery and point to the requirement of a specific formulation development for inhaled Ab. Graphical abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1007/s13346-021-00967-w.
Collapse
Affiliation(s)
- Alexie Mayor
- INSERM, Centre D'Etude Des Pathologies Respiratoires, Universite François Rabelais de Tours, 10 Boulevard Tonnellé, U1100F-37032, Tours, France
- University of Tours, Tours, France
- Sanofi, Formulation and Process Development, Impasse Des Ateliers, 94400, Vitry-sur-Seine, France
| | - Béatrice Thibert
- Sanofi, Formulation and Process Development, Impasse Des Ateliers, 94400, Vitry-sur-Seine, France
| | - Sylvain Huille
- Sanofi, Formulation and Process Development, Impasse Des Ateliers, 94400, Vitry-sur-Seine, France
| | | | - Héloïse Audat
- Sanofi, Formulation and Process Development, Impasse Des Ateliers, 94400, Vitry-sur-Seine, France
| | - Nathalie Heuzé-Vourc'h
- INSERM, Centre D'Etude Des Pathologies Respiratoires, Universite François Rabelais de Tours, 10 Boulevard Tonnellé, U1100F-37032, Tours, France.
- University of Tours, Tours, France.
| |
Collapse
|
41
|
Cruz-Teran C, Tiruthani K, McSweeney M, Ma A, Pickles R, Lai SK. Challenges and opportunities for antiviral monoclonal antibodies as COVID-19 therapy. Adv Drug Deliv Rev 2021; 169:100-117. [PMID: 33309815 PMCID: PMC7833882 DOI: 10.1016/j.addr.2020.12.004] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 11/30/2020] [Accepted: 12/05/2020] [Indexed: 01/08/2023]
Abstract
To address the COVID-19 pandemic, there has been an unprecedented global effort to advance potent neutralizing mAbs against SARS-CoV-2 as therapeutics. However, historical efforts to advance antiviral monoclonal antibodies (mAbs) for the treatment of other respiratory infections have been met with categorical failures in the clinic. By investigating the mechanism by which SARS-CoV-2 and similar viruses spread within the lung, along with available biodistribution data for systemically injected mAb, we highlight the challenges faced by current antiviral mAbs for COVID-19. We summarize some of the leading mAbs currently in development, and present the evidence supporting inhaled delivery of antiviral mAb as an early intervention against COVID-19 that could prevent important pulmonary morbidities associated with the infection.
Collapse
Affiliation(s)
- Carlos Cruz-Teran
- Division of Pharmacoengineering and Molecular Pharmaceutics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Karthik Tiruthani
- Division of Pharmacoengineering and Molecular Pharmaceutics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | | | - Alice Ma
- UNC/NCSU Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Raymond Pickles
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Samuel K Lai
- Division of Pharmacoengineering and Molecular Pharmaceutics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Inhalon Biopharma, Durham, NC 27709, USA; UNC/NCSU Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
42
|
Chow MYT, Chang RYK, Chan HK. Inhalation delivery technology for genome-editing of respiratory diseases. Adv Drug Deliv Rev 2021; 168:217-228. [PMID: 32512029 PMCID: PMC7274121 DOI: 10.1016/j.addr.2020.06.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 05/21/2020] [Accepted: 06/01/2020] [Indexed: 12/25/2022]
Abstract
The clustered regulatory interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (CRISPR/Cas9) system has significant therapeutic potentials for lung congenital diseases such as cystic fibrosis, as well as other pulmonary disorders like lung cancer and obstructive diseases. Local administration of CRISPR/Cas9 therapeutics through inhalation can achieve high drug concentration and minimise systemic exposure. While the field is advancing with better understanding on the biological functions achieved by CRISPR/Cas9 systems, the lack of progress in inhalation formulation and delivery of the molecule may impede their clinical translation efficiently. This forward-looking review discussed the current status of formulations and delivery for inhalation of relevant biologics such as genes (plasmids and mRNAs) and proteins, emphasising on their design strategies and preparation methods. By adapting and optimising formulation strategies used for genes and proteins, we envisage that development of inhalable CRISPR/Cas9 liquid or powder formulations for inhalation administration can potentially be fast-tracked in near future.
Collapse
Affiliation(s)
- Michael Y T Chow
- Advanced Drug Delivery Group, School of Pharmacy, The University of Sydney, Sydney, NSW 2006, Australia
| | - Rachel Yoon Kyung Chang
- Advanced Drug Delivery Group, School of Pharmacy, The University of Sydney, Sydney, NSW 2006, Australia
| | - Hak-Kim Chan
- Advanced Drug Delivery Group, School of Pharmacy, The University of Sydney, Sydney, NSW 2006, Australia.
| |
Collapse
|
43
|
Learning from past failures: Challenges with monoclonal antibody therapies for COVID-19. J Control Release 2020; 329:87-95. [PMID: 33276017 PMCID: PMC7836766 DOI: 10.1016/j.jconrel.2020.11.057] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 11/25/2020] [Accepted: 11/29/2020] [Indexed: 01/08/2023]
Abstract
COVID-19, the disease caused by infection with SARS-CoV-2, requires urgent development of therapeutic interventions. Due to their safety, specificity, and potential for rapid advancement into the clinic, monoclonal antibodies (mAbs) represent a highly promising class of antiviral or anti-inflammatory agents. Herein, by analyzing prior efforts to advance antiviral mAbs for other acute respiratory infections (ARIs), we highlight the challenges faced by mAb-based immunotherapies for COVID-19. We present evidence supporting early intervention immediately following a positive diagnosis via inhaled delivery of mAbs with vibrating mesh nebulizers as a promising approach for the treatment of COVID-19.
Collapse
|
44
|
PEGylation of recombinant human deoxyribonuclease I decreases its transport across lung epithelial cells and uptake by macrophages. Int J Pharm 2020; 593:120107. [PMID: 33259904 DOI: 10.1016/j.ijpharm.2020.120107] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 11/16/2020] [Accepted: 11/18/2020] [Indexed: 12/14/2022]
Abstract
Conjugation to high molecular weight (MW ≥ 20 kDa) polyethylene glycol (PEG) was previously shown to largely prolong the lung residence time of recombinant human deoxyribonuclease I (rhDNase) and improve its therapeutic efficacy following pulmonary delivery in mice. In this paper, we investigated the mechanisms promoting the extended lung retention of PEG-rhDNase conjugates using cell culture models and lung biological media. Uptake by alveolar macrophages was also assessed in vivo. Transport experiments showed that PEGylation reduced the uptake and transport of rhDNase across monolayers of Calu-3 cells cultured at an air-liquid interface. PEGylation also decreased the uptake of rhDNase by macrophages in vitro whatever the PEG size as well as in vivo 4 h following intratracheal instillation in mice. However, the reverse was observed in vivo at 24 h due to the higher availability of PEGylated rhDNase in lung airways at 24 h compared with rhDNase, which is cleared faster. The uptake of rhDNase by macrophages was dependent on energy, time, and concentration and occurred at rates indicative of adsorptive endocytosis. The diffusion of PEGylated rhDNase in porcine tracheal mucus and cystic fibrosis sputa was slower compared with that of rhDNase. Nevertheless, no significant binding of PEGylated rhDNase to both media was observed. In conclusion, decreased transport across lung epithelial cells and uptake by macrophages appear to contribute to the longer retention of PEGylated rhDNase in the lungs.
Collapse
|
45
|
Repurposing of Plasminogen: An Orphan Medicinal Product Suitable for SARS-CoV-2 Inhalable Therapeutics. Pharmaceuticals (Basel) 2020; 13:ph13120425. [PMID: 33260813 PMCID: PMC7761183 DOI: 10.3390/ph13120425] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 11/21/2020] [Accepted: 11/25/2020] [Indexed: 12/13/2022] Open
Abstract
The SARS-CoV-2 infection is associated with pulmonary coagulopathy, which determines the deposition of fibrin in the air spaces and lung parenchyma. The resulting lung lesions compromise patient pulmonary function and increase mortality, or end in permanent lung damage for those who have recovered from the COVID-19 disease. Therefore, local pulmonary fibrinolysis can be efficacious in degrading pre-existing fibrin clots and reducing the conversion of lung lesions into lasting scars. Plasminogen is considered a key player in fibrinolysis processes, and in view of a bench-to-bedside translation, we focused on the aerosolization of an orphan medicinal product (OMP) for ligneous conjunctivitis: human plasminogen (PLG-OMP) eye drops. As such, the sterile and preservative-free solution guarantees the pharmaceutical quality of GMP production and meets the Ph. Eur. requirements of liquid preparations for nebulization. PLG-OMP aerosolization was evaluated both from technological and stability viewpoints, after being submitted to either jet or ultrasonic nebulization. Jet nebulization resulted in a more efficient delivery of an aerosol suitable for pulmonary deposition. The biochemical investigation highlighted substantial protein integrity maintenance with the percentage of native plasminogen band > 90%, in accordance with the quality specifications of PLG-OMP. In a coherent way, the specific activity of plasminogen is maintained within the range 4.8–5.6 IU/mg (PLG-OMP pre-nebulization: 5.0 IU/mg). This is the first study that focuses on the technological and biochemical aspects of aerosolized plasminogen, which could affect both treatment efficacy and clinical dosage delivery. Increasing evidence for the need of local fibrinolytic therapy could merge with the availability of PLG-OMP as an easy handling solution, readily aerosolizable for a fast translation into an extended clinical efficacy assessment in COVID-19 patients.
Collapse
|
46
|
Zhang H, Leal J, Soto MR, Smyth HDC, Ghosh D. Aerosolizable Lipid Nanoparticles for Pulmonary Delivery of mRNA through Design of Experiments. Pharmaceutics 2020; 12:E1042. [PMID: 33143328 PMCID: PMC7692784 DOI: 10.3390/pharmaceutics12111042] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 10/24/2020] [Accepted: 10/28/2020] [Indexed: 01/07/2023] Open
Abstract
Messenger RNA is a class of promising nucleic acid therapeutics to treat a variety of diseases, including genetic diseases. The development of a stable and efficacious mRNA pulmonary delivery system would enable high therapeutic concentrations locally in the lungs to improve efficacy and limit potential toxicities. In this study, we employed a Design of Experiments (DOE) strategy to screen a library of lipid nanoparticle compositions to identify formulations possessing high potency both before and after aerosolization. Lipid nanoparticles (LNPs) showed stable physicochemical properties for at least 14 days of storage at 4 °C, and most formulations exhibited high encapsulation efficiencies greater than 80%. Generally, upon nebulization, LNP formulations showed increased particle size and decreased encapsulation efficiencies. An increasing molar ratio of poly-(ethylene) glycol (PEG)-lipid significantly decreased size but also intracellular protein expression of mRNA. We identified four formulations possessing higher intracellular protein expression ability in vitro even after aerosolization which were then assessed in in vivo studies. It was found that luciferase protein was predominately expressed in the mouse lung for the four lead formulations before and after nebulization. This study demonstrated that LNPs hold promise to be applied for aerosolization-mediated pulmonary mRNA delivery.
Collapse
Affiliation(s)
| | | | | | | | - Debadyuti Ghosh
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, USA; (H.Z.); (J.L.); (M.R.S.); (H.D.C.S.)
| |
Collapse
|
47
|
Matthews AA, Ee PLR, Ge R. Developing inhaled protein therapeutics for lung diseases. MOLECULAR BIOMEDICINE 2020; 1:11. [PMID: 34765995 PMCID: PMC7595758 DOI: 10.1186/s43556-020-00014-z] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 10/15/2020] [Indexed: 12/28/2022] Open
Abstract
Biologic therapeutics such as protein/polypeptide drugs are conventionally administered systemically via intravenous injection for the treatment of diseases including lung diseases, although this approach leads to low target site accumulation and the potential risk for systemic side effects. In comparison, topical delivery of protein drugs to the lung via inhalation is deemed to be a more effective approach for lung diseases, as proteins would directly reach the target in the lung while exhibiting poor diffusion into the systemic circulation, leading to higher lung drug retention and efficacy while minimising toxicity to other organs. This review examines the important considerations and challenges in designing an inhaled protein therapeutics for local lung delivery: the choice of inhalation device, structural changes affecting drug deposition in diseased lungs, clearance mechanisms affecting an inhaled protein drug’s lung accumulation, protein stability, and immunogenicity. Possible approaches to overcoming these issues will also be discussed.
Collapse
|
48
|
Airway Delivery of Anti-influenza Monoclonal Antibodies Results in Enhanced Antiviral Activities and Enables Broad-Coverage Combination Therapies. J Virol 2020; 94:JVI.00052-20. [PMID: 32847855 PMCID: PMC7592225 DOI: 10.1128/jvi.00052-20] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 08/02/2020] [Indexed: 12/12/2022] Open
Abstract
Influenza causes widespread illness in humans and can result in morbidity and death, especially in the very young and elderly populations. Because influenza vaccination can be poorly effective some years, and the immune systems of the most susceptible populations are often compromised, passive immunization treatments using broadly neutralizing antibodies is a promising therapeutic approach. However, large amounts of a single antibody are required for effectiveness when delivered through systemic administration (typically intravenous infusion), precluding the feasible dosing of antibody combinations via this route. The significance of our research is the demonstration that effective therapeutic treatments of multiple relevant influenza types (H1N1, H3N2, and B) can be achieved by airway administration of a single combination of relatively small amounts of three anti-influenza antibodies. This advance exploits the discovery that airway delivery is a more potent way of administering anti-influenza antibodies compared to systemic delivery, making this a feasible and cost-effective therapeutic approach. Effective and reliable anti-influenza treatments are acutely needed and passive immunizations using broadly neutralizing anti-influenza monoclonal antibodies (bNAbs) are a promising emerging approach. Because influenza infections are initiated in and localized to the pulmonary tract, and newly formed viral particles egress from the apical side of the lung epithelium, we compared the effectiveness of hemagglutinin (HA) stalk-binding bNAbs administered through the airway (intranasal or via nebulization) versus the systemic route (intraperitoneal or intravenous). Airway deliveries of various bNAbs were 10- to 50-fold more effective than systemic deliveries of the same bNAbs in treating H1N1, H3N2, B/Victoria-, and B/Yamagata-lineage influenza viral infections in mouse models. The potency of airway-delivered anti-HA bNAbs was highly dependent on antiviral neutralization activity, with little dependence on the effector function of the antibody. In contrast, the effectiveness of systemically delivered anti-HA bNAbs was not dependent on antiviral neutralization, but critically dependent on antibody effector functions. Concurrent administration of a neutralizing/effector function-positive bNAb via the airway and systemic routes showed increased effectiveness. The small amount of airway-delivered bNAbs needed for effective influenza treatment creates the opportunity to combine potent bNAbs with different anti-influenza specificities to generate a cost-effective antiviral therapy that provides broad coverage against all circulating influenza strains infecting humans. A 3 mg/kg dose of the novel triple antibody combination CF-404 (i.e., 1 mg/kg of each component bNAb) delivered to the airway was shown to effectively prevent weight loss and death in mice challenged with ten 50% lethal dose (LD50) inoculums of either H1N1, H3N2, B/Victoria-lineage, or B/Yamagata-lineage influenza viruses. IMPORTANCE Influenza causes widespread illness in humans and can result in morbidity and death, especially in the very young and elderly populations. Because influenza vaccination can be poorly effective some years, and the immune systems of the most susceptible populations are often compromised, passive immunization treatments using broadly neutralizing antibodies is a promising therapeutic approach. However, large amounts of a single antibody are required for effectiveness when delivered through systemic administration (typically intravenous infusion), precluding the feasible dosing of antibody combinations via this route. The significance of our research is the demonstration that effective therapeutic treatments of multiple relevant influenza types (H1N1, H3N2, and B) can be achieved by airway administration of a single combination of relatively small amounts of three anti-influenza antibodies. This advance exploits the discovery that airway delivery is a more potent way of administering anti-influenza antibodies compared to systemic delivery, making this a feasible and cost-effective therapeutic approach.
Collapse
|
49
|
Liang W, Pan HW, Vllasaliu D, Lam JKW. Pulmonary Delivery of Biological Drugs. Pharmaceutics 2020; 12:E1025. [PMID: 33114726 PMCID: PMC7693150 DOI: 10.3390/pharmaceutics12111025] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 10/13/2020] [Accepted: 10/20/2020] [Indexed: 12/19/2022] Open
Abstract
In the last decade, biological drugs have rapidly proliferated and have now become an important therapeutic modality. This is because of their high potency, high specificity and desirable safety profile. The majority of biological drugs are peptide- and protein-based therapeutics with poor oral bioavailability. They are normally administered by parenteral injection (with a very few exceptions). Pulmonary delivery is an attractive non-invasive alternative route of administration for local and systemic delivery of biologics with immense potential to treat various diseases, including diabetes, cystic fibrosis, respiratory viral infection and asthma, etc. The massive surface area and extensive vascularisation in the lungs enable rapid absorption and fast onset of action. Despite the benefits of pulmonary delivery, development of inhalable biological drug is a challenging task. There are various anatomical, physiological and immunological barriers that affect the therapeutic efficacy of inhaled formulations. This review assesses the characteristics of biological drugs and the barriers to pulmonary drug delivery. The main challenges in the formulation and inhalation devices are discussed, together with the possible strategies that can be applied to address these challenges. Current clinical developments in inhaled biological drugs for both local and systemic applications are also discussed to provide an insight for further research.
Collapse
Affiliation(s)
- Wanling Liang
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong, China; (H.W.P.); (J.K.W.L.)
| | - Harry W. Pan
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong, China; (H.W.P.); (J.K.W.L.)
| | - Driton Vllasaliu
- School of Cancer and Pharmaceutical Sciences, King’s College London, 150 Stamford Street, London SE1 9NH, UK;
| | - Jenny K. W. Lam
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong, China; (H.W.P.); (J.K.W.L.)
| |
Collapse
|
50
|
Can bacteriophage endolysins be nebulised for inhalation delivery against Streptococcus pneumoniae? Int J Pharm 2020; 591:119982. [PMID: 33068693 DOI: 10.1016/j.ijpharm.2020.119982] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 09/30/2020] [Accepted: 10/11/2020] [Indexed: 11/21/2022]
Abstract
Endolysins are bacteriophage-derived protein molecules highly effective for bacterial killing. Cpl-1 and ClyJ-3 are native and chimeric endolysins, respectively, having antimicrobial activity against Streptococcus pneumoniae which causes lung infections. We conducted the first feasibility study on nebulisation of Cpl-1 and ClyJ-3, with a focus on the antimicrobial activity, structural changes of the proteins and aerosol performance. Bacterial colony counts, live cell imaging and Fourier-transform infrared(FTIR) spectroscopy were used to evaluate the proteins before and after jet or vibrating mesh nebulisation. These nebulised aerosols were inhalable with a volume median size of 3.8-4.2 µm (span 1.1-2.3) measured by laser diffraction. How-ever, neb-u-li-sa-tion caused al-most com-plete loss in bioac-tiv-ity of ClyJ-3, which were corroborated with the live cell imaging observation and protein structural damage with a large intensity reduction in the amide absorption bands between 1300 and 1700 cm-1. In contrast, the bactericidal activity of Cpl-1 showed no significant difference (p ≥ 0.05) before and after mesh nebulisation with 4.9 and 4.6-log10 bacterial count reduction, respectively. However, jet nebulisation reduced the bioactivity of Cpl-1 and the effect was time-dependent showing 1.7, 1.0-log10 bacterial count reduction at 7 and 14 min with complete loss of antimicrobial activity at 21 min after nebulisation, respectively. The results were consistent with time-dependent changes in live cell images and FTIR amide band changes at 1655, 1640, 1632 and 1548 cm-1. In conclusion, it is feasible to nebulise endolysins for inhalation delivery but it depends on both the protein and the nebuliser, with the mesh nebuliser being the preferred choice.
Collapse
|