1
|
Fan G, Gao R, Xie T, Li L, Tang L, Han X, Shi Y. DKK1+ tumor cells inhibited the infiltration of CCL19+ fibroblasts and plasma cells contributing to worse immunotherapy response in hepatocellular carcinoma. Cell Death Dis 2024; 15:797. [PMID: 39505867 PMCID: PMC11541906 DOI: 10.1038/s41419-024-07195-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 10/24/2024] [Accepted: 10/30/2024] [Indexed: 11/08/2024]
Abstract
Intra-tumor immune infiltration plays a pivotal role in the interaction with tumor cells in hepatocellular carcinoma (HCC). However, its phenotype and related spatial structure remained elusive. To address these limitations, we conducted a comprehensive study combining spatial data (38,191 spots from eight samples) and single-cell data (56,022 cells from 20 samples). Our analysis revealed two distinct infiltration patterns: immune exclusion and immune activation. Plasma cells emerged as the primary cell type within intra-tumor immune clusters. Notably, we observed the co-location of CCL19+ fibroblasts with plasma cells, which secrete chemokines and promote T-cell activation and leukocyte migration. Conversely, in immune-exclusion samples, this co-location was primarily observed in the adjacent normal area. This co-localization correlated with T cell infiltration and the formation of tertiary lymphoid structures, validated by multiplex immunofluorescence conducted on twenty HCC samples. Both CCL19+ fibroblasts and plasma cells were associated with favorable survival outcomes. In an immunotherapy cohort, HCC patients who responded favorably exhibited higher infiltration of CCL19+ fibroblasts and plasma cells. Additionally, we observed the accumulation of DKK1+ tumor cells within the tumor area in immune-exclusion samples, particularly at the tumor boundary, which inhibited the infiltration of CCL19+ fibroblasts and plasma cells into the tumor area. Furthermore, in immune-exclusion samples, the SPP1 signaling pathway demonstrated the highest activity in communication between tumor and immune clusters, and CCL19-CCR7 played a pivotal role in the self-communication of immune clusters. This study elucidates immune exclusion and immune activation patterns in HCC and identifies relevant factors contributing to immune resistance.
Collapse
Affiliation(s)
- Guangyu Fan
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing Key Laboratory of Clinical Study on Anticancer Molecular Targeted Drugs, Beijing, China
| | - Ruyun Gao
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing Key Laboratory of Clinical Study on Anticancer Molecular Targeted Drugs, Beijing, China
| | - Tongji Xie
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing Key Laboratory of Clinical Study on Anticancer Molecular Targeted Drugs, Beijing, China
| | - Lin Li
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Le Tang
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing Key Laboratory of Clinical Study on Anticancer Molecular Targeted Drugs, Beijing, China
| | - Xiaohong Han
- Clinical Pharmacology Research Center, Peking Union Medical College Hospital, State Key Laboratory of Complex Severe and Rare Diseases, NMPA Key Laboratory for Clinical Research and Evaluation of Drug, Beijing Key Laboratory of Clinical PK & PD Investigation for Innovative Drugs, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.
| | - Yuankai Shi
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing Key Laboratory of Clinical Study on Anticancer Molecular Targeted Drugs, Beijing, China.
| |
Collapse
|
2
|
Yazdanpanah N, Rezaei N. The multidisciplinary approach to diagnosing inborn errors of immunity: a comprehensive review of discipline-based manifestations. Expert Rev Clin Immunol 2024; 20:1237-1259. [PMID: 38907993 DOI: 10.1080/1744666x.2024.2372335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 06/21/2024] [Indexed: 06/24/2024]
Abstract
INTRODUCTION Congenital immunodeficiency is named primary immunodeficiency (PID), and more recently inborn errors of immunity (IEI). There are more than 485 conditions classified as IEI, with a wide spectrum of clinical and laboratory manifestations. AREAS COVERED Regardless of the developing knowledge of IEI, many physicians do not think of IEI when approaching the patient's complaint, which leads to delayed diagnosis, misdiagnosis, serious infectious and noninfectious complications, permanent end-organ damage, and even death. Due to the various manifestations of IEI and the wide spectrum of associated conditions, patients refer to specialists in different disciplines of medicine and undergo - mainly symptomatic - treatments, and because IEI are not included in physicians' differential diagnosis, the main disease remains undiagnosed. EXPERT OPINION A multidisciplinary approach may be a proper solution. Manifestations and the importance of a multidisciplinary approach in the diagnosis of main groups of IEI are discussed in this article.
Collapse
Affiliation(s)
- Niloufar Yazdanpanah
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
3
|
McMurray JC, Schornack BJ, Weskamp AL, Park KJ, Pollock JD, Day WG, Brockshus AT, Beakes DE, Schwartz DJ, Mikita CP, Pittman LM. Immunodeficiency: Complement disorders. Allergy Asthma Proc 2024; 45:305-309. [PMID: 39294906 PMCID: PMC11441536 DOI: 10.2500/aap.2024.45.240050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2024]
Abstract
The complement system is an important component of innate and adaptive immunity that consists of three activation pathways. The classic complement pathway plays a role in humoral immunity, whereas the alternative and lectin pathways augment the innate response. Impairment, deficiency, or overactivation of any of the known 50 complement proteins may lead to increased susceptibility to infection with encapsulated organisms, autoimmunity, hereditary angioedema, or thrombosis, depending on the affected protein. Classic pathway defects result from deficiencies of complement proteins C1q, C1r, C1s, C2, and C4, and typically manifest with features of systemic lupus erythematosus and infections with encapsulated organisms. Alternative pathway defects due to deficiencies of factor B, factor D, and properdin may present with increased susceptibility to Neisseria infections. Lectin pathway defects, including Mannose-binding protein-associated serine protease 2 (MASP2) and ficolin 3, may be asymptomatic or lead to pyogenic infections and autoimmunity. Complement protein C3 is common to all pathways, deficiency of which predisposes patients to severe frequent infections and glomerulonephritis. Deficiencies in factor H and factor I, which regulate the alternative pathway, may lead to hemolytic uremic syndrome. Disseminated Neisseria infections result from terminal pathway defects (i.e., C5, C6, C7, C8, and C9). Diagnosis of complement deficiencies involves screening with functional assays (i.e., total complement activity [CH50], alternative complement pathway activity [AH50], enzyme-linked immunosorbent assay [ELISA]) followed by measurement of individual complement factors by immunoassay. Management of complement deficiencies requires a comprehensive and individualized approach with special attention to vaccination against encapsulated bacteria, consideration of prophylactic antibiotics, treatment of comorbid autoimmunity, and close surveillance.
Collapse
Affiliation(s)
- Jeremy C. McMurray
- From the Allergy and Immunology Service, Walter Reed National Military Medical Center, Bethesda, Maryland; and
| | - Brandon J. Schornack
- From the Allergy and Immunology Service, Walter Reed National Military Medical Center, Bethesda, Maryland; and
| | - Andrew L. Weskamp
- From the Allergy and Immunology Service, Walter Reed National Military Medical Center, Bethesda, Maryland; and
| | - Katherine J. Park
- From the Allergy and Immunology Service, Walter Reed National Military Medical Center, Bethesda, Maryland; and
| | - Joshua D. Pollock
- From the Allergy and Immunology Service, Walter Reed National Military Medical Center, Bethesda, Maryland; and
| | - W. Grant Day
- From the Allergy and Immunology Service, Walter Reed National Military Medical Center, Bethesda, Maryland; and
| | - Aaron T. Brockshus
- From the Allergy and Immunology Service, Walter Reed National Military Medical Center, Bethesda, Maryland; and
| | - Douglas E. Beakes
- From the Allergy and Immunology Service, Walter Reed National Military Medical Center, Bethesda, Maryland; and
| | - David J. Schwartz
- From the Allergy and Immunology Service, Walter Reed National Military Medical Center, Bethesda, Maryland; and
| | - Cecilia P. Mikita
- Immunization Healthcare Division, Defense Health Agency – Public Health, Falls Church, Virginia
| | - Luke M. Pittman
- From the Allergy and Immunology Service, Walter Reed National Military Medical Center, Bethesda, Maryland; and
| |
Collapse
|
4
|
Dobó J, Kocsis A, Farkas B, Demeter F, Cervenak L, Gál P. The Lectin Pathway of the Complement System-Activation, Regulation, Disease Connections and Interplay with Other (Proteolytic) Systems. Int J Mol Sci 2024; 25:1566. [PMID: 38338844 PMCID: PMC10855846 DOI: 10.3390/ijms25031566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/22/2024] [Accepted: 01/24/2024] [Indexed: 02/12/2024] Open
Abstract
The complement system is the other major proteolytic cascade in the blood of vertebrates besides the coagulation-fibrinolytic system. Among the three main activation routes of complement, the lectin pathway (LP) has been discovered the latest, and it is still the subject of intense research. Mannose-binding lectin (MBL), other collectins, and ficolins are collectively termed as the pattern recognition molecules (PRMs) of the LP, and they are responsible for targeting LP activation to molecular patterns, e.g., on bacteria. MBL-associated serine proteases (MASPs) are the effectors, while MBL-associated proteins (MAps) have regulatory functions. Two serine protease components, MASP-1 and MASP-2, trigger the LP activation, while the third component, MASP-3, is involved in the function of the alternative pathway (AP) of complement. Besides their functions within the complement system, certain LP components have secondary ("moonlighting") functions, e.g., in embryonic development. They also contribute to blood coagulation, and some might have tumor suppressing roles. Uncontrolled complement activation can contribute to the progression of many diseases (e.g., stroke, kidney diseases, thrombotic complications, and COVID-19). In most cases, the lectin pathway has also been implicated. In this review, we summarize the history of the lectin pathway, introduce their components, describe its activation and regulation, its roles within the complement cascade, its connections to blood coagulation, and its direct cellular effects. Special emphasis is placed on disease connections and the non-canonical functions of LP components.
Collapse
Affiliation(s)
- József Dobó
- Institute of Molecular Life Sciences, HUN-REN Research Centre for Natural Sciences, Hungarian Research Network, 1117 Budapest, Hungary; (J.D.); (A.K.); (B.F.)
| | - Andrea Kocsis
- Institute of Molecular Life Sciences, HUN-REN Research Centre for Natural Sciences, Hungarian Research Network, 1117 Budapest, Hungary; (J.D.); (A.K.); (B.F.)
| | - Bence Farkas
- Institute of Molecular Life Sciences, HUN-REN Research Centre for Natural Sciences, Hungarian Research Network, 1117 Budapest, Hungary; (J.D.); (A.K.); (B.F.)
| | - Flóra Demeter
- Cell Biology and Cell Therapy Group, Research Laboratory, Department of Internal Medicine and Hematology, Semmelweis University, 1085 Budapest, Hungary; (F.D.); (L.C.)
| | - László Cervenak
- Cell Biology and Cell Therapy Group, Research Laboratory, Department of Internal Medicine and Hematology, Semmelweis University, 1085 Budapest, Hungary; (F.D.); (L.C.)
| | - Péter Gál
- Institute of Molecular Life Sciences, HUN-REN Research Centre for Natural Sciences, Hungarian Research Network, 1117 Budapest, Hungary; (J.D.); (A.K.); (B.F.)
| |
Collapse
|
5
|
Abstract
Complement factor D (FD) is a serine protease that plays an essential role in the activation of the alternative pathway (AP) by cleaving complement factor B (FB) and generating the C3 convertases C3(H2 O)Bb and C3bBb. FD is produced mainly from adipose tissue and circulates in an activated form. On the contrary, the other serine proteases of the complement system are mainly synthesized in the liver. The activation mechanism of FD has long been unknown. Recently, a serendipitous discovery in the mechanism of FD activation has been provided by a generation of Masp1 gene knockout mice lacking both the serine protease MASP-1 and its alternative splicing variant MASP-3, designated MASP-1/3-deficient mice. Sera from the MASP-1/3-deficient mice had little-to-no lectin pathway (LP) and AP activity with circulating zymogen or proenzyme FD (pro-FD). Sera from patients with 3MC syndrome carrying mutations in the MASP1 gene also had circulating pro-FD, suggesting that MASP-1 and/or MASP-3 are involved in activation of FD. Here, we summarize the current knowledge of the mechanism of FD activation that was finally elucidated using the sera of mice monospecifically deficient for MASP-1 or MASP-3. Sera of the MASP-1-deficient mice lacked LP activity, but those of the MASP-3-deficient mice lacked AP activity with pro-FD. This review illustrates the pivotal role of MASP-3 in the physiological activation of the AP via activation of FD.
Collapse
Affiliation(s)
- Hideharu Sekine
- Department of Immunology, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Takeshi Machida
- Department of Immunology, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Teizo Fujita
- Fukushima Prefectural General Hygiene Institute, Fukushima, Japan
| |
Collapse
|
6
|
Rohrer B, Parsons N, Annamalai B, Nicholson C, Obert E, Jones B, Dick AD. Elastin Layer in Bruch's Membrane as a Target for Immunization or Tolerization to Modulate Pathology in the Mouse Model of Smoke-Induced Ocular Injury. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1415:67-71. [PMID: 37440016 DOI: 10.1007/978-3-031-27681-1_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/14/2023]
Abstract
Age-related macular degeneration (AMD) is associated with an overactive complement system and an increase in circulating antibodies. Our search for potential neoantigens that can trigger complement activation in disease has led us to investigate elastin. A loss of the elastin layer (EL) of Bruch's membrane (BrM) has been reported in aging and AMD together with an increase of serum elastin-derived peptides and α-elastin antibodies. In the mouse model of cigarette smoke exposure (CSE), damage in BrM, loss of the EL, and vision loss are dependent on complement activation. We have examined the hypothesis that CSE generates immunogenic elastin neoepitopes that trigger an increase in α-elastin IgG and IgM antibodies, which can then bind to the neoepitopes in the target cells or membranes, triggering complement activation. Specifically, we showed that immunization with elastin peptide oxidatively modified by cigarette smoke (ox-elastin) exacerbated ocular pathology and vision loss in CSE mice. In contrast, mice receiving peptide immunotherapy (PIT) with ox-elastin did not lose vision over the smoking period and exhibited a more preserved BrM. Immunization and PIT correlated with humoral immunity and complement activation and IgG/IgM deposition in the RPE/BrM/choroid. Finally, PIT modulated immune markers IFNγ and IL-4. The data further support the hypothesis that complement activation, triggered by immune complex formation in target tissues, plays a role in ocular damage in the CSE model. As PIT with ox-elastin peptides reduces damage, we discuss the possibility that AMD progression might be preventable.
Collapse
Affiliation(s)
- Bärbel Rohrer
- Department of Ophthalmology, Medical University of South Carolina, Charleston, SC, USA.
- Ralph H. Johnson VA Medical Center, Charleston, SC, USA.
| | - Nathaniel Parsons
- Department of Ophthalmology, Medical University of South Carolina, Charleston, SC, USA
| | | | - Crystal Nicholson
- Department of Ophthalmology, Medical University of South Carolina, Charleston, SC, USA
| | - Elisabeth Obert
- Department of Ophthalmology, Medical University of South Carolina, Charleston, SC, USA
| | - Bryan Jones
- Department of Ophthalmology, University of Utah, Salt Lake City, UT, USA
| | | |
Collapse
|
7
|
Helenius K, Parkkola R, Arola A, Peltola V, Haanpää MK. Detailed prenatal and postnatal MRI findings and clinical analysis of RAF1 in Noonan syndrome. Eur J Med Genet 2022; 65:104626. [PMID: 36155125 DOI: 10.1016/j.ejmg.2022.104626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 07/26/2022] [Accepted: 09/19/2022] [Indexed: 11/25/2022]
Abstract
Noonan syndrome is a genetically heterogeneous developmental disorder, which usually includes findings such as short stature, facial dysmorphia, cardiac abnormalities and a varying degree of intellectual disability. We present a unique case of a rare variant of Noonan syndrome in a very preterm female infant born at 28 + 4 gestational weeks, with abnormal radiological findings visible at fetal magnetic resonance imaging (MRI) and evolution of the brain lesions during infancy.
Collapse
Affiliation(s)
- Kjell Helenius
- Department of Paediatrics and Adolescent Medicine, Finland; University of Turku, Turku, Finland.
| | | | - Anita Arola
- Department of Paediatrics and Adolescent Medicine, Finland
| | - Ville Peltola
- Department of Paediatrics and Adolescent Medicine, Finland; University of Turku, Turku, Finland
| | - Maria K Haanpää
- Department of Genomics and Medical Genetics, Turku University Hospital, Finland; University of Turku, Turku, Finland
| |
Collapse
|
8
|
Intertwined pathways of complement activation command the pathogenesis of lupus nephritis. Transl Res 2022; 245:18-29. [PMID: 35296451 PMCID: PMC9167748 DOI: 10.1016/j.trsl.2022.03.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 03/07/2022] [Accepted: 03/08/2022] [Indexed: 12/26/2022]
Abstract
The complement system is involved in the origin of autoimmunity and systemic lupus erythematosus. Both genetic deficiency of complement components and excessive activation are involved in primary and secondary renal diseases, including lupus nephritis. Among the pathways, the classical pathway has long been accepted as the main pathway of complement activation in systemic lupus erythematosus. However, more recent studies have shown the contribution of factors B and D which implies the involvement of the alternative pathway. While there is evidence on the role of the lectin pathway in systemic lupus erythematosus, it is yet to be demonstrated whether this pathway is protective or harmful in lupus nephritis. Complement is being explored for the development of disease biomarkers and therapeutic targeting. In the current review we discuss the involvement of complement in lupus nephritis.
Collapse
|
9
|
Mistegaard CE, Jensen L, Christiansen M, Bjerre M, Jensen JMB, Thiel S. Low levels of the innate immune system proteins MASP-2 and MAp44 in patients with common variable immunodeficiency. Scand J Immunol 2022; 96:e13196. [PMID: 35673952 PMCID: PMC9542173 DOI: 10.1111/sji.13196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 05/31/2022] [Accepted: 06/02/2022] [Indexed: 11/28/2022]
Abstract
Patients with common variable immunodeficiency (CVID) display low antibody levels and associated symptoms, including an increased risk of infections. The causes of CVID are uncertain and likely heterogeneous. The complement system protects against pathogens and plays essential roles in homeostasis and development. The influence of the complement system in CVID is not established. We investigated CVID patients and healthy individuals for plasma levels of the complement proteins: MASP-1, MASP-2, MASP-3, MAp19 and MAp44. We also tested other patients with symptoms similar to the CVID patients. CVID patients had lower average MASP-2 and MAp44 levels than healthy individuals (P < 0.01); the MASP-2 level was 0.73-fold lower, and the MAp44 level was 0.87-fold lower. This was not observed in the other patient cohorts studied. Our findings in this exploratory study provide new insights into CVID and introduce a complement perspective for future investigations into the underlying mechanisms of the disease.
Collapse
Affiliation(s)
- Clara Elbaek Mistegaard
- Department of Biomedicine, Aarhus University, Aarhus, Denmark.,Department of Rheumatology, Aarhus University Hospital, Aarhus, Denmark.,Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Lisbeth Jensen
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Mette Christiansen
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.,Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Mette Bjerre
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.,Medical Research Laboratory, Aarhus University, Aarhus, Denmark
| | - Jens Magnus Bernth Jensen
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark.,Department of Clinical Immunology, Aarhus University Hospital, Aarhus, Denmark
| | - Steffen Thiel
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
10
|
Nahm MH, Yu J, Calix JJ, Ganaie F. Ficolin-2 Lectin Complement Pathway Mediates Capsule-Specific Innate Immunity Against Invasive Pneumococcal Disease. Front Immunol 2022; 13:841062. [PMID: 35418983 PMCID: PMC8996173 DOI: 10.3389/fimmu.2022.841062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 03/02/2022] [Indexed: 11/13/2022] Open
Abstract
Reports conflict regarding which lectin-microbial ligand interactions elicit a protective response from the lectin pathway (LP) of complement. Using fluorescent microscopy, we demonstrate the human lectin ficolin-2 binds to Streptococcus pneumoniae serotype 11A capsule polysaccharide dependent on the O-acetyltransferase gene wcjE. This triggers complement deposition and promotes opsonophagocytosis of encapsulated pneumococci. Even partial loss of ficolin-2 ligand expression through wcjE mutation abrogated bacterial killing. Ficolin-2 did not interact with any pneumococcal non-capsule structures, including teichoic acid. We describe multiple 11A clonal derivatives expressing varying degrees of wcjE-dependent epitopes co-isolated from single blood specimens, likely representing microevolutionary shifts towards wcjE-deficient populations during invasive pneumococcal disease (IPD). We find epidemiological evidence of wcjE impairing pneumococcal invasiveness, supporting that the LP's ficolin-2 axis provides innate, serotype-specific serological protection against IPD. The fact that the LP is triggered by only a few discrete carbohydrate ligands emphasizes the need to reevaluate its impact in a glycopolymer-specific manner.
Collapse
Affiliation(s)
- Moon H. Nahm
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Jigui Yu
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Juan J. Calix
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
- Division of Infectious Diseases, Department of Medicine, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Feroze Ganaie
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
11
|
de Latour RP, Hosokawa K, Risitano AM. Hemolytic paroxysmal nocturnal hemoglobinuria: 20 years of medical progress. Semin Hematol 2022; 59:38-46. [DOI: 10.1053/j.seminhematol.2022.01.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 01/06/2022] [Indexed: 12/15/2022]
|
12
|
Al-Allaff RGM, Badal Rasheed K. Evaluation of Haemolytic Activity in Smokers by Using Non-Linear Regression. Pak J Biol Sci 2022; 25:509-515. [PMID: 36098186 DOI: 10.3923/pjbs.2022.509.515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
<b>Background and Objective:</b> Smokers are poorly protected against pathogens. Many studies have focused on the concentrations of complement components in comparison to smokers while ignoring the practical sequencing of complement components. There are numerous methods for estimating haemolytic activity (CH50%), all of which need a large number of samples and dilution, in addition to a typically expensive test kit. This novel study attempts to use statistical analysis and use the non-linear regression 'power equation' to extract the CH50% by using 5 serum dilutions only. <b>Materials and Methods:</b> The power equation can multiply the five practical dilutions into hundreds of mathematical loops within the sample range. The (CH50%) value is highly accurate for both the study and comparison sample and was evaluated in11 smokers. <b>Results:</b> The results were contrasted with a control composed of 11 individuals, matched by age and sex. The power equation showed a 6.48% significant reduction in (CH50%) in smokers compared with non-smokers, where a 17.54% reduction was observed. <b>Conclusion:</b> The current study suggests a decrease in the function of the classical complement pathway (CH50%) in smokers. On the other hand, the study provided a new statistical pattern, linking the practical values with default values within the range of dilution and formulating an equation that could be used to extract the value of CH50% with high accuracy.
Collapse
|
13
|
Agaoglu NB, Akgun Dogan O. Further Expansion of the Mutational Spectrum of 3MC Syndrome: A Novel MASP1 Pathogenic Variant in a Male Patient. Mol Syndromol 2021; 12:379-385. [PMID: 34899147 DOI: 10.1159/000517370] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 05/22/2021] [Indexed: 11/19/2022] Open
Abstract
The 3MC syndrome is a rare autosomal recessive syndrome characterized by facial dysmorphism, multiple congenital abnormalities, and postnatal growth deficiency. Hypertelorism, blepharophimosis, blepharoptosis, high-arched eyebrows, and cleft lip/palate compose the facial gestalt, which is the key component for diagnosing the syndrome. Biallelic pathogenic variants in MASP1, COLEC11, and COLEC10 are responsible for 3MC syndrome in which both genotypic and phenotypic heterogeneity is described. To date, 16 homozygous/compound heterozygous pathogenic variations in 27 patients from 22 families have been reported in the MASP1 gene associated with 3MC syndrome. Here, we report a male patient with a novel homozygous pathogenic variant in MASP1 in whom macrocephaly, pyloric stenosis, and prenatal findings including polyhydramnios, aortic dilatation, and intracranial cysts beside the distinctive facial features were detected. Reporting detailed clinical and molecular findings in patients is pivotal in terms of enabling the phenotypic and genotypic spectrum of this rare syndrome to be delineated.
Collapse
Affiliation(s)
- Nihat Bugra Agaoglu
- GLAB (Genomic Laboratory), Umraniye Training and Research Hospital, Istanbul, Turkey.,Department of Medical Genetics, Umraniye Training and Research Hospital, Istanbul, Turkey
| | - Ozlem Akgun Dogan
- GLAB (Genomic Laboratory), Umraniye Training and Research Hospital, Istanbul, Turkey.,Department of Pediatric Genetics, Umraniye Training and Research Hospital, Istanbul, Turkey
| |
Collapse
|
14
|
Migliorero M, Kalantari S, Bracciamà V, Sorbini M, Arruga F, Peruzzi L, Biamino E, Amoroso A, Vaisitti T, Deaglio S. A novel COLEC10 mutation in a child with 3MC syndrome. Eur J Med Genet 2021; 64:104374. [PMID: 34740859 DOI: 10.1016/j.ejmg.2021.104374] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 09/20/2021] [Accepted: 10/27/2021] [Indexed: 11/25/2022]
Abstract
3MC syndrome is an autosomal recessive disorder encompassing four rare disorders previously known as the Malpuech, Michels, Mingarelli and Carnevale syndromes. They are characterized by a variable spectrum of abnormalities, including facial dysmorphisms, along with genital, limb and vesico-renal anomalies. The syndrome was originally attributed to mutations in MASP1 and COLEC11, which code for proteins involved in the lectin complement pathway. More recently, mutations in COLEC10, a third gene coding for collectin CL-L1, were identified in a limited number of patients with 3MC syndrome. Here we describe a 4-years-old patient with typical 3MC phenotypic characteristics, including blepharophimosis, telecanthus, high arched eyebrows, fifth finger clinodactyly, sacral dimple and horseshoe kidney. Initial genetic analysis was based on clinical exome sequencing, where only MASP1 and COLEC11 genes are present, without evidence of pathogenic variants. Sanger sequencing of COLEC10 identified the homozygous frameshift variant c.807_810delCTGT; p.Cys270Serfs*33, which results in the loss of the natural stop codon. The resulting protein is 24 amino acids longer and lacks a conserved cysteine residue (Cys270), which could affect protein folding. Segregation studies confirmed that both parents were carriers for the variant: interestingly they originate from the same area of Apulia in southern Italy. Plasma levels of CL-L1 in the patient and her parents were within normal range, suggesting that this variant does not modify transcription or secretion. However, the variant affects the chemo-attractive feature of CL-L1, as HeLa cells migrate significantly less in response to the mutant protein compared to the wild-type one.
Collapse
Affiliation(s)
| | - Silvia Kalantari
- Department of Medical Sciences, University of Turin, Turin, Italy; Immunogenetics and Transplant Biology Service, Città della Salute e della Scienza University Hospital, Turin, Italy
| | - Valeria Bracciamà
- Department of Medical Sciences, University of Turin, Turin, Italy; Immunogenetics and Transplant Biology Service, Città della Salute e della Scienza University Hospital, Turin, Italy
| | - Monica Sorbini
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Francesca Arruga
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Licia Peruzzi
- Pediatric Nephrology Dialysis and Transplantation Unit, Città della Salute e della Scienza University Hospital, Turin, Italy
| | - Elisa Biamino
- Department of Pediatrics, AOU Città della Salute e della Scienza di Torino, University of Turin, Turin, Italy
| | - Antonio Amoroso
- Department of Medical Sciences, University of Turin, Turin, Italy; Immunogenetics and Transplant Biology Service, Città della Salute e della Scienza University Hospital, Turin, Italy
| | - Tiziana Vaisitti
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Silvia Deaglio
- Department of Medical Sciences, University of Turin, Turin, Italy; Immunogenetics and Transplant Biology Service, Città della Salute e della Scienza University Hospital, Turin, Italy.
| |
Collapse
|
15
|
Sapio MR, Kim JJ, Loydpierson AJ, Maric D, Goto T, Vazquez FA, Dougherty MK, Narasimhan R, Muhly WT, Iadarola MJ, Mannes AJ. The Persistent Pain Transcriptome: Identification of Cells and Molecules Activated by Hyperalgesia. THE JOURNAL OF PAIN 2021; 22:1146-1179. [PMID: 33892151 PMCID: PMC9441406 DOI: 10.1016/j.jpain.2021.03.155] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 03/12/2021] [Accepted: 03/16/2021] [Indexed: 12/21/2022]
Abstract
During persistent pain, the dorsal spinal cord responds to painful inputs from the site of injury, but the molecular modulatory processes have not been comprehensively examined. Using transcriptomics and multiplex in situ hybridization, we identified the most highly regulated receptors and signaling molecules in rat dorsal spinal cord in peripheral inflammatory and post-surgical incisional pain models. We examined a time course of the response including acute (2 hours) and longer term (2 day) time points after peripheral injury representing the early onset and instantiation of hyperalgesic processes. From this analysis, we identify a key population of superficial dorsal spinal cord neurons marked by somatotopic upregulation of the opioid neuropeptide precursor prodynorphin, and 2 receptors: the neurokinin 1 receptor, and anaplastic lymphoma kinase. These alterations occur specifically in the glutamatergic subpopulation of superficial dynorphinergic neurons. In addition to specific neuronal gene regulation, both models showed induction of broad transcriptional signatures for tissue remodeling, synaptic rearrangement, and immune signaling defined by complement and interferon induction. These signatures were predominantly induced ipsilateral to tissue injury, implying linkage to primary afferent drive. We present a comprehensive set of gene regulatory events across 2 models that can be targeted for the development of non-opioid analgesics. PERSPECTIVE: The deadly impact of the opioid crisis and the need to replace morphine and other opioids in clinical practice is well recognized. Embedded within this research is an overarching goal of obtaining foundational knowledge from transcriptomics to search for non-opioid analgesic targets. Developing such analgesics would address unmet clinical needs.
Collapse
Affiliation(s)
- Matthew R Sapio
- Department of Perioperative Medicine, National Institutes of Health Clinical Center, NIH, Bethesda, Maryland
| | - Jenny J Kim
- Department of Perioperative Medicine, National Institutes of Health Clinical Center, NIH, Bethesda, Maryland
| | - Amelia J Loydpierson
- Department of Perioperative Medicine, National Institutes of Health Clinical Center, NIH, Bethesda, Maryland
| | - Dragan Maric
- National Institute of Neurological Disorders and Stroke, Flow and Imaging Cytometry Core Facility, NIH, Bethesda, Maryland
| | - Taichi Goto
- Department of Perioperative Medicine, National Institutes of Health Clinical Center, NIH, Bethesda, Maryland; National Institute of Nursing Research, Symptom Management Branch, NIH, Bethesda, Maryland; Japan Society for the Promotion of Science Overseas Research Fellowship, Tokyo, Japan
| | - Fernando A Vazquez
- Department of Perioperative Medicine, National Institutes of Health Clinical Center, NIH, Bethesda, Maryland
| | - Mary K Dougherty
- Department of Perioperative Medicine, National Institutes of Health Clinical Center, NIH, Bethesda, Maryland
| | - Radhika Narasimhan
- Department of Perioperative Medicine, National Institutes of Health Clinical Center, NIH, Bethesda, Maryland
| | - Wallis T Muhly
- National Institute of Nursing Research, Symptom Management Branch, NIH, Bethesda, Maryland; Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Michael J Iadarola
- Department of Perioperative Medicine, National Institutes of Health Clinical Center, NIH, Bethesda, Maryland.
| | - Andrew J Mannes
- Department of Perioperative Medicine, National Institutes of Health Clinical Center, NIH, Bethesda, Maryland
| |
Collapse
|
16
|
Kar S, Krishnamurthy S, Karunakar P, Maya M, Thangaraj A, Agarwal Y. A rare cause of recurrent acute kidney injury in a 3-year-old girl: Answers. Pediatr Nephrol 2021; 36:2033-2037. [PMID: 33427983 DOI: 10.1007/s00467-020-04885-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 11/27/2020] [Indexed: 11/27/2022]
Affiliation(s)
- Shrutiprajna Kar
- Department of Pediatrics, Jawaharlal Institute of Postgraduate Medical Education and Research (JIPMER), Pondicherry, 605006, India
| | - Sriram Krishnamurthy
- Department of Pediatrics, Jawaharlal Institute of Postgraduate Medical Education and Research (JIPMER), Pondicherry, 605006, India.
| | - Pediredla Karunakar
- Department of Pediatrics, Jawaharlal Institute of Postgraduate Medical Education and Research (JIPMER), Pondicherry, 605006, India
| | - Malini Maya
- Department of Pediatrics, Jawaharlal Institute of Postgraduate Medical Education and Research (JIPMER), Pondicherry, 605006, India
| | - Abarna Thangaraj
- Department of Pediatrics, Jawaharlal Institute of Postgraduate Medical Education and Research (JIPMER), Pondicherry, 605006, India
| | - Yamini Agarwal
- Department of Pediatrics, Jawaharlal Institute of Postgraduate Medical Education and Research (JIPMER), Pondicherry, 605006, India
| |
Collapse
|
17
|
Erdei A, Kovács KG, Nagy-Baló Z, Lukácsi S, Mácsik-Valent B, Kurucz I, Bajtay Z. New aspects in the regulation of human B cell functions by complement receptors CR1, CR2, CR3 and CR4. Immunol Lett 2021; 237:42-57. [PMID: 34186155 DOI: 10.1016/j.imlet.2021.06.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/17/2021] [Accepted: 06/23/2021] [Indexed: 10/21/2022]
Abstract
The involvement of complement in the regulation of antibody responses has been known for long. By now several additional B cell functions - including cytokine production and antigen presentation - have also been shown to be regulated by complement proteins. Most of these important activities are mediated by receptors interacting with activation fragments of the central component of the complement system C3, such as C3b, iC3b and C3d, which are covalently attached to antigens and immune complexes. This review summarizes the role of complement receptors interacting with these ligands, namely CR1 (CD35), CR2 (CD21), CR3 (CD11b/CD18) and CR4 (CD11c/CD18) expressed by B cells in health and disease. Although we focus on human B lymphocytes, we also aim to call the attention to important differences between human and mouse systems.
Collapse
Affiliation(s)
- Anna Erdei
- Department of Immunology, Eötvös Loránd University, Budapest, Hungary; MTA-ELTE Immunology Research Group, Eötvös Loránd University, Budapest, Hungary.
| | - Kristóf G Kovács
- Department of Immunology, Eötvös Loránd University, Budapest, Hungary
| | - Zsuzsa Nagy-Baló
- MTA-ELTE Immunology Research Group, Eötvös Loránd University, Budapest, Hungary
| | - Szilvia Lukácsi
- MTA-ELTE Immunology Research Group, Eötvös Loránd University, Budapest, Hungary
| | | | - István Kurucz
- MTA-ELTE Immunology Research Group, Eötvös Loránd University, Budapest, Hungary
| | - Zsuzsa Bajtay
- Department of Immunology, Eötvös Loránd University, Budapest, Hungary; MTA-ELTE Immunology Research Group, Eötvös Loránd University, Budapest, Hungary
| |
Collapse
|
18
|
Abstract
The complement cascade is an evolutionary ancient innate immune defense system, playing a major role in the defense against infections. Its function in maintaining host homeostasis on activated cells has been emphasized by the crucial role of its overactivation in ever growing number of diseases, such as atypical hemolytic uremic syndrome (aHUS), autoimmune diseases as systemic lupus erythematosus (SLE), C3 glomerulopathies (C3GN), age-related macular degeneration (AMD), graft rejection, Alzheimer disease, and cancer, to name just a few. The last decade of research on complement has extended its implication in many pathological processes, offering new insights to potential therapeutic targets and asserting the necessity of reliable, sensitive, specific, accurate, and reproducible biomarkers to decipher complement role in pathology. We need to evaluate accurately which pathway or role should be targeted pharmacologically, and optimize treatment efficacy versus toxicity. This chapter is an introduction to the role of complement in human diseases and the use of complement-related biomarkers in the clinical practice. It is a part of a book intending to give reliable and standardized methods to evaluate complement according to nowadays needs and knowledge.
Collapse
|
19
|
Monticelli M, Mele BH, Andreotti G, Cubellis MV, Riccio G. Why does SARS-CoV-2 hit in different ways? Host genetic factors can influence the acquisition or the course of COVID-19. Eur J Med Genet 2021; 64:104227. [PMID: 33872774 PMCID: PMC8051015 DOI: 10.1016/j.ejmg.2021.104227] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 03/14/2021] [Accepted: 04/12/2021] [Indexed: 02/08/2023]
Abstract
The identification of high-risk factors for the infection by SARS-CoV-2 and the negative outcome of COVID-19 is crucial. The genetic background of the host might account for individual responses to SARS-CoV-2 infection besides age and comorbidities. A list of candidate polymorphisms is needed to drive targeted screens, given the existence of frequent polymorphisms in the general population. We carried out text mining in the scientific literature to draw up a list of genes referable to the term "SARS-CoV*". We looked for frequent mutations that are likely to affect protein function in these genes. Ten genes, mostly involved in innate immunity, and thirteen common variants were identified, for some of these the involvement in COVID-19 is supported by publicly available epidemiological data. We looked for available data on the population distribution of these variants and we demonstrated that the prevalence of five of them, Arg52Cys (rs5030737), Gly54Asp (rs1800450) and Gly57Glu (rs1800451) in MBL2, Ala59Thr (rs25680) in CD27, and Val197Met (rs12329760) in TMPRSS2, correlates with the number of cases and/or deaths of COVID-19 observed in different countries. The association of the TMPRSS2 variant provides epidemiological evidence of the usefulness of transmembrane protease serine 2 inhibitors for the cure of COVID-19. The identified genetic variants represent a basis for the design of a cost-effective assay for population screening of genetic risk factors in the COVID-19 pandemic.
Collapse
Affiliation(s)
- Maria Monticelli
- Department of Biology, Università Federico II, 80126, Napoli, Italy.
| | - Bruno Hay Mele
- Integrative Marine Ecology Department, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121, Napoli, Italy.
| | | | - Maria Vittoria Cubellis
- Department of Biology, Università Federico II, 80126, Napoli, Italy; Istituto di Chimica Biomolecolare -CNR, 80078, Pozzuoli, Italy.
| | - Guglielmo Riccio
- Scuola di Specializzazione in Pediatria, Università degli Studi di Trieste, 34127, Trieste, Italy.
| |
Collapse
|
20
|
Garred P, Tenner AJ, Mollnes TE. Therapeutic Targeting of the Complement System: From Rare Diseases to Pandemics. Pharmacol Rev 2021; 73:792-827. [PMID: 33687995 PMCID: PMC7956994 DOI: 10.1124/pharmrev.120.000072] [Citation(s) in RCA: 100] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The complement system was discovered at the end of the 19th century as a heat-labile plasma component that "complemented" the antibodies in killing microbes, hence the name "complement." Complement is also part of the innate immune system, protecting the host by recognition of pathogen-associated molecular patterns. However, complement is multifunctional far beyond infectious defense. It contributes to organ development, such as sculpting neuron synapses, promoting tissue regeneration and repair, and rapidly engaging and synergizing with a number of processes, including hemostasis leading to thromboinflammation. Complement is a double-edged sword. Although it usually protects the host, it may cause tissue damage when dysregulated or overactivated, such as in the systemic inflammatory reaction seen in trauma and sepsis and severe coronavirus disease 2019 (COVID-19). Damage-associated molecular patterns generated during ischemia-reperfusion injuries (myocardial infarction, stroke, and transplant dysfunction) and in chronic neurologic and rheumatic disease activate complement, thereby increasing damaging inflammation. Despite the long list of diseases with potential for ameliorating complement modulation, only a few rare diseases are approved for clinical treatment targeting complement. Those currently being efficiently treated include paroxysmal nocturnal hemoglobinuria, atypical hemolytic-uremic syndrome, myasthenia gravis, and neuromyelitis optica spectrum disorders. Rare diseases, unfortunately, preclude robust clinical trials. The increasing evidence for complement as a pathogenetic driver in many more common diseases suggests an opportunity for future complement therapy, which, however, requires robust clinical trials; one ongoing example is COVID-19 disease. The current review aims to discuss complement in disease pathogenesis and discuss future pharmacological strategies to treat these diseases with complement-targeted therapies. SIGNIFICANCE STATEMENT: The complement system is the host's defense friend by protecting it from invading pathogens, promoting tissue repair, and maintaining homeostasis. Complement is a double-edged sword, since when dysregulated or overactivated it becomes the host's enemy, leading to tissue damage, organ failure, and, in worst case, death. A number of acute and chronic diseases are candidates for pharmacological treatment to avoid complement-dependent damage, ranging from the well established treatment for rare diseases to possible future treatment of large patient groups like the pandemic coronavirus disease 2019.
Collapse
Affiliation(s)
- Peter Garred
- Laboratory of Molecular Medicine, Department of Clinical Immunology, Rigshospitalet, Copenhagen, Denmark, and Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark (P.G.); Departments of Molecular Biology and Biochemistry, Neurobiology and Behavior, and Pathology and Laboratory Medicine, University of California, Irvine, California (A.J.T.); and Research Laboratory, Nordland Hospital, Bodø, Norway, Faculty of Health Sciences, K.G. Jebsen TREC, University of Tromsø, Tromsø, Norway (T.E.M.); Centre of Molecular Inflammation Research, Norwegian University of Science and Technology, Trondheim, Norway (T.E.M.); and Department of Immunology, Oslo University Hospital and University of Oslo, Oslo, Norway (T.E.M.)
| | - Andrea J Tenner
- Laboratory of Molecular Medicine, Department of Clinical Immunology, Rigshospitalet, Copenhagen, Denmark, and Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark (P.G.); Departments of Molecular Biology and Biochemistry, Neurobiology and Behavior, and Pathology and Laboratory Medicine, University of California, Irvine, California (A.J.T.); and Research Laboratory, Nordland Hospital, Bodø, Norway, Faculty of Health Sciences, K.G. Jebsen TREC, University of Tromsø, Tromsø, Norway (T.E.M.); Centre of Molecular Inflammation Research, Norwegian University of Science and Technology, Trondheim, Norway (T.E.M.); and Department of Immunology, Oslo University Hospital and University of Oslo, Oslo, Norway (T.E.M.)
| | - Tom E Mollnes
- Laboratory of Molecular Medicine, Department of Clinical Immunology, Rigshospitalet, Copenhagen, Denmark, and Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark (P.G.); Departments of Molecular Biology and Biochemistry, Neurobiology and Behavior, and Pathology and Laboratory Medicine, University of California, Irvine, California (A.J.T.); and Research Laboratory, Nordland Hospital, Bodø, Norway, Faculty of Health Sciences, K.G. Jebsen TREC, University of Tromsø, Tromsø, Norway (T.E.M.); Centre of Molecular Inflammation Research, Norwegian University of Science and Technology, Trondheim, Norway (T.E.M.); and Department of Immunology, Oslo University Hospital and University of Oslo, Oslo, Norway (T.E.M.)
| |
Collapse
|
21
|
Galindo-Izquierdo M, Pablos Alvarez JL. Complement as a Therapeutic Target in Systemic Autoimmune Diseases. Cells 2021; 10:cells10010148. [PMID: 33451011 PMCID: PMC7828564 DOI: 10.3390/cells10010148] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 01/06/2021] [Accepted: 01/08/2021] [Indexed: 12/16/2022] Open
Abstract
The complement system (CS) includes more than 50 proteins and its main function is to recognize and protect against foreign or damaged molecular components. Other homeostatic functions of CS are the elimination of apoptotic debris, neurological development, and the control of adaptive immune responses. Pathological activation plays prominent roles in the pathogenesis of most autoimmune diseases such as systemic lupus erythematosus, antiphospholipid syndrome, rheumatoid arthritis, dermatomyositis, and ANCA-associated vasculitis. In this review, we will review the main rheumatologic autoimmune processes in which complement plays a pathogenic role and its potential relevance as a therapeutic target.
Collapse
|
22
|
Wymann S, Dai Y, Nair AG, Cao H, Powers GA, Schnell A, Martin-Roussety G, Leong D, Simmonds J, Lieu KG, de Souza MJ, Mischnik M, Taylor S, Ow SY, Spycher M, Butcher RE, Pearse M, Zuercher AW, Baz Morelli A, Panousis C, Wilson MJ, Rowe T, Hardy MP. A novel soluble complement receptor 1 fragment with enhanced therapeutic potential. J Biol Chem 2020; 296:100200. [PMID: 33334893 PMCID: PMC7948397 DOI: 10.1074/jbc.ra120.016127] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 12/14/2020] [Accepted: 12/16/2020] [Indexed: 12/13/2022] Open
Abstract
Human complement receptor 1 (HuCR1) is a pivotal regulator of complement activity, acting on all three complement pathways as a membrane-bound receptor of C3b/C4b, C3/C5 convertase decay accelerator, and cofactor for factor I-mediated cleavage of C3b and C4b. In this study, we sought to identify a minimal soluble fragment of HuCR1, which retains the complement regulatory activity of the wildtype protein. To this end, we generated recombinant, soluble, and truncated versions of HuCR1 and compared their ability to inhibit complement activation in vitro using multiple assays. A soluble form of HuCR1, truncated at amino acid 1392 and designated CSL040, was found to be a more potent inhibitor than all other truncation variants tested. CSL040 retained its affinity to both C3b and C4b as well as its cleavage and decay acceleration activity and was found to be stable under a range of buffer conditions. Pharmacokinetic studies in mice demonstrated that the level of sialylation is a major determinant of CSL040 clearance in vivo. CSL040 also showed an improved pharmacokinetic profile compared with the full extracellular domain of HuCR1. The in vivo effects of CSL040 on acute complement-mediated kidney damage were tested in an attenuated passive antiglomerular basement membrane antibody-induced glomerulonephritis model. In this model, CSL040 at 20 and 60 mg/kg significantly attenuated kidney damage at 24 h, with significant reductions in cellular infiltrates and urine albumin, consistent with protection from kidney damage. CSL040 thus represents a potential therapeutic candidate for the treatment of complement-mediated disorders.
Collapse
Affiliation(s)
- Sandra Wymann
- Research and Development, CSL Behring AG, Bern, Switzerland
| | - Yun Dai
- CSL Ltd, Bio21 Institute, Victoria, Australia
| | - Anup G Nair
- CSL Ltd, Bio21 Institute, Victoria, Australia
| | - Helen Cao
- CSL Ltd, Bio21 Institute, Victoria, Australia
| | | | - Anna Schnell
- Research and Development, CSL Behring AG, Bern, Switzerland
| | | | - David Leong
- CSL Ltd, Bio21 Institute, Victoria, Australia
| | | | - Kim G Lieu
- CSL Ltd, Bio21 Institute, Victoria, Australia
| | | | - Marcel Mischnik
- Research and Development, CSL Behring GmbH, Marburg, Germany
| | | | - Saw Yen Ow
- CSL Ltd, Bio21 Institute, Victoria, Australia
| | - Martin Spycher
- Research and Development, CSL Behring AG, Bern, Switzerland
| | | | | | | | | | | | | | - Tony Rowe
- CSL Ltd, Bio21 Institute, Victoria, Australia
| | | |
Collapse
|
23
|
Seo JY, Shin JG, Youn BJ, Namgoong S, Cheong HS, Kim LH, Kim JO, Shin HD, Kim YJ. A non-synonymous variant rs12614 of complement factor B associated with risk of chronic hepatitis B in a Korean population. BMC MEDICAL GENETICS 2020; 21:241. [PMID: 33334325 PMCID: PMC7745368 DOI: 10.1186/s12881-020-01177-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 11/23/2020] [Indexed: 11/10/2022]
Abstract
Background Hepatitis B is known to cause several forms of liver diseases including chronic hepatitis B (CHB), and hepatocellular carcinoma. Previous genome-wide association study of CHB risk has demonstrated that rs12614 of complement factor B (CFB) was significantly associated with CHB risk. In this study, fine-mapping study of previously reported GWAS single nucleotide polymorphism (SNP; CFB rs12614) was performed to validate genetic effect of rs12614 on CHB susceptibility and identify possible additional causal variants around rs12614 in a Korean population. This association study was conducted in order to identify genetic effects of CFB single nucleotide polymorphisms (SNPs) and to identify additional independent CHB susceptible causal markers within a Korean population. Methods A total of 10 CFB genetic polymorphisms were selected and genotyped in 1716 study subjects comprised of 955 CHB patients and 761 population controls. Results A non-synonymous variant, rs12614 (Arg32Trp) in exon2 of CFB, had significant associations with risk of CHB (odds ratio = 0.43, P = 5.91 × 10− 10). Additional linkage disequilibrium and conditional analysis confirmed that rs12614 had independent genetic effect on CHB susceptibility with previously identified CHB markers. The genetic risk scores (GRSs) were calculated and the CHB patients had higher GRSs than the population controls. Moreover, OR was found to increase significantly with cumulative GRS. Conclusions rs12614 showed significant genetic effect on CHB risk within the Korean population. As such rs12614 may be used as a possible causal genetic variant for CHB susceptibility. Supplementary Information The online version contains supplementary material available at 10.1186/s12881-020-01177-w.
Collapse
Affiliation(s)
- Jung Yeon Seo
- Current address: Department of Core Technology, R&D Center, LG Household & Healthcare (LG H&H), Seoul, 07795, South Korea.,Department of Life Science, Sogang University, Seoul, 04107, Republic of Korea
| | - Joong-Gon Shin
- Current address: Department of Core Technology, R&D Center, LG Household & Healthcare (LG H&H), Seoul, 07795, South Korea.,Research Institute for Basic Science, Sogang University, Seoul, 04107, Republic of Korea
| | - Byeong Ju Youn
- Department of Life Science, Sogang University, Seoul, 04107, Republic of Korea
| | - Suhg Namgoong
- Department of Life Science, Sogang University, Seoul, 04107, Republic of Korea.,Department of Genetic Epidemiology, SNP Genetics Inc., Seoul, 04107, Republic of Korea
| | - Hyun Sub Cheong
- Department of Genetic Epidemiology, SNP Genetics Inc., Seoul, 04107, Republic of Korea
| | - Lyoung Hyo Kim
- Department of Genetic Epidemiology, SNP Genetics Inc., Seoul, 04107, Republic of Korea
| | - Ji On Kim
- Research Institute for Basic Science, Sogang University, Seoul, 04107, Republic of Korea
| | - Hyoung Doo Shin
- Department of Life Science, Sogang University, Seoul, 04107, Republic of Korea. .,Research Institute for Basic Science, Sogang University, Seoul, 04107, Republic of Korea. .,Department of Genetic Epidemiology, SNP Genetics Inc., Seoul, 04107, Republic of Korea.
| | - Yoon Jun Kim
- Department of Internal Medicine and Liver Research Institute, Seoul National University, 103 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea.
| |
Collapse
|
24
|
Bro-Jeppesen J, Jeppesen AN, Haugaard S, Troldborg A, Hassager C, Kjaergaard J, Kirkegaard H, Wanscher M, Hvas AM, Thiel S. The complement lectin pathway protein MAp19 and out-of-hospital cardiac arrest: Insights from two randomized clinical trials. EUROPEAN HEART JOURNAL-ACUTE CARDIOVASCULAR CARE 2020; 9:S145-S152. [DOI: 10.1177/2048872619870031] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Aim:
Activation of the complement system is known to be a potent inducer of systemic inflammation, which is an important component of post-cardiac arrest syndrome. Mannan-binding-lectin associated protein of 19 kDa (MAp19) is suggested to be a regulatory component of the lectin pathway of complement activation. The aims of this study were to describe serial levels of MAp19 protein in comatose survivors of out-of-hospital cardiac arrest (OHCA), to evaluate the effect of two different regimes of targeted temperature management and to investigate the possible association between levels of MAp19 and mortality.
Methods:
In this post-hoc study, we analysed data from two large randomized controlled studies: ‘Targeted temperature management at 33 degrees C versus 36 degrees C after cardiac arrest’ (TTM) and ‘Targeted temperature management for 48 versus 24 h and neurological outcome after out-of-hospital cardiac arrest’ (TTH). We measured serial levels of MAp19 in 240 patients within 72 h after OHCA and in 82 healthy controls. The effect of targeted temperature management on MAp19 levels was analysed according to temperature allocation in main trials.
Results:
MAp19 levels were significantly lower in OHCA patients within 48 h after OHCA (p-values <0.001) compared with healthy controls. A target temperature at 33°C compared with 36°C for 24 h was associated with significantly lower levels of MAp19 (–57 ng/mL (95% confidence interval (CI): –97 to −16 mg/mL), p=0.006). Target temperature at 33°C for 48 h compared with 24 h was not associated with a difference in MAp19 levels (–31 ng/mL (95% CI: –120 to 60 mg/mL), p=0.57). Low MAp19 levels at admission were associated with higher 30-day mortality (12% vs. 38%, plog-rank =0.0008), also in adjusted analysis (two-fold higher, hazard ratio =0.48 (95% CI: 0.31 to 0.75), p=0.001). Analysis of MAp19 levels at 24–72 h showed they were not associated with 30-day mortality.
Conclusion:
Survivors after OHCA have lower levels of MAp19 protein compared with healthy controls. A targeted temperature management at 33°C compared with 36°C was associated with significantly lower MAp19 levels, whereas target temperature at 33°C for 48 h compared with 24 h did not influence MAp19 protein levels. Low MAp19 levels at admission were independently associated with increased mortality.
Collapse
Affiliation(s)
- John Bro-Jeppesen
- Department of Cardiology, The Heart Centre, Rigshospitalet, University of Copenhagen, Denmark
| | - Anni Nørgaard Jeppesen
- Department of Anaesthesiology and Intensive Care Medicine, Aarhus University Hospital, Denmark
| | - Simon Haugaard
- Department of Clinical Biochemistry, Aarhus University Hospital, Denmark
| | | | - Christian Hassager
- Department of Cardiology, The Heart Centre, Rigshospitalet, University of Copenhagen, Denmark
| | - Jesper Kjaergaard
- Department of Cardiology, The Heart Centre, Rigshospitalet, University of Copenhagen, Denmark
| | - Hans Kirkegaard
- Department of Anaesthesiology and Intensive Care Medicine, Aarhus University Hospital, Denmark
- Research Centre for Emergency Medicine and Emergency Department, Aarhus University and Aarhus University Hospital, Denmark
| | - Michael Wanscher
- Department of Cardiothoracic Anaesthesia 4142, The Heart Centre, Rigshospitalet, University of Copenhagen, Denmark
| | - Anne-Mette Hvas
- Department of Clinical Biochemistry, Aarhus University Hospital, Denmark
| | - Steffen Thiel
- Department of Biomedicine, Aarhus University, Denmark
| |
Collapse
|
25
|
Complement activation in human autoimmune diseases and mouse models; employing a sandwich immunoassay specific for C3dg. J Immunol Methods 2020; 486:112866. [PMID: 32941885 DOI: 10.1016/j.jim.2020.112866] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 08/29/2020] [Accepted: 09/07/2020] [Indexed: 12/21/2022]
Abstract
In human autoimmune diseases, low plasma levels of complement factors C3 and C4 are commonly used as a proxy for complement activation. The measurements of C3 and C4 concentrations (the result of synthesis and consumption) however, show low sensitivity in patient follow-up. We find that the estimation of the C3dg fragment released during complement activation is a better parameter for complement activation. Available techniques for measuring the activation fragment C3dg, e.g. immune-electrophoresis or involving PEG-precipitation, are time-consuming and difficult to standardize. Here we examine the specificity and use of an antibody with mono-specificity for a neoepitope at the N-terminus of C3dg, which is only exposed after cleavage of C3. We present a stable, reproducible, and easy-to-use, time-resolved immunoassay with specificity for C3dg that can be used to directly evaluate ongoing complement activation. We demonstrate that the assay can be applied to clinical samples with a high specificity (95%) and a positive likelihood ratio of 10. It can also differentiate the complement related disease Systemic Lupus Erythematosus from controls and other immune-mediatedimmune mediated diseases like Rheumatoid Arthritis (86% specificity) and Spondyloarthritis (91% specificity). Further, we establish how the assay may also be used for experimental research in in vivo mouse models.
Collapse
|
26
|
Dong N, Gu H, Liu D, Wei X, Ma W, Ma L, Liu Y, Wang Y, Jia S, Huang J, Wang C, He X, Huang T, He Y, Zhang Q, An D, Bai Y, Yuan Z. Complement factors and alpha-fetoprotein as biomarkers for noninvasive prenatal diagnosis of neural tube defects. Ann N Y Acad Sci 2020; 1478:75-91. [PMID: 32761624 DOI: 10.1111/nyas.14443] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 05/30/2020] [Accepted: 06/29/2020] [Indexed: 12/23/2022]
Abstract
Neural tube defects (NTDs) are serious congenital malformations. In this study, we aimed to identify more specific and sensitive maternal serum biomarkers for noninvasive NTD screenings. We collected serum from 37 pregnant women carrying fetuses with NTDs and 38 pregnant women carrying normal fetuses. Isobaric tags for relative and absolute quantitation were conducted for differential proteomic analysis, and an enzyme-linked immunosorbent assay was used to validate the results. We then used a support vector machine (SVM) classifier to establish a disease prediction model for NTD diagnosis. We identified 113 differentially expressed proteins; of these, 23 were either up- or downregulated 1.5-fold or more, including five complement proteins (C1QA, C1S, C1R, C9, and C3); C3 and C9 were downregulated significantly in NTD groups. The accuracy rate of the SVM model of the complement factors (including C1QA, C1S, and C3) was 62.5%, with 60% sensitivity and 67% specificity, while the accuracy rate of the SVM model of alpha-fetoprotein (AFP, an established biomarker for NTDs) was 62.5%, with 75% sensitivity and 50% specificity. Combination of the complement factor and AFP data resulted in the SVM model accuracy of 75%, and receiver operating characteristic curve analysis showed 75% sensitivity and 75% specificity. These data suggest that a disease prediction model based on combined complement factor and AFP data could serve as a more accurate method of noninvasive prenatal NTD diagnosis.
Collapse
Affiliation(s)
- Naixuan Dong
- Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital, China Medical University, Shenyang, China.,School of Sino-Dutch Biomedical & Information Engineering, Northeastern University, Shenyang, China
| | - Hui Gu
- Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital, China Medical University, Shenyang, China
| | - Dan Liu
- Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital, China Medical University, Shenyang, China
| | - Xiaowei Wei
- Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital, China Medical University, Shenyang, China
| | - Wei Ma
- Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital, China Medical University, Shenyang, China
| | - Ling Ma
- Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital, China Medical University, Shenyang, China
| | - Yusi Liu
- Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital, China Medical University, Shenyang, China
| | - Yanfu Wang
- Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital, China Medical University, Shenyang, China
| | - Shanshan Jia
- Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital, China Medical University, Shenyang, China
| | - Jieting Huang
- Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital, China Medical University, Shenyang, China
| | - Chenfei Wang
- Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital, China Medical University, Shenyang, China
| | - Xuan He
- School of Sino-Dutch Biomedical & Information Engineering, Northeastern University, Shenyang, China
| | - Tianchu Huang
- Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital, China Medical University, Shenyang, China
| | - Yiwen He
- Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital, China Medical University, Shenyang, China
| | - Qiang Zhang
- Second Respiratory Department, Shengjing Hospital, China Medical University, Shenyang, China
| | - Dong An
- Pediatric Department, The First Hospital of China Medical University, Shenyang, China
| | - Yuzuo Bai
- Department of Pediatric Surgery, Shengjing Hospital, China Medical University, Shenyang, China
| | - Zhengwei Yuan
- Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital, China Medical University, Shenyang, China
| |
Collapse
|
27
|
Gajek G, Świerzko AS, Cedzyński M. Association of Polymorphisms of MASP1/3, COLEC10, and COLEC11 Genes with 3MC Syndrome. Int J Mol Sci 2020; 21:ijms21155483. [PMID: 32751929 PMCID: PMC7432537 DOI: 10.3390/ijms21155483] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/29/2020] [Accepted: 07/30/2020] [Indexed: 11/16/2022] Open
Abstract
The Malpuech, Michels, Mingarelli, Carnevale (3MC) syndrome is a rare, autosomal recessive genetic- disorder associated with mutations in the MASP1/3, COLEC1,1 or COLEC10 genes. The number of 3MC patients with known mutations in these three genes reported so far remains very small. To date, 16 mutations in MASP-1/3, 12 mutations in COLEC11 and three in COLEC10 associated with 3MC syndrome have been identified. Their products play an essential role as factors involved in the activation of complement via the lectin or alternative (MASP-3) pathways. Recent data indicate that mannose-binding lectin-associated serine protease-1 (MASP-1), MASP-3, collectin kidney-1 (collectin-11) (CL-K1), and collectin liver-1 (collectin-10) (CL-L1) also participate in the correct migration of neural crest cells (NCC) during embryogenesis. This is supported by relationships between MASP1/3, COLEC10, and COLEC11 gene mutations and the incidence of 3MC syndrome, associated with craniofacial abnormalities such as radioulnar synostosis high-arched eyebrows, cleft lip/palate, hearing loss, and ptosis.
Collapse
|
28
|
Ramlall V, Thangaraj PM, Meydan C, Foox J, Butler D, May B, De Freitas JK, Glicksberg BS, Mason CE, Tatonetti NP, Shapira SD. Identification of Immune complement function as a determinant of adverse SARS-CoV-2 infection outcome. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2020:2020.05.05.20092452. [PMID: 32511494 PMCID: PMC7273262 DOI: 10.1101/2020.05.05.20092452] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Understanding the pathophysiology of SARS-CoV-2 infection is critical for therapeutics and public health intervention strategies. Viral-host interactions can guide discovery of regulators of disease outcomes, and protein structure function analysis points to several immune pathways, including complement and coagulation, as targets of the coronavirus proteome. To determine if conditions associated with dysregulation of the complement or coagulation systems impact adverse clinical outcomes, we performed a retrospective observational study of 11,116 patients who presented with suspected SARS-CoV-2 infection. We found that history of macular degeneration (a proxy for complement activation disorders) and history of coagulation disorders (thrombocytopenia, thrombosis, and hemorrhage) are risk factors for morbidity and mortality in SARS-CoV-2 infected patients - effects that could not be explained by age, sex, or history of smoking. Further, transcriptional profiling of nasopharyngeal (NP) swabs from 650 control and SARS-CoV-2 infected patients demonstrated that in addition to innate Type-I interferon and IL-6 dependent inflammatory immune responses, infection results in robust engagement and activation of the complement and coagulation pathways. Finally, we conducted a candidate driven genetic association study of severe SARS-CoV-2 disease. Among the findings, our scan identified putative complement and coagulation associated loci including missense, eQTL and sQTL variants of critical regulators of the complement and coagulation cascades. In addition to providing evidence that complement function modulates SARS-CoV-2 infection outcome, the data point to putative transcriptional genetic markers of susceptibility. The results highlight the value of using a multi-modal analytical approach, combining molecular information from virus protein structure-function analysis with clinical informatics, transcriptomics, and genomics to reveal determinants and predictors of immunity, susceptibility, and clinical outcome associated with infection.
Collapse
Affiliation(s)
- Vijendra Ramlall
- Department of Biomedical Informatics, Columbia University, New York, NY, USA. USA
- Department of Physiology & Cellular Biophysics, Columbia University, New York, NY, USA
| | - Phyllis M. Thangaraj
- Department of Biomedical Informatics, Columbia University, New York, NY, USA. USA
- Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Cem Meydan
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, USA
| | - Jonathan Foox
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
| | - Daniel Butler
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
| | - Ben May
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, USA
| | - Jessica K. De Freitas
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029
- Hasso Plattner Institute for Digital Health at Mount Sinai, Icahn School of Medicine at Mount Sinai, New York, NY, 10065
| | - Benjamin S. Glicksberg
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029
- Hasso Plattner Institute for Digital Health at Mount Sinai, Icahn School of Medicine at Mount Sinai, New York, NY, 10065
| | - Christopher E. Mason
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
- The WorldQuant Initiative for Quantitative Prediction, Weill Cornell Medicine, New York, NY, USA
- The Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Nicholas P. Tatonetti
- Department of Biomedical Informatics, Columbia University, New York, NY, USA. USA
- Department of Systems Biology, Columbia University, New York, NY, USA. USA
| | - Sagi D. Shapira
- Department of Systems Biology, Columbia University, New York, NY, USA. USA
| |
Collapse
|
29
|
Halkjær L, Troldborg A, Pedersen H, Jensen L, Hansen AG, Hansen TK, Bjerre M, Østergaard JA, Thiel S. Complement Receptor 2 Based Immunoassay Measuring Activation of the Complement System at C3-Level in Plasma Samples From Mice and Humans. Front Immunol 2020; 11:774. [PMID: 32431705 PMCID: PMC7214740 DOI: 10.3389/fimmu.2020.00774] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 04/06/2020] [Indexed: 12/15/2022] Open
Abstract
We aimed at establishing a sensitive and robust assay for estimation of systemic complement activation at complement component C3 level in mouse and human plasma samples. In order to capture the activation products iC3b and C3dg in a specific and physiological relevant manner we utilized a construct consisting of the iC3b/C3dg-binding site of human complement receptor 2 (CR2) attached to an Fc-part of mouse IgG. This construct binds C3dg and iC3b from both mice and humans. We purified the CR2-IgG construct from mouse B myeloma cell line supernatants, J558L-CR2-IgG, by protein G affinity chromatography. The CR2-IgG construct was used for capturing C3 fragments in microtiter wells and an anti-mouse or an anti-human-C3 antibody was used for detection of bound C3 fragments. Initially we tested the specificity of the assays with the use of purified C3 fragments. Further, with the use of the CR2-based assay, we measured an up to three-fold higher signal in activated mouse serum as compared to non-activated mouse serum, whereas activated serum from a C3 knock-out mouse gave no signal. We tested in vivo generated samples from a mouse experiment; complement activation was induced by injecting cobra venom factor or heat aggregated IgG into C57bl6 mice, followed by withdrawal of EDTA blood samples at different time points and measurement of iC3b/C3dg. We observed a clear time-dependent distinction in signals between samples with expected high and low complement activation. Furthermore, with the use of the assay for human C3 fragments, we observed that patients with systemic lupus erythematosus (SLE) (n = 144) had significantly higher iC3b/C3dg levels as compared to healthy individuals (n = 144) (p < 0.0001). We present two functional immunoassays, that are able to measure systemic levels of the C3-activation products iC3b and C3dg in mice and humans. To our knowledge, these are the first assays for complement activation that use a physiological relevant capture construct such as CR2. These assays will be a relevant tool when investigating mouse models and human diseases involving the complement system.
Collapse
Affiliation(s)
- Lene Halkjær
- Department of Biomedicine, Faculty of Health, Aarhus University, Aarhus, Denmark.,Department of Clinical Medicine, Faculty of Health, Aarhus University, Aarhus, Denmark.,Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Anne Troldborg
- Department of Biomedicine, Faculty of Health, Aarhus University, Aarhus, Denmark.,Department of Clinical Medicine, Faculty of Health, Aarhus University, Aarhus, Denmark.,Department of Rheumatology, Aarhus University Hospital, Aarhus, Denmark
| | - Henrik Pedersen
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Lisbeth Jensen
- Department of Biomedicine, Faculty of Health, Aarhus University, Aarhus, Denmark
| | | | | | - Mette Bjerre
- Department of Clinical Medicine, Faculty of Health, Aarhus University, Aarhus, Denmark
| | - Jakob Appel Østergaard
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Aarhus, Denmark.,Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus, Denmark
| | - Steffen Thiel
- Department of Biomedicine, Faculty of Health, Aarhus University, Aarhus, Denmark
| |
Collapse
|
30
|
Brodszki N, Frazer-Abel A, Grumach AS, Kirschfink M, Litzman J, Perez E, Seppänen MRJ, Sullivan KE, Jolles S. European Society for Immunodeficiencies (ESID) and European Reference Network on Rare Primary Immunodeficiency, Autoinflammatory and Autoimmune Diseases (ERN RITA) Complement Guideline: Deficiencies, Diagnosis, and Management. J Clin Immunol 2020; 40:576-591. [PMID: 32064578 PMCID: PMC7253377 DOI: 10.1007/s10875-020-00754-1] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 01/20/2020] [Indexed: 12/14/2022]
Abstract
This guideline aims to describe the complement system and the functions of the constituent pathways, with particular focus on primary immunodeficiencies (PIDs) and their diagnosis and management. The complement system is a crucial part of the innate immune system, with multiple membrane-bound and soluble components. There are three distinct enzymatic cascade pathways within the complement system, the classical, alternative and lectin pathways, which converge with the cleavage of central C3. Complement deficiencies account for ~5% of PIDs. The clinical consequences of inherited defects in the complement system are protean and include increased susceptibility to infection, autoimmune diseases (e.g., systemic lupus erythematosus), age-related macular degeneration, renal disorders (e.g., atypical hemolytic uremic syndrome) and angioedema. Modern complement analysis allows an in-depth insight into the functional and molecular basis of nearly all complement deficiencies. However, therapeutic options remain relatively limited for the majority of complement deficiencies with the exception of hereditary angioedema and inhibition of an overactivated complement system in regulation defects. Current management strategies for complement disorders associated with infection include education, family testing, vaccinations, antibiotics and emergency planning.
Collapse
Affiliation(s)
- Nicholas Brodszki
- Department of Pediatrics, Children's Hospital, Skåne University Hospital, Lund, Sweden
| | - Ashley Frazer-Abel
- Division of Rheumatology, Department of Medicine, University of Colorado School of Medicine, Aurora, CO, USA
| | - Anete S Grumach
- Clinical Immunology, Reference Center on Rare Diseases, University Center Health ABC, Santo Andre, SP, Brazil
| | | | - Jiri Litzman
- Department of Clinical Immunology and Allergology, St Anne's University Hospital, and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Elena Perez
- Allergy Associates of the Palm Beaches, North Palm Beach, FL, USA
| | - Mikko R J Seppänen
- Rare Disease Center, Children's Hospital, and Adult Primary Immunodeficiency Outpatient Clinic, Inflammation Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Kathleen E Sullivan
- Division of Allergy and Immunology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Stephen Jolles
- Immunodeficiency Centre for Wales, Cardiff University & University Hospital of Wales, Cardiff, UK.
| |
Collapse
|
31
|
Sharma M, Vignesh P, Tiewsoh K, Rawat A. Revisiting the complement system in systemic lupus erythematosus. Expert Rev Clin Immunol 2020; 16:397-408. [PMID: 32228236 DOI: 10.1080/1744666x.2020.1745063] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Introduction: Systemic lupus erythematosus (SLE) is a multi-system autoimmune disease, characterized by the production of autoantibodies. Numerous mechanisms contribute to the pathogenesis and autoimmunity in SLE. One of the most important mechanisms is the defective function of the early complement components that are involved in clearing the immune-complexes and apoptotic debris. Major evidence supporting this hypothesis is the development of severe lupus in individuals with monogenic defects in any one of the early complement components such as C1q, C1 s, C1 r, C2, or C4.Areas covered: In this review, we discuss hereditary defects in classical complement components and their clinical manifestations, acquired defects of complements in lupus, the role of complements in the pathogenesis of antiphospholipid antibody syndrome and lupus nephritis, and laboratory assessment of complement components and their functions. Articles from the last 20 years were retrieved from PubMed for this purpose.Expert opinion: Complements have a dual role in the pathogenesis of SLE. On one hand, deficiency of complement components predisposes to lupus, while, on the other, excess complement activation plays a role in the organ damage. Understanding the intricacies of the role of complements in SLE can pave way for the development of targeted therapies.
Collapse
Affiliation(s)
- Madhubala Sharma
- Allergy Immunology Unit, Department of Pediatrics, Advanced Pediatrics Centre, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Pandiarajan Vignesh
- Allergy Immunology Unit, Department of Pediatrics, Advanced Pediatrics Centre, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Karalanglin Tiewsoh
- Allergy Immunology Unit, Department of Pediatrics, Advanced Pediatrics Centre, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Amit Rawat
- Allergy Immunology Unit, Department of Pediatrics, Advanced Pediatrics Centre, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| |
Collapse
|
32
|
Liang RA, Høiland II, Ueland T, Aukrust P, Snir O, Hindberg K, Braekkan SK, Garred P, Mollnes TE, Hansen JB. Plasma levels of mannose-binding lectin and future risk of venous thromboembolism. J Thromb Haemost 2019; 17:1661-1669. [PMID: 31220397 DOI: 10.1111/jth.14539] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 05/22/2019] [Accepted: 06/06/2019] [Indexed: 01/09/2023]
Abstract
BACKGROUND Animal and observational studies have suggested a pathophysiological role for complement in venous thromboembolism (VTE), but the initiating mechanisms are unknown. Mannose-binding lectin (MBL) bound to altered host cells leads to activation of the lectin complement pathway, and both high and low MBL levels have been implicated in the pathophysiology of cardiovascular disease. OBJECTIVES To investigate the association between plasma MBL levels and future risk of incident VTE. METHODS We conducted a nested case-control study in 417 VTE patients and 849 age-matched and sex-matched controls derived from the general population (Tromsø Study). Plasma MBL levels were measured using enzyme-linked immunosorbent assay. Logistic regression models were used to estimate odds ratio (OR) for VTE across quartiles of plasma MBL levels. RESULTS Subjects with plasma MBL levels in the lowest quartile (<435 ng/mL) had a reduced OR for overall VTE (OR 0.79, 95% confidence interval [CI]: 0.56-1.10) and for DVT (OR 0.70, 95% CI: 0.47-1.04) compared to those with MBL in the highest quartile (≥2423 ng/mL) after multivariable adjustments. For VTE, DVT, and pulmonary embolism (PE) the ORs decreased substantially with decreasing time between blood sampling and VTE event. CONCLUSIONS Our findings suggest that low plasma MBL levels are associated with reduced risk of VTE, and DVT in particular.
Collapse
Affiliation(s)
- Robin A Liang
- K. G. Jebsen - Thrombosis Research and Expertise Center (TREC), Department of Clinical Medicine, University of Tromsø - The Arctic University of Norway, Tromsø, Norway
| | - Ina I Høiland
- K. G. Jebsen - Thrombosis Research and Expertise Center (TREC), Department of Clinical Medicine, University of Tromsø - The Arctic University of Norway, Tromsø, Norway
| | - Thor Ueland
- K. G. Jebsen - Thrombosis Research and Expertise Center (TREC), Department of Clinical Medicine, University of Tromsø - The Arctic University of Norway, Tromsø, Norway
- Research Institute of Internal Medicine, Oslo University Hospital, Rikshospitalet, Oslo, Norway
- Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Pål Aukrust
- K. G. Jebsen - Thrombosis Research and Expertise Center (TREC), Department of Clinical Medicine, University of Tromsø - The Arctic University of Norway, Tromsø, Norway
- Research Institute of Internal Medicine, Oslo University Hospital, Rikshospitalet, Oslo, Norway
- Faculty of Medicine, University of Oslo, Oslo, Norway
- Section of Clinical Immunology and Infectious Diseases, Oslo University Hospital, Rikshospitalet, Oslo, Norway
- K. G. Jebsen - Inflammation Research Center, University of Oslo, Oslo, Norway
| | - Omri Snir
- K. G. Jebsen - Thrombosis Research and Expertise Center (TREC), Department of Clinical Medicine, University of Tromsø - The Arctic University of Norway, Tromsø, Norway
| | - Kristian Hindberg
- K. G. Jebsen - Thrombosis Research and Expertise Center (TREC), Department of Clinical Medicine, University of Tromsø - The Arctic University of Norway, Tromsø, Norway
| | - Sigrid K Braekkan
- K. G. Jebsen - Thrombosis Research and Expertise Center (TREC), Department of Clinical Medicine, University of Tromsø - The Arctic University of Norway, Tromsø, Norway
- Division of Internal Medicine, University Hospital of North Norway, Tromsø, Norway
| | - Peter Garred
- Laboratory of Molecular Medicine, Department of Clinical Immunology, Section 7631, Rigshospitalet, Copenhagen, Denmark
| | - Tom E Mollnes
- K. G. Jebsen - Thrombosis Research and Expertise Center (TREC), Department of Clinical Medicine, University of Tromsø - The Arctic University of Norway, Tromsø, Norway
- Department of Immunology, Oslo University Hospital and University of Oslo, Oslo, Norway
- Research Laboratory, Nordland Hospital, Bodø, Norway
- Centre of Molecular Inflammation Research, Norwegian University of Science and Technology, Trondheim, Norway
| | - John-Bjarne Hansen
- K. G. Jebsen - Thrombosis Research and Expertise Center (TREC), Department of Clinical Medicine, University of Tromsø - The Arctic University of Norway, Tromsø, Norway
- Division of Internal Medicine, University Hospital of North Norway, Tromsø, Norway
| |
Collapse
|
33
|
Çakmaklı S, Kandur Y. 3MC syndrome: A case report. ARCHIVES OF CLINICAL AND EXPERIMENTAL MEDICINE 2019. [DOI: 10.25000/acem.505975] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
34
|
Risitano AM, Marotta S, Ricci P, Marano L, Frieri C, Cacace F, Sica M, Kulasekararaj A, Calado RT, Scheinberg P, Notaro R, Peffault de Latour R. Anti-complement Treatment for Paroxysmal Nocturnal Hemoglobinuria: Time for Proximal Complement Inhibition? A Position Paper From the SAAWP of the EBMT. Front Immunol 2019; 10:1157. [PMID: 31258525 PMCID: PMC6587878 DOI: 10.3389/fimmu.2019.01157] [Citation(s) in RCA: 127] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Accepted: 05/08/2019] [Indexed: 12/13/2022] Open
Abstract
The treatment of paroxysmal nocturnal hemoglobinuria has been revolutionized by the introduction of the anti-C5 agent eculizumab; however, eculizumab is not the cure for Paroxysmal nocturnal hemoglobinuria (PNH), and room for improvement remains. Indeed, the hematological benefit during eculizumab treatment for PNH is very heterogeneous among patients, and different response categories can be identified. Complete normalization of hemoglobin (complete and major hematological response), is seen in no more than one third of patients, while the remaining continue to experience some degree of anemia (good and partial hematological responses), in some cases requiring regular red blood cell transfusions (minor hematological response). Different factors contribute to residual anemia during eculizumab treatment: underlying bone marrow dysfunction, residual intravascular hemolysis and the emergence of C3-mediated extravascular hemolysis. These two latter pathogenic mechanisms are the target of novel strategies of anti-complement treatments, which can be split into terminal and proximal complement inhibitors. Many novel terminal complement inhibitors are now in clinical development: they all target C5 (as eculizumab), potentially paralleling the efficacy and safety profile of eculizumab. Possible advantages over eculizumab are long-lasting activity and subcutaneous self-administration. However, novel anti-C5 agents do not improve hematological response to eculizumab, even if some seem associated with a lower risk of breakthrough hemolysis caused by pharmacokinetic reasons (it remains unclear whether more effective inhibition of C5 is possible and clinically beneficial). Indeed, proximal inhibitors are designed to interfere with early phases of complement activation, eventually preventing C3-mediated extravascular hemolysis in addition to intravascular hemolysis. At the moment there are three strategies of proximal complement inhibition: anti-C3 agents, anti-factor D agents and anti-factor B agents. These agents are available either subcutaneously or orally, and have been investigated in monotherapy or in association with eculizumab in PNH patients. Preliminary data clearly demonstrate that proximal complement inhibition is pharmacologically feasible and apparently safe, and may drastically improve the hematological response to complement inhibition in PNH. Indeed, we envision a new scenario of therapeutic complement inhibition, where proximal inhibitors (either anti-C3, anti-FD or anti-FB) may prove effective for the treatment of PNH, either in monotherapy or in combination with anti-C5 agents, eventually leading to drastic improvement of hematological response.
Collapse
Affiliation(s)
- Antonio M. Risitano
- Department of Clinical Medicine and Surgery, Federico II University of Naples, Naples, Italy
- Severe Aplastic Anemia Working Party of the European Group for Blood and Marrow Transplantation, Leiden, Netherlands
| | - Serena Marotta
- Department of Clinical Medicine and Surgery, Federico II University of Naples, Naples, Italy
- Severe Aplastic Anemia Working Party of the European Group for Blood and Marrow Transplantation, Leiden, Netherlands
| | - Patrizia Ricci
- Department of Clinical Medicine and Surgery, Federico II University of Naples, Naples, Italy
| | - Luana Marano
- Department of Clinical Medicine and Surgery, Federico II University of Naples, Naples, Italy
| | - Camilla Frieri
- Department of Clinical Medicine and Surgery, Federico II University of Naples, Naples, Italy
| | - Fabiana Cacace
- Department of Clinical Medicine and Surgery, Federico II University of Naples, Naples, Italy
| | - Michela Sica
- Laboratory of Cancer Genetics and Gene Transfer, Core Research Laboratory - Istituto per lo Studio, la Prevenzione e la Rete Oncologica (ISPRO), Florence, Italy
| | - Austin Kulasekararaj
- Laboratory of Cancer Genetics and Gene Transfer, Core Research Laboratory - Istituto per lo Studio, la Prevenzione e la Rete Oncologica (ISPRO), Florence, Italy
- Department of Haematological Medicine, King's College Hospital, National Institute of Health Research/Wellcome King's Clinical Research Facility, London, United Kingdom
| | - Rodrigo T. Calado
- Department of Hematology and Oncology, University of São Paulo at Ribeirão Preto School of Medicine, São Paulo, Brazil
| | - Phillip Scheinberg
- Division of Hematology, Hospital A Beneficência Portuguesa, São Paulo, Brazil
| | - Rosario Notaro
- Laboratory of Cancer Genetics and Gene Transfer, Core Research Laboratory - Istituto per lo Studio, la Prevenzione e la Rete Oncologica (ISPRO), Florence, Italy
| | - Regis Peffault de Latour
- Severe Aplastic Anemia Working Party of the European Group for Blood and Marrow Transplantation, Leiden, Netherlands
- French Reference Center for Aplastic Anemia and Paroxysmal Nocturnal Hemoglobinuria, Saint Louis Hospital and University Paris Diderot, Paris, France
| |
Collapse
|
35
|
Berger BE. Atypical hemolytic uremic syndrome: a syndrome in need of clarity. Clin Kidney J 2019; 12:338-347. [PMID: 31198222 PMCID: PMC6543964 DOI: 10.1093/ckj/sfy066] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Indexed: 12/24/2022] Open
Abstract
Atypical hemolytic uremic syndrome (aHUS) is a thrombotic microangiopathy (TMA) originally understood to be limited to renal and hematopoietic involvement. Whereas aberrations in complement regulatory proteins (CRPs), C3 or complement factor B (CFB) are detected in ∼60% of patients, a complement-derived pathogenesis that reflects dysregulation of the alternative pathway (AP) of complement activation is present in ∼90% of patients. aHUS remains a diagnosis of exclusion. The discovery of a disintegrin and metalloproteinase with a thrombospondin type 1 motif, member 13 (ADAMTS13) and its utility in the diagnosis of thrombotic thrombocytopenic purpura (TTP) has resulted in the appreciation that cases of aHUS have been inappropriately diagnosed as TTP. Thus there has been an evolving appreciation of clinical manifestations of aHUS that renders the appellation aHUS misleading. This article will review the pathogenesis and the evolving clinical presentations of aHUS, present a hypothesis that there can be a phenotypic expression of aHUS due to a complement storm in a disorder where direct endothelial damage occurs and discuss future areas of research to more clearly define the clinical spectrum and management of aHUS.
Collapse
Affiliation(s)
- Bruce E Berger
- School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| |
Collapse
|
36
|
Taylor ME, Drickamer K. Mammalian sugar-binding receptors: known functions and unexplored roles. FEBS J 2019; 286:1800-1814. [PMID: 30657247 PMCID: PMC6563452 DOI: 10.1111/febs.14759] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 12/11/2018] [Accepted: 01/15/2019] [Indexed: 12/13/2022]
Abstract
Mammalian glycan-binding receptors, sometimes known as lectins, interact with glycans, the oligosaccharide portions of endogenous mammalian glycoproteins and glycolipids as well as sugars on the surfaces of microbes. These receptors guide glycoproteins out of and back into cells, facilitate communication between cells through both adhesion and signaling, and allow the innate immune system to respond quickly to viral, fungal, bacterial, and parasitic pathogens. For many of the roughly 100 glycan-binding receptors that are known in humans, there are good descriptions of what types of glycans they bind and how selectivity for these ligands is achieved at the molecular level. In some cases, there is also comprehensive evidence for the roles that the receptors play at the cellular and organismal levels. In addition to highlighting these well-understood paradigms for glycan-binding receptors, this review will suggest where gaps remain in our understanding of the physiological functions that they can serve.
Collapse
|
37
|
Herrada AA, Escobedo N, Iruretagoyena M, Valenzuela RA, Burgos PI, Cuitino L, Llanos C. Innate Immune Cells' Contribution to Systemic Lupus Erythematosus. Front Immunol 2019; 10:772. [PMID: 31037070 PMCID: PMC6476281 DOI: 10.3389/fimmu.2019.00772] [Citation(s) in RCA: 125] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 03/25/2019] [Indexed: 01/29/2023] Open
Abstract
Systemic lupus erythematosus (SLE) is a chronic autoimmune disease characterized by the presence of autoantibodies against nuclear antigens, immune complex deposition, and tissue damage in the kidneys, skin, heart and lung. Because of the pathogenic role of antinuclear antibodies and autoreactive T cells in SLE, extensive efforts have been made to demonstrate how B cells act as antibody-producing or as antigen-presenting cells that can prime autoreactive T cell activation. With the discovery of new innate immune cells and inflammatory mediators, innate immunity is emerging as a key player in disease pathologies. Recent work over the last decade has highlighted the importance of innate immune cells and molecules in promoting and potentiating SLE. In this review, we discuss recent evidence of the involvement of different innate immune cells and pathways in the pathogenesis of SLE. We also discuss new therapeutics targets directed against innate immune components as potential novel therapies in SLE.
Collapse
Affiliation(s)
- Andrés A Herrada
- Lymphatic and Inflammation Research Laboratory, Facultad de Ciencias de la Salud, Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Talca, Chile
| | - Noelia Escobedo
- Lymphatic and Inflammation Research Laboratory, Facultad de Ciencias de la Salud, Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Talca, Chile
| | - Mirentxu Iruretagoyena
- Departamento de Inmunología Clínica y Reumatología, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Rodrigo A Valenzuela
- Laboratorio de Enfermedades Autoinmunes Oculares y Sistémicas, Departamento de Oftalmología, Facultad de Medicina, Universidad de Chile, Santiago, Chile.,Departamento de Ciencias Químicas y Biológicas, Facultad de Salud, Universidad Bernardo O'Higgins, Santiago, Chile
| | - Paula I Burgos
- Departamento de Inmunología Clínica y Reumatología, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Loreto Cuitino
- Laboratorio de Enfermedades Autoinmunes Oculares y Sistémicas, Departamento de Oftalmología, Facultad de Medicina, Universidad de Chile, Santiago, Chile.,Servicio de Oftalmología, Hospital Clínico Universidad de Chile, Santiago, Chile
| | - Carolina Llanos
- Departamento de Inmunología Clínica y Reumatología, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
38
|
Zhang R, Liu F, Hunt P, Li C, Zhang L, Ingham A, Li RW. Transcriptome analysis unraveled potential mechanisms of resistance to Haemonchus contortus infection in Merino sheep populations bred for parasite resistance. Vet Res 2019; 50:7. [PMID: 30678719 PMCID: PMC6345051 DOI: 10.1186/s13567-019-0622-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 12/12/2018] [Indexed: 12/13/2022] Open
Abstract
Haemonchus contortus is one of the most pathogenic gastrointestinal nematodes in small ruminants. To understand molecular mechanisms underlying host resistance to this parasite, we used RNA-sequencing technology to compare the transcriptomic response of the abomasal tissue, the site of the host-parasite interaction, of Merino sheep bred to be either genetically resistant or susceptible to H. contortus infection. Two different selection flocks, the Haemonchus selection flock (HSF) and the Trichostrongylus selection flock (TSF), and each contains a resistant and susceptible line, were studied. The TSF flock was seemingly more responsive to both primary and repeated infections than HSF. A total of 127 and 726 genes displayed a significant difference in abundance between resistant and susceptible animals in response to a primary infection in HSF and TSF, respectively. Among them, 38 genes were significantly affected by infection in both flocks. Gene ontology (GO) enrichment of the differentially expressed genes identified in this study predicted the likely involvement of extracellular exosomes in the immune response to H. contortus infection. While the resistant lines in HSF and TSF relied on different mechanisms for the development of host resistance, adhesion and diapedesis of both agranulocytes and granulocytes, coagulation and complement cascades, and multiple pathways related to tissue repair likely played critical roles in the process. Our results offered a quantitative snapshot of changes in the host transcriptome induced by H. contortus infection and provided novel insights into molecular mechanisms of host resistance.
Collapse
Affiliation(s)
- Runfeng Zhang
- College of Life Science, Hubei Normal University, Huangshi, Hubei, China
| | - Fang Liu
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Peter Hunt
- CSIRO Agriculture and Food, Armidale, NSW, Australia
| | - Congjun Li
- United States Department of Agriculture, Agriculture Research Service, Animal Genomics and Improvement Laboratory, Beltsville, MD, USA
| | - Lichun Zhang
- Branch of Husbandry, Jilin Academy of Agricultural Science, Gongzhuling, Jilin, China
| | - Aaron Ingham
- CSIRO Agriculture and Food, St Lucia, Queensland, Australia.
| | - Robert W Li
- United States Department of Agriculture, Agriculture Research Service, Animal Genomics and Improvement Laboratory, Beltsville, MD, USA.
| |
Collapse
|
39
|
Noe R, Chauvet S, Togarsimalemath SK, Marinozzi MC, Radanova M, Vasilev VV, Fremeaux-Bacchi V, Dragon-Durey MA, Roumenina LT. Detection of Autoantibodies to Complement Components by Surface Plasmon Resonance-Based Technology. Methods Mol Biol 2019; 1901:271-280. [PMID: 30539587 DOI: 10.1007/978-1-4939-8949-2_24] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The innate immune complement system is a powerful defense cascade against pathogens, but can induce host tissue damage when overactivated. In pathological conditions, mainly but not restricted to renal diseases, such as lupus nephritis, atypical hemolytic uremic syndrome, and C3 glomerulopathies, complement is overactivated or dysregulated by autoantibodies directed against its components and regulators. Among the key autoantibody targets are the initiator of the classical complement pathway C1q, the alternative pathway regulator Factor H, the components of the alternative pathway C3 convertase complex C3 and Factor B and the convertase complex itself. This methodological article describes our experience with a method for detection of anti-complement autoantibodies in real time using surface plasmon resonance-based technology. It allows label-free evaluation of the binding efficacy and stability of the formed antigen-antibody complexes.
Collapse
Affiliation(s)
- Remi Noe
- INSERM, UMR_S 1138, Centre de Recherche des Cordeliers, Paris, France
- Sorbonne Universités, UPMC Univ Paris 06, Paris, France
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Sophie Chauvet
- INSERM, UMR_S 1138, Centre de Recherche des Cordeliers, Paris, France
- Sorbonne Universités, UPMC Univ Paris 06, Paris, France
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France
- Assistance Publique-Hôpitaux de Paris, Service de néphrologie, Hôpital Européen Georges Pompidou, Paris, France
| | - Shambhuprasad K Togarsimalemath
- INSERM, UMR_S 1138, Centre de Recherche des Cordeliers, Paris, France
- Sorbonne Universités, UPMC Univ Paris 06, Paris, France
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Maria Chiara Marinozzi
- INSERM, UMR_S 1138, Centre de Recherche des Cordeliers, Paris, France
- Sorbonne Universités, UPMC Univ Paris 06, Paris, France
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Maria Radanova
- Department of Biochemistry, Molecular Medicine and Nutrigenomics, Medical University of Varna, Varna, Bulgaria
| | - Vasil V Vasilev
- Nephrology Clinic, University Hospital 'Tsaritsa Yoanna-ISUL,' Medical University, Sofia, Bulgaria
| | - Veronique Fremeaux-Bacchi
- INSERM, UMR_S 1138, Centre de Recherche des Cordeliers, Paris, France
- Sorbonne Universités, UPMC Univ Paris 06, Paris, France
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France
- Assistance Publique-Hôpitaux de Paris, Service d'Immunologie Biologique, Hôpital Européen Georges Pompidou, Paris, France
| | - Marie-Agnes Dragon-Durey
- INSERM, UMR_S 1138, Centre de Recherche des Cordeliers, Paris, France
- Sorbonne Universités, UPMC Univ Paris 06, Paris, France
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France
- Assistance Publique-Hôpitaux de Paris, Service d'Immunologie Biologique, Hôpital Européen Georges Pompidou, Paris, France
| | - Lubka T Roumenina
- INSERM, UMR_S 1138, Centre de Recherche des Cordeliers, Paris, France.
- Sorbonne Universités, UPMC Univ Paris 06, Paris, France.
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France.
| |
Collapse
|
40
|
Catarino SJ, Andrade FA, Boldt ABW, Guilherme L, Messias-Reason IJ. Sickening or Healing the Heart? The Association of Ficolin-1 and Rheumatic Fever. Front Immunol 2018; 9:3009. [PMID: 30619357 PMCID: PMC6305461 DOI: 10.3389/fimmu.2018.03009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 12/05/2018] [Indexed: 12/27/2022] Open
Abstract
Rheumatic fever (RF) and its subsequent progression to rheumatic heart disease (RHD) are chronic inflammatory disorders prevalent in children and adolescents in underdeveloped countries, and a contributing factor for high morbidity and mortality rates worldwide. Their primary cause is oropharynx infection by Streptococcus pyogenes, whose acetylated residues are recognized by ficolin-1. This is the only membrane-bound, as well as soluble activator molecule of the complement lectin pathway (LP). Although LP genetic polymorphisms are associated with RF, FCN1 gene's role remains unknown. To understand this role, we haplotyped five FCN1 promoter polymorphisms by sequence-specific amplification in 193 patients (138 with RHD and 55, RF only) and 193 controls, measuring ficolin-1 serum concentrations in 78 patients and 86 controls, using enzyme-linked immunosorbent assay (ELISA). Patients presented lower ficolin-1 serum levels (p < 0.0001), but did not differ according to cardiac commitment. Control's genotype distribution was in the Hardy-Weinberg equilibrium. Four alleles (rs2989727: c.-1981A, rs10120023: c.-542A, rs10117466: c.-144A, and rs10858293: c.33T), all associated with increased FCN1 gene expression in whole blood or adipose subcutaneous tissue (p = 0.000001), were also associated with increased protection against the disease. They occur within the *3C2 haplotype, associated with an increased protection against RF (OR = 0.41, p < 0.0001) and with higher ficolin-1 levels in patient serum (p = 0.03). In addition, major alleles of these same polymorphisms comprehend the most primitive *1 haplotype, associated with increased susceptibility to RF (OR = 1.76, p < 0.0001). Nevertheless, instead of having a clear-cut protective role, the minor c.-1981A and c.-144A alleles were also associated with additive susceptibility to valvar stenosis and mitral insufficiency (OR = 3.75, p = 0.009 and OR = 3.37, p = 0.027, respectively). All associations were independent of age, sex or ethnicity. Thus, minor FCN1 promoter variants may play a protective role against RF, by encouraging bacteria elimination as well as increasing gene expression and protein levels. On the other hand, they may also predispose the patients to RHD symptoms, by probably contributing to chronic inflammation and tissue injury, thus emphasizing the dual importance of ficolin-1 in both conditions.
Collapse
Affiliation(s)
- Sandra Jeremias Catarino
- Molecular Immunopathology Laboratory, Department of Medical Pathology, Clinical Hospital, Federal University of Paraná, Curitiba, Brazil
| | - Fabiana Antunes Andrade
- Molecular Immunopathology Laboratory, Department of Medical Pathology, Clinical Hospital, Federal University of Paraná, Curitiba, Brazil
| | - Angelica Beate Winter Boldt
- Molecular Immunopathology Laboratory, Department of Medical Pathology, Clinical Hospital, Federal University of Paraná, Curitiba, Brazil
- Human Molecular Genetics Laboratory, Department of Genetics, Federal University of Paraná, Curitiba, Brazil
| | - Luiza Guilherme
- Heart Institute (InCor), School of Medicine, University of São Paulo, São Paulo, Brazil
| | - Iara Jose Messias-Reason
- Molecular Immunopathology Laboratory, Department of Medical Pathology, Clinical Hospital, Federal University of Paraná, Curitiba, Brazil
| |
Collapse
|
41
|
Association of ficolin-2 (FCN2) functional polymorphisms and protein levels with rheumatic fever and rheumatic heart disease: relationship with cardiac function. ACTA ACUST UNITED AC 2018; 3:e142-e155. [PMID: 30775605 PMCID: PMC6374577 DOI: 10.5114/amsad.2018.80999] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 10/04/2018] [Indexed: 12/13/2022]
Abstract
Introduction A role for ficolin (FCN) 2 gene polymorphisms in the pathogenesis of recurrent severe streptococcal infections and rheumatic carditis has been suggested. The aim of the study was to evaluate a possible relationship between single nucleotide polymorphisms located at positions -602 and -4 of the FCN2 gene and FCN2 serum levels and risk of development of rheumatic fever (RF) and rheumatic heart disease (RHD). Material and methods Seventy-seven Caucasian Egyptian patients with RF were recruited with a control group of 43 healthy subjects. DNA was extracted for analysis of the FCN2 gene at positions -602 and -4 and serum protein level was measured by ELISA. Results FCN2 AA genotype at the -4 position was more frequently observed in RF and RHD patients, as compared to healthy subjects (p = 0.005 and p = 0.013, respectively); furthermore, the A allele was identified as a possible risk factor for the development of RF (p = 0.023, OR = 1.852, 95% CI: 1.085–3.159). The haplotype –602/–4 G/A, which was associated with low median levels of L-ficolin, was observed more frequently in the RF group when compared to the healthy subjects (74/162, 48.1% vs. 29/420, 33.7%, OR = 1.834, 95% CI: 1.034–3.252, p = 0.038). Low serum ficolin-2 level was associated with ESV and EDV increases. FCN 2 level was significantly lower with AA genotypes than GG+AG genotypes of the -4 position (56.68 ±17.90 vs. 66.05 ±18.79, p = 0.008). Conclusions Polymorphisms linked to low levels of L-ficolin may render an individual at risk of recurrent and/or severe streptococcal infection. The -4 AA genotype and -602/-4 G/A haplotype are possible risk factors for the development of carditis.
Collapse
|
42
|
Omoyinmi E, Mohamoud I, Gilmour K, Brogan PA, Eleftheriou D. Cutaneous Vasculitis and Digital Ischaemia Caused by Heterozygous Gain-of-Function Mutation in C3. Front Immunol 2018; 9:2524. [PMID: 30443255 PMCID: PMC6221951 DOI: 10.3389/fimmu.2018.02524] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 10/12/2018] [Indexed: 12/22/2022] Open
Abstract
It is now increasingly recognized that some monogenic autoinflammatory diseases and immunodeficiencies cause vasculitis, although genetic causes of vasculitis are extremely rare. We describe a child of non-consanguineous parents who presented with cutaneous vasculitis, digital ischaemia and hypocomplementaemia. A heterozygous p.R1042G gain-of-function mutation (GOF) in the complement component C3 gene was identified as the cause, resulting in secondary C3 consumption and complete absence of alternative complement pathway activity, decreased classical complement activity, and low levels of serum C3 with normal C4 levels. The same heterozygous mutation and immunological defects were also identified in another symptomatic sibling and his father. C3 deficiency due GOF C3 mutations is thus now added to the growing list of monogenic causes of vasculitis and should always be considered in vasculitis patients found to have persistently low levels of C3 with normal C4.
Collapse
Affiliation(s)
- Ebun Omoyinmi
- Infection, Inflammation and Rheumatology Section, UCL Great Ormond Street Institute of Child Health, London, United Kingdom.,Great Ormond Street Hospital NHS Foundation Trust, London, United Kingdom
| | - Iman Mohamoud
- Infection, Inflammation and Rheumatology Section, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Kimberly Gilmour
- Clinical Immunology Laboratory, Great Ormond Street Hospital NHS Foundation Trust, London, United Kingdom
| | - Paul A Brogan
- Infection, Inflammation and Rheumatology Section, UCL Great Ormond Street Institute of Child Health, London, United Kingdom.,Great Ormond Street Hospital NHS Foundation Trust, London, United Kingdom
| | - Despina Eleftheriou
- Infection, Inflammation and Rheumatology Section, UCL Great Ormond Street Institute of Child Health, London, United Kingdom.,Great Ormond Street Hospital NHS Foundation Trust, London, United Kingdom.,Centre for Adolescent Rheumatology, Arthritis Research UK, University College London (UCL), University College London Hospital (UCLH) and Great Ormond Street Hospital (GOSH), London, United Kingdom
| |
Collapse
|
43
|
Earley AM, Graves CL, Shiau CE. Critical Role for a Subset of Intestinal Macrophages in Shaping Gut Microbiota in Adult Zebrafish. Cell Rep 2018; 25:424-436. [PMID: 30304682 PMCID: PMC6245655 DOI: 10.1016/j.celrep.2018.09.025] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 06/27/2018] [Accepted: 09/07/2018] [Indexed: 02/07/2023] Open
Abstract
The gut microbiota is strongly influenced by environmental factors, although host contribution is far less understood. We leveraged macrophage-deficient interferon regulatory factor irf8 zebrafish mutants to investigate the role of macrophages in this process. In conventionally raised adult irf8-deficient mutants, we found a significant loss of intestinal macrophages associated with a strikingly altered gut microbiota when compared to co-housed siblings. The destabilization of the gut commensal microbiota was associated with a severe reduction in complement C1q genes and outgrowth of a rare bacterial species. Consistent with a critical function of irf8 in adult intestinal macrophages, irf8 is abundantly expressed in these cells normally, and restoring macrophage irf8 expression in irf8 mutants was sufficient to recover commensal microbes and C1q genes expression. This study reports an important subpopulation of intestinal macrophages that requires irf8 to establish in the gut, ensure normal colonization of gut microbes, and prevent immune dysregulation.
Collapse
Affiliation(s)
- Alison M Earley
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Christina L Graves
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Celia E Shiau
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
44
|
Risitano AM, Marotta S. Toward complement inhibition 2.0: Next generation anticomplement agents for paroxysmal nocturnal hemoglobinuria. Am J Hematol 2018; 93:564-577. [PMID: 29314145 DOI: 10.1002/ajh.25016] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Accepted: 12/20/2017] [Indexed: 12/15/2022]
Abstract
Therapeutic complement inhibition by eculizumab has revolutionized the treatment of paroxysmal nocturnal hemoglobinuria (PNH) with a major impact on its natural history. Nevertheless, emerging unmet clinical needs may benefit from the development of novel complement inhibitors. Novel strategies of complement inhibition exploit different agents targeting C5, as well as compound intercepting the complement cascade at the level of its key component C3, or even upstream at the level of components involved in complement alternative pathway initiation. Many of these agents are already in their clinical development; preliminary data together with a deep understanding of PNH biology may help to anticipate their possible clinical effect. Novel anti-C5 agents include monoclonal antibodies (even long-lasting) as well as other small molecules bioavailable by subcutaneous administration; an anti-C5 small interfering RNA has been developed too. All these anti-C5 agents seem to recapitulate safety and efficacy of current eculizumab treatment; their main improvement pertains to better patient's convenience due to longer dosing interval and/or possible subcutaneous self-administration. The possibility of achieving a deeper C5 inhibition has been shown as well, but its actual clinical meaning remains to be elucidated. Upstream complement inhibitors include the anti-C3 small peptide compstatin (and its derivatives), and small inhibitors of complement factor D or complement factor B. This class of compounds anticipates a possible efficacy in prevention of C3-mediated extravascular hemolysis, in addition to inhibition of intravascular hemolysis, eventually leading to improved hematological responses. The availability of all these compounds will result soon in a substantial improvement of PNH management.
Collapse
Affiliation(s)
- Antonio M. Risitano
- Hematology, Department of Clinical Medicine and Surgery; Federico II University; Naples, Italy
| | - Serena Marotta
- Hematology, Department of Clinical Medicine and Surgery; Federico II University; Naples, Italy
| |
Collapse
|
45
|
Biallelic intragenic deletion in MASP1 in an adult female with 3MC syndrome. Eur J Med Genet 2018; 61:363-368. [DOI: 10.1016/j.ejmg.2018.01.016] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 01/16/2018] [Accepted: 01/27/2018] [Indexed: 11/22/2022]
|
46
|
Koucký M, Malíčková K, Kopřivová H, Cindrová-Davies T, Hrbáčková H, Černý A, Šimják P, Pařízek A, Zima T. Low maternal serum concentrations of mannose-binding lectin are associated with the risk of shorter duration of pregnancy and lower birthweight. Scand J Immunol 2018; 88:e12675. [DOI: 10.1111/sji.12675] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 05/07/2018] [Indexed: 12/26/2022]
Affiliation(s)
- M. Koucký
- Department of Gynecology and Obstetrics of the First Faculty of Medicine and General Teaching Hospital; Charles University in Prague; Prague Czech Republic
| | - K. Malíčková
- Institute of Medical Biochemistry and Laboratory Diagnostics of the First Faculty of Medicine; General Teaching Hospital; Charles University in Prague; Prague Czech Republic
| | - H. Kopřivová
- Institute of Medical Biochemistry and Laboratory Diagnostics of the First Faculty of Medicine; General Teaching Hospital; Charles University in Prague; Prague Czech Republic
| | - T. Cindrová-Davies
- Department of Physiology, Development and Neuroscience; University of Cambridge; Cambridge UK
| | - H. Hrbáčková
- Department of Physiology, Development and Neuroscience; University of Cambridge; Cambridge UK
| | - A. Černý
- Department of Gynecology and Obstetrics of the First Faculty of Medicine and General Teaching Hospital; Charles University in Prague; Prague Czech Republic
| | - P. Šimják
- Department of Gynecology and Obstetrics of the First Faculty of Medicine and General Teaching Hospital; Charles University in Prague; Prague Czech Republic
| | - A. Pařízek
- Department of Gynecology and Obstetrics of the First Faculty of Medicine and General Teaching Hospital; Charles University in Prague; Prague Czech Republic
| | - T. Zima
- Institute of Medical Biochemistry and Laboratory Diagnostics of the First Faculty of Medicine; General Teaching Hospital; Charles University in Prague; Prague Czech Republic
| |
Collapse
|
47
|
Gorelik A, Sapir T, Ben-Reuven L, Reiner O. Complement C3 Affects Rac1 Activity in the Developing Brain. Front Mol Neurosci 2018; 11:150. [PMID: 29867343 PMCID: PMC5949353 DOI: 10.3389/fnmol.2018.00150] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 04/16/2018] [Indexed: 01/09/2023] Open
Abstract
The complement system, which is part of the innate immune response system, has been recently shown to participate in multiple key processes in the developing brain. Here we aimed to elucidate downstream signaling responses linking complement C3, a key molecule of the pathway, to small GTPases, known to affect the cytoskeleton. The expression pattern of the activated small GTPase Rac1 resembled that of complement C3. C3-deficient mice exhibited reduced Rac1 and elevated RhoA activity in comparison with control mice. The most pronounced reduction of Rac1 activity occurred at embryonic day 14. Rac1 has been implicated in neuronal migration as well as neuronal stem cell proliferation and differentiation. Consistent with the reduction in Rac1 activity, the expression of phospho-cofilin, decreased in migrating neurons. Reduced Rac1-GTP was also correlated with a decrease in the expression of progenitor markers (Nestin, Pax6 and Tbr2) and conversely the expression of neuronal markers (Dcx and NeuN) increased in C3 knockout (KO) cortices in comparison with wild-type (WT) cortices. More specifically, C3 deficiency resulted in a reduction in the number of the cells in S-phase and an elevation in the number of cells that precociously exited the cell cycle. Collectively, our findings suggest that C3 impacts the activity of small GTPases resulting in cell cycle defects and premature neuronal differentiation.
Collapse
Affiliation(s)
- Anna Gorelik
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Tamar Sapir
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Lihi Ben-Reuven
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Orly Reiner
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
48
|
Nanthapisal S, Eleftheriou D, Gilmour K, Leone V, Ramnath R, Omoyinmi E, Hong Y, Klein N, Brogan PA. Cutaneous Vasculitis and Recurrent Infection Caused by Deficiency in Complement Factor I. Front Immunol 2018; 9:735. [PMID: 29696024 PMCID: PMC5904195 DOI: 10.3389/fimmu.2018.00735] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 03/26/2018] [Indexed: 11/23/2022] Open
Abstract
Cutaneous leukocytoclastic vasculitis arises from immune complex deposition and dysregulated complement activation in small blood vessels. There are many causes, including dysregulated host response to infection, drug reactions, and various autoimmune conditions. It is increasingly recognised that some monogenic autoinflammatory diseases cause vasculitis, although genetic causes of vasculitis are extremely rare. We describe a child of consanguineous parents who presented with chronic cutaneous leukocytoclastic vasculitis, recurrent upper respiratory tract infection, and hypocomplementaemia. A homozygous p.His380Arg mutation in the complement factor I (CFI) gene CFI was identified as the cause, resulting in complete absence of alternative complement pathway activity, decreased classical complement activity, and low levels of serum factor I, C3, and factor H. C4 and C2 levels were normal. The same homozygous mutation and immunological defects were also identified in an asymptomatic sibling. CFI deficiency is thus now added to the growing list of monogenic causes of vasculitis and should always be considered in vasculitis patients found to have persistently low levels of C3 with normal C4.
Collapse
Affiliation(s)
- Sira Nanthapisal
- Infection Inflammation and Rheumatology Section, Great Ormond Street Institute of Child Health, University College London, Great Ormond Street Hospital NHS Foundation Trust, London, United Kingdom.,Department of Pediatrics, Faculty of Medicine, Thammasat University, Pathumthani, Thailand
| | - Despina Eleftheriou
- Infection Inflammation and Rheumatology Section, Great Ormond Street Institute of Child Health, University College London, Great Ormond Street Hospital NHS Foundation Trust, London, United Kingdom
| | - Kimberly Gilmour
- Great Ormond Street Hospital NHS Foundation Trust, London, United Kingdom
| | - Valentina Leone
- Department of Paediatric Rheumatology, Leeds Teaching Hospitals NHS Trust, Leeds, United Kingdom
| | - Radhika Ramnath
- Department of Histopathology, St. James University Hospital, Leeds, United Kingdom
| | - Ebun Omoyinmi
- Infection Inflammation and Rheumatology Section, Great Ormond Street Institute of Child Health, University College London, Great Ormond Street Hospital NHS Foundation Trust, London, United Kingdom
| | - Ying Hong
- Infection Inflammation and Rheumatology Section, Great Ormond Street Institute of Child Health, University College London, Great Ormond Street Hospital NHS Foundation Trust, London, United Kingdom
| | - Nigel Klein
- Infection Inflammation and Rheumatology Section, Great Ormond Street Institute of Child Health, University College London, Great Ormond Street Hospital NHS Foundation Trust, London, United Kingdom
| | - Paul A Brogan
- Infection Inflammation and Rheumatology Section, Great Ormond Street Institute of Child Health, University College London, Great Ormond Street Hospital NHS Foundation Trust, London, United Kingdom
| |
Collapse
|
49
|
Medjeral-Thomas NR, Troldborg A, Constantinou N, Lomax-Browne HJ, Hansen AG, Willicombe M, Pusey CD, Cook HT, Thiel S, Pickering MC. Progressive IgA Nephropathy Is Associated With Low Circulating Mannan-Binding Lectin-Associated Serine Protease-3 (MASP-3) and Increased Glomerular Factor H-Related Protein-5 (FHR5) Deposition. Kidney Int Rep 2017; 3:426-438. [PMID: 29725647 PMCID: PMC5932138 DOI: 10.1016/j.ekir.2017.11.015] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 11/16/2017] [Accepted: 11/21/2017] [Indexed: 12/16/2022] Open
Abstract
Introduction IgA nephropathy (IgAN) is characterized by glomerular deposition of galactose-deficient IgA1 and complement proteins and leads to renal impairment. Complement deposition through the alternative and lectin activation pathways is associated with renal injury. Methods To elucidate the contribution of the lectin pathway to IgAN, we measured the 11 plasma lectin pathway components in a well-characterized cohort of patients with IgAN. Results M-ficolin, L-ficolin, mannan-binding lectin (MBL)-associated serine protease (MASP)-1 and MBL-associated protein (MAp) 19 were increased, whereas plasma MASP-3 levels were decreased in patients with IgAN compared with healthy controls. Progressive disease was associated with low plasma MASP-3 levels and increased glomerular staining for C3b/iC3b/C3c, C3d, C4d, C5b-9, and factor H-related protein 5 (FHR5). Glomerular FHR5 deposition positively correlated with glomerular C3b/iC3b/C3c, C3d, and C5b-9 deposition, but not with glomerular C4d. These observations, together with the finding that glomerular factor H (fH) deposition was reduced in progressive disease, are consistent with a role for fH deregulation by FHR5 in renal injury in IgAN. Conclusion Our data indicate that circulating MASP-3 levels could be used as a biomarker of disease severity in IgAN and that glomerular staining for FHR5 could both indicate alternative complement pathway activation and be a tissue marker of disease severity.
Collapse
Affiliation(s)
| | - Anne Troldborg
- Department of Biomedicine, Aarhus University, Aarhus, Denmark.,Department of Rheumatology, Aarhus University Hospital, Aarhus, Denmark
| | - Nicholas Constantinou
- Centre for Complement and Inflammation Research, Imperial College London, London, UK
| | - Hannah J Lomax-Browne
- Centre for Complement and Inflammation Research, Imperial College London, London, UK
| | | | - Michelle Willicombe
- Renal and Transplant Centre, Imperial College Healthcare NHS Trust, London, UK
| | - Charles D Pusey
- Renal and Vascular Inflammation Section, Imperial College London, London, UK
| | - H Terence Cook
- Centre for Complement and Inflammation Research, Imperial College London, London, UK
| | - Steffen Thiel
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Matthew C Pickering
- Centre for Complement and Inflammation Research, Imperial College London, London, UK
| |
Collapse
|
50
|
Dückers G. Phänotypisierung, gezielte Diagnostik und Klassifikation der primären Immundefekte. Monatsschr Kinderheilkd 2017. [DOI: 10.1007/s00112-017-0399-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|