1
|
Zhao Y, Guo DF, Morgan DA, Cho YE, Rahmouni K. Adipocyte-specific disruption of the BBSome causes metabolic and autonomic dysfunction. Am J Physiol Regul Integr Comp Physiol 2024; 327:R54-R65. [PMID: 38738295 PMCID: PMC11380988 DOI: 10.1152/ajpregu.00039.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 04/16/2024] [Accepted: 05/03/2024] [Indexed: 05/14/2024]
Abstract
Obesity is a major public health issue due to its association with type 2 diabetes, hypertension, and other cardiovascular risks. The BBSome, a complex of eight conserved Bardet-Biedl syndrome (BBS) proteins, has emerged as a key regulator of energy and glucose homeostasis as well as cardiovascular function. However, the importance of adipocyte BBSome in controlling these physiological processes is not clear. Here, we show that adipocyte-specific constitutive disruption of the BBSome through selective deletion of the Bbs1 gene adiponectin (AdipoCre/Bbs1fl/fl mice) does not affect body weight under normal chow or high-fat and high-sucrose diet (HFHSD). However, constitutive BBSome deficiency caused impairment in glucose tolerance and insulin sensitivity. Similar phenotypes were observed after inducible adipocyte-specific disruption of the BBSome (AdipoCreERT2/Bbs1fl/fl mice). Interestingly, a significant increase in renal sympathetic nerve activity, measured using multifiber recording in the conscious state, was observed in AdipoCre/Bbs1fl/fl mice on both chow and HFHSD. A significant increase in tail-cuff arterial pressure was also observed in chow-fed AdipoCre/Bbs1fl/fl mice, but this was not reproduced when arterial pressure was measured by radiotelemetry. Moreover, AdipoCre/Bbs1fl/fl mice had no significant alterations in vascular reactivity. On the other hand, AdipoCre/Bbs1fl/fl mice displayed impaired baroreceptor reflex sensitivity when fed HFHSD, but not on normal chow. Taken together, these data highlight the relevance of the adipocyte BBSome for the regulation of glucose homeostasis and sympathetic traffic. The BBSome also contributes to baroreflex sensitivity under HFHSD, but not normal chow.NEW & NOTEWORTHY The current study show how genetic manipulation of fat cells impacts various functions of the body including sensitivity to the hormone insulin.
Collapse
Affiliation(s)
- Yuying Zhao
- Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, Iowa City, Iowa, United States
- Interdisciplinary Graduate Program in Human Toxicology, Iowa City, Iowa, United States
| | - Deng-Fu Guo
- Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, Iowa City, Iowa, United States
- Veterans Affairs Health Care System, Iowa City, Iowa, United States
| | - Donald A Morgan
- Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, Iowa City, Iowa, United States
- Veterans Affairs Health Care System, Iowa City, Iowa, United States
| | - Young-Eun Cho
- College of Nursing, University of Iowa, Iowa City, Iowa, United States
| | - Kamal Rahmouni
- Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, Iowa City, Iowa, United States
- Veterans Affairs Health Care System, Iowa City, Iowa, United States
- Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, Iowa, United States
- Obesity Research and Education Initiative, University of Iowa Carver College of Medicine, Iowa City, Iowa, United States
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa Carver College of Medicine, Iowa City, Iowa, United States
| |
Collapse
|
2
|
Adeva-Andany MM, Domínguez-Montero A, Adeva-Contreras L, Fernández-Fernández C, Carneiro-Freire N, González-Lucán M. Body Fat Distribution Contributes to Defining the Relationship between Insulin Resistance and Obesity in Human Diseases. Curr Diabetes Rev 2024; 20:e160823219824. [PMID: 37587805 DOI: 10.2174/1573399820666230816111624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 04/28/2023] [Accepted: 05/31/2023] [Indexed: 08/18/2023]
Abstract
The risk for metabolic and cardiovascular complications of obesity is defined by body fat distribution rather than global adiposity. Unlike subcutaneous fat, visceral fat (including hepatic steatosis) reflects insulin resistance and predicts type 2 diabetes and cardiovascular disease. In humans, available evidence indicates that the ability to store triglycerides in the subcutaneous adipose tissue reflects enhanced insulin sensitivity. Prospective studies document an association between larger subcutaneous fat mass at baseline and reduced incidence of impaired glucose tolerance. Case-control studies reveal an association between genetic predisposition to insulin resistance and a lower amount of subcutaneous adipose tissue. Human peroxisome proliferator-activated receptorgamma (PPAR-γ) promotes subcutaneous adipocyte differentiation and subcutaneous fat deposition, improving insulin resistance and reducing visceral fat. Thiazolidinediones reproduce the effects of PPAR-γ activation and therefore increase the amount of subcutaneous fat while enhancing insulin sensitivity and reducing visceral fat. Partial or virtually complete lack of adipose tissue (lipodystrophy) is associated with insulin resistance and its clinical manifestations, including essential hypertension, hypertriglyceridemia, reduced HDL-c, type 2 diabetes, cardiovascular disease, and kidney disease. Patients with Prader Willi syndrome manifest severe subcutaneous obesity without insulin resistance. The impaired ability to accumulate fat in the subcutaneous adipose tissue may be due to deficient triglyceride synthesis, inadequate formation of lipid droplets, or defective adipocyte differentiation. Lean and obese humans develop insulin resistance when the capacity to store fat in the subcutaneous adipose tissue is exhausted and deposition of triglycerides is no longer attainable at that location. Existing adipocytes become large and reflect the presence of insulin resistance.
Collapse
Affiliation(s)
- María M Adeva-Andany
- Nephrology Division, Department of Internal Medicine, Hospital General Juan Cardona, c/ Pardo Bazán s/n, 15406 Ferrol, Spain
| | - Alberto Domínguez-Montero
- Nephrology Division, Department of Internal Medicine, Hospital General Juan Cardona, c/ Pardo Bazán s/n, 15406 Ferrol, Spain
| | | | - Carlos Fernández-Fernández
- Nephrology Division, Department of Internal Medicine, Hospital General Juan Cardona, c/ Pardo Bazán s/n, 15406 Ferrol, Spain
| | - Natalia Carneiro-Freire
- Nephrology Division, Department of Internal Medicine, Hospital General Juan Cardona, c/ Pardo Bazán s/n, 15406 Ferrol, Spain
| | - Manuel González-Lucán
- Nephrology Division, Department of Internal Medicine, Hospital General Juan Cardona, c/ Pardo Bazán s/n, 15406 Ferrol, Spain
| |
Collapse
|
3
|
Guo DF, Williams PA, Laule C, Seaby C, Zhang Q, Sheffield VC, Rahmouni K. POMC Neuron BBSome Regulation of Body Weight is Independent of its Ciliary Function. FUNCTION 2023; 5:zqad070. [PMID: 38223458 PMCID: PMC10787280 DOI: 10.1093/function/zqad070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 12/05/2023] [Accepted: 12/18/2023] [Indexed: 01/16/2024] Open
Abstract
The BBSome, a complex of several Bardet-Biedl syndrome (BBS) proteins including BBS1, has emerged as a critical regulator of energy homeostasis. Although the BBSome is best known for its involvement in cilia trafficking, through a process that involve BBS3, it also regulates the localization of cell membrane receptors underlying metabolic regulation. Here, we show that inducible Bbs1 gene deletion selectively in proopiomelanocortin (POMC) neurons cause a gradual increase in body weight, which was associated with higher fat mass. In contrast, inducible deletion of Bbs3 gene in POMC neurons failed to affect body weight and adiposity. Interestingly, loss of BBS1 in POMC neurons led to glucose intolerance and insulin insensitivity, whereas BBS3 deficiency in these neurons is associated with slight impairment in glucose handling, but normal insulin sensitivity. BBS1 deficiency altered the plasma membrane localization of serotonin 5-HT2C receptor (5-HT2CR) and ciliary trafficking of neuropeptide Y2 receptor (NPY2R).In contrast, BBS3 deficiency, which disrupted the ciliary localization of the BBSome, did not interfere with plasma membrane expression of 5-HT2CR, but reduced the trafficking of NPY2R to cilia. We also show that deficiency in BBS1, but not BBS3, alters mitochondria dynamics and decreased total and phosphorylated levels of dynamin-like protein 1 (DRP1) protein. Importantly, rescuing DRP1 activity restored mitochondria dynamics and localization of 5-HT2CR and NPY2R in BBS1-deficient cells. The contrasting effects on energy and glucose homeostasis evoked by POMC neuron deletion of BBS1 versus BBS3 indicate that BBSome regulation of metabolism is not related to its ciliary function in these neurons.
Collapse
Affiliation(s)
- Deng-Fu Guo
- Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
- Veterans Affairs Health Care System, Iowa City, IA 52242, USA
| | - Paul A Williams
- Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Connor Laule
- Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Charles Seaby
- Department of Pediatrics, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Qihong Zhang
- Department of Pediatrics, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Val C Sheffield
- Department of Pediatrics, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
- Iowa Neuroscience Institute, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Kamal Rahmouni
- Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
- Veterans Affairs Health Care System, Iowa City, IA 52242, USA
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
- Iowa Neuroscience Institute, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
- Obesity Research and Education Initiative, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
- Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| |
Collapse
|
4
|
Rouabhi Y, Guo DF, Zhao Y, Rahmouni K. Metabolic consequences of skeletal muscle- and liver-specific BBSome deficiency. Am J Physiol Endocrinol Metab 2023; 325:E711-E722. [PMID: 37909854 PMCID: PMC10864019 DOI: 10.1152/ajpendo.00174.2023] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 10/04/2023] [Accepted: 10/19/2023] [Indexed: 11/03/2023]
Abstract
The BBSome is a protein complex composed of eight Bardet-Biedl syndrome (BBS) proteins including BBS1. Humans and mice lacking a functional BBSome display obesity and type 2 diabetes, highlighting the importance of this protein complex for metabolic regulation. However, the contribution of the BBSome in insulin-sensitive tissues such as skeletal muscle and liver to metabolic regulation is ill-defined. Here, we show that disruption of the BBSome through Bbs1 gene deletion in the skeletal muscle had no effect on body weight or glucose handling, but improved insulin sensitivity of female mice without changing insulin receptor signaling. Interestingly, when fed an obesogenic diet, male mice lacking the Bbs1 gene in skeletal muscle exhibited heightened insulin sensitivity despite the comparable weight gain and glucose tolerance relative to controls. On the other hand, normal chow-fed mice missing the Bbs1 gene in hepatocytes displayed increased body weight, as well as impaired glucose handling and insulin sensitivity. This was associated with attenuated insulin signaling in liver and hepatocytes, but not skeletal muscle and white adipose tissue. Moreover, hepatocytes lacking the Bbs1 gene displayed significant reduction in plasma membrane insulin receptor levels due to the mitochondrial dysfunction evoked by loss of the BBSome. Together, these findings demonstrate that myocyte BBSome is minimally involved in metabolic regulation, whereas the hepatic BBSome plays a critical role in the control of energy homeostasis and insulin sensitivity through its requirement for insulin receptor trafficking.NEW & NOTEWORTHY The ongoing epidemic of obesity and associated illnesses highlights the need to understand the biological processes that regulate energy balance. Here, we identified an important role for a protein complex called BBSome in the control of hepatic function. We show that the liver BBSome is necessary to maintain body weight and blood glucose levels due to its requirements to generate energy and detect insulin, a hormone that is essential for metabolic regulation.
Collapse
Affiliation(s)
- Younes Rouabhi
- Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, Iowa City, Iowa, United States
| | - Deng-Fu Guo
- Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, Iowa City, Iowa, United States
- Veterans Affairs Health Care System, Iowa City, Iowa, United States
| | - Yuying Zhao
- Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, Iowa City, Iowa, United States
| | - Kamal Rahmouni
- Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, Iowa City, Iowa, United States
- Veterans Affairs Health Care System, Iowa City, Iowa, United States
- Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, Iowa, United States
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa Carver College of Medicine, Iowa City, Iowa, United States
- Obesity Research and Education Initiative, University of Iowa Carver College of Medicine, Iowa City, Iowa, United States
- Iowa Neuroscience Institute, University of Iowa Carver College of Medicine, Iowa City, Iowa, United States
| |
Collapse
|
5
|
Abstract
The BBSome is an octameric protein complex involved in Bardet-Biedl syndrome (BBS), a human pleiotropic, autosomal recessive condition. Patients with BBS display various clinical features including obesity, hypertension, and renal abnormalities. Association studies have also linked the BBS genes to hypertension and other cardiovascular risks in the general population. The BBSome was originally associated with the function of cilia, a highly specialized organelle that extend from the cell membrane of most vertebrate cells. However, subsequent studies have implicated the BBSome in the control of a myriad of other cellular processes not related to cilia including cell membrane localization of receptors and gene expression. The development of animal models of BBS such as mouse lines lacking various components of the BBSome and associated proteins has facilitated studying their role in the control of cardiovascular function and deciphering the pathophysiological mechanisms responsible for the cardiovascular aberrations associated with BBS. These studies revealed the importance of the neuronal, renal, vascular, and cardiac BBSome in the regulation of blood pressure, renal function, vascular reactivity, and cardiac development. The BBSome has also emerged as a critical regulator of key systems involved in cardiovascular control including the renin-angiotensin system. Better understanding of the influence of the BBSome on the molecular and physiological processes relevant to cardiovascular health and disease has the potential of identifying novel mechanisms underlying hypertension and other cardiovascular risks.
Collapse
Affiliation(s)
- Yuying Zhao
- Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA, USA,Human Toxicology Graduate Program, University of Iowa Graduate College, Iowa City, IA, USA
| | - Kamal Rahmouni
- Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA, USA,Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, IA, USA,Fraternal Order of Eagles Diabetes Research Center, University of Iowa Carver College of Medicine, Iowa City, IA, USA,Obesity Research and Educational Initiative, University of Iowa Carver College of Medicine, Iowa City, IA, USA,Iowa City VA Health Care System, Iowa City, IA, USA,Corresponding author: Kamal Rahmouni, Ph.D., Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA, 52242, USA, , Tel: 319 353 5256, Fax: 319 353 5350
| |
Collapse
|
6
|
Guindo-Martínez M, Amela R, Bonàs-Guarch S, Puiggròs M, Salvoro C, Miguel-Escalada I, Carey CE, Cole JB, Rüeger S, Atkinson E, Leong A, Sanchez F, Ramon-Cortes C, Ejarque J, Palmer DS, Kurki M, Aragam K, Florez JC, Badia RM, Mercader JM, Torrents D. The impact of non-additive genetic associations on age-related complex diseases. Nat Commun 2021; 12:2436. [PMID: 33893285 PMCID: PMC8065056 DOI: 10.1038/s41467-021-21952-4] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 02/09/2021] [Indexed: 01/19/2023] Open
Abstract
Genome-wide association studies (GWAS) are not fully comprehensive, as current strategies typically test only the additive model, exclude the X chromosome, and use only one reference panel for genotype imputation. We implement an extensive GWAS strategy, GUIDANCE, which improves genotype imputation by using multiple reference panels and includes the analysis of the X chromosome and non-additive models to test for association. We apply this methodology to 62,281 subjects across 22 age-related diseases and identify 94 genome-wide associated loci, including 26 previously unreported. Moreover, we observe that 27.7% of the 94 loci are missed if we use standard imputation strategies with a single reference panel, such as HRC, and only test the additive model. Among the new findings, we identify three novel low-frequency recessive variants with odds ratios larger than 4, which need at least a three-fold larger sample size to be detected under the additive model. This study highlights the benefits of applying innovative strategies to better uncover the genetic architecture of complex diseases.
Collapse
Affiliation(s)
| | - Ramon Amela
- Barcelona Supercomputing Center (BSC), Barcelona, Spain
| | - Silvia Bonàs-Guarch
- Barcelona Supercomputing Center (BSC), Barcelona, Spain
- Regulatory Genomics and Diabetes, Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, Barcelona, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas, Madrid, Spain
| | | | | | - Irene Miguel-Escalada
- Barcelona Supercomputing Center (BSC), Barcelona, Spain
- Regulatory Genomics and Diabetes, Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, Barcelona, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas, Madrid, Spain
| | - Caitlin E Carey
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Analytic and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Joanne B Cole
- Programs in Metabolism and Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Diabetes Unit and Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Division of Endocrinology and Center for Basic and Translational Obesity Research, Boston Children's Hospital, Boston, MA, USA
| | - Sina Rüeger
- Institute for Molecular Medicine Finland, FIMM, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Elizabeth Atkinson
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Analytic and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Aaron Leong
- Harvard Medical School, Boston, MA, USA
- Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | | | | | - Jorge Ejarque
- Barcelona Supercomputing Center (BSC), Barcelona, Spain
| | - Duncan S Palmer
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Analytic and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
- GENOMICS plc, Oxford, UK
| | - Mitja Kurki
- Institute for Molecular Medicine Finland, FIMM, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Krishna Aragam
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Cardiology Division, Massachusetts General Hospital, Boston, MA, USA
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
| | - Jose C Florez
- Programs in Metabolism and Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Diabetes Unit and Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Rosa M Badia
- Barcelona Supercomputing Center (BSC), Barcelona, Spain
| | - Josep M Mercader
- Barcelona Supercomputing Center (BSC), Barcelona, Spain.
- Programs in Metabolism and Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Diabetes Unit and Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA.
- Department of Medicine, Harvard Medical School, Boston, MA, USA.
| | - David Torrents
- Barcelona Supercomputing Center (BSC), Barcelona, Spain.
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain.
| |
Collapse
|
7
|
Drivas TG, Lucas A, Zhang X, Ritchie MD. Mendelian pathway analysis of laboratory traits reveals distinct roles for ciliary subcompartments in common disease pathogenesis. Am J Hum Genet 2021; 108:482-501. [PMID: 33636100 PMCID: PMC8008498 DOI: 10.1016/j.ajhg.2021.02.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 02/05/2021] [Indexed: 12/17/2022] Open
Abstract
Rare monogenic disorders of the primary cilium, termed ciliopathies, are characterized by extreme presentations of otherwise common diseases, such as diabetes, hepatic fibrosis, and kidney failure. However, despite a recent revolution in our understanding of the cilium's role in rare disease pathogenesis, the organelle's contribution to common disease remains largely unknown. Hypothesizing that common genetic variants within Mendelian ciliopathy genes might contribute to common complex diseases pathogenesis, we performed association studies of 16,874 common genetic variants across 122 ciliary genes with 12 quantitative laboratory traits characteristic of ciliopathy syndromes in 452,593 individuals in the UK Biobank. We incorporated tissue-specific gene expression analysis, expression quantitative trait loci, and Mendelian disease phenotype information into our analysis and replicated our findings in meta-analysis. 101 statistically significant associations were identified across 42 of the 122 examined ciliary genes (including eight novel replicating associations). These ciliary genes were widely expressed in tissues relevant to the phenotypes being studied, and eQTL analysis revealed strong evidence for correlation between ciliary gene expression levels and laboratory traits. Perhaps most interestingly, our analysis identified different ciliary subcompartments as being specifically associated with distinct sets of phenotypes. Taken together, our data demonstrate the utility of a Mendelian pathway-based approach to genomic association studies, challenge the widely held belief that the cilium is an organelle important mainly in development and in rare syndromic disease pathogenesis, and provide a framework for the continued integration of common and rare disease genetics to provide insight into the pathophysiology of human diseases of immense public health burden.
Collapse
Affiliation(s)
- Theodore George Drivas
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19194, USA; Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA.
| | - Anastasia Lucas
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19194, USA
| | - Xinyuan Zhang
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19194, USA
| | - Marylyn DeRiggi Ritchie
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19194, USA; Institute for Biomedical Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19194, USA.
| |
Collapse
|
8
|
Napolioni V, Scelsi MA, Khan RR, Altmann A, Greicius MD. Recent Consanguinity and Outbred Autozygosity Are Associated With Increased Risk of Late-Onset Alzheimer's Disease. Front Genet 2021; 11:629373. [PMID: 33584820 PMCID: PMC7879576 DOI: 10.3389/fgene.2020.629373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Accepted: 12/31/2020] [Indexed: 11/13/2022] Open
Abstract
Prior work in late-onset Alzheimer's disease (LOAD) has resulted in discrepant findings as to whether recent consanguinity and outbred autozygosity are associated with LOAD risk. In the current study, we tested the association between consanguinity and outbred autozygosity with LOAD in the largest such analysis to date, in which 20 LOAD GWAS datasets were retrieved through public databases. Our analyses were restricted to eight distinct ethnic groups: African-Caribbean, Ashkenazi-Jewish European, European-Caribbean, French-Canadian, Finnish European, North-Western European, South-Eastern European, and Yoruba African for a total of 21,492 unrelated subjects (11,196 LOAD and 10,296 controls). Recent consanguinity determination was performed using FSuite v1.0.3, according to subjects' ancestral background. The level of autozygosity in the outbred population was assessed by calculating inbreeding estimates based on the proportion (FROH) and the number (NROH) of runs of homozygosity (ROHs). We analyzed all eight ethnic groups using a fixed-effect meta-analysis, which showed a significant association of recent consanguinity with LOAD (N = 21,481; OR = 1.262, P = 3.6 × 10-4), independently of APOE ∗4 (N = 21,468, OR = 1.237, P = 0.002), and years of education (N = 9,257; OR = 1.274, P = 0.020). Autozygosity in the outbred population was also associated with an increased risk of LOAD, both for F ROH (N = 20,237; OR = 1.204, P = 0.030) and N ROH metrics (N = 20,237; OR = 1.019, P = 0.006), independently of APOE ∗4 [(F ROH, N = 20,225; OR = 1.222, P = 0.029) (N ROH, N = 20,225; OR = 1.019, P = 0.007)]. By leveraging the Alzheimer's Disease Sequencing Project (ADSP) whole-exome sequencing (WES) data, we determined that LOAD subjects do not show an enrichment of rare, risk-enhancing minor homozygote variants compared to the control population. A two-stage recessive GWAS using ADSP data from 201 consanguineous subjects in the discovery phase followed by validation in 10,469 subjects led to the identification of RPH3AL p.A303V (rs117190076) as a rare minor homozygote variant increasing the risk of LOAD [discovery: Genotype Relative Risk (GRR) = 46, P = 2.16 × 10-6; validation: GRR = 1.9, P = 8.0 × 10-4]. These results confirm that recent consanguinity and autozygosity in the outbred population increase risk for LOAD. Subsequent work, with increased samples sizes of consanguineous subjects, should accelerate the discovery of non-additive genetic effects in LOAD.
Collapse
Affiliation(s)
- Valerio Napolioni
- Genomic and Molecular Epidemiology (GAME) Lab, School of Biosciences and Veterinary Medicine, University of Camerino, Camerino, Italy
| | - Marzia A. Scelsi
- Computational Biology in Imaging and Genetics (COMBINE) Lab, Centre for Medical Image Computing, Department of Medical Physics and Biomedical Engineering, University College London, London, United Kingdom
| | - Raiyan R. Khan
- Department of Computer Science, Columbia University, New York, NY, United States
| | - Andre Altmann
- Computational Biology in Imaging and Genetics (COMBINE) Lab, Centre for Medical Image Computing, Department of Medical Physics and Biomedical Engineering, University College London, London, United Kingdom
| | - Michael D. Greicius
- Functional Imaging in Neuropsychiatric Disorders (FIND) Lab, Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, United States
| |
Collapse
|
9
|
Chowanadisai W, Hart MD, Strong MD, Graham DM, Rucker RB, Smith BJ, Keen CL, Messerli MA. Genetic and Genomic Advances in Developmental Models: Applications for Nutrition Research. Adv Nutr 2020; 11:971-978. [PMID: 32135011 PMCID: PMC7360451 DOI: 10.1093/advances/nmaa022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 10/22/2019] [Accepted: 02/13/2020] [Indexed: 12/11/2022] Open
Abstract
There is increasing appreciation that dietary components influence and interact with genes important to metabolism. How such influences impact developmental regulation and programming or risks of chronic diseases remains unclear. Nutrition is recognized to affect development and chronic diseases, but our understanding about how genes essential to nutrient metabolism regulate development and impact risks of these diseases remains unclear. Historically, mammalian models, especially rodents such as rats and mice, have been the primary models used for nutrition and developmental nutrition science, although their complexity and relatively slow rate of development often compromise rapid progress in resolving fundamental, genetic-related questions. Accordingly, the objective of this review is to highlight the opportunities for developmental models in the context of uncovering the function of gene products that are relevant to human nutrition and provide the scientific bases for these opportunities. We present recent studies in zebrafish related to obesity as applications of developmental models in nutritional science. Although the control of external factors and dependent variables, such as nutrition, can be a challenge, suggestions for standardizations related to diet are made to improve consistency in findings between laboratories. The review also highlights the need for standardized diets across different developmental models, which could improve consistency in findings across laboratories. Alternative and developmental animal models have advantages and largely untapped potential for the advancement of nutrigenomics and nutritionally relevant research areas.
Collapse
Affiliation(s)
- Winyoo Chowanadisai
- Department of Nutritional Sciences, Oklahoma State University, Stillwater, OK, USA
| | - Matthew D Hart
- Department of Nutritional Sciences, Oklahoma State University, Stillwater, OK, USA
| | - Morgan D Strong
- Department of Nutritional Sciences, Oklahoma State University, Stillwater, OK, USA
| | - David M Graham
- Department of Biology, University of North Carolina, Chapel Hill, Chapel Hill, NC, USA
| | - Robert B Rucker
- Department of Nutrition, University of California, Davis, Davis, CA, USA
| | - Brenda J Smith
- Department of Nutritional Sciences, Oklahoma State University, Stillwater, OK, USA
| | - Carl L Keen
- Department of Nutrition, University of California, Davis, Davis, CA, USA
| | - Mark A Messerli
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD, USA
| |
Collapse
|
10
|
Abstract
The BBSome, a complex of 8 BBS (Bardet-Biedl syndrome) proteins known for its role in the control of cilia function and other cellular processes, has been implicated in blood pressure control, but the underlying mechanisms are not fully understood. Here, we show that neuronal BBSome plays an important role in blood pressure regulation. Targeted inactivation of the BBSome in the nervous system through Bbs1 gene deletion causes sympathetically mediated increase in blood pressure in mice. This phenotype is reproduced by selective ablation of the Bbs1 gene from the LRb (leptin receptor)-expressing neurons. Strikingly, the well-known role of the BBSome in the regulation of cilia formation and function is unlikely to account for the prohypertensive effect of BBSome inactivation as disruption of the IFT (intraflagellar transport) machinery required for ciliogenesis by deleting the Ift88 gene in LRb neurons had no effect on arterial pressure and sympathetic nerve activity. Furthermore, we found that Bbs1 gene deletion from AgRP (agouti-related protein) neurons or POMC (proopiomelanocortin) neurons increased renal and splanchnic sympathetic nerve activity without altering blood pressure. This lack of blood pressure increase despite the sympathetic overdrive may be explained by vascular adrenergic desensitization as indicated by the reduced vascular contractile response evoked by phenylephrine and the decreased expression of adrenergic receptors. Our results identify the neuronal BBSome as a new player in hemodynamic, sympathetic, and vascular regulation, in a manner independent of cilia.
Collapse
Affiliation(s)
- Deng-Fu Guo
- From the Department of Neuroscience and Pharmacology (D.-F.G., J.J.R., D.A.M., K.R.), University of Iowa Carver College of Medicine, Iowa City
| | - John J Reho
- From the Department of Neuroscience and Pharmacology (D.-F.G., J.J.R., D.A.M., K.R.), University of Iowa Carver College of Medicine, Iowa City
| | - Donald A Morgan
- From the Department of Neuroscience and Pharmacology (D.-F.G., J.J.R., D.A.M., K.R.), University of Iowa Carver College of Medicine, Iowa City
| | - Kamal Rahmouni
- From the Department of Neuroscience and Pharmacology (D.-F.G., J.J.R., D.A.M., K.R.), University of Iowa Carver College of Medicine, Iowa City.,Department of Internal Medicine (K.R.), University of Iowa Carver College of Medicine, Iowa City.,Obesity Research and Education Initiative (K.R.), University of Iowa Carver College of Medicine, Iowa City.,Fraternal Order of Eagles Diabetes Research Center (K.R.), University of Iowa Carver College of Medicine, Iowa City.,Iowa Neuroscience Institute (K.R.), University of Iowa Carver College of Medicine, Iowa City.,Veterans Affairs Health Care System, Iowa City (K.R.)
| |
Collapse
|
11
|
Guo DF, Lin Z, Wu Y, Searby C, Thedens DR, Richerson GB, Usachev YM, Grobe JL, Sheffield VC, Rahmouni K. The BBSome in POMC and AgRP Neurons Is Necessary for Body Weight Regulation and Sorting of Metabolic Receptors. Diabetes 2019; 68:1591-1603. [PMID: 31127052 PMCID: PMC6692817 DOI: 10.2337/db18-1088] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 05/12/2019] [Indexed: 12/22/2022]
Abstract
The BBSome, a complex of eight Bardet-Biedl syndrome (BBS) proteins involved in cilia function, has emerged as an important regulator of energy balance, but the underlying cellular and molecular mechanisms are not fully understood. Here, we show that the control of energy homeostasis by the anorexigenic proopiomelanocortin (POMC) neurons and orexigenic agouti-related peptide (AgRP) neurons require intact BBSome. Targeted disruption of the BBSome by Bbs1 gene deletion in POMC or AgRP neurons increases body weight and adiposity. We demonstrate that obesity in mice lacking the Bbs1 gene in POMC neurons is associated with hyperphagia. Mechanistically, we present evidence implicating the BBSome in the trafficking of G protein-coupled neuropeptide Y Y2 receptor (NPY2R) and serotonin 5-hydroxytryptamine (HT)2C receptor (5-HT2CR) to cilia and plasma membrane, respectively. Consistent with this, loss of the BBSome reduced cell surface expression of the 5-HT2CR, interfered with serotonin-evoked increase in intracellular calcium and membrane potential, and blunted the anorectic and weight-reducing responses evoked by the 5-HT2cR agonist, lorcaserin. Finally, we show that disruption of the BBSome causes the 5-HT2CR to be stalled in the late endosome. Our results demonstrate the significance of the hypothalamic BBSome for the control of energy balance through regulation of trafficking of important metabolic receptors.
Collapse
Affiliation(s)
- Deng-Fu Guo
- Department of Pharmacology, University of Iowa, Iowa City, IA
| | - Zhihong Lin
- Department of Pharmacology, University of Iowa, Iowa City, IA
| | - Yuanming Wu
- Department of Neurology, University of Iowa, Iowa City, IA
| | - Charles Searby
- Department of Pediatrics, University of Iowa, Iowa City, IA
| | | | | | - Yuriy M Usachev
- Department of Pharmacology, University of Iowa, Iowa City, IA
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA
| | - Justin L Grobe
- Department of Pharmacology, University of Iowa, Iowa City, IA
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA
- Obesity Education and Research Initiative, University of Iowa, Iowa City, IA
| | - Val C Sheffield
- Department of Pediatrics, University of Iowa, Iowa City, IA
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA
- Obesity Education and Research Initiative, University of Iowa, Iowa City, IA
| | - Kamal Rahmouni
- Department of Pharmacology, University of Iowa, Iowa City, IA
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA
- Obesity Education and Research Initiative, University of Iowa, Iowa City, IA
- Department of Internal Medicine, University of Iowa, Iowa City, IA
| |
Collapse
|
12
|
Niederlova V, Modrak M, Tsyklauri O, Huranova M, Stepanek O. Meta-analysis of genotype-phenotype associations in Bardet-Biedl syndrome uncovers differences among causative genes. Hum Mutat 2019; 40:2068-2087. [PMID: 31283077 DOI: 10.1002/humu.23862] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 06/17/2019] [Accepted: 07/03/2019] [Indexed: 12/16/2022]
Abstract
Bardet-Biedl syndrome (BBS) is a recessive genetic disease causing multiple organ anomalies. Most patients carry mutations in genes encoding for the subunits of the BBSome, an octameric ciliary transport complex, or accessory proteins involved in the BBSome assembly or function. BBS proteins have been extensively studied using in vitro, cellular, and animal models. However, the molecular functions of particular BBS proteins and the etiology of the BBS symptoms are still largely elusive. In this study, we applied a meta-analysis approach to study the genotype-phenotype association in humans using our database of all reported BBS patients. The analysis revealed that the identity of the causative gene and the character of the mutation partially predict the clinical outcome of the disease. Besides their potential use for clinical prognosis, our analysis revealed functional differences of particular BBS genes in humans. Core BBSome subunits BBS2, BBS7, and BBS9 manifest as more critical for the function and development of kidneys than peripheral subunits BBS1, BBS4, and BBS8/TTC8, suggesting that incomplete BBSome retains residual function at least in the kidney.
Collapse
Affiliation(s)
- Veronika Niederlova
- Laboratory of Adaptive Immunity, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Martin Modrak
- Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Oksana Tsyklauri
- Laboratory of Adaptive Immunity, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Martina Huranova
- Laboratory of Adaptive Immunity, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Ondrej Stepanek
- Laboratory of Adaptive Immunity, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
13
|
Kurki MI, Saarentaus E, Pietiläinen O, Gormley P, Lal D, Kerminen S, Torniainen-Holm M, Hämäläinen E, Rahikkala E, Keski-Filppula R, Rauhala M, Korpi-Heikkilä S, Komulainen-Ebrahim J, Helander H, Vieira P, Männikkö M, Peltonen M, Havulinna AS, Salomaa V, Pirinen M, Suvisaari J, Moilanen JS, Körkkö J, Kuismin O, Daly MJ, Palotie A. Contribution of rare and common variants to intellectual disability in a sub-isolate of Northern Finland. Nat Commun 2019; 10:410. [PMID: 30679432 PMCID: PMC6345990 DOI: 10.1038/s41467-018-08262-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Accepted: 12/20/2018] [Indexed: 01/19/2023] Open
Abstract
The contribution of de novo variants in severe intellectual disability (ID) has been extensively studied whereas the genetics of mild ID has been less characterized. To elucidate the genetics of milder ID we studied 442 ID patients enriched for mild ID (>50%) from a population isolate of Finland. Using exome sequencing, we show that rare damaging variants in known ID genes are observed significantly more often in severe (27%) than in mild ID (13%) patients. We further observe a significant enrichment of functional variants in genes not yet associated with ID (OR: 2.1). We show that a common variant polygenic risk significantly contributes to ID. The heritability explained by polygenic risk score is the highest for educational attainment (EDU) in mild ID (2.2%) but lower for more severe ID (0.6%). Finally, we identify a Finland enriched homozygote variant in the CRADD ID associated gene.
Collapse
Affiliation(s)
- Mitja I Kurki
- Psychiatric & Neurodevelopmental Genetics Unit, Massachusetts General Hospital, Boston, MA, 02114, USA
- The Stanley Center for Psychiatric Research, The Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, FI-00014, Helsinki, Finland
| | - Elmo Saarentaus
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, FI-00014, Helsinki, Finland
| | - Olli Pietiläinen
- The Stanley Center for Psychiatric Research, The Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
- Department of Stem Cell and Regenerative Biology, University of Harvard, Cambridge, MA, 02138, USA
| | - Padhraig Gormley
- Psychiatric & Neurodevelopmental Genetics Unit, Massachusetts General Hospital, Boston, MA, 02114, USA
- The Stanley Center for Psychiatric Research, The Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Dennis Lal
- Psychiatric & Neurodevelopmental Genetics Unit, Massachusetts General Hospital, Boston, MA, 02114, USA
- The Stanley Center for Psychiatric Research, The Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Sini Kerminen
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, FI-00014, Helsinki, Finland
| | - Minna Torniainen-Holm
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, FI-00014, Helsinki, Finland
- National Institute for Health and Welfare, 00271, Helsinki, Finland
| | - Eija Hämäläinen
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, FI-00014, Helsinki, Finland
| | - Elisa Rahikkala
- PEDEGO Research Unit, University of Oulu, FI-90014, Oulu, Finland
- Medical Research Center, Oulu University Hospital,, University of Oulu, FI-90014, Oulu, Finland
- Department of Clinical Genetics, Oulu University Hospital, 90220, Oulu, Finland
| | - Riikka Keski-Filppula
- PEDEGO Research Unit, University of Oulu, FI-90014, Oulu, Finland
- Medical Research Center, Oulu University Hospital,, University of Oulu, FI-90014, Oulu, Finland
- Department of Clinical Genetics, Oulu University Hospital, 90220, Oulu, Finland
| | - Merja Rauhala
- Northern Ostrobothnia Hospital District, Center for Intellectual Disability Care, 90220, Oulu, Finland
| | - Satu Korpi-Heikkilä
- Northern Ostrobothnia Hospital District, Center for Intellectual Disability Care, 90220, Oulu, Finland
| | - Jonna Komulainen-Ebrahim
- Department of Children and Adolescents, Oulu University Hospital, Medical Research Center Oulu, University of Oulu, FI-90029, Oulu, Finland
| | - Heli Helander
- Department of Children and Adolescents, Oulu University Hospital, Medical Research Center Oulu, University of Oulu, FI-90029, Oulu, Finland
| | - Päivi Vieira
- Department of Children and Adolescents, Oulu University Hospital, Medical Research Center Oulu, University of Oulu, FI-90029, Oulu, Finland
| | - Minna Männikkö
- Center for Life Course Health Research, Faculty of Medicine, University of Oulu, Oulu, Finland
- Infrastructure for population studies, Faculty of Medicine, University of Oulu, Oulu, Finland
| | - Markku Peltonen
- National Institute for Health and Welfare, 00271, Helsinki, Finland
| | - Aki S Havulinna
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, FI-00014, Helsinki, Finland
- National Institute for Health and Welfare, 00271, Helsinki, Finland
| | - Veikko Salomaa
- National Institute for Health and Welfare, 00271, Helsinki, Finland
| | - Matti Pirinen
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, FI-00014, Helsinki, Finland
| | - Jaana Suvisaari
- National Institute for Health and Welfare, 00271, Helsinki, Finland
| | - Jukka S Moilanen
- PEDEGO Research Unit, University of Oulu, FI-90014, Oulu, Finland
- Medical Research Center, Oulu University Hospital,, University of Oulu, FI-90014, Oulu, Finland
- Department of Clinical Genetics, Oulu University Hospital, 90220, Oulu, Finland
| | - Jarmo Körkkö
- Northern Ostrobothnia Hospital District, Center for Intellectual Disability Care, 90220, Oulu, Finland
| | - Outi Kuismin
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, FI-00014, Helsinki, Finland
- PEDEGO Research Unit, University of Oulu, FI-90014, Oulu, Finland
- Medical Research Center, Oulu University Hospital,, University of Oulu, FI-90014, Oulu, Finland
- Department of Clinical Genetics, Oulu University Hospital, 90220, Oulu, Finland
| | - Mark J Daly
- Psychiatric & Neurodevelopmental Genetics Unit, Massachusetts General Hospital, Boston, MA, 02114, USA
- The Stanley Center for Psychiatric Research, The Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, FI-00014, Helsinki, Finland
- Analytic and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital, Boston, MA, 02114, USA
- Department of Neurology, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Aarno Palotie
- Psychiatric & Neurodevelopmental Genetics Unit, Massachusetts General Hospital, Boston, MA, 02114, USA.
- The Stanley Center for Psychiatric Research, The Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA.
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, FI-00014, Helsinki, Finland.
- Analytic and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital, Boston, MA, 02114, USA.
- Department of Neurology, Massachusetts General Hospital, Boston, MA, 02114, USA.
| |
Collapse
|
14
|
Phenotype-Specific Enrichment of Mendelian Disorder Genes near GWAS Regions across 62 Complex Traits. Am J Hum Genet 2018; 103:535-552. [PMID: 30290150 DOI: 10.1016/j.ajhg.2018.08.017] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 08/28/2018] [Indexed: 01/29/2023] Open
Abstract
Although recent studies provide evidence for a common genetic basis between complex traits and Mendelian disorders, a thorough quantification of their overlap in a phenotype-specific manner remains elusive. Here, we have quantified the overlap of genes identified through large-scale genome-wide association studies (GWASs) for 62 complex traits and diseases with genes containing mutations known to cause 20 broad categories of Mendelian disorders. We identified a significant enrichment of genes linked to phenotypically matched Mendelian disorders in GWAS gene sets; of the total 1,240 comparisons, a higher proportion of phenotypically matched or related pairs (n = 50 of 92 [54%]) than phenotypically unmatched pairs (n = 27 of 1,148 [2%]) demonstrated significant overlap, confirming a phenotype-specific enrichment pattern. Further, we observed elevated GWAS effect sizes near genes linked to phenotypically matched Mendelian disorders. Finally, we report examples of GWAS variants localized at the transcription start site or physically interacting with the promoters of genes linked to phenotypically matched Mendelian disorders. Our results are consistent with the hypothesis that genes that are disrupted in Mendelian disorders are dysregulated by non-coding variants in complex traits and demonstrate how leveraging findings from related Mendelian disorders and functional genomic datasets can prioritize genes that are putatively dysregulated by local and distal non-coding GWAS variants.
Collapse
|
15
|
Bansal V, Boehm BO, Darvasi A. Identification of a missense variant in the WFS1 gene that causes a mild form of Wolfram syndrome and is associated with risk for type 2 diabetes in Ashkenazi Jewish individuals. Diabetologia 2018; 61:2180-2188. [PMID: 30014265 DOI: 10.1007/s00125-018-4690-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 06/15/2018] [Indexed: 12/26/2022]
Abstract
AIMS/HYPOTHESIS Wolfram syndrome is a rare, autosomal recessive syndrome characterised by juvenile-onset diabetes and optic atrophy and is caused by bi-allelic mutations in the WFS1 gene. In a recent sequencing study, an individual with juvenile-onset diabetes was observed to be homozygous for a rare missense variant (c.1672C>T, p.R558C) in the WFS1 gene. The aim of this study was to perform the genetic characterisation of this variant and to determine whether it is causal for young-onset diabetes and Wolfram syndrome. METHODS We analysed the allele frequency of the missense variant in multiple variant databases. We genotyped the variant in 475 individuals with type 1 diabetes and 2237 control individuals of Ashkenazi Jewish ancestry and analysed the phenotypes of homozygotes. We also investigated the association of this variant with risk for type 2 diabetes using genotype and sequence data for type 2 diabetes cases and controls. RESULTS The missense variant demonstrated an allele frequency of 1.4% in individuals of Ashkenazi Jewish ancestry, 60-fold higher than in other populations. Genotyping of this variant in 475 individuals diagnosed with type 1 diabetes identified eight homozygotes compared with none in 2237 control individuals (genotype relative risk 135.3, p = 3.4 × 10-15). The age at diagnosis of diabetes for these eight individuals (17.8 ± 8.3 years) was several times greater than for typical Wolfram syndrome (5 ± 4 years). Further, optic atrophy was observed in only one of the eight individuals, while another individual had the Wolfram syndrome-relevant phenotype of neurogenic bladder. Analysis of sequence and genotype data in two case-control cohorts of Ashkenazi ancestry demonstrated that this variant is also associated with an increased risk of type 2 diabetes in heterozygotes (OR 1.81, p = 0.004). CONCLUSIONS/INTERPRETATION We have identified a low-frequency coding variant in the WFS1 gene that is enriched in Ashkenazi Jewish individuals and causes a mild form of Wolfram syndrome characterised by young-onset diabetes and reduced penetrance for optic atrophy. This variant should be considered for genetic testing in individuals of Ashkenazi ancestry diagnosed with young-onset non-autoimmune diabetes and should be included in Ashkenazi carrier screening panels.
Collapse
Affiliation(s)
- Vikas Bansal
- Department of Pediatrics, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA.
| | - Bernhard O Boehm
- Department of Internal Medicine I, Ulm University Medical Centre, Ulm, Germany
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
- Imperial College London, London, UK
| | - Ariel Darvasi
- Department of Genetics, The Institute of Life Sciences, The Hebrew University of Jerusalem, Givat Ram, Jerusalem, Israel
| |
Collapse
|
16
|
Ladino LY, Galvis J, Yasnó D, Ramírez A, Beltrán OI. A pathogenic homozygous variant of the BBS10 gene in a patient with Bardet Biedl syndrome. BIOMEDICA : REVISTA DEL INSTITUTO NACIONAL DE SALUD 2018; 38:308-320. [PMID: 30335236 DOI: 10.7705/biomedica.v38i4.4199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 03/23/2018] [Accepted: 04/02/2018] [Indexed: 06/08/2023]
Abstract
The Bardet-Biedl syndrome is an autosomal recessive hereditary disorder with vast locus heterogeneity that belongs to the so-called ciliopathies, whose proteins are localized in the primary cilia and present functional deficiency. The multisystemic features of the disease include ocular, renal, cognitive, skeletal, as well as gonadal involvement and obesity, among others, with high inter- and intrafamilial variability. We describe the clinical case of an adolescent male patient with Bardet-Biedl syndrome, including the approach, the results from a 22-gene sequencing panel, and the analysis of updated scientific literature. We collected the clinical data of the patient and, after obtaining the informed consent, we conducted a multigenic sequencing panel oriented to known implicated genes. The patient was born to consanguineous parents and was the first affected member of the family. He presented with postaxial polydactyly, obesity, micropenis, retinitis pigmentosa, and learning disability. The multigenic panel allowed the identification of the homozygous pathogenic variant c.39_46del in the BBS10 gene and in other BBS genes variants associated with obesity. As the Bardet-Biedl syndrome is a rare disease, it is challenging to interpret its pleiotropism and gene/allelic heterogeneity. Its confirmation by molecular tests allows an adequate approach, follow-up, and genetic counseling of the patient and the family.
Collapse
Affiliation(s)
- Luz Yaqueline Ladino
- Departamento de Genética, Grupo de Investigación GenHOMI, Fundación Hospital Pediátrico La Misericordia-HOMI, Bogotá, D.C., Colombia Maestría en Genética Humana, Universidad Nacional de Colombia, Bogotá, D.C., Colombia.
| | | | | | | | | |
Collapse
|
17
|
Chan Y, Chan YK, Goodman DB, Guo X, Chavez A, Lim ET, Church GM. Enabling multiplexed testing of pooled donor cells through whole-genome sequencing. Genome Med 2018; 10:31. [PMID: 29673390 PMCID: PMC5909281 DOI: 10.1186/s13073-018-0541-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Accepted: 04/05/2018] [Indexed: 11/10/2022] Open
Abstract
We describe a method that enables the multiplex screening of a pool of many different donor cell lines. Our method accurately predicts each donor proportion from the pool without requiring the use of unique DNA barcodes as markers of donor identity. Instead, we take advantage of common single nucleotide polymorphisms, whole-genome sequencing, and an algorithm to calculate the proportions from the sequencing data. By testing using simulated and real data, we showed that our method robustly predicts the individual proportions from a mixed-pool of numerous donors, thus enabling the multiplexed testing of diverse donor cells en masse. More information is available at https://pgpresearch.med.harvard.edu/poolseq/
Collapse
Affiliation(s)
- Yingleong Chan
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02115, USA. .,Department of Genetics, Harvard Medical School, Boston, MA, 02115, USA.
| | - Ying Kai Chan
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02115, USA.,Department of Genetics, Harvard Medical School, Boston, MA, 02115, USA
| | - Daniel B Goodman
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02115, USA.,Department of Genetics, Harvard Medical School, Boston, MA, 02115, USA.,Harvard-MIT Health Sciences and Technology, Cambridge, MA, 02139, USA
| | - Xiaoge Guo
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02115, USA.,Department of Genetics, Harvard Medical School, Boston, MA, 02115, USA
| | - Alejandro Chavez
- Department of Pathology and Cell Biology, Columbia University College of Physicians and Surgeons, New York, NY, 10032, USA
| | - Elaine T Lim
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02115, USA.,Department of Genetics, Harvard Medical School, Boston, MA, 02115, USA
| | - George M Church
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02115, USA. .,Department of Genetics, Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
18
|
Zhang S, Xu H, Liu X, Yang Q, Pan C, Lei C, Dang R, Chen H, Lan X. The muscle development transcriptome landscape of ovariectomized goat. ROYAL SOCIETY OPEN SCIENCE 2017; 4:171415. [PMID: 29308264 PMCID: PMC5750031 DOI: 10.1098/rsos.171415] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 11/15/2017] [Indexed: 05/05/2023]
Abstract
In practical production, almost all rams and about 50% of ewes are used to fatten. Researchers have proved that ewe ovariectomy could improve the productivity significantly, but the specific molecular mechanism is still unknown. In this study, five independent cDNA libraries (three and two from ovariectomized and normal ewe longissimus dorsi samples, respectively) were constructed to thoroughly explore the global transcriptome, further to reveal how the ovariectomized ewes influence muscle development by Illumina2000 sequencing technology. As a result, 205 358 transcripts and 118 264 unigenes were generated. 15 490 simple sequence repeats (SSRs) were revealed and divided into six types, and the short repeat sequence SSR (monomers, dimers, trimers) was the domain type. Single nucleotide polymorphism analysis found that the number of transition was greater than the number of transversion among the five libraries. Furthermore, 1612 differently expressed genes (DEGs) (Log2fold_change > 1 and p < 0.05) were revealed between ovariectomized and normal ewe groups, in which 903 genes were expressed commonly in the two groups, and 288 and 421 genes were uniquely expressed in normal and ovariectomized ewe groups, respectively. Gene Ontology (GO) analysis categorized all unigenes into 555 GO terms and 56 DEGs were significantly categorized into 43 GO terms (p < 0.05). KEGG enrichment analysis annotated 12 976 genes (containing 137 DEGs) to 86 pathways, among them 24 and 11 DEGs involved in development and reproduction associated pathways, respectively. To validate the reliability of the RNA-seq analysis, 22 candidate DEGs were randomly selected to perform quantitative real-time polymerase chain reaction. The result showed that 9 and 1 genes were significantly and approximately significantly expressed in control and treatment group, respectively, and the results of RNA-seq are believable in this study. Overall, these results were helpful for elucidating the molecular mechanism of muscle development of ovariectomized animals and the application of female ovariectomy in fattening.
Collapse
|
19
|
Chan Y, Tung M, Garruss AS, Zaranek SW, Chan YK, Lunshof JE, Zaranek AW, Ball MP, Chou MF, Lim ET, Church GM. An unbiased index to quantify participant's phenotypic contribution to an open-access cohort. Sci Rep 2017; 7:46148. [PMID: 28387241 PMCID: PMC5384003 DOI: 10.1038/srep46148] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Accepted: 03/10/2017] [Indexed: 01/03/2023] Open
Abstract
The Personal Genome Project (PGP) is an effort to enroll many participants to create an open-access repository of genome, health and trait data for research. However, PGP participants are not enrolled for studying any specific traits and participants choose the phenotypes to disclose. To measure the extent and willingness and to encourage and guide participants to contribute phenotypes, we developed an algorithm to score and rank the phenotypes and participants of the PGP. The scoring algorithm calculates the participation index (P-index) for every participant, where 0 indicates no reported phenotypes and 100 indicate complete phenotype reporting. We calculated the P-index for all 5,015 participants in the PGP and they ranged from 0 to 96.7. We found that participants mainly have either high scores (P-index > 90, 29.5%) or low scores (P-index < 10, 57.8%). While, there are significantly more males than female participants (1,793 versus 1,271), females tend to have on average higher P-indexes (P = 0.015). We also reported the P-indexes of participants based on demographics and states like Missouri and Massachusetts have better P-indexes than states like Utah and Minnesota. The P-index can therefore be used as an unbiased way to measure and rank participant's phenotypic contribution towards the PGP.
Collapse
Affiliation(s)
- Yingleong Chan
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
- Program in Medical and Population Genetics, Broad Institute, Cambridge, MA 02142, USA
| | - Michael Tung
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - Alexander S. Garruss
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
- Program in Bioinformatics and Integrative Genomics, Division of Medical Sciences, Graduate School of Arts and Sciences, Harvard University, Cambridge, MA 02138, USA
| | | | - Ying Kai Chan
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - Jeantine E. Lunshof
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
- Program in Medical and Population Genetics, Broad Institute, Cambridge, MA 02142, USA
- Department of Genetics, University Medical Centre Groningen, University of Groningen, 9700 RB Groningen, The Netherlands
| | | | | | - Michael F. Chou
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - Elaine T. Lim
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
- Division of Genetics and Genomics, Boston Children’s Hospital, Boston, MA 02115, USA
| | - George M. Church
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| |
Collapse
|
20
|
Abstract
Studies of human genetic disorders have traditionally followed a reductionist paradigm. Traits are defined as Mendelian or complex based on family pedigree and population data, whereas alleles are deemed rare, common, benign, or deleterious based on their population frequencies. The availability of exome and genome data, as well as gene and allele discovery for various conditions, is beginning to challenge classic definitions of genetic causality. Here, I discuss recent advances in our understanding of the overlap between rare and complex diseases and the context-dependent effect of both rare and common alleles that underscores the need for revising the traditional categorizations of genetic traits.
Collapse
Affiliation(s)
- Nicholas Katsanis
- Center for Human Disease Modeling, Duke University Medical Center, Durham, NC, 27701, USA.
| |
Collapse
|
21
|
Abstract
Primary cilia are organelles that are present on many different cell types, either transiently or permanently. They play a crucial role in receiving signals from the environment and passing these signals to other parts of the cell. In that way, they are involved in diverse processes such as adipocyte differentiation and olfactory sensation. Mutations in genes coding for ciliary proteins often have pleiotropic effects and lead to clinical conditions, ciliopathies, with multiple symptoms. In this study, we reviewed observations from ciliopathies with obesity as one of the symptoms. It shows that variation in cilia-related genes is itself not a major cause of obesity in the population but may be a part of the multifactorial aetiology of this complex condition. Both common polymorphisms and rare deleterious variants may contribute to the obesity risk. Genotype-phenotype relationships have been noticed. Among the ciliary genes, obesity differs with regard to severity and age of onset, which may relate to the influence of each gene on the balance between pro- and anti-adipogenic processes. Analysis of the function and location of the proteins encoded by these ciliary genes suggests that obesity is more linked to activities at the basal area of the cilium, including initiation of the intraflagellar transport, but less to the intraflagellar transport itself. Regarding the role of cilia, three possible mechanistic processes underlying obesity are described: adipogenesis, neuronal food intake regulation and food odour perception.
Collapse
|
22
|
Marshall RA, Osborn DPS. Zebrafish: a vertebrate tool for studying basal body biogenesis, structure, and function. Cilia 2016; 5:16. [PMID: 27168933 PMCID: PMC4862167 DOI: 10.1186/s13630-016-0036-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 03/01/2016] [Indexed: 02/27/2023] Open
Abstract
Understanding the role of basal bodies (BBs) during development and disease has been largely overshadowed by research into the function of the cilium. Although these two organelles are closely associated, they have specific roles to complete for successful cellular development. Appropriate development and function of the BB are fundamental for cilia function. Indeed, there are a growing number of human genetic diseases affecting ciliary development, known collectively as the ciliopathies. Accumulating evidence suggests that BBs establish cell polarity, direct ciliogenesis, and provide docking sites for proteins required within the ciliary axoneme. Major contributions to our knowledge of BB structure and function have been provided by studies in flagellated or ciliated unicellular eukaryotic organisms, specifically Tetrahymena and Chlamydomonas. Reproducing these and other findings in vertebrates has required animal in vivo models. Zebrafish have fast become one of the primary organisms of choice for modeling vertebrate functional genetics. Rapid ex-utero development, proficient egg laying, ease of genetic manipulation, and affordability make zebrafish an attractive vertebrate research tool. Furthermore, zebrafish share over 80 % of disease causing genes with humans. In this article, we discuss the merits of using zebrafish to study BB functional genetics, review current knowledge of zebrafish BB ultrastructure and mechanisms of function, and consider the outlook for future zebrafish-based BB studies.
Collapse
Affiliation(s)
- Ryan A Marshall
- Cell Sciences and Genetics Research Centre, St George's University of London, London, SW17 0RE UK
| | - Daniel P S Osborn
- Cell Sciences and Genetics Research Centre, St George's University of London, London, SW17 0RE UK
| |
Collapse
|
23
|
Page CM, Baranzini SE, Mevik BH, Bos SD, Harbo HF, Andreassen BK. Assessing the Power of Exome Chips. PLoS One 2015; 10:e0139642. [PMID: 26437075 PMCID: PMC4593624 DOI: 10.1371/journal.pone.0139642] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Accepted: 09/14/2015] [Indexed: 12/20/2022] Open
Abstract
Genotyping chips for rare and low-frequent variants have recently gained popularity with the introduction of exome chips, but the utility of these chips remains unclear. These chips were designed using exome sequencing data from mainly American-European individuals, enriched for a narrow set of common diseases. In addition, it is well-known that the statistical power of detecting associations with rare and low-frequent variants is much lower compared to studies exclusively involving common variants. We developed a simulation program adaptable to any exome chip design to empirically evaluate the power of the exome chips. We implemented the main properties of the Illumina HumanExome BeadChip array. The simulated data sets were used to assess the power of exome chip based studies for varying effect sizes and causal variant scenarios. We applied two widely-used statistical approaches for rare and low-frequency variants, which collapse the variants into genetic regions or genes. Under optimal conditions, we found that a sample size between 20,000 to 30,000 individuals were needed in order to detect modest effect sizes (0.5% < PAR > 1%) with 80% power. For small effect sizes (PAR <0.5%), 60,000–100,000 individuals were needed in the presence of non-causal variants. In conclusion, we found that at least tens of thousands of individuals are necessary to detect modest effects under optimal conditions. In addition, when using rare variant chips on cohorts or diseases they were not originally designed for, the identification of associated variants or genes will be even more challenging.
Collapse
Affiliation(s)
- Christian Magnus Page
- Institute of Clinical Medicine, University of Oslo, 0316, Oslo, Norway
- Department of Neurology, Oslo University Hospital, 0424, Oslo, Norway
| | - Sergio E. Baranzini
- Department of Neurology, University of California San Francisco, San Francisco, California, 94158, United States of America
| | - Bjørn-Helge Mevik
- University Center for Information Technology, University of Oslo, 0316, Oslo, Norway
| | - Steffan Daniel Bos
- Institute of Clinical Medicine, University of Oslo, 0316, Oslo, Norway
- Department of Neurology, Oslo University Hospital, 0424, Oslo, Norway
| | - Hanne F. Harbo
- Institute of Clinical Medicine, University of Oslo, 0316, Oslo, Norway
- Department of Neurology, Oslo University Hospital, 0424, Oslo, Norway
| | - Bettina Kulle Andreassen
- Institute of Clinical Medicine, University of Oslo, 0316, Oslo, Norway
- Department of Research, Cancer Registry of Norway, 0304, Oslo, Norway
- * E-mail:
| |
Collapse
|
24
|
Affiliation(s)
- Leif Groop
- Lund University Diabetes Centre, Department of Clinical Sciences, Lund University, Malmö, Sweden; Finnish Institute for Molecular Medicine, Helsinki University, 20502 Helsinki, Finland.
| |
Collapse
|
25
|
Starks RD, Beyer AM, Guo DF, Boland L, Zhang Q, Sheffield VC, Rahmouni K. Regulation of Insulin Receptor Trafficking by Bardet Biedl Syndrome Proteins. PLoS Genet 2015; 11:e1005311. [PMID: 26103456 PMCID: PMC4478011 DOI: 10.1371/journal.pgen.1005311] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Accepted: 05/29/2015] [Indexed: 01/06/2023] Open
Abstract
Insulin and its receptor are critical for the regulation of metabolic functions, but the mechanisms underlying insulin receptor (IR) trafficking to the plasma membrane are not well understood. Here, we show that Bardet Biedl Syndrome (BBS) proteins are necessary for IR localization to the cell surface. We demonstrate that the IR interacts physically with BBS proteins, and reducing the expression of BBS proteins perturbs IR expression in the cell surface. We show the consequence of disrupting BBS proteins for whole body insulin action and glucose metabolism using mice lacking different BBS genes. These findings demonstrate the importance of BBS proteins in underlying IR cell surface expression. Our data identify defects in trafficking and localization of the IR as a novel mechanism accounting for the insulin resistance commonly associated with human BBS. This is supported by the reduced surface expression of the IR in fibroblasts derived from patients bearing the M390R mutation in the BBS1 gene. A main function of the hormone insulin in the body is to regulate metabolism of glucose. The hormone causes body cells in different organs and tissues to utilize glucose from the bloodstream, storing the excess amount. Insulin resistance which reflects the inability of insulin to properly regulate glucose metabolism is common in people with obesity and/or type 2 diabetes. This insulin resistance is strongly associated with cardiovascular disease and increases the risk of death. However, the reasons that account for this insulin resistance phenomenon are currently not well understood. Here, we show that Bardet Biedl Syndrome proteins are required for proper action of insulin. We found that cells or animals that are deficient in Bardet Biedl Syndrome proteins are unable to respond to insulin. These results provide an explanation why patients that carry mutations in the Bardet Biedl Syndrome genes are insulin resistant, and will potentially contribute to understand common human forms of insulin resistance.
Collapse
Affiliation(s)
- Rachel D. Starks
- Department of Pharmacology, University of Iowa College of Medicine, Iowa City, Iowa, United States of America
| | - Andreas M. Beyer
- Department of Internal Medicine, University of Iowa College of Medicine, Iowa City, Iowa, United States of America
| | - Deng Fu Guo
- Department of Pharmacology, University of Iowa College of Medicine, Iowa City, Iowa, United States of America
| | - Lauren Boland
- Department of Pharmacology, University of Iowa College of Medicine, Iowa City, Iowa, United States of America
| | - Qihong Zhang
- Department of Pediatrics, University of Iowa College of Medicine, Iowa City, Iowa, United States of America
- Howard Hughes Medical Institute, University of Iowa College of Medicine, Iowa City, Iowa, United States of America
| | - Val C. Sheffield
- Department of Pediatrics, University of Iowa College of Medicine, Iowa City, Iowa, United States of America
- Howard Hughes Medical Institute, University of Iowa College of Medicine, Iowa City, Iowa, United States of America
- * E-mail: (VCS); (KR)
| | - Kamal Rahmouni
- Department of Pharmacology, University of Iowa College of Medicine, Iowa City, Iowa, United States of America
- Department of Internal Medicine, University of Iowa College of Medicine, Iowa City, Iowa, United States of America
- FOE Diabetes Research Center, University of Iowa College of Medicine, Iowa City, Iowa, United States of America
- * E-mail: (VCS); (KR)
| |
Collapse
|
26
|
Oh EC, Vasanth S, Katsanis N. Metabolic regulation and energy homeostasis through the primary Cilium. Cell Metab 2015; 21:21-31. [PMID: 25543293 PMCID: PMC4370781 DOI: 10.1016/j.cmet.2014.11.019] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Revised: 09/19/2014] [Accepted: 11/20/2014] [Indexed: 02/07/2023]
Abstract
Obesity and diabetes represent a significant healthcare concern. In contrast to genome-wide association studies that, some exceptions notwithstanding, have offered modest clues about pathomechanism, the dissection of rare disorders in which obesity represents a core feature have highlighted key molecules and structures critical to energy regulation. Here we focus on the primary cilium, an organelle whose roles in energy homeostasis have been underscored by the high incidence of obesity and type II diabetes in patients and mouse mutants with compromised ciliary function. We discuss recent evidence linking ciliary dysfunction to metabolic defects and we explore the contribution of neuronal and nonneuronal cilia to these phenotypes.
Collapse
Affiliation(s)
- Edwin C Oh
- Center for Human Disease Modeling, Duke University School of Medicine, Durham, NC 27710, USA.
| | - Shivakumar Vasanth
- Center for Human Disease Modeling, Duke University School of Medicine, Durham, NC 27710, USA
| | - Nicholas Katsanis
- Center for Human Disease Modeling, Duke University School of Medicine, Durham, NC 27710, USA.
| |
Collapse
|