1
|
Zabad S, Haryan CA, Gravel S, Misra S, Li Y. Toward whole-genome inference of polygenic scores with fast and memory-efficient algorithms. Am J Hum Genet 2025:S0002-9297(25)00182-X. [PMID: 40425013 DOI: 10.1016/j.ajhg.2025.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 04/28/2025] [Accepted: 05/05/2025] [Indexed: 05/29/2025] Open
Abstract
With improved whole-genome sequencing and variant imputation techniques, modern genome-wide association studies (GWASs) have enriched our understanding of the landscape of genetic associations for thousands of disease phenotypes. However, translating the marginal associations for millions of genetic variants to integrated polygenic risk scores (PRSs) that capture their joint effects on the phenotype remains a major challenge. Due to technical and statistical constraints, commonly used PRS methods in this setting either perform heuristic pruning and thresholding or overlook most genetic association signals by restricting inference to small variant sets, such as HapMap3. Here, we present a set of algorithmic improvements and compact data structures that enable scaling summary-statistics-based PRS inference to tens of millions of variants while avoiding numerical instabilities common in such high-dimensional settings. These enhancements consist of highly compressed linkage-disequilibrium (LD) matrix format, which integrates with streamlined and parallel coordinate-ascent updating schemes. When incorporated into our existing PRS method (VIPRS), the proposed algorithms yield over 50-fold reductions in storage requirements and lead to orders-of-magnitude improvements in runtime and memory efficiency. The updated VIPRS software can now perform variational Bayesian regression over 1.1 million HapMap3 variants in under a minute. Using this scalable implementation, we applied VIPRS to 75 of the most heritable, continuous phenotypes in the UK Biobank, leveraging marginal associations for up to 18 million bi-allelic variants. These experiments demonstrated that VIPRS is 1-2 orders of magnitude more efficient than popular baselines while being competitive with the best-performing methods in terms of prediction accuracy.
Collapse
Affiliation(s)
- Shadi Zabad
- School of Computer Science, McGill University, Montreal, QC, Canada
| | | | - Simon Gravel
- Department of Human Genetics, McGill University, Montreal, QC, Canada.
| | - Sanchit Misra
- Parallel Computing Lab, Intel Labs, Bangalore, Karnataka, India
| | - Yue Li
- School of Computer Science, McGill University, Montreal, QC, Canada.
| |
Collapse
|
2
|
Fu Y, Kenttämies A, Ruotsalainen S, Pirinen M, Tukiainen T. Role of X chromosome and dosage-compensation mechanisms in complex trait genetics. Am J Hum Genet 2025:S0002-9297(25)00145-4. [PMID: 40359939 DOI: 10.1016/j.ajhg.2025.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 04/16/2025] [Accepted: 04/16/2025] [Indexed: 05/15/2025] Open
Abstract
The X chromosome (chrX) is often excluded from genome-wide association studies due to its unique biology complicating the analysis and interpretation of genetic data. Consequently, the influence of chrX on human complex traits remains debated. Here, we systematically assessed the relevance of chrX and the effect of its biology on complex traits by analyzing 48 quantitative traits in 343,695 individuals in UK Biobank with replication in 412,181 individuals from FinnGen. We show that, in the general population, chrX contributes to complex trait heritability at a rate of 3% of the autosomal heritability, consistent with the amount of genetic variation observed in chrX. We find that a pronounced male bias in chrX heritability supports the presence of near-complete dosage compensation between sexes through X chromosome inactivation (XCI). However, we also find subtle yet plausible evidence of escape from XCI contributing to human height. Assuming full XCI, the observed chrX contribution to complex trait heritability in both sexes is greater than expected given the presence of only a single active copy of chrX, mirroring potential dosage compensation between chrX and the autosomes. We find this enhanced contribution attributable to systematically larger active allele effects from chrX compared to autosomes in both sexes, independent of allele frequency and variant deleteriousness. Together, these findings support a model in which the two dosage-compensation mechanisms work in concert to balance the influence of chrX across the population while preserving sex-specific differences at a manageable level. Overall, our study advocates for more comprehensive locus discovery efforts in chrX.
Collapse
Affiliation(s)
- Yu Fu
- Institute for Molecular Medicine Finland (FIMM), Helsinki Institute of Life Science (HiLIFE), University of Helsinki, 00014 Helsinki, Finland
| | - Aino Kenttämies
- Institute for Molecular Medicine Finland (FIMM), Helsinki Institute of Life Science (HiLIFE), University of Helsinki, 00014 Helsinki, Finland
| | - Sanni Ruotsalainen
- Institute for Molecular Medicine Finland (FIMM), Helsinki Institute of Life Science (HiLIFE), University of Helsinki, 00014 Helsinki, Finland
| | - Matti Pirinen
- Institute for Molecular Medicine Finland (FIMM), Helsinki Institute of Life Science (HiLIFE), University of Helsinki, 00014 Helsinki, Finland; Department of Public Health, University of Helsinki, 00014 Helsinki, Finland; Department of Mathematics and Statistics, University of Helsinki, 00014 Helsinki, Finland
| | - Taru Tukiainen
- Institute for Molecular Medicine Finland (FIMM), Helsinki Institute of Life Science (HiLIFE), University of Helsinki, 00014 Helsinki, Finland.
| |
Collapse
|
3
|
Rämö JT, Gorman BR, Weng LC, Jurgens SJ, Singhanetr P, Tieger MG, van Dijk EH, Halladay CW, Wang X, Hauser BM, Kim SH, Brinks J, Choi SH, Luo Y, Pyarajan S, Nealon CL, Gorin MB, Wu WC, Anthony SA, Roncone DP, Sobrin L, Kaarniranta K, Yzer S, Palotie A, Peachey NS, Turunen JA, Boon CJ, Ellinor PT, Iyengar SK, Daly MJ, Rossin EJ. Rare genetic variation in PTPRB is associated with central serous chorioretinopathy, varicose veins and glaucoma. Nat Commun 2025; 16:4127. [PMID: 40319023 PMCID: PMC12049426 DOI: 10.1038/s41467-025-58686-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 03/28/2025] [Indexed: 05/07/2025] Open
Abstract
Central serous chorioretinopathy is an eye disease characterized by fluid buildup under the central retina whose etiology is not well understood. Abnormal choroidal veins in central serous chorioretinopathy patients have been shown to have similarities with varicose veins. To identify potential mechanisms, we analyzed genotype data from 1,477 patients and 455,449 controls in FinnGen. We identified an association for a low-frequency (allele frequency = 0.5%) missense variant (rs113791087) in PTPRB, the gene encoding vascular endothelial protein tyrosine phosphatase (odds ratio=2.85, P = 4.5 × 10-9). This was confirmed in a meta-analysis of 2,452 patients and 865,767 controls from 4 studies (odds ratio=3.06, P = 7.4 × 10-15). Rs113791087 was associated with a 56% higher prevalence of retinal abnormalities (35.3% vs 22.6%, P = 8.0 × 10-4) in 708 UK Biobank participants and, surprisingly, with increased risk of varicose veins (odds ratio=1.31, P = 2.3 × 10-11) and reduced risk of glaucoma (odds ratio=0.82, P = 6.9 × 10-9). Predicted loss-of-function variants in PTPRB, though rare in number, were associated with central serous chorioretinopathy in All of Us (odds ratio=17.09, P = 0.018). These findings highlight the significance of vascular endothelial protein tyrosine phosphatase in diverse ocular and systemic veno-vascular diseases.
Collapse
Affiliation(s)
- Joel T Rämö
- Institute for Molecular Medicine Finland (FIMM), Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Finland
- Massachusetts Eye and Ear, Boston, MA, USA
- Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
| | - Bryan R Gorman
- Center for Data and Computational Sciences (C-DACS), VA Cooperative Studies Program, VA Boston Healthcare System, Boston, MA, USA
- Booz Allen Hamilton, McLean, VA, USA
| | - Lu-Chen Weng
- Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
| | - Sean J Jurgens
- Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
- Department of Experimental Cardiology, Amsterdam Cardiovascular Sciences, Heart Failure & Arrhythmias, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Panisa Singhanetr
- Massachusetts Eye and Ear, Boston, MA, USA
- Mettapracharak Eye Institute, Mettapracharak (Wat Rai Khing) Hospital, Nakhon Pathom, Thailand
| | - Marisa G Tieger
- New England Eye Center, Tufts Medical Center, Boston, MA, USA
| | - Elon Hc van Dijk
- Department of Ophthalmology, Leiden University Medical Center, Leiden, The Netherlands
| | - Christopher W Halladay
- Center of Innovation in Long Term Services and Supports, Providence VA Medical Center, Providence, RI, USA
| | - Xin Wang
- Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Blake M Hauser
- Massachusetts Eye and Ear, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Soo Hyun Kim
- Massachusetts Eye and Ear, Boston, MA, USA
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Joost Brinks
- Department of Ophthalmology, Leiden University Medical Center, Leiden, The Netherlands
| | - Seung Hoan Choi
- Department of Biostatistics, Boston University, Boston, MA, USA
| | - Yuyang Luo
- Massachusetts Eye and Ear, Boston, MA, USA
| | - Saiju Pyarajan
- VA Cooperative Studies Program, VA Boston Healthcare System, Boston, MA, USA
- Department of Medicine, Brigham and Women's Hospital and Harvard School of Medicine, Boston, MA, USA
| | - Cari L Nealon
- Eye Clinic, VA Northeast Ohio Healthcare System, Cleveland, OH, USA
| | - Michael B Gorin
- Department of Ophthalmology, David Geffen School of Medicine, Stein Eye Institute, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Human Genetics, David Geffen School of Medicine, Stein Eye Institute, University of California, Los Angeles, Los Angeles, CA, USA
| | - Wen-Chih Wu
- Section of Cardiology, Medical Service, VA Providence Healthcare System, Providence, RI, USA
| | - Scott A Anthony
- Eye Clinic, VA Northeast Ohio Healthcare System, Cleveland, OH, USA
| | - David P Roncone
- Eye Clinic, VA Northeast Ohio Healthcare System, Cleveland, OH, USA
| | - Lucia Sobrin
- Harvard Medical School Department of Ophthalmology, Massachusetts Eye and Ear, Boston, MA, USA
| | - Kai Kaarniranta
- Department of Ophthalmology, University of Eastern Finland and Kuopio University Hospital, Kuopio, Finland
| | - Suzanne Yzer
- Department of Ophthalmology, Radboud University Medical Center, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Aarno Palotie
- Institute for Molecular Medicine Finland (FIMM), Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Finland
- Psychiatric and Neurodevelopmental Genetics Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
- Analytic and Translational Genetics Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Neal S Peachey
- Research Service, VA Northeast Ohio Healthcare System, Cleveland, OH, USA
- Cole Eye Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
- Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH, USA
| | - Joni A Turunen
- Folkhälsan Research Center, Biomedicum, Helsinki, Finland
- Department of Ophthalmology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Camiel Jf Boon
- Department of Ophthalmology, Leiden University Medical Center, Leiden, The Netherlands
- Department of Ophthalmology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| | - Patrick T Ellinor
- Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Cardiovascular Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Sudha K Iyengar
- Research Service, VA Northeast Ohio Healthcare System, Cleveland, OH, USA
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, OH, USA
| | - Mark J Daly
- Institute for Molecular Medicine Finland (FIMM), Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Finland
- Analytic and Translational Genetics Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Elizabeth J Rossin
- Harvard Medical School Department of Ophthalmology, Massachusetts Eye and Ear, Boston, MA, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
4
|
Yang Z, Wang C, Posadas-Garcia YS, Añorve-Garibay V, Vardarajan B, Estrada AM, Sohail M, Mayeux R, Ionita-Laza I. Fine-mapping in admixed populations using CARMA-X, with applications to Latin American studies. Am J Hum Genet 2025; 112:1215-1232. [PMID: 40147449 PMCID: PMC12120188 DOI: 10.1016/j.ajhg.2025.02.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 02/23/2025] [Accepted: 02/24/2025] [Indexed: 03/29/2025] Open
Abstract
Genome-wide association studies (GWASs) in ancestrally diverse populations are rapidly expanding, opening up unique opportunities for novel gene discoveries and increased utility of genetic findings in non-European individuals. A popular technique to identify putative causal variants at GWAS loci is via statistical fine-mapping. Despite tremendous efforts, fine-mapping remains a very challenging task, even in the relatively simple scenario of studies with a single, homogeneous population. For studies with admixed individuals, such as within Latin America and the Caribbean, methods for gene discovery are still limited. Here, we propose a Bayesian model for fine-mapping in admixed populations, CARMA-X, that addresses some of the unique challenges of admixed individuals. The proposed method includes an estimation method for the linkage disequilibrium (LD) matrix that accounts for small reference panels for admixed individuals, heterogeneity across populations and cross-ancestry LD, and a Bayesian hypothesis test that leads to robust fine-mapping when relying on external reference panels of modest size for LD estimation. Using simulations, we compare performance with recently proposed fine-mapping methods for multi-ancestry studies and show that the proposed model provides higher power while controlling false discoveries, especially when using an out-of-sample LD matrix. We further illustrate our approach through applications to two Latin American genetic studies, the Estudio Familiar de Influencia Genética en Alzheimer (EFIGA) study in the Dominican Republic and the Mexican Biobank, where we show the benefit of modeling ancestry-specific effects by prioritizing putative causal variants and genes, including several findings driven by ancestry-specific effects in the African and Native American ancestries.
Collapse
Affiliation(s)
- Zikun Yang
- Department of Biostatistics, Columbia University, New York, NY, USA.
| | - Chen Wang
- Department of Biostatistics, Columbia University, New York, NY, USA
| | | | | | - Badri Vardarajan
- Department of Neurology, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Andrés Moreno Estrada
- Unidad de Genómica Avanzada (UGA-LANGEBIO), Centro de Investigación y Estudios Avanzados del IPN (Cinvestav), Irapuato, Mexico
| | - Mashaal Sohail
- Center for Genomic Sciences, National Autonomous University of Mexico, Mexico City, Mexico
| | - Richard Mayeux
- Department of Neurology, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Iuliana Ionita-Laza
- Department of Biostatistics, Columbia University, New York, NY, USA; Department of Statistics, Lund University, Lund, Sweden.
| |
Collapse
|
5
|
Martiskainen H, Willman RM, Harju P, Heikkinen S, Heiskanen M, Müller SA, Sinisalo R, Takalo M, Mäkinen P, Kuulasmaa T, Pekkala V, Galván Del Rey A, Juopperi SP, Jeskanen H, Kervinen I, Saastamoinen K, Niiranen M, Heikkinen SV, Kurki MI, Marttila J, Mäkinen PI, Rostalski H, Hietanen T, Ngandu T, Lehtisalo J, Bellenguez C, Lambert JC, Haass C, Rinne J, Hakumäki J, Rauramaa T, Krüger J, Soininen H, Haapasalo A, Lichtenthaler SF, Leinonen V, Solje E, Hiltunen M. Monoallelic TYROBP deletion is a novel risk factor for Alzheimer's disease. Mol Neurodegener 2025; 20:50. [PMID: 40301889 PMCID: PMC12038944 DOI: 10.1186/s13024-025-00830-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 03/20/2025] [Indexed: 05/01/2025] Open
Abstract
Biallelic loss-of-function variants in TYROBP and TREM2 cause autosomal recessive presenile dementia with bone cysts known as Nasu-Hakola disease (NHD, alternatively polycystic lipomembranous osteodysplasia with sclerosing leukoencephalopathy, PLOSL). Some other TREM2 variants contribute to the risk of Alzheimer's disease (AD) and frontotemporal dementia, while deleterious TYROBP variants are globally extremely rare and their role in neurodegenerative diseases remains unclear. The population history of Finns has favored the enrichment of deleterious founder mutations, including a 5.2 kb deletion encompassing exons 1-4 of TYROBP and causing NHD in homozygous carriers. We used here a proxy marker to identify monoallelic TYROBP deletion carriers in the Finnish biobank study FinnGen combining genome and health registry data of 520,210 Finns. We show that monoallelic TYROBP deletion associates with an increased risk and earlier onset age of AD and dementia when compared to noncarriers. In addition, we present the first reported case of a monoallelic TYROBP deletion carrier with NHD-type bone cysts. Mechanistically, monoallelic TYROBP deletion leads to decreased levels of DAP12 protein (encoded by TYROBP) in myeloid cells. Using transcriptomic and proteomic analyses of human monocyte-derived microglia-like cells, we show that upon lipopolysaccharide stimulation monoallelic TYROBP deletion leads to the upregulation of the inflammatory response and downregulation of the unfolded protein response when compared to cells with two functional copies of TYROBP. Collectively, our findings indicate TYROBP deletion as a novel risk factor for AD and suggest specific pathways for therapeutic targeting.
Collapse
Affiliation(s)
- Henna Martiskainen
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland.
| | | | - Päivi Harju
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | - Sami Heikkinen
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | - Mette Heiskanen
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | - Stephan A Müller
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Neuroproteomics, School of Medicine and Health, Technical University of Munich, Munich, Germany
| | - Rosa Sinisalo
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | - Mari Takalo
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | - Petra Mäkinen
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | - Teemu Kuulasmaa
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | - Viivi Pekkala
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Ana Galván Del Rey
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | | | - Heli Jeskanen
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | - Inka Kervinen
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | - Kirsi Saastamoinen
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | - Marja Niiranen
- Neuro Center - Neurology, Kuopio University Hospital, Kuopio, Finland
| | - Sami V Heikkinen
- Institute of Clinical Medicine - Neurology, University of Eastern Finland, Kuopio, Finland
| | - Mitja I Kurki
- Institute for Molecular Medicine Finland (FIMM), Helsinki Institute of Life Science (Hilife), University of Helsinki, Helsinki, Finland
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
| | - Jarkko Marttila
- Department of Clinical Radiology, Imaging Center, Kuopio University Hospital, Kuopio, Finland
| | - Petri I Mäkinen
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Hannah Rostalski
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Tomi Hietanen
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Tiia Ngandu
- Department of Public Health, Finnish Institute for Health and Welfare, Helsinki, Finland
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | - Jenni Lehtisalo
- Institute of Clinical Medicine - Neurology, University of Eastern Finland, Kuopio, Finland
- Department of Public Health, Finnish Institute for Health and Welfare, Helsinki, Finland
| | - Céline Bellenguez
- LabEx DISTALZ - U1167-RID-AGE Facteurs de Risque Et Déterminants Moléculaires Des Maladies Liées Au Vieillissement, Université de Lille, Inserm, CHU Lille, Institut Pasteur de Lille, Lille, France
| | - Jean-Charles Lambert
- LabEx DISTALZ - U1167-RID-AGE Facteurs de Risque Et Déterminants Moléculaires Des Maladies Liées Au Vieillissement, Université de Lille, Inserm, CHU Lille, Institut Pasteur de Lille, Lille, France
| | - Christian Haass
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Metabolic Biochemistry, Faculty of Medicine, Biomedical Centre (BMC), Ludwig-Maximilian University of Munich, Munich, Germany
- Munich Cluster for Systems Neurology (Synergy), Munich, Germany
| | - Juha Rinne
- Turku PET Centre, Turku University Hospital, Turku, Finland
- InFLAMES Research Flagship Center, University of Turku, Turku, Finland
| | - Juhana Hakumäki
- Department of Clinical Radiology, Imaging Center, Kuopio University Hospital, Kuopio, Finland
- Unit of Radiology, Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland
| | - Tuomas Rauramaa
- Department of Clinical Pathology, Kuopio University Hospital, Kuopio, Finland
- Unit of Pathology, Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland
| | - Johanna Krüger
- Research Unit of Clinical Medicine, Neurology, University of Oulu, Oulu, Finland
- Medical Research Center, Oulu University Hospital, Oulu, Finland
- Neurocenter, Neurology, Oulu University Hospital, Oulu, Finland
| | - Hilkka Soininen
- Institute of Clinical Medicine - Neurology, University of Eastern Finland, Kuopio, Finland
| | - Annakaisa Haapasalo
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Stefan F Lichtenthaler
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Neuroproteomics, School of Medicine and Health, Technical University of Munich, Munich, Germany
- Munich Cluster for Systems Neurology (Synergy), Munich, Germany
| | - Ville Leinonen
- Department of Neurosurgery, Kuopio University Hospital, Kuopio, Finland
- Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland
| | - Eino Solje
- Neuro Center - Neurology, Kuopio University Hospital, Kuopio, Finland
- Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland
| | - Mikko Hiltunen
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland.
| |
Collapse
|
6
|
Zhang Y, Wang J, Yi C, Su Y, Yin Z, Zhang S, Jin L, Stoneking M, Yang J, Wang K, Huang H, Li J, Fan S. An ancient regulatory variant of ACSF3 influences the coevolution of increased human height and basal metabolic rate via metabolic homeostasis. CELL GENOMICS 2025:100855. [PMID: 40403731 DOI: 10.1016/j.xgen.2025.100855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 02/25/2025] [Accepted: 04/02/2025] [Indexed: 05/24/2025]
Abstract
Anatomically modern humans (AMHs) exhibit a significant increase in basal metabolic rate (BMR) and height compared to non-human apes. This study investigates the genetic basis underlying these traits. Our analyses reveal a strong genetic correlation between height and BMR. A regulatory mutation, rs34590044-A, was found to be associated with the increased height and BMR in AMHs. rs34590044-A upregulates the expression of ACSF3 by increasing its enhancer activity, leading to increased body length and BMR in mice fed essential amino acids which are characteristic of meat-based diets. In the British population, rs34590044-A has been under positive selection over the past 20,000 years, with a particularly strong signal in the last 5,000 years, as also evidenced by ancient DNA analysis. These results suggest that the emergence of rs34590044-A may have facilitated the adaptation to a meat-enriched diet in AMHs, with increased height and BMR as consequences of this dietary shift.
Collapse
Affiliation(s)
- Yufeng Zhang
- State Key Laboratory of Genetics and Development of Complex Phenotypes, Lab for Evolutionary Synthesis, Shanghai Key Laboratory of Metabolic Remodeling and Health, Human Phenome Institute, Zhongshan Hospital and School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Jie Wang
- State Key Laboratory of Genetics and Development of Complex Phenotypes, Lab for Evolutionary Synthesis, Shanghai Key Laboratory of Metabolic Remodeling and Health, Human Phenome Institute, Zhongshan Hospital and School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Chuanyou Yi
- State Key Laboratory of Genetics and Development of Complex Phenotypes, Lab for Evolutionary Synthesis, Shanghai Key Laboratory of Metabolic Remodeling and Health, Human Phenome Institute, Zhongshan Hospital and School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Yue Su
- State Key Laboratory of Genetics and Development of Complex Phenotypes, Lab for Evolutionary Synthesis, Shanghai Key Laboratory of Metabolic Remodeling and Health, Human Phenome Institute, Zhongshan Hospital and School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Zi Yin
- State Key Laboratory of Genetics and Development of Complex Phenotypes, Lab for Evolutionary Synthesis, Shanghai Key Laboratory of Metabolic Remodeling and Health, Human Phenome Institute, Zhongshan Hospital and School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Shuxian Zhang
- State Key Laboratory of Genetics and Development of Complex Phenotypes, Lab for Evolutionary Synthesis, Shanghai Key Laboratory of Metabolic Remodeling and Health, Human Phenome Institute, Zhongshan Hospital and School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Li Jin
- State Key Laboratory of Genetics and Development of Complex Phenotypes, Lab for Evolutionary Synthesis, Shanghai Key Laboratory of Metabolic Remodeling and Health, Human Phenome Institute, Zhongshan Hospital and School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Mark Stoneking
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany and Biométrie et Biologie Évolutive, UMR 5558, CNRS & Université de Lyon, Lyon, France
| | - Jian Yang
- Westlake Laboratory of Life Sciences and Biomedicine, School of Life Sciences, Westlake University, Hangzhou 310024, China
| | - Ke Wang
- State Key Laboratory of Genetics and Development of Complex Phenotypes, Lab for Evolutionary Synthesis, Shanghai Key Laboratory of Metabolic Remodeling and Health, Human Phenome Institute, Zhongshan Hospital and School of Life Sciences, Fudan University, Shanghai 200438, China
| | - He Huang
- State Key Laboratory of Genetics and Development of Complex Phenotypes, Lab for Evolutionary Synthesis, Shanghai Key Laboratory of Metabolic Remodeling and Health, Human Phenome Institute, Zhongshan Hospital and School of Life Sciences, Fudan University, Shanghai 200438, China.
| | - Jin Li
- State Key Laboratory of Genetics and Development of Complex Phenotypes, Lab for Evolutionary Synthesis, Shanghai Key Laboratory of Metabolic Remodeling and Health, Human Phenome Institute, Zhongshan Hospital and School of Life Sciences, Fudan University, Shanghai 200438, China.
| | - Shaohua Fan
- State Key Laboratory of Genetics and Development of Complex Phenotypes, Lab for Evolutionary Synthesis, Shanghai Key Laboratory of Metabolic Remodeling and Health, Human Phenome Institute, Zhongshan Hospital and School of Life Sciences, Fudan University, Shanghai 200438, China.
| |
Collapse
|
7
|
Ji Y, Liu N, Yang Y, Wang M, Cheng J, Zhu W, Qiu S, Geng Z, Cui G, Yu Y, Liao W, Zhang H, Gao B, Xu X, Han T, Yao Z, Zhang Q, Qin W, Liu F, Liang M, Wang S, Xu Q, Xu J, Fu J, Zhang P, Li W, Shi D, Wang C, Lui S, Yan Z, Chen F, Zhang J, Shen W, Miao Y, Wang D, Gao JH, Zhang X, Xu K, Zuo XN, Zhang L, Ye Z, Li MJ, Xian J, Zhang B, Yu C. Cross-ancestry and sex-stratified genome-wide association analyses of amygdala and subnucleus volumes. Nat Genet 2025; 57:839-850. [PMID: 40097784 DOI: 10.1038/s41588-025-02136-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 02/19/2025] [Indexed: 03/19/2025]
Abstract
The amygdala is a small but critical multi-nucleus structure for emotion, cognition and neuropsychiatric disorders. Although genetic associations with amygdala volumetric traits have been investigated in sex-combined European populations, cross-ancestry and sex-stratified analyses are lacking. Here we conducted cross-ancestry and sex-stratified genome-wide association analyses for 21 amygdala volumetric traits in 6,923 Chinese and 48,634 European individuals. We identified 191 variant-trait associations (P < 2.38 × 10-9), including 47 new associations (12 new loci) in sex-combined univariate analyses and seven additional new loci in sex-combined and sex-stratified multivariate analyses. We identified 12 ancestry-specific and two sex-specific associations. The identified genetic variants include 16 fine-mapped causal variants and regulate amygdala and fetal brain gene expression. The variants were enriched for brain development and colocalized with mood, cognition and neuropsychiatric disorders. These results indicate that cross-ancestry and sex-stratified genetic association analyses may provide insight into the genetic architectures of amygdala and subnucleus volumes.
Collapse
Affiliation(s)
- Yuan Ji
- Department of Radiology, Tianjin Key Laboratory of Functional Imaging and State Key Laboratory of Experimental Hematology, Tianjin Medical University General Hospital, Tianjin, China
| | - Nana Liu
- Department of Radiology, Tianjin Key Laboratory of Functional Imaging and State Key Laboratory of Experimental Hematology, Tianjin Medical University General Hospital, Tianjin, China
| | - Yunjun Yang
- Department of Radiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Meiyun Wang
- Department of Radiology, Henan Provincial People's Hospital & Zhengzhou University People's Hospital, Zhengzhou, China
- Biomedical Institute, Henan Academy of Sciences, Zhengzhou, China
| | - Jingliang Cheng
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Wenzhen Zhu
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shijun Qiu
- Department of Medical Imaging, The First Affiliated Hospital of Guangzhou University of Traditional Chinese Medicine, Guangzhou, China
| | - Zuojun Geng
- Department of Medical Imaging, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Guangbin Cui
- Functional and Molecular Imaging Key Lab of Shaanxi Province & Department of Radiology, Tangdu Hospital, Air Force Medical University, Xi'an, China
| | - Yongqiang Yu
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Weihua Liao
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, China
- Molecular Imaging Research Center of Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Hui Zhang
- Department of Radiology, The First Hospital of Shanxi Medical University, Taiyuan, China
| | - Bo Gao
- Department of Radiology, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
- Department of Radiology, Yantai Yuhuangding Hospital, Yantai, China
| | - Xiaojun Xu
- Department of Radiology, The Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou, China
| | - Tong Han
- Department of Radiology, Tianjin Huanhu Hospital, Tianjin, China
| | - Zhenwei Yao
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Quan Zhang
- Department of Radiology, Characteristic Medical Center of Chinese People's Armed Police Force, Tianjin, China
| | - Wen Qin
- Department of Radiology, Tianjin Key Laboratory of Functional Imaging and State Key Laboratory of Experimental Hematology, Tianjin Medical University General Hospital, Tianjin, China
| | - Feng Liu
- Department of Radiology, Tianjin Key Laboratory of Functional Imaging and State Key Laboratory of Experimental Hematology, Tianjin Medical University General Hospital, Tianjin, China
| | - Meng Liang
- School of Medical Imaging and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University, Tianjin, China
| | - Sijia Wang
- Department of Radiology, Tianjin Key Laboratory of Functional Imaging and State Key Laboratory of Experimental Hematology, Tianjin Medical University General Hospital, Tianjin, China
| | - Qiang Xu
- Department of Radiology, Tianjin Key Laboratory of Functional Imaging and State Key Laboratory of Experimental Hematology, Tianjin Medical University General Hospital, Tianjin, China
| | - Jiayuan Xu
- Department of Radiology, Tianjin Key Laboratory of Functional Imaging and State Key Laboratory of Experimental Hematology, Tianjin Medical University General Hospital, Tianjin, China
| | - Jilian Fu
- Department of Radiology, Tianjin Key Laboratory of Functional Imaging and State Key Laboratory of Experimental Hematology, Tianjin Medical University General Hospital, Tianjin, China
| | - Peng Zhang
- Department of Radiology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University, Ministry of Education, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Wei Li
- Department of Radiology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University, Ministry of Education, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Dapeng Shi
- Department of Radiology, Henan Provincial People's Hospital & Zhengzhou University People's Hospital, Zhengzhou, China
| | - Caihong Wang
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Su Lui
- Department of Radiology, Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China
| | - Zhihan Yan
- Department of Radiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Feng Chen
- Department of Radiology, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, China
| | - Jing Zhang
- Department of Magnetic Resonance, Lanzhou University Second Hospital, Lanzhou, China
- Gansu Province Clinical Research Center for Functional and Molecular Imaging, Lanzhou, China
| | - Wen Shen
- Department of Radiology, Tianjin First Center Hospital, Tianjin, China
| | - Yanwei Miao
- Department of Radiology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Dawei Wang
- Department of Radiology, Qilu Hospital of Shandong University, Jinan, China
| | - Jia-Hong Gao
- Center for MRI Research, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Xiaochu Zhang
- Division of Life Science and Medicine, University of Science & Technology of China, Hefei, China
| | - Kai Xu
- Department of Radiology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Xi-Nian Zuo
- Developmental Population Neuroscience Research Center at IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
- Institute of Psychology, Chinese Academy of Sciences, Beijing, China
| | - Longjiang Zhang
- Department of Radiology, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Zhaoxiang Ye
- Department of Radiology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University, Ministry of Education, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Mulin Jun Li
- Department of Bioinformatics, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Junfang Xian
- Department of Radiology, Beijing Tongren Hospital, Capital Medical University, Beijing, China.
| | - Bing Zhang
- Department of Radiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China.
| | - Chunshui Yu
- Department of Radiology, Tianjin Key Laboratory of Functional Imaging and State Key Laboratory of Experimental Hematology, Tianjin Medical University General Hospital, Tianjin, China.
- School of Medical Imaging and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University, Tianjin, China.
| |
Collapse
|
8
|
Ottensmann L, Tabassum R, Ruotsalainen SE, Gerl MJ, Klose C, McCartney DL, Widén E, Simons K, Ripatti S, Vitart V, Hayward C, Pirinen M. Examining the link between 179 lipid species and 7 diseases using genetic predictors. EBioMedicine 2025; 114:105671. [PMID: 40157129 PMCID: PMC11995710 DOI: 10.1016/j.ebiom.2025.105671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 03/12/2025] [Accepted: 03/13/2025] [Indexed: 04/01/2025] Open
Abstract
BACKGROUND Genome-wide association studies of lipid species have identified several loci shared with various diseases, however, the relationship between lipid species and disease risk remains poorly understood. Here we investigated whether the plasma levels of lipid species are causally linked to disease risk. METHODS We built genetic predictors of 179 lipid species, measured in 7174 Finnish individuals, by utilising either 11 high-impact genomic loci or genome-wide polygenic scores (PGS). We assessed the impact of the lipid species on seven diseases by performing disease association across FinnGen (n = 500,348), UK Biobank (n = 420,531), and Generation Scotland (n = 20,032). We performed univariable Mendelian randomisation (MR) and multivariable MR (MVMR) analyses to examine whether lipid species impact disease risk independently of standard lipids. FINDINGS PGS explained >4% of the variance for 34 lipid species but variants outside the high-impact loci had only a marginal contribution. Variants within the high-impact loci showed association with all seven diseases. MVMR supported a causal role of ApoB in ischaemic heart disease after accounting for lipid species. Phosphatidylethanolamine-increasing LIPC variants seemed to lower age-related macular degeneration risk independently of HDL-cholesterol. MVMR suggested a protective effect of four lipid species containing arachidonic acid on cholelithiasis risk independently of Total Cholesterol. INTERPRETATION Our study demonstrates how genetic predictors of lipid species can be utilised to gain insights into disease risk. We report potential links between lipid species and age-related macular degeneration and cholelithiasis risk, which can be explored for their utility in disease risk prediction and therapy. FUNDING The funders had no role in the study design, data analyses, interpretation, or writing of this article.
Collapse
Affiliation(s)
- Linda Ottensmann
- Institute for Molecular Medicine Finland, HiLIFE, University of Helsinki, Helsinki, Finland; Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Western General Hospital, Edinburgh, United Kingdom.
| | - Rubina Tabassum
- Institute for Molecular Medicine Finland, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Sanni E Ruotsalainen
- Institute for Molecular Medicine Finland, HiLIFE, University of Helsinki, Helsinki, Finland
| | | | | | - Daniel L McCartney
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Western General Hospital, Edinburgh, United Kingdom
| | - Elisabeth Widén
- Institute for Molecular Medicine Finland, HiLIFE, University of Helsinki, Helsinki, Finland
| | | | - Samuli Ripatti
- Institute for Molecular Medicine Finland, HiLIFE, University of Helsinki, Helsinki, Finland; Department of Public Health, Clinicum, Faculty of Medicine, University of Helsinki, Helsinki, Finland; Broad Institute of the Massachusetts Institute of Technology and Harvard University, Cambridge, MA, USA
| | - Veronique Vitart
- Medical Research Council Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Western General Hospital, Edinburgh, United Kingdom
| | - Caroline Hayward
- Medical Research Council Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Western General Hospital, Edinburgh, United Kingdom
| | - Matti Pirinen
- Institute for Molecular Medicine Finland, HiLIFE, University of Helsinki, Helsinki, Finland; Department of Public Health, Clinicum, Faculty of Medicine, University of Helsinki, Helsinki, Finland; Department of Mathematics and Statistics, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
9
|
Baya NA, Erdem IS, Venkatesh SS, Reibe S, Charles PD, Navarro-Guerrero E, Hill B, Lassen FH, Claussnitzer M, Palmer DS, Lindgren CM. Combining evidence from human genetic and functional screens to identify pathways altering obesity and fat distribution. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2025:2024.09.19.24313913. [PMID: 39371160 PMCID: PMC11451655 DOI: 10.1101/2024.09.19.24313913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
Overall adiposity and body fat distribution are heritable traits associated with altered risk of cardiometabolic disease and mortality. Performing rare variant (minor allele frequency<1%) association testing using exome-sequencing data from 402,375 participants in the UK Biobank (UKB) for nine overall and tissue-specific fat distribution traits, we identified 19 genes where putatively damaging rare variation associated with at least one trait (Bonferroni-adjusted P <1.58×10 -7 ) and 50 additional genes at FDR≤1% ( P ≤4.37×10 -5 ). These 69 genes exhibited significantly higher (one-sided t -test P =3.58×10 -18 ) common variant prioritisation scores than genes not significantly enriched for rare putatively damaging variation, with evidence of monotonic allelic series (dose-response relationships) among ultra-rare variants (minor allele count≤10) in 22 genes. Combining rare and common variation evidence, allelic series and longitudinal analysis, we selected 14 genes for CRISPR knockdown in human white adipose tissue cell lines. In three previously uncharacterised target genes, knockdown increased (two-sided t -test P <0.05) lipid accumulation, a cellular phenotype relevant for fat mass traits, compared to Cas9-empty negative controls: COL5A3 (fold change [FC]=1.72, P =0.0028), EXOC7 (FC=1.35, P =0.0096), and TRIP10 (FC=1.39, P =0.0157); furthermore, knockdown of PPARG (FC=0.25, P =5.52×10 -7 ) and SLTM (FC=0.51, P =1.91×10 -4 ) resulted in reduced lipid accumulation. Integrating across population-based genetic and in vitro functional evidence, we highlight therapeutic avenues for altering obesity and body fat distribution by modulating lipid accumulation.
Collapse
|
10
|
Pouget JG, Giratallah H, Langlois AWR, El-Boraie A, Lerman C, Knight J, Cox LS, Nollen NL, Ahluwalia JS, Benner C, Chenoweth MJ, Tyndale RF. Fine-mapping the CYP2A6 regional association with nicotine metabolism among African American smokers. Mol Psychiatry 2025; 30:943-953. [PMID: 39217253 DOI: 10.1038/s41380-024-02703-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 08/14/2024] [Accepted: 08/16/2024] [Indexed: 09/04/2024]
Abstract
The nicotine metabolite ratio (NMR; 3'hydroxycotinine/cotinine) is a stable biomarker for CYP2A6 enzyme activity and nicotine clearance, with demonstrated clinical utility in personalizing smoking cessation treatment. Common genetic variation in the CYP2A6 region is strongly associated with NMR in smokers. Here, we investigated this regional association in more detail. We evaluated the association of CYP2A6 single-nucleotide polymorphisms (SNPs) and * alleles with NMR among African American smokers (N = 953) from two clinical trials of smoking cessation. Stepwise conditional analysis and Bayesian fine-mapping were undertaken. Putative causal variants were incorporated into an existing African ancestry-specific genetic risk score (GRS) for NMR, and the performance of the updated GRS was evaluated in both African American (n = 953) and European ancestry smokers (n = 933) from these clinical trials. Five independent associations with NMR in the CYP2A6 region were identified using stepwise conditional analysis, including the deletion variant CYP2A6*4 (beta = -0.90, p = 1.55 × 10-11). Six putative causal variants were identified using Bayesian fine-mapping (posterior probability, PP = 0.67), with the top causal configuration including CYP2A6*4, rs116670633, CYP2A6*9, rs28399451, rs8192720, and rs10853742 (PP = 0.09). Incorporating these putative causal variants into an existing ancestry-specific GRS resulted in comparable prediction of NMR within African American smokers, and improved trans-ancestry portability of the GRS to European smokers. Our findings suggest that both * alleles and SNPs underlie the association of the CYP2A6 region with NMR among African American smokers, identify a shortlist of variants that may causally influence nicotine clearance, and suggest that portability of GRSs across populations can be improved through inclusion of putative causal variants.
Collapse
Affiliation(s)
- Jennie G Pouget
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Haidy Giratallah
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Pharmacology & Toxicology, University of Toronto, Toronto, ON, Canada
| | - Alec W R Langlois
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Pharmacology & Toxicology, University of Toronto, Toronto, ON, Canada
| | - Ahmed El-Boraie
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Pharmacology & Toxicology, University of Toronto, Toronto, ON, Canada
| | - Caryn Lerman
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, USA
| | - Jo Knight
- Data Science Institute and Medical School, Lancaster University, Lancaster, UK
| | - Lisa Sanderson Cox
- Department of Population Health, University of Kansas School of Medicine, Kansas City, KS, USA
| | - Nikki L Nollen
- Department of Population Health, University of Kansas School of Medicine, Kansas City, KS, USA
| | - Jasjit S Ahluwalia
- Departments of Behavioral and Social Sciences and Medicine, Brown University, Providence, RI, USA
| | - Christian Benner
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
| | - Meghan J Chenoweth
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
- Department of Pharmacology & Toxicology, University of Toronto, Toronto, ON, Canada
| | - Rachel F Tyndale
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada.
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada.
- Department of Pharmacology & Toxicology, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
11
|
Schipper M, de Leeuw CA, Maciel BAPC, Wightman DP, Hubers N, Boomsma DI, O'Donovan MC, Posthuma D. Prioritizing effector genes at trait-associated loci using multimodal evidence. Nat Genet 2025; 57:323-333. [PMID: 39930082 DOI: 10.1038/s41588-025-02084-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 01/08/2025] [Indexed: 02/14/2025]
Abstract
Genome-wide association studies (GWAS) yield large numbers of genetic loci associated with traits and diseases. Predicting the effector genes that mediate these locus-trait associations remains challenging. Here we present the FLAMES (fine-mapped locus assessment model of effector genes) framework, which predicts the most likely effector gene in a locus. FLAMES creates machine learning predictions from biological data linking single-nucleotide polymorphisms to genes, and then evaluates these scores together with gene-centric evidence of convergence of the GWAS signal in functional networks. We benchmark FLAMES on gene-locus pairs derived by expert curation, rare variant implication and domain knowledge of molecular traits. We demonstrate that combining single-nucleotide-polymorphism-based and convergence-based modalities outperforms prioritization strategies using a single line of evidence. Applying FLAMES, we resolve the FSHB locus in the GWAS for dizygotic twinning and further leverage this framework to find schizophrenia risk genes that converge with rare coding evidence and are relevant in different stages of life.
Collapse
Affiliation(s)
- Marijn Schipper
- Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.
| | - Christiaan A de Leeuw
- Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Bernardo A P C Maciel
- Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Douglas P Wightman
- Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Nikki Hubers
- Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Netherlands Twin Register, Department of Biological Psychology, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Amsterdam Reproduction & Development (AR&D) research institute, Amsterdam, The Netherlands
| | - Dorret I Boomsma
- Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Amsterdam Reproduction & Development (AR&D) research institute, Amsterdam, The Netherlands
| | - Michael C O'Donovan
- Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine & Clinical Neurosciences, Cardiff University, Cardiff, UK
| | - Danielle Posthuma
- Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Department of Child and Adolescent Psychiatry and Pediatric Psychology, Section Complex Trait Genetics, Amsterdam Neuroscience, Vrije Universiteit Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
12
|
Kunkel D, Sørensen P, Shankar V, Morgante F. Improving polygenic prediction from summary data by learning patterns of effect sharing across multiple phenotypes. PLoS Genet 2025; 21:e1011519. [PMID: 39775068 PMCID: PMC11741642 DOI: 10.1371/journal.pgen.1011519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 01/17/2025] [Accepted: 11/27/2024] [Indexed: 01/11/2025] Open
Abstract
Polygenic prediction of complex trait phenotypes has become important in human genetics, especially in the context of precision medicine. Recently, mr.mash, a flexible and computationally efficient method that models multiple phenotypes jointly and leverages sharing of effects across such phenotypes to improve prediction accuracy, was introduced. However, a drawback of mr.mash is that it requires individual-level data, which are often not publicly available. In this work, we introduce mr.mash-rss, an extension of the mr.mash model that requires only summary statistics from Genome-Wide Association Studies (GWAS) and linkage disequilibrium (LD) estimates from a reference panel. By using summary data, we achieve the twin goal of increasing the applicability of the mr.mash model to data sets that are not publicly available and making it scalable to biobank-size data. Through simulations, we show that mr.mash-rss is competitive with, and often outperforms, current state-of-the-art methods for single- and multi-phenotype polygenic prediction in a variety of scenarios that differ in the pattern of effect sharing across phenotypes, the number of phenotypes, the number of causal variants, and the genomic heritability. We also present a real data analysis of 16 blood cell phenotypes in the UK Biobank, showing that mr.mash-rss achieves higher prediction accuracy than competing methods for the majority of traits, especially when the data set has smaller sample size.
Collapse
Affiliation(s)
- Deborah Kunkel
- School of Mathematical and Statistical Sciences, Clemson University, Clemson, South Carolina, United States of America
| | - Peter Sørensen
- Center for Quantitative Genetics and Genomics, Aarhus University, Aarhus, Denmark
| | - Vijay Shankar
- Center for Human Genetics, Clemson University, Greenwood, South Carolina, United States of America
| | - Fabio Morgante
- Center for Human Genetics, Clemson University, Greenwood, South Carolina, United States of America
- Department of Genetics and Biochemistry, Clemson University, Clemson, South Carolina, United States of America
| |
Collapse
|
13
|
Benner C, Mahajan A, Pirinen M. Refining fine-mapping: Effect sizes and regional heritability. PLoS Genet 2025; 21:e1011480. [PMID: 39787248 PMCID: PMC11753704 DOI: 10.1371/journal.pgen.1011480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 01/22/2025] [Accepted: 11/01/2024] [Indexed: 01/12/2025] Open
Abstract
Recent statistical approaches have shown that the set of all available genetic variants explains considerably more phenotypic variance of complex traits and diseases than the individual variants that are robustly associated with these phenotypes. However, rapidly increasing sample sizes constantly improve detection and prioritization of individual variants driving the associations between genomic regions and phenotypes. Therefore, it is useful to routinely estimate how much phenotypic variance the detected variants explain for each region by taking into account the correlation structure of variants and the uncertainty in their causal status. Here we extend the FINEMAP software to estimate the effect sizes and regional heritability under the probabilistic model that assumes a handful of causal variants per region. Using the UK Biobank (UKB) data to simulate genomic regions, we demonstrate that FINEMAP provides higher precision and enables more detailed decomposition of regional heritability into individual variants than the variance component model implemented in BOLT or the fixed-effect model implemented in HESS, particularly when there are only a few causal variants in the fine-mapped region. Using data from 2,940 plasma proteins from the UKB study, we observed that on average FINEMAP identified 2.5 causal variants at an association signal and captured 36% more regional heritability than the variant with the lowest P-value. We estimate that in genomic regions with notable contribution to the total heritability, FINEMAP captures on average 13% and 40% more heritability than BOLT and HESS respectively. Our analysis shows how FINEMAP, BOLT and HESS relate to each other in cases where inference of a variant-level picture of the regional genetic architecture is possible.
Collapse
Affiliation(s)
- Christian Benner
- Genentech, South San Francisco, California, United States of America
| | - Anubha Mahajan
- Genentech, South San Francisco, California, United States of America
| | - Matti Pirinen
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland
- Department of Public Health, University of Helsinki, Helsinki, Finland
- Department of Mathematics and Statistics, University of Helsinki, Helsinki, Finland
| |
Collapse
|
14
|
Zhang H, He K, Li Z, Tsoi LC, Zhou X. FABIO: TWAS fine-mapping to prioritize causal genes for binary traits. PLoS Genet 2024; 20:e1011503. [PMID: 39621803 DOI: 10.1371/journal.pgen.1011503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 12/16/2024] [Accepted: 11/14/2024] [Indexed: 12/17/2024] Open
Abstract
Transcriptome-wide association studies (TWAS) have emerged as a powerful tool for identifying gene-trait associations by integrating gene expression mapping studies with genome-wide association studies (GWAS). While most existing TWAS approaches focus on marginal analyses through examining one gene at a time, recent developments in TWAS fine-mapping methods enable the joint modeling of multiple genes to refine the identification of potentially causal ones. However, these fine-mapping methods have primarily focused on modeling quantitative traits and examining local genomic regions, leading to potentially suboptimal performance. Here, we present FABIO, a TWAS fine-mapping method specifically designed for binary traits that is capable of modeling all genes jointly on an entire chromosome. FABIO employs a probit model to directly link the genetically regulated expression (GReX) of genes to binary outcomes while taking into account the GReX correlation among all genes residing on a chromosome. As a result, FABIO effectively controls false discoveries while offering substantial power gains over existing TWAS fine-mapping approaches. We performed extensive simulations to evaluate the performance of FABIO and applied it for in-depth analyses of six binary disease traits in the UK Biobank. In the real datasets, FABIO significantly reduced the size of the causal gene sets by 27.9%-36.9% over existing approaches across traits. Leveraging its improved power, FABIO successfully prioritized multiple potentially causal genes associated with the diseases, including GATA3 for asthma, ABCG2 for gout, and SH2B3 for hypertension. Overall, FABIO represents an effective tool for TWAS fine-mapping of disease traits.
Collapse
Affiliation(s)
- Haihan Zhang
- Department of Biostatistics, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Kevin He
- Department of Biostatistics, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Zheng Li
- Department of Biostatistics, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Lam C Tsoi
- Department of Biostatistics, University of Michigan, Ann Arbor, Michigan, United States of America
- Department of Dermatology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Xiang Zhou
- Department of Biostatistics, University of Michigan, Ann Arbor, Michigan, United States of America
| |
Collapse
|
15
|
Ma XR, Conley SD, Kosicki M, Bredikhin D, Cui R, Tran S, Sheth MU, Qiu WL, Chen S, Kundu S, Kang HY, Amgalan D, Munger CJ, Duan L, Dang K, Rubio OM, Kany S, Zamirpour S, DePaolo J, Padmanabhan A, Olgin J, Damrauer S, Andersson R, Gu M, Priest JR, Quertermous T, Qiu X, Rabinovitch M, Visel A, Pennacchio L, Kundaje A, Glass IA, Gifford CA, Pirruccello JP, Goodyer WR, Engreitz JM. Molecular convergence of risk variants for congenital heart defects leveraging a regulatory map of the human fetal heart. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.11.20.24317557. [PMID: 39606363 PMCID: PMC11601760 DOI: 10.1101/2024.11.20.24317557] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Congenital heart defects (CHD) arise in part due to inherited genetic variants that alter genes and noncoding regulatory elements in the human genome. These variants are thought to act during fetal development to influence the formation of different heart structures. However, identifying the genes, pathways, and cell types that mediate these effects has been challenging due to the immense diversity of cell types involved in heart development as well as the superimposed complexities of interpreting noncoding sequences. As such, understanding the molecular functions of both noncoding and coding variants remains paramount to our fundamental understanding of cardiac development and CHD. Here, we created a gene regulation map of the healthy human fetal heart across developmental time, and applied it to interpret the functions of variants associated with CHD and quantitative cardiac traits. We collected single-cell multiomic data from 734,000 single cells sampled from 41 fetal hearts spanning post-conception weeks 6 to 22, enabling the construction of gene regulation maps in 90 cardiac cell types and states, including rare populations of cardiac conduction cells. Through an unbiased analysis of all 90 cell types, we find that both rare coding variants associated with CHD and common noncoding variants associated with valve traits converge to affect valvular interstitial cells (VICs). VICs are enriched for high expression of known CHD genes previously identified through mapping of rare coding variants. Eight CHD genes, as well as other genes in similar molecular pathways, are linked to common noncoding variants associated with other valve diseases or traits via enhancers in VICs. In addition, certain common noncoding variants impact enhancers with activities highly specific to particular subanatomic structures in the heart, illuminating how such variants can impact specific aspects of heart structure and function. Together, these results implicate new enhancers, genes, and cell types in the genetic etiology of CHD, identify molecular convergence of common noncoding and rare coding variants on VICs, and suggest a more expansive view of the cell types instrumental in genetic risk for CHD, beyond the working cardiomyocyte. This regulatory map of the human fetal heart will provide a foundational resource for understanding cardiac development, interpreting genetic variants associated with heart disease, and discovering targets for cell-type specific therapies.
Collapse
Affiliation(s)
- X Rosa Ma
- Basic Science and Engineering (BASE) Initiative, Stanford Children's Health, Betty Irene Moore Children's Heart Center, Stanford, CA, USA
- Department of Genetics, Stanford University, Stanford, CA, USA
| | - Stephanie D Conley
- Basic Science and Engineering (BASE) Initiative, Stanford Children's Health, Betty Irene Moore Children's Heart Center, Stanford, CA, USA
- Department of Genetics, Stanford University, Stanford, CA, USA
| | - Michael Kosicki
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Danila Bredikhin
- Basic Science and Engineering (BASE) Initiative, Stanford Children's Health, Betty Irene Moore Children's Heart Center, Stanford, CA, USA
- Department of Genetics, Stanford University, Stanford, CA, USA
| | - Ran Cui
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- The Novo Nordisk Foundation Center for Genomic Mechanisms of Disease, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Steven Tran
- Department of Pediatrics, Stanford University, Stanford, CA, USA
| | - Maya U Sheth
- Basic Science and Engineering (BASE) Initiative, Stanford Children's Health, Betty Irene Moore Children's Heart Center, Stanford, CA, USA
- Department of Genetics, Stanford University, Stanford, CA, USA
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Wei-Lin Qiu
- The Novo Nordisk Foundation Center for Genomic Mechanisms of Disease, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Sijie Chen
- Basic Science and Engineering (BASE) Initiative, Stanford Children's Health, Betty Irene Moore Children's Heart Center, Stanford, CA, USA
- Department of Genetics, Stanford University, Stanford, CA, USA
- Department of Computer Science, Stanford University, Stanford, CA, USA
| | - Soumya Kundu
- Department of Genetics, Stanford University, Stanford, CA, USA
- Department of Computer Science, Stanford University, Stanford, CA, USA
| | - Helen Y Kang
- Basic Science and Engineering (BASE) Initiative, Stanford Children's Health, Betty Irene Moore Children's Heart Center, Stanford, CA, USA
- Department of Genetics, Stanford University, Stanford, CA, USA
- Current address: PhD Program in Computational and Systems Biology, MIT, Cambridge, MA, USA
| | - Dulguun Amgalan
- Basic Science and Engineering (BASE) Initiative, Stanford Children's Health, Betty Irene Moore Children's Heart Center, Stanford, CA, USA
- Department of Genetics, Stanford University, Stanford, CA, USA
- Maternal and Child Health Research Institute, Stanford University, Stanford, CA, USA
| | - Chad J Munger
- Basic Science and Engineering (BASE) Initiative, Stanford Children's Health, Betty Irene Moore Children's Heart Center, Stanford, CA, USA
- Department of Genetics, Stanford University, Stanford, CA, USA
| | - Lauren Duan
- Department of Pediatrics, Stanford University, Stanford, CA, USA
| | - Katherine Dang
- Department of Pediatrics, Stanford University, Stanford, CA, USA
| | - Oriane Matthys Rubio
- Basic Science and Engineering (BASE) Initiative, Stanford Children's Health, Betty Irene Moore Children's Heart Center, Stanford, CA, USA
- Department of Pediatrics, Stanford University, Stanford, CA, USA
| | - Shinwan Kany
- Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
- Department of Cardiology, University Heart and Vascular Center Hamburg-Eppendorf, Hamburg, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Siavash Zamirpour
- School of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - John DePaolo
- Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Arun Padmanabhan
- Gladstone Institutes, San Francisco, CA, USA
- Department of Medicine, University of California San Francisco School of Medicine, San Francisco, CA, USA
- Chan Zuckerberg Biohub, San Francisco, CA, USA
| | - Jeffrey Olgin
- Division of Cardiology, Department of Medicine and Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA, USA
| | - Scott Damrauer
- Division of Vascular Surgery and Endovascular Therapy, Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Corporal Michael Crescenz VA Medical Center, Philadelphia, PA, USA
- Penn Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Robin Andersson
- The Novo Nordisk Foundation Center for Genomic Mechanisms of Disease, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Mingxia Gu
- Center for Stem Cell and Organoid Medicine, Division of Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- University of Cincinnati School of Medicine, Cincinnati, OH, USA
| | - James R Priest
- Department of Pediatrics, Stanford University, Stanford, CA, USA
- Tenaya Therapeutics, South San Francisco, CA, USA
| | - Thomas Quertermous
- Department of Genetics, Stanford University, Stanford, CA, USA
- Department of Medicine, Stanford University, Stanford, CA, USA
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA, USA
| | - Xiaojie Qiu
- Basic Science and Engineering (BASE) Initiative, Stanford Children's Health, Betty Irene Moore Children's Heart Center, Stanford, CA, USA
- Department of Genetics, Stanford University, Stanford, CA, USA
- Department of Computer Science, Stanford University, Stanford, CA, USA
- Maternal and Child Health Research Institute, Stanford University, Stanford, CA, USA
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA, USA
- Stanford Bio-X, Stanford University, Stanford, CA, USA
| | - Marlene Rabinovitch
- Basic Science and Engineering (BASE) Initiative, Stanford Children's Health, Betty Irene Moore Children's Heart Center, Stanford, CA, USA
- Department of Pediatrics, Stanford University, Stanford, CA, USA
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA, USA
- Vera Moulton Wall Center for Pulmonary Vascular Diseases, Stanford University, Stanford, CA, USA
| | - Axel Visel
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- School of Natural Sciences, University of California, Merced, Merced, CA, USA
| | - Len Pennacchio
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Comparative Biochemistry Program, University of California, Berkeley, CA, 94720, USA
| | - Anshul Kundaje
- Department of Genetics, Stanford University, Stanford, CA, USA
- Department of Computer Science, Stanford University, Stanford, CA, USA
| | - Ian A Glass
- Maternal and Child Health Research Institute, Stanford University, Stanford, CA, USA
- Department of Pediatrics and Medicine, University of Washington School of Medicine, Seattle, WA, USA
| | - Casey A Gifford
- Basic Science and Engineering (BASE) Initiative, Stanford Children's Health, Betty Irene Moore Children's Heart Center, Stanford, CA, USA
- Department of Genetics, Stanford University, Stanford, CA, USA
- Department of Pediatrics, Stanford University, Stanford, CA, USA
- Maternal and Child Health Research Institute, Stanford University, Stanford, CA, USA
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA, USA
| | - James P Pirruccello
- Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Division of Cardiology, Department of Medicine and Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA, USA
- Institute for Human Genetics, University of California, San Francisco, CA, USA
- Bakar Computation Health Sciences Institute, University of California, San Francisco, CA, USA
| | - William R Goodyer
- Department of Pediatrics, Stanford University, Stanford, CA, USA
- Maternal and Child Health Research Institute, Stanford University, Stanford, CA, USA
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA, USA
| | - Jesse M Engreitz
- Basic Science and Engineering (BASE) Initiative, Stanford Children's Health, Betty Irene Moore Children's Heart Center, Stanford, CA, USA
- Department of Genetics, Stanford University, Stanford, CA, USA
- The Novo Nordisk Foundation Center for Genomic Mechanisms of Disease, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Maternal and Child Health Research Institute, Stanford University, Stanford, CA, USA
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA, USA
- Gene Regulation Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| |
Collapse
|
16
|
Goode EC, Fachal L, Panousis N, Moutsianas L, McIntyre RE, Bai BYH, Kawasaki N, Wittmann A, Raine T, Rushbrook SM, Anderson CA. Fine-mapping and molecular characterisation of primary sclerosing cholangitis genetic risk loci. Nat Commun 2024; 15:9594. [PMID: 39505854 PMCID: PMC11541731 DOI: 10.1038/s41467-024-53602-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 10/17/2024] [Indexed: 11/08/2024] Open
Abstract
Genome-wide association studies of primary sclerosing cholangitis have identified 23 susceptibility loci. The majority of these loci reside in non-coding regions of the genome and are thought to exert their effect by perturbing the regulation of nearby genes. Here, we aim to identify these genes to improve the biological understanding of primary sclerosing cholangitis, and nominate potential drug targets. We first build an eQTL map for six primary sclerosing cholangitis-relevant T-cell subsets obtained from the peripheral blood of primary sclerosing cholangitis and ulcerative colitis patients. These maps identify 10,459 unique eGenes, 87% of which are shared across all six primary sclerosing cholangitis T-cell types. We then search for colocalisations between primary sclerosing cholangitis loci and eQTLs and undertake Bayesian fine-mapping to identify disease-causing variants. In this work, colocalisation analyses nominate likely primary sclerosing cholangitis effector genes and biological mechanisms at five non-coding (UBASH3A, PRKD2, ETS2 and AP003774.1/CCDC88B) and one coding (SH2B3) primary sclerosing cholangitis loci. Through fine-mapping we identify likely causal variants for a third of all primary sclerosing cholangitis-associated loci, including two to single variant resolution.
Collapse
Affiliation(s)
- Elizabeth C Goode
- Wellcome Sanger Institute, Hinxton, Cambridge, UK
- University of Cambridge, Cambridge, UK
- Norfolk and Norwich University Hospital, Norwich, UK
| | - Laura Fachal
- Wellcome Sanger Institute, Hinxton, Cambridge, UK
| | | | | | | | - Benjamin Yu Hang Bai
- Wellcome Sanger Institute, Hinxton, Cambridge, UK
- University of Cambridge, Cambridge, UK
| | | | | | - Tim Raine
- University of Cambridge, Cambridge, UK
| | - Simon M Rushbrook
- Norfolk and Norwich University Hospital, Norwich, UK
- Norwich Medical School, University of East Anglia, Norwich, UK
| | | |
Collapse
|
17
|
Bhattacharyya S, Ay F. Identifying genetic variants associated with chromatin looping and genome function. Nat Commun 2024; 15:8174. [PMID: 39289357 PMCID: PMC11408621 DOI: 10.1038/s41467-024-52296-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 08/30/2024] [Indexed: 09/19/2024] Open
Abstract
Here we present a comprehensive HiChIP dataset on naïve CD4 T cells (nCD4) from 30 donors and identify QTLs that associate with genotype-dependent and/or allele-specific variation of HiChIP contacts defining loops between active regulatory regions (iQTLs). We observe a substantial overlap between iQTLs and previously defined eQTLs and histone QTLs, and an enrichment for fine-mapped QTLs and GWAS variants. Furthermore, we describe a distinct subset of nCD4 iQTLs, for which the significant variation of chromatin contacts in nCD4 are translated into significant eQTL trends in CD4 T cell memory subsets. Finally, we define connectivity-QTLs as iQTLs that are significantly associated with concordant genotype-dependent changes in chromatin contacts over a broad genomic region (e.g., GWAS SNP in the RNASET2 locus). Our results demonstrate the importance of chromatin contacts as a complementary modality for QTL mapping and their power in identifying previously uncharacterized QTLs linked to cell-specific gene expression and connectivity.
Collapse
Affiliation(s)
| | - Ferhat Ay
- La Jolla Institute for Immunology, La Jolla, CA, USA.
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA.
| |
Collapse
|
18
|
Yuan K, Longchamps RJ, Pardiñas AF, Yu M, Chen TT, Lin SC, Chen Y, Lam M, Liu R, Xia Y, Guo Z, Shi W, Shen C, Daly MJ, Neale BM, Feng YCA, Lin YF, Chen CY, O'Donovan MC, Ge T, Huang H. Fine-mapping across diverse ancestries drives the discovery of putative causal variants underlying human complex traits and diseases. Nat Genet 2024; 56:1841-1850. [PMID: 39187616 PMCID: PMC11888783 DOI: 10.1038/s41588-024-01870-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 07/15/2024] [Indexed: 08/28/2024]
Abstract
Genome-wide association studies (GWAS) of human complex traits or diseases often implicate genetic loci that span hundreds or thousands of genetic variants, many of which have similar statistical significance. While statistical fine-mapping in individuals of European ancestry has made important discoveries, cross-population fine-mapping has the potential to improve power and resolution by capitalizing on the genomic diversity across ancestries. Here we present SuSiEx, an accurate and computationally efficient method for cross-population fine-mapping. SuSiEx integrates data from an arbitrary number of ancestries, explicitly models population-specific allele frequencies and linkage disequilibrium patterns, accounts for multiple causal variants in a genomic region and can be applied to GWAS summary statistics. We comprehensively assessed the performance of SuSiEx using simulations. We further showed that SuSiEx improves the fine-mapping of a range of quantitative traits available in both the UK Biobank and Taiwan Biobank, and improves the fine-mapping of schizophrenia-associated loci by integrating GWAS across East Asian and European ancestries.
Collapse
Affiliation(s)
- Kai Yuan
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
- Stanley Center for Psychiatric Research, the Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Ryan J Longchamps
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
- Stanley Center for Psychiatric Research, the Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Antonio F Pardiñas
- Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, UK
| | - Mingrui Yu
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
- Stanley Center for Psychiatric Research, the Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Tzu-Ting Chen
- Center for Neuropsychiatric Research, National Health Research Institutes, Miaoli, Taiwan
| | - Shu-Chin Lin
- Center for Neuropsychiatric Research, National Health Research Institutes, Miaoli, Taiwan
| | - Yu Chen
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
- Stanley Center for Psychiatric Research, the Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences and Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Max Lam
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Human Genetics, Genome Institute of Singapore, Singapore, Singapore
- Division of Psychiatry Research, the Zucker Hillside Hospital, Northwell Health, Glen Oaks, NY, USA
- Research Division Institute of Mental Health Singapore, Singapore, Singapore
| | - Ruize Liu
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
- Stanley Center for Psychiatric Research, the Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Yan Xia
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
- Stanley Center for Psychiatric Research, the Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Zhenglin Guo
- Stanley Center for Psychiatric Research, the Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Wenzhao Shi
- Digital Health China Technologies Corp. Ltd, Beijing, China
| | - Chengguo Shen
- Digital Health China Technologies Corp. Ltd, Beijing, China
| | - Mark J Daly
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
- Stanley Center for Psychiatric Research, the Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Benjamin M Neale
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
- Stanley Center for Psychiatric Research, the Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Yen-Chen A Feng
- Institute of Health Data Analytics and Statistics, College of Public Health, National Taiwan University, Taipei, Taiwan
- Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei, Taiwan
| | - Yen-Feng Lin
- Center for Neuropsychiatric Research, National Health Research Institutes, Miaoli, Taiwan
- Department of Public Health & Medical Humanities, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Institute of Behavioral Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | | | - Michael C O'Donovan
- Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, UK
| | - Tian Ge
- Stanley Center for Psychiatric Research, the Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA.
- Center for Precision Psychiatry, Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA.
| | - Hailiang Huang
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA.
- Stanley Center for Psychiatric Research, the Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Department of Medicine, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
19
|
Shen J, Jiang L, Wang K, Wang A, Chen F, Newcombe PJ, Haiman CA, Conti DV. Hierarchical joint analysis of marginal summary statistics-Part I: Multipopulation fine mapping and credible set construction. Genet Epidemiol 2024; 48:241-257. [PMID: 38606643 PMCID: PMC11980956 DOI: 10.1002/gepi.22562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 02/27/2024] [Accepted: 03/27/2024] [Indexed: 04/13/2024]
Abstract
Recent advancement in genome-wide association studies (GWAS) comes from not only increasingly larger sample sizes but also the shift in focus towards underrepresented populations. Multipopulation GWAS increase power to detect novel risk variants and improve fine-mapping resolution by leveraging evidence and differences in linkage disequilibrium (LD) from diverse populations. Here, we expand upon our previous approach for single-population fine-mapping through Joint Analysis of Marginal SNP Effects (JAM) to a multipopulation analysis (mJAM). Under the assumption that true causal variants are common across studies, we implement a hierarchical model framework that conditions on multiple SNPs while explicitly incorporating the different LD structures across populations. The mJAM framework can be used to first select index variants using the mJAM likelihood with different feature selection approaches. In addition, we present a novel approach leveraging the ideas of mediation to construct credible sets for these index variants. Construction of such credible sets can be performed given any existing index variants. We illustrate the implementation of the mJAM likelihood through two implementations: mJAM-SuSiE (a Bayesian approach) and mJAM-Forward selection. Through simulation studies based on realistic effect sizes and levels of LD, we demonstrated that mJAM performs well for constructing concise credible sets that include the underlying causal variants. In real data examples taken from the most recent multipopulation prostate cancer GWAS, we showed several practical advantages of mJAM over other existing multipopulation methods.
Collapse
Affiliation(s)
- Jiayi Shen
- Department of Population and Public Health Sciences, Division of Biostatistics, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Lai Jiang
- Department of Population and Public Health Sciences, Division of Biostatistics, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Kan Wang
- Department of Population and Public Health Sciences, Division of Biostatistics, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Anqi Wang
- Department of Population and Public Health Science, Center for Genetic Epidemiology, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Fei Chen
- Department of Population and Public Health Science, Center for Genetic Epidemiology, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | | | - Christopher A. Haiman
- Department of Population and Public Health Science, Center for Genetic Epidemiology, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
- Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - David V. Conti
- Department of Population and Public Health Sciences, Division of Biostatistics, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
- Department of Population and Public Health Science, Center for Genetic Epidemiology, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
- Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| |
Collapse
|
20
|
Zou Y, Carbonetto P, Xie D, Wang G, Stephens M. Fast and flexible joint fine-mapping of multiple traits via the Sum of Single Effects model. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.04.14.536893. [PMID: 37425935 PMCID: PMC10327118 DOI: 10.1101/2023.04.14.536893] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
We introduce mvSuSiE, a multi-trait fine-mapping method for identifying putative causal variants from genetic association data (individual-level or summary data). mvSuSiE learns patterns of shared genetic effects from data, and exploits these patterns to improve power to identify causal SNPs. Comparisons on simulated data show that mvSuSiE is competitive in speed, power and precision with existing multi-trait methods, and uniformly improves on single-trait fine-mapping (SuSiE) in each trait separately. We applied mvSuSiE to jointly fine-map 16 blood cell traits using data from the UK Biobank. By jointly analyzing the traits and modeling heterogeneous effect sharing patterns, we discovered a much larger number of causal SNPs (>3,000) compared with single-trait fine-mapping, and with narrower credible sets. mvSuSiE also more comprehensively characterized the ways in which the genetic variants affect one or more blood cell traits; 68% of causal SNPs showed significant effects in more than one blood cell type.
Collapse
Affiliation(s)
- Yuxin Zou
- Department of Statistics, University of Chicago, Chicago, IL, USA
- Regeneron Genetics Center, Regeneron Pharmaceuticals, Inc., Tarrytown, NY, USA
| | - Peter Carbonetto
- Department of Human Genetics, University of Chicago, Chicago, IL, USA
| | - Dongyue Xie
- Department of Statistics, University of Chicago, Chicago, IL, USA
| | - Gao Wang
- Gertrude. H. Sergievsky Center, Department of Neurology, Columbia University, New York, NY, USA
| | - Matthew Stephens
- Department of Statistics, University of Chicago, Chicago, IL, USA
- Department of Human Genetics, University of Chicago, Chicago, IL, USA
| |
Collapse
|
21
|
Strober BJ, Zhang MJ, Amariuta T, Rossen J, Price AL. Fine-mapping causal tissues and genes at disease-associated loci. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2023.11.01.23297909. [PMID: 37961337 PMCID: PMC10635248 DOI: 10.1101/2023.11.01.23297909] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Heritable diseases often manifest in a highly tissue-specific manner, with different disease loci mediated by genes in distinct tissues or cell types. We propose Tissue-Gene Fine-Mapping (TGFM), a fine-mapping method that infers the posterior probability (PIP) for each gene-tissue pair to mediate a disease locus by analyzing GWAS summary statistics (and in-sample LD) and leveraging eQTL data from diverse tissues to build cis-predicted expression models; TGFM also assigns PIPs to causal variants that are not mediated by gene expression in assayed genes and tissues. TGFM accounts for both co-regulation across genes and tissues and LD between SNPs (generalizing existing fine-mapping methods), and incorporates genome-wide estimates of each tissue's contribution to disease as tissue-level priors. TGFM was well-calibrated and moderately well-powered in simulations; unlike previous methods, TGFM was able to attain correct calibration by modeling uncertainty in cis-predicted expression models. We applied TGFM to 45 UK Biobank diseases/traits (average N = 316K) using eQTL data from 38 GTEx tissues. TGFM identified an average of 147 PIP > 0.5 causal genetic elements per disease/trait, of which 11% were gene-tissue pairs. Implicated gene-tissue pairs were concentrated in known disease-critical tissues, and causal genes were strongly enriched in disease-relevant gene sets. Causal gene-tissue pairs identified by TGFM recapitulated known biology (e.g., TPO-thyroid for Hypothyroidism), but also included biologically plausible novel findings (e.g., SLC20A2-artery aorta for Diastolic blood pressure). Further application of TGFM to single-cell eQTL data from 9 cell types in peripheral blood mononuclear cells (PBMC), analyzed jointly with GTEx tissues, identified 30 additional causal gene-PBMC cell type pairs at PIP > 0.5-primarily for autoimmune disease and blood cell traits, including the biologically plausible example of CD52 in classical monocyte cells for Monocyte count. In conclusion, TGFM is a robust and powerful method for fine-mapping causal tissues and genes at disease-associated loci.
Collapse
Affiliation(s)
- Benjamin J. Strober
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Martin Jinye Zhang
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Computational Biology Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Tiffany Amariuta
- Halıcıoğlu Data Science Institute, University of California San Diego, La Jolla, CA, USA
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Jordan Rossen
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Alkes L. Price
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| |
Collapse
|
22
|
Zhao B, Zheng S, Zhu H. ON BLOCKWISE AND REFERENCE PANEL-BASED ESTIMATORS FOR GENETIC DATA PREDICTION IN HIGH DIMENSIONS. Ann Stat 2024; 52:948-965. [PMID: 39281348 PMCID: PMC11391480 DOI: 10.1214/24-aos2378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/18/2024]
Abstract
Genetic prediction holds immense promise for translating genetic discoveries into medical advances. As the high-dimensional covariance matrix (or the linkage disequilibrium (LD) pattern) of genetic variants often presents a block-diagonal structure, numerous methods account for the dependence among variants in predetermined local LD blocks. Moreover, due to privacy considerations and data protection concerns, genetic variant dependence in each LD block is typically estimated from external reference panels rather than the original training data set. This paper presents a unified analysis of blockwise and reference panel-based estimators in a high-dimensional prediction framework without sparsity restrictions. We find that, surprisingly, even when the covariance matrix has a block-diagonal structure with well-defined boundaries, blockwise estimation methods adjusting for local dependence can be substantially less accurate than methods controlling for the whole covariance matrix. Further, estimation methods built on the original training data set and external reference panels are likely to have varying performance in high dimensions, which may reflect the cost of having only access to summary level data from the training data set. This analysis is based on novel results in random matrix theory for block-diagonal covariance matrix. We numerically evaluate our results using extensive simulations and real data analysis in the UK Biobank.
Collapse
Affiliation(s)
- Bingxin Zhao
- Department of Statistics and Data Science, University of Pennsylvania
| | - Shurong Zheng
- School of Mathematics and Statistics, Northeast Normal University
| | - Hongtu Zhu
- Department of Biostatistics, University of North Carolina at Chapel Hill
| |
Collapse
|
23
|
Hautakangas H, FinnGen, International Headache Genetics Consortium, HUNT All-in Headache, Palotie A, Pirinen M. Fine-mapping a genome-wide meta-analysis of 98,374 migraine cases identifies 181 sets of candidate causal variants. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.05.20.24307608. [PMID: 39371129 PMCID: PMC11451805 DOI: 10.1101/2024.05.20.24307608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
Migraine is a highly prevalent neurovascular disorder for which genome-wide association studies (GWAS) have identified over one hundred risk loci, yet the causal variants and genes remain mostly unknown. Here, we meta-analyzed three migraine GWAS including 98,374 cases and 869,160 controls and identified 122 independent risk loci of which 35 were new. Fine-mapping of a meta-analysis is challenging because some variants may be missing from some participating studies and accurate linkage disequilibrium (LD) information of the variants is often not available. Here, using the exact in-sample LD, we first investigated which statistics could reliably capture the quality of fine-mapping when only reference LD was available. We observed that the posterior expected number of causal variants best distinguished between the high- and low-quality results. Next, we performed fine-mapping for 102 autosomal risk regions using FINEMAP. We produced high-quality fine-mapping for 93 regions and defined 181 distinct credible sets. Among the high-quality credible sets were 7 variants with very high posterior inclusion probability (PIP > 0.9) and 2 missense variants with PIP > 0.5 (rs6330 in NGF and rs1133400 in INPP5A). For 35 association signals, we managed to narrow down the set of potential risk variants to at most 5 variants.
Collapse
Affiliation(s)
- Heidi Hautakangas
- Institute for Molecular Medicine Finland (FIMM), Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Finland
| | | | | | | | - Aarno Palotie
- Institute for Molecular Medicine Finland (FIMM), Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Finland
- Analytic and Translational Genetics Unit, Department of Medicine, Department of Neurology and Department of Psychiatry Massachusetts General Hospital, Boston, MA, USA
- The Stanley Center for Psychiatric Research and Program in Medical and Population Genetics, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Matti Pirinen
- Institute for Molecular Medicine Finland (FIMM), Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Finland
- Department of Public Health, University of Helsinki, Helsinki, Finland
- Department of Mathematics and Statistics, University of Helsinki, Helsinki, Finland
| |
Collapse
|
24
|
Rossen J, Shi H, Strober BJ, Zhang MJ, Kanai M, McCaw ZR, Liang L, Weissbrod O, Price AL. MultiSuSiE improves multi-ancestry fine-mapping in All of Us whole-genome sequencing data. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.05.13.24307291. [PMID: 38798542 PMCID: PMC11118590 DOI: 10.1101/2024.05.13.24307291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Leveraging data from multiple ancestries can greatly improve fine-mapping power due to differences in linkage disequilibrium and allele frequencies. We propose MultiSuSiE, an extension of the sum of single effects model (SuSiE) to multiple ancestries that allows causal effect sizes to vary across ancestries based on a multivariate normal prior informed by empirical data. We evaluated MultiSuSiE via simulations and analyses of 14 quantitative traits leveraging whole-genome sequencing data in 47k African-ancestry and 94k European-ancestry individuals from All of Us. In simulations, MultiSuSiE applied to Afr47k+Eur47k was well-calibrated and attained higher power than SuSiE applied to Eur94k; interestingly, higher causal variant PIPs in Afr47k compared to Eur47k were entirely explained by differences in the extent of LD quantified by LD 4th moments. Compared to very recently proposed multi-ancestry fine-mapping methods, MultiSuSiE attained higher power and/or much lower computational costs, making the analysis of large-scale All of Us data feasible. In real trait analyses, MultiSuSiE applied to Afr47k+Eur94k identified 579 fine-mapped variants with PIP > 0.5, and MultiSuSiE applied to Afr47k+Eur47k identified 44% more fine-mapped variants with PIP > 0.5 than SuSiE applied to Eur94k. We validated MultiSuSiE results for real traits via functional enrichment of fine-mapped variants. We highlight several examples where MultiSuSiE implicates well-studied or biologically plausible fine-mapped variants that were not implicated by other methods.
Collapse
|
25
|
Sahu M, Vashishth S, Kukreti N, Gulia A, Russell A, Ambasta RK, Kumar P. Synergizing drug repurposing and target identification for neurodegenerative diseases. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2024; 205:111-169. [PMID: 38789177 DOI: 10.1016/bs.pmbts.2024.03.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2024]
Abstract
Despite dedicated research efforts, the absence of disease-curing remedies for neurodegenerative diseases (NDDs) continues to jeopardize human society and stands as a challenge. Drug repurposing is an attempt to find new functionality of existing drugs and take it as an opportunity to discourse the clinically unmet need to treat neurodegeneration. However, despite applying this approach to rediscover a drug, it can also be used to identify the target on which a drug could work. The primary objective of target identification is to unravel all the possibilities of detecting a new drug or repurposing an existing drug. Lately, scientists and researchers have been focusing on specific genes, a particular site in DNA, a protein, or a molecule that might be involved in the pathogenesis of the disease. However, the new era discusses directing the signaling mechanism involved in the disease progression, where receptors, ion channels, enzymes, and other carrier molecules play a huge role. This review aims to highlight how target identification can expedite the whole process of drug repurposing. Here, we first spot various target-identification methods and drug-repositioning studies, including drug-target and structure-based identification studies. Moreover, we emphasize various drug repurposing approaches in NDDs, namely, experimental-based, mechanism-based, and in silico approaches. Later, we draw attention to validation techniques and stress on drugs that are currently undergoing clinical trials in NDDs. Lastly, we underscore the future perspective of synergizing drug repurposing and target identification in NDDs and present an unresolved question to address the issue.
Collapse
Affiliation(s)
- Mehar Sahu
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University, Delhi, India
| | - Shrutikirti Vashishth
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University, Delhi, India
| | - Neha Kukreti
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University, Delhi, India
| | - Ashima Gulia
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University, Delhi, India
| | - Ashish Russell
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University, Delhi, India
| | - Rashmi K Ambasta
- Department of Biotechnology and Microbiology, SRM University, Sonepat, Haryana, India
| | - Pravir Kumar
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University, Delhi, India.
| |
Collapse
|
26
|
Kalnapenkis A, Jõeloo M, Lepik K, Kukuškina V, Kals M, Alasoo K, Mägi R, Esko T, Võsa U. Genetic determinants of plasma protein levels in the Estonian population. Sci Rep 2024; 14:7694. [PMID: 38565889 PMCID: PMC10987560 DOI: 10.1038/s41598-024-57966-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 03/23/2024] [Indexed: 04/04/2024] Open
Abstract
The proteome holds great potential as an intermediate layer between the genome and phenome. Previous protein quantitative trait locus studies have focused mainly on describing the effects of common genetic variations on the proteome. Here, we assessed the impact of the common and rare genetic variations as well as the copy number variants (CNVs) on 326 plasma proteins measured in up to 500 individuals. We identified 184 cis and 94 trans signals for 157 protein traits, which were further fine-mapped to credible sets for 101 cis and 87 trans signals for 151 proteins. Rare genetic variation contributed to the levels of 7 proteins, with 5 cis and 14 trans associations. CNVs were associated with the levels of 11 proteins (7 cis and 5 trans), examples including a 3q12.1 deletion acting as a hub for multiple trans associations; and a CNV overlapping NAIP, a sensor component of the NAIP-NLRC4 inflammasome which is affecting pro-inflammatory cytokine interleukin 18 levels. In summary, this work presents a comprehensive resource of genetic variation affecting the plasma protein levels and provides the interpretation of identified effects.
Collapse
Affiliation(s)
- Anette Kalnapenkis
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia.
- Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia.
| | - Maarja Jõeloo
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia
- Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| | - Kaido Lepik
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia
- Department of Computational Biology, University of Lausanne, Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
- University Center for Primary Care and Public Health, Lausanne, Switzerland
| | - Viktorija Kukuškina
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Mart Kals
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Kaur Alasoo
- Institute of Computer Science, University of Tartu, Tartu, Estonia
| | - Reedik Mägi
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Tõnu Esko
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia.
| | - Urmo Võsa
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia.
| |
Collapse
|
27
|
Toikumo S, Vickers-Smith R, Jinwala Z, Xu H, Saini D, Hartwell EE, Pavicic M, Sullivan KA, Xu K, Jacobson DA, Gelernter J, Rentsch CT, Million Veteran Program, Stahl E, Cheatle M, Zhou H, Waxman SG, Justice AC, Kember RL, Kranzler HR. A multi-ancestry genetic study of pain intensity in 598,339 veterans. Nat Med 2024; 30:1075-1084. [PMID: 38429522 PMCID: PMC12105102 DOI: 10.1038/s41591-024-02839-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Collaborators] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 01/27/2024] [Indexed: 03/03/2024]
Abstract
Chronic pain is a common problem, with more than one-fifth of adult Americans reporting pain daily or on most days. It adversely affects the quality of life and imposes substantial personal and economic costs. Efforts to treat chronic pain using opioids had a central role in precipitating the opioid crisis. Despite an estimated heritability of 25-50%, the genetic architecture of chronic pain is not well-characterized, in part because studies have largely been limited to samples of European ancestry. To help address this knowledge gap, we conducted a cross-ancestry meta-analysis of pain intensity in 598,339 participants in the Million Veteran Program, which identified 126 independent genetic loci, 69 of which are new. Pain intensity was genetically correlated with other pain phenotypes, level of substance use and substance use disorders, other psychiatric traits, education level and cognitive traits. Integration of the genome-wide association studies findings with functional genomics data shows enrichment for putatively causal genes (n = 142) and proteins (n = 14) expressed in brain tissues, specifically in GABAergic neurons. Drug repurposing analysis identified anticonvulsants, β-blockers and calcium-channel blockers, among other drug groups, as having potential analgesic effects. Our results provide insights into key molecular contributors to the experience of pain and highlight attractive drug targets.
Collapse
Affiliation(s)
- Sylvanus Toikumo
- Mental Illness Research, Education and Clinical Center, Crescenz VAMC, Philadelphia, PA, USA
- Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Rachel Vickers-Smith
- Mental Illness Research, Education and Clinical Center, Crescenz VAMC, Philadelphia, PA, USA
- Department of Epidemiology and Environmental Health, University of Kentucky College of Public Health, Lexington, KY, USA
| | - Zeal Jinwala
- Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Heng Xu
- Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Divya Saini
- Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Emily E Hartwell
- Mental Illness Research, Education and Clinical Center, Crescenz VAMC, Philadelphia, PA, USA
- Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Mirko Pavicic
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Kyle A Sullivan
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Ke Xu
- Veterans Affairs Connecticut Healthcare System, West Haven, CT, USA
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Daniel A Jacobson
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Joel Gelernter
- Veterans Affairs Connecticut Healthcare System, West Haven, CT, USA
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Christopher T Rentsch
- Veterans Affairs Connecticut Healthcare System, West Haven, CT, USA
- Department of Medicine, Yale University School of Medicine, New Haven, CT, USA
- London School of Hygiene & Tropical Medicine, London, UK
| | | | - Eli Stahl
- Regeneron Genetics Center, Tarrytown, NY, USA
| | - Martin Cheatle
- Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Hang Zhou
- Veterans Affairs Connecticut Healthcare System, West Haven, CT, USA
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- Section of Biomedical Informatics and Data Science, Yale University School of Medicine, New Haven, CT, USA
| | - Stephen G Waxman
- Veterans Affairs Connecticut Healthcare System, West Haven, CT, USA
- Department of Neurology, Yale University School of Medicine, New Haven, CT, USA
| | - Amy C Justice
- Veterans Affairs Connecticut Healthcare System, West Haven, CT, USA
- Department of Medicine, Yale University School of Medicine, New Haven, CT, USA
- Yale University School of Public Health, New Haven, CT, USA
| | - Rachel L Kember
- Mental Illness Research, Education and Clinical Center, Crescenz VAMC, Philadelphia, PA, USA
- Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Henry R Kranzler
- Mental Illness Research, Education and Clinical Center, Crescenz VAMC, Philadelphia, PA, USA.
- Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.
| |
Collapse
Collaborators
Mirko Pavicic,
Collapse
|
28
|
Zhao S, Crouse W, Qian S, Luo K, Stephens M, He X. Adjusting for genetic confounders in transcriptome-wide association studies improves discovery of risk genes of complex traits. Nat Genet 2024; 56:336-347. [PMID: 38279041 PMCID: PMC10864181 DOI: 10.1038/s41588-023-01648-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 12/14/2023] [Indexed: 01/28/2024]
Abstract
Many methods have been developed to leverage expression quantitative trait loci (eQTL) data to nominate candidate genes from genome-wide association studies. These methods, including colocalization, transcriptome-wide association studies (TWAS) and Mendelian randomization-based methods; however, all suffer from a key problem-when assessing the role of a gene in a trait using its eQTLs, nearby variants and genetic components of other genes' expression may be correlated with these eQTLs and have direct effects on the trait, acting as potential confounders. Our extensive simulations showed that existing methods fail to account for these 'genetic confounders', resulting in severe inflation of false positives. Our new method, causal-TWAS (cTWAS), borrows ideas from statistical fine-mapping and allows us to adjust all genetic confounders. cTWAS showed calibrated false discovery rates in simulations, and its application on several common traits discovered new candidate genes. In conclusion, cTWAS provides a robust statistical framework for gene discovery.
Collapse
Affiliation(s)
- Siming Zhao
- Department of Biomedical Data Science, Dartmouth College, Hanover, NH, USA.
- Department of Human Genetics, University of Chicago, Chicago, IL, USA.
- Dartmouth Cancer Center, Lebanon, NH, USA.
| | - Wesley Crouse
- Department of Human Genetics, University of Chicago, Chicago, IL, USA
| | - Sheng Qian
- Department of Human Genetics, University of Chicago, Chicago, IL, USA
| | - Kaixuan Luo
- Department of Human Genetics, University of Chicago, Chicago, IL, USA
| | - Matthew Stephens
- Department of Human Genetics, University of Chicago, Chicago, IL, USA.
- Department of Statistics, University of Chicago, Chicago, IL, USA.
| | - Xin He
- Department of Human Genetics, University of Chicago, Chicago, IL, USA.
| |
Collapse
|
29
|
Li X, Sham PC, Zhang YD. A Bayesian fine-mapping model using a continuous global-local shrinkage prior with applications in prostate cancer analysis. Am J Hum Genet 2024; 111:213-226. [PMID: 38171363 PMCID: PMC10870138 DOI: 10.1016/j.ajhg.2023.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 12/04/2023] [Accepted: 12/05/2023] [Indexed: 01/05/2024] Open
Abstract
The aim of fine mapping is to identify genetic variants causally contributing to complex traits or diseases. Existing fine-mapping methods employ Bayesian discrete mixture priors and depend on a pre-specified maximum number of causal variants, which may lead to sub-optimal solutions. In this work, we propose a Bayesian fine-mapping method called h2-D2, utilizing a continuous global-local shrinkage prior. We also present an approach to define credible sets of causal variants in continuous prior settings. Simulation studies demonstrate that h2-D2 outperforms current state-of-the-art fine-mapping methods such as SuSiE and FINEMAP in accurately identifying causal variants and estimating their effect sizes. We further applied h2-D2 to prostate cancer analysis and discovered some previously unknown causal variants. In addition, we inferred 369 target genes associated with the detected causal variants and several pathways that were significantly over-represented by these genes, shedding light on their potential roles in prostate cancer development and progression.
Collapse
Affiliation(s)
- Xiang Li
- Department of Statistics and Actuarial Science, The University of Hong Kong, Hong Kong SAR, China
| | - Pak Chung Sham
- Department of Psychiatry, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China; Centre for PanorOmic Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Yan Dora Zhang
- Department of Statistics and Actuarial Science, The University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
30
|
Sarsani V, Brotman SM, Xianyong Y, Fernandes Silva L, Laakso M, Spracklen CN. A cross-ancestry genome-wide meta-analysis, fine-mapping, and gene prioritization approach to characterize the genetic architecture of adiponectin. HGG ADVANCES 2024; 5:100252. [PMID: 37859345 PMCID: PMC10652123 DOI: 10.1016/j.xhgg.2023.100252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 10/16/2023] [Accepted: 10/16/2023] [Indexed: 10/21/2023] Open
Abstract
Previous genome-wide association studies (GWASs) for adiponectin, a complex trait linked to type 2 diabetes and obesity, identified >20 associated loci. However, most loci were identified in populations of European ancestry, and many of the target genes underlying the associations remain unknown. We conducted a cross-ancestry adiponectin GWAS meta-analysis in ≤46,434 individuals from the Metabolic Syndrome in Men (METSIM) cohort and the ADIPOGen and AGEN consortiums. We combined study-specific association summary statistics using a fixed-effects, inverse variance-weighted approach. We identified 22 loci associated with adiponectin (p < 5×10-8), including 15 known and seven previously unreported loci. Among individuals of European ancestry, Genome-wide Complex Traits Analysis joint conditional analysis (GCTA-COJO) identified 14 additional distinct signals at the ADIPOQ, CDH13, HCAR1, and ZNF664 loci. Leveraging the cross-ancestry data, FINEMAP + SuSiE identified 45 causal variants (PP > 0.9), which also exhibited potential pleiotropy for cardiometabolic traits. To prioritize target genes at associated loci, we propose a combinatorial likelihood scoring formalism (Gene Priority Score [GPScore]) based on measures derived from 11 gene prioritization strategies and the physical distance to the transcription start site. With GPScore, we prioritize the 30 most probable target genes underlying the adiponectin-associated variants in the cross-ancestry analysis, including well-known causal genes (e.g., ADIPOQ, CDH13) and additional genes (e.g., CSF1, RGS17). Functional association networks revealed complex interactions of prioritized genes, their functionally connected genes, and their underlying pathways centered around insulin and adiponectin signaling, indicating an essential role in regulating energy balance in the body, inflammation, coagulation, fibrinolysis, insulin resistance, and diabetes. Overall, our analyses identify and characterize adiponectin association signals and inform experimental interrogation of target genes for adiponectin.
Collapse
Affiliation(s)
- Vishal Sarsani
- Department of Mathematics and Statistics, University of Massachusetts Amherst, Amherst, MA, USA
| | - Sarah M Brotman
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Yin Xianyong
- Department of Biostatistics and Center for Statistical Genetics, University of Michigan School of Public Health, Ann Arbor, MI 48109, USA
| | - Lillian Fernandes Silva
- Institute of Clinical Medicine, Internal Medicine, University of Eastern Finland, Kuopio, Finland
| | - Markku Laakso
- Institute of Clinical Medicine, Internal Medicine, University of Eastern Finland, Kuopio, Finland
| | - Cassandra N Spracklen
- Department of Biostatistics and Epidemiology, University of Massachusetts Amherst, Amherst, MA, USA.
| |
Collapse
|
31
|
Ghatan S, van Rooij J, van Hoek M, Boer CG, Felix JF, Kavousi M, Jaddoe VW, Sijbrands EJG, Medina-Gomez C, Rivadeneira F, Oei L. Defining type 2 diabetes polygenic risk scores through colocalization and network-based clustering of metabolic trait genetic associations. Genome Med 2024; 16:10. [PMID: 38200577 PMCID: PMC10777532 DOI: 10.1186/s13073-023-01255-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 11/08/2023] [Indexed: 01/12/2024] Open
Abstract
BACKGROUND Type 2 diabetes (T2D) is a heterogeneous and polygenic disease. Previous studies have leveraged the highly polygenic and pleiotropic nature of T2D variants to partition the heterogeneity of T2D, in order to stratify patient risk and gain mechanistic insight. We expanded on these approaches by performing colocalization across GWAS traits while assessing the causality and directionality of genetic associations. METHODS We applied colocalization between T2D and 20 related metabolic traits, across 243 loci, to obtain inferences of shared casual variants. Network-based unsupervised hierarchical clustering was performed on variant-trait associations. Partitioned polygenic risk scores (PRSs) were generated for each cluster using T2D summary statistics and validated in 21,742 individuals with T2D from 3 cohorts. Inferences of directionality and causality were obtained by applying Mendelian randomization Steiger's Z-test and further validated in a pediatric cohort without diabetes (aged 9-12 years old, n = 3866). RESULTS We identified 146 T2D loci that colocalized with at least one metabolic trait locus. T2D variants within these loci were grouped into 5 clusters. The clusters corresponded to the following pathways: obesity, lipodystrophic insulin resistance, liver and lipid metabolism, hepatic glucose metabolism, and beta-cell dysfunction. We observed heterogeneity in associations between PRSs and metabolic measures across clusters. For instance, the lipodystrophic insulin resistance (Beta - 0.08 SD, 95% CI [- 0.10-0.07], p = 6.50 × 10-32) and beta-cell dysfunction (Beta - 0.10 SD, 95% CI [- 0.12, - 0.08], p = 1.46 × 10-47) PRSs were associated to lower BMI. Mendelian randomization Steiger analysis indicated that increased T2D risk in these pathways was causally associated to lower BMI. However, the obesity PRS was conversely associated with increased BMI (Beta 0.08 SD, 95% CI 0.06-0.10, p = 8.0 × 10-33). Analyses within a pediatric cohort supported this finding. Additionally, the lipodystrophic insulin resistance PRS was associated with a higher odds of chronic kidney disease (OR 1.29, 95% CI 1.02-1.62, p = 0.03). CONCLUSIONS We successfully partitioned T2D genetic variants into phenotypic pathways using a colocalization first approach. Partitioned PRSs were associated to unique metabolic and clinical outcomes indicating successful partitioning of disease heterogeneity. Our work expands on previous approaches by providing stronger inferences of shared causal variants, causality, and directionality of GWAS variant-trait associations.
Collapse
Affiliation(s)
- Samuel Ghatan
- Department of Internal Medicine, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Jeroen van Rooij
- Department of Internal Medicine, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Mandy van Hoek
- Department of Internal Medicine, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Cindy G Boer
- Department of Internal Medicine, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Janine F Felix
- The Generation R Study Group, Erasmus MC, Erasmus University Medical Center Rotterdam, Rotterdam, The Netherlands
- Department of Pediatrics, Erasmus MC, Erasmus University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Maryam Kavousi
- Department of Epidemiology, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Vincent W Jaddoe
- The Generation R Study Group, Erasmus MC, Erasmus University Medical Center Rotterdam, Rotterdam, The Netherlands
- Department of Pediatrics, Erasmus MC, Erasmus University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Eric J G Sijbrands
- Department of Internal Medicine, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Carolina Medina-Gomez
- Department of Internal Medicine, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Fernando Rivadeneira
- Department of Internal Medicine, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands.
| | - Ling Oei
- Department of Internal Medicine, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands
| |
Collapse
|
32
|
Cui R, Elzur RA, Kanai M, Ulirsch JC, Weissbrod O, Daly MJ, Neale BM, Fan Z, Finucane HK. Improving fine-mapping by modeling infinitesimal effects. Nat Genet 2024; 56:162-169. [PMID: 38036779 PMCID: PMC11056999 DOI: 10.1038/s41588-023-01597-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 10/26/2023] [Indexed: 12/02/2023]
Abstract
Fine-mapping aims to identify causal genetic variants for phenotypes. Bayesian fine-mapping algorithms (for example, SuSiE, FINEMAP, ABF and COJO-ABF) are widely used, but assessing posterior probability calibration remains challenging in real data, where model misspecification probably exists, and true causal variants are unknown. We introduce replication failure rate (RFR), a metric to assess fine-mapping consistency by downsampling. SuSiE, FINEMAP and COJO-ABF show high RFR, indicating potential overconfidence in their output. Simulations reveal that nonsparse genetic architecture can lead to miscalibration, while imputation noise, nonuniform distribution of causal variants and quality control filters have minimal impact. Here we present SuSiE-inf and FINEMAP-inf, fine-mapping methods modeling infinitesimal effects alongside fewer larger causal effects. Our methods show improved calibration, RFR and functional enrichment, competitive recall and computational efficiency. Notably, using our methods' posterior effect sizes substantially increases polygenic risk score accuracy over SuSiE and FINEMAP. Our work improves causal variant identification for complex traits, a fundamental goal of human genetics.
Collapse
Affiliation(s)
- Ran Cui
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA.
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- The Novo Nordisk Foundation Center for Genomic Mechanisms of Disease, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| | - Roy A Elzur
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Masahiro Kanai
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
- Department of Statistical Genetics, Osaka University Graduate School of Medicine, Suita, Japan
| | - Jacob C Ulirsch
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Program in Biological and Biomedical Sciences, Harvard Medical School, Boston, MA, USA
| | - Omer Weissbrod
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Mark J Daly
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
| | - Benjamin M Neale
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- The Novo Nordisk Foundation Center for Genomic Mechanisms of Disease, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Zhou Fan
- Department of Statistics and Data Science, Yale University, New Haven, CT, USA.
| | - Hilary K Finucane
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA.
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
33
|
Kuderna LFK, Ulirsch JC, Rashid S, Ameen M, Sundaram L, Hickey G, Cox AJ, Gao H, Kumar A, Aguet F, Christmas MJ, Clawson H, Haeussler M, Janiak MC, Kuhlwilm M, Orkin JD, Bataillon T, Manu S, Valenzuela A, Bergman J, Rouselle M, Silva FE, Agueda L, Blanc J, Gut M, de Vries D, Goodhead I, Harris RA, Raveendran M, Jensen A, Chuma IS, Horvath JE, Hvilsom C, Juan D, Frandsen P, Schraiber JG, de Melo FR, Bertuol F, Byrne H, Sampaio I, Farias I, Valsecchi J, Messias M, da Silva MNF, Trivedi M, Rossi R, Hrbek T, Andriaholinirina N, Rabarivola CJ, Zaramody A, Jolly CJ, Phillips-Conroy J, Wilkerson G, Abee C, Simmons JH, Fernandez-Duque E, Kanthaswamy S, Shiferaw F, Wu D, Zhou L, Shao Y, Zhang G, Keyyu JD, Knauf S, Le MD, Lizano E, Merker S, Navarro A, Nadler T, Khor CC, Lee J, Tan P, Lim WK, Kitchener AC, Zinner D, Gut I, Melin AD, Guschanski K, Schierup MH, Beck RMD, Karakikes I, Wang KC, Umapathy G, Roos C, Boubli JP, Siepel A, Kundaje A, Paten B, Lindblad-Toh K, Rogers J, Marques Bonet T, Farh KKH. Identification of constrained sequence elements across 239 primate genomes. Nature 2024; 625:735-742. [PMID: 38030727 PMCID: PMC10808062 DOI: 10.1038/s41586-023-06798-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 10/30/2023] [Indexed: 12/01/2023]
Abstract
Noncoding DNA is central to our understanding of human gene regulation and complex diseases1,2, and measuring the evolutionary sequence constraint can establish the functional relevance of putative regulatory elements in the human genome3-9. Identifying the genomic elements that have become constrained specifically in primates has been hampered by the faster evolution of noncoding DNA compared to protein-coding DNA10, the relatively short timescales separating primate species11, and the previously limited availability of whole-genome sequences12. Here we construct a whole-genome alignment of 239 species, representing nearly half of all extant species in the primate order. Using this resource, we identified human regulatory elements that are under selective constraint across primates and other mammals at a 5% false discovery rate. We detected 111,318 DNase I hypersensitivity sites and 267,410 transcription factor binding sites that are constrained specifically in primates but not across other placental mammals and validate their cis-regulatory effects on gene expression. These regulatory elements are enriched for human genetic variants that affect gene expression and complex traits and diseases. Our results highlight the important role of recent evolution in regulatory sequence elements differentiating primates, including humans, from other placental mammals.
Collapse
Affiliation(s)
- Lukas F K Kuderna
- Illumina Artificial Intelligence Laboratory, Illumina, San Diego, CA, USA
| | - Jacob C Ulirsch
- Illumina Artificial Intelligence Laboratory, Illumina, San Diego, CA, USA
| | - Sabrina Rashid
- Illumina Artificial Intelligence Laboratory, Illumina, San Diego, CA, USA
| | - Mohamed Ameen
- Illumina Artificial Intelligence Laboratory, Illumina, San Diego, CA, USA
| | - Laksshman Sundaram
- Illumina Artificial Intelligence Laboratory, Illumina, San Diego, CA, USA
| | - Glenn Hickey
- UC Santa Cruz Genomics Institute, University of California, Santa Cruz, CA, USA
| | - Anthony J Cox
- Illumina Artificial Intelligence Laboratory, Illumina, San Diego, CA, USA
| | - Hong Gao
- Illumina Artificial Intelligence Laboratory, Illumina, San Diego, CA, USA
| | - Arvind Kumar
- Illumina Artificial Intelligence Laboratory, Illumina, San Diego, CA, USA
| | - Francois Aguet
- Illumina Artificial Intelligence Laboratory, Illumina, San Diego, CA, USA
| | - Matthew J Christmas
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Hiram Clawson
- UC Santa Cruz Genomics Institute, University of California, Santa Cruz, CA, USA
| | | | - Mareike C Janiak
- School of Science, Engineering and Environment, University of Salford, Salford, UK
| | - Martin Kuhlwilm
- Department of Evolutionary Anthropology, University of Vienna, Vienna, Austria
- Human Evolution and Archaeological Sciences (HEAS), University of Vienna, Vienna, Austria
| | - Joseph D Orkin
- Département d'Anthropologie, Université de Montréal, Montréal, Quebec, Canada
| | - Thomas Bataillon
- Bioinformatics Research Centre, Aarhus University, Aarhus, Denmark
| | - Shivakumara Manu
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
- Laboratory for the Conservation of Endangered Species, CSIR-Centre for Cellular and Molecular Biology, Hyderabad, India
| | - Alejandro Valenzuela
- IBE, Institute of Evolutionary Biology (UPF-CSIC), Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Juraj Bergman
- Bioinformatics Research Centre, Aarhus University, Aarhus, Denmark
- Section for Ecoinformatics and Biodiversity, Department of Biology, Aarhus University, Aarhus, Denmark
| | | | - Felipe Ennes Silva
- Research Group on Primate Biology and Conservation, Mamirauá Institute for Sustainable Development, Tefé, Brazil
- Evolutionary Biology and Ecology (EBE), Département de Biologie des Organismes, Université libre de Bruxelles (ULB), Brussels, Belgium
| | - Lidia Agueda
- Centro Nacional de Analisis Genomico (CNAG), Barcelona, Spain
| | - Julie Blanc
- Centro Nacional de Analisis Genomico (CNAG), Barcelona, Spain
| | - Marta Gut
- Centro Nacional de Analisis Genomico (CNAG), Barcelona, Spain
| | - Dorien de Vries
- School of Science, Engineering and Environment, University of Salford, Salford, UK
| | - Ian Goodhead
- School of Science, Engineering and Environment, University of Salford, Salford, UK
| | - R Alan Harris
- Human Genome Sequencing Center and Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Muthuswamy Raveendran
- Human Genome Sequencing Center and Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Axel Jensen
- Department of Ecology and Genetics, Animal Ecology, Uppsala University, Uppsala, Sweden
| | | | - Julie E Horvath
- North Carolina Museum of Natural Sciences, Raleigh, NC, USA
- Department of Biological and Biomedical Sciences, North Carolina Central University, Durham, NC, USA
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, USA
- Department of Evolutionary Anthropology, Duke University, Durham, NC, USA
- Renaissance Computing Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | | | - David Juan
- IBE, Institute of Evolutionary Biology (UPF-CSIC), Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | | | - Joshua G Schraiber
- Illumina Artificial Intelligence Laboratory, Illumina, San Diego, CA, USA
| | | | - Fabrício Bertuol
- Universidade Federal do Amazonas, Departamento de Genética, Laboratório de Evolução e Genética Animal (LEGAL), Manaus, Brazil
| | - Hazel Byrne
- Department of Anthropology, University of Utah, Salt Lake City, UT, USA
| | | | - Izeni Farias
- Universidade Federal do Amazonas, Departamento de Genética, Laboratório de Evolução e Genética Animal (LEGAL), Manaus, Brazil
| | - João Valsecchi
- Research Group on Terrestrial Vertebrate Ecology, Mamirauá Institute for Sustainable Development, Tefé, Brazil
- Rede de Pesquisa em Diversidade, Conservação e Uso da Fauna da Amazônia - RedeFauna, Manaus, Brazil
- Comunidad de Manejo de Fauna Silvestre en la Amazonía y en Latinoamérica-ComFauna, Iquitos, Peru
| | - Malu Messias
- Universidade Federal de Rondônia, Porto Velho, Brazil
| | | | - Mihir Trivedi
- Laboratory for the Conservation of Endangered Species, CSIR-Centre for Cellular and Molecular Biology, Hyderabad, India
| | - Rogerio Rossi
- Instituto de Biociências, Universidade Federal do Mato Grosso, Cuiabá, Brazil
| | - Tomas Hrbek
- Universidade Federal do Amazonas, Departamento de Genética, Laboratório de Evolução e Genética Animal (LEGAL), Manaus, Brazil
- Department of Biology, Trinity University, San Antonio, TX, USA
| | - Nicole Andriaholinirina
- Life Sciences and Environment, Technology and Environment of Mahajanga, University of Mahajanga, Mahajanga, Madagascar
| | - Clément J Rabarivola
- Life Sciences and Environment, Technology and Environment of Mahajanga, University of Mahajanga, Mahajanga, Madagascar
| | - Alphonse Zaramody
- Life Sciences and Environment, Technology and Environment of Mahajanga, University of Mahajanga, Mahajanga, Madagascar
| | - Clifford J Jolly
- Department of Anthropology, New York University, New York, NY, USA
| | - Jane Phillips-Conroy
- Department of Neuroscience, Washington University School of Medicine in St Louis, St Louis, MO, USA
| | - Gregory Wilkerson
- Keeling Center for Comparative Medicine and Research, MD Anderson Cancer Center, Bastrop, TX, USA
| | - Christian Abee
- Keeling Center for Comparative Medicine and Research, MD Anderson Cancer Center, Bastrop, TX, USA
| | - Joe H Simmons
- Keeling Center for Comparative Medicine and Research, MD Anderson Cancer Center, Bastrop, TX, USA
| | | | - Sree Kanthaswamy
- School of Interdisciplinary Forensics, Arizona State University, Phoenix, AZ, USA
- California National Primate Research Center, University of California, Davis, CA, USA
| | - Fekadu Shiferaw
- Guinea Worm Eradication Program, The Carter Center Ethiopia, Addis Ababa, Ethiopia
| | - Dongdong Wu
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Long Zhou
- Center for Evolutionary and Organismal Biology, Zhejiang University School of Medicine, Hangzhou, China
| | - Yong Shao
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Guojie Zhang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
- Center for Evolutionary and Organismal Biology, Zhejiang University School of Medicine, Hangzhou, China
- Villum Centre for Biodiversity Genomics, Section for Ecology and Evolution, Department of Biology, University of Copenhagen, Copenhagen, Denmark
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China
- Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Julius D Keyyu
- Tanzania Wildlife Research Institute (TAWIRI), Arusha, Tanzania
| | - Sascha Knauf
- Institute of International Animal Health/One Health, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
- Professorship for International Animal Health/One Health, Faculty of Veterinary Medicine, Justus Liebig University, Giessen, Germany
| | - Minh D Le
- Department of Environmental Ecology, Faculty of Environmental Sciences, University of Science and Central Institute for Natural Resources and Environmental Studies, Vietnam National University, Hanoi, Vietnam
| | - Esther Lizano
- IBE, Institute of Evolutionary Biology (UPF-CSIC), Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona, Spain
- Institut Català de Paleontologia Miquel Crusafont, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Stefan Merker
- Department of Zoology, State Museum of Natural History Stuttgart, Stuttgart, Germany
| | - Arcadi Navarro
- IBE, Institute of Evolutionary Biology (UPF-CSIC), Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
- Barcelonaβeta Brain Research Center, Pasqual Maragall Foundation, Barcelona, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
| | - Tilo Nadler
- Cuc Phuong Commune, Nho Quan District, Vietnam
| | - Chiea Chuen Khor
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore, Singapore
| | | | - Patrick Tan
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore, Singapore
- SingHealth Duke-NUS Institute of Precision Medicine (PRISM), Singapore, Singapore
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore, Singapore
| | - Weng Khong Lim
- SingHealth Duke-NUS Institute of Precision Medicine (PRISM), Singapore, Singapore
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore, Singapore
- SingHealth Duke-NUS Genomic Medicine Centre, Singapore, Singapore
| | - Andrew C Kitchener
- Department of Natural Sciences, National Museums Scotland, Edinburgh, UK
- School of Geosciences, Edinburgh, UK
| | - Dietmar Zinner
- Cognitive Ethology Laboratory, Germany Primate Center, Leibniz Institute for Primate Research, Göttingen, Germany
- Department of Primate Cognition, Georg-August-Universität Göttingen, Göttingen, Germany
- Leibniz ScienceCampus Primate Cognition, Göttingen, Germany
| | - Ivo Gut
- Centro Nacional de Analisis Genomico (CNAG), Barcelona, Spain
| | - Amanda D Melin
- Department of Anthropology and Archaeology, University of Calgary, Calgary, Alberta, Canada
- Department of Medical Genetics, University of Calgary, Calgary, Alberta, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
| | - Katerina Guschanski
- Department of Ecology and Genetics, Animal Ecology, Uppsala University, Uppsala, Sweden
- Institute of Ecology and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | | | - Robin M D Beck
- School of Science, Engineering and Environment, University of Salford, Salford, UK
| | - Ioannis Karakikes
- Cardiovascular Institute, Stanford University, Stanford, CA, USA
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA, USA
| | - Kevin C Wang
- Department of Cancer Biology, Stanford University, Stanford, CA, USA
- Department of Dermatology, Stanford University School of Medicine, Stanford, CA, USA
- Veterans Affairs Palo Alto Healthcare System, Palo Alto, CA, USA
| | - Govindhaswamy Umapathy
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
- Laboratory for the Conservation of Endangered Species, CSIR-Centre for Cellular and Molecular Biology, Hyderabad, India
| | - Christian Roos
- Gene Bank of Primates and Primate Genetics Laboratory, German Primate Center, Leibniz Institute for Primate Research, Göttingen, Germany
| | - Jean P Boubli
- School of Science, Engineering and Environment, University of Salford, Salford, UK
| | - Adam Siepel
- Simons Center for Quantitative Biology, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Anshul Kundaje
- Department of Computer Science, Stanford University, Stanford, CA, USA
- Department of Genetics, Stanford University, Stanford, CA, USA
| | - Benedict Paten
- UC Santa Cruz Genomics Institute, University of California, Santa Cruz, CA, USA
| | - Kerstin Lindblad-Toh
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Jeffrey Rogers
- Human Genome Sequencing Center and Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA.
| | - Tomas Marques Bonet
- IBE, Institute of Evolutionary Biology (UPF-CSIC), Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona, Spain.
- Centro Nacional de Analisis Genomico (CNAG), Barcelona, Spain.
- Institut Català de Paleontologia Miquel Crusafont, Universitat Autònoma de Barcelona, Barcelona, Spain.
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain.
- Universitat Pompeu Fabra, Barcelona, Spain.
| | - Kyle Kai-How Farh
- Illumina Artificial Intelligence Laboratory, Illumina, San Diego, CA, USA.
| |
Collapse
|
34
|
Zhang MJ, Durvasula A, Chiang C, Koch EM, Strober BJ, Shi H, Barton AR, Kim SS, Weissbrod O, Loh PR, Gazal S, Sunyaev S, Price AL. Pervasive correlations between causal disease effects of proximal SNPs vary with functional annotations and implicate stabilizing selection. RESEARCH SQUARE 2023:rs.3.rs-3707248. [PMID: 38168385 PMCID: PMC10760228 DOI: 10.21203/rs.3.rs-3707248/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
The genetic architecture of human diseases and complex traits has been extensively studied, but little is known about the relationship of causal disease effect sizes between proximal SNPs, which have largely been assumed to be independent. We introduce a new method, LD SNP-pair effect correlation regression (LDSPEC), to estimate the correlation of causal disease effect sizes of derived alleles between proximal SNPs, depending on their allele frequencies, LD, and functional annotations; LDSPEC produced robust estimates in simulations across various genetic architectures. We applied LDSPEC to 70 diseases and complex traits from the UK Biobank (average N=306K), meta-analyzing results across diseases/traits. We detected significantly nonzero effect correlations for proximal SNP pairs (e.g., -0.37±0.09 for low-frequency positive-LD 0-100bp SNP pairs) that decayed with distance (e.g., -0.07±0.01 for low-frequency positive-LD 1-10kb), varied with allele frequency (e.g., -0.15±0.04 for common positive-LD 0-100bp), and varied with LD between SNPs (e.g., +0.12±0.05 for common negative-LD 0-100bp) (because we consider derived alleles, positive-LD and negative-LD SNP pairs may yield very different results). We further determined that SNP pairs with shared functions had stronger effect correlations that spanned longer genomic distances, e.g., -0.37±0.08 for low-frequency positive-LD same-gene promoter SNP pairs (average genomic distance of 47kb (due to alternative splicing)) and -0.32±0.04 for low-frequency positive-LD H3K27ac 0-1kb SNP pairs. Consequently, SNP-heritability estimates were substantially smaller than estimates of the sum of causal effect size variances across all SNPs (ratio of 0.87±0.02 across diseases/traits), particularly for certain functional annotations (e.g., 0.78±0.01 for common Super enhancer SNPs)-even though these quantities are widely assumed to be equal. We recapitulated our findings via forward simulations with an evolutionary model involving stabilizing selection, implicating the action of linkage masking, whereby haplotypes containing linked SNPs with opposite effects on disease have reduced effects on fitness and escape negative selection.
Collapse
Affiliation(s)
- Martin Jinye Zhang
- Ray and Stephanie Lane Computational Biology Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Arun Durvasula
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Center for Genetic Epidemiology, Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California
| | - Colby Chiang
- Department of Pediatrics, Division of Genetics and Genomics, Boston Children’s Hospital, Boston, MA
| | - Evan M. Koch
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Benjamin J. Strober
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Huwenbo Shi
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Alison R. Barton
- Department of Human Evolutionary Biology, Harvard University, Cambridge, Massachusetts, United States of America
| | - Samuel S. Kim
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Omer Weissbrod
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Po-Ru Loh
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Steven Gazal
- Center for Genetic Epidemiology, Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California
- Department of Quantitative and Computational Biology, University of Southern California
- Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California
| | - Shamil Sunyaev
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Alkes L. Price
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| |
Collapse
|
35
|
Zhang MJ, Durvasula A, Chiang C, Koch EM, Strober BJ, Shi H, Barton AR, Kim SS, Weissbrod O, Loh PR, Gazal S, Sunyaev S, Price AL. Pervasive correlations between causal disease effects of proximal SNPs vary with functional annotations and implicate stabilizing selection. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.12.04.23299391. [PMID: 38106023 PMCID: PMC10723494 DOI: 10.1101/2023.12.04.23299391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
The genetic architecture of human diseases and complex traits has been extensively studied, but little is known about the relationship of causal disease effect sizes between proximal SNPs, which have largely been assumed to be independent. We introduce a new method, LD SNP-pair effect correlation regression (LDSPEC), to estimate the correlation of causal disease effect sizes of derived alleles between proximal SNPs, depending on their allele frequencies, LD, and functional annotations; LDSPEC produced robust estimates in simulations across various genetic architectures. We applied LDSPEC to 70 diseases and complex traits from the UK Biobank (average N=306K), meta-analyzing results across diseases/traits. We detected significantly nonzero effect correlations for proximal SNP pairs (e.g., -0.37±0.09 for low-frequency positive-LD 0-100bp SNP pairs) that decayed with distance (e.g., -0.07±0.01 for low-frequency positive-LD 1-10kb), varied with allele frequency (e.g., -0.15±0.04 for common positive-LD 0-100bp), and varied with LD between SNPs (e.g., +0.12±0.05 for common negative-LD 0-100bp) (because we consider derived alleles, positive-LD and negative-LD SNP pairs may yield very different results). We further determined that SNP pairs with shared functions had stronger effect correlations that spanned longer genomic distances, e.g., -0.37±0.08 for low-frequency positive-LD same-gene promoter SNP pairs (average genomic distance of 47kb (due to alternative splicing)) and -0.32±0.04 for low-frequency positive-LD H3K27ac 0-1kb SNP pairs. Consequently, SNP-heritability estimates were substantially smaller than estimates of the sum of causal effect size variances across all SNPs (ratio of 0.87±0.02 across diseases/traits), particularly for certain functional annotations (e.g., 0.78±0.01 for common Super enhancer SNPs)-even though these quantities are widely assumed to be equal. We recapitulated our findings via forward simulations with an evolutionary model involving stabilizing selection, implicating the action of linkage masking, whereby haplotypes containing linked SNPs with opposite effects on disease have reduced effects on fitness and escape negative selection.
Collapse
Affiliation(s)
- Martin Jinye Zhang
- Ray and Stephanie Lane Computational Biology Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Arun Durvasula
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Center for Genetic Epidemiology, Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California
| | - Colby Chiang
- Department of Pediatrics, Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA
| | - Evan M Koch
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Benjamin J Strober
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Huwenbo Shi
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Alison R Barton
- Department of Human Evolutionary Biology, Harvard University, Cambridge, Massachusetts, United States of America
| | - Samuel S Kim
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Omer Weissbrod
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Po-Ru Loh
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Steven Gazal
- Center for Genetic Epidemiology, Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California
- Department of Quantitative and Computational Biology, University of Southern California
- Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California
| | - Shamil Sunyaev
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Alkes L Price
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| |
Collapse
|
36
|
Li H, Mazumder R, Lin X. Accurate and efficient estimation of local heritability using summary statistics and the linkage disequilibrium matrix. Nat Commun 2023; 14:7954. [PMID: 38040712 PMCID: PMC10692177 DOI: 10.1038/s41467-023-43565-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 11/14/2023] [Indexed: 12/03/2023] Open
Abstract
Existing SNP-heritability estimators that leverage summary statistics from genome-wide association studies (GWAS) are much less efficient (i.e., have larger standard errors) than the restricted maximum likelihood (REML) estimators which require access to individual-level data. We introduce a new method for local heritability estimation-Heritability Estimation with high Efficiency using LD and association Summary Statistics (HEELS)-that significantly improves the statistical efficiency of summary-statistics-based heritability estimator and attains comparable statistical efficiency as REML (with a relative statistical efficiency >92%). Moreover, we propose representing the empirical LD matrix as the sum of a low-rank matrix and a banded matrix. We show that this way of modeling the LD can not only reduce the storage and memory cost, but also improve the computational efficiency of heritability estimation. We demonstrate the statistical efficiency of HEELS and the advantages of our proposed LD approximation strategies both in simulations and through empirical analyses of the UK Biobank data.
Collapse
Affiliation(s)
- Hui Li
- Harvard T.H. Chan School of Public Health, Department of Biostatistics, Boston, MA, USA
| | - Rahul Mazumder
- Massachusetts Institute of Technology, Operations Research and Statistics group, Cambridge, MA, USA
| | - Xihong Lin
- Harvard T.H. Chan School of Public Health, Department of Biostatistics, Boston, MA, USA.
- Harvard University, Department of Statistics, Cambridge, MA, USA.
| |
Collapse
|
37
|
Zhang W, Najafabadi H, Li Y. SparsePro: An efficient fine-mapping method integrating summary statistics and functional annotations. PLoS Genet 2023; 19:e1011104. [PMID: 38153934 PMCID: PMC10781022 DOI: 10.1371/journal.pgen.1011104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 01/10/2024] [Accepted: 12/11/2023] [Indexed: 12/30/2023] Open
Abstract
Identifying causal variants from genome-wide association studies (GWAS) is challenging due to widespread linkage disequilibrium (LD) and the possible existence of multiple causal variants in the same genomic locus. Functional annotations of the genome may help to prioritize variants that are biologically relevant and thus improve fine-mapping of GWAS results. Classical fine-mapping methods conducting an exhaustive search of variant-level causal configurations have a high computational cost, especially when the underlying genetic architecture and LD patterns are complex. SuSiE provided an iterative Bayesian stepwise selection algorithm for efficient fine-mapping. In this work, we build connections between SuSiE and a paired mean field variational inference algorithm through the implementation of a sparse projection, and propose effective strategies for estimating hyperparameters and summarizing posterior probabilities. Moreover, we incorporate functional annotations into fine-mapping by jointly estimating enrichment weights to derive functionally-informed priors. We evaluate the performance of SparsePro through extensive simulations using resources from the UK Biobank. Compared to state-of-the-art methods, SparsePro achieved improved power for fine-mapping with reduced computation time. We demonstrate the utility of SparsePro through fine-mapping of five functional biomarkers of clinically relevant phenotypes. In summary, we have developed an efficient fine-mapping method for integrating summary statistics and functional annotations. Our method can have wide utility in understanding the genetics of complex traits and increasing the yield of functional follow-up studies of GWAS. SparsePro software is available on GitHub at https://github.com/zhwm/SparsePro.
Collapse
Affiliation(s)
- Wenmin Zhang
- Quantitative Life Sciences, McGill University, Montreal, Quebec, Canada
| | - Hamed Najafabadi
- Quantitative Life Sciences, McGill University, Montreal, Quebec, Canada
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada
- Dahdaleh Institute of Genomic Medicine, Montreal, Quebec, Canada
| | - Yue Li
- Quantitative Life Sciences, McGill University, Montreal, Quebec, Canada
- School of Computer Science, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
38
|
He Y, Koido M, Sutoh Y, Shi M, Otsuka-Yamasaki Y, Munter HM, Morisaki T, Nagai A, Murakami Y, Tanikawa C, Hachiya T, Matsuda K, Shimizu A, Kamatani Y. East Asian-specific and cross-ancestry genome-wide meta-analyses provide mechanistic insights into peptic ulcer disease. Nat Genet 2023; 55:2129-2138. [PMID: 38036781 PMCID: PMC10703676 DOI: 10.1038/s41588-023-01569-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 10/12/2023] [Indexed: 12/02/2023]
Abstract
Peptic ulcer disease (PUD) refers to acid-induced injury of the digestive tract, occurring mainly in the stomach (gastric ulcer (GU)) or duodenum (duodenal ulcer (DU)). In the present study, we conducted a large-scale, cross-ancestry meta-analysis of PUD combining genome-wide association studies with Japanese and European studies (52,032 cases and 905,344 controls), and discovered 25 new loci highly concordant across ancestries. An examination of GU and DU genetic architecture demonstrated that GUs shared the same risk loci as DUs, although with smaller genetic effect sizes and higher polygenicity than DUs, indicating higher heterogeneity of GUs. Helicobacter pylori (HP)-stratified analysis found an HP-related host genetic locus. Integrative analyses using bulk and single-cell transcriptome profiles highlighted the genetic factors of PUD being enriched in the highly expressed genes in stomach tissues, especially in somatostatin-producing D cells. Our results provide genetic evidence that gastrointestinal cell differentiations and hormone regulations are critical in PUD etiology.
Collapse
Affiliation(s)
- Yunye He
- Laboratory of Complex Trait Genomics, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan
| | - Masaru Koido
- Laboratory of Complex Trait Genomics, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan
| | - Yoichi Sutoh
- Iwate Tohoku Medical Megabank Organization, Iwate Medical University, Iwate, Japan
| | - Mingyang Shi
- Laboratory of Complex Trait Genomics, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan
| | | | - Hans Markus Munter
- Victor Phillip Dahdaleh Institute of Genomic Medicine and Department of Human Genetics, McGill University, Montreal, Québec, Canada
| | - Takayuki Morisaki
- Division of Molecular Pathology, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Laboratory of Clinical Genome Sequencing, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan
| | - Akiko Nagai
- Department of Public Policy, Institute of Medical Sciences, The University of Tokyo, Tokyo, Japan
| | - Yoshinori Murakami
- Division of Molecular Pathology, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Chizu Tanikawa
- Laboratory of Clinical Genome Sequencing, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan
| | - Tsuyoshi Hachiya
- Iwate Tohoku Medical Megabank Organization, Iwate Medical University, Iwate, Japan
| | - Koichi Matsuda
- Laboratory of Clinical Genome Sequencing, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan
| | - Atsushi Shimizu
- Iwate Tohoku Medical Megabank Organization, Iwate Medical University, Iwate, Japan
| | - Yoichiro Kamatani
- Laboratory of Complex Trait Genomics, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
39
|
Zhou F, Soremekun O, Chikowore T, Fatumo S, Barroso I, Morris AP, Asimit JL. Leveraging information between multiple population groups and traits improves fine-mapping resolution. Nat Commun 2023; 14:7279. [PMID: 37949886 PMCID: PMC10638399 DOI: 10.1038/s41467-023-43159-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 11/01/2023] [Indexed: 11/12/2023] Open
Abstract
Statistical fine-mapping helps to pinpoint likely causal variants underlying genetic association signals. Its resolution can be improved by (i) leveraging information between traits; and (ii) exploiting differences in linkage disequilibrium structure between diverse population groups. Using association summary statistics, MGflashfm jointly fine-maps signals from multiple traits and population groups; MGfm uses an analogous framework to analyse each trait separately. We also provide a practical approach to fine-mapping with out-of-sample reference panels. In simulation studies we show that MGflashfm and MGfm are well-calibrated and that the mean proportion of causal variants with PP > 0.80 is above 0.75 (MGflashfm) and 0.70 (MGfm). In our analysis of four lipids traits across five population groups, MGflashfm gives a median 99% credible set reduction of 10.5% over MGfm. MGflashfm and MGfm only require summary level data, making them very useful fine-mapping tools in consortia efforts where individual-level data cannot be shared.
Collapse
Affiliation(s)
- Feng Zhou
- MRC Biostatistics Unit, University of Cambridge, Cambridge, UK
| | - Opeyemi Soremekun
- The African Computational Genomic (TACG) Research Group, MRC/UVRI and LSHTM, Entebbe, Uganda
| | - Tinashe Chikowore
- Sydney Brenner Institute for Molecular Bioscience, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- MRC/Wits Developmental Pathways for Health Research Unit, Department of Paediatrics, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Segun Fatumo
- The African Computational Genomic (TACG) Research Group, MRC/UVRI and LSHTM, Entebbe, Uganda
- Department of Non-Communicable Disease Epidemiology, London School of Hygiene and Tropical Medicine, London, UK
| | - Inês Barroso
- Exeter Centre of Excellence for Diabetes Research (EXCEED), University of Exeter Medical School, Exeter, UK
| | - Andrew P Morris
- Centre for Genetics and Genomics Versus Arthritis, Centre for Musculoskeletal Research, University of Manchester, Manchester, UK
| | | |
Collapse
|
40
|
Ottensmann L, Tabassum R, Ruotsalainen SE, Gerl MJ, Klose C, Widén E, Simons K, Ripatti S, Pirinen M. Genome-wide association analysis of plasma lipidome identifies 495 genetic associations. Nat Commun 2023; 14:6934. [PMID: 37907536 PMCID: PMC10618167 DOI: 10.1038/s41467-023-42532-8] [Citation(s) in RCA: 99] [Impact Index Per Article: 49.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 10/13/2023] [Indexed: 11/02/2023] Open
Abstract
The human plasma lipidome captures risk for cardiometabolic diseases. To discover new lipid-associated variants and understand the link between lipid species and cardiometabolic disorders, we perform univariate and multivariate genome-wide analyses of 179 lipid species in 7174 Finnish individuals. We fine-map the associated loci, prioritize genes, and examine their disease links in 377,277 FinnGen participants. We identify 495 genome-trait associations in 56 genetic loci including 8 novel loci, with a considerable boost provided by the multivariate analysis. For 26 loci, fine-mapping identifies variants with a high causal probability, including 14 coding variants indicating likely causal genes. A phenome-wide analysis across 953 disease endpoints reveals disease associations for 40 lipid loci. For 11 coronary artery disease risk variants, we detect strong associations with lipid species. Our study demonstrates the power of multivariate genetic analysis in correlated lipidomics data and reveals genetic links between diseases and lipid species beyond the standard lipids.
Collapse
Affiliation(s)
- Linda Ottensmann
- Institute for Molecular Medicine Finland, HiLIFE, University of Helsinki, Helsinki, Finland.
| | - Rubina Tabassum
- Institute for Molecular Medicine Finland, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Sanni E Ruotsalainen
- Institute for Molecular Medicine Finland, HiLIFE, University of Helsinki, Helsinki, Finland
| | | | | | - Elisabeth Widén
- Institute for Molecular Medicine Finland, HiLIFE, University of Helsinki, Helsinki, Finland
| | | | - Samuli Ripatti
- Institute for Molecular Medicine Finland, HiLIFE, University of Helsinki, Helsinki, Finland
- Department of Public Health, Clinicum, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Broad Institute of the Massachusetts Institute of Technology and Harvard University, Cambridge, MA, USA
| | - Matti Pirinen
- Institute for Molecular Medicine Finland, HiLIFE, University of Helsinki, Helsinki, Finland.
- Department of Public Health, Clinicum, Faculty of Medicine, University of Helsinki, Helsinki, Finland.
- Department of Mathematics and Statistics, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
41
|
Jeon JP, Hong EP, Ha EJ, Kim BJ, Youn DH, Lee S, Lee HC, Kim KM, Lee SH, Cho WS, Kang HS, Kim JE. Genome-wide association study identifies novel susceptibilities to adult moyamoya disease. J Hum Genet 2023; 68:713-720. [PMID: 37365321 DOI: 10.1038/s10038-023-01167-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 05/22/2023] [Accepted: 05/23/2023] [Indexed: 06/28/2023]
Abstract
Genome-wide association study has limited to discover single-nucleotide polymorphisms (SNPs) in several ethnicities. Here, we investigated an initial GWAS to identify genetic modifiers predicting with adult moyamoya disease (MMD) in Koreans. GWAS was performed in 216 patients with MMD and 296 controls using the large-scale Asian-specific Axiom Precision Medicine Research Array. A subsequent fine-mapping analysis was conducted to assess the causal variants associated with adult MMD. A total of 489,966 out of 802,688 SNPs were subjected to quality control analysis. Twenty-one SNPs reached a genome-wide significance threshold (p = 5 × 10-8) after pruning linkage disequilibrium (r2 < 0.8) and mis-clustered SNPs. Among these variants, the 17q25.3 region including TBC1D16, CCDC40, GAA, RNF213, and ENDOV genes was broadly associated with MMD (p = 3.1 × 10-20 to 4.2 × 10-8). Mutations in RNF213 including rs8082521 (Q1133K), rs10782008 (V1195M), rs9913636 (E1272Q), rs8074015 (D1331G), and rs9674961 (S2334N) showed a genome-wide significance (1.9 × 10-8 < p < 4.3 × 10-12) and were also replicated in the East-Asian populations. In subsequent analysis, RNF213 mutations were validated in a fine-mapping outcome (log10BF > 7). Most of the loci associated with MMD including 17q25.3 regions were detected with a statistical power greater than 80%. This study identifies several novel and known variations predicting adult MMD in Koreans. These findings may good biomarkers to evaluate MMD susceptibility and its clinical outcomes.
Collapse
Affiliation(s)
- Jin Pyeong Jeon
- Department of Neurosurgery, Hallym University College of Medicine, Chuncheon, Republic of Korea
- Institute of New Frontier Research, Hallym University College of Medicine, Chuncheon, Republic of Korea
| | - Eun Pyo Hong
- Institute of New Frontier Research, Hallym University College of Medicine, Chuncheon, Republic of Korea
| | - Eun Jin Ha
- Department of Neurosurgery, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Bong Jun Kim
- Institute of New Frontier Research, Hallym University College of Medicine, Chuncheon, Republic of Korea
| | - Dong Hyuk Youn
- Institute of New Frontier Research, Hallym University College of Medicine, Chuncheon, Republic of Korea
| | - Sungyoung Lee
- Department of Genomic Medicine, Center for Precision Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| | - Hee Chang Lee
- Department of Neurosurgery, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Kang Min Kim
- Department of Neurosurgery, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Sung Ho Lee
- Department of Neurosurgery, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Won-Sang Cho
- Department of Neurosurgery, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Hyun-Seung Kang
- Department of Neurosurgery, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jeong Eun Kim
- Department of Neurosurgery, Seoul National University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
42
|
Li X, Lappalainen T, Bussemaker HJ. Identifying genetic regulatory variants that affect transcription factor activity. CELL GENOMICS 2023; 3:100382. [PMID: 37719147 PMCID: PMC10504674 DOI: 10.1016/j.xgen.2023.100382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 05/19/2023] [Accepted: 07/21/2023] [Indexed: 09/19/2023]
Abstract
Genetic variants affecting gene expression levels in humans have been mapped in the Genotype-Tissue Expression (GTEx) project. Trans-acting variants impacting many genes simultaneously through a shared transcription factor (TF) are of particular interest. Here, we developed a generalized linear model (GLM) to estimate protein-level TF activity levels in an individual-specific manner from GTEx RNA sequencing (RNA-seq) profiles. It uses observed differential gene expression after TF perturbation as a predictor and, by analyzing differential expression within pairs of neighboring genes, controls for the confounding effect of variation in chromatin state along the genome. We inferred genotype-specific activities for 55 TFs across 49 tissues. Subsequently performing genome-wide association analysis on this virtual trait revealed TF activity quantitative trait loci (aQTLs) that, as a set, are enriched for functional features. Altogether, the set of tools we introduce here highlights the potential of genetic association studies for cellular endophenotypes based on a network-based multi-omics approach. The transparent peer review record is available.
Collapse
Affiliation(s)
- Xiaoting Li
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Tuuli Lappalainen
- New York Genome Center, New York, NY 10013, USA
- Science for Life Laboratory, Department of Gene Technology, KTH Royal Institute of Technology, Stockholm, Sweden
- Department of Systems Biology, Columbia University, New York, NY 10032, USA
| | - Harmen J. Bussemaker
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
- Department of Systems Biology, Columbia University, New York, NY 10032, USA
| |
Collapse
|
43
|
Salehi Nowbandegani P, Wohns AW, Ballard JL, Lander ES, Bloemendal A, Neale BM, O'Connor LJ. Extremely sparse models of linkage disequilibrium in ancestrally diverse association studies. Nat Genet 2023; 55:1494-1502. [PMID: 37640881 DOI: 10.1038/s41588-023-01487-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 07/24/2023] [Indexed: 08/31/2023]
Abstract
Linkage disequilibrium (LD) is the correlation among nearby genetic variants. In genetic association studies, LD is often modeled using large correlation matrices, but this approach is inefficient, especially in ancestrally diverse studies. In the present study, we introduce LD graphical models (LDGMs), which are an extremely sparse and efficient representation of LD. LDGMs are derived from genome-wide genealogies; statistical relationships among alleles in the LDGM correspond to genealogical relationships among haplotypes. We published LDGMs and ancestry-specific LDGM precision matrices for 18 million common variants (minor allele frequency >1%) in five ancestry groups, validated their accuracy and demonstrated order-of-magnitude improvements in runtime for commonly used LD matrix computations. We implemented an extremely fast multiancestry polygenic prediction method, BLUPx-ldgm, which performs better than a similar method based on the reference LD correlation matrix. LDGMs will enable sophisticated methods that scale to ancestrally diverse genetic association data across millions of variants and individuals.
Collapse
Affiliation(s)
- Pouria Salehi Nowbandegani
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA.
| | - Anthony Wilder Wohns
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA.
- Stanford University School of Medicine, Stanford, CA, USA.
| | - Jenna L Ballard
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Graduate Group in Genomics and Computational Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - Eric S Lander
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Biology, MIT, Cambridge, MA, USA
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA
| | - Alex Bloemendal
- Analytic and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- The Novo Nordisk Foundation Center for Genomic Mechanisms of Disease, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Benjamin M Neale
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Analytic and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- The Novo Nordisk Foundation Center for Genomic Mechanisms of Disease, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Luke J O'Connor
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
44
|
Jiang X, Boutin T, Vitart V. Colocalization of corneal resistance factor GWAS loci with GTEx e/sQTLs highlights plausible candidate causal genes for keratoconus postnatal corneal stroma weakening. Front Genet 2023; 14:1171217. [PMID: 37621707 PMCID: PMC10445647 DOI: 10.3389/fgene.2023.1171217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 07/17/2023] [Indexed: 08/26/2023] Open
Abstract
Background: Genome-wide association studies (GWAS) for corneal resistance factor (CRF) have identified 100s of loci and proved useful to uncover genetic determinants for keratoconus, a corneal ectasia of early-adulthood onset and common indication of corneal transplantation. In the current absence of studies to probe the impact of candidate causal variants in the cornea, we aimed to fill some of this knowledge gap by leveraging tissue-shared genetic effects. Methods: 181 CRF signals were examined for evidence of colocalization with genetic signals affecting steady-state gene transcription and splicing in adult, non-eye, tissues of the Genotype-Tissue Expression (GTEx) project. Expression of candidate causal genes thus nominated was evaluated in single cell transcriptomes from adult cornea, limbus and conjunctiva. Fine-mapping and colocalization of CRF and keratoconus GWAS signals was also deployed to support their sharing causal variants. Results and discussion: 26.5% of CRF causal signals colocalized with GTEx v8 signals and nominated genes enriched in genes with high and specific expression in corneal stromal cells amongst tissues examined. Enrichment analyses carried out with nearest genes to all 181 CRF GWAS signals indicated that stromal cells of the limbus could be susceptible to signals that did not colocalize with GTEx's. These cells might not be well represented in GTEx and/or the genetic associations might have context specific effects. The causal signals shared with GTEx provide new insights into mediation of CRF genetic effects, including modulation of splicing events. Functionally relevant roles for several implicated genes' products in providing tensile strength, mechano-sensing and signaling make the corresponding genes and regulatory variants prime candidates to be validated and their roles and effects across tissues elucidated. Colocalization of CRF and keratoconus GWAS signals strengthened support for shared causal variants but also highlighted many ways into which likely true shared signals could be missed when using readily available GWAS summary statistics.
Collapse
Affiliation(s)
- Xinyi Jiang
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, United Kingdom
- Centre for Genetics and Molecular Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, United Kingdom
| | - Thibaud Boutin
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, United Kingdom
| | - Veronique Vitart
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
45
|
Greco LA, Reay WR, Dayas CV, Cairns MJ. Exploring opportunities for drug repurposing and precision medicine in cannabis use disorder using genetics. Addict Biol 2023; 28:e13313. [PMID: 37500481 PMCID: PMC10909568 DOI: 10.1111/adb.13313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 05/09/2023] [Accepted: 06/16/2023] [Indexed: 07/29/2023]
Abstract
Cannabis use disorder (CUD) remains a significant public health issue globally, affecting up to one in five adults who use cannabis. Despite extensive research into the molecular underpinnings of the condition, there are no effective pharmacological treatment options available. Therefore, we sought to further explore genetic analyses to prioritise opportunities to repurpose existing drugs for CUD. Specifically, we aimed to identify druggable genes associated with the disorder, integrate transcriptomic/proteomic data and estimate genetic relationships with clinically actionable biochemical traits. Aggregating variants to genes based on genomic position, prioritised the phosphodiesterase gene PDE4B as an interesting target for drug repurposing in CUD. Credible causal PDE4B variants revealed by probabilistic finemapping in and around this locus demonstrated an association with inflammatory and other substance use phenotypes. Gene and protein expression data integrated with the GWAS data revealed a novel CUD associated gene, NPTX1, in whole blood and supported a role for hyaluronidase, a key enzyme in the extracellular matrix in the brain and other tissues. Finally, genetic correlation with biochemical traits revealed a genetic overlap between CUD and immune-related markers such as lymphocyte count, as well as serum triglycerides.
Collapse
Affiliation(s)
- Laura A. Greco
- School of Biomedical Sciences and PharmacyThe University of NewcastleCallaghanNew South WalesAustralia
- Precision Medicine Research ProgramHunter Medical Research InstituteNew LambtonNew South WalesAustralia
| | - William R. Reay
- School of Biomedical Sciences and PharmacyThe University of NewcastleCallaghanNew South WalesAustralia
- Precision Medicine Research ProgramHunter Medical Research InstituteNew LambtonNew South WalesAustralia
| | - Christopher V. Dayas
- School of Biomedical Sciences and PharmacyThe University of NewcastleCallaghanNew South WalesAustralia
| | - Murray J. Cairns
- School of Biomedical Sciences and PharmacyThe University of NewcastleCallaghanNew South WalesAustralia
- Precision Medicine Research ProgramHunter Medical Research InstituteNew LambtonNew South WalesAustralia
| |
Collapse
|
46
|
Weeks EM, Ulirsch JC, Cheng NY, Trippe BL, Fine RS, Miao J, Patwardhan TA, Kanai M, Nasser J, Fulco CP, Tashman KC, Aguet F, Li T, Ordovas-Montanes J, Smillie CS, Biton M, Shalek AK, Ananthakrishnan AN, Xavier RJ, Regev A, Gupta RM, Lage K, Ardlie KG, Hirschhorn JN, Lander ES, Engreitz JM, Finucane HK. Leveraging polygenic enrichments of gene features to predict genes underlying complex traits and diseases. Nat Genet 2023; 55:1267-1276. [PMID: 37443254 PMCID: PMC10836580 DOI: 10.1038/s41588-023-01443-6] [Citation(s) in RCA: 100] [Impact Index Per Article: 50.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 06/09/2023] [Indexed: 07/15/2023]
Abstract
Genome-wide association studies (GWASs) are a valuable tool for understanding the biology of complex human traits and diseases, but associated variants rarely point directly to causal genes. In the present study, we introduce a new method, polygenic priority score (PoPS), that learns trait-relevant gene features, such as cell-type-specific expression, to prioritize genes at GWAS loci. Using a large evaluation set of genes with fine-mapped coding variants, we show that PoPS and the closest gene individually outperform other gene prioritization methods, but observe the best overall performance by combining PoPS with orthogonal methods. Using this combined approach, we prioritize 10,642 unique gene-trait pairs across 113 complex traits and diseases with high precision, finding not only well-established gene-trait relationships but nominating new genes at unresolved loci, such as LGR4 for estimated glomerular filtration rate and CCR7 for deep vein thrombosis. Overall, we demonstrate that PoPS provides a powerful addition to the gene prioritization toolbox.
Collapse
Affiliation(s)
- Elle M Weeks
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| | - Jacob C Ulirsch
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Program in Biological and Biomedical Sciences, Harvard Medical School, Boston, MA, USA
- Artificial Intelligence Laboratory, Illumina, Inc., San Diego, CA, USA
| | | | - Brian L Trippe
- Program in Computational & Systems Biology, MIT, Cambridge, MA, USA
- Computer Science & Artificial Intelligence Lab, MIT, Cambridge, MA, USA
| | - Rebecca S Fine
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Division of Endocrinology and Center for Basic and Translational Obesity Research, Boston Children's Hospital, Boston, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Vertex Pharmaceuticals Incorporated, Boston, MA, USA
| | - Jenkai Miao
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Division of Endocrinology and Center for Basic and Translational Obesity Research, Boston Children's Hospital, Boston, MA, USA
| | - Tejal A Patwardhan
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Statistics, Harvard University, Cambridge, MA, USA
| | - Masahiro Kanai
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Analytic and Translational Genetics Unit, MGH, Boston, MA, USA
- Program in Bioinformatics and Integrative Genomics, Harvard Medical School, Boston, MA, USA
- Department of Statistical Genetics, Osaka University Graduate School of Medicine, Suita, Japan
| | - Joseph Nasser
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Charles P Fulco
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Bristol Myers Squibb, Cambridge, MA, USA
| | | | | | - Taibo Li
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- MD-PhD Program, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jose Ordovas-Montanes
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Division of Gastroenterology, Hepatology, and Nutrition, Boston Children's Hospital, Boston, MA, USA
- Program in Immunology, Harvard Medical School, Boston, MA, USA
- Harvard Stem Cell Institute, Cambridge, MA, USA
| | - Christopher S Smillie
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Program in Computational & Systems Biology, MIT, Cambridge, MA, USA
| | - Moshe Biton
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Molecular Biology, MGH, Boston, MA, USA
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Alex K Shalek
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Institute for Medical Engineering and Science, MIT, Cambridge, MA, USA
- Department of Chemistry, MIT, Cambridge, MA, USA
- Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA, USA
- Ragon Institute of MGH, MMIT, Cambridge, MA, USA
| | - Ashwin N Ananthakrishnan
- Gastrointestinal Unit and Center for the Study of Inflammatory Bowel Disease, MGH, Boston, MA, USA
| | - Ramnik J Xavier
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Molecular Biology, MGH, Boston, MA, USA
- Gastrointestinal Unit and Center for the Study of Inflammatory Bowel Disease, MGH, Boston, MA, USA
- Center for Computational and Integrative Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Aviv Regev
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA, USA
- Howard Hughes Medical Institute, MIT, Cambridge, MA, USA
- Genentech, San Francisco, CA, USA
| | - Rajat M Gupta
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Division of Cardiovascular Medicine and Genetics, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Kasper Lage
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Surgery, MGH, Boston, MA, USA
| | - Kristin G Ardlie
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Joel N Hirschhorn
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Division of Endocrinology and Center for Basic and Translational Obesity Research, Boston Children's Hospital, Boston, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Eric S Lander
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Biology, MIT, Cambridge, MA, USA
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA
| | - Jesse M Engreitz
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
- BASE Initiative, Betty Irene Moore Children's Heart Center, Lucile Packard Children's Hospital, Stanford University School of Medicine, Stanford, CA, USA
| | - Hilary K Finucane
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Analytic and Translational Genetics Unit, MGH, Boston, MA, USA.
| |
Collapse
|
47
|
Yuan K, Longchamps RJ, Pardiñas AF, Yu M, Chen TT, Lin SC, Chen Y, Lam M, Liu R, Xia Y, Guo Z, Shi W, Shen C, Daly MJ, Neale BM, Feng YCA, Lin YF, Chen CY, O'Donovan M, Ge T, Huang H. Fine-mapping across diverse ancestries drives the discovery of putative causal variants underlying human complex traits and diseases. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.01.07.23284293. [PMID: 36711496 PMCID: PMC9882563 DOI: 10.1101/2023.01.07.23284293] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Genome-wide association studies (GWAS) of human complex traits or diseases often implicate genetic loci that span hundreds or thousands of genetic variants, many of which have similar statistical significance. While statistical fine-mapping in individuals of European ancestries has made important discoveries, cross-population fine-mapping has the potential to improve power and resolution by capitalizing on the genomic diversity across ancestries. Here we present SuSiEx, an accurate and computationally efficient method for cross-population fine-mapping, which builds on the single-population fine-mapping framework, Sum of Single Effects (SuSiE). SuSiEx integrates data from an arbitrary number of ancestries, explicitly models population-specific allele frequencies and LD patterns, accounts for multiple causal variants in a genomic region, and can be applied to GWAS summary statistics. We comprehensively evaluated SuSiEx using simulations, a range of quantitative traits measured in both UK Biobank and Taiwan Biobank, and schizophrenia GWAS across East Asian and European ancestries. In all evaluations, SuSiEx fine-mapped more association signals, produced smaller credible sets and higher posterior inclusion probability (PIP) for putative causal variants, and captured population-specific causal variants.
Collapse
Affiliation(s)
- Kai Yuan
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
- Stanley Center for Psychiatric Research, the Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Ryan J Longchamps
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
- Stanley Center for Psychiatric Research, the Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Antonio F Pardiñas
- MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University School of Medicine, Cardiff, UK
| | - Mingrui Yu
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
- Stanley Center for Psychiatric Research, the Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Tzu-Ting Chen
- Center for Neuropsychiatric Research, National Health Research Institutes, Miaoli, Taiwan
| | - Shu-Chin Lin
- Center for Neuropsychiatric Research, National Health Research Institutes, Miaoli, Taiwan
| | - Yu Chen
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences and Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Max Lam
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Human Genetics, Genome Institute of Singapore, Singapore, Singapore
- Division of Psychiatry Research, the Zucker Hillside Hospital, Northwell Health, Glen Oaks, NY, USA
- Research Division Institute of Mental Health Singapore, Singapore, Singapore
| | - Ruize Liu
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
- Stanley Center for Psychiatric Research, the Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Yan Xia
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
- Stanley Center for Psychiatric Research, the Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Zhenglin Guo
- Stanley Center for Psychiatric Research, the Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Wenzhao Shi
- Digital Health China Technologies Corp. Ltd., Beijing, China
| | - Chengguo Shen
- Digital Health China Technologies Corp. Ltd., Beijing, China
| | - Mark J Daly
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
- Stanley Center for Psychiatric Research, the Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Benjamin M Neale
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
- Stanley Center for Psychiatric Research, the Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Yen-Chen A Feng
- Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei, Taiwan
| | - Yen-Feng Lin
- Center for Neuropsychiatric Research, National Health Research Institutes, Miaoli, Taiwan
- Department of Public Health & Medical Humanities, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Institute of Behavioral Medicine, College of Medicine, National Cheng Kung University
| | | | - Michael O'Donovan
- MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University School of Medicine, Cardiff, UK
| | - Tian Ge
- Stanley Center for Psychiatric Research, the Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Hailiang Huang
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
- Stanley Center for Psychiatric Research, the Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
48
|
Karhunen V, Launonen I, Järvelin MR, Sebert S, Sillanpää MJ. Genetic fine-mapping from summary data using a nonlocal prior improves the detection of multiple causal variants. Bioinformatics 2023; 39:btad396. [PMID: 37348543 PMCID: PMC10326304 DOI: 10.1093/bioinformatics/btad396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 06/09/2023] [Accepted: 06/20/2023] [Indexed: 06/24/2023] Open
Abstract
MOTIVATION Genome-wide association studies (GWAS) have been successful in identifying genomic loci associated with complex traits. Genetic fine-mapping aims to detect independent causal variants from the GWAS-identified loci, adjusting for linkage disequilibrium patterns. RESULTS We present "FiniMOM" (fine-mapping using a product inverse-moment prior), a novel Bayesian fine-mapping method for summarized genetic associations. For causal effects, the method uses a nonlocal inverse-moment prior, which is a natural prior distribution to model non-null effects in finite samples. A beta-binomial prior is set for the number of causal variants, with a parameterization that can be used to control for potential misspecifications in the linkage disequilibrium reference. The results of simulations studies aimed to mimic a typical GWAS on circulating protein levels show improved credible set coverage and power of the proposed method over current state-of-the-art fine-mapping method SuSiE, especially in the case of multiple causal variants within a locus. AVAILABILITY AND IMPLEMENTATION https://vkarhune.github.io/finimom/.
Collapse
Affiliation(s)
- Ville Karhunen
- Research Unit of Mathematical Sciences, University of Oulu, Oulu, P.O.Box 8000, FI-90014, Finland
- Research Unit of Population Health, University of Oulu, Oulu, Finland
| | - Ilkka Launonen
- Research Unit of Mathematical Sciences, University of Oulu, Oulu, P.O.Box 8000, FI-90014, Finland
| | - Marjo-Riitta Järvelin
- Research Unit of Population Health, University of Oulu, Oulu, Finland
- Department of Epidemiology and Biostatistics, Imperial College London, London, United Kingdom
- Department of Life Sciences, College of Health and Life Sciences, Brunel University, London, United Kingdom
| | - Sylvain Sebert
- Research Unit of Population Health, University of Oulu, Oulu, Finland
| | - Mikko J Sillanpää
- Research Unit of Mathematical Sciences, University of Oulu, Oulu, P.O.Box 8000, FI-90014, Finland
| |
Collapse
|
49
|
Locus for severity implicates CNS resilience in progression of multiple sclerosis. Nature 2023; 619:323-331. [PMID: 37380766 PMCID: PMC10602210 DOI: 10.1038/s41586-023-06250-x] [Citation(s) in RCA: 98] [Impact Index Per Article: 49.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 05/23/2023] [Indexed: 06/30/2023]
Abstract
Multiple sclerosis (MS) is an autoimmune disease of the central nervous system (CNS) that results in significant neurodegeneration in the majority of those affected and is a common cause of chronic neurological disability in young adults1,2. Here, to provide insight into the potential mechanisms involved in progression, we conducted a genome-wide association study of the age-related MS severity score in 12,584 cases and replicated our findings in a further 9,805 cases. We identified a significant association with rs10191329 in the DYSF-ZNF638 locus, the risk allele of which is associated with a shortening in the median time to requiring a walking aid of a median of 3.7 years in homozygous carriers and with increased brainstem and cortical pathology in brain tissue. We also identified suggestive association with rs149097173 in the DNM3-PIGC locus and significant heritability enrichment in CNS tissues. Mendelian randomization analyses suggested a potential protective role for higher educational attainment. In contrast to immune-driven susceptibility3, these findings suggest a key role for CNS resilience and potentially neurocognitive reserve in determining outcome in MS.
Collapse
|
50
|
LaPierre N, Fu B, Turnbull S, Eskin E, Sankararaman S. Leveraging family data to design Mendelian randomization that is provably robust to population stratification. Genome Res 2023; 33:1032-1041. [PMID: 37197991 PMCID: PMC10538495 DOI: 10.1101/gr.277664.123] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 04/16/2023] [Indexed: 05/19/2023]
Abstract
Mendelian randomization (MR) has emerged as a powerful approach to leverage genetic instruments to infer causality between pairs of traits in observational studies. However, the results of such studies are susceptible to biases owing to weak instruments, as well as the confounding effects of population stratification and horizontal pleiotropy. Here, we show that family data can be leveraged to design MR tests that are provably robust to confounding from population stratification, assortative mating, and dynastic effects. We show in simulations that our approach, MR-Twin, is robust to confounding from population stratification and is not affected by weak instrument bias, whereas standard MR methods yield inflated false positive rates. We then conduct an exploratory analysis of MR-Twin and other MR methods applied to 121 trait pairs in the UK Biobank data set. Our results suggest that confounding from population stratification can lead to false positives for existing MR methods, whereas MR-Twin is immune to this type of confounding, and that MR-Twin can help assess whether traditional approaches may be inflated owing to confounding from population stratification.
Collapse
Affiliation(s)
- Nathan LaPierre
- Department of Computer Science, University of California Los Angeles, Los Angeles, California 90095, USA;
| | - Boyang Fu
- Department of Computer Science, University of California Los Angeles, Los Angeles, California 90095, USA
| | - Steven Turnbull
- Department of Statistics, University of California Los Angeles, Los Angeles, California 90095, USA
| | - Eleazar Eskin
- Department of Computer Science, University of California Los Angeles, Los Angeles, California 90095, USA
- Department of Computational Medicine, University of California Los Angeles, Los Angeles, California 90095, USA
- Department of Human Genetics, University of California Los Angeles, Los Angeles, California 90095, USA
| | - Sriram Sankararaman
- Department of Computer Science, University of California Los Angeles, Los Angeles, California 90095, USA;
- Department of Computational Medicine, University of California Los Angeles, Los Angeles, California 90095, USA
- Department of Human Genetics, University of California Los Angeles, Los Angeles, California 90095, USA
| |
Collapse
|