1
|
Lin Y, Wang Y, Li H, Liu T, Zhang J, Guo X, Guo W, Wang Y, Liu X, Huang S, Liao H, Wang X. A platform for the rapid screening of equine immunoglobins F (ab)2 derived from single equine memory B cells able to cross-neutralize to influenza virus. Emerg Microbes Infect 2024; 13:2396864. [PMID: 39331815 PMCID: PMC11441081 DOI: 10.1080/22221751.2024.2396864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 07/26/2024] [Accepted: 08/22/2024] [Indexed: 09/29/2024]
Abstract
Single B cells-based antibody platforms offer an effective approach for the discovery of useful antibodies for therapeutic or research purposes. Here we present a method for screening equine immunoglobins F(ab)2, which offers the potential advantage of reacting with multiple epitopes on the virus. Using equine influenza virus (EIV) as model, a hemagglutinin (HA) trimer was constructed to bait B cells in vaccinated horses. We screened 370 HA-specific B cells from 1 × 106 PBMCs and identified a diverse set of equine variable region gene sequences of heavy and light chains and then recombined with humanized Ig Fc. Recombinant equine Ig was then self-assembled in co-transfected 293 T cells, and subsequently optimized to obtain HA binding B-cell receptor (s). The recombinant antibodies exhibited a high binding affinity to the HA protein. Antibody H81 exhibited the highest cross neutralizing activities against EIV strains in vitro. Furthermore, it effectively protected EIV-challenged mice, resulting in significantly improved survival, reduced pulmonary inflammation and decreased viral titers. In silico predication identified a functional region of H81 comprising 27 key amino acids cross the main circulating EIV strains. The 12 amino acid residues in this region with the highest binding affinities were screened. Notably, the predicted epitopes of H81 encompassed the documented equine HA receptor binding site, validating its cross-neutralization. In summary, a rapid platform was successfully established to investigate the profiling of equine antigen-recognizing receptors (BCRs) following infection. This platform has the potential to optimize the screening of virus-neutralizing antibodies and aid in vaccine design.
Collapse
Affiliation(s)
- Yuezhi Lin
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, People’s Republic of China
| | - Yayu Wang
- Zhuhai Trinomab Pharmaceutical Co., Ltd, Zhuhai, People’s Republic of China
| | - Hongxin Li
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, People’s Republic of China
| | - Tong Liu
- Zhuhai Trinomab Pharmaceutical Co., Ltd, Zhuhai, People’s Republic of China
| | - Jiaqi Zhang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, People’s Republic of China
| | - Xing Guo
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, People’s Republic of China
| | - Wei Guo
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, People’s Republic of China
- Institute of Western Agriculture, the Chinese Academy of Agricultural sciences, Changji, People’s Republic of China
| | - Yaoxin Wang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, People’s Republic of China
| | - Xiangning Liu
- Clinical Research Platform for Interdiscipline of Stomatology, The First Affiliated Hospital of Jinan University, Guangzhou, People's Republic of China
- Department of Stomatology, College of Stomatology, Jinan University, Guangzhou, People’s Republic of China
| | - Shaoli Huang
- The Hong Kong University of Science and Technology, School of Engineering, Hong Kong, People’s Republic of China
| | - Huaxin Liao
- Zhuhai Trinomab Pharmaceutical Co., Ltd, Zhuhai, People’s Republic of China
| | - XiaoJun Wang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, People’s Republic of China
- Institute of Western Agriculture, the Chinese Academy of Agricultural sciences, Changji, People’s Republic of China
| |
Collapse
|
2
|
Krishnan N, Briggs D. Imlifidase: Is it the Magic Wand in Renal Transplantation? Indian J Nephrol 2024; 34:291-296. [PMID: 39156835 PMCID: PMC11326793 DOI: 10.25259/ijn_325_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 09/15/2023] [Indexed: 08/20/2024] Open
Abstract
Potential kidney transplant patients with HLA-specific antibodies have reduced access to transplantation. Their harmful effects are mediated by the Fc portion of IgG, including activation of the complement system and Fc receptor-initiated cytotoxic processes by circulating leucocytes. Avoiding antibody incompatibility is the conventional approach, but for some patients this can mean extended waiting times, or even no chance of a transplant if there are no alternative, compatible donors. For these cases, pretransplant antibody removal may provide access to transplantation. Plasmapheresis is currently used to achieve this, with acceptable outcome results, but the process can take days to reduce the antibody levels to a safe level, so has limited use for deceased donors. There is now an alternative, in the form of an IgG-digesting enzyme, Imlifidase, which can be administered for in vivo IgG inactivation. Imlifidase cleaves human IgG, separating the antigen-binding part, F(ab')2 from Fc. Typically, within six hours of dosing, most, if not all, of the circulating IgG has been inactivated, allowing safe transplantation from a previously incompatible donor. For deceased donor transplantation, where minimizing cold ischaemia is critical, this six-hour delay before implantation should be manageable, with the compatibility testing processes adjusted to accommodate the treatment. This agent has been used successfully in phase 2 clinical trials, with good short to medium term outcomes. While a donation rate that matches demand may be one essential answer to providing universal access to kidney transplantation, this is currently unrealistic. IgG inactivation, using Imlifidase, is, however, a realistic and proven alternative.
Collapse
Affiliation(s)
- Nithya Krishnan
- Department of Renal and Transplant Medicine, Institute of Cardiometabolic Medicine, University of Hospitals Coventry and Warwickshire NHS Trust, Coventry, United Kingdom
- Institute of Community and Health Care, Coventry University, Coventry, United Kingdom
| | - David Briggs
- Histocompatibility and Immunogenetics Lab, NHS Blood and Transplant, Birmingham, United Kingdom
- Institute of Immunology and Immunotherapy, University of Birmingham, Coventry, United Kingdom
| |
Collapse
|
3
|
Idrovo-Hidalgo T, Pignataro MF, Bredeston LM, Elias F, Herrera MG, Pavan MF, Foscaldi S, Suireszcz M, Fernández NB, Wetzler DE, Paván CH, Craig PO, Roman EA, Ruberto LAM, Noseda DG, Ibañez LI, Czibener C, Ugalde JE, Nadra AD, Santos J, D'Alessio C. Deglycosylated RBD produced in Pichia pastoris as a low-cost sera COVID-19 diagnosis tool and a vaccine candidate. Glycobiology 2024; 34:cwad089. [PMID: 37944064 DOI: 10.1093/glycob/cwad089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 10/26/2023] [Accepted: 11/01/2023] [Indexed: 11/12/2023] Open
Abstract
During the COVID-19 outbreak, numerous tools including protein-based vaccines have been developed. The methylotrophic yeast Pichia pastoris (synonymous to Komagataella phaffii) is an eukaryotic cost-effective and scalable system for recombinant protein production, with the advantages of an efficient secretion system and the protein folding assistance of the secretory pathway of eukaryotic cells. In a previous work, we compared the expression of SARS-CoV-2 Spike Receptor Binding Domain in P. pastoris with that in human cells. Although the size and glycosylation pattern was different between them, their protein structural and conformational features were indistinguishable. Nevertheless, since high mannose glycan extensions in proteins expressed by yeast may be the cause of a nonspecific immune recognition, we deglycosylated RBD in native conditions. This resulted in a highly pure, homogenous, properly folded and monomeric stable protein. This was confirmed by circular dichroism and tryptophan fluorescence spectra and by SEC-HPLC, which were similar to those of RBD proteins produced in yeast or human cells. Deglycosylated RBD was obtained at high yields in a single step, and it was efficient in distinguishing between SARS-CoV-2-negative and positive sera from patients. Moreover, when the deglycosylated variant was used as an immunogen, it elicited a humoral immune response ten times greater than the glycosylated form, producing antibodies with enhanced neutralizing power and eliciting a more robust cellular response. The proposed approach may be used to produce at a low cost, many antigens that require glycosylation to fold and express, but do not require glycans for recognition purposes.
Collapse
Affiliation(s)
- Tommy Idrovo-Hidalgo
- Facultad de Ciencias Exactas y Naturales, Departamento de Fisiología y Biología Molecular y Celular, Instituto de Biociencias, Biotecnología y Biología Traslacional (iB3), Universidad de Buenos Aires, Intendente Güiraldes 2160, C1428EGA, Buenos Aires, Argentina
| | - María F Pignataro
- Facultad de Ciencias Exactas y Naturales, Departamento de Fisiología y Biología Molecular y Celular, Instituto de Biociencias, Biotecnología y Biología Traslacional (iB3), Universidad de Buenos Aires, Intendente Güiraldes 2160, C1428EGA, Buenos Aires, Argentina
- Facultad de Farmacia y Bioquímica, Departamento de Química Biológica, Universidad de Buenos Aires, Junín 965 C1113AAD. Buenos Aires, Argentina
| | - Luis M Bredeston
- Facultad de Farmacia y Bioquímica, Departamento de Química Biológica, Universidad de Buenos Aires, Junín 965 C1113AAD. Buenos Aires, Argentina
- Instituto de Química y Fisicoquímica Biológicas, (IQUIFIB), CONICET-Universidad de Buenos Aires, Junín 956 C1113AAD, Buenos Aires, Argentina
| | - Fernanda Elias
- Consejo Nacional de Investigaciones Científicas y Técnicas-Fundación Pablo Cassará, Instituto de Ciencia y Tecnología Dr. César Milstein, Saladillo 2468 C1440FFX, Buenos Aires, Argentina
| | - María G Herrera
- Facultad de Ciencias Exactas y Naturales, Departamento de Fisiología y Biología Molecular y Celular, Instituto de Biociencias, Biotecnología y Biología Traslacional (iB3), Universidad de Buenos Aires, Intendente Güiraldes 2160, C1428EGA, Buenos Aires, Argentina
| | - María F Pavan
- Instituto de Química Física de los Materiales, Medio Ambiente y Energía (INQUIMAE), CONICET-Universidad de Buenos Aires, Intendente Güiraldes 2160, C1428EGA, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290 C1425FQB, Buenos Aires, Argentina
| | - Sabrina Foscaldi
- Facultad de Ciencias Exactas y Naturales, Departamento de Fisiología y Biología Molecular y Celular, Instituto de Biociencias, Biotecnología y Biología Traslacional (iB3), Universidad de Buenos Aires, Intendente Güiraldes 2160, C1428EGA, Buenos Aires, Argentina
| | - Mayra Suireszcz
- Facultad de Ciencias Exactas y Naturales, Departamento de Fisiología y Biología Molecular y Celular, Instituto de Biociencias, Biotecnología y Biología Traslacional (iB3), Universidad de Buenos Aires, Intendente Güiraldes 2160, C1428EGA, Buenos Aires, Argentina
| | - Natalia B Fernández
- Facultad de Ciencias Exactas y Naturales, Departamento de Fisiología y Biología Molecular y Celular, Instituto de Biociencias, Biotecnología y Biología Traslacional (iB3), Universidad de Buenos Aires, Intendente Güiraldes 2160, C1428EGA, Buenos Aires, Argentina
| | - Diana E Wetzler
- Facultad de Ciencias Exactas y Naturales, Departamento de Química Biológica, Universidad de Buenos Aires, Intendente Güiraldes 2160, C1428EGA, Buenos Aires, Argentina
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), CONICET-Universidad de Buenos Aires, Intendente Güiraldes 2160, C1428EGA, Buenos Aires, Argentina
| | - Carlos H Paván
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290 C1425FQB, Buenos Aires, Argentina
- Facultad de Farmacia y Bioquímica, LANAIS-PROEM, Instituto de Química y Fisicoquímica Biológicas, (IQUIFIB), CONICET-Universidad de Buenos Aires, Junín 956, C1113AAD, Buenos Aires, Argentina
| | - Patricio O Craig
- Facultad de Ciencias Exactas y Naturales, Departamento de Química Biológica, Universidad de Buenos Aires, Intendente Güiraldes 2160, C1428EGA, Buenos Aires, Argentina
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), CONICET-Universidad de Buenos Aires, Intendente Güiraldes 2160, C1428EGA, Buenos Aires, Argentina
| | - Ernesto A Roman
- Instituto de Química y Fisicoquímica Biológicas, (IQUIFIB), CONICET-Universidad de Buenos Aires, Junín 956 C1113AAD, Buenos Aires, Argentina
- Facultad de Ciencias Exactas y Naturales, Departamento de Química Biológica, Universidad de Buenos Aires, Intendente Güiraldes 2160, C1428EGA, Buenos Aires, Argentina
| | - Lucas A M Ruberto
- Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín 965, C1113AAD, Buenos Aires, Argentina
- Instituto de Nanobiotecnología (NANOBIOTEC), CONICET-Universidad de Buenos Aires, Junín 965, C1113AAD, Buenos Aires, Argentina
- Instituto Antártico Argentino, Ministerio de Relaciones Exteriores y Culto, Av. 25 de Mayo 1147, B1650HMP, San Martín, Prov. de Buenos Aires, Argentina
| | - Diego G Noseda
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290 C1425FQB, Buenos Aires, Argentina
- Instituto de Investigaciones Biotecnológicas (IIBio), Universidad Nacional de San Martín-CONICET, Av. 25 de Mayo y Francia S/N, B1650HMP, San Martín, Prov. de Buenos Aires, Argentina
| | - Lorena I Ibañez
- Instituto de Química Física de los Materiales, Medio Ambiente y Energía (INQUIMAE), CONICET-Universidad de Buenos Aires, Intendente Güiraldes 2160, C1428EGA, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290 C1425FQB, Buenos Aires, Argentina
| | - Cecilia Czibener
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290 C1425FQB, Buenos Aires, Argentina
- Instituto de Investigaciones Biotecnológicas (IIBio), Universidad Nacional de San Martín-CONICET, Av. 25 de Mayo y Francia S/N, B1650HMP, San Martín, Prov. de Buenos Aires, Argentina
| | - Juan E Ugalde
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290 C1425FQB, Buenos Aires, Argentina
- Instituto de Investigaciones Biotecnológicas (IIBio), Universidad Nacional de San Martín-CONICET, Av. 25 de Mayo y Francia S/N, B1650HMP, San Martín, Prov. de Buenos Aires, Argentina
| | - Alejandro D Nadra
- Facultad de Ciencias Exactas y Naturales, Departamento de Fisiología y Biología Molecular y Celular, Instituto de Biociencias, Biotecnología y Biología Traslacional (iB3), Universidad de Buenos Aires, Intendente Güiraldes 2160, C1428EGA, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290 C1425FQB, Buenos Aires, Argentina
| | - Javier Santos
- Facultad de Ciencias Exactas y Naturales, Departamento de Fisiología y Biología Molecular y Celular, Instituto de Biociencias, Biotecnología y Biología Traslacional (iB3), Universidad de Buenos Aires, Intendente Güiraldes 2160, C1428EGA, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290 C1425FQB, Buenos Aires, Argentina
- Facultad de Ciencias Exactas y Naturales, Departamento de Química Biológica, Universidad de Buenos Aires, Intendente Güiraldes 2160, C1428EGA, Buenos Aires, Argentina
| | - Cecilia D'Alessio
- Facultad de Ciencias Exactas y Naturales, Departamento de Fisiología y Biología Molecular y Celular, Instituto de Biociencias, Biotecnología y Biología Traslacional (iB3), Universidad de Buenos Aires, Intendente Güiraldes 2160, C1428EGA, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290 C1425FQB, Buenos Aires, Argentina
- Facultad de Ciencias Exactas y Naturales, Departamento de Química Biológica, Universidad de Buenos Aires, Intendente Güiraldes 2160, C1428EGA, Buenos Aires, Argentina
| |
Collapse
|
4
|
Nikkhoi SK, Heydarzadeh H, Vandavasi VG, Yang G, Louro P, Polunas M, Owji H, Hatefi A. A high affinity and specificity anti-HER2 single-domain antibody (VHH) that targets trastuzumab's epitope with versatile biochemical, biological, and medical applications. Immunol Res 2024; 72:103-118. [PMID: 37632647 PMCID: PMC10842867 DOI: 10.1007/s12026-023-09418-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 08/19/2023] [Indexed: 08/28/2023]
Abstract
In the past decade, various single-domain antibodies from llamas, also known as VHH or nanobody, have been discovered with applications in tumor imaging and cancer therapy. However, the potential application of anti-HER2 VHHs as a diagnostic tool suitable for ELISA, flow cytometry, cell imaging, bispecific antibody engineering, and immunohistochemistry has not been fully elucidated. To investigate this potential, HER2 antigen was expressed in HEK293 F cells, purified, and used to immunize llama. Using phage display, anti-HER2 VHHs with high affinity and specificity were isolated, sequenced, and constructed with a Histag and c-Myc tag. The constructed anti-HER2 VHHs were then expressed in E. coli, purified, and evaluated for their use in ELISA, flow cytometry, cell imaging, and immunohistochemistry. The affinities of the anti-HER2 VHHs toward the HER2 antigen were determined using biolayer interferometry. Furthermore, the binding sites of the anti-HER2 VHHs were evaluated by epitope mapping and in silico modeling and docking. Here, we report the sequence of an anti-HER2 VHH with high affinity (sub-nanomolar), specificity, and selectivity. This VHH binds to the same epitope as trastuzumab and can be utilized to generate bispecific antibodies or used as a diagnostic tool to differentiate HER2+ from HER2- antigens on plates, cells, and tissues. This discovery has broad applications in biochemical, biological, and medical sciences.
Collapse
Affiliation(s)
- Shahryar Khoshtinat Nikkhoi
- Department of Pharmaceutics, Rutgers University, Room 222, 160 Frelinghuysen Road, Piscataway, NJ, 08854, USA
| | - Hediyeh Heydarzadeh
- Department of Pharmaceutics, Rutgers University, Room 222, 160 Frelinghuysen Road, Piscataway, NJ, 08854, USA
| | - Venu Gopal Vandavasi
- Department of Chemistry, Biophysics Core Facility, Princeton University, Princeton, NJ, 08544, USA
| | - Ge Yang
- Department of Pharmaceutics, Rutgers University, Room 222, 160 Frelinghuysen Road, Piscataway, NJ, 08854, USA
| | - Pedro Louro
- Rutgers Research Pathology Services, Rutgers University, Piscataway, NJ, 08854, USA
| | - Marianne Polunas
- Rutgers Research Pathology Services, Rutgers University, Piscataway, NJ, 08854, USA
| | - Hajar Owji
- Department of Pharmaceutics, Rutgers University, Room 222, 160 Frelinghuysen Road, Piscataway, NJ, 08854, USA
| | - Arash Hatefi
- Department of Pharmaceutics, Rutgers University, Room 222, 160 Frelinghuysen Road, Piscataway, NJ, 08854, USA.
- Cancer Pharmacology Program, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, 08901, USA.
| |
Collapse
|
5
|
Wu Y, Shi J, He X, Lu J, Gao X, Zhu X, Chen X, Zhang M, Fang L, Zhang J, Yuan Z, Xiao G, Zhou P, Pan X. Protection of the receptor binding domain (RBD) dimer against SARS-CoV-2 and its variants. J Virol 2023; 97:e0127923. [PMID: 37843372 PMCID: PMC10688353 DOI: 10.1128/jvi.01279-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 09/16/2023] [Indexed: 10/17/2023] Open
Abstract
IMPORTANCE Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants achieved immune escape and became less virulent and easily transmissible through rapid mutation in the spike protein, thus the efficacy of vaccines on the market or in development continues to be challenged. Updating the vaccine, exploring compromise vaccination strategies, and evaluating the efficacy of candidate vaccines for the emerging variants in a timely manner are important to combat complex and volatile SARS-CoV-2. This study reports that vaccines prepared from the dimeric receptor-binding domain (RBD) recombinant protein, which can be quickly produced using a mature and stable process platform, had both good immunogenicity and protection in vivo and could completely protect rodents from lethal challenge by SARS-CoV-2 and its variants, including the emerging Omicron XBB.1.16, highlighting the value of dimeric recombinant vaccines in the post-COVID-19 era.
Collapse
Affiliation(s)
- Yan Wu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Jian Shi
- Wuhan YZY Biopharma Co., Ltd., Wuhan, China
| | - Xiaoxue He
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Jia Lu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Xiao Gao
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Xuerui Zhu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Xinlan Chen
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Man Zhang
- Wuhan YZY Biopharma Co., Ltd., Wuhan, China
| | | | - Jing Zhang
- Wuhan YZY Biopharma Co., Ltd., Wuhan, China
| | - Zhiming Yuan
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
- University of the Chinese Academy of Sciences, Beijing, China
- Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Gengfu Xiao
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
- University of the Chinese Academy of Sciences, Beijing, China
- Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | | | - Xiaoyan Pan
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
- University of the Chinese Academy of Sciences, Beijing, China
- Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| |
Collapse
|
6
|
Findlay-Wilson S, Easterbrook L, Smith S, Pope N, Aldridge M, Humphries G, Schuhmann H, Ngabo D, Rayner E, Otter A, Coleman T, Hicks B, Halkerston R, Apostolakis K, Taylor S, Fotheringham S, Horton A, CanoCejas I, Wand M, Tree JA, Sutton M, Graham V, Hewson R, Dowall S. Refinement of an ovine-based immunoglobulin therapy against SARS-CoV-2, with comparison of whole IgG versus F(ab') 2 fragments. Sci Rep 2023; 13:13912. [PMID: 37626085 PMCID: PMC10457378 DOI: 10.1038/s41598-023-40277-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023] Open
Abstract
The development of new therapies against SARS-CoV-2 is required to extend the toolkit of intervention strategies to combat the global pandemic. In this study, hyperimmune plasma from sheep immunised with whole spike SARS-CoV-2 recombinant protein has been used to generate candidate products. In addition to purified IgG, we have refined candidate therapies by removing non-specific IgG via affinity binding along with fragmentation to eliminate the Fc region to create F(ab')2 fragments. These preparations were evaluated for in vitro activity and demonstrated to be strongly neutralising against a range of SARS-CoV-2 strains, including Omicron B2.2. In addition, their protection against disease manifestations and viral loads were assessed using a hamster SARS-CoV-2 infection model. Results demonstrated protective effects of both IgG and F(ab')2, with the latter requiring sequential dosing to maintain in vivo activity due to rapid clearance from the circulation.
Collapse
Affiliation(s)
| | - Linda Easterbrook
- UK Health Security Agency (UKHSA), Porton Down, Salisbury, Wiltshire, SP4 0JG, UK
| | - Sandra Smith
- International Therapeutic Proteins Ltd, Longford, TAS, 7301, Australia
| | - Neville Pope
- International Therapeutic Proteins Ltd, Goleigh Farm, Selborne, GU34 3SE, Hampshire, UK
| | | | - Gareth Humphries
- Native Antigen Company, Langford Locks, Kidlington, Oxford, OX5 1LH, UK
| | - Holger Schuhmann
- Native Antigen Company, Langford Locks, Kidlington, Oxford, OX5 1LH, UK
| | - Didier Ngabo
- UK Health Security Agency (UKHSA), Porton Down, Salisbury, Wiltshire, SP4 0JG, UK
| | - Emma Rayner
- UK Health Security Agency (UKHSA), Porton Down, Salisbury, Wiltshire, SP4 0JG, UK
| | - Ashley Otter
- UK Health Security Agency (UKHSA), Porton Down, Salisbury, Wiltshire, SP4 0JG, UK
| | - Thomas Coleman
- UK Health Security Agency (UKHSA), Porton Down, Salisbury, Wiltshire, SP4 0JG, UK
| | - Bethany Hicks
- UK Health Security Agency (UKHSA), Porton Down, Salisbury, Wiltshire, SP4 0JG, UK
| | - Rachel Halkerston
- UK Health Security Agency (UKHSA), Porton Down, Salisbury, Wiltshire, SP4 0JG, UK
| | - Kostis Apostolakis
- UK Health Security Agency (UKHSA), Porton Down, Salisbury, Wiltshire, SP4 0JG, UK
| | - Stephen Taylor
- UK Health Security Agency (UKHSA), Porton Down, Salisbury, Wiltshire, SP4 0JG, UK
| | - Susan Fotheringham
- UK Health Security Agency (UKHSA), Porton Down, Salisbury, Wiltshire, SP4 0JG, UK
| | - Amanda Horton
- UK Health Security Agency (UKHSA), Porton Down, Salisbury, Wiltshire, SP4 0JG, UK
| | - Irene CanoCejas
- UK Health Security Agency (UKHSA), Porton Down, Salisbury, Wiltshire, SP4 0JG, UK
| | - Matthew Wand
- UK Health Security Agency (UKHSA), Porton Down, Salisbury, Wiltshire, SP4 0JG, UK
| | - Julia A Tree
- UK Health Security Agency (UKHSA), Porton Down, Salisbury, Wiltshire, SP4 0JG, UK
| | - Mark Sutton
- UK Health Security Agency (UKHSA), Porton Down, Salisbury, Wiltshire, SP4 0JG, UK
| | - Victoria Graham
- UK Health Security Agency (UKHSA), Porton Down, Salisbury, Wiltshire, SP4 0JG, UK
| | - Roger Hewson
- UK Health Security Agency (UKHSA), Porton Down, Salisbury, Wiltshire, SP4 0JG, UK
| | - Stuart Dowall
- UK Health Security Agency (UKHSA), Porton Down, Salisbury, Wiltshire, SP4 0JG, UK.
| |
Collapse
|
7
|
Yaniro V, Capristano S, Bailon H, Lévano J, Galarza M, García D, Cáceres O, Padilla C, Montejo H, García P, Celis M, Seraylan S, Garayar Y, Palomino M. Neutralization of SARS-CoV-2 (lineage B.1.1) by hyperimmune llama (Lama glama) serum in vero cell culture. Rev Peru Med Exp Salud Publica 2023; 40:287-296. [PMID: 37991032 PMCID: PMC10953648 DOI: 10.17843/rpmesp.2023.403.12509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 09/01/2023] [Indexed: 11/23/2023] Open
Abstract
OBJECTIVE. To evaluate the serological antibody response of a llama (Lama glama) to SARS-CoV-2 (B.1.1 lineage) immunization and the neutralizing capacity of hyperimmune llama serum against SARS-CoV-2 virus (B.1.1 lineage) in Vero cells. MATERIALS AND METHODS. A llama was immunized with inactivated SARS-CoV-2 (B.1.1 lineage). Serum samples were analyzed to evaluate the level of antibodies by ELISA, as well as reactivity to SARS-CoV-2 antigens by Western Blot. In addition, viral neutralization in cell cultures was assessed by the Plate Reduction Neutralization Test (PRNT). RESULTS . Seroreactivity increased in the immunized llama from week 4 onwards. Antibody titers were the highest after the seventh immunization booster. Western blot results confirmed the positive ELISA findings, and immune serum antibodies recognized several viral proteins. The neutralization assay (PRNT) showed visible viral neutralization, which was in accordance with the ELISA and Western Blot results. CONCLUSIONS. The findings suggest that hyperimmune llama serum could constitute a source of therapeutic antibodies against SARS-CoV-2 infections (lineage B.1.1), and should be studied in further research.
Collapse
Affiliation(s)
- Verónica Yaniro
- National Referral Laboratory for Biotechnology and Molecular Biology, Centro Nacional de Salud Pública, Instituto Nacional de Salud, Lima, Peru.National Referral Laboratory for Biotechnology and Molecular BiologyCentro Nacional de Salud PúblicaInstituto Nacional de SaludLimaPeru
| | - Silvia Capristano
- National Referral Laboratory for Biotechnology and Molecular Biology, Centro Nacional de Salud Pública, Instituto Nacional de Salud, Lima, Peru.National Referral Laboratory for Biotechnology and Molecular BiologyCentro Nacional de Salud PúblicaInstituto Nacional de SaludLimaPeru
| | - Henri Bailon
- National Referral Laboratory for Biotechnology and Molecular Biology, Centro Nacional de Salud Pública, Instituto Nacional de Salud, Lima, Peru.National Referral Laboratory for Biotechnology and Molecular BiologyCentro Nacional de Salud PúblicaInstituto Nacional de SaludLimaPeru
| | - Juan Lévano
- National Referral Laboratory for Biotechnology and Molecular Biology, Centro Nacional de Salud Pública, Instituto Nacional de Salud, Lima, Peru.National Referral Laboratory for Biotechnology and Molecular BiologyCentro Nacional de Salud PúblicaInstituto Nacional de SaludLimaPeru
| | - Marco Galarza
- National Referral Laboratory for Biotechnology and Molecular Biology, Centro Nacional de Salud Pública, Instituto Nacional de Salud, Lima, Peru.National Referral Laboratory for Biotechnology and Molecular BiologyCentro Nacional de Salud PúblicaInstituto Nacional de SaludLimaPeru
| | - David García
- National Referral Laboratory for Biotechnology and Molecular Biology, Centro Nacional de Salud Pública, Instituto Nacional de Salud, Lima, Peru.National Referral Laboratory for Biotechnology and Molecular BiologyCentro Nacional de Salud PúblicaInstituto Nacional de SaludLimaPeru
| | - Omar Cáceres
- National Referral Laboratory for Biotechnology and Molecular Biology, Centro Nacional de Salud Pública, Instituto Nacional de Salud, Lima, Peru.National Referral Laboratory for Biotechnology and Molecular BiologyCentro Nacional de Salud PúblicaInstituto Nacional de SaludLimaPeru
| | - Carlos Padilla
- National Referral Laboratory for Biotechnology and Molecular Biology, Centro Nacional de Salud Pública, Instituto Nacional de Salud, Lima, Peru.National Referral Laboratory for Biotechnology and Molecular BiologyCentro Nacional de Salud PúblicaInstituto Nacional de SaludLimaPeru
| | - Harrison Montejo
- National Referral Laboratory for Biotechnology and Molecular Biology, Centro Nacional de Salud Pública, Instituto Nacional de Salud, Lima, Peru.National Referral Laboratory for Biotechnology and Molecular BiologyCentro Nacional de Salud PúblicaInstituto Nacional de SaludLimaPeru
| | - Paquita García
- National Referral Laboratory for Viral Metaxenical Infections, Centro Nacional de Salud Pública, Instituto Nacional de Salud, Lima, Peru.National Referral Laboratory for Viral Metaxenical InfectionsCentro Nacional de Salud PúblicaInstituto Nacional de SaludLimaPeru
| | - Mary Celis
- Laboratorio de Referencia Nacional de Virus Respiratorios, Centro Nacional de Salud Pública, Instituto Nacional de Salud, Lima, Perú.Laboratorio de Referencia Nacional de Virus RespiratoriosCentro Nacional de Salud PúblicaInstituto Nacional de SaludLimaPeru
| | - Silvia Seraylan
- Centro Nacional de Producción de Biológicos, Instituto Nacional de Salud, Lima, Peru.Centro Nacional de Producción de BiológicosInstituto Nacional de SaludLimaPeru
| | - Yessica Garayar
- Centro Nacional de Producción de Biológicos, Instituto Nacional de Salud, Lima, Peru.Centro Nacional de Producción de BiológicosInstituto Nacional de SaludLimaPeru
| | - Miryam Palomino
- National Referral Laboratory for Viral Metaxenical Infections, Centro Nacional de Salud Pública, Instituto Nacional de Salud, Lima, Peru.National Referral Laboratory for Viral Metaxenical InfectionsCentro Nacional de Salud PúblicaInstituto Nacional de SaludLimaPeru
| |
Collapse
|
8
|
Sánchez-Pacheco UA, Bahena-Mondragón BM, Hernández-Piedras FR, Soria-Osorio R, Meneses-Acosta A. Development of a validated molecular analytical method to determine the viral safety of F(AB´) 2 products: A novel application for a well-known technique. J Virol Methods 2023; 315:114694. [PMID: 36822561 PMCID: PMC9943559 DOI: 10.1016/j.jviromet.2023.114694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 02/17/2023] [Accepted: 02/19/2023] [Indexed: 02/23/2023]
Abstract
The immunotherapy agents derived from horses are biological products that allow the neutralization of clinically relevant immunogens, such as the SARS-CoV-2 virus that causes COVID-19, or the neutralization of toxins present in the venoms of snakes, spiders, and other poisonous animals. Due to their importance, detecting adventitious viruses in equine hyperimmune serum (raw material in industrial processes) is a critical step to support the safety of products for human use, and, in consequence, it is a requirement for commercialization and distribution. The safety of the finished product is based on three complementary approaches: (i) testing of the source material (horse serum) donations, (ii) release of the starting material (i.e., pool of horse serum) based on non-reactivity for a range of human infectious or pathogenic viruses, and (iii) validate (selected) steps of the manufacturing process for their capacity to inactivate and/or remove a wide range of viruses potentially present in the starting material. Orthogonal approaches to reduce viral contamination risk include implementing a reliable and validated system for detecting adventitious viruses. Thus, it is necessary to establish trustworthy and sufficiently sensitive analytical methods to evidence the lack of viruses to assure the safety of the therapeutic product. Therefore, in this research, an analytical method based on end-point Reverse Transcription Polymerase Chain Reaction (RT-PCR) was developed, implemented, and validated in hyperimmune equine serum samples to detect Venezuelan equine encephalitis virus, West Nile virus, and Rabies virus.
Collapse
Affiliation(s)
- Uriel A Sánchez-Pacheco
- Facultad de Farmacia, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Chamilpa, C.P. 62209 Cuernavaca, Morelos, Mexico; Inosan Biopharma S.A. Arbea Campus Empresarial, Km. 3.8, C.P. 28108 Madrid, Spain
| | | | | | - Raúl Soria-Osorio
- Inosan Biopharma S.A. Arbea Campus Empresarial, Km. 3.8, C.P. 28108 Madrid, Spain.
| | - Angélica Meneses-Acosta
- Facultad de Farmacia, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Chamilpa, C.P. 62209 Cuernavaca, Morelos, Mexico.
| |
Collapse
|
9
|
PEGylation Prolongs the Half-Life of Equine Anti-SARS-CoV-2 Specific F(ab') 2. Int J Mol Sci 2023; 24:ijms24043387. [PMID: 36834803 PMCID: PMC9963672 DOI: 10.3390/ijms24043387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/13/2023] [Accepted: 02/03/2023] [Indexed: 02/11/2023] Open
Abstract
Therapeutic antibodies-F(ab')2 obtained from hyperimmune equine plasma could treat emerging infectious diseases rapidly because of their high neutralization activity and high output. However, the small-sized F(ab')2 is rapidly eliminated by blood circulation. This study explored PEGylation strategies to maximize the half-life of equine anti-SARS-CoV-2 specific F(ab')2. Equine anti-SARS-CoV-2 specific F(ab')2 were combined with 10 KDa MAL-PEG-MAL in optimum conditions. Specifically, there were two strategies: Fab-PEG and Fab-PEG-Fab, F(ab')2 bind to a PEG or two PEG, respectively. A single ion exchange chromatography step accomplished the purification of the products. Finally, the affinity and neutralizing activity was evaluated by ELISA and pseudovirus neutralization assay, and ELISA detected the pharmacokinetic parameters. The results displayed that equine anti-SARS-CoV-2 specific F(ab')2 has high specificity. Furthermore, PEGylation F(ab')2-Fab-PEG-Fab had a longer half-life than specific F(ab')2. The serum half-life of Fab-PEG-Fab, Fab-PEG, and specific F(ab')2 were 71.41 h, 26.73 h, and 38.32 h, respectively. The half-life of Fab-PEG-Fab was approximately two times as long as the specific F(ab')2. Thus far, PEGylated F(ab')2 has been prepared with high safety, high specificity, and a longer half-life, which could be used as a potential treatment for COVID-19.
Collapse
|
10
|
Xia B, Pan X, Luo RH, Shen X, Li S, Wang Y, Zuo X, Wu Y, Guo Y, Xiao G, Li Q, Long XY, He XY, Zheng HY, Lu Y, Pang W, Zheng YT, Li J, Zhang LK, Gao Z. Extracellular vesicles mediate antibody-resistant transmission of SARS-CoV-2. Cell Discov 2023; 9:2. [PMID: 36609376 PMCID: PMC9821354 DOI: 10.1038/s41421-022-00510-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 12/13/2022] [Indexed: 01/07/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused a global pandemic. Antibody resistance dampens neutralizing antibody therapy and threatens current global Coronavirus (COVID-19) vaccine campaigns. In addition to the emergence of resistant SARS-CoV-2 variants, little is known about how SARS-CoV-2 evades antibodies. Here, we report a novel mechanism of extracellular vesicle (EV)-mediated cell-to-cell transmission of SARS-CoV-2, which facilitates SARS-CoV-2 to escape from neutralizing antibodies. These EVs, initially observed in SARS-CoV-2 envelope protein-expressing cells, are secreted by various SARS-CoV-2-infected cells, including Vero E6, Calu-3, and HPAEpiC cells, undergoing infection-induced pyroptosis. Various SARS-CoV-2-infected cells produce similar EVs characterized by extra-large sizes (1.6-9.5 μm in diameter, average diameter > 4.2 μm) much larger than previously reported virus-generated vesicles. Transmission electron microscopy analysis and plaque assay reveal that these SARS-CoV-2-induced EVs contain large amounts of live virus particles. In particular, the vesicle-cloaked SARS-CoV-2 virus is resistant to neutralizing antibodies and able to reinfect naïve cells independent of the reported receptors and cofactors. Consistently, the constructed 3D images show that intact EVs could be taken up by recipient cells directly, supporting vesicle-mediated cell-to-cell transmission of SARS-CoV-2. Our findings reveal a novel mechanism of receptor-independent SARS-CoV-2 infection via cell-to-cell transmission, provide new insights into antibody resistance of SARS-CoV-2 and suggest potential targets for future antiviral therapeutics.
Collapse
Affiliation(s)
- Bingqing Xia
- grid.9227.e0000000119573309Stake Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, Beijing, China
| | - Xiaoyan Pan
- grid.9227.e0000000119573309State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, Hubei China
| | - Rong-Hua Luo
- grid.9227.e0000000119573309Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan China
| | - Xurui Shen
- grid.9227.e0000000119573309Stake Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, Beijing, China
| | - Shuangqu Li
- grid.9227.e0000000119573309Stake Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, Beijing, China
| | - Yi Wang
- grid.9227.e0000000119573309Stake Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, Beijing, China
| | - Xiaoli Zuo
- grid.9227.e0000000119573309Stake Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Yan Wu
- grid.9227.e0000000119573309State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, Hubei China
| | - Yingqi Guo
- grid.9227.e0000000119573309Public Technology Service Center, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan China
| | - Gengfu Xiao
- grid.9227.e0000000119573309State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, Hubei China
| | - Qiguang Li
- grid.9227.e0000000119573309Stake Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, Beijing, China
| | - Xin-Yan Long
- grid.9227.e0000000119573309Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan China ,grid.410726.60000 0004 1797 8419Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan China
| | - Xiao-Yan He
- grid.9227.e0000000119573309Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan China ,grid.410726.60000 0004 1797 8419Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan China
| | - Hong-Yi Zheng
- grid.9227.e0000000119573309Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan China
| | - Ying Lu
- grid.9227.e0000000119573309Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan China ,grid.410726.60000 0004 1797 8419Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan China
| | - Wei Pang
- grid.9227.e0000000119573309Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan China
| | - Yong-Tang Zheng
- grid.9227.e0000000119573309Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan China
| | - Jia Li
- grid.9227.e0000000119573309Stake Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, Beijing, China ,grid.9227.e0000000119573309Zhongshan Institute for Drug Research, Institution for Drug Discovery Innovation, Chinese Academy of Science, Zhongshan, Guangdong China
| | - Lei-Ke Zhang
- grid.9227.e0000000119573309State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, Hubei China
| | - Zhaobing Gao
- grid.9227.e0000000119573309Stake Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, Beijing, China ,grid.9227.e0000000119573309Zhongshan Institute for Drug Research, Institution for Drug Discovery Innovation, Chinese Academy of Science, Zhongshan, Guangdong China ,grid.8547.e0000 0001 0125 2443School of Pharmacy, Fudan University, Shanghai, China
| |
Collapse
|
11
|
Wang Q, Peng L, Nie Y, Shu Y, Zhang H, Song Z, Li Y, Hu H, Li L, Wang X, Liu J, Li J, Shi Z, Deng F, Guo Y, Zhou Y, Yan B, Hu Z, Wang M. Hybridoma-derived neutralizing monoclonal antibodies against Beta and Delta variants of SARS-CoV-2 in vivo. Virol Sin 2022; 38:257-267. [PMID: 36596381 PMCID: PMC9803610 DOI: 10.1016/j.virs.2022.12.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 12/29/2022] [Indexed: 01/01/2023] Open
Abstract
Neutralizing monoclonal antibodies (mAb) are a major therapeutic strategy for the treatment of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection. The continuous emergence of new SARS-CoV-2 variants worldwide has increased the urgency for the development of new mAbs. In this study, we immunized mice with the receptor-binding domain (RBD) of the SARS-CoV-2 prototypic strain (WIV04) and screened 35 RBD-specific mAbs using hybridoma technology. Results of the plaque reduction neutralization test showed that 25 of the mAbs neutralized authentic WIV04 strain infection. The 25 mAbs were divided into three categories based on the competitive enzyme-linked immunosorbent assay results. A representative mAb was selected from each category (RD4, RD10, and RD14) to determine the binding kinetics and median inhibitory concentration (IC50) of WIV04 and two variants of concern (VOC): B.1.351 (Beta) and B.1.617.2 (Delta). RD4 neutralized the B.1.617.2 variant with an IC50 of 2.67 ng/mL; however, it completely lost neutralizing activity against the B.1.351 variant. RD10 neutralized both variants with an IC50 exceeding 100 ng/mL; whereas RD14 neutralized two variants with a higher IC50 (>1 mg/mL). Animal experiments were performed to evaluate the protective effects of RD4 and RD10 against various VOC infections. RD4 could protect Adv-hACE2 transduced mice from B.1.617.2 infection at an antibody concentration of 25 mg/kg, while RD10 could protect mice from B.1.351 infection at an antibody concentration of 75 mg/kg. These results highlight the potential for future modifications of the mAbs for practical use.
Collapse
Affiliation(s)
- Qianran Wang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Lu Peng
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Yanqiu Nie
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Yanni Shu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Huajun Zhang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Zidan Song
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Yufeng Li
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Hengrui Hu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Liushuai Li
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Xi Wang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Jia Liu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Jiang Li
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Zhengli Shi
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Fei Deng
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Yu Guo
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Yiwu Zhou
- Department of Forensic Medicine, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, 430010, China
| | - Bing Yan
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Zhihong Hu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Manli Wang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China,Hubei Jiangxia Laboratory, Wuhan, 430200, China,Corresponding author
| |
Collapse
|
12
|
Yi M, Wu Y, Niu M, Zhu S, Zhang J, Yan Y, Zhou P, Dai Z, Wu K. Anti-TGF-β/PD-L1 bispecific antibody promotes T cell infiltration and exhibits enhanced antitumor activity in triple-negative breast cancer. J Immunother Cancer 2022; 10:jitc-2022-005543. [PMID: 36460337 PMCID: PMC9723957 DOI: 10.1136/jitc-2022-005543] [Citation(s) in RCA: 83] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/08/2022] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND Agents blocking programmed cell death protein 1/programmed death-ligand 1 (PD-1/PD-L1) have been approved for triple-negative breast cancer (TNBC). However, the response rate of anti-PD-1/PD-L1 is still unsatisfactory, partly due to immunosuppressive factors such as transforming growth factor-beta (TGF-β). In our previous pilot study, the bispecific antibody targeting TGF-β and murine PD-L1 (termed YM101) showed potent antitumor effect. In this work, we constructed a bispecific antibody targeting TGF-β and human PD-L1 (termed BiTP) and explored the antitumor effect of BiTP in TNBC. METHODS BiTP was developed using Check-BODYTM bispecific platform. The binding affinity of BiTP was measured by surface plasmon resonance, ELISA, and flow cytometry. The bioactivity was assessed by Smad and NFAT luciferase reporter assays, immunofluorescence, western blotting, and superantigen stimulation assays. The antitumor activity of BiTP was explored in humanized epithelial-mesenchymal transition-6-hPDL1 and 4T1-hPDL1 murine TNBC models. Immunohistochemical staining, flow cytometry, and bulk RNA-seq were used to investigate the effect of BiTP on immune cell infiltration. RESULTS BiTP exhibited high binding affinity to dual targets. In vitro experiments verified that BiTP effectively counteracted TGF-β-Smad and PD-L1-PD-1-NFAT signaling. In vivo animal experiments demonstrated that BiTP had superior antitumor activity relative to anti-PD-L1 and anti-TGF-β monotherapy. Mechanistically, BiTP decreased collagen deposition, enhanced CD8+ T cell penetration, and increased tumor-infiltrating lymphocytes. This improved tumor microenvironment contributed to the potent antitumor activity of BiTP. CONCLUSION BiTP retains parent antibodies' binding affinity and bioactivity, with superior antitumor activity to parent antibodies in TNBC. Our data suggest that BiTP might be a promising agent for TNBC treatment.
Collapse
Affiliation(s)
- Ming Yi
- Department of Breast Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuze Wu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Mengke Niu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shuangli Zhu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jing Zhang
- Wuhan YZY Biopharma Co Ltd, Wuhan, China
| | | | | | - Zhijun Dai
- Department of Breast Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Kongming Wu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Cancer Center, Shanxi Bethune Hospital, Shanxi Academy of Medical Science, Third Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| |
Collapse
|
13
|
da Costa CBP, Carvalho VRD, Ferreira LLC, Mattos JLC, Garcia LDM, Antunes MDS, Martins FJ, Ratcliffe NA, Cisne R, Castro HC. Production of hyperimmune sera: a study of digestion and fractionation methodologies for the purification process of heterologous immunoglobulins. TOXIN REV 2022. [DOI: 10.1080/15569543.2022.2124421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Affiliation(s)
- Camila Braz Pereira da Costa
- Instituto Vital Brazil, Niterói, Brazil
- Programa de Pós-graduação em Ciências e Biotecnologia, Instituto de Biologia, Universidade Federal Fluminense, Niterói, Brazil
| | | | | | | | | | | | - Francislene Juliana Martins
- Programa de Pós-graduação em Ciências e Biotecnologia, Instituto de Biologia, Universidade Federal Fluminense, Niterói, Brazil
- Faculdade de Farmácia, Universidade Federal Fluminense, Niterói, Brazil
| | - Norman A. Ratcliffe
- Programa de Pós-graduação em Ciências e Biotecnologia, Instituto de Biologia, Universidade Federal Fluminense, Niterói, Brazil
- Department of Biosciences, Swansea University, Swansea, UK
| | - Rafael Cisne
- Programa de Pós-graduação em Ciências e Biotecnologia, Instituto de Biologia, Universidade Federal Fluminense, Niterói, Brazil
| | - Helena C. Castro
- Programa de Pós-graduação em Ciências e Biotecnologia, Instituto de Biologia, Universidade Federal Fluminense, Niterói, Brazil
| |
Collapse
|
14
|
Rapidly developable therapeutic-grade equine immunoglobulin against the SARS-CoV-2 infection in rhesus macaques. Signal Transduct Target Ther 2022; 7:219. [PMID: 35798694 PMCID: PMC9261890 DOI: 10.1038/s41392-022-01095-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/29/2022] [Accepted: 06/28/2022] [Indexed: 11/08/2022] Open
|
15
|
de Castro Barbosa E, de Souza Andrade A, Duarte MM, Faria G, de Melo Iani FC, Ataide ACZ, Cunha LM, Duarte CG, Fialho SL, Caldas S. Influence of SARS-CoV-2 inactivation by different chemical reagents on the humoral response evaluated in a murine model. Mol Immunol 2022; 147:199-208. [PMID: 35644072 PMCID: PMC9125173 DOI: 10.1016/j.molimm.2022.05.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 05/16/2022] [Accepted: 05/18/2022] [Indexed: 01/25/2023]
Abstract
Viral inactivation for antibody induction purposes, among other applications, should ensure biosafety, completely avoiding the risk of infectivity, and preserving viral immunogenicity. β-propiolactone (BPL) is one of the most used reagents for viral inactivation, despite its high toxicity and recent difficulties related to importation, experienced in Brazil during the SARS-CoV-2 pandemic. In this context, the main objectives of this work were to test different inactivation procedures for SARS-CoV-2 and to evaluate the induction of neutralizing antibodies in mice immunized with antigenic preparations obtained after viral treatment with formaldehyde (FDE), glutaraldehyde (GDE), peroxide hydrogen (H2O2), as well as with viral proteins extract (VPE), in parallel with BPL. Verification of viral inactivation was performed by subsequent incubations of the inactivated virus in Vero cells, followed by cytopathic effect and lysis plaques observation, as well as by quantification of RNA load using reverse transcription-quantitative real time polymerase chain reaction. Once viral inactivation was confirmed, cell culture supernatants were concentrated and purified. In addition, an aliquot inactivated by BPL was also subjected to viral protein extraction (VPE). The different antigens were prepared using a previously developed microemulsion as adjuvant, and were administered in a four-dose immunization protocol. Antibody production was comparatively evaluated by ELISA and Plaque Reduction Neutralization Tests (PRNT). All immunogens evaluated showed some level of IgG anti-SARS-CoV-2 antibodies in the ELISA assay, with the highest levels presented by the group immunized with FDE-inactivated viral antigen. In the PRNT results, except for VPE-antigen, all other immunogens evaluated induced some level of neutralizing anti-SARS-CoV-2 antibodies, and the FDE-antigen stood out again with the most expressive values. Taken together, the present work shows that FDE can be an efficient and affordable alternative to BPL for the production of inactivated SARS-CoV-2 viral antigen.
Collapse
Affiliation(s)
- Emerson de Castro Barbosa
- Serviço de Biotecnologia e Saúde, Diretoria de Pesquisa e Desenvolvimento, Fundação Ezequiel Dias, Belo Horizonte, MG, 30510010, Brazil; Serviço de Virologia e Riquetsioses, Diretoria do Instituto Octávio Magalhães, Fundação Ezequiel Dias, Belo Horizonte, MG, Brazil
| | - Adriana de Souza Andrade
- Serviço de Biotecnologia e Saúde, Diretoria de Pesquisa e Desenvolvimento, Fundação Ezequiel Dias, Belo Horizonte, MG, 30510010, Brazil
| | - Myrian Morato Duarte
- Serviço de Virologia e Riquetsioses, Diretoria do Instituto Octávio Magalhães, Fundação Ezequiel Dias, Belo Horizonte, MG, Brazil
| | - Gilson Faria
- Serviço de Biotecnologia e Saúde, Diretoria de Pesquisa e Desenvolvimento, Fundação Ezequiel Dias, Belo Horizonte, MG, 30510010, Brazil
| | - Felipe Campos de Melo Iani
- Serviço de Virologia e Riquetsioses, Diretoria do Instituto Octávio Magalhães, Fundação Ezequiel Dias, Belo Horizonte, MG, Brazil
| | - Ana Caroline Zampiroli Ataide
- Serviço de Biotecnologia e Saúde, Diretoria de Pesquisa e Desenvolvimento, Fundação Ezequiel Dias, Belo Horizonte, MG, 30510010, Brazil
| | - Lucas Maciel Cunha
- Diretoria de Pesquisa e Desenvolvimento, Fundação Ezequiel Dias, Belo Horizonte, MG, Brazil
| | - Clara Guerra Duarte
- Serviço de Toxinologia Molecular, Diretoria de Pesquisa e Desenvolvimento, Fundação Ezequiel Dias, Belo Horizonte, MG, Brazil
| | - Sílvia Ligorio Fialho
- Serviço de Desenvolvimento Tecnológico Farmacêutico, Diretoria de Pesquisa e Desenvolvimento, Fundação Ezequiel Dias, Belo Horizonte, MG, Brazil
| | - Sérgio Caldas
- Serviço de Biotecnologia e Saúde, Diretoria de Pesquisa e Desenvolvimento, Fundação Ezequiel Dias, Belo Horizonte, MG, 30510010, Brazil.
| |
Collapse
|
16
|
Merkuleva IA, Shcherbakov DN, Borgoyakova MB, Isaeva AA, Nesmeyanova VS, Volkova NV, Aripov VS, Shanshin DV, Karpenko LI, Belenkaya SV, Kazachinskaia EI, Volosnikova EA, Esina TI, Sergeev AA, Titova KA, Konyakhina YV, Zaykovskaya AV, Pyankov OV, Kolosova EA, Viktorina OE, Shelemba AA, Rudometov AP, Ilyichev AA. Are Hamsters a Suitable Model for Evaluating the Immunogenicity of RBD-Based Anti-COVID-19 Subunit Vaccines? Viruses 2022; 14:1060. [PMID: 35632800 PMCID: PMC9146860 DOI: 10.3390/v14051060] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/07/2022] [Accepted: 05/13/2022] [Indexed: 02/01/2023] Open
Abstract
Currently, SARS-CoV-2 spike receptor-binding-domain (RBD)-based vaccines are considered one of the most effective weapons against COVID-19. During the first step of assessing vaccine immunogenicity, a mouse model is often used. In this paper, we tested the use of five experimental animals (mice, hamsters, rabbits, ferrets, and chickens) for RBD immunogenicity assessments. The humoral immune response was evaluated by ELISA and virus-neutralization assays. The data obtained show hamsters to be the least suitable candidates for RBD immunogenicity testing and, hence, assessing the protective efficacy of RBD-based vaccines.
Collapse
Affiliation(s)
- Iuliia A. Merkuleva
- State Research Center of Virology and Biotechnology “Vector”, Rospotrebnadzor, World-Class Genomic Research Center for Biological Safety and Technological Independence, Federal Scientific and Technical Program on the Development of Genetic Technologies, 630559 Koltsovo, Russia; (I.A.M.); (M.B.B.); (A.A.I.); (V.S.N.); (N.V.V.); (V.S.A.); (D.V.S.); (L.I.K.); (S.V.B.); (E.I.K.); (E.A.V.); (T.I.E.); (A.A.S.); (K.A.T.); (Y.V.K.); (A.V.Z.); (O.V.P.); (E.A.K.); (A.P.R.); (A.A.I.)
| | - Dmitry N. Shcherbakov
- State Research Center of Virology and Biotechnology “Vector”, Rospotrebnadzor, World-Class Genomic Research Center for Biological Safety and Technological Independence, Federal Scientific and Technical Program on the Development of Genetic Technologies, 630559 Koltsovo, Russia; (I.A.M.); (M.B.B.); (A.A.I.); (V.S.N.); (N.V.V.); (V.S.A.); (D.V.S.); (L.I.K.); (S.V.B.); (E.I.K.); (E.A.V.); (T.I.E.); (A.A.S.); (K.A.T.); (Y.V.K.); (A.V.Z.); (O.V.P.); (E.A.K.); (A.P.R.); (A.A.I.)
| | - Mariya B. Borgoyakova
- State Research Center of Virology and Biotechnology “Vector”, Rospotrebnadzor, World-Class Genomic Research Center for Biological Safety and Technological Independence, Federal Scientific and Technical Program on the Development of Genetic Technologies, 630559 Koltsovo, Russia; (I.A.M.); (M.B.B.); (A.A.I.); (V.S.N.); (N.V.V.); (V.S.A.); (D.V.S.); (L.I.K.); (S.V.B.); (E.I.K.); (E.A.V.); (T.I.E.); (A.A.S.); (K.A.T.); (Y.V.K.); (A.V.Z.); (O.V.P.); (E.A.K.); (A.P.R.); (A.A.I.)
| | - Anastasiya A. Isaeva
- State Research Center of Virology and Biotechnology “Vector”, Rospotrebnadzor, World-Class Genomic Research Center for Biological Safety and Technological Independence, Federal Scientific and Technical Program on the Development of Genetic Technologies, 630559 Koltsovo, Russia; (I.A.M.); (M.B.B.); (A.A.I.); (V.S.N.); (N.V.V.); (V.S.A.); (D.V.S.); (L.I.K.); (S.V.B.); (E.I.K.); (E.A.V.); (T.I.E.); (A.A.S.); (K.A.T.); (Y.V.K.); (A.V.Z.); (O.V.P.); (E.A.K.); (A.P.R.); (A.A.I.)
| | - Valentina S. Nesmeyanova
- State Research Center of Virology and Biotechnology “Vector”, Rospotrebnadzor, World-Class Genomic Research Center for Biological Safety and Technological Independence, Federal Scientific and Technical Program on the Development of Genetic Technologies, 630559 Koltsovo, Russia; (I.A.M.); (M.B.B.); (A.A.I.); (V.S.N.); (N.V.V.); (V.S.A.); (D.V.S.); (L.I.K.); (S.V.B.); (E.I.K.); (E.A.V.); (T.I.E.); (A.A.S.); (K.A.T.); (Y.V.K.); (A.V.Z.); (O.V.P.); (E.A.K.); (A.P.R.); (A.A.I.)
| | - Natalia V. Volkova
- State Research Center of Virology and Biotechnology “Vector”, Rospotrebnadzor, World-Class Genomic Research Center for Biological Safety and Technological Independence, Federal Scientific and Technical Program on the Development of Genetic Technologies, 630559 Koltsovo, Russia; (I.A.M.); (M.B.B.); (A.A.I.); (V.S.N.); (N.V.V.); (V.S.A.); (D.V.S.); (L.I.K.); (S.V.B.); (E.I.K.); (E.A.V.); (T.I.E.); (A.A.S.); (K.A.T.); (Y.V.K.); (A.V.Z.); (O.V.P.); (E.A.K.); (A.P.R.); (A.A.I.)
| | - Vazirbek S. Aripov
- State Research Center of Virology and Biotechnology “Vector”, Rospotrebnadzor, World-Class Genomic Research Center for Biological Safety and Technological Independence, Federal Scientific and Technical Program on the Development of Genetic Technologies, 630559 Koltsovo, Russia; (I.A.M.); (M.B.B.); (A.A.I.); (V.S.N.); (N.V.V.); (V.S.A.); (D.V.S.); (L.I.K.); (S.V.B.); (E.I.K.); (E.A.V.); (T.I.E.); (A.A.S.); (K.A.T.); (Y.V.K.); (A.V.Z.); (O.V.P.); (E.A.K.); (A.P.R.); (A.A.I.)
| | - Daniil V. Shanshin
- State Research Center of Virology and Biotechnology “Vector”, Rospotrebnadzor, World-Class Genomic Research Center for Biological Safety and Technological Independence, Federal Scientific and Technical Program on the Development of Genetic Technologies, 630559 Koltsovo, Russia; (I.A.M.); (M.B.B.); (A.A.I.); (V.S.N.); (N.V.V.); (V.S.A.); (D.V.S.); (L.I.K.); (S.V.B.); (E.I.K.); (E.A.V.); (T.I.E.); (A.A.S.); (K.A.T.); (Y.V.K.); (A.V.Z.); (O.V.P.); (E.A.K.); (A.P.R.); (A.A.I.)
| | - Larisa I. Karpenko
- State Research Center of Virology and Biotechnology “Vector”, Rospotrebnadzor, World-Class Genomic Research Center for Biological Safety and Technological Independence, Federal Scientific and Technical Program on the Development of Genetic Technologies, 630559 Koltsovo, Russia; (I.A.M.); (M.B.B.); (A.A.I.); (V.S.N.); (N.V.V.); (V.S.A.); (D.V.S.); (L.I.K.); (S.V.B.); (E.I.K.); (E.A.V.); (T.I.E.); (A.A.S.); (K.A.T.); (Y.V.K.); (A.V.Z.); (O.V.P.); (E.A.K.); (A.P.R.); (A.A.I.)
| | - Svetlana V. Belenkaya
- State Research Center of Virology and Biotechnology “Vector”, Rospotrebnadzor, World-Class Genomic Research Center for Biological Safety and Technological Independence, Federal Scientific and Technical Program on the Development of Genetic Technologies, 630559 Koltsovo, Russia; (I.A.M.); (M.B.B.); (A.A.I.); (V.S.N.); (N.V.V.); (V.S.A.); (D.V.S.); (L.I.K.); (S.V.B.); (E.I.K.); (E.A.V.); (T.I.E.); (A.A.S.); (K.A.T.); (Y.V.K.); (A.V.Z.); (O.V.P.); (E.A.K.); (A.P.R.); (A.A.I.)
| | - Elena I. Kazachinskaia
- State Research Center of Virology and Biotechnology “Vector”, Rospotrebnadzor, World-Class Genomic Research Center for Biological Safety and Technological Independence, Federal Scientific and Technical Program on the Development of Genetic Technologies, 630559 Koltsovo, Russia; (I.A.M.); (M.B.B.); (A.A.I.); (V.S.N.); (N.V.V.); (V.S.A.); (D.V.S.); (L.I.K.); (S.V.B.); (E.I.K.); (E.A.V.); (T.I.E.); (A.A.S.); (K.A.T.); (Y.V.K.); (A.V.Z.); (O.V.P.); (E.A.K.); (A.P.R.); (A.A.I.)
| | - Ekaterina A. Volosnikova
- State Research Center of Virology and Biotechnology “Vector”, Rospotrebnadzor, World-Class Genomic Research Center for Biological Safety and Technological Independence, Federal Scientific and Technical Program on the Development of Genetic Technologies, 630559 Koltsovo, Russia; (I.A.M.); (M.B.B.); (A.A.I.); (V.S.N.); (N.V.V.); (V.S.A.); (D.V.S.); (L.I.K.); (S.V.B.); (E.I.K.); (E.A.V.); (T.I.E.); (A.A.S.); (K.A.T.); (Y.V.K.); (A.V.Z.); (O.V.P.); (E.A.K.); (A.P.R.); (A.A.I.)
| | - Tatiana I. Esina
- State Research Center of Virology and Biotechnology “Vector”, Rospotrebnadzor, World-Class Genomic Research Center for Biological Safety and Technological Independence, Federal Scientific and Technical Program on the Development of Genetic Technologies, 630559 Koltsovo, Russia; (I.A.M.); (M.B.B.); (A.A.I.); (V.S.N.); (N.V.V.); (V.S.A.); (D.V.S.); (L.I.K.); (S.V.B.); (E.I.K.); (E.A.V.); (T.I.E.); (A.A.S.); (K.A.T.); (Y.V.K.); (A.V.Z.); (O.V.P.); (E.A.K.); (A.P.R.); (A.A.I.)
| | - Alexandr A. Sergeev
- State Research Center of Virology and Biotechnology “Vector”, Rospotrebnadzor, World-Class Genomic Research Center for Biological Safety and Technological Independence, Federal Scientific and Technical Program on the Development of Genetic Technologies, 630559 Koltsovo, Russia; (I.A.M.); (M.B.B.); (A.A.I.); (V.S.N.); (N.V.V.); (V.S.A.); (D.V.S.); (L.I.K.); (S.V.B.); (E.I.K.); (E.A.V.); (T.I.E.); (A.A.S.); (K.A.T.); (Y.V.K.); (A.V.Z.); (O.V.P.); (E.A.K.); (A.P.R.); (A.A.I.)
| | - Kseniia A. Titova
- State Research Center of Virology and Biotechnology “Vector”, Rospotrebnadzor, World-Class Genomic Research Center for Biological Safety and Technological Independence, Federal Scientific and Technical Program on the Development of Genetic Technologies, 630559 Koltsovo, Russia; (I.A.M.); (M.B.B.); (A.A.I.); (V.S.N.); (N.V.V.); (V.S.A.); (D.V.S.); (L.I.K.); (S.V.B.); (E.I.K.); (E.A.V.); (T.I.E.); (A.A.S.); (K.A.T.); (Y.V.K.); (A.V.Z.); (O.V.P.); (E.A.K.); (A.P.R.); (A.A.I.)
| | - Yulia V. Konyakhina
- State Research Center of Virology and Biotechnology “Vector”, Rospotrebnadzor, World-Class Genomic Research Center for Biological Safety and Technological Independence, Federal Scientific and Technical Program on the Development of Genetic Technologies, 630559 Koltsovo, Russia; (I.A.M.); (M.B.B.); (A.A.I.); (V.S.N.); (N.V.V.); (V.S.A.); (D.V.S.); (L.I.K.); (S.V.B.); (E.I.K.); (E.A.V.); (T.I.E.); (A.A.S.); (K.A.T.); (Y.V.K.); (A.V.Z.); (O.V.P.); (E.A.K.); (A.P.R.); (A.A.I.)
| | - Anna V. Zaykovskaya
- State Research Center of Virology and Biotechnology “Vector”, Rospotrebnadzor, World-Class Genomic Research Center for Biological Safety and Technological Independence, Federal Scientific and Technical Program on the Development of Genetic Technologies, 630559 Koltsovo, Russia; (I.A.M.); (M.B.B.); (A.A.I.); (V.S.N.); (N.V.V.); (V.S.A.); (D.V.S.); (L.I.K.); (S.V.B.); (E.I.K.); (E.A.V.); (T.I.E.); (A.A.S.); (K.A.T.); (Y.V.K.); (A.V.Z.); (O.V.P.); (E.A.K.); (A.P.R.); (A.A.I.)
| | - Oleg V. Pyankov
- State Research Center of Virology and Biotechnology “Vector”, Rospotrebnadzor, World-Class Genomic Research Center for Biological Safety and Technological Independence, Federal Scientific and Technical Program on the Development of Genetic Technologies, 630559 Koltsovo, Russia; (I.A.M.); (M.B.B.); (A.A.I.); (V.S.N.); (N.V.V.); (V.S.A.); (D.V.S.); (L.I.K.); (S.V.B.); (E.I.K.); (E.A.V.); (T.I.E.); (A.A.S.); (K.A.T.); (Y.V.K.); (A.V.Z.); (O.V.P.); (E.A.K.); (A.P.R.); (A.A.I.)
| | - Evgeniia A. Kolosova
- State Research Center of Virology and Biotechnology “Vector”, Rospotrebnadzor, World-Class Genomic Research Center for Biological Safety and Technological Independence, Federal Scientific and Technical Program on the Development of Genetic Technologies, 630559 Koltsovo, Russia; (I.A.M.); (M.B.B.); (A.A.I.); (V.S.N.); (N.V.V.); (V.S.A.); (D.V.S.); (L.I.K.); (S.V.B.); (E.I.K.); (E.A.V.); (T.I.E.); (A.A.S.); (K.A.T.); (Y.V.K.); (A.V.Z.); (O.V.P.); (E.A.K.); (A.P.R.); (A.A.I.)
- Russian-American Anti-Cancer Center, Altai State University, 656049 Barnaul, Russia;
| | - Olesya E. Viktorina
- Russian-American Anti-Cancer Center, Altai State University, 656049 Barnaul, Russia;
| | - Arseniya A. Shelemba
- Federal Research Center of Fundamental and Translational Medicine, 630060 Novosibirsk, Russia;
| | - Andrey P. Rudometov
- State Research Center of Virology and Biotechnology “Vector”, Rospotrebnadzor, World-Class Genomic Research Center for Biological Safety and Technological Independence, Federal Scientific and Technical Program on the Development of Genetic Technologies, 630559 Koltsovo, Russia; (I.A.M.); (M.B.B.); (A.A.I.); (V.S.N.); (N.V.V.); (V.S.A.); (D.V.S.); (L.I.K.); (S.V.B.); (E.I.K.); (E.A.V.); (T.I.E.); (A.A.S.); (K.A.T.); (Y.V.K.); (A.V.Z.); (O.V.P.); (E.A.K.); (A.P.R.); (A.A.I.)
| | - Alexander A. Ilyichev
- State Research Center of Virology and Biotechnology “Vector”, Rospotrebnadzor, World-Class Genomic Research Center for Biological Safety and Technological Independence, Federal Scientific and Technical Program on the Development of Genetic Technologies, 630559 Koltsovo, Russia; (I.A.M.); (M.B.B.); (A.A.I.); (V.S.N.); (N.V.V.); (V.S.A.); (D.V.S.); (L.I.K.); (S.V.B.); (E.I.K.); (E.A.V.); (T.I.E.); (A.A.S.); (K.A.T.); (Y.V.K.); (A.V.Z.); (O.V.P.); (E.A.K.); (A.P.R.); (A.A.I.)
| |
Collapse
|
17
|
Strohl WR, Ku Z, An Z, Carroll SF, Keyt BA, Strohl LM. Passive Immunotherapy Against SARS-CoV-2: From Plasma-Based Therapy to Single Potent Antibodies in the Race to Stay Ahead of the Variants. BioDrugs 2022; 36:231-323. [PMID: 35476216 PMCID: PMC9043892 DOI: 10.1007/s40259-022-00529-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/21/2022] [Indexed: 12/15/2022]
Abstract
The COVID-19 pandemic is now approaching 2 years old, with more than 440 million people infected and nearly six million dead worldwide, making it the most significant pandemic since the 1918 influenza pandemic. The severity and significance of SARS-CoV-2 was recognized immediately upon discovery, leading to innumerable companies and institutes designing and generating vaccines and therapeutic antibodies literally as soon as recombinant SARS-CoV-2 spike protein sequence was available. Within months of the pandemic start, several antibodies had been generated, tested, and moved into clinical trials, including Eli Lilly's bamlanivimab and etesevimab, Regeneron's mixture of imdevimab and casirivimab, Vir's sotrovimab, Celltrion's regdanvimab, and Lilly's bebtelovimab. These antibodies all have now received at least Emergency Use Authorizations (EUAs) and some have received full approval in select countries. To date, more than three dozen antibodies or antibody combinations have been forwarded into clinical trials. These antibodies to SARS-CoV-2 all target the receptor-binding domain (RBD), with some blocking the ability of the RBD to bind human ACE2, while others bind core regions of the RBD to modulate spike stability or ability to fuse to host cell membranes. While these antibodies were being discovered and developed, new variants of SARS-CoV-2 have cropped up in real time, altering the antibody landscape on a moving basis. Over the past year, the search has widened to find antibodies capable of neutralizing the wide array of variants that have arisen, including Alpha, Beta, Gamma, Delta, and Omicron. The recent rise and dominance of the Omicron family of variants, including the rather disparate BA.1 and BA.2 variants, demonstrate the need to continue to find new approaches to neutralize the rapidly evolving SARS-CoV-2 virus. This review highlights both convalescent plasma- and polyclonal antibody-based approaches as well as the top approximately 50 antibodies to SARS-CoV-2, their epitopes, their ability to bind to SARS-CoV-2 variants, and how they are delivered. New approaches to antibody constructs, including single domain antibodies, bispecific antibodies, IgA- and IgM-based antibodies, and modified ACE2-Fc fusion proteins, are also described. Finally, antibodies being developed for palliative care of COVID-19 disease, including the ramifications of cytokine release syndrome (CRS) and acute respiratory distress syndrome (ARDS), are described.
Collapse
Affiliation(s)
| | - Zhiqiang Ku
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, The University of Texas Health Sciences Center, Houston, TX USA
| | - Zhiqiang An
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, The University of Texas Health Sciences Center, Houston, TX USA
| | | | | | | |
Collapse
|
18
|
Wang L, Wu Y, Yao S, Ge H, Zhu Y, Chen K, Chen WZ, Zhang Y, Zhu W, Wang HY, Guo Y, Ma PX, Ren PX, Zhang XL, Li HQ, Ali MA, Xu WQ, Jiang HL, Zhang LK, Zhu LL, Ye Y, Shang WJ, Bai F. Discovery of potential small molecular SARS-CoV-2 entry blockers targeting the spike protein. Acta Pharmacol Sin 2022; 43:788-796. [PMID: 34349236 PMCID: PMC8334341 DOI: 10.1038/s41401-021-00735-z] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 06/29/2021] [Indexed: 02/07/2023] Open
Abstract
An epidemic of pneumonia caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is spreading worldwide. SARS-CoV-2 relies on its spike protein to invade host cells by interacting with the human receptor protein Angiotensin-Converting Enzymes 2 (ACE2). Therefore, designing an antibody or small-molecular entry blockers is of great significance for virus prevention and treatment. This study identified five potential small molecular anti-virus blockers via targeting SARS-CoV-2 spike protein by combining in silico technologies with in vitro experimental methods. The five molecules were natural products that binding to the RBD domain of SARS-CoV-2 was qualitatively and quantitively validated by both native Mass Spectrometry (MS) and Surface Plasmon Resonance (SPR). Anti-viral activity assays showed that the optimal molecule, H69C2, had a strong binding affinity (dissociation constant KD) of 0.0947 µM and anti-virus IC50 of 85.75 µM.
Collapse
|
19
|
Gupta D, Ahmed F, Tandel D, Parthasarathy H, Vedagiri D, Sah V, Krishna Mohan B, Khan RA, Kondiparthi C, Savari P, Jain S, Reddy S, Kumar JM, Khan N, Harshan KH. Equine immunoglobulin fragment F(ab') 2 displays high neutralizing capability against multiple SARS-CoV-2 variants. Clin Immunol 2022; 237:108981. [PMID: 35306171 PMCID: PMC8926440 DOI: 10.1016/j.clim.2022.108981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 02/02/2022] [Accepted: 03/12/2022] [Indexed: 01/04/2023]
Abstract
Neutralizing antibody-based passive immunotherapy could be an important therapeutic option against COVID-19. Herein, we demonstrate that equines hyper-immunized with chemically inactivated SARS-CoV-2 elicited high antibody titers with a strong virus-neutralizing potential, and F(ab')2 fragments purified from them displayed strong neutralization potential against five different SARS-CoV-2 variants. F(ab')2 fragments purified from the plasma of hyperimmunized horses showed high antigen-specific affinity. Experiments in rabbits suggested that the F(ab')2 displays a linear pharmacokinetics with approximate plasma half-life of 47 h. In vitro microneutralization assays using the purified F(ab')2 displayed high neutralization titers against five different variants of SARS-CoV-2 including the Delta variant, demonstrating its potential efficacy against the emerging viral variants. In conclusion, this study demonstrates that F(ab')2 generated against SARS-CoV-2 in equines have high neutralization titers and have broad target-range against the evolving variants, making passive immunotherapy a potential regimen against the existing and evolving SARS-CoV-2 variants in combating COVID-19.
Collapse
Affiliation(s)
- Divya Gupta
- Centre for Cellular and Molecular Biology, Hyderabad 500007, Telangana, India
| | - Farhan Ahmed
- School of Life Sciences, Department of Animal Biology, University of Hyderabad, Hyderabad 500046, Telangana, India
| | - Dixit Tandel
- Centre for Cellular and Molecular Biology, Hyderabad 500007, Telangana, India,Academy for Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | | | - Dhiviya Vedagiri
- Centre for Cellular and Molecular Biology, Hyderabad 500007, Telangana, India,Academy for Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Vishal Sah
- Centre for Cellular and Molecular Biology, Hyderabad 500007, Telangana, India,Academy for Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | | | - Rafiq Ahmad Khan
- School of Life Sciences, Department of Animal Biology, University of Hyderabad, Hyderabad 500046, Telangana, India
| | | | | | - Sandesh Jain
- VINS Bio Products Limited, Hyderabad 500034, Telangana, India
| | - Shashikala Reddy
- Department of Microbiology, Osmania Medical College, Koti, Hyderabad 500096, Telangana, India
| | - Jerald Mahesh Kumar
- Centre for Cellular and Molecular Biology, Hyderabad 500007, Telangana, India
| | - Nooruddin Khan
- School of Life Sciences, Department of Animal Biology, University of Hyderabad, Hyderabad 500046, Telangana, India,Corresponding authors
| | - Krishnan Harinivas Harshan
- Centre for Cellular and Molecular Biology, Hyderabad 500007, Telangana, India,Academy for Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India,Corresponding authors
| |
Collapse
|
20
|
Da Costa CBP, Cruz ACDM, Penha JCQ, Castro HC, Da Cunha LER, Ratcliffe NA, Cisne R, Martins FJ. Using in vivo animal models for studying SARS-CoV-2. Expert Opin Drug Discov 2022; 17:121-137. [PMID: 34727803 PMCID: PMC8567288 DOI: 10.1080/17460441.2022.1995352] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 10/15/2021] [Indexed: 12/23/2022]
Abstract
INTRODUCTION The search for an animal model capable of reproducing the physiopathology of the COVID-19, and also suitable for evaluating the efficacy and safety of new drugs has become a challenge for many researchers. AREAS COVERED This work reviews the current animal models for in vivo tests with SARS-CoV-2 as well as the challenges involved in the safety and efficacy trials. EXPERT OPINION Studies have reported the use of nonhuman primates, ferrets, mice, Syrian hamsters, lagomorphs, mink, and zebrafish in experiments that aimed to understand the course of COVID-19 or test vaccines and other drugs. In contrast, the assays with animal hyperimmune sera have only been used in in vitro assays. Finding an animal that faithfully reproduces all the characteristics of the disease in humans is difficult. Some models may be more complex to work with, such as monkeys, or require genetic manipulation so that they can express the human ACE2 receptor, as in the case of mice. Although some models are more promising, possibly the use of more than one animal model represents the best scenario. Therefore, further studies are needed to establish an ideal animal model to help in the development of other treatment strategies besides vaccines.
Collapse
Affiliation(s)
- Camila B. P. Da Costa
- Technological Development and Innovation Laboratory of the Industrial Board, Instituto Vital Brazil, Rio De Janeiro, Brazil
- Programa de Pós-graduação em Ciências e Biotecnologia, IB, UFF, Rio de Janeiro, Brazil
| | | | - Julio Cesar Q Penha
- Programa de Pós-graduação em Ciências e Biotecnologia, IB, UFF, Rio de Janeiro, Brazil
| | - Helena C Castro
- Programa de Pós-graduação em Ciências e Biotecnologia, IB, UFF, Rio de Janeiro, Brazil
| | - Luis E. R. Da Cunha
- Technological Development and Innovation Laboratory of the Industrial Board, Instituto Vital Brazil, Rio De Janeiro, Brazil
| | - Norman A Ratcliffe
- Programa de Pós-graduação em Ciências e Biotecnologia, IB, UFF, Rio de Janeiro, Brazil
- Department of Biociences, College of Science, Swansea University, Swansea, UK
| | - Rafael Cisne
- Programa de Pós-graduação em Ciências e Biotecnologia, IB, UFF, Rio de Janeiro, Brazil
| | | |
Collapse
|
21
|
González Viacava MB, Varese A, Mazzitelli I, Lanari L, Ávila L, García Vampa MJ, Geffner J, Cascone O, Dokmetjian JC, de Roodt AR, Fingermann M. Immune Maturation Effects on Viral Neutralization and Avidity of Hyperimmunized Equine Anti-SARS-CoV-2 Sera. Antibodies (Basel) 2022; 11:3. [PMID: 35076465 PMCID: PMC8788445 DOI: 10.3390/antib11010003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/19/2021] [Accepted: 09/09/2021] [Indexed: 01/19/2023] Open
Abstract
Mass-vaccination against COVID-19 is still a distant goal for most low-to-middle income countries. The experience gained through decades producing polyclonal immunotherapeutics (such as antivenoms) in many of those countries is being redirected to develop similar products able to neutralize SARS-CoV-2 infection. In this study we analyzed the biological activity (viral neutralization or NtAb) and immunochemical properties of hyperimmune horses' sera (HHS) obtained during initial immunization (I) and posterior re-immunization (R) cycles using the RBD domain of the SARS-CoV-2 spike protein as antigen. HHS at the end of the R cycle showed higher NtAb titers when compared to those after the I cycle (35,585 vs. 7000 mean NtAb, respectively). Moreover, this increase paralleled an increase in avidity (95.2% to 65.2% mean avidity units, respectively). The results presented herein are relevant for manufacturers of these therapeutic tools against COVID-19.
Collapse
Affiliation(s)
- Myriam Belén González Viacava
- Instituto Nacional de Producción de Biológicos (INPB), ANLIS “Dr. Carlos G. Malbrán”, Vélez Sársfield 563, Buenos Aires 1282, Argentina; (M.B.G.V.); (L.L.); (L.Á.); (M.J.G.V.); (O.C.); (J.C.D.); (A.R.d.R.)
| | - Augusto Varese
- Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS), Universidad de Buenos Aires (UBA) and Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Paraguay 2155, 11th Floor, Buenos Aires 1113, Argentina; (A.V.); (I.M.); (J.G.)
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290, Buenos Aires 1425, Argentina
| | - Ignacio Mazzitelli
- Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS), Universidad de Buenos Aires (UBA) and Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Paraguay 2155, 11th Floor, Buenos Aires 1113, Argentina; (A.V.); (I.M.); (J.G.)
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290, Buenos Aires 1425, Argentina
| | - Laura Lanari
- Instituto Nacional de Producción de Biológicos (INPB), ANLIS “Dr. Carlos G. Malbrán”, Vélez Sársfield 563, Buenos Aires 1282, Argentina; (M.B.G.V.); (L.L.); (L.Á.); (M.J.G.V.); (O.C.); (J.C.D.); (A.R.d.R.)
| | - Lucía Ávila
- Instituto Nacional de Producción de Biológicos (INPB), ANLIS “Dr. Carlos G. Malbrán”, Vélez Sársfield 563, Buenos Aires 1282, Argentina; (M.B.G.V.); (L.L.); (L.Á.); (M.J.G.V.); (O.C.); (J.C.D.); (A.R.d.R.)
| | - María Julia García Vampa
- Instituto Nacional de Producción de Biológicos (INPB), ANLIS “Dr. Carlos G. Malbrán”, Vélez Sársfield 563, Buenos Aires 1282, Argentina; (M.B.G.V.); (L.L.); (L.Á.); (M.J.G.V.); (O.C.); (J.C.D.); (A.R.d.R.)
| | - Jorge Geffner
- Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS), Universidad de Buenos Aires (UBA) and Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Paraguay 2155, 11th Floor, Buenos Aires 1113, Argentina; (A.V.); (I.M.); (J.G.)
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290, Buenos Aires 1425, Argentina
| | - Osvaldo Cascone
- Instituto Nacional de Producción de Biológicos (INPB), ANLIS “Dr. Carlos G. Malbrán”, Vélez Sársfield 563, Buenos Aires 1282, Argentina; (M.B.G.V.); (L.L.); (L.Á.); (M.J.G.V.); (O.C.); (J.C.D.); (A.R.d.R.)
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290, Buenos Aires 1425, Argentina
- Instituto de Nanobiotecnología (NANOBIOTEC), Universidad de Buenos Aires (UBA) and Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Junín 956, Buenos Aires 1113, Argentina
| | - José Christian Dokmetjian
- Instituto Nacional de Producción de Biológicos (INPB), ANLIS “Dr. Carlos G. Malbrán”, Vélez Sársfield 563, Buenos Aires 1282, Argentina; (M.B.G.V.); (L.L.); (L.Á.); (M.J.G.V.); (O.C.); (J.C.D.); (A.R.d.R.)
| | - Adolfo Rafael de Roodt
- Instituto Nacional de Producción de Biológicos (INPB), ANLIS “Dr. Carlos G. Malbrán”, Vélez Sársfield 563, Buenos Aires 1282, Argentina; (M.B.G.V.); (L.L.); (L.Á.); (M.J.G.V.); (O.C.); (J.C.D.); (A.R.d.R.)
- Cátedra de Toxicología, Facultad de Medicina, Universidad de Buenos Aires, Paraguay 2155, Buenos Aires 1113, Argentina
| | - Matías Fingermann
- Instituto Nacional de Producción de Biológicos (INPB), ANLIS “Dr. Carlos G. Malbrán”, Vélez Sársfield 563, Buenos Aires 1282, Argentina; (M.B.G.V.); (L.L.); (L.Á.); (M.J.G.V.); (O.C.); (J.C.D.); (A.R.d.R.)
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290, Buenos Aires 1425, Argentina
| |
Collapse
|
22
|
Cunha LER, Stolet AA, Strauch MA, Pereira VA, Dumard CH, Gomes AM, Monteiro FL, Higa LM, Souza PN, Fonseca JG, Pontes FE, Meirelles LG, Albuquerque JW, Sacramento CQ, Fintelman-Rodrigues N, Lima TM, Alvim RG, Marsili FF, Caldeira MM, Zingali RB, de Oliveira GA, Souza TM, Silva AS, Muller R, Rodrigues DDRF, Jesus da Costa L, Alves ADR, Pinto MA, Oliveira AC, Guedes HL, Tanuri A, Castilho LR, Silva JL. Polyclonal F(ab') 2 fragments of equine antibodies raised against the spike protein neutralize SARS-CoV-2 variants with high potency. iScience 2021; 24:103315. [PMID: 34723156 PMCID: PMC8539203 DOI: 10.1016/j.isci.2021.103315] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 08/24/2021] [Accepted: 10/15/2021] [Indexed: 11/26/2022] Open
Abstract
We used the recombinant trimeric spike (S) glycoprotein in the prefusion conformation to immunize horses for the production of hyperimmune globulins against SARS-CoV-2. Serum antibody titers measured by ELISA were above 1:106, and the neutralizing antibody titer against authentic virus (WT) was 1:14,604 (average PRNT90). Plasma from immunized animals was pepsin digested to remove the Fc portion and purified, yielding an F(ab')2 preparation with PRNT90 titers 150-fold higher than the neutralizing titers in human convalescent plasma. Challenge studies were carried out in hamsters and showed the in vivo ability of equine F(ab')2 to reduce viral load in the pulmonary tissues and significant clinical improvement determined by weight gain. The neutralization curve by F(ab')2 was similar against the WT and P.2 variants, but displaced to higher concentrations by 0.39 log units against the P.1 (Gamma) variant. These results support the possibility of using equine F(ab')2 preparation for the clinical treatment of COVID patients.
Collapse
Affiliation(s)
| | | | | | - Victor A.R. Pereira
- Institute of Medical Biochemistry Leopoldo de Meis, National Center of Nuclear Magnetic Resonance Jiri Jonas, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ 21941-901, Brazil
- National Institute of Science and Technology for Structural Biology and Bioimaging, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ 21941-901, Brazil
| | - Carlos H. Dumard
- Institute of Medical Biochemistry Leopoldo de Meis, National Center of Nuclear Magnetic Resonance Jiri Jonas, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ 21941-901, Brazil
- National Institute of Science and Technology for Structural Biology and Bioimaging, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ 21941-901, Brazil
| | - Andre M.O. Gomes
- Institute of Medical Biochemistry Leopoldo de Meis, National Center of Nuclear Magnetic Resonance Jiri Jonas, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ 21941-901, Brazil
- National Institute of Science and Technology for Structural Biology and Bioimaging, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ 21941-901, Brazil
| | - Fábio L. Monteiro
- Institute of Biology, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ 21941-901, Brazil
| | - Luiza M. Higa
- Institute of Biology, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ 21941-901, Brazil
| | | | | | | | | | | | - Carolina Q. Sacramento
- Immunopharmacology Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro, RJ 21040-900, Brazil
- National Institute for Science and Technology on Innovation in Diseases of Neglected Populations (INCT/IDPN), Center for Technological Development in Health (CDTS), Fiocruz, Rio de Janeiro, RJ 21040-900, Brazil
| | - Natalia Fintelman-Rodrigues
- Immunopharmacology Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro, RJ 21040-900, Brazil
- National Institute for Science and Technology on Innovation in Diseases of Neglected Populations (INCT/IDPN), Center for Technological Development in Health (CDTS), Fiocruz, Rio de Janeiro, RJ 21040-900, Brazil
| | - Tulio M. Lima
- Cell Culture Engineering Laboratory, COPPE, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ 21941-598, Brazil
| | - Renata G.F. Alvim
- Cell Culture Engineering Laboratory, COPPE, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ 21941-598, Brazil
| | - Federico F. Marsili
- Cell Culture Engineering Laboratory, COPPE, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ 21941-598, Brazil
| | - Marcella Moreira Caldeira
- Institute of Medical Biochemistry Leopoldo de Meis, National Center of Nuclear Magnetic Resonance Jiri Jonas, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ 21941-901, Brazil
- National Institute of Science and Technology for Structural Biology and Bioimaging, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ 21941-901, Brazil
| | - Russolina B. Zingali
- Institute of Medical Biochemistry Leopoldo de Meis, National Center of Nuclear Magnetic Resonance Jiri Jonas, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ 21941-901, Brazil
- National Institute of Science and Technology for Structural Biology and Bioimaging, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ 21941-901, Brazil
| | - Guilherme A.P. de Oliveira
- Institute of Medical Biochemistry Leopoldo de Meis, National Center of Nuclear Magnetic Resonance Jiri Jonas, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ 21941-901, Brazil
- National Institute of Science and Technology for Structural Biology and Bioimaging, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ 21941-901, Brazil
| | - Thiago M.L. Souza
- Immunopharmacology Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro, RJ 21040-900, Brazil
- National Institute for Science and Technology on Innovation in Diseases of Neglected Populations (INCT/IDPN), Center for Technological Development in Health (CDTS), Fiocruz, Rio de Janeiro, RJ 21040-900, Brazil
| | - Alexandre S. Silva
- Laboratory of Technological Development in Virology (LADTV), Oswaldo Cruz Institute, Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro, RJ 21040-900, Brazil
| | - Rodrigo Muller
- Animal Experimentation Laboratory (LAEAN), Institute of Technology in Immunobiologicals, Bio-Manguinhos, Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro, RJ 21040-900, Brazil
| | - Daniela del Rosário Flores Rodrigues
- Laboratory of Technological Development in Virology (LADTV), Oswaldo Cruz Institute, Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro, RJ 21040-900, Brazil
| | - Luciana Jesus da Costa
- Department of Virology, Laboratory of Genetics and Immunology of Viral Infections, Institute of Microbiology Paulo de Goes, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ CEP 21941902 , Brazil
| | - Arthur Daniel R. Alves
- Laboratory of Technological Development in Virology (LADTV), Oswaldo Cruz Institute, Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro, RJ 21040-900, Brazil
| | - Marcelo Alves Pinto
- Laboratory of Technological Development in Virology (LADTV), Oswaldo Cruz Institute, Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro, RJ 21040-900, Brazil
| | - Andréa C. Oliveira
- Institute of Medical Biochemistry Leopoldo de Meis, National Center of Nuclear Magnetic Resonance Jiri Jonas, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ 21941-901, Brazil
- National Institute of Science and Technology for Structural Biology and Bioimaging, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ 21941-901, Brazil
| | - Herbert L.M. Guedes
- Immunopharmacology Laboratory, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ 21941-902, Brazil
- Immunobiotechnology Laboratory, Institute of Microbiology Paulo de Goes, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ 21941-902, Brazil
- Interdisciplinary Medical Research Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro, RJ 21040-900, Brazil
| | - Amilcar Tanuri
- National Institute of Science and Technology for Structural Biology and Bioimaging, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ 21941-901, Brazil
- Institute of Biology, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ 21941-901, Brazil
| | - Leda R. Castilho
- Cell Culture Engineering Laboratory, COPPE, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ 21941-598, Brazil
| | - Jerson L. Silva
- Institute of Medical Biochemistry Leopoldo de Meis, National Center of Nuclear Magnetic Resonance Jiri Jonas, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ 21941-901, Brazil
- National Institute of Science and Technology for Structural Biology and Bioimaging, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ 21941-901, Brazil
| |
Collapse
|
23
|
Guo C, Peng Y, Lin L, Pan X, Fang M, Zhao Y, Bao K, Li R, Han J, Chen J, Song TZ, Feng XL, Zhou Y, Zhao G, Zhang L, Zheng Y, Zhu P, Hang H, Zhang L, Hua Z, Deng H, Hou B. A pathogen-like antigen-based vaccine confers immune protection against SARS-CoV-2 in non-human primates. CELL REPORTS MEDICINE 2021; 2:100448. [PMID: 34723223 PMCID: PMC8536523 DOI: 10.1016/j.xcrm.2021.100448] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 07/21/2021] [Accepted: 10/18/2021] [Indexed: 01/19/2023]
Abstract
Activation of nucleic acid sensing Toll-like receptors (TLRs) in B cells is involved in antiviral responses by promoting B cell activation and germinal center responses. In order to take advantage of this natural pathway for vaccine development, synthetic pathogen-like antigens (PLAs) constructed of multivalent antigens with encapsulated TLR ligands can be used to activate B cell antigen receptors and TLRs in a synergistic manner. Here we report a PLA-based coronavirus disease 2019 (COVID-19) vaccine candidate designed by combining a phage-derived virus-like particle carrying bacterial RNA as TLR ligands with the receptor-binding domain of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) S protein as the target antigen. This PLA-based vaccine candidate induces robust neutralizing antibodies in both mice and non-human primates (NHPs). Using a NHP infection model, we demonstrate that the viral clearance is accelerated in vaccinated animals. In addition, the PLA-based vaccine induces a T helper 1 (Th1)-oriented response and a durable memory, supporting its potential for further clinical development. AP205-RBD elicits neutralizing antibodies against SARS-CoV-2 in mice and macaques AP205-RBD induces Th1-oriented immune response and durable memory Vaccination of AP205-RBD accelerates viral clearance in infected macaques
Collapse
Affiliation(s)
- Chang Guo
- CAS Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.,CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanan Peng
- CAS Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.,CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Lin Lin
- CAS Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.,CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiaoyan Pan
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, Hubei 430071, China
| | - Mengqi Fang
- Comprehensive AIDS Research Center, Beijing Advanced Innovation Center for Structural Biology, School of Medicine and Vanke School of Public Health, Tsinghua University, Beijing 100084, China
| | - Yun Zhao
- Key Laboratory for Protein and Peptide Pharmaceuticals, National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Keyan Bao
- CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Runhan Li
- CAS Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.,CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jianbao Han
- National High-level Bio-safety Research Center for Non-human Primates, Center for Biosafety Mega-Science, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650107, China
| | - Jiaorong Chen
- CAS Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.,CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tian-Zhang Song
- National High-level Bio-safety Research Center for Non-human Primates, Center for Biosafety Mega-Science, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650107, China
| | - Xiao-Li Feng
- National High-level Bio-safety Research Center for Non-human Primates, Center for Biosafety Mega-Science, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650107, China
| | - Yahong Zhou
- CAS Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.,CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Gan Zhao
- Advaccine Biopharmaceuticals (Suzhou), Suzhou 215000, China
| | - Leike Zhang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, Hubei 430071, China
| | - Yongtang Zheng
- National High-level Bio-safety Research Center for Non-human Primates, Center for Biosafety Mega-Science, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650107, China
| | - Ping Zhu
- CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Haiying Hang
- University of Chinese Academy of Sciences, Beijing 100049, China.,Key Laboratory for Protein and Peptide Pharmaceuticals, National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Linqi Zhang
- Comprehensive AIDS Research Center, Beijing Advanced Innovation Center for Structural Biology, School of Medicine and Vanke School of Public Health, Tsinghua University, Beijing 100084, China
| | - Zhaolin Hua
- CAS Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.,CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hongyu Deng
- CAS Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.,CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Baidong Hou
- CAS Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.,CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
24
|
Batista CM, Foti L. Anti-SARS-CoV-2 and anti-cytokine storm neutralizing antibody therapies against COVID-19: Update, challenges, and perspectives. Int Immunopharmacol 2021; 99:108036. [PMID: 34371330 PMCID: PMC8330556 DOI: 10.1016/j.intimp.2021.108036] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 07/28/2021] [Accepted: 07/29/2021] [Indexed: 12/15/2022]
Abstract
Coronavirus disease 2019 (COVID-19) has been declared by the World Health Organization (WHO) as a pandemic since March 2020. This disease is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The only available tools to avoid contamination and transmission of this virus are physical distancing, the use of N95 and surgical masks, and hand hygiene. Vaccines are another essential tool to reduce the impact of the pandemic, though these present challenges in terms of production and logistics, particularly in underdeveloped and developing countries. One of the critical early research findings is the interaction of the spike virus protein with the angiotensin-converting enzyme 2 (ACE2) human receptor. Developing strategies to block this interaction has therefore been identified as a way to treat this infection. Neutralizing antibodies (nAbs) have emerged as a therapeutic approach since the pandemic started. Infected patients may be asymptomatic or present with mild symptoms, and others may evolve to moderate or severe disease, leading to death. An immunological phenomenon known as cytokine storm has been observed in patients with severe disease characterized by a proinflammatory cytokine cascade response that leads to lung injury. Thus, some treatment strategies focus on anti-cytokine storm nAbs. This review summarizes the latest advances in research and clinical trials, challenges, and perspectives on antibody-based treatments (ABT) as therapies against COVID-19.
Collapse
Affiliation(s)
| | - Leonardo Foti
- Laboratory of Trypanosomatids Molecular and Systemic Biology, Brazil.
| |
Collapse
|
25
|
Chen J, Ali F, Khan I, Zhu YZ. Recent progress in the development of potential drugs against SARS-CoV-2. CURRENT RESEARCH IN PHARMACOLOGY AND DRUG DISCOVERY 2021; 2:100057. [PMID: 34870155 PMCID: PMC8437701 DOI: 10.1016/j.crphar.2021.100057] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 08/30/2021] [Accepted: 09/09/2021] [Indexed: 01/18/2023] Open
Abstract
SARS-CoV-2, a newly emerged and highly pathogenic coronavirus, is identified as the causal agent of Coronavirus Disease (2019) (COVID-19) in the late December 2019, in China. The virus has rapidly spread nationwide and spilled over to the other countries around the globe, resulting in more than 120 million infections and 2.6 million deaths until the time of this review. Unfortunately, there are still no specific drugs available against this disease, and it is very necessary to call upon more scientists to work together to stop a further spread. Hence, the recent progress in the development of drugs may help scientific community quickly understand current research status and further develop new effective drugs. Herein, we summarize the cellular entry and replication process of this virus and discuss the recent development of potential viral based drugs that target bio-macromolecules in different stages of the viral life cycle, especially S protein, 3CLPro, PLPro, RdRp and helicase.
Collapse
Affiliation(s)
- Jianmin Chen
- School of Pharmacy and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science & Technology Avenida Wai Long, Taipa, 999078, Macau
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science & Technology Avenida Wai Long, Taipa, 999078, Macau
- School of Pharmacy and Medical Technology, Putian University, No. 1133 Xueyuan Zhong Jie, 351100, Fujian, China
- Key Laboratory of Pharmaceutical Analysis and Laboratory Medicine (Putian University), No. 1133 Xueyuan Zhong Jie, 351100, Fujian Province University, Fujian, China
| | - Fayaz Ali
- School of Pharmacy and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science & Technology Avenida Wai Long, Taipa, 999078, Macau
| | - Imran Khan
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science & Technology Avenida Wai Long, Taipa, 999078, Macau
| | - Yi Zhun Zhu
- School of Pharmacy and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science & Technology Avenida Wai Long, Taipa, 999078, Macau
| |
Collapse
|
26
|
Pan X, Shi J, Hu X, Wu Y, Zeng L, Yao Y, Shang W, Liu K, Gao G, Guo W, Peng Y, Chen S, Gao X, Peng C, Rao J, Zhao J, Gong C, Zhou H, Lu Y, Wang Z, Hu X, Cong W, Fang L, Yan Y, Zhang J, Xiong H, Yi J, Yuan Z, Zhou P, Shan C, Xiao G. RBD-homodimer, a COVID-19 subunit vaccine candidate, elicits immunogenicity and protection in rodents and nonhuman primates. Cell Discov 2021; 7:82. [PMID: 34493710 PMCID: PMC8423076 DOI: 10.1038/s41421-021-00320-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 08/08/2021] [Indexed: 12/14/2022] Open
Abstract
The pandemic of COVID-19 caused by SARS-CoV-2 has raised a new challenges to the scientific and industrious fields after over 1-year spread across different countries. The ultimate approach to end the pandemic is the timely application of vaccines to achieve herd immunity. Here, a novel SARS-CoV-2 receptor-binding domain (RBD) homodimer was developed as a SARS-CoV-2 vaccine candidate. Formulated with aluminum adjuvant, RBD dimer elicited strong immune response in both rodents and non-human primates, and protected mice from SARS-CoV-2 challenge with significantly reducing viral load and alleviating pathological injury in the lung. In the non-human primates, the vaccine could prevent majority of the animals from SARS-CoV-2 infection in the respiratory tract and reduce lung damage. In addition, antibodies elicited by this vaccine candidate showed cross-neutralization activities to SARS-CoV-2 variants. Furthermore, with our expression system, we provided a high-yield RBD homodimer vaccine without additional biosafety or special transport device supports. Thus, it may serve as a safe, effective, and low-cost SARS-CoV-2 vaccine candidate.
Collapse
Affiliation(s)
- Xiaoyan Pan
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China
- University of the Chinese Academy of Sciences, Beijing, China
- Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Jian Shi
- Wuhan YZY Biopharma Co., Ltd., Wuhan, Hubei, China
| | - Xue Hu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China
- Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Yan Wu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Liang Zeng
- Wuhan YZY Biopharma Co., Ltd., Wuhan, Hubei, China
| | - Yanfeng Yao
- Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Weijuan Shang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Kunpeng Liu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Ge Gao
- Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Weiwei Guo
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Yun Peng
- Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Shaohong Chen
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Xiaoxiao Gao
- Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Cheng Peng
- Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Juhong Rao
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Jiaxuan Zhao
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Cheng Gong
- Wuhan YZY Biopharma Co., Ltd., Wuhan, Hubei, China
| | - Hui Zhou
- Wuhan YZY Biopharma Co., Ltd., Wuhan, Hubei, China
| | - Yudong Lu
- Wuhan YZY Biopharma Co., Ltd., Wuhan, Hubei, China
| | - Zili Wang
- Wuhan YZY Biopharma Co., Ltd., Wuhan, Hubei, China
| | - Xiliang Hu
- Wuhan YZY Biopharma Co., Ltd., Wuhan, Hubei, China
| | - WenJuan Cong
- Wuhan YZY Biopharma Co., Ltd., Wuhan, Hubei, China
| | - Lijuan Fang
- Wuhan YZY Biopharma Co., Ltd., Wuhan, Hubei, China
| | | | - Jing Zhang
- Wuhan YZY Biopharma Co., Ltd., Wuhan, Hubei, China
| | - Hui Xiong
- Wuhan YZY Biopharma Co., Ltd., Wuhan, Hubei, China
| | - Jizu Yi
- Wuhan YZY Biopharma Co., Ltd., Wuhan, Hubei, China
| | - Zhiming Yuan
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China.
- University of the Chinese Academy of Sciences, Beijing, China.
- Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China.
| | - Pengfei Zhou
- Wuhan YZY Biopharma Co., Ltd., Wuhan, Hubei, China.
| | - Chao Shan
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China.
- University of the Chinese Academy of Sciences, Beijing, China.
- Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China.
| | - Gengfu Xiao
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China.
- University of the Chinese Academy of Sciences, Beijing, China.
- Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China.
| |
Collapse
|
27
|
Alape-Girón A, Moreira-Soto A, Arguedas M, Brenes H, Buján W, Corrales-Aguilar E, Díaz C, Echeverri A, Flores-Díaz M, Gómez A, Hernández A, Herrera M, León G, Macaya R, Molina-Mora JA, Mora J, Narayanan A, Sanabria A, Sánchez A, Sánchez L, Segura Á, Segura E, Solano D, Soto C, Stynoski JL, Vargas M, Villalta M, Drexler JF, Gutiérrez JM. Heterologous Hyperimmune Polyclonal Antibodies Against SARS-CoV-2: A Broad Coverage, Affordable, and Scalable Potential Immunotherapy for COVID-19. Front Med (Lausanne) 2021; 8:743325. [PMID: 34552950 PMCID: PMC8450768 DOI: 10.3389/fmed.2021.743325] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Accepted: 08/13/2021] [Indexed: 11/13/2022] Open
Affiliation(s)
- Alberto Alape-Girón
- Instituto Clodomiro Picado, School of Microbiology, University of Costa Rica, San Pedro, Costa Rica
- School of Medicine University of Costa Rica, San Pedro, Costa Rica
| | - Andrés Moreira-Soto
- Institute of Virology, Charité Medical University of Berlin, Berlin, Germany
| | - Mauricio Arguedas
- Instituto Clodomiro Picado, School of Microbiology, University of Costa Rica, San Pedro, Costa Rica
| | - Hebleen Brenes
- Instituto Costarricense de Investigación y Enseñanza en Nutrición y Salud, Ministry of Health, Cartago, Costa Rica
| | - Willem Buján
- School of Medicine University of Costa Rica, San Pedro, Costa Rica
- Caja Costarricense del Seguro Social, San Jose, Costa Rica
| | - Eugenia Corrales-Aguilar
- Research Center for Tropical Diseases, School of Microbiology, University of Costa Rica, San Pedro, Costa Rica
| | - Cecilia Díaz
- Instituto Clodomiro Picado, School of Microbiology, University of Costa Rica, San Pedro, Costa Rica
- School of Medicine University of Costa Rica, San Pedro, Costa Rica
| | - Ann Echeverri
- Caja Costarricense del Seguro Social, San Jose, Costa Rica
| | - Marietta Flores-Díaz
- Instituto Clodomiro Picado, School of Microbiology, University of Costa Rica, San Pedro, Costa Rica
| | - Aarón Gómez
- Instituto Clodomiro Picado, School of Microbiology, University of Costa Rica, San Pedro, Costa Rica
| | - Andrés Hernández
- Instituto Clodomiro Picado, School of Microbiology, University of Costa Rica, San Pedro, Costa Rica
| | - María Herrera
- Instituto Clodomiro Picado, School of Microbiology, University of Costa Rica, San Pedro, Costa Rica
| | - Guillermo León
- Instituto Clodomiro Picado, School of Microbiology, University of Costa Rica, San Pedro, Costa Rica
| | - Román Macaya
- Caja Costarricense del Seguro Social, San Jose, Costa Rica
| | - José Arturo Molina-Mora
- Research Center for Tropical Diseases, School of Microbiology, University of Costa Rica, San Pedro, Costa Rica
| | - Javier Mora
- Research Center for Tropical Diseases, School of Microbiology, University of Costa Rica, San Pedro, Costa Rica
| | - Aarthi Narayanan
- National Center for Biodefense and Infectious Diseases, College of Science, George Mason University, Fairfax, VA, United States
| | | | - Andrés Sánchez
- Instituto Clodomiro Picado, School of Microbiology, University of Costa Rica, San Pedro, Costa Rica
| | - Laura Sánchez
- Instituto Clodomiro Picado, School of Microbiology, University of Costa Rica, San Pedro, Costa Rica
| | - Álvaro Segura
- Instituto Clodomiro Picado, School of Microbiology, University of Costa Rica, San Pedro, Costa Rica
| | - Eduardo Segura
- Instituto Clodomiro Picado, School of Microbiology, University of Costa Rica, San Pedro, Costa Rica
| | - Daniela Solano
- Instituto Clodomiro Picado, School of Microbiology, University of Costa Rica, San Pedro, Costa Rica
| | - Claudio Soto
- Instituto Costarricense de Investigación y Enseñanza en Nutrición y Salud, Ministry of Health, Cartago, Costa Rica
| | - Jennifer L. Stynoski
- Instituto Clodomiro Picado, School of Microbiology, University of Costa Rica, San Pedro, Costa Rica
| | - Mariángela Vargas
- Instituto Clodomiro Picado, School of Microbiology, University of Costa Rica, San Pedro, Costa Rica
| | - Mauren Villalta
- Instituto Clodomiro Picado, School of Microbiology, University of Costa Rica, San Pedro, Costa Rica
| | - Jan Felix Drexler
- Institute of Virology, Charité Medical University of Berlin, Berlin, Germany
| | - José María Gutiérrez
- Instituto Clodomiro Picado, School of Microbiology, University of Costa Rica, San Pedro, Costa Rica
| |
Collapse
|
28
|
Identification of potent human neutralizing antibodies against SARS-CoV-2 implications for development of therapeutics and prophylactics. Nat Commun 2021; 12:4887. [PMID: 34373446 PMCID: PMC8352940 DOI: 10.1038/s41467-021-25153-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 07/20/2021] [Indexed: 12/12/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a novel coronavirus that is spreading rapidly, which seriously impacts global public health and economy. Thus, developing effective drugs remains urgent. We identify two potent antibodies, nCoVmab1 and nCoVmab2, targeting the SARS-CoV-2 spike protein receptor-binding domain (RBD) with high affinities from a naïve human phage-displayed Fab library. nCoVmab1 and nCoVmab2 neutralize authentic SARS-CoV-2 with picomolar and nanomolar IC50 values, respectively. No detectable defects of nCoVmab1 and nCoVmab2 are found during the preliminary druggability evaluation. nCoVmab1 could reduce viral titer and lung injury when administered prophylactically and therapeutically in human angiotensin-converting enzyme II (hACE2)-transgenic mice. Therefore, phage display platform could be efficiently used for rapid development of neutralizing monoclonal antibodies (nmabs) with clinical potential against emerging infectious diseases. In addition, we determinate epitopes in RBD of these antibodies to elucidate the neutralizing mechanism. We also convert nCoVmab1 and nCoVmab2 to their germline formats for further analysis, which reveals the contribution of somatic hypermutation (SHM) during nCoVmab1 and nCoVmab2 maturation. Our findings not only provide two highly potent nmabs against SARS-CoV-2 as prophylactic and therapeutic candidates, but also give some clues for development of anti-SARS-CoV-2 agents (e.g., drugs and vaccines) targeting the RBD.
Collapse
|
29
|
Brilhante-da-Silva N, de Oliveira Sousa RM, Arruda A, Dos Santos EL, Marinho ACM, Stabeli RG, Fernandes CFC, Pereira SDS. Camelid Single-Domain Antibodies for the Development of Potent Diagnosis Platforms. Mol Diagn Ther 2021; 25:439-456. [PMID: 34146333 DOI: 10.1007/s40291-021-00533-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/29/2021] [Indexed: 11/26/2022]
Abstract
The distinct biophysical and pharmaceutical properties of camelid single-domain antibodies, referred to as VHHs or nanobodies, are associated with their nanometric dimensions, elevated stability, and antigen recognition capacity. These biomolecules can circumvent a number of diagnostic system limitations, especially those related to the size and stability of conventional immunoglobulins currently used in enzyme-linked immunosorbent assays and point-of-care, electrochemical, and imaging assays. In these formats, VHHs are directionally conjugated to different molecules, such as metallic nanoparticles, small peptides, and radioisotopes, which demonstrates their comprehensive versatility. Thus, the application of VHHs in diagnostic systems range from the identification of cancer cells to the detection of degenerative disease biomarkers, viral antigens, bacterial toxins, and insecticides. The improvements of sensitivity and specificity are among the central benefits resulting from the use of VHHs, which are indispensable parameters for high-quality diagnostics. Therefore, this review highlights the main biotechnological advances related to camelid single-domain antibodies and their use in in vitro and in vivo diagnostic approaches for human health.
Collapse
Affiliation(s)
- Nairo Brilhante-da-Silva
- Laboratório de Engenharia de Anticorpos, Fundação Oswaldo Cruz, Fiocruz, Unidade Rondônia, Porto Velho, RO, 76812-245, Brazil
- Programa de Pós-Graduação em Biologia Celular e Molecular, Instituto Oswaldo Cruz, IOC, Rio de Janeiro, Brazil
| | - Rosa Maria de Oliveira Sousa
- Laboratório de Engenharia de Anticorpos, Fundação Oswaldo Cruz, Fiocruz, Unidade Rondônia, Porto Velho, RO, 76812-245, Brazil
| | - Andrelisse Arruda
- Laboratório de Engenharia de Anticorpos, Fundação Oswaldo Cruz, Fiocruz, Unidade Rondônia, Porto Velho, RO, 76812-245, Brazil
| | - Eliza Lima Dos Santos
- Laboratório de Engenharia de Anticorpos, Fundação Oswaldo Cruz, Fiocruz, Unidade Rondônia, Porto Velho, RO, 76812-245, Brazil
| | - Anna Carolina Machado Marinho
- Plataforma de Desenvolvimento de Anticorpos e Nanocorpos, Fundação Oswaldo Cruz, Fiocruz Ceará, Eusebio, Brazil
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Ceará, Fortaleza, Brazil
| | - Rodrigo Guerino Stabeli
- Plataforma Bi-institucional de Medicina Translacional.Fundação Oswaldo Cruz-USP, Ribeirão Preto, São Paulo, Brazil
| | - Carla Freire Celedonio Fernandes
- Programa de Pós-Graduação em Biologia Celular e Molecular, Instituto Oswaldo Cruz, IOC, Rio de Janeiro, Brazil
- Plataforma de Desenvolvimento de Anticorpos e Nanocorpos, Fundação Oswaldo Cruz, Fiocruz Ceará, Eusebio, Brazil
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Ceará, Fortaleza, Brazil
| | - Soraya Dos Santos Pereira
- Laboratório de Engenharia de Anticorpos, Fundação Oswaldo Cruz, Fiocruz, Unidade Rondônia, Porto Velho, RO, 76812-245, Brazil.
- Programa de Pós-Graduação em Biologia Celular e Molecular, Instituto Oswaldo Cruz, IOC, Rio de Janeiro, Brazil.
- Programa de Pós-graduação em Biologia Experimental, Universidade Federal de Rondônia, Porto Velho, Brazil.
| |
Collapse
|
30
|
Wu J, Zhang L, Zhang Y, Wang H, Ding R, Nie J, Li Q, Liu S, Yu Y, Yang X, Duan K, Qu X, Wang Y, Huang W. The Antigenicity of Epidemic SARS-CoV-2 Variants in the United Kingdom. Front Immunol 2021; 12:687869. [PMID: 34220844 PMCID: PMC8247764 DOI: 10.3389/fimmu.2021.687869] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 05/24/2021] [Indexed: 11/13/2022] Open
Abstract
To determine whether the neutralization activity of monoclonal antibodies, convalescent sera and vaccine-elicited sera was affected by the top five epidemic SARS-CoV-2 variants in the UK, including D614G+L18F+A222V, D614G+A222V, D614G+S477N, VOC-202012/01(B.1.1.7) and D614G+69-70del+N439K, a pseudovirus-neutralization assay was performed to evaluate the relative neutralization titers against the five SARS-CoV-2 variants and 12 single deconvolution mutants based on the variants. In this study, 18 monoclonal antibodies, 10 sera from convalescent COVID-19 patients, 10 inactivated-virus vaccine-elicited sera, 14 mRNA vaccine-elicited sera, nine RBD-immunized mouse sera, four RBD-immunized horse sera, and four spike-encoding DNA-immunized guinea pig sera were tested and analyzed. The N501Y, N439K, and S477N mutations caused immune escape from nine of 18 mAbs. However, the convalescent sera, inactivated virus vaccine-elicited sera, mRNA vaccine-elicited sera, spike DNA-elicited sera, and recombinant RBD protein-elicited sera could still neutralize these variants (within three-fold changes compared to the reference D614G variant). The neutralizing antibody responses to different types of vaccines were different, whereby the response to inactivated-virus vaccine was similar to the convalescent sera.
Collapse
Affiliation(s)
- Jiajing Wu
- Division of HIV/AIDS and Sex-Transmitted Virus Vaccines, Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC) and WHO Collaborating Center for Standardization and Evaluation of Biologicals, Beijing, China
- Wuhan Institute of Biological Products, Hubei, China
| | - Li Zhang
- Division of HIV/AIDS and Sex-Transmitted Virus Vaccines, Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC) and WHO Collaborating Center for Standardization and Evaluation of Biologicals, Beijing, China
| | - Yue Zhang
- Division of HIV/AIDS and Sex-Transmitted Virus Vaccines, Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC) and WHO Collaborating Center for Standardization and Evaluation of Biologicals, Beijing, China
- National Vaccine & Serum Institute, Beijing, China
| | - Haixin Wang
- Division of HIV/AIDS and Sex-Transmitted Virus Vaccines, Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC) and WHO Collaborating Center for Standardization and Evaluation of Biologicals, Beijing, China
- Department of Pharmaceutical Engineering, College of Life Science and Technology, Dalian University, Dalian, China
| | - Ruxia Ding
- Division of HIV/AIDS and Sex-Transmitted Virus Vaccines, Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC) and WHO Collaborating Center for Standardization and Evaluation of Biologicals, Beijing, China
| | - Jianhui Nie
- Division of HIV/AIDS and Sex-Transmitted Virus Vaccines, Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC) and WHO Collaborating Center for Standardization and Evaluation of Biologicals, Beijing, China
| | - Qianqian Li
- Division of HIV/AIDS and Sex-Transmitted Virus Vaccines, Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC) and WHO Collaborating Center for Standardization and Evaluation of Biologicals, Beijing, China
- Graduate School of Peking Union Medical College, Beijing, China
| | - Shuo Liu
- Division of HIV/AIDS and Sex-Transmitted Virus Vaccines, Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC) and WHO Collaborating Center for Standardization and Evaluation of Biologicals, Beijing, China
| | - Yongxin Yu
- Wuhan Institute of Biological Products, Hubei, China
- Department of Arboviral Vaccine, National Institutes for Food and Drug Control, Beijing, China
| | - Xiaoming Yang
- China National Biotec Group Company Limited, Beijing, China
| | - Kai Duan
- Wuhan Institute of Biological Products, Hubei, China
- National Engineering Technology Research Center for Combined Vaccines, Wuhan Institute of Biological Products Co. Ltd., Wuhan, China
| | - Xiaowang Qu
- Translational Medicine Institute, First People’s Hospital of Chenzhou, University of South China, Chenzhou, China
| | - Youchun Wang
- Division of HIV/AIDS and Sex-Transmitted Virus Vaccines, Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC) and WHO Collaborating Center for Standardization and Evaluation of Biologicals, Beijing, China
| | - Weijin Huang
- Division of HIV/AIDS and Sex-Transmitted Virus Vaccines, Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC) and WHO Collaborating Center for Standardization and Evaluation of Biologicals, Beijing, China
| |
Collapse
|
31
|
Kombe Kombe AJ, Zahid A, Mohammed A, Shi R, Jin T. Potent Molecular Feature-based Neutralizing Monoclonal Antibodies as Promising Therapeutics Against SARS-CoV-2 Infection. Front Mol Biosci 2021; 8:670815. [PMID: 34136533 PMCID: PMC8201996 DOI: 10.3389/fmolb.2021.670815] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 05/06/2021] [Indexed: 12/23/2022] Open
Abstract
The 2019-2020 winter was marked by the emergence of a new coronavirus (SARS-CoV-2) related disease (COVID-19), which started in Wuhan, China. Its high human-to-human transmission ability led to a worldwide spread within few weeks and has caused substantial human loss. Mechanical antiviral control approach, drug repositioning, and use of COVID-19 convalescent plasmas (CPs) were the first line strategies utilized to mitigate the viral spread, yet insufficient. The urgent need to contain this deadly pandemic has led searchers and pharmaceutical companies to develop vaccines. However, not all vaccines manufactured are safe. Besides, an alternative and effective treatment option for such an infectious disease would include pure anti-viral neutralizing monoclonal antibodies (NmAbs), which can block the virus at specific molecular targets from entering cells by inhibiting virus-cell structural complex formation, with more safety and efficiency than the CP. Indeed, there is a lot of molecular evidence about the protector effect and the use of molecular feature-based NmAbs as promising therapeutics to contain COVID-19. Thus, from the scientific publication database screening, we here retrieved antibody-related papers and summarized the repertory of characterized NmAbs against SARS-CoV-2, their molecular neutralization mechanisms, and their immunotherapeutic pros and cons. About 500 anti-SARS-CoV-2 NmAbs, characterized through competitive binding assays and neutralization efficacy, were reported at the writing time (January 2021). All NmAbs bind respectively to SARS-CoV-2 S and exhibit high molecular neutralizing effects against wild-type and/or pseudotyped virus. Overall, we defined six NmAb groups blocking SARS-CoV-2 through different molecular neutralization mechanisms, from which five potential neutralization sites on SARS-CoV-2 S protein are described. Therefore, more efforts are needed to develop NmAbs-based cocktails to mitigate COVID-19.
Collapse
Affiliation(s)
- Arnaud John Kombe Kombe
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Ayesha Zahid
- Hefei National Laboratory for Physical Sciences at Microscale, The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Ahmed Mohammed
- Hefei National Laboratory for Physical Sciences at Microscale, The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Ronghua Shi
- Hefei National Laboratory for Physical Sciences at Microscale, The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Tengchuan Jin
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Hefei National Laboratory for Physical Sciences at Microscale, The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- CAS Center for Excellence in Molecular Cell Science, Chinese Academy of Science, Shanghai, China
| |
Collapse
|
32
|
León G, Herrera M, Vargas M, Arguedas M, Sánchez A, Segura Á, Gómez A, Solano G, Corrales-Aguilar E, Risner K, Narayanan A, Bailey C, Villalta M, Hernández A, Sánchez A, Cordero D, Solano D, Durán G, Segura E, Cerdas M, Umaña D, Moscoso E, Estrada R, Gutiérrez J, Méndez M, Castillo AC, Sánchez L, Sánchez R, Gutiérrez JM, Díaz C, Alape A. Development and characterization of two equine formulations towards SARS-CoV-2 proteins for the potential treatment of COVID-19. Sci Rep 2021; 11:9825. [PMID: 33972631 PMCID: PMC8110969 DOI: 10.1038/s41598-021-89242-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 04/21/2021] [Indexed: 02/03/2023] Open
Abstract
In the current global emergency due to SARS-CoV-2 outbreak, passive immunotherapy emerges as a promising treatment for COVID-19. Among animal-derived products, equine formulations are still the cornerstone therapy for treating envenomations due to animal bites and stings. Therefore, drawing upon decades of experience in manufacturing snake antivenom, we developed and preclinically evaluated two anti-SARS-CoV-2 polyclonal equine formulations as potential alternative therapy for COVID-19. We immunized two groups of horses with either S1 (anti-S1) or a mixture of S1, N, and SEM mosaic (anti-Mix) viral recombinant proteins. Horses reached a maximum anti-viral antibody level at 7 weeks following priming, and showed no major adverse acute or chronic clinical alterations. Two whole-IgG formulations were prepared via hyperimmune plasma precipitation with caprylic acid and then formulated for parenteral use. Both preparations had similar physicochemical and microbiological quality and showed ELISA immunoreactivity towards S1 protein and the receptor binding domain (RBD). The anti-Mix formulation also presented immunoreactivity against N protein. Due to high anti-S1 and anti-RBD antibody content, final products exhibited high in vitro neutralizing capacity of SARS-CoV-2 infection, 80 times higher than a pool of human convalescent plasma. Pre-clinical quality profiles were similar among both products, but clinical efficacy and safety must be tested in clinical trials. The technological strategy we describe here can be adapted by other producers, particularly in low- and middle-income countries.
Collapse
Affiliation(s)
- Guillermo León
- Facultad de Microbiología, Instituto Clodomiro Picado, Universidad de Costa Rica, San José, Costa Rica
| | - María Herrera
- Facultad de Microbiología, Instituto Clodomiro Picado, Universidad de Costa Rica, San José, Costa Rica
| | - Mariángela Vargas
- Facultad de Microbiología, Instituto Clodomiro Picado, Universidad de Costa Rica, San José, Costa Rica.
| | - Mauricio Arguedas
- Facultad de Microbiología, Instituto Clodomiro Picado, Universidad de Costa Rica, San José, Costa Rica
| | - Andrés Sánchez
- Facultad de Microbiología, Instituto Clodomiro Picado, Universidad de Costa Rica, San José, Costa Rica
| | - Álvaro Segura
- Facultad de Microbiología, Instituto Clodomiro Picado, Universidad de Costa Rica, San José, Costa Rica
| | - Aarón Gómez
- Facultad de Microbiología, Instituto Clodomiro Picado, Universidad de Costa Rica, San José, Costa Rica
| | - Gabriela Solano
- Facultad de Microbiología, Instituto Clodomiro Picado, Universidad de Costa Rica, San José, Costa Rica
| | - Eugenia Corrales-Aguilar
- Virology-CIET (Research Center for Tropical Diseases), Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
| | - Kenneth Risner
- National Center for Biodefense and Infectious Diseases, George Mason University, Virginia, USA
| | - Aarthi Narayanan
- National Center for Biodefense and Infectious Diseases, George Mason University, Virginia, USA
| | - Charles Bailey
- National Center for Biodefense and Infectious Diseases, George Mason University, Virginia, USA
| | - Mauren Villalta
- Facultad de Microbiología, Instituto Clodomiro Picado, Universidad de Costa Rica, San José, Costa Rica
| | - Andrés Hernández
- Facultad de Microbiología, Instituto Clodomiro Picado, Universidad de Costa Rica, San José, Costa Rica
| | - Adriana Sánchez
- Facultad de Microbiología, Instituto Clodomiro Picado, Universidad de Costa Rica, San José, Costa Rica
| | - Daniel Cordero
- Facultad de Microbiología, Instituto Clodomiro Picado, Universidad de Costa Rica, San José, Costa Rica
| | - Daniela Solano
- Facultad de Microbiología, Instituto Clodomiro Picado, Universidad de Costa Rica, San José, Costa Rica
| | - Gina Durán
- Facultad de Microbiología, Instituto Clodomiro Picado, Universidad de Costa Rica, San José, Costa Rica
| | - Eduardo Segura
- Facultad de Microbiología, Instituto Clodomiro Picado, Universidad de Costa Rica, San José, Costa Rica
| | - Maykel Cerdas
- Facultad de Microbiología, Instituto Clodomiro Picado, Universidad de Costa Rica, San José, Costa Rica
| | - Deibid Umaña
- Facultad de Microbiología, Instituto Clodomiro Picado, Universidad de Costa Rica, San José, Costa Rica
| | - Edwin Moscoso
- Facultad de Microbiología, Instituto Clodomiro Picado, Universidad de Costa Rica, San José, Costa Rica
| | - Ricardo Estrada
- Facultad de Microbiología, Instituto Clodomiro Picado, Universidad de Costa Rica, San José, Costa Rica
| | - Jairo Gutiérrez
- Facultad de Microbiología, Instituto Clodomiro Picado, Universidad de Costa Rica, San José, Costa Rica
| | - Marcos Méndez
- Facultad de Microbiología, Instituto Clodomiro Picado, Universidad de Costa Rica, San José, Costa Rica
| | - Ana Cecilia Castillo
- Facultad de Microbiología, Instituto Clodomiro Picado, Universidad de Costa Rica, San José, Costa Rica
| | - Laura Sánchez
- Facultad de Microbiología, Instituto Clodomiro Picado, Universidad de Costa Rica, San José, Costa Rica
| | - Ronald Sánchez
- Facultad de Microbiología, Instituto Clodomiro Picado, Universidad de Costa Rica, San José, Costa Rica
| | - José María Gutiérrez
- Facultad de Microbiología, Instituto Clodomiro Picado, Universidad de Costa Rica, San José, Costa Rica
| | - Cecilia Díaz
- Facultad de Microbiología, Instituto Clodomiro Picado, Universidad de Costa Rica, San José, Costa Rica
| | - Alberto Alape
- Facultad de Microbiología, Instituto Clodomiro Picado, Universidad de Costa Rica, San José, Costa Rica
- Departamento de Bioquímica, Escuela de Medicina, Universidad de Costa Rica, San José, Costa Rica
| |
Collapse
|
33
|
Mahalingam S, Peter J, Xu Z, Bordoloi D, Ho M, Kalyanaraman VS, Srinivasan A, Muthumani K. Landscape of humoral immune responses against SARS-CoV-2 in patients with COVID-19 disease and the value of antibody testing. Heliyon 2021; 7:e06836. [PMID: 33898857 PMCID: PMC8052472 DOI: 10.1016/j.heliyon.2021.e06836] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 02/11/2021] [Accepted: 04/13/2021] [Indexed: 01/08/2023] Open
Abstract
A new pandemic is ongoing in several parts of the world. The agent responsible is the newly emerged severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). The symptoms associated with this virus are known as the coronavirus disease-2019 (COVID-19). In this review, we summarize the published data on virus specific antibodies in hospitalized patients with COVID-19 disease, patients recovered from the disease and the individuals who are asymptomatic with SARS-CoV-2 infections. The review highlights the following: i) an adjunct role of antibody tests in the diagnosis of COVID-19 in combination with RT-PCR; ii) status of antibodies from COVID-19 convalescent patients to select donors for plasma therapy; iii) the potential confounding effects of other coronaviruses, measles, mumps and rubella in antibody testing due to homology of certain viral genes; and iv) the role of antibody testing for conducting surveillance in populations, incidence estimation, contact tracing and epidemiologic studies.
Collapse
Affiliation(s)
- Sundarasamy Mahalingam
- Department of Biotechnology, Indian Institute of Technology Madras, Chennai 600 036, India
| | - John Peter
- Department of Biotechnology, Indian Institute of Technology Madras, Chennai 600 036, India
| | - Ziyang Xu
- Vaccine & Immunotherapy Center, The Wistar Institute, 3601 Spruce Street, Philadelphia, PA 19104, USA
| | - Devivasha Bordoloi
- Vaccine & Immunotherapy Center, The Wistar Institute, 3601 Spruce Street, Philadelphia, PA 19104, USA
| | - Michelle Ho
- Vaccine & Immunotherapy Center, The Wistar Institute, 3601 Spruce Street, Philadelphia, PA 19104, USA
| | | | | | - Kar Muthumani
- Vaccine & Immunotherapy Center, The Wistar Institute, 3601 Spruce Street, Philadelphia, PA 19104, USA
| |
Collapse
|
34
|
Lopardo G, Belloso WH, Nannini E, Colonna M, Sanguineti S, Zylberman V, Muñoz L, Dobarro M, Lebersztein G, Farina J, Vidiella G, Bertetti A, Crudo F, Alzogaray MF, Barcelona L, Teijeiro R, Lambert S, Scublinsky D, Iacono M, Stanek V, Solari R, Cruz P, Casas MM, Abusamra L, Luciardi HL, Cremona A, Caruso D, de Miguel B, Lloret SP, Millán S, Kilstein Y, Pereiro A, Sued O, Cahn P, Spatz L, Goldbaum F. RBD-specific polyclonal F(ab´) 2 fragments of equine antibodies in patients with moderate to severe COVID-19 disease: A randomized, multicenter, double-blind, placebo-controlled, adaptive phase 2/3 clinical trial. EClinicalMedicine 2021; 34:100843. [PMID: 33870149 PMCID: PMC8037439 DOI: 10.1016/j.eclinm.2021.100843] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 03/10/2021] [Accepted: 03/17/2021] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND passive immunotherapy is a therapeutic alternative for patients with COVID-19. Equine polyclonal antibodies (EpAbs) could represent a source of scalable neutralizing antibodies against SARS-CoV-2. METHODS we conducted a double-blind, randomized, placebo-controlled trial to assess efficacy and safety of EpAbs (INM005) in hospitalized adult patients with moderate and severe COVID-19 pneumonia in 19 hospitals of Argentina. Primary endpoint was improvement in at least two categories in WHO ordinal clinical scale at day 28 or hospital discharge (ClinicalTrials.gov number NCT04494984). FINDINGS between August 1st and October 26th, 2020, a total of 245 patients were enrolled. Enrolled patients were assigned to receive two blinded doses of INM005 (n = 118) or placebo (n = 123). Median age was 54 years old, 65•1% were male and 61% had moderate disease at baseline. Median time from symptoms onset to study treatment was 6 days (interquartile range 5 to 8). No statistically significant difference was noted between study groups on primary endpoint (risk difference [95% IC]: 5•28% [-3•95; 14•50]; p = 0•15). Rate of improvement in at least two categories was statistically significantly higher for INM005 at days 14 and 21 of follow-up. Time to improvement in two ordinal categories or hospital discharge was 14•2 (± 0•7) days in the INM005 group and 16•3 (± 0•7) days in the placebo group, hazard ratio 1•31 (95% CI 1•0 to 1•74). Subgroup analyses showed a beneficial effect of INM005 over severe patients and in those with negative baseline antibodies. Overall mortality was 6•9% the INM005 group and 11•4% in the placebo group (risk difference [95% IC]: 0•57 [0•24 to 1•37]). Adverse events of special interest were mild or moderate; no anaphylaxis was reported. INTERPRETATION Albeit not having reached the primary endpoint, we found clinical improvement of hospitalized patients with SARS-CoV-2 pneumonia, particularly those with severe disease.
Collapse
Affiliation(s)
- Gustavo Lopardo
- Hospital Municipal Dr. Bernardo Houssay, Pte Hipólito Yrigoyen 1757, Florida, Provincia de Buenos Aires, Argentina
- Fundación del Centro de Estudios Infectológicos (FUNCEI), French 3085, Ciudad Autónoma de Buenos Aires, Buenos Aires C1425, Argentina
| | - Waldo H. Belloso
- Department of Research, Hospital Italiano de Buenos Aires. Pres. Tte. Gral. Juan Domingo Perón 4190, Ciudad Autónoma de Buenos Aires, Buenos Aires C1199, Argentina
| | - Esteban Nannini
- Departamento de Enfermedades Infecciosas, Sanatorio Británico, Paraguay 40, Rosario, Santa Fé S2000 CVB, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - Mariana Colonna
- Inmunova S.A., 25 de mayo 1021, Villa Lynch, Gral. San Martín, Buenos Aires CP B1650HMP, Argentina
| | - Santiago Sanguineti
- Inmunova S.A., 25 de mayo 1021, Villa Lynch, Gral. San Martín, Buenos Aires CP B1650HMP, Argentina
| | - Vanesa Zylberman
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
- Inmunova S.A., 25 de mayo 1021, Villa Lynch, Gral. San Martín, Buenos Aires CP B1650HMP, Argentina
| | - Luciana Muñoz
- Inmunova S.A., 25 de mayo 1021, Villa Lynch, Gral. San Martín, Buenos Aires CP B1650HMP, Argentina
| | - Martín Dobarro
- Sanatorio Sagrado Corazón (OSECAC), Bartolomé Mitre 1955, Ciudad Autónoma de Buenos Aires, Buenos Aires CP1039, Argentina
| | - Gabriel Lebersztein
- Sanatorio Sagrado Corazón (OSECAC), Bartolomé Mitre 1955, Ciudad Autónoma de Buenos Aires, Buenos Aires CP1039, Argentina
| | - Javier Farina
- Hospital de Alta Complejidad Cuenca Alta S.A.M.I.C. Dr. Néstor Carlos Kirchner, RP6, Cañuelas, Provincia de Buenos Aires, Argentina
| | - Gabriela Vidiella
- Sanatorio Agote. Dr. Luis Agote 2477, Ciudad Autónoma de Buenos Aires, Buenos Aires C1425 EOE, Argentina
| | - Anselmo Bertetti
- Sanatorio Güemes, Francisco Acuña de Figueroa 1240, Ciudad Autónoma de Buenos Aires, Buenos Aires C1180, Argentina
| | - Favio Crudo
- Hospital Municipal Emilio Zerboni, Moreno 90, San Antonio de Areco, Provincia de Buenos Aires B2760, Argentina
- Universidad Nacional de San Antonio de Areco, Av. Güiraldes 689, San Antonio de Areco, Provincia de Buenos Aires, Argentina
| | | | - Laura Barcelona
- Hospital Municipal Dr. Bernardo Houssay, Pte Hipólito Yrigoyen 1757, Florida, Provincia de Buenos Aires, Argentina
| | - Ricardo Teijeiro
- Hospital General de Agudos Dr. Ignacio Pirovano, Av. Monroe 3555, Ciudad Autónoma de Buenos Aires, Buenos Aires C1428, Argentina
| | - Sandra Lambert
- Hospital de Alta Complejidad El Cruce Néstor Kirchner, Av. Calchaquí 5401, Florencio Varela, Provincia de Buenos Aires, Argentina
| | - Darío Scublinsky
- Clínica Zabala. Av. Cabildo 1295, Ciudad Autónoma de Buenos Aires, Buenos Aires C1426 AAM, Argentina
| | - Marisa Iacono
- Hospital Provincial Neuquén Dr. Castro Rendón, Buenos Aires 450, Neuquén Q8300, Argentina
| | - Vanina Stanek
- Sección de Infectología, Servicio de Medicina Interna, Hospital Italiano de Buenos Aires. Pres. Tte. Gral. Juan Domingo Perón 4190, Ciudad Autónoma de Buenos Aires, Buenos Aires C1199, Argentina
| | - Rubén Solari
- Hospital de Infecciosas Francisco Javier Muñiz, Uspallata 2272, Ciudad Autónoma de Buenos Aires, Buenos Aires C1282, Argentina
| | - Pablo Cruz
- Centro Gallego de Buenos Aires, Av. Belgrano 2199, Ciudad Autónoma de Buenos Aires, Buenos Aires C1096, Argentina
| | - Marcelo Martín Casas
- Clínica Adventista Belgrano. Estomba 1710, Ciudad Autónoma de Buenos Aires, Buenos Aires C1430 EGF, Argentina
| | - Lorena Abusamra
- Hospital Municipal Dr. Diego Thompson, Avellaneda 33, Villa Lynch, Gral. San Martín, Buenos Aires B1650, Argentina
| | - Héctor Lucas Luciardi
- Hospital Centro de Salud Zenón J. Santillán, Av. Avellaneda 750, San Miguel de Tucumán, Tucumán T4000, Argentina
| | - Alberto Cremona
- Hospital Italiano La Plata, Av. 51, La Plata, Provincia de Buenos Aires B1900, Argentina
| | - Diego Caruso
- Hospital Español, Av. Belgrano 2975, Ciudad Autónoma de Buenos Aires, Buenos Aires C1209, Argentina
| | | | - Santiago Perez Lloret
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
- Departamento de Docencia e Investigación, Facultad de Ciencias Médicas, Universidad Católica Argentina, Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
- Universidad Abierta Interamericana, Centro de Altos Estudios en Ciencias Humanas y de la Salud (UAI-CAECIHS), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. San Juan 951, Ciudad Autónoma de Buenos Aires, Buenos Aires C1147 AAH, Argentina
| | - Susana Millán
- mAbxience, Manuel Pombo Angulo 28, 3rd floor, Madrid 28050, Spain
| | - Yael Kilstein
- PHV LATAM, AES, Amenábar 3851, Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
| | - Ana Pereiro
- Fundación Mundo Sano, Paraguay 1535, Ciudad Autónoma de Buenos Aires, Buenos Aires C1061ABC, Argentina
| | - Omar Sued
- Fundación Huésped, Pasaje Ángel Peluffo 3932PB, Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
| | - Pedro Cahn
- Fundación Huésped, Pasaje Ángel Peluffo 3932PB, Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
| | - Linus Spatz
- Inmunova S.A., 25 de mayo 1021, Villa Lynch, Gral. San Martín, Buenos Aires CP B1650HMP, Argentina
| | - Fernando Goldbaum
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
- Inmunova S.A., 25 de mayo 1021, Villa Lynch, Gral. San Martín, Buenos Aires CP B1650HMP, Argentina
- Fundación Instituto Leloir, IIBBA-CONICET. Av. Patricias Argentinas 435, Buenos Aires C1405BWE, Argentina
- CRIP - Centro de Rediseño e Ingeniería de Proteínas UNSAM Campus Miguelete. 25 de Mayo y Francia Villa Lynch, Gral. San Martín, Buenos Aires B1650HMK, Argentina
- Corresponding author at: Inmunova S.A., 25 de mayo 1021, Villa Lynch, Gral. San Martín, Buenos Aires CP B1650HMP, Argentina.
| | | |
Collapse
|
35
|
The construction, expression, and enhanced anti-tumor activity of YM101: a bispecific antibody simultaneously targeting TGF-β and PD-L1. J Hematol Oncol 2021; 14:27. [PMID: 33593403 PMCID: PMC7885589 DOI: 10.1186/s13045-021-01045-x] [Citation(s) in RCA: 139] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Accepted: 02/03/2021] [Indexed: 12/27/2022] Open
Abstract
Background Therapeutic antibodies targeting programmed cell death protein 1 (PD-1)/programmed death-ligand 1 (PD-L1) axis induce potent and durable anti-tumor responses in multiple types of cancers. However, only a subset of patients benefits from anti-PD-1/PD-L1 therapies. As a negative regulator of anti-tumor immunity, TGF-β impairs the efficacy of anti-PD-1/PD-L1 and induces drug resistance. Developing a novel treatment strategy to simultaneously block PD-1/PD-L1 and TGF-β would be valuable to enhance the effect of anti-PD-1/PD-L1 and relieve drug resistance. Methods Based on the Check-BODY™ technology platform, we developed an anti-TGF-β/PD-L1 bispecific antibody YM101. The bioactivity of the anti-TGF-β moiety was determined by Smad-luciferase reporter assay, transwell assay, western blotting, CCK-8, and flow cytometry. The bioactivity of the anti-PD-L1 moiety was measured by T cell activation assays. EMT-6, CT26, and 3LL tumor models were used to investigate the anti-tumor activity of YM101 in vivo. RNA-seq, immunohistochemical staining, and flow cytometry were utilized to analyze the effect of YM101 on the tumor microenvironment. Results YM101 could bind to TGF-β and PD-L1 specifically. In vitro experiments showed that YM101 effectively counteracted the biological effects of TGF-β and PD-1/PD-L1 pathway, including activating Smad signaling, inducing epithelial-mesenchymal transition, and immunosuppression. Besides, in vivo experiments indicated the anti-tumor activity of YM101 was superior to anti-TGF-β and anti-PD-L1 monotherapies. Mechanistically, YM101 promoted the formation of ‘hot tumor’: increasing the numbers of tumor infiltrating lymphocytes and dendritic cells, elevating the ratio of M1/M2, and enhancing cytokine production in T cells. This normalized tumor immune microenvironment and enhanced anti-tumor immune response might contribute to the robust anti-tumor effect of YM101. Conclusion Our results demonstrated that YM101 could simultaneously block TGF-β and PD-L1 pathways and had a superior anti-tumor effect compared to the monotherapies.
Collapse
|
36
|
Focosi D, Tuccori M, Franchini M. The Road towards Polyclonal Anti-SARS-CoV-2 Immunoglobulins (Hyperimmune Serum) for Passive Immunization in COVID-19. Life (Basel) 2021; 11:144. [PMID: 33671893 PMCID: PMC7918959 DOI: 10.3390/life11020144] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 02/01/2021] [Accepted: 02/11/2021] [Indexed: 02/06/2023] Open
Abstract
Effective treatments specific for COVID-19 are still lacking. In the setting of passive immunotherapies based on neutralizing antibodies (nAbs), randomized controlled trials of COVID-19 convalescent plasma (CCP) anti-SARS-CoV-2 Spike protein monoclonal antibodies (mAb), which have been granted emergency use authorization, have suggested benefit in early disease course (less than 72 hours from symptoms and seronegative). Meanwhile, polyclonal immunoglobulins (i.e., hyperimmune serum), derived either from CCP donations or from animals immunized with SARS-CoV-2 antigens, are likely to become the next nAb-derived candidate. We here discuss the pros and cons of hyperimmune serum versus CCP and mAb, and summarize the ongoing clinical trials of COVID-19 hyperimmune sera.
Collapse
Affiliation(s)
- Daniele Focosi
- North-Western Tuscany Blood Bank, Pisa University Hospital, 56124 Pisa, Italy
| | - Marco Tuccori
- Division of Pharmacology and Pharmacovigilance, University of Pisa, 56126 Pisa, Italy;
- Unit of Adverse Drug reaction Monitoring, Pisa University Hospital, 56124 Pisa, Italy
| | - Massimo Franchini
- Department of Hematology and Transfusion Medicine, Carlo Poma Hospital, 46100 Mantua, Italy;
| |
Collapse
|
37
|
Peng Y, Tao H, Satyanarayanan SK, Jin K, Su H. A Comprehensive Summary of the Knowledge on COVID-19 Treatment. Aging Dis 2021; 12:155-191. [PMID: 33532135 PMCID: PMC7801274 DOI: 10.14336/ad.2020.1124] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 11/24/2020] [Indexed: 01/08/2023] Open
Abstract
Currently, the world is challenged by the coronavirus disease 2019 (COVID-19) pandemic. Epidemiologists and researchers worldwide are invariably trying to understand and combat this precarious new disease. Scrutinizing available drug options and developing potential new drugs are urgent needs to subdue this pandemic. Several intervention strategies are being considered and handled worldwide with limited success, and many drug candidates are yet in the trial phase. Despite these limitations, the development of COVID-19 treatment strategies has been accelerated to improve the clinical outcome of patients with COVID-19, and some countries have efficiently kept it under control. Recently, the use of natural and traditional medicine has also set the trend in coronavirus treatment. This review aimed to discuss the prevailing COVID-19 treatment strategies available globally by examining their efficacy, potential mechanisms, limitations, and challenges in predicting a future potential treatment candidate and bridging them with the effective traditional Chinese medicine (TCM). The findings might enrich the knowledge on traditional alternative medication and its complementary role with Western medicine in managing the COVID-19 epidemic.
Collapse
Affiliation(s)
- Yu Peng
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China.
| | - Hongxun Tao
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China.
| | - Senthil Kumaran Satyanarayanan
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China.
| | - Kunlin Jin
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX 76107, USA.
| | - Huanxing Su
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China.
| |
Collapse
|
38
|
Batalha PN, Forezi LSM, Lima CGS, Pauli FP, Boechat FCS, de Souza MCBV, Cunha AC, Ferreira VF, da Silva FDC. Drug repurposing for the treatment of COVID-19: Pharmacological aspects and synthetic approaches. Bioorg Chem 2021; 106:104488. [PMID: 33261844 PMCID: PMC7676325 DOI: 10.1016/j.bioorg.2020.104488] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 10/20/2020] [Accepted: 11/16/2020] [Indexed: 02/06/2023]
Abstract
In December 2019, a new variant of SARS-CoV emerged, the so-called acute severe respiratory syndrome coronavirus 2 (SARS-CoV-2). This virus causes the new coronavirus disease (COVID-19) and has been plaguing the world owing to its unprecedented spread efficiency, which has resulted in a huge death toll. In this sense, the repositioning of approved drugs is the fastest way to an effective response to a pandemic outbreak of this scale. Considering these facts, in this review we provide a comprehensive and critical discussion on the chemical aspects surrounding the drugs currently being studied as candidates for COVID-19 therapy. We intend to provide the general chemical community with an overview on the synthetic/biosynthetic pathways related to such molecules, as well as their mechanisms of action against the evaluated viruses and some insights on the pharmacological interactions involved in each case. Overall, the review aims to present the chemical aspects of the main bioactive molecules being considered to be repositioned for effective treatment of COVID-19 in all phases, from the mildest to the most severe.
Collapse
Affiliation(s)
- Pedro N Batalha
- Universidade Federal Fluminense, Departamento de Química Orgânica, Instituto de Química, Campus do Valonguinho, CEP 24020-150 Niterói, RJ, Brazil.
| | - Luana S M Forezi
- Universidade Federal Fluminense, Departamento de Química Orgânica, Instituto de Química, Campus do Valonguinho, CEP 24020-150 Niterói, RJ, Brazil
| | - Carolina G S Lima
- Universidade Federal Fluminense, Departamento de Química Orgânica, Instituto de Química, Campus do Valonguinho, CEP 24020-150 Niterói, RJ, Brazil
| | - Fernanda P Pauli
- Universidade Federal Fluminense, Departamento de Química Orgânica, Instituto de Química, Campus do Valonguinho, CEP 24020-150 Niterói, RJ, Brazil
| | - Fernanda C S Boechat
- Universidade Federal Fluminense, Departamento de Química Orgânica, Instituto de Química, Campus do Valonguinho, CEP 24020-150 Niterói, RJ, Brazil
| | - Maria Cecília B V de Souza
- Universidade Federal Fluminense, Departamento de Química Orgânica, Instituto de Química, Campus do Valonguinho, CEP 24020-150 Niterói, RJ, Brazil
| | - Anna C Cunha
- Universidade Federal Fluminense, Departamento de Química Orgânica, Instituto de Química, Campus do Valonguinho, CEP 24020-150 Niterói, RJ, Brazil
| | - Vitor F Ferreira
- Universidade Federal Fluminense, Faculdade de Farmácia, Departamento de Tecnologia Farmacêutica, CEP 24241-000 Niterói, RJ, Brazil.
| | - Fernando de C da Silva
- Universidade Federal Fluminense, Departamento de Química Orgânica, Instituto de Química, Campus do Valonguinho, CEP 24020-150 Niterói, RJ, Brazil.
| |
Collapse
|
39
|
da Costa CBP, Martins FJ, da Cunha LER, Ratcliffe NA, Cisne de Paula R, Castro HC. COVID-19 and Hyperimmune sera: A feasible plan B to fight against coronavirus. Int Immunopharmacol 2021; 90:107220. [PMID: 33302034 PMCID: PMC7678452 DOI: 10.1016/j.intimp.2020.107220] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 11/07/2020] [Accepted: 11/16/2020] [Indexed: 12/13/2022]
Abstract
Since the very beginning of the COVID-19 pandemic, different treatment strategies have been explored. These mainly involve the development of antimicrobial, antiviral, and/or anti-inflammatory agents as well as vaccine production. However, other potential options should be more avidly investigated since vaccine production on a worldwide level, and the anti-vaccination movement, also known as anti-vax or vaccine hesitancy by many communities, are still real obstacles without a ready solution. This review presents recent findings on the potential therapeutic advantages of heterologous serotherapy for the treatment of COVID-19. We present not only the effective use in animal models of hyperimmune sera against this coronavirus but also strategies, and protocols for the production of anti-SARS-CoV-2 sera. Promising antigens are also indicated such as the receptor-binding domain (RBD) in SARS-CoV-2 S protein, which is already in phase 2/3 clinical trial, and the trimeric protein S, which was shown to be up to 150 times more potent than the serum from convalescent donors. Due to the high death rate, the treatment for those currently infected with coronavirus cannot be ignored. Therefore, the potential use of anti-SARS-CoV-2 hyperimmune sera should be carefully but urgently evaluated in phase 2/3 clinical studies.
Collapse
Affiliation(s)
- Camila B P da Costa
- Instituto Vital Brazil, Niterói, RJ 24230-410, Brazil; Programa de Pós-graduação em Ciências e Biotecnologia, IB, UFF, RJ 24210-130, Brazil
| | - Francislene J Martins
- Programa de Pós-graduação em Ciências e Biotecnologia, IB, UFF, RJ 24210-130, Brazil
| | | | - Norman A Ratcliffe
- Programa de Pós-graduação em Ciências e Biotecnologia, IB, UFF, RJ 24210-130, Brazil; Department of Biosciences, Swansea University, Singleton Park, Swansea SA28PP, UK
| | - Rafael Cisne de Paula
- Programa de Pós-graduação em Ciências e Biotecnologia, IB, UFF, RJ 24210-130, Brazil.
| | - Helena C Castro
- Programa de Pós-graduação em Ciências e Biotecnologia, IB, UFF, RJ 24210-130, Brazil; Programa de Pós-Graduação em Patologia, HUAP, UFF, RJ 24210-130, Brazil.
| |
Collapse
|
40
|
Xiaojie S, Yu L, Lei Y, Guang Y, Min Q. Neutralizing antibodies targeting SARS-CoV-2 spike protein. Stem Cell Res 2020; 50:102125. [PMID: 33341604 PMCID: PMC7737530 DOI: 10.1016/j.scr.2020.102125] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 11/25/2020] [Accepted: 12/12/2020] [Indexed: 12/23/2022] Open
Abstract
SARS-CoV-2 causing the worldwide pandemic has changed people's life in multiple aspects dramatically since it's first identified in Wuhan, China at the end of 2019. While the numbers of infected patients and death toll keep vigorous increasing, curbing the progression of the pandemic is an urgent goal. Efforts have been made to search for prophylactic and therapeutic approaches including neutralizing antibodies development. By reviewing dozens of studies on anti-spike antibodies identification, we concluded that (1) promising therapeutic antibodies are being fished out by various approaches, such as screening of single B cells of convalescent patients, recombinant antibody library and B cells of immunized animals; (2) the epitopes are mainly RBD, but also some non-RBD domains, without the requisite of overlapping with ACE2 binding sites; (3) Neutralizing antibodies are convergent to a few germline genes, including IGHV3-30, IGHV3-53, IGHV3-66, with varying levels of somatic mutations. This review summarizes the progress in neutralizing antibodies development and the germline enrichment of effective antibodies, which will shed light on COVID-19 treatment and vaccine design.
Collapse
Affiliation(s)
- Shi Xiaojie
- Shanghai Institute for Advanced Immunochemical Studies (SIAIS), ShanghaiTech University, No. 393 Middle Huaxia Road, Pudong District, 201210, Shanghai, China
| | - Li Yu
- Shanghai Institute for Advanced Immunochemical Studies (SIAIS), ShanghaiTech University, No. 393 Middle Huaxia Road, Pudong District, 201210, Shanghai, China
| | - Yan Lei
- Shanghai Institute for Advanced Immunochemical Studies (SIAIS), ShanghaiTech University, No. 393 Middle Huaxia Road, Pudong District, 201210, Shanghai, China
| | - Yang Guang
- Shanghai Institute for Advanced Immunochemical Studies (SIAIS), ShanghaiTech University, No. 393 Middle Huaxia Road, Pudong District, 201210, Shanghai, China
| | - Qiang Min
- Shanghai Institute for Advanced Immunochemical Studies (SIAIS), ShanghaiTech University, No. 393 Middle Huaxia Road, Pudong District, 201210, Shanghai, China.
| |
Collapse
|
41
|
Wang MY, Zhao R, Gao LJ, Gao XF, Wang DP, Cao JM. SARS-CoV-2: Structure, Biology, and Structure-Based Therapeutics Development. Front Cell Infect Microbiol 2020; 10:587269. [PMID: 33324574 PMCID: PMC7723891 DOI: 10.3389/fcimb.2020.587269] [Citation(s) in RCA: 498] [Impact Index Per Article: 99.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 10/26/2020] [Indexed: 01/18/2023] Open
Abstract
The pandemic of the novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been posing great threats to the world in many aspects. Effective therapeutic and preventive approaches including drugs and vaccines are still unavailable although they are in development. Comprehensive understandings on the life logic of SARS-CoV-2 and the interaction of the virus with hosts are fundamentally important in the fight against SARS-CoV-2. In this review, we briefly summarized the current advances in SARS-CoV-2 research, including the epidemic situation and epidemiological characteristics of the caused disease COVID-19. We further discussed the biology of SARS-CoV-2, including the origin, evolution, and receptor recognition mechanism of SARS-CoV-2. And particularly, we introduced the protein structures of SARS-CoV-2 and structure-based therapeutics development including antibodies, antiviral compounds, and vaccines, and indicated the limitations and perspectives of SARS-CoV-2 research. We wish the information provided by this review may be helpful to the global battle against SARS-CoV-2 infection.
Collapse
Affiliation(s)
| | | | | | | | - De-Ping Wang
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, Key Laboratory of Cellular Physiology of Shanxi Province, and the Department of Physiology, Shanxi Medical University, Taiyuan, China
| | - Ji-Min Cao
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, Key Laboratory of Cellular Physiology of Shanxi Province, and the Department of Physiology, Shanxi Medical University, Taiyuan, China
| |
Collapse
|
42
|
Zhou QA, Kato-Weinstein J, Li Y, Deng Y, Granet R, Garner L, Liu C, Polshakov D, Gessner C, Watkins S. Potential Therapeutic Agents and Associated Bioassay Data for COVID-19 and Related Human Coronavirus Infections. ACS Pharmacol Transl Sci 2020; 3:813-834. [PMID: 33062950 PMCID: PMC7447080 DOI: 10.1021/acsptsci.0c00074] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Indexed: 02/07/2023]
Abstract
The COVID-19 pandemic, caused by the novel coronavirus SARS-CoV-2, has led to several million confirmed cases and hundreds of thousands of deaths worldwide. To support the ongoing research and development of COVID-19 therapeutics, this report provides an overview of protein targets and corresponding potential drug candidates with bioassay and structure-activity relationship data found in the scientific literature and patents for COVID-19 or related virus infections. Highlighted are several sets of small molecules and biologics that act on specific targets, including 3CLpro, PLpro, RdRp, S-protein-ACE2 interaction, helicase/NTPase, TMPRSS2, and furin, which are involved in the viral life cycle or in other aspects of the disease pathophysiology. We hope this report will be valuable to the ongoing drug repurposing efforts and the discovery of new therapeutics with the potential for treating COVID-19.
Collapse
Affiliation(s)
- Qiongqiong Angela Zhou
- CAS, a division
of the American Chemical Society, 2540 Olentangy River Road, Columbus, Ohio 43210-3012, United States
| | | | - Yingzhu Li
- CAS, a division
of the American Chemical Society, 2540 Olentangy River Road, Columbus, Ohio 43210-3012, United States
| | - Yi Deng
- CAS, a division
of the American Chemical Society, 2540 Olentangy River Road, Columbus, Ohio 43210-3012, United States
| | - Roger Granet
- CAS, a division
of the American Chemical Society, 2540 Olentangy River Road, Columbus, Ohio 43210-3012, United States
| | - Linda Garner
- CAS, a division
of the American Chemical Society, 2540 Olentangy River Road, Columbus, Ohio 43210-3012, United States
| | - Cynthia Liu
- CAS, a division
of the American Chemical Society, 2540 Olentangy River Road, Columbus, Ohio 43210-3012, United States
| | - Dmitrii Polshakov
- CAS, a division
of the American Chemical Society, 2540 Olentangy River Road, Columbus, Ohio 43210-3012, United States
| | - Chris Gessner
- CAS, a division
of the American Chemical Society, 2540 Olentangy River Road, Columbus, Ohio 43210-3012, United States
| | - Steven Watkins
- CAS, a division
of the American Chemical Society, 2540 Olentangy River Road, Columbus, Ohio 43210-3012, United States
| |
Collapse
|
43
|
Lebeau G, Vagner D, Frumence É, Ah-Pine F, Guillot X, Nobécourt E, Raffray L, Gasque P. Deciphering SARS-CoV-2 Virologic and Immunologic Features. Int J Mol Sci 2020; 21:E5932. [PMID: 32824753 PMCID: PMC7460647 DOI: 10.3390/ijms21165932] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 08/11/2020] [Accepted: 08/14/2020] [Indexed: 02/07/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus (SARS-CoV)-2 and its associated pathology, COVID-19, have been of particular concerns these last months due to the worldwide burden they represent. The number of cases requiring intensive care being the critical point in this epidemic, a better understanding of the pathophysiology leading to these severe cases is urgently needed. Tissue lesions can be caused by the pathogen or can be driven by an overwhelmed immune response. Focusing on SARS-CoV-2, we and others have observed that this virus can trigger indeed an immune response that can be dysregulated in severe patients and leading to further injury to multiple organs. The purpose of the review is to bring to light the current knowledge about SARS-CoV-2 virologic and immunologic features. Thus, we address virus biology, life cycle, tropism for many organs and how ultimately it will affect several host biological and physiological functions, notably the immune response. Given that therapeutic avenues are now highly warranted, we also discuss the immunotherapies available to manage the infection and the clinical outcomes.
Collapse
Affiliation(s)
- Grégorie Lebeau
- Unité de Recherche Études Pharmaco-Immunologiques, Centre Hospitalier Universitaire La Réunion Site Félix Guyon, CS11021, 97400 Saint Denis de La Réunion, France; (D.V.); (É.F.); (X.G.); (P.G.)
- Laboratoire de Biologie, Secteur Laboratoire d’immunologie Clinique et Expérimentale de la Zone de l’océan Indien (LICE-OI), Centre Hospitalier Universitaire La Réunion Site Félix Guyon, CS11021, 97400 Saint Denis de La Réunion, France
| | - Damien Vagner
- Unité de Recherche Études Pharmaco-Immunologiques, Centre Hospitalier Universitaire La Réunion Site Félix Guyon, CS11021, 97400 Saint Denis de La Réunion, France; (D.V.); (É.F.); (X.G.); (P.G.)
- Unité Mixte de Recherche Processus Infectieux en Milieu Insulaire Tropical (PIMIT), Université de La Réunion, INSERM UMR 1187, CNRS 9192, IRD 249, Platform CYROI, 2 rue Maxime Rivière, 97491 Sainte Clotilde, La Réunion, France
| | - Étienne Frumence
- Unité de Recherche Études Pharmaco-Immunologiques, Centre Hospitalier Universitaire La Réunion Site Félix Guyon, CS11021, 97400 Saint Denis de La Réunion, France; (D.V.); (É.F.); (X.G.); (P.G.)
- Laboratoire de Biologie, Secteur Laboratoire d’immunologie Clinique et Expérimentale de la Zone de l’océan Indien (LICE-OI), Centre Hospitalier Universitaire La Réunion Site Félix Guyon, CS11021, 97400 Saint Denis de La Réunion, France
| | - Franck Ah-Pine
- Service d’anatomo-Pathologie, Centre Hospitalier Universitaire Sud Réunion, 97410 Saint Pierre, France;
| | - Xavier Guillot
- Unité de Recherche Études Pharmaco-Immunologiques, Centre Hospitalier Universitaire La Réunion Site Félix Guyon, CS11021, 97400 Saint Denis de La Réunion, France; (D.V.); (É.F.); (X.G.); (P.G.)
- Service de Rhumatologie, Centre Hospitalier Universitaire La Réunion Site Félix Guyon, CS11021, 97400 Saint Denis de La Réunion, France
| | - Estelle Nobécourt
- Service d’endocrinologie Diabétologie, Centre Hospitalier Universitaire Sud Réunion, 97410 Saint Pierre, France;
- Université de Formation et de Recherche Santé, Université de la Réunion, 97400 Saint-Denis, France
| | - Loïc Raffray
- Service de Médecine Interne, Centre Hospitalier Universitaire La Réunion Site Félix Guyon, CS11021, 97400 Saint Denis de La Réunion, France;
| | - Philippe Gasque
- Unité de Recherche Études Pharmaco-Immunologiques, Centre Hospitalier Universitaire La Réunion Site Félix Guyon, CS11021, 97400 Saint Denis de La Réunion, France; (D.V.); (É.F.); (X.G.); (P.G.)
- Laboratoire de Biologie, Secteur Laboratoire d’immunologie Clinique et Expérimentale de la Zone de l’océan Indien (LICE-OI), Centre Hospitalier Universitaire La Réunion Site Félix Guyon, CS11021, 97400 Saint Denis de La Réunion, France
| |
Collapse
|
44
|
Cunha LER, Stolet AA, Strauch MA, Pereira VAR, Dumard CH, Gomes AMO, Souza PNC, Fonseca JG, Pontes FE, Meirelles LGR, Albuquerque JWM, Sacramento CQ, Fintelman-rodrigues N, Lima TM, Alvim RGF, Marsili FF, Caldeira MM, Higa LM, Monteiro FL, Zingali RB, de Oliveira GAP, Souza TML, Tanuri A, Oliveira AC, Guedes HLM, Castilho LR, Silva JL. Potent neutralizing equine antibodies raised against recombinant SARS-CoV-2 spike protein for COVID-19 passive immunization therapy.. [PMID: 0 DOI: 10.1101/2020.08.17.254375] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
AbstractWe used the trimeric spike (S) glycoprotein (residues 1-1208) in the prefusion conformation to immunize horses for production of hyperimmune globulins against SARS-CoV-2. Serum antibody titers measured by anti-spike ELISA were above 1:1,000,000, and neutralizing antibody titer was 1:14,604 (average PRNT90), which is 140-fold higher than the average neutralizing titer of plasma from three convalescent COVID-19 patients analyzed for comparison. Using the same technology routinely used for industrial production of other horse hyperimmune products, plasma from immunized animals was pepsin digested to remove the Fc portion and purified, yielding a F(ab’)2 preparation with PRNT90 titers 150-fold higher than the neutralizing titers in human convalescent plasma. Repeating the hyperimmunization in a second group of horses confirmed the very high neutralizing titers in serum and in a GMP clinical F(ab’)2 lot. Virus-neutralizing activity in samples from mice that received the F(ab’)2 preparation was detected even three days after injection, indicating an appropriate half-life for therapeutic intervention. These results supported the design of a clinical trial (identifier NCT04573855) to evaluate safety and efficacy of this horse F(ab’)2 preparation.
Collapse
|
45
|
Vabret N, Britton GJ, Gruber C, Hegde S, Kim J, Kuksin M, Levantovsky R, Malle L, Moreira A, Park MD, Pia L, Risson E, Saffern M, Salomé B, Esai Selvan M, Spindler MP, Tan J, van der Heide V, Gregory JK, Alexandropoulos K, Bhardwaj N, Brown BD, Greenbaum B, Gümüş ZH, Homann D, Horowitz A, Kamphorst AO, Curotto de Lafaille MA, Mehandru S, Merad M, Samstein RM. Immunology of COVID-19: Current State of the Science. Immunity 2020; 52:910-941. [PMID: 32505227 PMCID: PMC7200337 DOI: 10.1016/j.immuni.2020.05.002] [Citation(s) in RCA: 1154] [Impact Index Per Article: 230.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The coronavirus disease 2019 (COVID-19) pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has affected millions of people worldwide, igniting an unprecedented effort from the scientific community to understand the biological underpinning of COVID19 pathophysiology. In this Review, we summarize the current state of knowledge of innate and adaptive immune responses elicited by SARS-CoV-2 infection and the immunological pathways that likely contribute to disease severity and death. We also discuss the rationale and clinical outcome of current therapeutic strategies as well as prospective clinical trials to prevent or treat SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Nicolas Vabret
- Precision Immunology Institute at the Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Graham J Britton
- Precision Immunology Institute at the Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Conor Gruber
- Precision Immunology Institute at the Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Samarth Hegde
- Precision Immunology Institute at the Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Joel Kim
- Precision Immunology Institute at the Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Maria Kuksin
- Precision Immunology Institute at the Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Rachel Levantovsky
- Precision Immunology Institute at the Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Louise Malle
- Precision Immunology Institute at the Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Alvaro Moreira
- Precision Immunology Institute at the Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Matthew D Park
- Precision Immunology Institute at the Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Luisanna Pia
- Precision Immunology Institute at the Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Emma Risson
- Precision Immunology Institute at the Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Miriam Saffern
- Precision Immunology Institute at the Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Bérengère Salomé
- Precision Immunology Institute at the Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Myvizhi Esai Selvan
- Precision Immunology Institute at the Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Matthew P Spindler
- Precision Immunology Institute at the Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jessica Tan
- Precision Immunology Institute at the Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Verena van der Heide
- Precision Immunology Institute at the Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jill K Gregory
- Precision Immunology Institute at the Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Nina Bhardwaj
- Precision Immunology Institute at the Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Brian D Brown
- Precision Immunology Institute at the Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Benjamin Greenbaum
- Precision Immunology Institute at the Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Zeynep H Gümüş
- Precision Immunology Institute at the Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Dirk Homann
- Precision Immunology Institute at the Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Amir Horowitz
- Precision Immunology Institute at the Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Alice O Kamphorst
- Precision Immunology Institute at the Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Saurabh Mehandru
- Precision Immunology Institute at the Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Miriam Merad
- Precision Immunology Institute at the Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Robert M Samstein
- Precision Immunology Institute at the Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|