1
|
Li A, Yang Y, Bai X, Bao H, He M, Zeng X, Wang Y, Li F, Qin S, Yang W, Li X. Trimetallic MOF-derived Fe-Mn-Sn oxide heterostructure enabling exceptional catalytic degradation of organic pollutants. J Colloid Interface Sci 2024; 679:232-244. [PMID: 39447466 DOI: 10.1016/j.jcis.2024.10.098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 10/16/2024] [Accepted: 10/17/2024] [Indexed: 10/26/2024]
Abstract
Developing efficient and environmentally benign heterogeneous catalysts that activate peroxymonosulfate (PMS) for the degradation of persistent organic contaminants remains a challenge. Metal-organic frameworks (MOFs)-derived metal oxide catalysts in advanced oxidation processes (AOPs) have received considerable attention research fraternity. Herein, we report an innovative magnetic trimetallic MOF-derived Fe-Mn-Sn oxide heterostructure (FeMnO@Sn) with adjustable morphology, size and Sn content, prepared through an impregnation-calcination strategy. The formation of a novel magnetic Fe2O3/Fe3O4/Mn3O4 heterostructure induces the generation of abundant Fe2+ and Mn2+ sites on the FeMnO@Sn surface. Meanwhile, the introduction of SnO2 into the Fe2O3/Fe3O4/Mn3O4 heterostructure facilitates the cleavage of the OO bond in adsorbed PMS. The synergy among the different functionalities of each metal oxide plays a vital role in the swift and effective degradation of pollutants. In addition, the uniquely designed catalyst exhibits magnetic properties that facilitate easy recycling and repeated use, thereby meeting environmental protection requirements. Overall, this research highlights the design of heterogeneous catalysts for the effective activation of PMS and provides valuable insights for the advancement of future environmental catalysts.
Collapse
Affiliation(s)
- Anqi Li
- College of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, China
| | - Yu Yang
- College of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, China
| | - Xuening Bai
- College of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, China
| | - Hebin Bao
- Army logistics Academy of PLA, Chongqing 401331, China
| | - Miao He
- College of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, China
| | - Xuzhong Zeng
- College of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, China
| | - Yejin Wang
- College of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, China
| | - Fang Li
- Analytical and Testing Center, Chongqing University, Chongqing 401331, China
| | - Shijiang Qin
- Analytical and Testing Center, Chongqing University, Chongqing 401331, China.
| | - Wenjing Yang
- College of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, China.
| | - Xueming Li
- College of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, China
| |
Collapse
|
2
|
Habibi S, Bautista MA, Bryant SL, Shor RJ, Natale G. A novel synthesis method of magnetic Janus particles for wastewater applications. J Colloid Interface Sci 2024; 669:952-964. [PMID: 38759594 DOI: 10.1016/j.jcis.2024.05.056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/30/2024] [Accepted: 05/09/2024] [Indexed: 05/19/2024]
Abstract
HYPOTHESIS Magnetic particles are widely used in many adsorption and removal processes. Among the many types of magnetic colloids, magnetic Janus particles offer significant possibilities for the effective removal of several components from aqueous solutions. Nevertheless, the synthesis of structures integrating different types of materials requires scalable fabrication processes to overcome the limitations of the available methodologies. Herein, we hypothesized a fabrication process for dual-surface functionalized magnetic Janus particles. EXPERIMENTS The primary silica particles with surface-attached amine groups are further asymmetrically modified by iron oxide nanoparticles, exploiting Pickering emulsion and electroless deposition techniques. The dual surface functionality of the particles is designed for its versatility and demonstrated in two wastewater-related applications. FINDINGS We show that our design can simultaneously remove chromium (VI) and phenol from aqueous solution. The fabricated magnetic-responsive Janus particles are also an effective adsorbent for genomic Deoxyribonucleic acid (DNA) and show superior performance to commercial magnetic beads. Thus, this study provides a novel platform for designing magnetic Janus particles with multifunctional surfaces for wastewater treatment applications.
Collapse
Affiliation(s)
- Samin Habibi
- Department of Chemical and Petroleum Engineering, Schulich School of Engineering, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| | - Maria A Bautista
- Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| | - Steven L Bryant
- Department of Chemical and Petroleum Engineering, Schulich School of Engineering, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| | - Roman J Shor
- Department of Chemical and Petroleum Engineering, Schulich School of Engineering, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| | - Giovanniantonio Natale
- Department of Chemical and Petroleum Engineering, Schulich School of Engineering, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada.
| |
Collapse
|
3
|
Guo J, Gao B, Li Q, Wang S, Shang Y, Duan X, Xu X. Size-Dependent Catalysis in Fenton-like Chemistry: From Nanoparticles to Single Atoms. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2403965. [PMID: 38655917 DOI: 10.1002/adma.202403965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/20/2024] [Indexed: 04/26/2024]
Abstract
State-of-the-art Fenton-like reactions are crucial in advanced oxidation processes (AOPs) for water purification. This review explores the latest advancements in heterogeneous metal-based catalysts within AOPs, covering nanoparticles (NPs), single-atom catalysts (SACs), and ultra-small atom clusters. A distinct connection between the physical properties of these catalysts, such as size, degree of unsaturation, electronic structure, and oxidation state, and their impacts on catalytic behavior and efficacy in Fenton-like reactions. In-depth comparative analysis of metal NPs and SACs is conducted focusing on how particle size variations and metal-support interactions affect oxidation species and pathways. The review highlights the cutting-edge characterization techniques and theoretical calculations, indispensable for deciphering the complex electronic and structural characteristics of active sites in downsized metal particles. Additionally, the review underscores innovative strategies for immobilizing these catalysts onto membrane surfaces, offering a solution to the inherent challenges of powdered catalysts. Recent advances in pilot-scale or engineering applications of Fenton-like-based devices are also summarized for the first time. The paper concludes by charting new research directions, emphasizing advanced catalyst design, precise identification of reactive oxygen species, and in-depth mechanistic studies. These efforts aim to enhance the application potential of nanotechnology-based AOPs in real-world wastewater treatment.
Collapse
Affiliation(s)
- Jirui Guo
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Jinan, 250100, P. R. China
| | - Baoyu Gao
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Jinan, 250100, P. R. China
| | - Qian Li
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Jinan, 250100, P. R. China
| | - Shaobin Wang
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Yanan Shang
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao, 266590, P. R. China
| | - Xiaoguang Duan
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Xing Xu
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Jinan, 250100, P. R. China
| |
Collapse
|
4
|
Li X, Li L, Tang L, Mei J, Fu J. Unveiling combined ecotoxicity: Interactions and impacts of engineered nanoparticles and PPCPs. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 921:170746. [PMID: 38342466 DOI: 10.1016/j.scitotenv.2024.170746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 01/27/2024] [Accepted: 02/04/2024] [Indexed: 02/13/2024]
Abstract
Emerging contaminants such as engineered nanoparticles (ENPs), pharmaceuticals and personal care products (PPCPs) are of great concern because of their wide distribution and incomplete removal in conventional wastewater and soil treatment processes. The production and usage of ENPs and PPCPs inevitably result in their coexistence in different environmental media, thus posing various risks to organisms in aquatic and terrestrial ecosystems. However, the existing literature on the physicochemical interactions between ENPs and PPCPs and their effects on organisms is rather limited. Therefore, this paper summarized the ecotoxicity of combined ENPs and PPCPs by discussing: (1) the interactions between ENPs and PPCPs, including processes such as aggregation, adsorption, transformation, and desorption, considering the influence of environmental factors like pH, ionic strength, dissolved organic matter, and temperature; (2) the effects of these interactions on bioaccumulation, bioavailability and biotoxicity in organisms at different trophic levels; (3) the impacted of ENPs and PPCPs on cellular-level biological process. This review elucidated the potential ecological hazards associated with the interaction of ENPs and PPCPs, and serves as a foundation for future investigations into the ecotoxicity and mode of action of ENPs, PPCPs, and their co-occurring metabolites.
Collapse
Affiliation(s)
- Xiang Li
- Key Laboratory of Organic Compound Pollution Control Engineering, School of Environmental and Chemical Engineering, Shanghai University, China
| | - Liyan Li
- Department of Civil and Environmental Engineering, College of Design and Engineering, National University of Singapore, Singapore
| | - Liang Tang
- Key Laboratory of Organic Compound Pollution Control Engineering, School of Environmental and Chemical Engineering, Shanghai University, China.
| | - Jingting Mei
- Key Laboratory of Organic Compound Pollution Control Engineering, School of Environmental and Chemical Engineering, Shanghai University, China
| | - Jing Fu
- Key Laboratory of Organic Compound Pollution Control Engineering, School of Environmental and Chemical Engineering, Shanghai University, China.
| |
Collapse
|
5
|
Yang N, Jun BM, Choi JS, Park CM, Jang M, Son A, Nam SN, Yoon Y. Ultrasonic treatment of dye chemicals in wastewater: A review. CHEMOSPHERE 2024; 354:141676. [PMID: 38462187 DOI: 10.1016/j.chemosphere.2024.141676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/07/2024] [Accepted: 03/08/2024] [Indexed: 03/12/2024]
Abstract
The existence of pollutants, such as toxic organic dye chemicals, in water and wastewater raises concerns as they are inadequately eliminated through conventional water and wastewater treatment methods, including physicochemical and biological processes. Ultrasonic treatment has emerged as an advanced treatment process that has been widely applied to the decomposition of recalcitrant organic contaminants. Ultrasonic treatment has several advantages, including easy operation, sustainability, non-secondary pollutant production, and saving energy. This review examines the elimination of dye chemicals and categorizes them into cationic and anionic dyes based on the existing literature. The objectives include (i) analyzing the primary factors (water quality and ultrasonic conditions) that influence the sonodegradation of dye chemicals and their byproducts during ultrasonication, (ii) assessing the impact of the different sonocatalysts and combined systems (with ozone and ultraviolet) on sonodegradation, and (iii) exploring the characteristics-based removal mechanisms of dyes. In addition, this review proposes areas for future research on ultrasonic treatment of dye chemicals in water and wastewater.
Collapse
Affiliation(s)
- Narae Yang
- Department of Environmental Science and Engineering, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Republic of Korea
| | - Byung-Moon Jun
- Radwaste Management Center, Korea Atomic Energy Research Institute (KAERI), 111 Daedeok-Daero 989beon-gil, Yuseong-Gu, Daejeon 34057, Republic of Korea
| | - Jong Soo Choi
- Department of Environmental Science and Engineering, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Republic of Korea
| | - Chang Min Park
- Department of Environmental Engineering, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Republic of Korea
| | - Min Jang
- Department of Environmental Engineering, Kwangwoon University, 447-1 Wolgye-dong Nowon-gu, Seoul, Republic of Korea
| | - Ahjeong Son
- Department of Environmental Science and Engineering, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Republic of Korea
| | - Seong-Nam Nam
- Military Environmental Research Center, Korea Army Academy at Yeongcheon, 495 Hoguk-ro, Gogyeong-myeon, Yeongcheon-si, Gyeongsangbuk-do, 38900, Republic of Korea.
| | - Yeomin Yoon
- Department of Environmental Science and Engineering, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Republic of Korea.
| |
Collapse
|
6
|
Barka E, Nika MC, Galani A, Mamais D, Thomaidis NS, Malamis S, Noutsopoulos C. Evaluating an integrated nano zero-valent iron column system for emerging contaminants removal from different wastewater matrices - Identification of transformation products. CHEMOSPHERE 2024; 352:141425. [PMID: 38340995 DOI: 10.1016/j.chemosphere.2024.141425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 01/24/2024] [Accepted: 02/07/2024] [Indexed: 02/12/2024]
Abstract
The presence of micropollutants in water bodies has become a growing concern due to their persistence, bioaccumulation and potential toxicological effects on aquatic life and humans. In this study, the performance of a column system consisting of zero-valent iron nanoparticles (nZVI) incorporated into a cationic resin and synthesized from green tea extract with the addition of persulfate for the elimination of selected pharmaceuticals and endocrine disruptors from wastewater is evaluated. Ibuprofen, naproxen, diclofenac and ketoprofen were the target pharmaceuticals from non-steroidal anti-inflammatory drugs group, while bisphenol A was the target endocrine disruptor. In this context, different real wastewater effluent matrices were investigated: anaerobic membrane bioreactor (AnMBR), upflow anaerobic sludge blanket reactor (UASB) after microfiltration, tertiary treated by conventional activated sludge system and saturated vertical constructed wetland followed by a sand filtration unit effluent (hybrid). The transformation products of diclofenac and bisphenol A were also identified. The experimental results indicated that the performance of the R-nFe/PS system towards the removal efficiency of the target compounds was enhanced in the order of effluents: tertiary > AnMBR ≈ hybrid > UASB. More than 70% removal was obtained for almost all target compounds when conventional tertiary effluent was used, while the maximum removal efficiency was about 50% in the case of filtered UASB. As far as we know, this is the first time that nZVI has been assessed in combination with persulfate for the removal of micropollutants in a continuous flow system receiving various types of real wastewater with different matrix characteristics.
Collapse
Affiliation(s)
- Evridiki Barka
- Sanitary Engineering Laboratory, Department of Water Resources and Environmental Engineering, School of Civil Engineering, National Technical University of Athens, 15780, Athens, Greece.
| | - Maria Christina Nika
- Analytical Chemistry Laboratory, Department of Chemistry, National and Kapodistrian University of Athens, 15784, Athens, Greece.
| | - Andriani Galani
- Sanitary Engineering Laboratory, Department of Water Resources and Environmental Engineering, School of Civil Engineering, National Technical University of Athens, 15780, Athens, Greece.
| | - Daniel Mamais
- Sanitary Engineering Laboratory, Department of Water Resources and Environmental Engineering, School of Civil Engineering, National Technical University of Athens, 15780, Athens, Greece.
| | - Nikolaos S Thomaidis
- Analytical Chemistry Laboratory, Department of Chemistry, National and Kapodistrian University of Athens, 15784, Athens, Greece.
| | - Simos Malamis
- Sanitary Engineering Laboratory, Department of Water Resources and Environmental Engineering, School of Civil Engineering, National Technical University of Athens, 15780, Athens, Greece.
| | - Constantinos Noutsopoulos
- Sanitary Engineering Laboratory, Department of Water Resources and Environmental Engineering, School of Civil Engineering, National Technical University of Athens, 15780, Athens, Greece.
| |
Collapse
|
7
|
Bankole AO, Moruzzi R, Negri RG, Bressane A, Reis AG, Sharifi S, James AO, Bankole AR. Machine learning framework for modeling flocculation kinetics using non-intrusive dynamic image analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168452. [PMID: 37956843 DOI: 10.1016/j.scitotenv.2023.168452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 10/27/2023] [Accepted: 11/07/2023] [Indexed: 11/15/2023]
Abstract
The implementation of a machine learning (ML) model to improve both the effectiveness and sustainability of the water treatment system is a significant challenge in the water sector, with the optimization of flocculation processes being a major setback. The objective of this study was to develop a ML model for predicting flocs evolution of the flocculation process in water treatment. Furthermore, we have devised a framework for its potential adoption in large-scale water treatment. Therefore, the paper can be split into two parts. In the first one, flocculation evolution has been studied from an experimental setup, using a non-intrusive image acquisition method. Subsequently, the ML framework has been implemented. Batch assay data of two velocity gradients (Gf 20 and 60 s-1) and flocculation time of three hours were partitioned into five groups for flocs length range 0.27-3.5 mm and upscaled using linear method. Multilayer Perceptron (MLP) and Long-Short Term Memory (LSTM) models, and traditional time series model, Auto Regressive Integrated Moving Average (ARIMA) were explored to predict floc length evolution data. The experiments illustrate the kinetics of flocculation, where the initial stage is characterized by a rapid floc growth followed by a plateau during which floc length fluctuates within a narrow range. Results demonstrate that ML is sensitive to flocculation; however, the model should be selected with care. ARIMA model is not suitable for predicting number of flocs with negative test accuracy (R2). In contrast, MLP recorded R2 of 0.86-1.0 for training and 0.92-1.0 for testing, across Gf 20 s-1 and Gf 60 s-1. LSTM model has the best prediction R2 of 0.92-1.00 for Gf 20 s-1 and accurately predicts the number of flocs across all groups and Gfs. Our study has proven that the developed framework could be replicated for water treatment modeling and promotes the application of smart technology in water treatment.
Collapse
Affiliation(s)
- Abayomi O Bankole
- Civil and Environmental Engineering Department, Faculty of Engineering, Sao Paulo State University, Bauru 17033-360, Brazil; Water Resources Management and Agrometeorology Department, COLERM, Federal University of Agriculture, Abeokuta, Nigeria.
| | - Rodrigo Moruzzi
- Civil and Environmental Engineering Department, Faculty of Engineering, Sao Paulo State University, Bauru 17033-360, Brazil; Environmental Engineering Department, Institute of Science and Technology, Sao Paulo State University, Sao Jose dos Campos 12245-000, Brazil.
| | - Rogerio G Negri
- Environmental Engineering Department, Institute of Science and Technology, Sao Paulo State University, Sao Jose dos Campos 12245-000, Brazil
| | - Adriano Bressane
- Civil and Environmental Engineering Department, Faculty of Engineering, Sao Paulo State University, Bauru 17033-360, Brazil; Environmental Engineering Department, Institute of Science and Technology, Sao Paulo State University, Sao Jose dos Campos 12245-000, Brazil
| | - Adriano G Reis
- Civil and Environmental Engineering Department, Faculty of Engineering, Sao Paulo State University, Bauru 17033-360, Brazil; Environmental Engineering Department, Institute of Science and Technology, Sao Paulo State University, Sao Jose dos Campos 12245-000, Brazil
| | - Soroosh Sharifi
- Department of Civil Engineering, Faculty of Engineering, University of Birmingham, United Kingdom
| | - Abraham O James
- Civil and Environmental Engineering Department, Faculty of Engineering, Sao Paulo State University, Bauru 17033-360, Brazil; Environmental Management and Toxicology Department, COLERM, Federal University of Agriculture, Abeokuta, Nigeria
| | - Afolashade R Bankole
- Civil and Environmental Engineering Department, Faculty of Engineering, Sao Paulo State University, Bauru 17033-360, Brazil
| |
Collapse
|
8
|
Saravanan A, Ragini YP, Kumar PS, Thamarai P, Rangasamy G. A critical review on the removal of toxic pollutants from contaminated water using magnetic hybrids. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:105099-105118. [PMID: 37740158 DOI: 10.1007/s11356-023-29811-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 09/06/2023] [Indexed: 09/24/2023]
Abstract
The persistence of organic/inorganic pollutants in the water has become a serious environmental issue. Among the different pollutants, dyes and heavy metal pollution in waterways are viewed as a global ecological problem that can have an impact on humans, plants, and animals. The necessity to develop a sustainable and environmentally acceptable approach to remove these toxic contaminants from the ecosystem has been raised. In the past two decades, rapid industrialization and anthropogenic activities in developed countries have aggravated environmental pollution. Industrial effluents that are discharged directly into the natural environment taint the water, which has a consequence for the water resources. Magnetic nanohybrids are broadly investigated materials used in the adsorption and photocatalytic degradation of poisonous pollutants present across water effluents. In the present review, the toxic health effects of heavy metals and dyes from the water environment have been discussed. This paper reviews the role of magnetic nanohybrids in the removal of pollutants from the water environment, providing an adequate point of view on their new advances regarding their qualities, connection methodologies, execution, and their scale-up difficulties.
Collapse
Affiliation(s)
- Anbalagan Saravanan
- Department of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai, 602105, India
| | | | - Ponnusamy Senthil Kumar
- Centre for Pollution Control and Environmental Engineering, Pondicherry University, Chinna Kalapet, Puducherry-605014, India.
| | - Packiyam Thamarai
- Department of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai, 602105, India
| | - Gayathri Rangasamy
- School of Engineering, Lebanese American University, Byblos, Lebanon
- University Centre for Research and Development & Department of Civil Engineering, Chandigarh University, Gharuan, Mohali, Punjab, 140413, India
| |
Collapse
|
9
|
Jha AK, Chakraborty S. Environmental Application of Graphene and Its Forms for Wastewater Treatment: a Sustainable Solution Toward Improved Public Health. Appl Biochem Biotechnol 2023; 195:6392-6420. [PMID: 36867385 DOI: 10.1007/s12010-023-04381-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/16/2023] [Indexed: 03/04/2023]
Abstract
Public health is seriously jeopardized in developing countries due to poor sanitation and the presence of persistent pollutants in natural water bodies. Open dumping, wastewater discharge without proper treatment and atmospheric fallout of the organic and inorganic pollutants are the main causes behind the poor condition. Some of the pollutants pose a greater risk due to their toxicity and persistence. Such a class of pollutants are known as chemical contaminants of emerging concern (CECC), including antibiotics and drug residues, endocrine disruptors, pesticides and micro- and nano-plastics. Conventional treatment methods cannot treat them properly and are often associated with several disadvantages. However, the chronological development of techniques and materials for their treatment has exhibited graphene as an efficient candidate for environmental remediation. This current review considers the various graphene-based materials, their properties, advancement in synthesis methods with time and their detailed application in removing dyes, antibiotics and heavy metals. It has been discussed how graphene and its derivatives exhibit unique electronic, mechanical, structural and thermal properties. In this paper, the mechanism of adsorption and degradation using these graphene-based materials has also been discussed vividly. In addition to this, a bibliographic analysis was performed to identify the trend of research related to graphene and its derivatives in the adsorption and degradation of pollutants round the globe reflected by the publications. Therefore, this review can be instrumental in understanding the fact that further development of graphene-based materials and their mass production can provide a very effective and economical wastewater treatment method.
Collapse
Affiliation(s)
- Aditya Kumar Jha
- Department of Civil and Environmental Engineering, Birla Institute of Technology, Mesra, Ranchi, 835215, India
| | - Sukalyan Chakraborty
- Department of Civil and Environmental Engineering, Birla Institute of Technology, Mesra, Ranchi, 835215, India.
| |
Collapse
|
10
|
Yang L, Wei Z, Guo Z, Chen M, Yan J, Qian L, Han L, Li J, Gu M. Significant roles of surface functional groups and Fe/Co redox reactions on peroxymonosulfate activation by hydrochar-supported cobalt ferrite for simultaneous degradation of monochlorobenzene and p-chloroaniline. JOURNAL OF HAZARDOUS MATERIALS 2023; 445:130588. [PMID: 37055992 DOI: 10.1016/j.jhazmat.2022.130588] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 11/06/2022] [Accepted: 12/08/2022] [Indexed: 06/19/2023]
Abstract
CoFe2O4/hydrochar composites (FeCo@HC) were synthesized via a facile one-step hydrothermal method and utilized to activate peroxymonosulfate (PMS) for simultaneous degradation of monochlorobenzene (MCB) and p-chloroaniline (PCA). Additionally, the effects of humic acid, Cl-, HCO3-, H2PO4-, HPO42- and water matrices were investigated and degradation pathways of MCB and PCA were proposed. The removal efficiencies of MCB and PCA were higher in FeCo@HC140-10/PMS system obtained under hydrothermal temperature of 140 °C than FeCo@HC180-10/PMS and FeCo@HC220-10/PMS systems obtained under higher temperatures. Radical species (i.e., SO4•-, •OH) and nonradical pathways (i.e., 1O2, Fe (IV)/Co (IV) and electron transfer through surface FeCo@HC140-10/PMS* complex) co-occurred in the FeCo@HC140-10/PMS system, while radical and nonradical pathways were dominant in degrading MCB and PCA respectively. The surface functional groups (i.e., C-OH and CO) and Fe/Co redox cycles played crucial roles in the PMS activation. MCB degradation was significantly inhibited in the mixed MCB/PCA solution over that in the single MCB solution, whereas PCA degradation was slightly promoted in the mixed MCB/PCA solution. These findings are significant for the provision of a low-cost and environmentally-benign synthesis of bimetal-hydrochar composites and more detailed understanding of the related mechanisms on PMS activation for simultaneous removal of the mixed contaminants in groundwater.
Collapse
Affiliation(s)
- Lei Yang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zifei Wei
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; Jiangsu Engineering Laboratory for Soil and Groundwater Remediation of Contaminated Sites, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; Lier Chemical Co Ltd, Mianyang 621020, China
| | - Zihan Guo
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mengfang Chen
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; Jiangsu Engineering Laboratory for Soil and Groundwater Remediation of Contaminated Sites, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China.
| | - Jingchun Yan
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; Jiangsu Engineering Laboratory for Soil and Groundwater Remediation of Contaminated Sites, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Linbo Qian
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; Jiangsu Engineering Laboratory for Soil and Groundwater Remediation of Contaminated Sites, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Lu Han
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; Jiangsu Engineering Laboratory for Soil and Groundwater Remediation of Contaminated Sites, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Jing Li
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; Jiangsu Engineering Laboratory for Soil and Groundwater Remediation of Contaminated Sites, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Mingyue Gu
- Nanjing Kaiye Environmental Technology Co Ltd, Nanjing 210034, China
| |
Collapse
|
11
|
Muawwadh AL-Balawi A, Zaheer Z, Kosa SA. Silver-platinum bimetallic nanoparticles as heterogeneous persulfate activator for the oxidation of malachite green. ARAB J CHEM 2023. [DOI: 10.1016/j.arabjc.2023.104863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023] Open
|
12
|
Mathew J, John N, Mathew B. Graphene oxide-incorporated silver-based photocatalysts for enhanced degradation of organic toxins: a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:16817-16851. [PMID: 36595177 DOI: 10.1007/s11356-022-25026-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 12/23/2022] [Indexed: 06/17/2023]
Abstract
Environmental contamination and scarcity of energy have been deepening over the last few decades. Heterogeneous photocatalysis plays a prominent role in environmental remediation. The failure of earlier metal oxide systems like pure TiO2 and ZnO as stable visible-light photocatalysts demanded more stable catalysts with high photodegradation efficiency. Silver-based semiconductor materials gained popularity as visible-light-responsive photocatalysts with a narrow bandgap. But their large-scale usage in natural water bodies for organic contaminant removal is minimal. The factors like self-photocorrosion and their slight solubility in water have prevented the commercial use. Various efforts have been made to improve their photocatalytic activity. This review focuses on those studies in which silver-based semiconductor materials are integrated with carbonaceous graphene oxide (GO) and reduced graphene oxide (RGO). The decoration of Ag-based semiconductor components on graphene oxide having high-surface area results in binary composites with enhanced visible-light photocatalytic activity and stability. It is found that the introduction of new efficient materials further increases the effectiveness of the system. So binary and ternary composites of GO and Ag-based materials are reviewed in this paper.
Collapse
Affiliation(s)
- Jincy Mathew
- School of Chemical Sciences, Mahatma Gandhi University, Kottayam, 686560, Kerala, India
| | - Neenamol John
- School of Chemical Sciences, Mahatma Gandhi University, Kottayam, 686560, Kerala, India
| | - Beena Mathew
- School of Chemical Sciences, Mahatma Gandhi University, Kottayam, 686560, Kerala, India.
| |
Collapse
|
13
|
Hassani A, Scaria J, Ghanbari F, Nidheesh PV. Sulfate radicals-based advanced oxidation processes for the degradation of pharmaceuticals and personal care products: A review on relevant activation mechanisms, performance, and perspectives. ENVIRONMENTAL RESEARCH 2023; 217:114789. [PMID: 36375505 DOI: 10.1016/j.envres.2022.114789] [Citation(s) in RCA: 32] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 10/31/2022] [Accepted: 11/09/2022] [Indexed: 06/16/2023]
Abstract
Owing to the rapid development of modern industry, a greater number of organic pollutants are discharged into the water matrices. In recent decades, research efforts have focused on developing more effective technologies for the remediation of water containing pharmaceuticals and personal care products (PPCPs). Recently, sulfate radicals-based advanced oxidation processes (SR-AOPs) have been extensively used due to their high oxidizing potential, and effectiveness compared with other AOPs in PPCPs remediation. The present review provides a comprehensive assessment of the different methods such as heat, ultraviolet (UV) light, photo-generated electrons, ultrasound (US), electrochemical, carbon nanomaterials, homogeneous, and heterogeneous catalysts for activating peroxymonosulfate (PMS) and peroxydisulfate (PDS). In addition, possible activation mechanisms from the point of radical and non-radical pathways are discussed. Then, biodegradability enhancement and toxicity reduction are highlighted. Comparison with other AOPs and treatment of PPCPs by the integrated process are evaluated as well. Lastly, conclusions and future perspectives on this research topic are elaborated.
Collapse
Affiliation(s)
- Aydin Hassani
- Department of Materials Science and Nanotechnology Engineering, Faculty of Engineering, Near East University, 99138 Nicosia, TRNC, Mersin 10, Turkey.
| | - Jaimy Scaria
- CSIR National Environmental Engineering Research Institute, Nagpur, Maharashtra, India
| | - Farshid Ghanbari
- Research Center for Environmental Contaminants (RCEC), Abadan University of Medical Sciences, Abadan, Iran
| | - P V Nidheesh
- CSIR National Environmental Engineering Research Institute, Nagpur, Maharashtra, India.
| |
Collapse
|
14
|
Su C, Jia M, Xue X, Tang C, Li L, Hu X. Core-shell magnetic CFO@COF composites toward peroxymonosulfate activation for degradation of sulfamethoxazole from aqueous solution: A comparative study and mechanistic consideration. CHEMOSPHERE 2023; 311:137159. [PMID: 36343735 DOI: 10.1016/j.chemosphere.2022.137159] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 10/23/2022] [Accepted: 11/04/2022] [Indexed: 06/16/2023]
Abstract
A core-shell covalent organic framework encapsulated Co1.2Fe1.8O4 magnetic particles (CFO@COF) was designed and prepared successfully to activate peroxymonosulfate (PMS) for sulfamethoxazole (SMX) degradation. It displays amazing catalytic reactivity since the unique interior structure and synergistic effect between COF shell and CFO core, reaching 99.8% removal of SMX (10 mg/L) within 30 min and 90.8% TOC removal. The synergy between bimetals vests high reactivity to CFO core. And the outer COF shell can stabilize the CFO core under intricate reaction conditions to restrain the leaching of Co ions (decreased from 0.75 to 0.25 mg/L). Further investigation compared the activation mechanism in two different system, CFO/PMS system and CFO@COF/PMS system. The result showed that the radical mechanism controlled by SO4⋅- guided the SMX degradation in CFO/PMS system whereas the 1O2 played a pivotal role in CFO@COF/PMS system called non-radical leading. The influences of various factors on degradation experiments and SMX degradation pathway were also studied. Most importantly, risk assessment in CFO@COF/PMS/SMX system was estimated via "ecological structure activity relationships". In most case, the toxicities of intermediates were lower than the initial samples, which confirmed the effectiveness of CFO@COF/PMS/SMX system in the reduction of toxicity of SMX.
Collapse
Affiliation(s)
- Chenxin Su
- Research Group of Water Pollution Control and Water Reclamation, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, PR China
| | - Muhan Jia
- Research Group of Water Pollution Control and Water Reclamation, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, PR China
| | - Xiaofei Xue
- Beijing Enterprises Water Group (China) Limited, Beijing, 100102, PR China
| | - Chenliu Tang
- Research Group of Water Pollution Control and Water Reclamation, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, PR China
| | - Lingyun Li
- Beijing Enterprises Water Group (China) Limited, Beijing, 100102, PR China
| | - Xiang Hu
- Research Group of Water Pollution Control and Water Reclamation, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, PR China.
| |
Collapse
|
15
|
Moazeni M, Ebrahimpour K, Etebari M, Bedia J, Lin KYA, Ebrahimi A. Cobalt ferrite/MIL-101(Fe)/graphene oxide heterostructures coupled with peroxymonosulfate for triclosan degradation. JOURNAL OF WATER PROCESS ENGINEERING 2022; 50:103214. [DOI: 10.1016/j.jwpe.2022.103214] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
|
16
|
Peroxydisulfate activation by 2D MOF-derived Ni/Fe3O4 nanoparticles decorated in 3D graphene oxide network. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
17
|
Visible-LED-light-driven photocatalytic activation of peroxydisulfate by magnetic ZnFe2O4/Ag nanocomposite for efficient tetracycline degradation. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121474] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
18
|
Cheng Z, Tao H, Zhang J, Wang S, Yang Y, Li J, Wu D, Ma Z. KBH4 Modification of Fe3O4 Core Shell Carbon Microspheres Promoted Persulfate Activation for Organic Contaminants degradation: Factors and Mechanism. Catal Letters 2022. [DOI: 10.1007/s10562-022-04143-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
19
|
Solubilization of caffeic acid into the cationic micelles and biogenic synthesis of silver nanoparticles for the degradation of dye. JOURNAL OF SAUDI CHEMICAL SOCIETY 2022. [DOI: 10.1016/j.jscs.2022.101529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
20
|
Cho YC, Hsu CC, Lin YP. Integration of in-situ chemical oxidation and permeable reactive barrier for the removal of chlorophenols by copper oxide activated peroxydisulfate. JOURNAL OF HAZARDOUS MATERIALS 2022; 432:128726. [PMID: 35316633 DOI: 10.1016/j.jhazmat.2022.128726] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 02/27/2022] [Accepted: 03/14/2022] [Indexed: 06/14/2023]
Abstract
In-situ chemical oxidation (ISCO) and permeable reactive barrier (PRB) have been used in field practices for contaminated groundwater remediation. In this lab-scale study, a novel system integrating ISCO and PRB using peroxydisulfate (PDS) as the oxidant and copper oxide (CuO) as the reactive barrier material was developed for the removal of 2,4-dichlorophenol (2,4-DCP), 2,4,6-trichlorophenol (2,4,6-TCP) and pentachlorophenol (PCP). The influences of chlorophenol concentration and flow rate on the system performance were first evaluated using synthetic solutions. The removal efficiencies of target chlorophenols were greater than 90% when sufficient PDS was supplied ([PDS]/[chlorophenol]>1). It was also found that the removal efficiencies decreased with the increasing chlorophenol concentrations (10-150 μM) and flow rates (1.8-14.4 mL/min). When three real groundwaters were employed, the removal efficiencies of 2,4-DCP and 2,4,6-TCP slightly reduced to 90% and 85%, respectively. For PCP, the removal efficiency dropped to 20% in two groundwaters with relatively high levels of alkalinity. The influences of pH and TOC were found to be insignificant for the range investigated (pH 6.5-8.7 and TOC = 0.4-1.5 mgC/L). The reduced removal efficiency could be due to the formation of weaker radicals and the stronger competition between bicarbonate ions and PDS for the activation sites on the CuO surfaces.
Collapse
Affiliation(s)
- Yi-Chin Cho
- Graduate Institute of Environmental Engineering, National Taiwan University, No. 1, Section 4, Roosevelt Road, Taipei 10617, Taiwan
| | - Chia-Chun Hsu
- Graduate Institute of Environmental Engineering, National Taiwan University, No. 1, Section 4, Roosevelt Road, Taipei 10617, Taiwan
| | - Yi-Pin Lin
- Graduate Institute of Environmental Engineering, National Taiwan University, No. 1, Section 4, Roosevelt Road, Taipei 10617, Taiwan; NTU Research Center for Future Earth, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
21
|
Insight into the catalytic performance of silver oxides towards peroxymonosulfate activation for pollutants degradation: Efficiency, mechanism and stability. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.128674] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
22
|
Erdem H, Erdem M. Ciprofloxacin Degradation with Persulfate Activated with the Synergistic Effect of the Activated Carbon and Cobalt Dual Catalyst. ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING 2022. [DOI: 10.1007/s13369-022-06907-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
23
|
Zhu H, Guo A, Xian L, Wang Y, Long Y, Fan G. Facile fabrication of surface vulcanized Co-Fe spinel oxide nanoparticles toward efficient 4-nitrophenol destruction. JOURNAL OF HAZARDOUS MATERIALS 2022; 430:128433. [PMID: 35158244 DOI: 10.1016/j.jhazmat.2022.128433] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 01/21/2022] [Accepted: 02/02/2022] [Indexed: 06/14/2023]
Abstract
Developing efficient modulation strategies to boost the degradation efficiencies of non-noble metal catalysts for toxic phenolic compounds involving peroxymonosulfate (PMS)-based oxidation processes is essential but remains an arduous challenge. This study reports the one-pot construction of in-situ surface vulcanized CoFe2O4 @carbon (Sx-CF@C) to boost the PMS activation for 4-nitrophenol (4-NP) destruction. The direct pyrolysis of an aerogel precursor consisted of cobalt nitrate, ferric nitrate, melamine, and thiourea enables the as-formed Sx-CF@C with hierarchical structure, rich oxygen vacancies, and electron/mass transfer, thereby considerably promoting PMS activation performance of Sx-CF@C toward 4-NP degradation. Specifically, the optimal S0.2-CF@C can achieve a removal efficiency of 99% for 4-NP destruction (20 mg/L) through PMS activation. Meanwhile, the catalyst also has generality to degrade a variety of antibiotic and dye organic pollutants. The radical quenching and electron paramagnetic resonance tests reveal the radical and non-radical activation mechanism in the S0.2-CF@C/PMS system. The degradation pathway for 4-NP destruction over the S0.2-CF@C/PMS system is proposed. This study provides an efficient approach to modulate the PMS activation performance of ferrite spinel materials toward the degradation of acute phenolic compounds.
Collapse
Affiliation(s)
- Hui Zhu
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, China
| | - An Guo
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, China
| | - Lin Xian
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, China
| | - Yi Wang
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, China
| | - Yan Long
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, China
| | - Guangyin Fan
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, China.
| |
Collapse
|
24
|
Developing the large-area manganese-based catalytic ceramic membrane for peroxymonosulfate activation: Applications in degradation of endocrine disrupting compounds in drinking water. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120602] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
25
|
Kim C, Chin YP, Son H, Hwang I. Activation of persulfate by humic substances: Stoichiometry and changes in the optical properties of the humic substances. WATER RESEARCH 2022; 212:118107. [PMID: 35085845 DOI: 10.1016/j.watres.2022.118107] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 01/03/2022] [Accepted: 01/17/2022] [Indexed: 06/14/2023]
Abstract
Persulfate activation through electron transfer from humic substances (HS) was investigated. Persulfate consumption in the presence of standard HS and HS model compounds linearly correlated with the phenol contents of the HS. Redox-active carbonyl groups such as aromatic ketones and quinone also contributed to persulfate consumption by donating electrons while being reduced. Phenols activated persulfate through direct electron transfer from the phenolate forms but reduced ketones activated persulfate through reactions between their organic radicals and persulfate. Persulfate was activated more by terrestrially derived aquatic HS containing large numbers of phenol groups than by other species, and this caused more benzene oxidation to occur in the presence of terrestrially derived aquatic HS than in the presence of other species. Larger amounts of sulfate radicals were scavenged by soil-derived HS than other types of HS because soil-derived HS were composed of larger molecules than other types of HS. The fluorescence regional integration volume for HS reacted with persulfate linearly correlated with persulfate consumption. Decreases in the fluorescence regional integration value could be used to predict persulfate activation through electron transfer from HS to persulfate if the electron-donating capacity cannot be determined. Persulfate activation by HS is expected to be stoichiometrically more advantageous than conventional persulfate-Fe2+ processes when treating an aquifer containing large amounts of electron-rich HS.
Collapse
Affiliation(s)
- Cheolyong Kim
- Department of Civil and Environmental Engineering, Pusan National University, Busandaehak-ro 63beon-gil 2, Geumjeong-gu, Busan 46241, Republic of Korea; Department of Civil and Environmental Engineering, Technical University of Darmstadt, Franziska-Braun-Straße 7, Darmstadt 64287, Germany
| | - Yu-Ping Chin
- Department of Civil and Environmental Engineering, University of Delaware, 474 ISE Lab, Newark, DE 19716, United States
| | - Heejong Son
- Busan Water Quality Institute, Busan Water Authority, Dongbuk-ro 691, Sangdong-myeon, Gimhae 50804, Republic of Korea
| | - Inseong Hwang
- Department of Civil and Environmental Engineering, Pusan National University, Busandaehak-ro 63beon-gil 2, Geumjeong-gu, Busan 46241, Republic of Korea.
| |
Collapse
|
26
|
Huang P, Yao L, Chang Q, Sha Y, Jiang G, Zhang S, Li Z. Room-temperature preparation of highly efficient NH 2-MIL-101(Fe) catalyst: The important role of -NH 2 in accelerating Fe(III)/Fe(II) cycling. CHEMOSPHERE 2022; 291:133026. [PMID: 34822869 DOI: 10.1016/j.chemosphere.2021.133026] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/19/2021] [Accepted: 11/20/2021] [Indexed: 06/13/2023]
Abstract
The slow redox rate of Fe(III)/Fe(II) couples is a rate-limiting step for Fenton-like performance of Fe-MOFs. In this study, a series of catalysts (MIL-101) with various p-phthalic acid/2-aminoterephthalic acid (H2BDC/NH2-H2BDC) molar ratios were prepared using a simple and mild chemical method and applied for catalyzed degradation of bisphenol A (BPA). Interestingly, the -NH2 modified MIL-101(Fe) can adjust Fe-Oxo node by increasing the electron density of Fe(III) in the presence of -NH2 group with high electron density, thus forming Fe(II) in situ in MOFs. Meanwhile, the -NH2 groups used as electron-donors can promote electron transfer, resulting in faster Fe(III)→Fe(II) half-reaction and active H2O2 to continuously generate •OH radical. The BPA degradation and rate constant of Fe-BDC-NH2/H2O2 system are 15.4-fold and 86.8-fold higher than that of Fe-BDC/H2O2 system, respectively. The density functional theory (DFT) calculations showed that Fe-BDC-NH2 possesses higher Fermi level energy (-4.88 eV) and lower activation energy barriers (0.32 eV) compared with Fe-BDC. Moreover, Fe-BDC-NH2 showed good reusability and stability. This work offers a highly efficient and stable MOFs-based Fenton-like catalyst to rapidly degrade organic pollutants over a wide pH range for potential applications in wastewater treatment.
Collapse
Affiliation(s)
- Peipei Huang
- Key Laboratory of Catalysis and Materials Science of Hubei Province, College of Resources and Environmental Science, South-Central University for Nationalities, Wuhan, 430074, Hubei, China
| | - Lili Yao
- Key Laboratory of Catalysis and Materials Science of Hubei Province, College of Resources and Environmental Science, South-Central University for Nationalities, Wuhan, 430074, Hubei, China
| | - Qing Chang
- Key Laboratory of Catalysis and Materials Science of Hubei Province, College of Resources and Environmental Science, South-Central University for Nationalities, Wuhan, 430074, Hubei, China.
| | - Yunhan Sha
- Key Laboratory of Catalysis and Materials Science of Hubei Province, College of Resources and Environmental Science, South-Central University for Nationalities, Wuhan, 430074, Hubei, China
| | - Guodong Jiang
- College of Chemistry and Chemical Engineering, Hubei Collaborative Innovation Center for High Efficient Utilization of Solar Energy, Hubei University of Technology, Wuhan, 430074, Hubei, China.
| | - Shenghua Zhang
- Key Laboratory of Catalysis and Materials Science of Hubei Province, College of Resources and Environmental Science, South-Central University for Nationalities, Wuhan, 430074, Hubei, China
| | - Zhe Li
- Key Laboratory of Catalysis and Materials Science of Hubei Province, College of Resources and Environmental Science, South-Central University for Nationalities, Wuhan, 430074, Hubei, China
| |
Collapse
|
27
|
Javaid A, Latif S, Imran M, Hussain N, Rajoka MSR, Iqbal HMN, Bilal M. Nanohybrids-assisted photocatalytic removal of pharmaceutical pollutants to abate their toxicological effects - A review. CHEMOSPHERE 2022; 291:133056. [PMID: 34838839 DOI: 10.1016/j.chemosphere.2021.133056] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 11/03/2021] [Accepted: 11/22/2021] [Indexed: 02/08/2023]
Abstract
Advancement in medication by health care sector has undoubtedly improved our life but at the same time increased the chemical burden on our natural ecosystem. The residuals of pharmaceutical products become part of wastewater streams by different sources such as excretion after their usage, inappropriate way of their disposal during production etc. Hence, they are serious health hazards for human, animal, and aquatic lives. Due to rapid urbanization, the increased demand for clean drinking water is a burning global issue. In this regard it is need of the present era to explore efficient materials which could act as photocatalyst for mitigation of pharmaceuticals in wastewater. Nanohybrid as photocatalyst is one of the widely explored class of materials in photocatalytic degradation of such harmful pollutants. Among these nanohybrids; metal based nanohybrids (metals/metal oxides) and carbon based nanohybrids (carbon nanotubes, graphene, fullerenes etc.) have been explored to remove pharmaceutical drugs. Keeping in view the increasing harmful impacts of pharmaceuticals; the sources of pharmaceuticals in wastewater, their health risk factors and their mitigation using efficient nanohybrids as photocatalysts have been discussed in this review.
Collapse
Affiliation(s)
- Ayesha Javaid
- Centre for Inorganic Chemistry, School of Chemistry, University of the Punjab, Lahore, 54000, Pakistan
| | - Shoomaila Latif
- School of Physical Sciences, University of the Punjab, Lahore, Pakistan
| | - Muhammad Imran
- Centre for Inorganic Chemistry, School of Chemistry, University of the Punjab, Lahore, 54000, Pakistan
| | - Nazim Hussain
- Centre for Applied Molecular Biology (CAMB), University of the Punjab, Lahore, 53700, Pakistan
| | - Muhammad Shahid Riaz Rajoka
- Department of Food Science and Engineering, College of Chemistry and Chemical Engineering, Shenzhen University, Shenzhen, Guangdong, People's Republic of China
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey, 64849, Mexico.
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, 223003, China.
| |
Collapse
|
28
|
Jiang S, Li Q, Wang F, Wang Z, Cao X, Shen X, Yao Z. Highly effective and sustainable antibacterial membranes synthesized using biodegradable polymers. CHEMOSPHERE 2022; 291:133106. [PMID: 34848235 DOI: 10.1016/j.chemosphere.2021.133106] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 11/21/2021] [Accepted: 11/26/2021] [Indexed: 06/13/2023]
Abstract
In order to reduce foodborne diseases caused by bacterial infections, antibacterial membranes have received increasing research interests in recent years. In this study, highly effective antibacterial membranes were prepared using biodegradable polymers, including polylactic acid (PLA), polybutylene adipate terephthalate (PBAT), and carboxymethyl cellulose (CMC). The cation exchange property of CMC was utilized to introduce silver to prepare antibacterial materials. The presence of silver in the membranes was confirmed by EDS mapping, and the reduction of silver ions to metallic silver was confirmed by the Ag3d XPS spectrum which displayed peaks at 374.46 eV and 368.45 eV, revealing that the oxidation state of silver changed to zero. Two common pathogenic bacteria, Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli), were used to investigate the antibacterial performance of the prepared membranes. Zone of inhibition and bacteria-killing tests revealed that the antibacterial membranes were efficient in inhibiting the growth of bacteria (diameters of inhibition zone ranged from 16 mm to 19 mm for fresh membranes) and capable of killing 100% of bacteria under suitable conditions. Furthermore, after 6 cycles of continuous zone of inhibition tests, the membranes still showed noticeable antibacterial activities, which disclosed the sustainable antibacterial properties of the membranes.
Collapse
Affiliation(s)
- Shanxue Jiang
- School of Ecology and Environment, Beijing Technology and Business University, Beijing, 100048, China; State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing, 100048, China
| | - Qirun Li
- School of Ecology and Environment, Beijing Technology and Business University, Beijing, 100048, China; State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing, 100048, China
| | - Fang Wang
- School of Ecology and Environment, Beijing Technology and Business University, Beijing, 100048, China; State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing, 100048, China
| | - Zeru Wang
- School of System Design and Intelligent Manufacturing, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Xinyue Cao
- School of Ecology and Environment, Beijing Technology and Business University, Beijing, 100048, China; State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing, 100048, China
| | - Xianbao Shen
- School of Ecology and Environment, Beijing Technology and Business University, Beijing, 100048, China; State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing, 100048, China
| | - Zhiliang Yao
- School of Ecology and Environment, Beijing Technology and Business University, Beijing, 100048, China; State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing, 100048, China.
| |
Collapse
|
29
|
Wang S, Wang J. Magnetic 2D/2D oxygen doped g-C 3N 4/biochar composite to activate peroxymonosulfate for degradation of emerging organic pollutants. JOURNAL OF HAZARDOUS MATERIALS 2022; 423:127207. [PMID: 34555766 DOI: 10.1016/j.jhazmat.2021.127207] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 08/09/2021] [Accepted: 09/08/2021] [Indexed: 06/13/2023]
Abstract
Herein, magnetic 2D/2D oxygen-doped graphite carbon nitride/ biochar (γ-Fe2O3/O-g-C3N4/BC) composite was rationally fabricated and used to activate peroxymonosulfate (PMS) for the degradation of emerging organic pollutants. O-g-C3N4 or coconut-derived biochar (BC) displayed low catalytic activity to PMS, while γ-Fe2O3/O-g-C3N4/BC composite showed superior catalytic activity, in which complete degradation of antibiotic sulfamethoxazole (SMX) was quickly achieved, with the mineralization ratio of 62.3%. The surface-bound reactive species (dominant) and sulfate radicals as well as hydroxyl radicals contributed to SMX degradation. Visible light could accelerate SMX degradation and enhance SMX mineralization, suggesting that γ-Fe2O3/O-g-C3N4/BC composite had good photocatalytic activity. The superior catalytic activity of γ-Fe2O3/O-g-C3N4/BC composite to activate PMS and visible light was attributed to the enhanced interfacial charge transfer and adsorption capacity. In addition to antibiotic SMX, other typical emerging organic pollutants, including atrazine, phenol, nitrobenzene and carbamazepine could also be degraded and mineralized in the system of visible light/O-g-C3N4/BC/PMS, indicating its wide applicability for degradation of various toxic organic pollutants in water and wastewater.
Collapse
Affiliation(s)
- Shizong Wang
- Laboratory of Environmental Technology, INET, Tsinghua University, Beijing 100084, P.R. China; Beijing Key Laboratory of Radioactive Wastes Treatment, Tsinghua University, Beijing 100084, P.R. China
| | - Jianlong Wang
- Laboratory of Environmental Technology, INET, Tsinghua University, Beijing 100084, P.R. China; Beijing Key Laboratory of Radioactive Wastes Treatment, Tsinghua University, Beijing 100084, P.R. China.
| |
Collapse
|
30
|
Liu L, Lin J, Owens G, Chen Z. New insights on removal mechanism of 17α-estradiol based on adsorption and Fenton-like oxidation by FeNPs/rGO. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2021.120222] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
31
|
Xiong S, Deng Y, Gong D, Tang R, Zheng J, Li L, Zhou Z, Su L, Liao C, Yang L. Magnetically modified in-situ N-doped Enteromorpha prolifera derived biochar for peroxydisulfate activation: Electron transfer induced singlet oxygen non-radical pathway. CHEMOSPHERE 2021; 284:131404. [PMID: 34323791 DOI: 10.1016/j.chemosphere.2021.131404] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 06/18/2021] [Accepted: 06/29/2021] [Indexed: 06/13/2023]
Abstract
Herein, in-situ N-doped Enteromorpha prolifera derived magnetic biochar (MBC) was prepared by loading Fe3O4. It can effectively activate peroxodisulfate (PDS) to degrade tetracycline (TC) and easy recycling. The removal rate of TC reached 87.2%, and its possible degradation pathway was revealed through a liquid chromatography-mass spectrometer. This work first proposes the mechanism of in-situ N-doping and Fe synergistic effect on PDS activation. Unlike the well-reported role of N doping in activating PDS, except for the edge pyridine N plays a significant role in the activation of PDS. After the load of Fe, the synergistic effect of Fe and graphite N induces a non-radical path dominated by singlet oxygen (1O2) due to the excellent electron transfer function. Through chemical quenching experiment, electron spin detection, and electrochemical analysis, the mechanism of PDS activation by MBC was thoroughly investigate. This research will deepen the understanding of the mechanism of transition metals and carbon materials in synergistically driving PDS activation, and guide biochar-mediated PDS activation in environmental remediation.
Collapse
Affiliation(s)
- Sheng Xiong
- College of Resources & Environment, Hunan Agricultural University, Changsha, 410128, China
| | - Yaocheng Deng
- College of Resources & Environment, Hunan Agricultural University, Changsha, 410128, China.
| | - Daoxin Gong
- College of Resources & Environment, Hunan Agricultural University, Changsha, 410128, China.
| | - Rongdi Tang
- College of Resources & Environment, Hunan Agricultural University, Changsha, 410128, China
| | - Jiangfu Zheng
- College of Resources & Environment, Hunan Agricultural University, Changsha, 410128, China
| | - Ling Li
- College of Resources & Environment, Hunan Agricultural University, Changsha, 410128, China
| | - Zhanpeng Zhou
- College of Resources & Environment, Hunan Agricultural University, Changsha, 410128, China
| | - Long Su
- College of Resources & Environment, Hunan Agricultural University, Changsha, 410128, China
| | - Chanjuan Liao
- College of Resources & Environment, Hunan Agricultural University, Changsha, 410128, China
| | - Lihua Yang
- College of Resources & Environment, Hunan Agricultural University, Changsha, 410128, China
| |
Collapse
|
32
|
Two-Dimensional Nanomaterials for the Removal of Pharmaceuticals from Wastewater: A Critical Review. Processes (Basel) 2021. [DOI: 10.3390/pr9122160] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The removal of pharmaceuticals from wastewater is critical due to their considerable risk on ecosystems and human health. Additionally, they are resistant to conventional chemical and biological remediation methods. Two-dimensional nanomaterials are a promising approach to face this challenge due to their combination of high surface areas, high electrical conductivities, and partially optical transparency. This review discusses the state-of-the-art concerning their use as adsorbents, oxidation catalysts or photocatalysts, and electrochemical catalysts for water treatment purposes. The bibliographic search bases upon academic databases including articles published until August 2021. Regarding adsorption, high removal capacities (>200 mg g−1) and short equilibrium times (<30 min) are reported for molybdenum disulfide, metal-organic frameworks, MXenes, and graphene oxide/magnetite nanocomposites, attributed to a strong adsorbate-adsorbent chemical interaction. Concerning photocatalysis, MXenes and carbon nitride heterostructures show enhanced charge carriers separation, favoring the generation of reactive oxygen species to degrade most pharmaceuticals. Peroxymonosulfate activation via pure or photo-assisted catalytic oxidation is promising to completely degrade many compounds in less than 30 min. Future work should be focused on the exploration of greener synthesis methods, regeneration, and recycling at the end-of-life of two-dimensional materials towards their successful large-scale production and application.
Collapse
|
33
|
Al-Shehri A, Zaheer Z, Alsudairi AM, Kosa SA. Photo-oxidative Decolorization of Brilliant Blue with AgNPs as an Activator in the Presence of K 2S 2O 8 and NaBH 4. ACS OMEGA 2021; 6:27510-27526. [PMID: 34693172 PMCID: PMC8529662 DOI: 10.1021/acsomega.1c04501] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 09/28/2021] [Indexed: 06/13/2023]
Abstract
The decolorization of brilliant blue (E133) in aqueous solution by K2S2O8 and NaBH4 with AgNPs as an activator was studied spectrophotometrically under normal laboratory conditions. Batch experiments were performed to investigate the effects of reaction time, initial dye concentration, activator concentration, solution pH, and temperature on the decolorization of E133. K2S2O8 and NaBH4 did not decolorize the dye E133 in the absence of AgNPs. The optimum dosage of AgNPs was 0.01 g/L, and 98% dye E133 degradation was observed with 3.75 mM K2S2O8 at 30 °C in ca. 60 min of reaction time. In the NaBH4/AgNPs system, only 60% dye degradation was observed for an identical reaction condition. The decolorization rate constant increases with the increase in concentrations of AgNPs, K2S2O8, NaBH4, and reaction temperature. The decolorization degree of the E133 responded linearly with K2S2O8 and NaBH4 concentrations. The existence of sulfate radicals (SO4 · -) and hydroxyl radicals (HO·) generated during the decolorization of E133 was identified by using ethanol and tertiary butyl alcohol as scavengers. Based on the E133 solution absorbance changes at 628 nm, the decolorization mechanism was proposed and discussed.
Collapse
Affiliation(s)
- Abeer
Saad Al-Shehri
- Department of Chemistry,
Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
| | - Zoya Zaheer
- Department of Chemistry,
Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
| | - Amell Musaid Alsudairi
- Department of Chemistry,
Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
| | - Samia A. Kosa
- Department of Chemistry,
Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
| |
Collapse
|
34
|
Zhu Y, Shao Y, Wei M, Yu K, Zhang Y, Huang J, Yin X. Degradation of 17β-estradiol by UV/persulfate in different water samples. JOURNAL OF WATER AND HEALTH 2021; 19:796-807. [PMID: 34665772 DOI: 10.2166/wh.2021.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Sulfate radical (•SO4-)-based advanced oxidation processes are widely used for wastewater treatment. This study explored the potential use of UV/persulfate (UV/PS) system for the degradation of 17β-estradiol (E2). The pH of the reaction system can affect the degradation rate of E2 by UV/PS and the optimum pH was 7.0; Br- and Cl- in water can promote the degradation rate, HCO3- has an inhibitory effect on the reaction, SO42- and cations (Na+, Mg2+, K+) have no effect on the degradation rate. The degradation of E2 by UV/PS was a mineralization process, with the mineralization rate reaching 90.97% at 8 h. E2 in the UV/PS system was mainly degraded by hydroxylation, deoxygenation, and hydrogenation. E2 reaction sites were mainly located on benzene rings, mainly carbonylation on quinary rings, and bond breakage between C10 and C5 resulted in the removal of benzene rings and carboxyl at C2 and C3 sites. In the presence of halogen ions, halogenated disinfection by-products were not formed in the degradation process of E2 by UV/PS. E2 in the UV/PS system could inhibit the formation of bromate. The results of this study suggest that UV/PS is a safe and reliable method to degrade E2.
Collapse
Affiliation(s)
- Yunjie Zhu
- School of Marine Sciences, Guangxi University, Nanning 530004, China E-mail:
| | - Yanan Shao
- School of Marine Sciences, Guangxi University, Nanning 530004, China E-mail: ; College of Environmental Science and Engineering, Hunan University, Changsha 410082, China
| | - Min Wei
- School of Marine Sciences, Guangxi University, Nanning 530004, China E-mail:
| | - Kefu Yu
- School of Marine Sciences, Guangxi University, Nanning 530004, China E-mail: ; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China; Guangxi Key Laboratory on the Study of Coral Reefs in the South China Sea, Nanning, 530004, China
| | - Yuanyuan Zhang
- School of Marine Sciences, Guangxi University, Nanning 530004, China E-mail: ; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China; Guangxi Key Laboratory on the Study of Coral Reefs in the South China Sea, Nanning, 530004, China
| | - Jianping Huang
- School of Marine Sciences, Guangxi University, Nanning 530004, China E-mail:
| | - Xinyue Yin
- School of Marine Sciences, Guangxi University, Nanning 530004, China E-mail:
| |
Collapse
|
35
|
Synthesis of magnetic chitosan biopolymeric spheres and their adsorption performances for PFOA and PFOS from aqueous environment. Carbohydr Polym 2021; 267:118165. [DOI: 10.1016/j.carbpol.2021.118165] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 05/02/2021] [Accepted: 05/04/2021] [Indexed: 01/01/2023]
|
36
|
Qin H, He Y, Xu P, Huang D, Wang Z, Wang H, Wang Z, Zhao Y, Tian Q, Wang C. Spinel ferrites (MFe 2O 4): Synthesis, improvement and catalytic application in environment and energy field. Adv Colloid Interface Sci 2021; 294:102486. [PMID: 34274724 DOI: 10.1016/j.cis.2021.102486] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 07/03/2021] [Accepted: 07/06/2021] [Indexed: 12/20/2022]
Abstract
To develop efficient catalysts is one of the major ways to solve the energy and environmental problems. Spinel ferrites, with the general chemical formula of MFe2O4 (where M = Mg2+, Co2+, Ni2+, Zn2+, Fe2+, Mn2+, etc.), have attracted considerable attention in catalytic research. The flexible position and valence variability of metal cations endow spinel ferrites with diverse physicochemical properties, such as abundant surface active sites, high catalytic activity and easy to be modified. Meanwhile, their unique advantages in regenerating and recycling on account of the magnetic performances facilitate their practical application potential. Herein, the conventional as well as green chemistry synthesis of spinel ferrites is reviewed. Most importantly, the critical pathways to improve the catalytic performance are discussed in detail, mainly covering selective doping, site substitution, structure reversal, defect introduction and coupled composites. Furthermore, the catalytic applications of spinel ferrites and their derivative composites are exclusively reviewed, including Fenton-type catalysis, photocatalysis, electrocatalysis and photoelectro-chemical catalysis. In addition, some vital remarks, including toxicity, recovery and reuse, are also covered. Future applications of spinel ferrites are envisioned focusing on environmental and energy issues, which will be pushed by the development of precise synthesis, skilled modification and advanced characterization along with emerging theoretical calculation.
Collapse
Affiliation(s)
- Hong Qin
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Ministry of Education, Hunan University, Changsha 410082, PR China
| | - Yangzhuo He
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Ministry of Education, Hunan University, Changsha 410082, PR China
| | - Piao Xu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Ministry of Education, Hunan University, Changsha 410082, PR China..
| | - Danlian Huang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Ministry of Education, Hunan University, Changsha 410082, PR China..
| | - Ziwei Wang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Ministry of Education, Hunan University, Changsha 410082, PR China
| | - Han Wang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Ministry of Education, Hunan University, Changsha 410082, PR China
| | - Zixuan Wang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Ministry of Education, Hunan University, Changsha 410082, PR China
| | - Yin Zhao
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Ministry of Education, Hunan University, Changsha 410082, PR China
| | - Quyang Tian
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Ministry of Education, Hunan University, Changsha 410082, PR China
| | - Changlin Wang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Ministry of Education, Hunan University, Changsha 410082, PR China
| |
Collapse
|
37
|
Sawai O, Zhou X, Yoko A, Hirai D, Nunoura T. Organic Solvent-Free Process for the Rapid Fabrication of Nickel Ferrite-Reduced Graphene Oxide as a Magnetic Nanosorbent Using Supercritical Water. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c01424] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Osamu Sawai
- Environmental Science Center, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
- Department of Environment Systems, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8563, Japan
| | - Xiaoyun Zhou
- Department of Environment Systems, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8563, Japan
| | - Akira Yoko
- WPI-Advanced Institute for Materials Research (WPI-AIMR), Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan
| | - Daigorou Hirai
- The Institute for Solid State Physics, The University of Tokyo, Kashiwa, Chiba 277-8581, Japan
| | - Teppei Nunoura
- Environmental Science Center, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
- Department of Environment Systems, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8563, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| |
Collapse
|
38
|
Gan L, Wang L, Xu L, Fang X, Pei C, Wu Y, Lu H, Han S, Cui J, Shi J, Mei C. Fe3C-porous carbon derived from Fe2O3 loaded MOF-74(Zn) for the removal of high concentration BPA: The integrations of adsorptive/catalytic synergies and radical/non-radical mechanisms. JOURNAL OF HAZARDOUS MATERIALS 2021; 413:125305. [PMID: 33611041 DOI: 10.1016/j.jhazmat.2021.125305] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 01/14/2021] [Accepted: 01/31/2021] [Indexed: 06/12/2023]
Abstract
In this study, novel Fe3C-porous carbon composites (Fe3C-C) were prepared via the pyrolysis of Fe2O3 loaded MOF-74(Zn), which could integrate both strong adsorption properties and excellent peroxymonosulfate (PMS) activating performance for the removal of bisphenol A (BPA) in water. Results indicated that the composite obtained at 1000 °C (Fe3C-C1000) exhibited optimal catalytic capability. Specifically, 0.1 mM BPA could be completely removed by 0.1 g/L Fe3C-C1000 within 10 min after the adsorption enrichment. Afterwards, the mechanism of Fe3C-C/PMS system was unveiled based on quenching tests, electron spin resonance analysis, electrochemical analysis, PMS consumption detection and solvent exchange (H2O to D2O) test. The BPA degradation pathways were also analyzed through identifying its decomposition intermediates. Results showed that the Fe3C and porous carbon constituents could activate PMS via radical and non-radical mechanisms respectively, and BPA was readily degraded through both pathways. Additionally, it was found that the Fe3C-C1000/PMS system could maintain conspicuous catalytic performance in a variety of complicated water matrices with wide pH application range and long-time use stability. This study suggests a new insight for the design and development of novel catalyst which can be used for the removal of refractory organic contaminants with high concentrations in water media.
Collapse
Affiliation(s)
- Lu Gan
- College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, Jiangsu, People's Republic of China
| | - Linjie Wang
- College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, Jiangsu, People's Republic of China
| | - Lijie Xu
- College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, Jiangsu, People's Republic of China.
| | - Xingyu Fang
- College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, Jiangsu, People's Republic of China
| | - Chun Pei
- Guangdong Province Key Laboratory of Durability for Marine Civil Engineering, School of Civil Engineering, Shenzhen University, Shenzhen, 518060 Guangdong, People's Republic of China
| | - Ying Wu
- College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, Jiangsu, People's Republic of China
| | - Haiqin Lu
- College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, Jiangsu, People's Republic of China
| | - Shuguang Han
- College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, Jiangsu, People's Republic of China
| | - Juqing Cui
- College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, Jiangsu, People's Republic of China
| | - Jiangtao Shi
- College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, Jiangsu, People's Republic of China
| | - Changtong Mei
- College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, Jiangsu, People's Republic of China
| |
Collapse
|
39
|
John D, Jose J, Bhat SG, Achari VS. Integration of heterogeneous photocatalysis and persulfate based oxidation using TiO 2-reduced graphene oxide for water decontamination and disinfection. Heliyon 2021; 7:e07451. [PMID: 34286128 PMCID: PMC8273424 DOI: 10.1016/j.heliyon.2021.e07451] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 03/15/2021] [Accepted: 06/28/2021] [Indexed: 10/29/2022] Open
Abstract
Advanced oxidation processes (AOPs) which involve the generation of highly reactive free radicals have been considered as a promising technology for the decontamination of water from chemical and bacterial pollutants. In this study, integration of two major AOPs viz., heterogeneous photocatalysis involving TiO2-reduced graphene oxide (T-RGO) nanocomposite and activated persulfate (PS) based oxidation was attempted to remove diclofenac (DCF), a frequently detected pharmaceutical contaminant in water. The enhanced visible light responsiveness of T-RGO would facilitate the use of direct sunlight as a benign and cost effective source of energy for the photocatalytic activation. By combining PS based oxidation process with T-RGO mediated photocatalysis, a DCF removal efficiency of more than 98% was achieved within 30 min. The effect of operating parameters like PS concentration and pH on DCF removal was assessed. Radical scavenging experiments indicated that apart from radical oxidation involving •OH andSO 4 · - radicals, a non-radical oxidation pathway was also taking place in the degradation. The antibacterial properties of the integrated system were also evaluated using Escherichia coli and Staphylococcus aureus as representative bacteria. The presence of PS in the photocatalytic reaction system improved the antibacterial activity of the composite against the two strains studied. Cytotoxicity of T-RGO nanocomposite was assessed using human macrophage cell lines and the results showed that the composite is biocompatible and nontoxic at the recommended dosage for water treatment in the present study.
Collapse
Affiliation(s)
- Deepthi John
- School of Environmental Studies, Cochin University of Science and Technology, Kochi, 682022, Kerala, India
- Department of Chemistry, Deva Matha College, Kuravilangad, 686633, Kerala, India
| | - Jiya Jose
- Department of Biotechnology, Cochin University of Science and Technology, Kochi, 682022, Kerala, India
| | - Sarita G. Bhat
- Department of Biotechnology, Cochin University of Science and Technology, Kochi, 682022, Kerala, India
| | - V. Sivanandan Achari
- School of Environmental Studies, Cochin University of Science and Technology, Kochi, 682022, Kerala, India
| |
Collapse
|
40
|
Ren B, Miao J, Wang S, Xu Y, Zhai Z, Dong X, Liu Z. Facilely synthesized porous 3D coral-like Fe-based N-doped carbon composite as effective Fenton catalyst in methylene blue degradation. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126439] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
41
|
Effective and selective removal of organic pollutants from aqueous solutions using 1D hydroxyapatite-decorated 2D reduced graphene oxide nanocomposite. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.115795] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
42
|
Li X, Zhang S, Zhang M, Yu M, Chen H, Yang H, Xu Q. One-step synthesis of mixed valence FeO X nanoparticles supported on biomass activated carbon for degradation of bisphenol A by activating peroxydisulfate. JOURNAL OF HAZARDOUS MATERIALS 2021; 409:124990. [PMID: 33412471 DOI: 10.1016/j.jhazmat.2020.124990] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 12/04/2020] [Accepted: 12/25/2020] [Indexed: 06/12/2023]
Abstract
A novel FeOX nanoparticles supported biomass activated carbon (BAC/FeOX) composite was prepared through one-pot calcination method with FeCl3 and cherry stone powder as precursors. The carbonization of biomass, reduction of Fe3+, and FeOX anchored on carbon substrate could be achieved at the same time. Characterization with transmission electron microscope (TEM) and scanning electron microscope indicated that nanoscale FeOX distributed uniformly on carbon substrate, and X-ray photoelectron spectroscopy, X-ray diffraction, and high resolution TEM characterization proved that the loaded FeOX was high crystallinity of Fe3O4 and α-Fe0. Bisphenol A (BPA) was used to investigate the degradation performance of BAC/FeOX activating peroxydisulfate (PDS). The ratio of raw materials affected degradation efficiency of BPA intensively through the content, valence state, and dispersibility of FeOX nanoparticles, and the optimal material could degrade 20 mg/L BPA completely in 5 min at 0.1 g/L in the presence of 1 g/L PDS. Free radical determination and quenching experiments indicated that both SO4•- and •OH were involved in BPA degradation. The degradation pathway was proposed based on the identification of degradation intermediates. The facile synthesis method, high activation efficiency, and low-cost and environmental friendly raw materials made the BAC/FeOX-50 an alternative catalyst for organic pollution water treatment.
Collapse
Affiliation(s)
- Xin Li
- School of Chemistry and Materials Science, Collaborative Innovation Center of Shandong Province for High Performance Fibers and Their Composites, Ludong University, Yantai 264025, Shandong Province, China
| | - Shengxiao Zhang
- School of Chemistry and Materials Science, Collaborative Innovation Center of Shandong Province for High Performance Fibers and Their Composites, Ludong University, Yantai 264025, Shandong Province, China.
| | - MingMing Zhang
- School of Chemistry and Materials Science, Collaborative Innovation Center of Shandong Province for High Performance Fibers and Their Composites, Ludong University, Yantai 264025, Shandong Province, China
| | - Mingwu Yu
- School of Chemistry and Materials Science, Collaborative Innovation Center of Shandong Province for High Performance Fibers and Their Composites, Ludong University, Yantai 264025, Shandong Province, China
| | - Hou Chen
- School of Chemistry and Materials Science, Collaborative Innovation Center of Shandong Province for High Performance Fibers and Their Composites, Ludong University, Yantai 264025, Shandong Province, China.
| | - Huawei Yang
- School of Chemistry and Materials Science, Collaborative Innovation Center of Shandong Province for High Performance Fibers and Their Composites, Ludong University, Yantai 264025, Shandong Province, China
| | - Qiang Xu
- School of Chemistry and Materials Science, Collaborative Innovation Center of Shandong Province for High Performance Fibers and Their Composites, Ludong University, Yantai 264025, Shandong Province, China
| |
Collapse
|
43
|
Duan P, Chen D, Hu X. Tin dioxide decorated on Ni-encapsulated nitrogen-doped carbon nanotubes for anodic electrolysis and persulfate activation to degrade cephalexin: Mineralization and degradation pathway. CHEMOSPHERE 2021; 269:128740. [PMID: 33139044 DOI: 10.1016/j.chemosphere.2020.128740] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 10/20/2020] [Accepted: 10/22/2020] [Indexed: 06/11/2023]
Abstract
In this study, bamboo-shaped carbon nanotubes exhibiting high nitrogen content and Ni encapsulation (Ni@NCNT) were effectively synthesized by a simple pyrolysis method. The catalytic peroxydisulfate activation for cephalexin (CPX) degradation was investigated using the prepared material. SnO2 was further decorated and fabricated on the anode material (SnO2/Ni@NCNT) for electrochemical degradation of CPX in an aqueous solution. Transmission electron microscopy, X-ray diffraction, and X-ray photoelectron spectroscopy indicated that the SnO2 nanoparticles were uniformly distributed on the surface of Ni@NCNT. Electrochemical characterization employing cyclic voltammetry and linear sweep voltammetry demonstrated that SnO2/Ni@NCNT displayed higher oxygen evolution potential and electrocatalytic activity than Ni@NCNT. Mineralization of CPX in wastewater was performed using electrolysis coupled with persulfate oxidation. The analysis revealed a synergistic strengthening effect. The electropersulfate oxidation resulted in higher total organic carbon (TOC) removal (70.3%) than the sum of electrooxidation (48.1%) and persulfate oxidation (9.2%) toward CPX. This phenomenon might result from the regeneration of sulfate radicals (SO4•-) on the anode and complementary oxidation by SO4•- and OH. Persulfate oxidation alone was shown to result in low TOC removal, although CPX was mostly degraded. Additionally, the CPX degradation pathway involving electropersulfate oxidation was proposed and it is indicated that CPX molecules were completed decomposed by the examination of short chain acids, mineralized ions, and ecotoxicity evolution indicated that the antibiotic was completely degraded. This study provides a new approach for the design and preparation of novel electrode materials and electrochemical degradation facilities for the removal of pollutants via persulfate activation.
Collapse
Affiliation(s)
- Pingzhou Duan
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, PR China; Chinese Research Academy of Environmental Sciences, Beijing, 100012, PR China
| | - Dadi Chen
- Beijing Municipal Research Institute of Environmental Protection, Beijing, 100037, PR China
| | - Xiang Hu
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, PR China.
| |
Collapse
|
44
|
Chen X, Vione D, Borch T, Wang J, Gao Y. Nano-MoO 2 activates peroxymonosulfate for the degradation of PAH derivatives. WATER RESEARCH 2021; 192:116834. [PMID: 33486288 DOI: 10.1016/j.watres.2021.116834] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 01/08/2021] [Accepted: 01/10/2021] [Indexed: 06/12/2023]
Abstract
The rapid and efficient degradation of polycyclic aromatic hydrocarbon (PAH) derivatives with toxicological properties remains a substantial challenge. In this study, a cost-effective and eco-friendly catalyst, nano-MoO2 (0.05 g L-1), exhibited excellent performance in activating 4.0 mmol L-1 peroxymonosulfate (PMS) for the degradation of naphthalene derivatives with 1 mg L-1 in aqueous systems; these derivatives include 1-methylnaphthalene, 1-nitronaphthalene, 1-chloronaphthalene, 1-naphthylamine and 1-naphthol, with high degradation rates of 87.52%, 86.23%, 97.87%, 99.74%, and 77.16%. Nano-MoO2 acts as an electron donor by transferring an electron causing O-O bond of PMS to cleave producing SO4·-, and later ·OH. Electron paramagnetic resonance (EPR) analysis combined with free radical quenching research indicated that SO4·- and ·OH dominated the degradation of naphthalene derivatives, and O2·- and 1O2 participated in the processes. X-ray photoelectron spectroscopy (XPS) revealed the transformation of Mo(IV) to Mo(V) and Mo(VI), which suggested that the activation process proceeded via electron transfer from nano-MoO2 to PMS. The applicability of the nano-MoO2/PMS system in influencing parameters and stability was explored. The degradation pathways were primarily elucidated for each naphthalene derivative based on the intermediates identified in the systems. The -CH3, -NO2, -Cl, -OH substituents increased the positive electrostatic potential (ESP) on the molecular surface of 1-methylnaphthalene, 1-nitronaphthalene, 1-chloronaphthalene, and 1-naphthol, which reduced the electrophilic reaction and electron transfer between the reactive species and pollutants, leading to a lower degradation rate of naphthalene derivatives than the parent compound. However, the effect of -NH2 substituents is the opposite. These findings suggest that nano-MoO2 may aid as a novel catalyst in the future remediation of environments polluted with PAH derivatives.
Collapse
Affiliation(s)
- Xuwen Chen
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Davide Vione
- Department of Chemistry, University of Torino, Via Pietro Giuria 5, 10125 Torino, Italy
| | - Thomas Borch
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, CO 80523-1170, United States; Department of Chemistry, Colorado State University, Fort Collins, CO 80523, United States
| | - Jian Wang
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China.
| | - Yanzheng Gao
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
45
|
Olatunde OC, Onwudiwe DC. Graphene-Based Composites as Catalysts for the Degradation of Pharmaceuticals. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:1529. [PMID: 33562739 PMCID: PMC7914572 DOI: 10.3390/ijerph18041529] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 01/20/2021] [Accepted: 01/27/2021] [Indexed: 11/20/2022]
Abstract
The incessant release of pharmaceuticals into the aquatic environment continues to be a subject of increasing concern. This is because of the growing demand for potable water sources and the potential health hazards which these pollutants pose to aquatic animals and humans. The inability of conventional water treatment systems to remove these compounds creates the need for new treatment systems in order to deal with these class of compounds. This review focuses on advanced oxidation processes that employ graphene-based composites as catalysts for the degradation of pharmaceuticals. These composites have been identified to possess enhanced catalytic activity due to increased surface area and reduced charge carrier recombination. The techniques employed in synthesizing these composites have been explored and five different advanced oxidation processes-direct degradation process, chemical oxidation process, photocatalysis, electrocatalyis processes and sonocatalytic/sono-photocatalytic processes-have been studied in terms of their enhanced catalytic activity. Finally, a comparative analysis of the processes that employ graphene-based composites was done in terms of process efficiency, reaction rate, mineralization efficiency and time required to achieve 90% degradation.
Collapse
Affiliation(s)
- Olalekan C. Olatunde
- Material Science Innovation and Modelling (MaSIM) Research Focus Area, Faculty of Natural and Agricultural Sciences, Mafikeng Campus, North-West University, Private Bag X2046, Mmabatho 2735, South Africa;
- Department of Chemistry, School of Physical and Chemical Sciences, Faculty of Natural and Agricultural Sciences, Mafikeng Campus, North-West University, Private Bag X2046, Mmabatho 2735, South Africa
| | - Damian C. Onwudiwe
- Material Science Innovation and Modelling (MaSIM) Research Focus Area, Faculty of Natural and Agricultural Sciences, Mafikeng Campus, North-West University, Private Bag X2046, Mmabatho 2735, South Africa;
- Department of Chemistry, School of Physical and Chemical Sciences, Faculty of Natural and Agricultural Sciences, Mafikeng Campus, North-West University, Private Bag X2046, Mmabatho 2735, South Africa
| |
Collapse
|
46
|
Synthesis of nitrogen and sulfur doped graphene on graphite foam for electro-catalytic phenol degradation and water splitting. J Colloid Interface Sci 2021; 583:139-148. [PMID: 33002686 DOI: 10.1016/j.jcis.2020.09.053] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 09/12/2020] [Accepted: 09/14/2020] [Indexed: 11/21/2022]
Abstract
A rational design of electrode materials with both high electron conductivity and abundant of catalytic sites is essential for high-performance electrochemical reactions. Herein, a nitrogen and sulfur co-doped graphene (SNG) anchored on the interconnected conductive graphite foam (GF) is fabricated via drop-casting and in situ annealing. The SNG flakes are tightly immobilized on the GF surface, which can provide fast electron transfer rate and large electrolyte/electrode interfaces. The SNG@GF composite can be directly used as a free-standing electrode for electro-catalytic degradation of organic pollutants and overall water splitting. SNG@GF significantly enhanced the electrochemical activation of peroxymonosulfate (PMS) for catalytic oxidation. During the oxygen evolution reaction (OER), the SNG@GF exhibits an initial overpotential of 330 mV vs. RHE at 10 mA cm-2 with a Tafel slope of 149 mV dec-1 in 1 M KOH, which outperforms most of the reported metal-free catalysts. The density functional theory calculations are also used to unveil the S, N dual doping effects of carbon materials and their synergy in carbocatalysis. This study dedicates to developing multi-functional carbocatalysts for environmental and energy applications, and enables insights into carbocatalysis in electrochemistry.
Collapse
|
47
|
Liu L, Xu Q, Owens G, Chen Z. Fenton-oxidation of rifampicin via a green synthesized rGO@nFe/Pd nanocomposite. JOURNAL OF HAZARDOUS MATERIALS 2021; 402:123544. [PMID: 32755796 DOI: 10.1016/j.jhazmat.2020.123544] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 07/10/2020] [Accepted: 07/20/2020] [Indexed: 06/11/2023]
Abstract
Antibiotics are an emerging class of persistent contaminants that are now of major environmental concern because they pose potential risks to both environmental and human health. Here reduced graphene oxide composited with bimetallic iron/palladium nanoparticles (rGO@nFe/Pd) was synthesized via a green tea extract and used to remove a common antibiotic, rifampicin from aqueous solution. The innate physical rifampicin removal efficiency of the composite (79.9 %) was increased to 85.7 % when combined with Fenton-oxidation. The mechanism and the main factors controlling Fenton-oxidation of rifampicin by rGO@nFe/Pd were investigated. Oxidation followed a pseudo-second-order degradation kinetic model with an activation energy of 47.3 kJ mol-1. rGO@nFe/Pd were characterized by Brunauer-Emmett-Teller (BET), fourier transform infrared (FTIR), scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray energy spectroscopy (EDS), X-ray photoelectron spectroscopy (XPS), X-Ray powder diffraction (XRD), and zeta potential. Rifampicin degradation products observed by LC-UV, where subsequently confirmed to be mainly 5,6,9-trihydroxynaphtho [2,1-b] furan-1(2 H)-one, 5,6-dihydroxy-1-oxo-1,2-dihydronaphtho [2,1-b] furan-2-yl formate and (S)-5,6,9-trihydroxy-2-(3-methoxypropoxy)-2-methylnaphtho [2,1-b] furan-1(2 H)-one by LC-MS. Finally, the practical effectiveness of the composite material for antibiotic removal was demonstrated by the treatment of representative wastewaters, where rifampicin removal efficiencies of 80.4, 77.9 and 70.2 % were observed for river, aquaculture wastewater and domestic wastewater, respectively.
Collapse
Affiliation(s)
- Longjie Liu
- School of Environmental Science and Engineering, Fujian Normal University, Fuzhou, 350007, Fujian Province, China
| | - Qianyu Xu
- School of Environmental Science and Engineering, Fujian Normal University, Fuzhou, 350007, Fujian Province, China
| | - Gary Owens
- Environmental Contaminants Group, Future Industries Institute, University of South Australia, Mawson Lakes, SA, 5095, Australia
| | - Zuliang Chen
- School of Environmental Science and Engineering, Fujian Normal University, Fuzhou, 350007, Fujian Province, China.
| |
Collapse
|
48
|
Li X, Liu Z, Zhu Y, Song L, Dong Z, Niu S, Lyu C. Facile synthesis and synergistic mechanism of CoFe 2O 4@three-dimensional graphene aerogels towards peroxymonosulfate activation for highly efficient degradation of recalcitrant organic pollutants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 749:141466. [PMID: 32829273 DOI: 10.1016/j.scitotenv.2020.141466] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 07/31/2020] [Accepted: 08/01/2020] [Indexed: 06/11/2023]
Abstract
Magnetic CoFe2O4 is a promising heterogeneous catalyst with great separation and catalytic performance on peroxymonosulfate (PMS) activation. However, for extremely recalcitrant organic pollutants (e.g. Benzotriazole (BTA)), CoFe2O4/PMS system exhibits much low catalytic performance and high metal ion leaching. As such, CoFe2O4 supported on three-dimensional graphene aerogels (CoFe2O4@3DG) was synthesized via facile hydrothermal method. It turns out that 3DG as supporter significantly enhances specific surface area, redox activity and electron transfer of composite. The degradation rate constant in the CoFe2O4@3DG/PMS system (0.0203 min-1) is 15 times higher than that in the CoFe2O4/PMS system (0.0013 min-1). It results from synergistic activation of PMS by CoFe2O4 and 3DG to generate multiple reactive oxygen species (•OH, SO4-•, O2-• and 1O2). Particularly, high graphitization structure and low oxygen groups content of 3DG facilitate PMS adsorption on its surface and electron transfer from BTA to PMS. Ultimately, BTA is degraded into CO2, NH3 and intermediates through benzene and triazole ring-opening reactions. Moreover, CoFe2O4@3DG/PMS system displays good stability and recyclability. Therefore, this study provides a new way to improve CoFe2O4 activity for extremely recalcitrant organic pollutants degradation and new insights into synergistic activation of PMS by CoFe2O4 and 3DG, which further advances cobalt-based catalysts in heterogeneous catalysis.
Collapse
Affiliation(s)
- Xinran Li
- Key Lab of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun 130026, PR China; Jilin Provincial Key Laboratory of Water Resources and Environment, Jilin University, Changchun 130026, PR China
| | - Zhehua Liu
- Key Lab of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun 130026, PR China; Jilin Provincial Key Laboratory of Water Resources and Environment, Jilin University, Changchun 130026, PR China
| | - Yongjuan Zhu
- School of Chemistry and Materials Engineering, Huizhou University, Guangdong 516007, PR China
| | - Lan Song
- School of Environmental Science & Engineering, Southern University of Science and Technology, Shenzhen 518000, PR China
| | - Zhaojun Dong
- Key Lab of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun 130026, PR China; Jilin Provincial Key Laboratory of Water Resources and Environment, Jilin University, Changchun 130026, PR China
| | - Shu Niu
- Key Lab of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun 130026, PR China; Jilin Provincial Key Laboratory of Water Resources and Environment, Jilin University, Changchun 130026, PR China
| | - Cong Lyu
- Key Lab of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun 130026, PR China; Jilin Provincial Key Laboratory of Water Resources and Environment, Jilin University, Changchun 130026, PR China.
| |
Collapse
|
49
|
Chang X, Xu X, Gao Z, Tao Y, Yin Y, He G, Chen H. Activation of persulfate by heterogeneous catalyst ZnCo2O4–RGO for efficient degradation of bisphenol A. CAN J CHEM 2020. [DOI: 10.1139/cjc-2020-0192] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
A nanocomposite, reduced graphene oxide (RGO) modified ZnCo2O4 (ZnCo2O4–RGO) was synthesized via one-step solvothermal method for activating persulfate (PS) to degrade bisphenol A (BPA). The morphology and structure of the nanocomposite were identified by X-ray diffraction, Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, scanning electron microscopy, and transmission electron microscopy. RGO provides nucleation sites for ZnCo2O4 to grow and inhibits the agglomeration of the nanoparticles. The influence of different reaction conditions on the oxidation of BPA catalyzed by ZnCo2O4–RGO was investigated, including the content of RGO, the dosage of catalyst, the concentration of humic acid (HA), anions in the environment, the reaction temperature, and pH. BPA can be totally degraded within 20 min under optimized reaction conditions. The presence of HA, Cl−, and NO3− only has a slight effect on the oxidation of BPA, whereas the presence of either H2PO4− or HCO3− can greatly inhibit the reaction. ZnCo2O4–RGO shows good cycling stability and practical application potential. A reaction mechanism of the degradation of BPA was also explored.
Collapse
Affiliation(s)
- Xin Chang
- Key Laboratory of Advanced Catalytic Materials and technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou, Jiangsu Province 213164, China
- Key Laboratory of Advanced Catalytic Materials and technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou, Jiangsu Province 213164, China
| | - Xiangyang Xu
- Key Laboratory of Advanced Catalytic Materials and technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou, Jiangsu Province 213164, China
- Key Laboratory of Advanced Catalytic Materials and technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou, Jiangsu Province 213164, China
| | - Zhifeng Gao
- Key Laboratory of Advanced Catalytic Materials and technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou, Jiangsu Province 213164, China
- Key Laboratory of Advanced Catalytic Materials and technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou, Jiangsu Province 213164, China
| | - Yingrui Tao
- Key Laboratory of Advanced Catalytic Materials and technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou, Jiangsu Province 213164, China
- Key Laboratory of Advanced Catalytic Materials and technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou, Jiangsu Province 213164, China
| | - Yixuan Yin
- Key Laboratory of Advanced Catalytic Materials and technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou, Jiangsu Province 213164, China
- Key Laboratory of Advanced Catalytic Materials and technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou, Jiangsu Province 213164, China
| | - Guangyu He
- Key Laboratory of Advanced Catalytic Materials and technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou, Jiangsu Province 213164, China
- Key Laboratory of Advanced Catalytic Materials and technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou, Jiangsu Province 213164, China
| | - Haiqun Chen
- Key Laboratory of Advanced Catalytic Materials and technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou, Jiangsu Province 213164, China
- Key Laboratory of Advanced Catalytic Materials and technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou, Jiangsu Province 213164, China
| |
Collapse
|
50
|
Xia X, Zhu F, Li J, Yang H, Wei L, Li Q, Jiang J, Zhang G, Zhao Q. A Review Study on Sulfate-Radical-Based Advanced Oxidation Processes for Domestic/Industrial Wastewater Treatment: Degradation, Efficiency, and Mechanism. Front Chem 2020; 8:592056. [PMID: 33330379 PMCID: PMC7729018 DOI: 10.3389/fchem.2020.592056] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 10/21/2020] [Indexed: 12/31/2022] Open
Abstract
High levels of toxic organic pollutants commonly detected during domestic/industrial wastewater treatment have been attracting research attention globally because they seriously threaten human health. Sulfate-radical-based advanced oxidation processes (SR-AOPs) have been successfully used in wastewater treatment, such as that containing antibiotics, pesticides, and persistent organic pollutants, for refractory contaminant degradation. This review summarizes activation methods, including physical, chemical, and other coupling approaches, for efficient generation of sulfate radicals and evaluates their applications and economic feasibility. The degradation behavior as well as the efficiency of the generated sulfate radicals of typical domestic and industrial wastewater treatment is investigated. The categories and characteristics of the intermediates are also evaluated. The role of sulfate radicals, their kinetic characteristics, and possible mechanisms for organic elimination are assessed. In the last section, current difficulties and future perspectives of SR-AOPs for wastewater treatment are summarized.
Collapse
Affiliation(s)
- Xinhui Xia
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin, China
| | - Fengyi Zhu
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin, China
| | - Jianju Li
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin, China
| | - Haizhou Yang
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin, China
| | - Liangliang Wei
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin, China
| | - Qiaoyang Li
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin, China
| | - Junqiu Jiang
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin, China
| | - Guangshan Zhang
- College of Resource and Environment, Qingdao Agricultural University, Qingdao, China
| | - Qingliang Zhao
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin, China
| |
Collapse
|