1
|
Hossen S, Hanif MA, Kho KH. Glutathione reductase, a biomarker of pollutant and stress in Pacific abalone. MARINE POLLUTION BULLETIN 2023; 192:115139. [PMID: 37301005 DOI: 10.1016/j.marpolbul.2023.115139] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 05/30/2023] [Accepted: 06/01/2023] [Indexed: 06/12/2023]
Abstract
Abalone are frequently exposed to several environmental factors including heavy metal toxicity, thermal stress, H2O2-stress, starvation, viral and bacterial infection that can induce oxidative stress. Glutathione reductase is a vital enzyme in the antioxidant defense system that catalyzes the reduction of oxidized glutathione to reduced glutathione. The present study aimed to identify and localize glutathione reductase in Pacific abalone (Hdh-GR) and assess its potential role in stress physiology, heavy metal toxicity, immune response, gonadal development, and metamorphosis. The mRNA expression of Hdh-GR was upregulated in response to thermal stress, starvation, H2O2-stress, and cadmium-exposed toxicity. The induced mRNA expression was also quantified in immune-challenged abalone. Moreover, the Hdh-GR expression was significantly higher during metamorphosis. The Hdh-GR mRNA expression showed an inverse relationship with ROS production in heat stressed Pacific abalone. These results suggest that Hdh-GR has central role in the stress physiology, immune response, gonadal development, and metamorphosis of Pacific abalone.
Collapse
Affiliation(s)
- Shaharior Hossen
- Department of Fisheries Science, Chonnam National University, Yeosu, South Korea
| | - Md Abu Hanif
- Department of Fisheries Science, Chonnam National University, Yeosu, South Korea
| | - Kang Hee Kho
- Department of Fisheries Science, Chonnam National University, Yeosu, South Korea.
| |
Collapse
|
2
|
Zhou C, Hou J, Lin D. A ferritin gene in the marine copepod Acartia tonsa as a highly sensitive biomonitor for nano-contamination. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2022; 253:106353. [PMID: 36395553 DOI: 10.1016/j.aquatox.2022.106353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 10/20/2022] [Accepted: 11/11/2022] [Indexed: 06/16/2023]
Abstract
Toxicology is not only for eco-risk assessments, but also for the real-time environmental monitoring based on the quick response of specific biomarkers. Ferritin gene (ftn) is a potential biomarker involving in crucial protective responses in biota. However, little information is available concerning the ftn in marine copepod Acartia tonsa (A. tonsa), a model organism widely applied in toxicology assessments. Our study for the first time identified and characterized the ftn in A. tonsa, along with its time-dependent transcriptional response to the reproductive toxicity of two newly emerged nanomaterials. The full-length cDNA of ftn contains a 114-bp 5'-untranslated region (UTR), a 236-bp 3'-untranslated region, and a 510-bp open reading frame which encodes an 18.51 kDa polypeptide composed of 169 amino acids. The ftn sequence has an iron binding signature and a potential phosphorylation site, which is closely-related to the ftn of Calanus sinicus and Pseudodiaptomus annandalei genes at the phylogenetical level. The ftn showed a quick and highly sensitive response to nanomaterial exposures, even at no observed effect concentrations. In detail, after exposure to nickel nanomaterials (up to 17.0 mg/L), the ftn was significantly upregulated immediately at 0.5 h and peaked at 9.5-fold in adults within 48 h, along with a significant reduction of egg hatching rate. When exposed to CdSe/ZnS quantum dots (up to 135 mg/L), no significant change in egg productions or hatching rates was observed, while the expression of ftn still significantly increased to over 3.0-fold in the initial 48 h. After that, the upregulation of ftn induced by CdSe/ZnS quantum dots or nickel nanoparticles both gradually returned back within 96 h. These findings demonstrate the highly sensitive response of this new cloned ftn to nanomaterial exposures, and highlight the suitability of ftn in A. tonsa as a promising biomonitor for nano-contamination in marine environments.
Collapse
Affiliation(s)
- Chao Zhou
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Department of Environmental Science, Zhejiang University, Hangzhou 310058, China; College of Marine Science and Technology, Zhejiang Ocean University, Zhoushan 316022, China
| | - Jie Hou
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Department of Environmental Science, Zhejiang University, Hangzhou 310058, China.
| | - Daohui Lin
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Department of Environmental Science, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
3
|
Chen H, Wang J, Zhuang Y, Yu W, Liu G. Reduced Fitness and Elevated Oxidative Stress in the Marine Copepod Tigriopus japonicus Exposed to the Toxic Dinoflagellate Karenia mikimotoi. Antioxidants (Basel) 2022; 11:2299. [PMID: 36421485 PMCID: PMC9687495 DOI: 10.3390/antiox11112299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 11/13/2022] [Accepted: 11/17/2022] [Indexed: 11/23/2022] Open
Abstract
Blooms of the toxic dinoflagellate Karenia mikimotoi cause devastation to marine life, including declines of fitness and population recruitment. However, little is known about the effects of them on benthic copepods. Here, we assessed the acute and chronic effects of K. mikimotoi on the marine benthic copepod Tigriopus japonicus. Results showed that adult females maintained high survival (>85%) throughout 14-d incubation, but time-dependent reduction of survival was detected in the highest K. mikimotoi concentration, and nauplii and copepodites were more vulnerable compared to adults. Ingestion of K. mikimotoi depressed the grazing of copepods but significantly induced the generation of reactive oxygen species (ROS), total antioxidant capacity, activities of antioxidant enzymes (superoxide dismutase, catalase, and glutathione peroxidase), and acetylcholinesterase. Under sublethal concentrations for two generations, K. mikimotoi reduced the fitness of copepods by prolonging development time and decreasing successful development rate, egg production, and the number of clutches. Our findings suggest that the bloom of K. mikimotoi may threaten copepod population recruitment, and its adverse effects are associated with oxidative stress.
Collapse
Affiliation(s)
- Hongju Chen
- Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China
- Laboratory for Marine Ecology and Environmental Science Laboratory, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Jing Wang
- Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China
| | - Yunyun Zhuang
- Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China
- Laboratory for Marine Ecology and Environmental Science Laboratory, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Wenzhuo Yu
- Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China
| | - Guangxing Liu
- Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China
- Laboratory for Marine Ecology and Environmental Science Laboratory, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| |
Collapse
|
4
|
Sotero DF, Benvindo-Souza M, Pereira de Freitas R, de Melo E Silva D. Bats and pollution: Genetic approaches in ecotoxicology. CHEMOSPHERE 2022; 307:135934. [PMID: 35952787 DOI: 10.1016/j.chemosphere.2022.135934] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 06/21/2022] [Accepted: 07/31/2022] [Indexed: 06/15/2023]
Abstract
Environmental pollution drives the decline of species and, as flying mammals, bats can be considered to be excellent indicators of environmental quality, and the analysis of genetic biomarkers in these animals can provide important parameters for the assessment of environmental health. This review verifies the trends in pollution research, in particular, the use of genetic markers in the study of bats, based on a literature search of the Web of Science and Scopus platforms. Sixteen publications were identified during the search, which focused on the timeframe between 1996 and March 2022, including investigations of the effects of heavy metals, agricultural pesticides, and radiation. The studies were based primarily on the application of biomarkers for genotoxic analysis, including the comet assay, micronucleus test, and the Polymerase Chain Reaction (PCR). Only 55 bat species have been investigated up to now, that is, 4% of the 1447 currently recognized. In general, bats exposed to polluted environments presented a higher frequency of genotoxic and mutagenic damage than those sampled in clean environments. Given the importance of the diverse ecological functions provided by bats, including pest control, pollination, and seed dispersal, it is increasingly necessary to investigate the damage caused to the health of these animals exposed to areas with high concentrations of contaminants. Although genetic biomarkers have been used to investigate physiological parameters in bats for more than two decades, then, many knowledge gaps remain, worldwide, in terms of the number of species and localities investigated.
Collapse
Affiliation(s)
- Daiany Folador Sotero
- Graduate Program in Genetics and Molecular Biology. Institute of Biological Sciences, Mutagenesis Laboratory, Goiânia, Goiás, Brazil; Graduate Program in Environmental Sciences, Graduate School, Goiânia, Goiás, Brazil.
| | | | | | - Daniela de Melo E Silva
- Graduate Program in Genetics and Molecular Biology. Institute of Biological Sciences, Mutagenesis Laboratory, Goiânia, Goiás, Brazil; Graduate Program in Environmental Sciences, Graduate School, Goiânia, Goiás, Brazil.
| |
Collapse
|
5
|
Kim K, Yoon H, Choi JS, Jung YJ, Park JW. Chronic effects of nano and microplastics on reproduction and development of marine copepod Tigriopus japonicus. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 243:113962. [PMID: 35988379 DOI: 10.1016/j.ecoenv.2022.113962] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 08/02/2022] [Accepted: 08/08/2022] [Indexed: 06/15/2023]
Abstract
This study aimed to examine the impact of chronic (30 days) exposure to polystyrene microplastics (PS-MPs) of different sizes (50 nm and 2 µm) and at different concentrations (0.5 μg/L and 100 mg/L) to marine copepod Tigriopus japonicus. Polystyrene microplastics affected survival rates in size- and concentration-dependent manners. The LC50s values of 50 nm and 2 µm PS-MPs were 0.10 mg/L and 3.92 mg/L, respectively. The developmental time was delayed by 50 nm PS-MPs, and Usp expression was downregulated. Reproduction was negatively affected by 2 µm PS-MPs even at environmentally relevant concentrations; however, the expression of Vtg was not altered. The production rates of reactive oxygen species and nitric oxide also increased after exposure to PS-MPs; but this effect was independent of particle size. The expression levels of Cat and Tnf, genes related to oxidative stress and inflammation, respectively, were upregulated by exposure to PS-MPs, independently of particle size. Meanwhile, the level of oxidative stress in T. japonicus was not significantly affected by PS-MPs at environmentally relevant concentrations. This study suggests that nano-sized PS-MPs are not always more toxic than micro-sized PS-MPs, and that oxidative stress is a key factor in determining the toxic effect on T. japonicus at high concentrations.
Collapse
Affiliation(s)
- Kanghee Kim
- Environmental Exposure & Toxicology Research Center, Korea Institute of Toxicology, 17, Jegok-gil, Jinju 52834, Republic of Korea; Human and Environmental Toxicology Program, University of Science and Technology, 217, Gajeong-ro, Daejeon 34113, Republic of Korea
| | - Hakwon Yoon
- Environmental Exposure & Toxicology Research Center, Korea Institute of Toxicology, 17, Jegok-gil, Jinju 52834, Republic of Korea
| | - Jin Soo Choi
- Environmental Exposure & Toxicology Research Center, Korea Institute of Toxicology, 17, Jegok-gil, Jinju 52834, Republic of Korea
| | - Youn-Joo Jung
- Environmental Exposure & Toxicology Research Center, Korea Institute of Toxicology, 17, Jegok-gil, Jinju 52834, Republic of Korea
| | - June-Woo Park
- Environmental Exposure & Toxicology Research Center, Korea Institute of Toxicology, 17, Jegok-gil, Jinju 52834, Republic of Korea; Human and Environmental Toxicology Program, University of Science and Technology, 217, Gajeong-ro, Daejeon 34113, Republic of Korea.
| |
Collapse
|
6
|
Wang Q, Lu X, Chen X, Zhao L, Han M, Wang S, Zhang Y, Fan Y, Ye W. Genome-wide identification and function analysis of HMAD gene family in cotton (Gossypium spp.). BMC PLANT BIOLOGY 2021; 21:386. [PMID: 34416873 PMCID: PMC8377987 DOI: 10.1186/s12870-021-03170-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Accepted: 08/11/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND The abiotic stress such as soil salinization and heavy metal toxicity has posed a major threat to sustainable crop production worldwide. Previous studies revealed that halophytes were supposed to tolerate other stress including heavy metal toxicity. Though HMAD (heavy-metal-associated domain) was reported to play various important functions in Arabidopsis, little is known in Gossypium. RESULTS A total of 169 G. hirsutum genes were identified belonging to the HMAD gene family with the number of amino acids ranged from 56 to 1011. Additionally, 84, 76 and 159 HMAD genes were identified in each G. arboreum, G. raimondii and G. barbadense, respectively. The phylogenetic tree analysis showed that the HMAD gene family were divided into five classes, and 87 orthologs of HMAD genes were identified in four Gossypium species, such as genes Gh_D08G1950 and Gh_A08G2387 of G. hirsutum are orthologs of the Gorai.004G210800.1 and Cotton_A_25987 gene in G. raimondii and G. arboreum, respectively. In addition, 15 genes were lost during evolution. Furthermore, conserved sequence analysis found the conserved catalytic center containing an anion binding (CXXC) box. The HMAD gene family showed a differential expression levels among different tissues and developmental stages in G. hirsutum with the different cis-elements for abiotic stress. CONCLUSIONS Current study provided important information about HMAD family genes under salt-stress in Gossypium genome, which would be useful to understand its putative functions in different species of cotton.
Collapse
Affiliation(s)
- Qinqin Wang
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Research Base, Zhengzhou University, State Key Laboratory of Cotton Biology / Key Laboratory for Cotton Genetic Improvement, MOA, Anyang, Henan 455000 China
| | - Xuke Lu
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Research Base, Zhengzhou University, State Key Laboratory of Cotton Biology / Key Laboratory for Cotton Genetic Improvement, MOA, Anyang, Henan 455000 China
| | - Xiugui Chen
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Research Base, Zhengzhou University, State Key Laboratory of Cotton Biology / Key Laboratory for Cotton Genetic Improvement, MOA, Anyang, Henan 455000 China
| | - Lanjie Zhao
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Research Base, Zhengzhou University, State Key Laboratory of Cotton Biology / Key Laboratory for Cotton Genetic Improvement, MOA, Anyang, Henan 455000 China
| | - Mingge Han
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Research Base, Zhengzhou University, State Key Laboratory of Cotton Biology / Key Laboratory for Cotton Genetic Improvement, MOA, Anyang, Henan 455000 China
| | - Shuai Wang
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Research Base, Zhengzhou University, State Key Laboratory of Cotton Biology / Key Laboratory for Cotton Genetic Improvement, MOA, Anyang, Henan 455000 China
| | - Yuexin Zhang
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Research Base, Zhengzhou University, State Key Laboratory of Cotton Biology / Key Laboratory for Cotton Genetic Improvement, MOA, Anyang, Henan 455000 China
| | - Yapeng Fan
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Research Base, Zhengzhou University, State Key Laboratory of Cotton Biology / Key Laboratory for Cotton Genetic Improvement, MOA, Anyang, Henan 455000 China
| | - Wuwei Ye
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Research Base, Zhengzhou University, State Key Laboratory of Cotton Biology / Key Laboratory for Cotton Genetic Improvement, MOA, Anyang, Henan 455000 China
| |
Collapse
|
7
|
VanIderstine CR, Poley JD, Whyte SK, Purcell SL, Fast MD. Hydrogen peroxide treatment and its impacts on Lepeophtheirus salmonis originating from the Bay of Fundy, Canada. JOURNAL OF FISH DISEASES 2021; 44:757-769. [PMID: 33146907 DOI: 10.1111/jfd.13299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 10/19/2020] [Accepted: 10/21/2020] [Indexed: 06/11/2023]
Abstract
Hydrogen peroxide (H2 O2 ) is used to treat sea lice infections of farmed salmonids in the Atlantic and Pacific Oceans and issues with resistance to this treatment, and others are a major threat to the sustainability of the industry. The objectives of this study were to determine how H2 O2 exposure affects survival and antioxidant-related gene expression in salmon lice (Lepeophtheirus salmonis) collected from the Bay of Fundy, New Brunswick. The maximum recommended dose of H2 O2 is 1,800 mg/L, while the EC50 values (with 95% CI) for the population tested were 1,486 (457, 2,515) mg/L for males and 2,126 (984, 3,268) mg/L for females. Neither temperature nor pretreatment with emamectin benzoate (EMB) impacted survival after H2 O2 exposure. RT-qPCR was performed on pre-adult sea lice exposed to H2 O2 and showed that four genes classically involved in the response to oxidative stress were unchanged between treated and control groups. Seven genes were found to be significantly upregulated in males and one in females. This is the first report on the efficacy and molecular responses of Atlantic Canada sea lice to H2 O2 treatment.
Collapse
Affiliation(s)
- Carter R VanIderstine
- Hoplite Lab, Department of Pathology & Microbiology, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PE, Canada
| | - Jordan D Poley
- Hoplite Lab, Department of Pathology & Microbiology, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PE, Canada
| | - Shona K Whyte
- Hoplite Lab, Department of Pathology & Microbiology, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PE, Canada
| | - Sara L Purcell
- Hoplite Lab, Department of Pathology & Microbiology, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PE, Canada
| | - Mark D Fast
- Hoplite Lab, Department of Pathology & Microbiology, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PE, Canada
| |
Collapse
|
8
|
Kim JH, Jeong EH, Jeon YH, Kim SK, Hur YB. Salinity-mediated changes in hematological parameters, stress, antioxidant responses, and acetylcholinesterase of juvenile olive flounders (Paralichthys olivaceus). ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2021; 83:103597. [PMID: 33493675 DOI: 10.1016/j.etap.2021.103597] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 01/05/2021] [Accepted: 01/17/2021] [Indexed: 06/12/2023]
Abstract
The purpose of this study was to confirm the limit of salinity tolerance in juvenile olive flounders (Paralichthys olivaceus) by changes in blood parameters, AChE, antioxidant and stress responses. The P. olivaceus (mean weight 38.8 ± 4.2 g and mean length 16.4 ± 1.2 cm) were exposed to different concentrations of salinity (seawater, 16, 8, 4, 2, and 0 psu) for 2 weeks. Plasma osmotic pressure was significantly decreased in the P. olivaceus at 0 psu. Hematological parameters such as hematocrit and hemoglobin were significantly decreased in the P. olivaceus at low salinity. Plasma components also changed significantly in the low salinity environment. As a stress indicator, cortisol was significantly increased at low salinity. SOD and GST antioxidant responses, were significantly increased. GSH level in the liver was significantly increased, whereas a significant decrease was observed in the gill GSH level. AChE was significantly increased in P. olivaceus at low salinity. The results of this study indicate that exposure to salinities lower than 8 psu leads to changes in hematological parameters, neurotransmitter, antioxidant and stress responses of P. olivaceus.
Collapse
Affiliation(s)
- Jun-Hwan Kim
- National Institute of Fisheries Science, West Sea Fisheries Research Institute, Fisheries Research & Development, Taean 32132, Republic of Korea; Department of Aquatic Life and Medical Science, Sun Moon University, Asan 31460, Republic of Korea.
| | - Eun-Ha Jeong
- National Institute of Fisheries Science, West Sea Fisheries Research Institute, Fisheries Research & Development, Taean 32132, Republic of Korea
| | - Yu-Hyeon Jeon
- National Institute of Fisheries Science, West Sea Fisheries Research Institute, Fisheries Research & Development, Taean 32132, Republic of Korea
| | - Su Kyoung Kim
- National Institute of Fisheries Science, West Sea Fisheries Research Institute, Fisheries Research & Development, Taean 32132, Republic of Korea
| | - Young Baek Hur
- National Institute of Fisheries Science, West Sea Fisheries Research Institute, Fisheries Research & Development, Taean 32132, Republic of Korea
| |
Collapse
|
9
|
Hong H, Wang J, Shi D. Effects of salinity on the chronic toxicity of 4-methylbenzylidene camphor (4-MBC) in the marine copepod Tigriopus japonicus. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2021; 232:105742. [PMID: 33460951 DOI: 10.1016/j.aquatox.2021.105742] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 12/09/2020] [Accepted: 01/04/2021] [Indexed: 06/12/2023]
Abstract
Organic ultraviolet filters are widely used in personal care products. 4-methylbenzylidene camphor (4-MBC) is one of the most frequently used UV filters. Due to its widespread usage 4-MBC has been detected at high concentrations in offshore waters. Previous toxicological studies have suggested that 4-MBC might induce much higher toxicity in marine organisms than freshwater species. To explore the effects of salinity on 4-MBC toxicity, the marine copepod Tigriopus japonicus was used as the model species, as it plays an important role in marine ecosystems and can be adapted to a wide range of salinity conditions. T. japonicus were adapted to three different salinity conditions (i.e., 20, 30 and 40 ppt) prior to exposure to 0, 1, and 5 μg L-1 4-MBC for multiple generations (F0-F3). Results showed that environmentally relevant concentrations of 4-MBC had toxic effects on T. japonicus and therefore, can pose a significant risk to marine copepods in the natural environment. In addition, increasing salinity levels increased the lethal, developmental and reproductive toxicities of 4-MBC in T. japonicus. This was because that higher salinity levels increased the uptake rate constant and bioconcentration factor of 4-MBC and also further exacerbated the oxidative stress induced by exposure to 4-MBC in T. japonicus. Our study demonstrated that understanding how salinity affects the toxicity of 4-MBC is important for accurate assessment of the risk of 4-MBC in the aquatic environments.
Collapse
Affiliation(s)
- Haizheng Hong
- State Key Laboratory of Marine Environmental Science and College of the Environment and Ecology, Xiamen University, Xiamen, 361102, China; Center for Marine Environmental Chemistry and Toxicology, Xiamen University, Xiamen, 361102, China.
| | - Jiaxin Wang
- State Key Laboratory of Marine Environmental Science and College of the Environment and Ecology, Xiamen University, Xiamen, 361102, China
| | - Dalin Shi
- State Key Laboratory of Marine Environmental Science and College of the Environment and Ecology, Xiamen University, Xiamen, 361102, China
| |
Collapse
|
10
|
Lee J, Phillips MC, Lobo M, Willett CS. Tolerance Patterns and Transcriptomic Response to Extreme and Fluctuating Salinities across Populations of the Intertidal Copepod Tigriopus californicus. Physiol Biochem Zool 2020; 94:50-69. [PMID: 33306461 DOI: 10.1086/712031] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
AbstractPopulations that tolerate extreme environmental conditions with frequent fluctuations can give valuable insights into physiological limits and adaptation. In some estuarine and marine ecosystems, organisms must adapt to extreme and fluctuating salinities, but not much is known about how varying salinities impact local adaptation across a wide geographic range. We used eight geographically and genetically divergent populations of the intertidal copepod Tigriopus californicus to test whether northern populations have greater tolerance to low salinity stresses, as they experience greater precipitation and less evaporation. We used a common-garden experiment approach and exposed all populations to acute low (1 and 3 ppt) and high (110 and 130 ppt) salinities for 24 h and to a fluctuation between baseline salinity and moderate low (7 ppt) and high (80 ppt) salinities for over 49 h. We also performed RNA sequencing at several time points during the fluctuation between baseline and salinity of 7 ppt to understand the molecular basis of divergence between two populations with differing physiological responses. We present these novel findings: (1) acute low salinity conditions caused more deaths than high salinity; (2) molecular processes that elevate proline levels increased in salinity of 7 ppt, which contrasts with other physiological studies in T. californicus that mainly associated accumulation of proline with hyperosmotic stress; and (3) tolerance to a salinity fluctuation did not follow a latitudinal trend but was instead governed by a complex interplay of factors, including population and duration of salinity stress. This highlights the importance of including a wider variety of environmental conditions in empirical studies to understand local adaptation.
Collapse
|
11
|
Wong SWY, Zhou GJ, Leung PTY, Han J, Lee JS, Kwok KWH, Leung KMY. Sunscreens containing zinc oxide nanoparticles can trigger oxidative stress and toxicity to the marine copepod Tigriopus japonicus. MARINE POLLUTION BULLETIN 2020; 154:111078. [PMID: 32319911 DOI: 10.1016/j.marpolbul.2020.111078] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 03/13/2020] [Accepted: 03/16/2020] [Indexed: 06/11/2023]
Abstract
The study, for the first time, evaluated the leaching rate of zinc oxide nanoparticles (nZnO) from human skins which were applied with three commercial sunscreens containing nZnO as an active ingredient. The leaching rate of nZnO varied greatly among the sunscreens, with a range of 8-72% (mean ± SD: 45% ± 33%). We further investigated their toxicities to the marine copepod Tigriopus japonicus. We found that 96-h median lethal concentrations of the three sunscreens to T. japonicus were > 5000, 230.6, and 43.0 mg chemical L-1, respectively, equivalent to Zn2+ concentrations at >82.5, 3.2, and 1.2 mg Zn L-1, respectively. Exposure to the individual sunscreens at environmentally realistic concentrations for 96 h led to up-regulation of antioxidant genes in T. japonicus, while they triggered the release of reactive oxygen species based on the results of in vivo assays. Evidently, these nZnO-included sunscreens can cause oxidative stress and hence pose risk to marine organisms.
Collapse
Affiliation(s)
- Stella W Y Wong
- The Swire Institute of Marine Science and School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Guang-Jie Zhou
- The Swire Institute of Marine Science and School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China.
| | - Priscilla T Y Leung
- The Swire Institute of Marine Science and School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China; State Key Laboratory of Marine Pollution, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Jeonghoon Han
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon, South Korea
| | - Jae-Seong Lee
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon, South Korea
| | - Kevin W H Kwok
- The Swire Institute of Marine Science and School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China; Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China
| | - Kenneth M Y Leung
- The Swire Institute of Marine Science and School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China; State Key Laboratory of Marine Pollution, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China.
| |
Collapse
|
12
|
Carotenuto Y, Vitiello V, Gallo A, Libralato G, Trifuoggi M, Toscanesi M, Lofrano G, Esposito F, Buttino I. Assessment of the relative sensitivity of the copepods Acartia tonsa and Acartia clausi exposed to sediment-derived elutriates from the Bagnoli-Coroglio industrial area. MARINE ENVIRONMENTAL RESEARCH 2020; 155:104878. [PMID: 31975692 DOI: 10.1016/j.marenvres.2020.104878] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 01/16/2020] [Accepted: 01/16/2020] [Indexed: 06/10/2023]
Abstract
The sensitivity of the copepods Acartia tonsa, commonly used in standardized tests for environmental risk assessment and A. clausi, the dominant autochthonous congener species in the Mediterranean Sea, was assessed using sediment-derived elutriates from the industrial area of Bagnoli-Coroglio and nickel chloride as referent toxicant. Acute A. clausi naupliar immobilization test showed EC50 for elutriates E25, E56 and E84 of 23.3%, 80.5% and >100%, respectively, compared to 59.5%, 66.6% and >100% in A. tonsa. In the 7 day sublethal test, a reduction in A. clausi egg production rates was observed in all elutriates, but only in E56 for A. tonsa. Elutriate 56, which contained the highest amount of polycyclic aromatic hydrocarbons, also induced 70% mortality in A. clausi females. Although A. clausi was more sensitive than A. tonsa, the two species had convergent responses to the three elutriates, thus opening the venue for a potential use of A. clausi in standardized ecotoxicity tests.
Collapse
Affiliation(s)
- Ylenia Carotenuto
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Villa Comunale 1, 80121, Napoli, Italy.
| | - Valentina Vitiello
- Istituto Superiore per la Protezione e Ricerca Ambientale, via del cedro 38, 57122, Livorno, Italy
| | - Alessandra Gallo
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Villa Comunale 1, 80121, Napoli, Italy
| | - Giovanni Libralato
- Department of Biology, University of Naples Federico II, Complesso Universitario di Monte Sant'Angelo, Via Cinthia 21, 80126, Naples, Italy
| | - Marco Trifuoggi
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario di Monte Sant'Angelo, Via Cinthia 21, 80126, Naples, Italy
| | - Maria Toscanesi
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario di Monte Sant'Angelo, Via Cinthia 21, 80126, Naples, Italy
| | - Giusy Lofrano
- Centro Servizi Metrologici e Tecnologici Avanzati (CeSMA), Complesso Universitario di Monte Sant'Angelo, Via Cinthia 21, 80126, Naples, Italy
| | - Francesco Esposito
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Villa Comunale 1, 80121, Napoli, Italy
| | - Isabella Buttino
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Villa Comunale 1, 80121, Napoli, Italy; Istituto Superiore per la Protezione e Ricerca Ambientale, via del cedro 38, 57122, Livorno, Italy.
| |
Collapse
|
13
|
Fu Y, Mason AS, Zhang Y, Lin B, Xiao M, Fu D, Yu H. MicroRNA-mRNA expression profiles and their potential role in cadmium stress response in Brassica napus. BMC PLANT BIOLOGY 2019; 19:570. [PMID: 31856702 PMCID: PMC6923997 DOI: 10.1186/s12870-019-2189-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 12/08/2019] [Indexed: 05/18/2023]
Abstract
BACKGROUND Oilseed rape is an excellent candidate for phytoremediation of cadmium (Cd) contaminated soils given its advantages of high biomass, fast growth, moderate metal accumulation, ease of harvesting, and metal tolerance, but the cadmium response pathways in this species (Brassica napus) have yet to be fully elucidated. A combined analysis of miRNA and mRNA expression to infer Cd-induced regulation has not been reported in B. napus. RESULTS We characterized concurrent changes in miRNA and mRNA profiles in the roots and shoots of B. napus seedlings after 10 days of 10 mg/L Cd2+ treatment. Cd treatment significantly affected the expression of 22 miRNAs belonging to 11 families in the root and 29 miRNAs belonging to 14 miRNA families in the shoot. Five miRNA families (MIR395, MIR397, MIR398, MIR408 and MIR858) and three novel miRNAs were differentially expressed in both tissues. A total of 399 differentially expressed genes (DEGs) in the root and 389 DEGs in the shoot were identified, with very little overlap between tissue types. Eight anti-regulation miRNA-mRNA interaction pairs in the root and eight in the shoot were identified in response to Cd and were involved in key plant stress response pathways: for example, four genes targeted by miR398 were involved in a pathway for detoxification of superoxide radicals. Cd stress significantly impacted the photosynthetic pathway. Transcription factor activation, antioxidant response pathways and secondary metabolic processes such as glutathione (GSH) and phenylpropanoid metabolism were identified as major components for Cd-induced response in both roots and shoots. CONCLUSIONS Combined miRNA and mRNA profiling revealed miRNAs, genes and pathways involved in Cd response which are potentially critical for adaptation to Cd stress in B. napus. Close crosstalk between several Cd-induced miRNAs and mRNAs was identified, shedding light on possible mechanisms for response to Cd stress in underground and aboveground tissues in B. napus. The pathways, genes, and miRNAs identified here will be valuable targets for future improvement of cadmium tolerance in B. napus.
Collapse
Affiliation(s)
- Ying Fu
- Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Annaliese S. Mason
- Department of Plant Breeding, IFZ for Biosystems, Land Use and Nutrition, Justus Liebig University, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany
| | - Yaofeng Zhang
- Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Baogang Lin
- Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Meili Xiao
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Agronomy College, Jiangxi Agricultural University, Nanchang, 330045 China
| | - Donghui Fu
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Agronomy College, Jiangxi Agricultural University, Nanchang, 330045 China
| | - Huasheng Yu
- Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| |
Collapse
|
14
|
Wang X, Shi C, Chen G, Jiang J, Zhang C, Qiao Y, Ju Y, Wang R, Kan G, Wei H, Zhu F. Characterization of recombinant glutathione reductase from Antarctic yeast Rhodotorula mucilaginosa. Polar Biol 2019. [DOI: 10.1007/s00300-019-02603-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
15
|
Sahlmann A, Lode T, Heuschele J, Borgå K, Titelman J, Hylland K. Genotoxic Response and Mortality in 3 Marine Copepods Exposed to Waterborne Copper. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2019; 38:2224-2232. [PMID: 31343775 DOI: 10.1002/etc.4541] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 04/05/2019] [Accepted: 07/11/2019] [Indexed: 06/10/2023]
Abstract
Copper (Cu) is an essential trace metal, but may also be toxic to aquatic organisms. Although many studies have investigated the cytotoxicity of Cu, little is known about the in vivo genotoxic potential of Cu in marine invertebrates. We investigated the genotoxicity of Cu in 2 pelagic calanoid copepods, Acartia tonsa and Temora longicornis, and the intertidal harpacticoid copepod Tigriopus brevicornis by exposing them for 6 and 72 h to waterborne Cu (0, 6, and 60 µg Cu/L). A subsequent 24-h period in filtered seawater was used to investigate delayed effects or recovery. Genotoxicity was evaluated as DNA strand breaks in individual copepods using the comet assay. Copper did not increase DNA strand breaks in any of the species at any concentration or time point. The treatment did, however, cause 100% mortality in A. tonsa following exposure to 60 µg Cu/L. Acartia tonsa and T. longicornis were more susceptible to Cu-induced mortality than the benthic harpacticoid T. brevicornis, which appeared to be unaffected by the treatments. The results show major differences in Cu susceptibility among the 3 copepods and also that acute toxicity of Cu to A. tonsa is not directly associated with genotoxicity. We also show that the comet assay can be used to quantify genotoxicity in individual copepods. Environ Toxicol Chem 2019;38:2224-2232. © 2019 SETAC.
Collapse
Affiliation(s)
| | - Torben Lode
- Department of Biosciences, University of Oslo, Oslo, Norway
| | - Jan Heuschele
- Department of Biosciences, University of Oslo, Oslo, Norway
| | - Katrine Borgå
- Department of Biosciences, University of Oslo, Oslo, Norway
| | | | - Ketil Hylland
- Department of Biosciences, University of Oslo, Oslo, Norway
| |
Collapse
|
16
|
Chan CY, Wang WX. Biomarker responses in oysters Crassostrea hongkongensis in relation to metal contamination patterns in the Pearl River Estuary, southern China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 251:264-276. [PMID: 31082611 DOI: 10.1016/j.envpol.2019.04.140] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 04/25/2019] [Accepted: 04/30/2019] [Indexed: 06/09/2023]
Abstract
The Pearl River Estuary (PRE) is the third largest estuary in China, where estuarine organisms are under metal stress at various biological levels. Based on the metal concentrations measured in oyster Crassostrea hongkongensis, we documented a change in dominance of metal contamination from Cd, Cr, Cu, Ni and Zn to Ag, Cd, Cu and Zn. In general, metal concentrations were higher in upstream stations and displayed a clear up-downstream gradient. Compared to the historical values, we noted the reductions in Cd, Cr and Ni concentrations, and the changing inputs due to evolving industrial activities were responsible for shaping the metal contamination profile in the PRE region. Along with metal concentrations, a suite of biomarkers was analyzed. Among the metals measured in the oyster tissues, Ag, Cd, Cu, Ni and Zn showed the strongest associations with pro-oxidant and oxidative stress responses (superoxide dismutase, lipid peroxidation and lysosomal membrane destabilization) and detoxification responses (glutathione and metallothionein), suggesting that the present metal contamination still exerts significant amount of stress in biota in the PRE. Metal contamination in estuaries in China is still severe compared to other countries, therefore continuous efforts should be taken to monitor the changing metal profiles with necessary control and remediation measures.
Collapse
Affiliation(s)
- Cheuk Yan Chan
- HKUST Shenzhen Research Institute, Shenzhen, 518 057, State Key Laboratory of Marine Pollution, Department of Ocean Science, HKUST, Clear Water Bay, Kowloon, Hong Kong, China
| | - Wen-Xiong Wang
- HKUST Shenzhen Research Institute, Shenzhen, 518 057, State Key Laboratory of Marine Pollution, Department of Ocean Science, HKUST, Clear Water Bay, Kowloon, Hong Kong, China.
| |
Collapse
|
17
|
Li N, Arief N, Edmands S. Effects of oxidative stress on sex-specific gene expression in the copepod Tigriopus californicus revealed by single individual RNA-seq. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2019; 31:100608. [PMID: 31325755 DOI: 10.1016/j.cbd.2019.100608] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 07/08/2019] [Accepted: 07/08/2019] [Indexed: 12/16/2022]
Abstract
Oxidative stress reflects the imbalance of pro-oxidants and antioxidants. Prolonged oxidative stress can induce cellular damage, diseases and aging, and the effects may be sex-specific. Tigriopus californicus has recently been proposed as an alternative model system for sex-specific studies due to the absence of sex chromosomes. In this study, we used comparative transcriptomic analyses to assess sex-specific transcriptional responses to oxidative stress. Male and female individuals were maintained separately in one of three treatments: 1) control conditions with an algae diet, 2) pro-oxidant (H2O2) conditions with an algae diet or 3) decreased antioxidant conditions (reduced carotenoids due to a yeast diet). Single individual RNA-seq was then conducted for twenty-four libraries using Ligation Mediated RNA sequencing (LM-Seq). Variance in gene expression was partitioned into 62.3% between sexes, 26.85% among individuals and 10.85% among treatments. Within each of the three treatments, expression was biased toward females. However, compared to the control treatment, males in both pro-oxidant and decreased antioxidant treatments differentially expressed more genes while females differentially expressed fewer genes but with a greater magnitude of fold change. As the first study of copepods to apply single individual RNA-seq, the findings will contribute to a better understanding of transcriptomic variation among individuals as well as sex-specific response mechanisms to oxidative stress in the absence of sex chromosomes.
Collapse
Affiliation(s)
- Ning Li
- Department of Biological Sciences, University of Southern California, 3616 Trousdale Parkway, Los Angeles, CA 90089, USA.
| | - Natasha Arief
- Department of Biological Sciences, University of Southern California, 3616 Trousdale Parkway, Los Angeles, CA 90089, USA.
| | - Suzanne Edmands
- Department of Biological Sciences, University of Southern California, 3616 Trousdale Parkway, Los Angeles, CA 90089, USA.
| |
Collapse
|
18
|
Tarrant AM, Nilsson B, Hansen BW. Molecular physiology of copepods - from biomarkers to transcriptomes and back again. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2019; 30:230-247. [DOI: 10.1016/j.cbd.2019.03.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 03/14/2019] [Accepted: 03/16/2019] [Indexed: 12/31/2022]
|
19
|
Zhou C, Carotenuto Y, Vitiello V, Wu C, Zhang J, Buttino I. De novo transcriptome assembly and differential gene expression analysis of the calanoid copepod Acartia tonsa exposed to nickel nanoparticles. CHEMOSPHERE 2018; 209:163-172. [PMID: 29929122 DOI: 10.1016/j.chemosphere.2018.06.096] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 06/04/2018] [Accepted: 06/12/2018] [Indexed: 06/08/2023]
Abstract
The calanoid copepod Acartia tonsa is a reference species in standardized ecotoxicology bioassay. Despite this interest, there is a lack of knowledge on molecular responses of A. tonsa to contaminants. We generated a de novo assembled transcriptome of A. tonsa exposed 4 days to 8.5 and 17 mg/L nickel nanoparticles (NiNPs), which have been shown to reduce egg hatching success and larval survival but had no effects on the adults. Aims of our study were to 1) improve the knowledge on the molecular responses of A. tonsa copepod and 2) increase the genomic resources of this copepod for further identification of potential biomarkers of NP exposure. The de novo assembled transcriptome of A. tonsa consisted of 53,619 unigenes, which were further annotated to nr, GO, KOG and KEGG databases. In particular, most unigenes were assigned to Metabolic and Cellular processes (34-45%) GO terms, and to Human disease (28%) and Organismal systems (23%) KEGG categories. Comparison among treatments showed that 373 unigenes were differentially expressed in A. tonsa exposed to NiNPs at 8.5 and 17 mg/L, with respect to control. Most of these genes were downregulated and took part in ribosome biogenesis, translation and protein turnover, thus suggesting that NiNPs could affect the copepod ribosome synthesis machinery and functioning. Overall, our study highlights the potential of toxicogenomic approach in gaining more mechanistic and functional information about the mode of action of emerging compounds on marine organisms, for biomarker discovering in crustaceans.
Collapse
Affiliation(s)
- Chao Zhou
- National Engineering Research Center of Marine Facilities Aquaculture, College of Marine Science and Technology, Zhejiang Ocean University, No.1 Haida South Road, Lincheng Changzhi Island, Zhoushan, Zhejiang 316022, PR China
| | - Ylenia Carotenuto
- Stazione Zoologica Anton Dohrn, Department of Integrative Marine Ecology, Villa Comunale, Napoli, Italy
| | - Valentina Vitiello
- Istituto Superiore per La Protezione e Ricerca Ambientale ISPRA, Via del cedro 38, 57122, Livorno, Italy
| | - Changwen Wu
- National Engineering Research Center of Marine Facilities Aquaculture, College of Marine Science and Technology, Zhejiang Ocean University, No.1 Haida South Road, Lincheng Changzhi Island, Zhoushan, Zhejiang 316022, PR China
| | - Jianshe Zhang
- National Engineering Research Center of Marine Facilities Aquaculture, College of Marine Science and Technology, Zhejiang Ocean University, No.1 Haida South Road, Lincheng Changzhi Island, Zhoushan, Zhejiang 316022, PR China
| | - Isabella Buttino
- Stazione Zoologica Anton Dohrn, Department of Integrative Marine Ecology, Villa Comunale, Napoli, Italy; Istituto Superiore per La Protezione e Ricerca Ambientale ISPRA, Via del cedro 38, 57122, Livorno, Italy.
| |
Collapse
|
20
|
Wang J, Zhong X, Zhu K, Lv J, Lv X, Li F, Shi Z. Reactive oxygen species, antioxidant enzyme activity, and gene expression patterns in a pair of nearly isogenic lines of nicosulfuron-exposed waxy maize (Zea mays L.). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:19012-19027. [PMID: 29721793 DOI: 10.1007/s11356-018-2105-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 04/23/2018] [Indexed: 05/18/2023]
Abstract
Nicosulfuron is a post-emergence herbicide used for weed control in maize fields (Zea mays L.). Here, the pair of nearly isogenic inbred lines SN509-R (nicosulfuron resistant) and SN509-S (nicosulfuron sensitive) was used to study the effect of nicosulfuron on growth, oxidative stress, and the activity and gene expression of antioxidant enzymes in waxy maize seedlings. Nicosulfuron treatment was applied at the five-leaf stage and water treatment was used as control. After nicosulfuron treatment, the death of SN509-S might be associated with increased oxidative stress. Compared with SN509-R, higher O2·- and H2O2 accumulations were observed in SN509-S, which can severely damage lipids and proteins, thus reducing membrane stability. The effects were exacerbated with extended exposure time. Both O2·- and H2O2 detoxification is regulated by enzymes. After nicosulfuron treatment, superoxide dismutase (SOD), catalase, ascorbate peroxidase (APX), monodehydroascorbate reductase (MDHAR), dehydroascorbate reductase (DHAR), glutathione reductase (GR), and glutathione-S-transferase (GST) of SN509-S were significantly lower than those of SN509-R. Compared to SN509-R, ascorbate content (AA), glutathione (GSH) content, GSH to glutathione disulfide ratios, and AA to dehydroascorbate ratios significantly declined with increasing exposure time in SN509-S. Compared to SN509-S, nicosulfuron treatment increased the transcript levels of most of the APX genes except for APX1, and in contrast to Gst1, upregulated the transcription of sod9, MDHAR, DHAR, and GR genes in SN509-R. These results suggest that on a transcription level and in accordance with their responses, detoxifying enzymes play a vital role in the O2·- and H2O2 detoxification of maize seedlings under nicosulfuron exposure.
Collapse
Affiliation(s)
- Jian Wang
- Department of Agronomy, Shenyang Agricultural University, Shenyang, 110866, Liaoning, People's Republic of China
| | - Xuemei Zhong
- Department of Agronomy, Shenyang Agricultural University, Shenyang, 110866, Liaoning, People's Republic of China
| | - Kangning Zhu
- Department of Agronomy, Shenyang Agricultural University, Shenyang, 110866, Liaoning, People's Republic of China
| | - Jingbo Lv
- Department of Agronomy, Shenyang Agricultural University, Shenyang, 110866, Liaoning, People's Republic of China
| | - Xiangling Lv
- Department of Agronomy, Shenyang Agricultural University, Shenyang, 110866, Liaoning, People's Republic of China
| | - Fenghai Li
- Department of Agronomy, Shenyang Agricultural University, Shenyang, 110866, Liaoning, People's Republic of China.
| | - Zhensheng Shi
- Department of Agronomy, Shenyang Agricultural University, Shenyang, 110866, Liaoning, People's Republic of China.
| |
Collapse
|
21
|
Wang M, Zhao W, Jia X, Wei J, Wang S. Eco-toxicology effect on Moina mongolica Daday exposed to Cd 2+, Pb 2+, and Hg 2+ by the food chain. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:16024-16036. [PMID: 29594897 DOI: 10.1007/s11356-018-1800-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 03/19/2018] [Indexed: 06/08/2023]
Abstract
As one of the most important contaminants, heavy metals can seriously influence human health via the food chain. In this study, the eco-toxicological effects of Cd2+, Pb2+, and Hg2+ on Moina mongolica Daday were investigated by feeding them Chlorella sp. that contained heavy metals. The relative body lengths of the M. mongolica changed rapidly, peaking at 2 days for Hg2+, 6 days for Cd2+, and 8 days for Pb2+. Moreover, grazing and clearance rates of the experimental group were apparently lower than those of the control group after immersion in heavy metals. Additionally, Cd2+ and Pd2+ in the food significantly influenced the mean lifespan of M. mongolica of the P and F1 generations. Egg production per brood was also significantly impacted by Cd2+ and Pb2+ in the food in generation P. Interestingly, Pb2+ was the only metal that significantly influenced the reproduction times of F2, while the reproductive times were significantly influenced by Cd2+ for generation P. Moreover, Cd2+, Pb2+, and Hg2+ in the food significantly influenced the fecundity of generation P. Evaluation of the population growth parameters of M. mongolica revealed that the intrinsic rate of increase, net reproduction rate, and finite rate of increase were significantly influenced by Cd2+, Pb2+, and Hg2+ in the food in generation P. Additionally, Hg2+ slightly impacted generation time for generation P. Finally, the acute toxicity toward M. mongolica was Hg2+ > Cd2+ > Pb2+. Overall, heavy metals in the food were likely to influence the growth, survival, and population growth of M. mongolica through the food chain.
Collapse
Affiliation(s)
- Meiru Wang
- Key Laboratory of Hydrobiology in Liaoning Province, College of Fisheries and Life Science, Dalian Ocean University, 52 Heishijiao Street, Dalian, 116023, Liaoning Province, China
| | - Wen Zhao
- Key Laboratory of Hydrobiology in Liaoning Province, College of Fisheries and Life Science, Dalian Ocean University, 52 Heishijiao Street, Dalian, 116023, Liaoning Province, China.
| | - Xuying Jia
- Key Laboratory of Hydrobiology in Liaoning Province, College of Fisheries and Life Science, Dalian Ocean University, 52 Heishijiao Street, Dalian, 116023, Liaoning Province, China
| | - Jie Wei
- Key Laboratory of Hydrobiology in Liaoning Province, College of Fisheries and Life Science, Dalian Ocean University, 52 Heishijiao Street, Dalian, 116023, Liaoning Province, China
| | - Shan Wang
- Key Laboratory of Hydrobiology in Liaoning Province, College of Fisheries and Life Science, Dalian Ocean University, 52 Heishijiao Street, Dalian, 116023, Liaoning Province, China
| |
Collapse
|
22
|
Ma B, Lu G, Liu J, Yan Z, Yang H, Pan T. Bioconcentration and multi-biomarkers of organic UV filters (BM-DBM and OD-PABA) in crucian carp. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2017; 141:178-187. [PMID: 28343007 DOI: 10.1016/j.ecoenv.2017.03.034] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Revised: 03/16/2017] [Accepted: 03/22/2017] [Indexed: 06/06/2023]
Abstract
Organic UV filters (OUV-Fs) are increasingly used in sunscreens and personal care products. In the present work, the bioconcentration and multi-biomarker effects of butyl methoxydibenzoylmethane (BM-DBM) and ethylhexyl dimethyl p-aminobenzoate (OD-PABA) were investigated in crucian carp (Carassius auratus). The fish were exposed to various concentrations of BM-DBM (3.88, 35.61, 181.85 and 337.15μg/L), OD-PABA (4.66, 53.83, 264.22 and 459.32μg/L) and their mixture (2.31+2.79, 23.69+26.18, 97.37+134.81 and 193.93+246.08μg/L) for 28 days. The maximal concentrations of two OUV-Fs were detected in the fish liver, followed by the brain, kidney, gill and muscle in most cases. The maximal BCF values of OD-PABA calculated in various exposure concentrations were 0.37 - 101.21 in single exposure groups and 0.11 - 31.09 in mixed exposure groups. Acetylcholinesterase (AChE) activity was significantly inhibited by BM-DBM as well as the mixtures at all of the exposure concentrations and by OD-PABA at higher concentrations (≥264.22μg/L) during 28 days of exposure. The maximal inhibition rates of AChE activity reached 64.04% for BM-DBM, 41.05% for OD-PABA and 61.50% for the mixtures at the highest concentration, which indicated that these two OUV-Fs might damage the central nervous system. Concerning oxidative stress status, BM-DBM and the mixtures significantly increased superoxide dismutase (SOD) and glutathione reductase (GR) activities and inhibited catalase (CAT) activity, while OD-PABA caused a significant increase of GR and CAT activities. AChE and GR activities seemed to be more sensitive biomarkers for BM-DBM and OD-PABA.
Collapse
Affiliation(s)
- Binni Ma
- Key Laboratory of Integrated Regulation and Resources Development of Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Guanghua Lu
- Key Laboratory of Integrated Regulation and Resources Development of Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China; College of Hydraulic and Civil Engineering, XiZang Agricultural and Animal Husbandry College, Linzhi 860000, China.
| | - Jianchao Liu
- Key Laboratory of Integrated Regulation and Resources Development of Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Zhenhua Yan
- Key Laboratory of Integrated Regulation and Resources Development of Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Haohan Yang
- Key Laboratory of Integrated Regulation and Resources Development of Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Ting Pan
- Key Laboratory of Integrated Regulation and Resources Development of Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| |
Collapse
|
23
|
Chen L, Au DWT, Hu C, Peterson DR, Zhou B, Qian PY. Identification of Molecular Targets for 4,5-Dichloro-2-n-octyl-4-isothiazolin-3-one (DCOIT) in Teleosts: New Insight into Mechanism of Toxicity. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:1840-1847. [PMID: 28026967 DOI: 10.1021/acs.est.6b05523] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Environmental pollutants are capable of concomitantly inducing diverse toxic effects. However, it is largely unknown which effects are directly induced and which effects are secondary, thus calling for definitive identification of the initiating molecular event for a pollutant to elucidate the mechanism of toxicity. In the present study, affinity pull-down assays were used to identify target proteins for 4,5-dichloro-2-n-octyl-4-isothiazolin-3-one (DCOIT), a costal pollutant of emerging concern, in various tissues (e.g., brain, liver, plasma, and gonad) from marine medaka (Oryzias melastigma) and zebrafish (Danio rerio). Pull-down results showed that, in male and female brains from medaka and zebrafish, DCOIT had a consistently high affinity for G protein alpha subunits (Gα), suggesting the targeted effects of DCOIT on signaling transduction from G protein-coupled receptors (GPCRs) and an extrapolatable mode of action in teleost brains. Validation using recombinant proteins and molecular docking analysis confirmed that binding of DCOIT to Gα protein competitively inhibited its activation by substrate. Considering the involvement of GPCRs in the regulation of myriad biological processes, including the hypothalamus-pituitary-gonadal-liver axis, binding of DCOIT to upstream Gα proteins in the brain may provide a plausible explanation for the diversity of toxic effects resulting from DCOIT challenge, especially abnormal hormonal production through the mitogen-activated protein kinase pathway. A new mechanism of action based on GPCR signaling is thus hypothesized for endocrine disrupting chemicals and warrants further research to clearly elucidate the link between GPCR signaling and endocrine disruption.
Collapse
Affiliation(s)
- Lianguo Chen
- Division of Life Science, Hong Kong University of Science and Technology , Clear Water Bay, Hong Kong SAR, China
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences , Wuhan 430072, China
| | - Doris W T Au
- State Key Laboratory in Marine Pollution, Department of Biology and Chemistry, City University of Hong Kong , Kowloon, Hong Kong SAR, China
| | - Chenyan Hu
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology , Wuhan 430072, China
| | - Drew R Peterson
- State Key Laboratory in Marine Pollution, Department of Biology and Chemistry, City University of Hong Kong , Kowloon, Hong Kong SAR, China
| | - Bingsheng Zhou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences , Wuhan 430072, China
| | - Pei-Yuan Qian
- Division of Life Science, Hong Kong University of Science and Technology , Clear Water Bay, Hong Kong SAR, China
| |
Collapse
|
24
|
Zhuang Y, Yang F, Xu D, Chen H, Zhang H, Liu G. Spliced leader-based analyses reveal the effects of polycyclic aromatic hydrocarbons on gene expression in the copepod Pseudodiaptomus poplesia. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2017; 183:114-126. [PMID: 28043022 DOI: 10.1016/j.aquatox.2016.12.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 12/11/2016] [Accepted: 12/14/2016] [Indexed: 06/06/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are a group of toxic and carcinogenic pollutants that can adversely affect the development, growth and reproduction of marine organisms including copepods. However, knowledge on the molecular mechanisms regulating the response to PAH exposure in marine planktonic copepods is limited. In this study, we investigated the survival and gene expression of the calanoid copepod Pseudodiaptomus poplesia upon exposure to two PAHs, 1, 2-dimethylnaphthalene (1, 2-NAPH) and pyrene. Acute toxicity responses resulted in 96-h LC50 of 788.98μgL-1 and 54.68μgL-1 for 1, 2-NAPH and pyrene, respectively. Using the recently discovered copepod spliced leader as a primer, we constructed full-length cDNA libraries from copepods exposed to sublethal concentrations and revealed 289 unique genes of diverse functions, including stress response genes and novel genes previously undocumented for this species. Eighty-three gene families were specifically expressed in PAH exposure libraries. We further analyzed the expression of seven target genes by reverse transcription-quantitative PCR in a time-course test with three sublethal concentrations. These target genes have primary roles in detoxification, oxidative defense, and signal transduction, and include different forms of glutathione S-transferase (GST), glutathione peroxidases (GPX), peroxiredoxin (PRDX), methylmalonate-semialdehyde dehydrogenase (MSDH) and ras-related C3 botulinum toxin substrate (RAC1). Expression stability of seven candidate reference genes were evaluated and the two most stable ones (RPL15 and RPS20 for 1, 2-NAPH exposure, RPL15 and EF1D for pyrene exposure) were used to normalize the expression levels of the target genes. Significant upregulation was detected in GST-T, GST-DE, GPX4, PRDX6 and RAC1 upon 1, 2-NAPH exposure, and GST-DE and MSDH upon pyrene exposure. These results indicated that the oxidative stress was induced and that signal transduction might be affected by PAH exposure in P. poplesia. However, gene upregulation was followed by a reduction in expression level towards 96h, indicating a threshold value of exposure time that leads to depressed gene expression. Prolonged exposure may cause dysfunction of detoxification and antioxidant machinery in P. poplesia. The transcriptional responses of GST-T, GPX2 and GPX4 upon pyrene exposure were minimal. Our results reveal the different sensitivity of P. poplesia to two PAHs at both the individual and transcriptional levels. As the first attempt, this study proved that copepod spliced leader is useful for obtaining full-length cDNA in P. poplesia exposed to PAHs and provided a valuable gene resource for this non-model species. This approach can be applied to other calanoid copepods exposed to various stressors, particularly under field conditions.
Collapse
Affiliation(s)
- Yunyun Zhuang
- Key Laboratory of Marine Environment and Ecology, Ministry of Education,Ocean University of China, Qingdao 266100, China
| | - Feifei Yang
- Key Laboratory of Marine Environment and Ecology, Ministry of Education,Ocean University of China, Qingdao 266100, China; Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Donghui Xu
- Key Laboratory of Marine Environment and Ecology, Ministry of Education,Ocean University of China, Qingdao 266100, China
| | - Hongju Chen
- Key Laboratory of Marine Environment and Ecology, Ministry of Education,Ocean University of China, Qingdao 266100, China
| | - Huan Zhang
- Key Laboratory of Marine Environment and Ecology, Ministry of Education,Ocean University of China, Qingdao 266100, China; Department of Marine Sciences, University of Connecticut, Groton, CT 06340, USA.
| | - Guangxing Liu
- Key Laboratory of Marine Environment and Ecology, Ministry of Education,Ocean University of China, Qingdao 266100, China.
| |
Collapse
|
25
|
Herath HMLPB, Wickramasinghe PDSU, Bathige SDNK, Jayasooriya RGPT, Kim GY, Park MA, Kim C, Lee J. Molecular identification and functional delineation of a glutathione reductase homolog from disk abalone (Haliotis discus discus): Insights as a potent player in host antioxidant defense. FISH & SHELLFISH IMMUNOLOGY 2017; 60:355-367. [PMID: 27919756 DOI: 10.1016/j.fsi.2016.12.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 11/08/2016] [Accepted: 12/02/2016] [Indexed: 06/06/2023]
Abstract
Glutathione reductase (GSR) is an enzyme that catalyzes the biochemical conversion of oxidized glutathione (GSSG) into the reduced form (GSH). Since the ratio between the two forms of glutathione (GSH/GSSG) is important for the optimal function of GSH to act as an antioxidant against H2O2, the contribution of GSR as an enzymatic regulatory agent to maintain the proper ratio is essential. Abalones are marine mollusks that frequently encounter environmental factors that can trigger the overproduction of reactive oxygen species (ROS) such as H2O2. Therefore, we conducted the current study to reveal the molecular and functional properties of a GSR homolog in the disk abalone, Haliotis discus discus. The identified cDNA sequence (2325 bp) has a 1356 bp long open reading frame (ORF), coding for a 909 bp long amino acid sequence, which harbors a pyridine nucleotide-disulfide oxidoreductase domain (171-246 aa), a pyridine nucleotide-disulfide oxidoreductase dimerization domain, and a NAD(P)(+)-binding Rossmann fold superfamily signature domain. Four functional residues: the FAD binding site, glutathione binding site, NADPH binding motif, and assembly domain were identified to be conserved among the other species. The recombinant abalone GSR (rAbGSR) exhibited detectable activity in a standard glutathione reductase activity assay. The optimum pH and optimal temperature for the reaction were found to be 7.0 and 50 °C, respectively, while the ionic strength of the medium had no effect. The enzymatic reaction was vastly inhibited by Cu+2 and Cd+2 ions. A considerable effect of cellular protection was detected with a disk diffusion assay conducted with rAbGSR. Moreover, an MTT assay and flow cytometry confirmed the significance of the protective role of rAbGSR in cell function. Furthermore, AbGSR was found to be ubiquitously distributed in different types of abalone tissues. AbGSR mRNA expression was significantly upregulated in response to three immune challenges: Vibrio parahaemolyticus, Listeria monocytogenes, and lipopolysaccharide (LPS), thus indicating its possible involvement in host defense mechanisms during pathogenic infections. Taken together, the results of the current study suggest that AbGSR plays an important role in antioxidant-mediated host defense mechanisms and also provide insights into the immunological contribution of AbGSR.
Collapse
Affiliation(s)
- H M L P B Herath
- Department of Marine Life Sciences, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea; Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea
| | - P D S U Wickramasinghe
- Department of Marine Life Sciences, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea; Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea
| | - S D N K Bathige
- Department of Marine Life Sciences, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea; Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea
| | - R G P T Jayasooriya
- Department of Marine Life Sciences, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea
| | - Gi-Young Kim
- Department of Marine Life Sciences, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea
| | - Myoung Ae Park
- Southeast Sea Fisheries Research Institute, National Institutie of Fisheries Science, Tongyeong-si, Gyoengsangnam-do, 53085, Republic of Korea
| | - Chul Kim
- Informatics Development & Management Group, Korea Institute of Oriental Medicine, 1672 Yuseongdae-ro, Yuseong-gu, Daejeon, 34054, Republic of Korea.
| | - Jehee Lee
- Department of Marine Life Sciences, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea; Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea.
| |
Collapse
|
26
|
Zhang Y, Buchberger A, Muthuvel G, Li L. Expression and distribution of neuropeptides in the nervous system of the crab Carcinus maenas and their roles in environmental stress. Proteomics 2015; 15:3969-79. [PMID: 26475201 DOI: 10.1002/pmic.201500256] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2015] [Revised: 10/07/2015] [Accepted: 10/12/2015] [Indexed: 01/05/2023]
Abstract
Environmental fluctuations, such as salinity, impose serious challenges to marine animal survival. Neuropeptides, signaling molecules involved in the regulation process, and the dynamic changes of their full complement in the stress response have yet to be investigated. Here, a MALDI-MS-based stable isotope labeling quantitation strategy was used to investigate the relationship between neuropeptide expression and adaptability of Carcinus maenas to various salinity levels, including high (60 parts per thousand [p.p.t.]) and low (0 p.p.t.) salinity, in both the crustacean pericardial organ (PO) and brain. Moreover, a high salinity stress time course study was conducted. MS imaging (MSI) of neuropeptide localization in C. maenas PO was also performed. As a result of salinity stress, multiple neuropeptide families exhibited changes in their relative abundances, including RFamides (e.g. APQGNFLRFamide), RYamides (e.g. SSFRVGGSRYamide), B-type allatostatins (AST-B; e.g. VPNDWAHFRGSWamide), and orcokinins (e.g. NFDEIDRSSFGFV). The MSI data revealed distribution differences in several neuropeptides (e.g. SGFYANRYamide) between color morphs, but salinity stress appeared to not have a major effect on the localization of the neuropeptides.
Collapse
Affiliation(s)
- Yuzhuo Zhang
- School of Pharmacy, University of Wisconsin-Madison, Madison, WI, USA
| | - Amanda Buchberger
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, USA
| | | | - Lingjun Li
- School of Pharmacy, University of Wisconsin-Madison, Madison, WI, USA.,Department of Chemistry, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
27
|
Todorović N, Tomanović N, Gass P, Filipović D. Olanzapine modulation of hepatic oxidative stress and inflammation in socially isolated rats. Eur J Pharm Sci 2015; 81:94-102. [PMID: 26474692 DOI: 10.1016/j.ejps.2015.10.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Revised: 10/05/2015] [Accepted: 10/10/2015] [Indexed: 12/17/2022]
Abstract
Olanzapine, an atypical antipsychotic, is efficient in stress associated psychiatric diseases, but its effect on the liver, a primary organ for drug activation and detoxification, still remains unclear. The effect of olanzapine administration (7.5mg/kg/day), on rat hepatic glutathione (GSH)-dependent defense and proinflammatory cytokines following 6weeks of chronic social isolation (CSIS), which causes depressive- and anxiety-like behavior in adult male Wistar rats, was investigated. The subcellular distribution of nuclear factor-κB (NF-κB), cytosolic inducible nitric oxide synthase (iNOS) protein levels and hepatic histological alterations were also determined. Decreased GSH content and glutathione reductase activity associated with increased catalase and glutathione S-transferase activity following CSIS indicated hepatic oxidative stress. Moreover, CSIS caused NF-κB nuclear translocation and the concomitant increase in iNOS together with increase in interleukin-1beta and tumor necrosis factor alpha protein levels, but no effect on interleukin-6. Olanzapine treatment suppressed NF-κB activation and iNOS expression and caused modulation of GSH-dependent defense systems but failed to reverse CSIS-induced increase in hepatic proinflammatory cytokines. Portal inflammation, focal hepatocyte necrosis and an increased number of Kupffer cells in CSIS rats (vehicle- or olanzapine-treated) were found. Olanzapine-treated socially reared rats showed portal inflammation and focal hepatocyte necrosis. Data suggest that CSIS compromised GSH-dependent defense, triggered a proinflammatory response and histological alterations in rat liver. Olanzapine treatment partially reversed the alterations in hepatic GSH-dependent defense, but showed no anti-inflammatory effect suggesting that it may provide protective effect against hepatic CSIS-induced oxidative stress, but not against inflammation.
Collapse
Affiliation(s)
- Nevena Todorović
- Laboratory of Molecular Biology and Endocrinology, Institute of Nuclear Sciences "Vinča", University of Belgrade, Serbia
| | - Nada Tomanović
- Institute of Pathology, School of Medicine, University of Belgrade, Serbia
| | - Peter Gass
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Germany
| | - Dragana Filipović
- Laboratory of Molecular Biology and Endocrinology, Institute of Nuclear Sciences "Vinča", University of Belgrade, Serbia.
| |
Collapse
|
28
|
Identification and molecular characterization of dorsal and dorsal-like genes in the cyclopoid copepod Paracyclopina nana. Mar Genomics 2015; 24 Pt 3:319-27. [PMID: 26297599 DOI: 10.1016/j.margen.2015.08.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Revised: 07/08/2015] [Accepted: 08/07/2015] [Indexed: 01/18/2023]
Abstract
To date, knowledge of the immune system in aquatic invertebrates has been reported in only a few model organisms, even though all metazoans have an innate immune system. In particular, information on the copepod's immunity and the potential role of key genes in the innate immune systems is still unclear. In this study, we identified dorsal and dorsal-like genes in the cyclopoid copepod Paracyclopina nana. In silico analyses for identifying conserved domains and phylogenetic relationships supported their gene annotations. The transcriptional levels of both genes were slightly increased from the nauplius to copepodid stages, suggesting that these genes are putatively involved in copepodid development of P. nana. To examine the involvement of both genes in the innate immune response and under stressful conditions, the copepods were exposed to lipopolysaccharide (LPS), different culture densities, salinities, and temperatures. LPS significantly upregulated mRNA expressions of dorsal and dorsal-like genes, suggesting that both genes are transcriptionally sensitive in response to immune modulators. Exposure to unfavorable culture conditions also increased mRNA levels of dorsal and dorsal-like genes. These findings suggest that transcriptional regulation of the dorsal and dorsal-like genes would be associated with environmental changes in P. nana.
Collapse
|
29
|
Study of autocatalytic oxidation reaction of silver nanoparticles and the application for nonenzymatic H2O2 assay. Chem Phys Lett 2015. [DOI: 10.1016/j.cplett.2015.06.068] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
30
|
Kim BM, Rhee JS, Jeong CB, Seo JS, Park GS, Lee YM, Lee JS. Heavy metals induce oxidative stress and trigger oxidative stress-mediated heat shock protein (hsp) modulation in the intertidal copepod Tigriopus japonicus. Comp Biochem Physiol C Toxicol Pharmacol 2014; 166:65-74. [PMID: 25058597 DOI: 10.1016/j.cbpc.2014.07.005] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Revised: 06/25/2014] [Accepted: 07/14/2014] [Indexed: 11/18/2022]
Abstract
Heat shock proteins (hsps) are induced by a wide range of environmental stressors including heavy metals in aquatic organisms. However, the effect of heavy metals on zooplankton at the molecular level remains still unclear. In this study, we measured the intracellular reactive oxygen species (ROS) level and the antioxidant enzyme activities for 96 h after exposure to five heavy metals: arsenic (As), cadmium (Cd), copper (Cu), silver (Ag), and zinc (Zn) in the intertidal copepod Tigriopus japonicus. Activities of the antioxidant enzymes were highly elevated in metal-exposed copepods, indicating that heavy metals can induce oxidative stress by generating ROS, and stimulate the involvement of antioxidant enzymes as cellular defense mechanisms. Subsequently, transcriptional changes in hsp gene families were further investigated in the metal-exposed groups for 96 h. The ROS level and glutathione (GSH) content were significantly increased in Ag-, As-, and Cu-exposed copepods, while they were only slightly elevated in Cd- and Zn-exposed groups. Based on the numbers of significantly modulated hsp genes and their expression levels for 96 h, we measured the effect of heavy metals to stress genes of T. japonicus in the following order: Cu > Zn > Ag > As > Cd, implying that Cu acts as a stronger oxidative stress inducer than other heavy metals. Of them, the expression of hsp20 and hsp70 genes was substantially modulated by exposure to heavy metals, indicating that these genes would provide a sensitive molecular biomarker for aquatic monitoring of heavy metal pollution.
Collapse
Affiliation(s)
- Bo-Mi Kim
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 440-746, South Korea
| | - Jae-Sung Rhee
- Department of Marine Science, College of Natural Sciences, Incheon National University, Incheon 406-772, South Korea
| | - Chang-Bum Jeong
- Department of Chemistry, College of Natural Sciences, Hanyang University, Seoul 133-791, South Korea
| | - Jung Soo Seo
- Pathology Team, National Fisheries Research & Development Institute, Busan 619-902, South Korea
| | - Gyung Soo Park
- Department of Marine Biotechnology, College of Liberal Arts and Sciences, Anyang University, Ganghwa 417-833, South Korea
| | - Young-Mi Lee
- Department of Life Science, College of Natural Sciences, Sangmyung University, Seoul 110-743, South Korea.
| | - Jae-Seong Lee
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 440-746, South Korea.
| |
Collapse
|
31
|
Sun PY, Foley HB, Handschumacher L, Suzuki A, Karamanukyan T, Edmands S. Acclimation and adaptation to common marine pollutants in the copepod Tigriopus californicus. CHEMOSPHERE 2014; 112:465-471. [PMID: 25048941 DOI: 10.1016/j.chemosphere.2014.05.023] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Revised: 05/07/2014] [Accepted: 05/11/2014] [Indexed: 06/03/2023]
Abstract
Establishing water quality criteria using bioassays is complicated by variation in chemical tolerance between populations. Two major contributors to this variation are acclimation and adaptation, which are both linked to exposure history, but differ in how long their effects are maintained. Our study examines how tolerance changes over multiple generations of exposure to two common marine pollutants, copper (Cu) and tributyltin oxide (TBTO), in a sexually reproducing marine copepod, Tigriopus californicus. Lines of T. californicus were chronically exposed to sub-lethal levels of Cu and TBTO for 12 generations followed by a recovery period of 3 generations in seawater control conditions. At each generation, the average number of offspring produced and survived to 28 d was determined and used as the metric of tolerance. Lines exposed to Cu and TBTO showed an overall increase in tolerance over time. Increased Cu tolerance arose by generation 3 in the chronically exposed lines and was lost after 3 generations in seawater control conditions. Increased TBTO tolerance was detected at generation 7 and was maintained even after 3 generations in seawater control conditions. It was concluded from this study that tolerance to Cu is consistent with acclimation, a quick gain and loss of tolerance. In contrast, TBTO tolerance is consistent with adaptation, in which onset of tolerance was delayed relative to an acclimation response and maintained in the absence of exposure. These findings illustrate that consideration of exposure history is necessary when using bioassays to measure chemical tolerance.
Collapse
Affiliation(s)
- Patrick Y Sun
- Department of Biological Science and Wrigley Institute for Environmental Studies, University of Southern California, Los Angeles, CA, United States.
| | - Helen B Foley
- Department of Biological Science and Wrigley Institute for Environmental Studies, University of Southern California, Los Angeles, CA, United States
| | - Lisa Handschumacher
- Department of Biological Science and Wrigley Institute for Environmental Studies, University of Southern California, Los Angeles, CA, United States
| | - Amanda Suzuki
- Department of Biological Science and Wrigley Institute for Environmental Studies, University of Southern California, Los Angeles, CA, United States
| | - Tigran Karamanukyan
- Department of Biological Science and Wrigley Institute for Environmental Studies, University of Southern California, Los Angeles, CA, United States
| | - Suzanne Edmands
- Department of Biological Science and Wrigley Institute for Environmental Studies, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
32
|
Yi AX, Han J, Lee JS, Leung KMY. Ecotoxicity of triphenyltin on the marine copepod Tigriopus japonicus at various biological organisations: from molecular to population-level effects. ECOTOXICOLOGY (LONDON, ENGLAND) 2014; 23:1314-1325. [PMID: 24981692 DOI: 10.1007/s10646-014-1274-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 06/10/2014] [Indexed: 06/03/2023]
Abstract
Triphenyltin compounds (TPTs), as effective biocides for different industrial and agricultural purposes, have been detected in coastal marine environments worldwide, in particular in Asian countries. However, little is known about their toxicity to marine organisms. This study comprehensively investigated the molecular, individual and population responses of the marine copepod, Tigriopus japonicus upon waterborne exposure to TPT chloride (TPTCl). Our results indicated that TPTCl was highly toxic to adult T. japonicus, with a 96-h LC50 concentration at 6.3 μg/L. As shown in a chronic full life-cycle test, T. japonicus exposed to 1.0 μg/L TPTCl exhibited a delay in development and a significant reduction of population growth, in terms of the intrinsic rate of increase (r m ). Based on the negative relationship between the r m and exposure concentration, a critical effect concentration was estimated at 1.6 μg/L TPTCl; at or above which population extinction could occur. At 0.1 μg/L TPTCl or above, the sex ratio of the second generation of the copepod was significantly altered and changed to a male-biased population. At molecular level, the inhibition of the transcriptional expression of glutathione S-transferase related genes might lead to dysfunction of detoxification, and the inhibition of retinoid X receptor mRNA expression implied an interruption of the growth and moulting process in T. japonicus. As the only gene that observed up-regulated in this study, the expression of heat shock protein 70 (hsp70) increased in a concentration-dependent manner, indicating its function in protecting the copepod from TPT-mediated oxidative stress. The study advances our understanding on the ecotoxicity of TPT, and provides some initial data on its toxic mechanisms in small crustaceans like copepods.
Collapse
Affiliation(s)
- Andy Xianliang Yi
- The Swire Institute of Marine Science and School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China
| | | | | | | |
Collapse
|
33
|
Oliveira DD, Souza-Santos LP, Silva HKP, Macedo SJ. Toxicity of sediments from a mangrove forest patch in an urban area in Pernambuco (Brazil). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2014; 104:373-378. [PMID: 24747926 DOI: 10.1016/j.ecoenv.2014.02.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2013] [Revised: 02/04/2014] [Accepted: 02/05/2014] [Indexed: 06/03/2023]
Abstract
Industrial and urban residues are discharged every day to the rivers and may arrive at the mangrove forest and prejudice the quality of the environment and the organisms present there. The mangrove forest patch studied is encircled by an urban area of the city of Recife (Brazil) that has approximate 1.5 million inhabitants and is one of the most industrialized centers in Northeast Brazil. The aim of this study was to assess the quality of the sediments of this mangrove patch in terms of metal contamination and ecotoxicology. Samples of surface sediment were collected in six stations for toxicological tests and trace metal determination (Cr, Zn, Mn, Fe, Cu, Pb, Co and Ni), in July and August, 2006 (rainy season); and in January and February 2007 (dry season). Toxicity tests with solid-phase sediments were carried out with the copepod Tisbe biminiensis in order to observe lethal and sub-lethal endpoints and correlate them with chemical data. In June, there were no observed lethal effect, but two stations presented sub-lethal effects. In January, lethal effect occurred in three stations and sub-lethal in one station. The levels for Zn and Cr were at higher levels than international proposed guidelines (NOAA). There was a negative significant correlation between the copepods׳ fecundity, and Zn and Cr concentrations. Therefore, the studied sediments can be considered to have potential toxic to benthos due to the high content of Zn and Cr.
Collapse
Affiliation(s)
- D D Oliveira
- Universidade Federal de Pernambuco - UFPE, Departamento de Oceanografia, Av. Prof° Moraes Rêgo, S/N. Cidade Universitária - Recife/PE. CEP. 50670-901, Brazil.
| | - L P Souza-Santos
- Universidade Federal de Pernambuco - UFPE, Departamento de Oceanografia, Av. Prof° Moraes Rêgo, S/N. Cidade Universitária - Recife/PE. CEP. 50670-901, Brazil
| | - H K P Silva
- Associação Instituto de Tecnologia de Pernambuco - ITEP/OS - Laboratório de Química de Água - LQA; Av. Prof° Luiz Freire N° 700. Cidade Universitária - Recife/PE. CEP. 50740-540, Brazil
| | - S J Macedo
- Universidade Federal de Pernambuco - UFPE, Departamento de Oceanografia, Av. Prof° Moraes Rêgo, S/N. Cidade Universitária - Recife/PE. CEP. 50670-901, Brazil
| |
Collapse
|
34
|
Trevisan R, Flesch S, Mattos JJ, Milani MR, Bainy ACD, Dafre AL. Zinc causes acute impairment of glutathione metabolism followed by coordinated antioxidant defenses amplification in gills of brown mussels Perna perna. Comp Biochem Physiol C Toxicol Pharmacol 2014; 159:22-30. [PMID: 24095941 DOI: 10.1016/j.cbpc.2013.09.007] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Revised: 09/21/2013] [Accepted: 09/23/2013] [Indexed: 01/28/2023]
Abstract
Zinc demonstrates protective and antioxidant properties at physiological levels, although these characteristics are not attributed at moderate or high concentrations. Zinc toxicity has been related to a number of factors, including interference with antioxidant defenses. In particular, the inhibition of glutathione reductase (GR) has been suggested as a possible mechanism for acute zinc toxicity in bivalves. The present work investigates the biochemical effects of a non-lethal zinc concentration on antioxidant-related parameters in gills of brown mussels Perna perna exposed for 21 days to 2.6 μM zinc chloride. After 2 days of exposure, zinc caused impairment of the antioxidant system, decreasing GR activity and glutathione levels. An increase in antioxidant defenses became evident at 7 and 21 days of exposure, as an increase in superoxide dismutase and glutathione peroxidase activity along with restoration of glutathione levels and GR activity. After 7 and 21 days, an increase in cellular peroxides and lipid peroxidation end products were also detected, which are indicative of oxidative damage. Changes in GR activity contrasts with protein immunoblotting data, suggesting that zinc produces a long lasting inhibition of GR. Contrary to the general trend in antioxidants, levels of peroxiredoxin 6 decreased after 21 days of exposure. The data presented here support the hypothesis that zinc can impair thiol homeostasis, causes an increase in lipid peroxidation and inhibits GR, imposing a pro-oxidant status, which seems to trigger homeostatic mechanisms leading to a subsequent increase on antioxidant-related defenses.
Collapse
Affiliation(s)
- Rafael Trevisan
- Department of Biochemistry, Biological Sciences Centre, Federal University of Santa Catarina, 88040-900 Florianópolis, Santa Catarina, Brazil
| | | | | | | | | | | |
Collapse
|
35
|
Kim BM, Jeong CB, Han J, Kim IC, Rhee JS, Lee JS. Role of crustacean hyperglycemic hormone (CHH) in the environmental stressor-exposed intertidal copepod Tigriopus japonicus. Comp Biochem Physiol C Toxicol Pharmacol 2013; 158:131-41. [PMID: 23797038 DOI: 10.1016/j.cbpc.2013.06.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Revised: 06/11/2013] [Accepted: 06/17/2013] [Indexed: 01/11/2023]
Abstract
To identify and characterize CHH (TJ-CHH) gene in the copepod Tigriopus japonicus, we analyzed the full-length cDNA sequence, genomic structure, and promoter region. The full-length TJ-CHH cDNA was 716 bp in length, encoding 136 amino acid residues. The deduced amino acid sequences of TJ-CHH showed a high similarity of the CHH mature domain to other crustaceans. Six conserved cysteine residues and five conserved structural motifs in the CHH mature peptide domain were also observed. The genomic structure of the TJ-CHH gene contained three exons and two introns in its open reading frame (ORF), and several transcriptional elements were detected in the promoter region of the TJ-CHH gene. To investigate transcriptional change of TJ-CHH under environmental stress, T. japonicus were exposed to heat treatment, UV-B radiation, heavy metals, and water-accommodated fractions (WAFs) of Iranian crude oil. Upon heat stress, TJ-CHH transcripts were elevated at 30 °C and 35 °C for 96 h in a time-course experiment. UV-B radiation led to a decreased pattern of the TJ-CHH transcript 48 h and more after radiation (12 kJ/m(2)). After exposure of a fixed dose (12 kJ/m(2)) in a time-course experiment, TJ-CHH transcript was down-regulated in time-dependent manner with a lowest value at 12h. However, the TJ-CHH transcript level was increased in response to five heavy metal exposures for 96 h. Also, the level of the TJ-CHH transcript was significantly up-regulated at 20% of WAFs after exposure to WAFs for 48 h and then remarkably reduced in a dose-dependent manner. These findings suggest that the enhanced TJ-CHH transcript level is associated with a cellular stress response of the TJ-CHH gene as shown in decapod crustaceans. This study is also helpful for a better understanding of the detrimental effects of environmental changes on the CHH-triggered copepod metabolism.
Collapse
Affiliation(s)
- Bo-Mi Kim
- Department of Chemistry, College of Natural Sciences, Hanyang University, Seoul 133-791, South Korea
| | | | | | | | | | | |
Collapse
|
36
|
Brock JR, Bielmyer GK. Metal accumulation and sublethal effects in the sea anemone, Aiptasia pallida, after waterborne exposure to metal mixtures. Comp Biochem Physiol C Toxicol Pharmacol 2013; 158:150-8. [PMID: 23845877 DOI: 10.1016/j.cbpc.2013.07.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Revised: 07/03/2013] [Accepted: 07/03/2013] [Indexed: 11/24/2022]
Abstract
The marine environment is subjected to contamination by a complex mixture of metals from various anthropogenic sources. Measuring the biological responses of organisms to a complex mixture of metals allows for examination of metal-specific responses in an environmentally realistic exposure scenario. To address this issue, the sea anemone, Aiptasia pallida was exposed to a control and a metal mixture (copper, zinc, nickel, and cadmium) at three exposure levels (10, 50, and 100 μg/L) for 7 days. Anemones were then transferred to metal-free seawater for an additional 7 days after the metal exposure to assess metal depuration and recovery. Metal accumulation, activity of the enzymes catalase, glutathione reductase, and carbonic anhydrase, as well as, cell density of the symbiotic zooxanthellae were measured over 14 days. Metal accumulation in A. pallida occurred in a concentration dependent manner over the 7-day exposure period. Altered enzyme activity and tentacle retraction of the host, as well as decreased zooxanthellae cell density were observed responses over the 7 days, after exposure to a metal concentration as low as 10 μg/L. Metal depuration and physiological recovery were dependent on both the metal and the exposure concentration. Understanding how A. pallida and their symbionts are affected by metal exposures in the laboratory may allow better understanding about the responses of symbiotic cnidarians in metal polluted aquatic environments.
Collapse
Affiliation(s)
- J R Brock
- Department of Biology, Valdosta State University, Valdosta, GA, USA
| | | |
Collapse
|
37
|
Kim BM, Choi BS, Lee KW, Ki JS, Kim IC, Choi IY, Rhee JS, Lee JS. Expression profile analysis of antioxidative stress and developmental pathway genes in the manganese-exposed intertidal copepod Tigriopus japonicus with 6K oligochip. CHEMOSPHERE 2013; 92:1214-1223. [PMID: 23714145 DOI: 10.1016/j.chemosphere.2013.04.047] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Revised: 04/03/2013] [Accepted: 04/09/2013] [Indexed: 06/02/2023]
Abstract
Manganese (Mn) provides one of aquatic pollutants in marine ecosystem. Here we used a 6K oligomicroarray to identify the effect of Mn on transcriptomes in the copepod Tigriopus japonicus. A total of 5594 spots were significantly modulated on a 6K oligomicroarray with hierarchical clustering after exposure to Mn over 24h. Of them, 186 and 489 genes were significantly upregulated and downregulated, respectively. Particularly, several genes involved in stress, detoxification, and developmental functions were significantly modulated in T. japonicus exposed for 24h. In detail, Mn exposure specifically up-regulated genes that were related to intracellular stress, antioxidant, and detoxification pathways such as cytochrome P450s (CYPs), glutathione S-transferases (GSTs), and heat shock proteins (hsps), while a majority of downregulated genes was associated with developmental pathways such as cuticle protein, ecdysone receptor, and vitellogenin. These results demonstrated that Mn exposure modulated gene expression in relation to intracellular stress, leading to developmental retardation in the intertidal copepod, T. japonicus, and provide a better understanding of mechanistic molecular studies of Mn-induced cellular damage.
Collapse
Affiliation(s)
- Bo-Mi Kim
- Department of Chemistry, College of Natural Sciences, Hanyang University, Seoul 133-791, South Korea
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Rhee JS, Yu IT, Kim BM, Jeong CB, Lee KW, Kim MJ, Lee SJ, Park GS, Lee JS. Copper induces apoptotic cell death through reactive oxygen species-triggered oxidative stress in the intertidal copepod Tigriopus japonicus. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2013; 132-133:182-189. [PMID: 23523965 DOI: 10.1016/j.aquatox.2013.02.013] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Revised: 02/18/2013] [Accepted: 02/18/2013] [Indexed: 06/02/2023]
Abstract
The copepod, Tigriopus japonicus is an important model for toxicity testing. However, no attempt has been made in analyzing the effect of toxicants at the level of the ROS-mediated signal transduction pathway. To understand copper-induced cytotoxicity at the molecular level, we employed several cellular and biochemical assays after exposure to copper, and found a significant induction of enzyme activities of antioxidant proteins with increased intracellular reactive oxygen species (ROS) as well as an increase of TUNEL-positive cells, but a decrease of BrdU-positive cells. In addition, several important genes such as p38 MAPK, antioxidant-related genes, Hsps, and apoptosis-related genes were significantly modulated by copper exposure. Taken together, we suggest that copper-induced cytotoxicity is mediated by the formation of intracellular ROS and oxidative stress in T. japonicus. Whole body biochemical assays such as TUNEL- and BrdU-assay will provide a better understanding of cellular responses such as apoptosis and cell death upon cytotoxic exposure of copper in T. japonicus.
Collapse
Affiliation(s)
- Jae-Sung Rhee
- Research Institute for Natural Sciences, Hanyang University, Seoul 133-791, South Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Differential protein expression associated with heat stress in Antarctic microalga. BIOCHIP JOURNAL 2012. [DOI: 10.1007/s13206-012-6310-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
40
|
Lauritano C, Procaccini G, Ianora A. Gene expression patterns and stress response in marine copepods. MARINE ENVIRONMENTAL RESEARCH 2012; 76:22-31. [PMID: 22030210 DOI: 10.1016/j.marenvres.2011.09.015] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2011] [Revised: 09/16/2011] [Accepted: 09/30/2011] [Indexed: 05/31/2023]
Abstract
Aquatic organisms are constantly exposed to both physical (e.g. temperature and salinity variations) and chemical (e.g. endocrine disruptor chemicals, heavy metals, hydrocarbons, diatom toxins, and other toxicants) stressors which they react to by activating a series of defense mechanisms. This paper reviews the literature on the defense systems, including detoxification enzymes and proteins (e.g. glutathione S-transferases, heat shock proteins, superoxide dismutase and catalase), studied in copepods at the molecular level. The data indicate high inter- and intra-species variability in copepod response, depending on the type of stressor tested, the concentration and exposure time, and the enzyme isoform studied. Ongoing -omics approaches will allow the identification of new genes which will give a more comprehensive overview of how copepods respond to specific stressors in laboratory and/or field conditions and the effects of these responses on higher trophic levels.
Collapse
Affiliation(s)
- Chiara Lauritano
- Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy.
| | | | | |
Collapse
|
41
|
Lee KW, Rhee JS, Han J, Park HG, Lee JS. Effect of culture density and antioxidants on naupliar production and gene expression of the cyclopoid copepod, Paracyclopina nana. Comp Biochem Physiol A Mol Integr Physiol 2012; 161:145-52. [DOI: 10.1016/j.cbpa.2011.10.019] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2011] [Revised: 10/19/2011] [Accepted: 10/19/2011] [Indexed: 10/15/2022]
|
42
|
Rubal M, Guilhermino LM, Medina MH. Two strategies to live in low chronic pollution estuaries: the potential role of lifestyle. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2011; 74:1226-1231. [PMID: 21397329 DOI: 10.1016/j.ecoenv.2011.02.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2010] [Revised: 11/04/2010] [Accepted: 02/20/2011] [Indexed: 05/30/2023]
Abstract
Although physiological and genetic adaptation to toxic stress has been the focus of recent research, the role of lifestyle in pollution tolerance has received less attention. In this study, copper tolerance of benthic and epi-benthic species of harpacticoid copepods was investigated. Concentration-response curves were generated for populations of both species but collected at contaminated and uncontaminated estuaries. The population of the benthic species from the contaminated site showed higher tolerance than its population from the uncontaminated site. The epi-benthic species showed no inter-specific differences in tolerance. The comparison of tolerance between field collected animals of the benthic species and animals from the same population but reared in the laboratory for two generations suggested the existence of a genetic inherited tolerance. Results revealed the importance that lifestyle may have on the generation of tolerance to toxic substances and highlight a potential unforeseen role of it in maintenance of biodiversity on contaminated habitats.
Collapse
Affiliation(s)
- M Rubal
- CIIMAR/CIMAR-LA-Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Laboratório de Ecotoxicología, Rua dos Bragas, 289, 4050-123 Porto, Portugal
| | | | | |
Collapse
|
43
|
Yin F, Peng S, Sun P, Shi Z. Effects of low salinity on antioxidant enzymes activities in kidney and muscle of juvenile silver pomfret Pampus argenteus. ACTA ACUST UNITED AC 2011. [DOI: 10.1016/j.chnaes.2010.11.009] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
44
|
Hwang DS, Lee JS, Lee KW, Rhee JS, Han J, Lee J, Park GS, Lee YM, Lee JS. Cloning and expression of ecdysone receptor (EcR) from the intertidal copepod, Tigriopus japonicus. Comp Biochem Physiol C Toxicol Pharmacol 2010; 151:303-12. [PMID: 20025995 DOI: 10.1016/j.cbpc.2009.12.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2009] [Revised: 12/08/2009] [Accepted: 12/08/2009] [Indexed: 01/23/2023]
Abstract
Ecdysteroids are steroid hormones that play an important role in development, growth, molting of larva, and reproduction in the Arthropoda. The effect of ecdysteroids is mediated by its binding to ecdysteroid receptor (EcR). To investigate the role of EcR during development and the effect to environmental stressors on EcR expression in a copepod, we isolated and characterized cDNA and 5'-promoter region of the Tigriopus japonicus EcR (TJ-EcR), and studied mRNA expression pattern. The full-length TJ-EcR cDNA sequence was 1962bp in length and the open reading frame encoded 546 amino acids. The deduced TJ-EcR protein contained well-conserved DNA-binding domain and ligand-binding domain. Phylogenetic analysis revealed that TJ-EcR was clustered with the EcR of other crustaceans. TJ-EcR mRNA was expressed in a developmental stage-specific manner: high in early developmental stages and low in the adult stage. Significantly elevated expression of the TJ-EcR gene in adults was detected at hypersalinity (42ppt) and high temperature (35 degrees C) condition. The 5'-flanking region of TJ-EcR gene contains heat shock protein 70 response elements, implying that the environmental stressors may affect its expression via the stress-sensor. In addition, bisphenol A (100microg/L) repressed TJ-EcR expression. Our results suggest that TJ-EcR could be a biomarker for the monitoring of the impact of environmental stressors in copepods.
Collapse
MESH Headings
- 5' Flanking Region/genetics
- Amino Acid Sequence
- Animals
- Base Sequence
- Benzhydryl Compounds
- Cloning, Molecular
- Copepoda/drug effects
- Copepoda/genetics
- Copepoda/metabolism
- DNA, Complementary/genetics
- Endocrine Disruptors/toxicity
- Gene Expression/drug effects
- Ligands
- Molecular Sequence Data
- Open Reading Frames/genetics
- Phenols/toxicity
- Phylogeny
- Promoter Regions, Genetic/genetics
- Protein Structure, Tertiary
- RNA, Messenger/metabolism
- Receptors, Steroid/genetics
- Receptors, Steroid/metabolism
- Salinity
- Sequence Analysis, DNA
- Sequence Homology, Amino Acid
- Stress, Physiological
Collapse
Affiliation(s)
- Dae-Sik Hwang
- Department of Molecular and Environmental Bioscience, Graduate School, Hanyang University, Seoul 133-791, South Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Hwang DS, Lee KW, Han J, Park HG, Lee J, Lee YM, Lee JS. Molecular characterization and expression of vitellogenin (Vg) genes from the cyclopoid copepod, Paracyclopina nana exposed to heavy metals. Comp Biochem Physiol C Toxicol Pharmacol 2010; 151:360-8. [PMID: 20045491 DOI: 10.1016/j.cbpc.2009.12.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2009] [Revised: 12/23/2009] [Accepted: 12/24/2009] [Indexed: 11/22/2022]
Abstract
Induction of vitellogenin (Vg) has been used as a biomarker of exposure to heavy metals and endocrine-disruption chemicals (EDCs) in aquatic organisms. Here, we identified the full-length Vg1 and Vg2 sequence from the brackish water copepod, Paracyclopina nana. Vg1 gene contained 5718bp of the open reading frame (ORF) that encoded the putative protein of 1905 amino acids residues, while Vg2 gene consisted of 5442bp of ORF, encoding the putative protein of 1813 amino acids residues. P. nana Vgs showed highly conserved domains in the N-terminal region. The phylogenetic analysis revealed that P. nana Vgs are distinct from other arthropods, such as insects and decapods, as it formed a clade with other copepods, Tigriopus japonicus and salmon louse (Lepeophtheirus salmonis). The expression of Vg transcripts was detectable after the copepodid stages 4-5. Female copepods expressed over 83 times and 223 times more Vg1 and Vg2 transcripts, respectively, than males. When copepods were exposed to heavy metals (0.1mg/L Cd, 0.4mg/L Cu, and 2mg/L AsIII) for 24, 48, 72, and 96h, P. nana Vg transcripts were highly induced in a time-dependent manner. Interestingly, Vg2 gene was more susceptible than Vg1 to trace heavy metal exposure. This finding indicates that P. nana Vgs provide a potential indicator for assessing the toxic effect of heavy metals. In addition, we suggest P. nana as a potential model species for risk-assessment to environmental pollutants in brackish water.
Collapse
Affiliation(s)
- Dae-Sik Hwang
- Department of Molecular and Environmental Bioscience, Graduate School, Hanyang University, Seoul 133-791, South Korea
| | | | | | | | | | | | | |
Collapse
|
46
|
Wang M, Wang G. Oxidative damage effects in the copepod Tigriopus japonicus Mori experimentally exposed to nickel. ECOTOXICOLOGY (LONDON, ENGLAND) 2010; 19:273-284. [PMID: 19821026 DOI: 10.1007/s10646-009-0410-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/09/2009] [Indexed: 05/28/2023]
Abstract
Tigriopus japonicus Mori has been recognized as a good model for toxicological testing of marine pollutants. Recently, a large number of genes have been identified from this copepod, and their mRNA expression has been studied independently against exposure to marine pollutants; however, biochemical-response information is relatively scarce. The response of T. japonicus to nickel (Ni) additions was examined under laboratory-controlled conditions in 12 days exposure. Superoxide dismutase (SOD), glutathione peroxidase (GPx), glutathione-S-transferase (GST), acetylcholinesterase (AchE), reduced glutathione (GSH), the ratio of reduced to oxidized glutathione (GSH/GSSG) and metallothionein (MT) were analyzed for Ni treatments (0, 0.125, 0.25, 0.75 and 3.0 mg/L) after 1, 4, 7 and 12 days. The thiobarbituric reactive species assay was used to evaluate lipid peroxidation (LPO) level in copepods after exposure. The results showed that Ni remarkably affected the biochemical parameters (SOD, GPx, GST, GSH, and GSH/GSSG) after certain exposure durations. However, the copepod's LPO level was significantly decreased under metal treatments after exposure, hinting that the factors involved in LPO might not significantly depend on the operations and functions in the antioxidant system. Ni exhibited the neurotoxicity to copepods, because its use obviously elevated AchE activity. During exposure, Ni initially displayed an inhibition effect but induced MT synthesis in T. japonicus by day 12, probably being responsible for metal detoxification. Thus, Ni had intervened in the detoxification process and antioxidant system of this copepod, and it could be used as a suitable bioindicator of Ni exposure via measuring SOD, GPx, GST, and MT as biomarkers.
Collapse
Affiliation(s)
- Minghua Wang
- College of Oceanography and Environmental Science, State Key Laboratory of Marine Environmental Science, Xiamen University, 361005, Xiamen, People's Republic of China
| | | |
Collapse
|
47
|
Hwang DS, Lee JS, Rhee JS, Han J, Lee YM, Kim IC, Park GS, Lee J, Lee JS. Modulation of p53 gene expression in the intertidal copepod Tigriopus japonicus exposed to alkylphenols. MARINE ENVIRONMENTAL RESEARCH 2009; 69 Suppl:S77-S80. [PMID: 20060579 DOI: 10.1016/j.marenvres.2009.12.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2009] [Revised: 12/02/2009] [Accepted: 12/11/2009] [Indexed: 05/28/2023]
Abstract
The copepod, Tigriopus japonicus has been recognized as an excellent marine model species for ecotoxicological studies. The present study cloned and characterized the p53 gene of this copepod and studied its expression pattern. We discovered that p53 expression patterns varied among different developmental stages of the copepod, having the highest expression in the adult. Such variation was possibly associated with the molting cycle. By using real-time RT-PCR, we further investigated the modulatory pattern of the p53 gene in the copepod after exposure to three alkylphenols (i.e. nonylphenol, octylphenol, and bisphenol A) which are known as endocrine disruption chemicals (EDCs). The results showed that the three alkylphenols significantly induced p53 gene expression in the copepod, indicating the involvement of p53 in such stress-responses. Thus, the copepod p53 gene provides one of the stress-response biomarkers for exposure to EDC-like compounds.
Collapse
Affiliation(s)
- Dae-Sik Hwang
- Department of Molecular and Environmental Bioscience, Graduate School, Hanyang University, Seoul 133-791, South Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Kim IS, Shin SY, Kim YS, Kim HY, Yoon HS. Expression of a glutathione reductase from Brassica rapa subsp. pekinensis enhanced cellular redox homeostasis by modulating antioxidant proteins in Escherichia coli. Mol Cells 2009; 28:479-87. [PMID: 19936628 DOI: 10.1007/s10059-009-0168-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2009] [Accepted: 10/28/2009] [Indexed: 02/03/2023] Open
Abstract
Glutathione reductase (GR) is an enzyme that recycles a key cellular antioxidant molecule glutathione (GSH) from its oxidized form (GSSG) thus maintaining cellular redox homeostasis. A recombinant plasmid to overexpress a GR of Brassica rapa subsp. pekinensis (BrGR) in E. coli BL21 (DE3) was constructed using an expression vector pKM260. Expression of the introduced gene was confirmed by semiquantitative RT-PCR, immunoblotting and enzyme assays. Purification of the BrGR protein was performed by IMAC method and indicated that the BrGR was a dimmer. The BrGR required NADPH as a cofactor and specific activity was approximately 458 U. The BrGR-expressing E. coli cells showed increased GR activity and tolerance to H(2)O(2), menadione, and heavy metal (CdCl(2), ZnCl(2) and AlCl(2))-mediated growth inhibition. The ectopic expression of BrGR provoked the co-regulation of a variety of antioxidant enzymes including catalase, superoxide dismutase, glutathione peroxidase, and glucose-6-phosphate dehydrogenase. Consequently, the transformed cells showed decreased hydroperoxide levels when exposed to stressful conditions. A proteomic analysis demonstrated the higher level of induction of proteins involved in glycolysis, detoxification/oxidative stress response, protein folding, transport/binding proteins, cell envelope/porins, and protein translation and modification when exposed to H(2)O(2) stress. Taken together, these results indicate that the plant GR protein is functional in a cooperative way in the E. coli system to protect cells against oxidative stress.
Collapse
Affiliation(s)
- Il-Sup Kim
- Department of Biology, Kyungpook National University, Daegu 702-701, Korea
| | | | | | | | | |
Collapse
|
49
|
Wang MH, Wang GZ. Biochemical response of the copepod Tigriopus japonicus Mori experimentally exposed to cadmium. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2009; 57:707-717. [PMID: 19365647 DOI: 10.1007/s00244-009-9319-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2008] [Accepted: 03/22/2009] [Indexed: 05/27/2023]
Abstract
The response of the copepod (Tigriopus japonicus Mori) to cadmium (Cd) additions was investigated under laboratory-controlled conditions in a 12-day exposure. Superoxide dismutase (SOD), glutathione peroxidase (GPx), glutathione-S-transferase (GST), acetylcholinesterase (AchE), reduced glutathione (GSH), the ratio of reduced to oxidized glutathione (GSH/GSSG), and metallothionein (MT) were analyzed for Cd treatments (0, 10, 20, 40, and 100 microg/L) after exposure for 1, 4, 7, and 12 days. Additionally, thiobarbituric reactive species assay was used to evaluate lipid peroxidation (LPO) of the copepod after the 12-day exposure. The results indicated that Cd treatments significantly influenced the biochemical indexes (SOD, GPx, GST, AchE, GSH, and GSH/GSSG) after certain exposure times. Exposure to Cd induced LPO in the treated copepods, hinting that the copepods had suffered from oxidative damage. During exposure, the Cd initiated an induced MT synthesis in the copepods by day 7, which peaked at day 12 and which was probably responsible for Cd detoxification. Thus, Cd exposure significantly affected the detoxification process and antioxidant system of this copepod, and T. japonicus could be used as a suitable bioindicator of exposure to Cd using SOD, GPx, GST, LPO, and GSH/GSSG as biomarkers.
Collapse
Affiliation(s)
- Ming-Hua Wang
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, 361005, People's Republic of China.
| | | |
Collapse
|
50
|
Ki JS, Raisuddin S, Lee KW, Hwang DS, Han J, Rhee JS, Kim IC, Park HG, Ryu JC, Lee JS. Gene expression profiling of copper-induced responses in the intertidal copepod Tigriopus japonicus using a 6K oligochip microarray. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2009; 93:177-187. [PMID: 19515434 DOI: 10.1016/j.aquatox.2009.04.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2008] [Revised: 04/08/2009] [Accepted: 04/13/2009] [Indexed: 05/27/2023]
Abstract
The intertidal copepod Tigriopus japonicus has shown promising results in classical acute and chronic toxicity studies. Recently, a large number of genes have been identified from this species and their mRNA expression has been studied independently against exposure to marine environmental pollutants. T. japonicus is a promising organism for the study of mechanistic aspects of marine environmental pollutants using genomics. In this study, a 6K oligochip for T. japonicus that included mostly unique sets of genes from approximately 26K ESTs, was developed. A total of 5463 spots (2313 mRNAs upregulated and 3150 downregulated) were identified to be significantly expressed on microarray by hierarchical clustering of genes after exposure to copper for different time durations (10 microg/L for 6, 12 and 24h). However, mRNAs of only 138 and 375 genes were observed to be consistently upregulated and downregulated, respectively, at all time points. Most of the changes of mRNA expression were observed at the short exposure of 6h. It was observed that mRNA expression of several genes involved in growth, metabolism, reproduction and hormonal regulation was modulated in Cu-exposed T. japonicus. mRNA expression of genes involved in detoxification and antioxidant functions was also modulated. This indicates that Cu-induced gene transcription is complicated in T. japonicus similar to other crustaceans. Cu specifically upregulated mRNAs of genes of some isoforms of cytochrome P450 (CYP). On the other hand, a majority of downregulated mRNAs were of genes encoding for proteins important for growth and development. The expression profile of mRNAs of selected genes was verified by the quantitative real time RT-PCR. The mRNA expression profiles provide insight into the mechanism of action of copper in T. japonicus. These results demonstrate the suitability of a T. japonicus oligochip microarray for risk assessment of trace metals in the marine environment. As yet, major breakthroughs in invertebrate toxicogenomics have mainly been in Daphnia and Drosophila. Daphnia's use is limited to freshwater ecotoxicogenomics. Here we propose an oligochip microarray-based approach for risk assessment of trace metals in a potential model marine test species.
Collapse
Affiliation(s)
- Jang-Seu Ki
- Department of Chemistry, College of Natural Sciences, Hanyang University, Seoul 133-791, South Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|