1
|
Conner LM, Goedert D, Fitzpatrick SW, Fearnley A, Gallagher EL, Peterman JD, Forgione ME, Kokosinska S, Hamilton M, Masala LA, Merola N, Rico H, Samma E, Brady SP. Population origin and heritable effects mediate road salt toxicity and thermal stress in an amphibian. CHEMOSPHERE 2024; 357:141978. [PMID: 38608774 DOI: 10.1016/j.chemosphere.2024.141978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 03/13/2024] [Accepted: 04/09/2024] [Indexed: 04/14/2024]
Abstract
Human impacts on wild populations are numerous and extensive, degrading habitats and causing population declines across taxa. Though these impacts are often studied individually, wild populations typically face suites of stressors acting concomitantly, compromising the fitness of individuals and populations in ways poorly understood and not easily predicted by the effects of any single stressor. Developing understanding of the effects of multiple stressors and their potential interactions remains a critical challenge in environmental biology. Here, we focus on assessing the impacts of two prominent stressors associated with anthropogenic activities that affect many organisms across the planet - elevated salinity (e.g., from road de-icing salt) and temperature (e.g. from climate change). We examined a suite of physiological traits and components of fitness across populations of wood frogs originating from ponds that differ in their proximity to roads and thus their legacy of exposure to pollution from road salt. When experimentally exposed to road salt, wood frogs showed reduced survival (especially those from ponds adjacent to roads), divergent developmental rates, and reduced longevity. Family-level effects mediated these outcomes, but high salinity generally eroded family-level variance. When combined, exposure to both temperature and salt resulted in very low survival, and this effect was strongest in roadside populations. Taken together, these results suggest that temperature is an important stressor capable of exacerbating impacts from a prominent contaminant confronting many freshwater organisms in salinized habitats. More broadly, it appears likely that toxicity might often be underestimated in the absence of multi-stressor approaches.
Collapse
Affiliation(s)
- Lauren M Conner
- Southern Connecticut State University, Biology Department, New Haven, CT, USA
| | - Debora Goedert
- Centre for Biodiversity Dynamics, Department of Biology, Norwegian University of Science and Technology, NO-7491, Trondheim, Norway
| | - Sarah W Fitzpatrick
- W.K. Kellogg Biological Station, Michigan State University, Hickory Corners, MI, USA; Department of Integrative Biology, Michigan State University, East Lansing, MI, USA; Ecology, Evolution, and Behavior Program, Michigan State University, East Lansing, MI, USA
| | - Amber Fearnley
- Southern Connecticut State University, Biology Department, New Haven, CT, USA
| | - Emma L Gallagher
- Southern Connecticut State University, Biology Department, New Haven, CT, USA
| | - Jessica D Peterman
- Southern Connecticut State University, Biology Department, New Haven, CT, USA
| | - Mia E Forgione
- Southern Connecticut State University, Biology Department, New Haven, CT, USA
| | - Sophia Kokosinska
- Southern Connecticut State University, Biology Department, New Haven, CT, USA
| | - Malik Hamilton
- Southern Connecticut State University, Biology Department, New Haven, CT, USA
| | - Lydia A Masala
- Southern Connecticut State University, Biology Department, New Haven, CT, USA
| | - Neil Merola
- Southern Connecticut State University, Biology Department, New Haven, CT, USA
| | - Hennesy Rico
- Southern Connecticut State University, Biology Department, New Haven, CT, USA
| | - Eman Samma
- Southern Connecticut State University, Biology Department, New Haven, CT, USA
| | - Steven P Brady
- Southern Connecticut State University, Biology Department, New Haven, CT, USA.
| |
Collapse
|
2
|
Belmonte A, Muñoz P, Romero D. Lead and cadmium in blood and tissues of Atlantic bluefin tuna (Thunnus thynnus L., 1758). MARINE POLLUTION BULLETIN 2024; 199:115993. [PMID: 38217913 DOI: 10.1016/j.marpolbul.2023.115993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/22/2023] [Accepted: 12/26/2023] [Indexed: 01/15/2024]
Abstract
Cadmium (Cd) and lead (Pb) levels in blood and tissues of Atlantic bluefin tuna were analysed to gather information regarding their distribution, accumulation and inter-relationships, as well as to examine how sex affects them. In the whole population, the concentration range was from below the detection limit (bone) to 8.512 μg g-1 (liver) for Cd, and from below detection limit (bone and gills) to 0.063 μg g-1 (kidney) for Pb. The median concentration in the muscles (0.008 and 0.029 μg g-1 for Cd and Pb, respectively) was 10 times less than the maximum permitted for consumption. Sex was shown to be an important variable affecting concentrations of Cd in both liver and kidneys, so taking into account sex when interpreting results is highly recommended. The importance of Cd and Pb bioaccumulation in fishery by-products, increasingly important in commercial circuits, is also highlighted.
Collapse
Affiliation(s)
- Antonio Belmonte
- TAXON Estudios Ambientales S.L., C/Uruguay s/n, 30820 Alcantarilla, Spain
| | - Pilar Muñoz
- Department of Animal Health, Regional Campus of International Excellence "Campus Mare Nostrum", Universidad de Murcia, 30100 Murcia, Spain.
| | - Diego Romero
- Toxicology Department, Regional Campus of International Excellence "Campus Mare Nostrum", Universidad de Murcia, 30100 Murcia, Spain
| |
Collapse
|
3
|
Toni M, Arena C, Cioni C, Tedeschi G. Temperature- and chemical-induced neurotoxicity in zebrafish. Front Physiol 2023; 14:1276941. [PMID: 37854466 PMCID: PMC10579595 DOI: 10.3389/fphys.2023.1276941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 09/22/2023] [Indexed: 10/20/2023] Open
Abstract
Throughout their lives, humans encounter a plethora of substances capable of inducing neurotoxic effects, including drugs, heavy metals and pesticides. Neurotoxicity manifests when exposure to these chemicals disrupts the normal functioning of the nervous system, and some neurotoxic agents have been linked to neurodegenerative pathologies such as Parkinson's and Alzheimer's disease. The growing concern surrounding the neurotoxic impacts of both naturally occurring and man-made toxic substances necessitates the identification of animal models for rapid testing across a wide spectrum of substances and concentrations, and the utilization of tools capable of detecting nervous system alterations spanning from the molecular level up to the behavioural one. Zebrafish (Danio rerio) is gaining prominence in the field of neuroscience due to its versatility. The possibility of analysing all developmental stages (embryo, larva and adult), applying the most common "omics" approaches (transcriptomics, proteomics, lipidomics, etc.) and conducting a wide range of behavioural tests makes zebrafish an excellent model for neurotoxicity studies. This review delves into the main experimental approaches adopted and the main markers analysed in neurotoxicity studies in zebrafish, showing that neurotoxic phenomena can be triggered not only by exposure to chemical substances but also by fluctuations in temperature. The findings presented here serve as a valuable resource for the study of neurotoxicity in zebrafish and define new scenarios in ecotoxicology suggesting that alterations in temperature can synergistically compound the neurotoxic effects of chemical substances, intensifying their detrimental impact on fish populations.
Collapse
Affiliation(s)
- Mattia Toni
- Department of Biology and Biotechnologies “Charles Darwin”, Sapienza University, Rome, Italy
| | - Chiara Arena
- Department of Biology and Biotechnologies “Charles Darwin”, Sapienza University, Rome, Italy
| | - Carla Cioni
- Department of Biology and Biotechnologies “Charles Darwin”, Sapienza University, Rome, Italy
| | - Gabriella Tedeschi
- Department of Veterinary Medicine and Animal Science (DIVAS), Università Degli Studi di Milano, Milano, Italy
- CRC “Innovation for Well-Being and Environment” (I-WE), Università Degli Studi di Milano, Milano, Italy
| |
Collapse
|
4
|
Suominen E, Speers-Roesch B, Fadhlaoui M, Couture P, Blewett TA, Crémazy A. The effects of winter cold acclimation on acute and chronic cadmium bioaccumulation and toxicity in the banded killifish (Fundulus diaphanus). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 262:106667. [PMID: 37619397 DOI: 10.1016/j.aquatox.2023.106667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/18/2023] [Accepted: 08/19/2023] [Indexed: 08/26/2023]
Abstract
Temperate freshwater fishes can experience large seasonal temperature fluctuations that could affect their exposure and sensitivity to trace metals. Yet, temperature effects are overlooked in ecotoxicology studies, especially for cold temperatures typical of the winter. In the present study, the effects of long-term cold acclimation on Cd bioaccumulation and toxicity were investigated in a freshwater fish, the banded killifish (Fundulus diaphanus). Killifish were acclimated to 14 °C or gradually cooled (2 °C/week) to 4 °C and cold acclimated for 6 weeks. Then, both acclimation groups were exposed to environmentally realistic waterborne Cd concentrations (0, 0.5 or 5 µg Cd L-1) for a further 28 d at their respective acclimation temperatures. Tissue metal bioaccumulation, fish survival, condition, and markers of oxidative and ionoregulation stress, were measured after 0, 2, 5 and 28 days of Cd exposure. Cadmium tissue accumulation increased over the exposure duration and was typically lower in cold-acclimated fish. In agreement with this lower bioaccumulation, fewer Cd toxic effects were observed in cold-acclimated fish. There was little evidence of a difference in intrinsic Cd sensitivity between 4 °C- and 14 °C-acclimated fish, as Cd toxicity appeared to closely follow Cd bioaccumulation. Our study suggests that current environmental water quality guidelines would be protective in the winter for the abundant and ecologically-important banded killifish.
Collapse
Affiliation(s)
- Emily Suominen
- University of New Brunswick, New Brunswick, Saint John, NB, Canada
| | | | - Mariem Fadhlaoui
- Centre Eau Terre Environnement de l'Institut National de la Recherche Scientifique, Québec, QC, Canada
| | - Patrice Couture
- Centre Eau Terre Environnement de l'Institut National de la Recherche Scientifique, Québec, QC, Canada
| | | | - Anne Crémazy
- Centre Eau Terre Environnement de l'Institut National de la Recherche Scientifique, Québec, QC, Canada.
| |
Collapse
|
5
|
Zheng JL, Zhu QL, Hogstrand C. Zinc pre-exposure improves Zn resistance by demethylation of metallothionein 2 and transcription regulation of zinc-regulatory genes in zebrafish ZF4 cells. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 261:106605. [PMID: 37352751 DOI: 10.1016/j.aquatox.2023.106605] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 05/15/2023] [Accepted: 06/07/2023] [Indexed: 06/25/2023]
Abstract
Mild zinc (Zn) pre-exposure can promote Zn resistance of organism, but the underlying molecular mechanisms are largely unknown. Two experiments were performed using zebrafish ZF4 cells, including short-term and long-term Zn pre-exposure experiments. In the short-term test, the cells were pre-exposed to 100 µM Zn for 24 h, transferred into fresh medium with 4.4 µM Zn for 24 h, and then re-exposed to 250 µM Zn. In the long-term test, the cells were pre-exposed to 100 µM Zn intermittently for 10 passages (3 days per passage), transferred into fresh medium with 4.4 µM Zn for 5 passages, and then re-exposed to 250 µM Zn. Both pretreatments resulted in higher resistance to 250 µM Zn. Exposure to 250 µM Zn caused a more than 2-fold increase in Zn content without Zn pretreatment but did not affect Zn content in the Zn pretreated cells. The Zn pretreated cells had low methylation levels of the metal-response element (MRE) at locus -87 in the promoter of mt2 (metallothionein 2). The up-regulated mRNA expression of Zn-regulatory genes (mtf-1, mt2, slc30a1a, slc30a4, slc30a5, slc30a6 and slc30a7) in the long-term Zn pretreated cells and mt2, slc30a4, slc30a6 and slc30a7 in the short-term Zn pretreated cells were observed. Exposure to 250 µM Zn in combination with the Zn pretreatments up-regulated mRNA expression of these genes and reduced methylation levels of the MRE compared with 250 µM Zn alone and the control. Taken together, the data suggested that demethylation of MRE in the promoter of mt2 and transcriptional induction of mt2 and Zn exporter genes offered Zn resistance in fish ZF4 cells. The traditional toxicological evaluation based on continuous exposure may overestimate the risk of fluctuating concentrations of Zn in the environment.
Collapse
Affiliation(s)
- Jia-Lang Zheng
- King's College London, Faculty of Life Sciences and Medicine, Department of Nutritional Sciences, Metal Metabolism Group, London, UK; National Engineering Research Center of Marine Facilities Aquaculture, College of Marine Science and Technology, Zhejiang Ocean University, Zhoushan, 316022, PR China.
| | - Qing-Ling Zhu
- King's College London, Faculty of Life Sciences and Medicine, Department of Nutritional Sciences, Metal Metabolism Group, London, UK; National Engineering Research Center of Marine Facilities Aquaculture, College of Marine Science and Technology, Zhejiang Ocean University, Zhoushan, 316022, PR China
| | - Christer Hogstrand
- King's College London, Faculty of Life Sciences and Medicine, Department of Nutritional Sciences, Metal Metabolism Group, London, UK.
| |
Collapse
|
6
|
Al Marshoudi M, Al Reasi HA, Al Habsi A, Barry MJ. Additive effects of microplastics on accumulation and toxicity of cadmium in male zebrafish. CHEMOSPHERE 2023; 334:138969. [PMID: 37244557 DOI: 10.1016/j.chemosphere.2023.138969] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 05/04/2023] [Accepted: 05/16/2023] [Indexed: 05/29/2023]
Abstract
Microplastics (MPs) have emerged as contaminants of concern because of their ubiquitous presence in almost all aquatic environments. The ecological effects of MPs are complex and depend on multiple factors including their age, size and the ecological matrix. There is an urgent need for multifactorial studies to elucidate their impacts. We measured the effects of virgin and naturally aged MPs, alone, pretreated with cadmium (Cd), or in combination with ionic Cd, on the bioaccumulation of Cd, metallothionein expression, behavior, and histopathology of adult zebrafish (Danio rerio). Zebrafish were exposed to virgin or aged polyethylene MPs (0.1% MPs enriched diets, w/w) or waterborne Cd (50 μg/L) or a combination of the two for 21 days. There was an additive interaction between water-borne Cd and MPs on bioaccumulation in males but not in females, Cd accumulation increased by twofold when water-borne Cd and MPs were combined. Water-borne Cd significantly induced higher levels of metallothionein compared to MPs pre-exposed to Cd. However, Cd-treated MPs caused greater damage to the intestine and liver compared to untreated MPs suggesting that bound Cd could be released or modulate MPs toxicity. We also showed that co-exposure to water-borne Cd and MPs increased anxiety in the zebrafish, compared with water-borne Cd alone, suggesting using microplastics as a vector may increase toxicity. This study demonstrates that MPs can enhance the toxicity of Cd, but further study is needed to elucidate the mechanism.
Collapse
Affiliation(s)
- Maklas Al Marshoudi
- Biology Department, Sultan Qaboos University, PO Box 36, Muscat, 123, Sultanate of Oman; Current Address: College of Applied Sciences and Pharmacy, University of Technology and Applied Sciences (UTA), Muscat, PO Box 74, Al-Khuwair, Sultanate of Oman
| | - Hassan A Al Reasi
- Biology Department, Sultan Qaboos University, PO Box 36, Muscat, 123, Sultanate of Oman; Center for Environmental Studies and Research, Sultan Qaboos University, Al-Khod, Muscat, PO Box: 17, Postal Code: 123 SQU, Oman
| | - Aziz Al Habsi
- Biology Department, Sultan Qaboos University, PO Box 36, Muscat, 123, Sultanate of Oman
| | - Michael J Barry
- Biology Department, Sultan Qaboos University, PO Box 36, Muscat, 123, Sultanate of Oman.
| |
Collapse
|
7
|
Resende AC, Mauro Carneiro Pereira D, Cristina Schleger I, Dmengeon Pedreiro de Souza MR, Alvez Neundorf AK, Romão S, Herrerias T, Donatti L. Effects of heat shock on energy metabolism and antioxidant defence in a tropical fish species Psalidodon bifasciatus. JOURNAL OF FISH BIOLOGY 2022; 100:1245-1263. [PMID: 35266159 DOI: 10.1111/jfb.15036] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 02/08/2022] [Accepted: 03/07/2022] [Indexed: 06/14/2023]
Abstract
Predictions about global warming have raised interest in assessing whether ectothermic organisms will be able to adapt to these changes. Understanding the physiological mechanisms and metabolic adjustment capacity of fish subjected to heat stress can provide subsidies that may contribute to decision-making in relation to ecosystems and organisms subjected to global climate change. This study investigated the antioxidant defence system and energy metabolism of carbohydrate and protein responses in the gill, liver and kidney tissues of Psalidodon bifasciatus (Garavello & Sampaio 2010), a Brazilian freshwater fish used in aquaculture and in biological studies, following exposure to heat shock at 31°C for 2, 6, 12, 24 and 48 h. The fish presented signs of stress in all tissues tested, as evidenced by increased lipid peroxidation concentration at 2 h and phosphofructokinase, hexokinase and malate dehydrogenase activity at 48 h in the gills; increased glutathione-S-transferase activity at 12 h, citrate synthase activity at 24 h and concentration of reduced glutathione (GSH) concentration at 12 and 48 h in the liver; and through increased activity of superoxide dismutase at 48 h, glutathione reductase at 24 h, glucose-6-phosphate dehydrogenase at 48 h and concentration of GSH at 24 h in the kidney. In the kidneys, changes in the antioxidant system were more prominent, whereas in the gills, there were greater changes in the carbohydrate metabolism. These results indicated the importance of glycolysis and aerobic metabolism in the gills, aerobic metabolism in the liver and pentose-phosphate pathway in the kidneys during homeostasis. The biomarker response was tissue specific, with the greatest number of biomarkers altered in the gills, followed by those in the kidneys and liver.
Collapse
Affiliation(s)
- Anna Carolina Resende
- Adaptive Biology Laboratory, Department of Cell Biology, Federal University of Paraná, Curitiba, Brazil
- Postgraduate Program on Ecology and Conservation, Federal University of Paraná, Curitiba, Brazil
| | | | - Ieda Cristina Schleger
- Adaptive Biology Laboratory, Department of Cell Biology, Federal University of Paraná, Curitiba, Brazil
| | | | | | - Silvia Romão
- Laranjeiras do Sul, Universidade Federal da Fronteira Sul, Curitiba, Brazil
| | - Tatiana Herrerias
- Department of Health Promotion, Uniguairacá University Center, Curitiba, Brazil
| | - Lucélia Donatti
- Adaptive Biology Laboratory, Department of Cell Biology, Federal University of Paraná, Curitiba, Brazil
- Postgraduate Program on Ecology and Conservation, Federal University of Paraná, Curitiba, Brazil
| |
Collapse
|
8
|
Na J, Kim Y, Song J, Shim T, Cho K, Jung J. Evaluation of the combined effect of elevated temperature and cadmium toxicity on Daphnia magna using a simplified DEBtox model. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 291:118250. [PMID: 34597733 DOI: 10.1016/j.envpol.2021.118250] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 08/26/2021] [Accepted: 09/26/2021] [Indexed: 06/13/2023]
Abstract
Thermal discharge and heatwaves under climate change may increase water temperature. In this study, the individual and combined effect of elevated temperature and cadmium (Cd) toxicity on somatic growth and reproduction of Daphnia magna was evaluated using a simplified dynamic energy budget model (DEBtox). The model predicted that the maximum body length (Lm) would be shorter (3.705 mm) at an elevated temperature of 25 °C than at 20 °C (3.974 mm), whereas the maximum reproduction rate (R˙m) would be higher at 25 °C (5.735) than at 20 °C (5.591). The somatic growth and reproduction of D. magna were significantly (p < 0.05) reduced with increasing Cd concentrations, and the reduction was greater at 25 than at 20 °C. Potentiation of Cd toxicity by elevated temperature was correctly simulated by assuming four toxicological modes of action influencing assimilation, somatic maintenance and growth, and reproduction. Overall, the population growth rate of D. magna was expected to decrease linearly with increasing Cd concentrations, and the decrease was expected to be higher at 25 than at 20 °C. These findings suggest a significant ecological risk of toxic metals at elevated temperature, with a mechanistic interpretation of the potentiation effect using a DEBtox modeling approach.
Collapse
Affiliation(s)
- Joorim Na
- Division of Environmental Science and Ecological Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Yongeun Kim
- Division of Environmental Science and Ecological Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Jinyoung Song
- Division of Environmental Science and Ecological Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Taeyong Shim
- Division of Environmental Science and Ecological Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Kijong Cho
- Division of Environmental Science and Ecological Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Jinho Jung
- Division of Environmental Science and Ecological Engineering, Korea University, Seoul, 02841, Republic of Korea.
| |
Collapse
|
9
|
Ibrahim ATA, Banaee M, Sureda A. Genotoxicity, oxidative stress, and biochemical biomarkers of exposure to green synthesized cadmium nanoparticles in Oreochromis niloticus (L.). Comp Biochem Physiol C Toxicol Pharmacol 2021; 242:108942. [PMID: 33220515 DOI: 10.1016/j.cbpc.2020.108942] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 11/10/2020] [Accepted: 11/14/2020] [Indexed: 01/12/2023]
Abstract
The considerable increment in the use of Nanoparticles in the industry has been recognized as an environmental concern today. Therefore, this study aimed to investigate the toxicity effects of green synthesized cadmium nanoparticles [Cd]NPs using Moringa oleifera leaves extract on multi-biomarkers in Oreochromis niloticus after four weeks of exposure. The results showed that LC50 values of [Cd]NPs for 24, 48, 72 and 96 h were 2.17, 1.75, 1.49 and 1.22 mg l-1, respectively. There was a significant decrease in the number of white and red blood cells, hemoglobin, hematocrit, mean corpuscular hemoglobin concentration value in fish exposed to [Cd]NPs. The mean corpuscular volume and neutrophils were increased. [Cd]NPs exposure to fish has led to cytotoxic and genotoxic changes in the erythrocytes. Significant changes were observed in the cortisol, triiodothyronine, and thyroxine levels of the fish exposed to [Cd]NPs. The activities of aspartate aminotransferase and alanine aminotransferase increased. Glucose, total lipids, urea, and creatinine levels increased in the serum of fish exposed to [Cd]NPs, whereas total protein contents and alkaline phosphatase activity decreased. A significant reduction was observed in glycogen, total antioxidant levels, and superoxide dismutase, catalase and glutathione S-transferase activities of fish exposed to [Cd]NPs. In contrast, the [Cd]NPs exposure resulted in a significant increase in DNA fragmentation percentages, lipid peroxidation, and carbonyl protein levels in different tissues. The results of the present study confirmed that [Cd]NPs has the toxicity potential to cause Cyto-genotoxicity, oxidative damages, changes in the hematological and biochemical changes, and endocrine disruptor in the fish.
Collapse
Affiliation(s)
| | - Mahdi Banaee
- Department of Aquaculture, Faculty of Natural Resources and Environment, Behbahan Khatam Alanbia University of Technology, Iran.
| | - Antoni Sureda
- Research Group on Community Nutrition and Oxidative Stress, Department of Fundamental Biology and Health Sciences, and CIBEROBN Fisiopatología de la Obesidad la Nutrición, University of Balearic Islands, 07122 Palma de Mallorca, Spain.
| |
Collapse
|
10
|
Castaldo G, Pillet M, Ameryckx L, Bervoets L, Town RM, Blust R, De Boeck G. Temperature Effects During a Sublethal Chronic Metal Mixture Exposure on Common Carp ( Cyprinus carpio). Front Physiol 2021; 12:651584. [PMID: 33796029 PMCID: PMC8009323 DOI: 10.3389/fphys.2021.651584] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Accepted: 02/19/2021] [Indexed: 12/18/2022] Open
Abstract
The aquatic environment is the final sink of various pollutants including metals, which can pose a threat for aquatic organisms. Waterborne metal mixture toxicity might be influenced by environmental parameters such as the temperature. In the present study, common carp were exposed for 27 days to a ternary metal mixture of Cu, Zn, and Cd at two different temperatures, 10 and 20°C. The exposure concentrations represent 10% of the 96 h-LC50 (concentration lethal for the 50% of the population in 96 h) for each metal (nominal metal concentrations of Cu: 0.08 μM; Cd: 0.02 μM and Zn: 3 μM). Metal bioaccumulation and toxicity as well as changes in the gene expression of enzymes responsible for ionoregulation and induction of defensive responses were investigated. Furthermore the hepatosomatic index and condition factor were measured as crude indication of overall health and energy reserves. The obtained results showed a rapid Cu and Cd increase in the gills at both temperatures. Cadmium accumulation was higher at 20°C compared to 10°C, whereas Cu and Zn accumulation was not, suggesting that at 20°C, fish had more efficient depuration processes for Cu and Zn. Electrolyte (Ca, Mg, Na, and K) levels were analyzed in different tissues (gills, liver, brain, muscle) and in the remaining carcasses. However, no major electrolyte losses were observed. The toxic effect of the trace metal ion mixture on major ion uptake mechanisms may have been compensated by ion uptake from the food. Finally, the metal exposure triggered the upregulation of the metallothionein gene in the gills as defensive response for the organism. These results, show the ability of common carp to cope with these metal levels, at least under the condition used in this experiment.
Collapse
Affiliation(s)
- Giovanni Castaldo
- Systemic Physiological and Ecotoxicological Research (SPHERE), Department of Biology, University of Antwerp, Antwerp, Belgium
| | - Marion Pillet
- Systemic Physiological and Ecotoxicological Research (SPHERE), Department of Biology, University of Antwerp, Antwerp, Belgium
| | - Leen Ameryckx
- Systemic Physiological and Ecotoxicological Research (SPHERE), Department of Biology, University of Antwerp, Antwerp, Belgium
| | - Lieven Bervoets
- Systemic Physiological and Ecotoxicological Research (SPHERE), Department of Biology, University of Antwerp, Antwerp, Belgium
| | - Raewyn M Town
- Systemic Physiological and Ecotoxicological Research (SPHERE), Department of Biology, University of Antwerp, Antwerp, Belgium
| | - Ronny Blust
- Systemic Physiological and Ecotoxicological Research (SPHERE), Department of Biology, University of Antwerp, Antwerp, Belgium
| | - Gudrun De Boeck
- Systemic Physiological and Ecotoxicological Research (SPHERE), Department of Biology, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
11
|
Zhang L, Xiao S, Kang X, Sun T, Zhou C, Xu Z, Du M, Zhang Y, Wang G, Liu Y, Zhang D, Gong M. Metabolic Conversion and Removal of Manganese Ferrite Nanoparticles in RAW264.7 Cells and Induced Alteration of Metal Transporter Gene Expression. Int J Nanomedicine 2021; 16:1709-1724. [PMID: 33688187 PMCID: PMC7936572 DOI: 10.2147/ijn.s289707] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 02/10/2021] [Indexed: 12/26/2022] Open
Abstract
Background Manganese Ferrite Nanoparticles (Mn-IONPs) are widely used in biomedical field and their cytotoxicity has been initially explored, but the mechanism remains obscure. The nano-bio interactions are believed to be crucial for cytotoxicity mechanism, while little data have been acquired. Methods Mn-IONPs were synthesized by thermal decomposition of acetylacetonate precursor. After physicochemical characterization, we analyzed the metabolic conversion and removal of Mn-IONPs in RAW264.7 cells by Prussian blue staining, TEM, HRTEM and elemental quantitative analysis, followed by gene expression evaluation using quantitative RT-PCR. Results Mn-IONPs were successfully synthesized. Both the uptake and cytotoxicity of Mn-IONPs on RAW264.7 cells were time- and dose-dependent. After internalized, Mn-IONPs were passed to daughter cells with passages on. Meanwhile, Mn-IONPs were exocytosed and digested to metal ions and further excreted out, resulted in the labeling rate and ions contents decreased gradually. As ion influx related genes, the expressions of ZIP14, IRP2, FtH and DMT1 were suppressed within 24 hours but overexpressed to a plateau at the 48th hour in a dose-dependent manner. At the 72nd hour, ZIP14 and DMT1 mRNA levels decreased toward normal, while IRP2 and FtH kept up-regulated. As efflux related genes, FPN, SLC30A10 and Hamp2 genes were up-regulated within 24–72 hours; SPCA1 was suppressed at the 24th and 72nd hour, while overexpressed at the 48th hour. All the efflux related genes’ mRNA had a dose-dependent increasing manner at the corresponding time points. Conclusion Mn-IONPs showed time- and dose-dependent cytotoxicity and cell labeling rate in RAW264.7 cells. Accompanying with the intracellular catabolic breakdown and exocytosis of Mn-IONPs, RAW264.7 cells also secreted and re-uptook manganese and iron ions to maintain intracellular homeostasis in the succeeding passages. And the metabolic conversion of Mn-IONPs in RAW264.7 cells can affect the expression of ZIP14, DMT1, FPN, SLC30A10, IRP2, FtH, Hamp2 and SPCA1 genes.
Collapse
Affiliation(s)
- Liang Zhang
- Department of Radiology, Xinqiao Hospital, Army Medical University, Chongqing, People's Republic of China
| | - Shilin Xiao
- Department of Radiology, Xinqiao Hospital, Army Medical University, Chongqing, People's Republic of China
| | - Xun Kang
- Department of Radiology, Xinqiao Hospital, Army Medical University, Chongqing, People's Republic of China
| | - Tao Sun
- Department of Radiology, Xinqiao Hospital, Army Medical University, Chongqing, People's Republic of China
| | - Chunyu Zhou
- Department of Radiology, Xinqiao Hospital, Army Medical University, Chongqing, People's Republic of China
| | - Zhongsheng Xu
- Department of Radiology, Xinqiao Hospital, Army Medical University, Chongqing, People's Republic of China
| | - Mengmeng Du
- Department of Radiology, Xinqiao Hospital, Army Medical University, Chongqing, People's Republic of China
| | - Ya Zhang
- Department of Radiology, Xinqiao Hospital, Army Medical University, Chongqing, People's Republic of China
| | - Guangxian Wang
- Department of Radiology, Xinqiao Hospital, Army Medical University, Chongqing, People's Republic of China
| | - Yun Liu
- Department of Radiology, Xinqiao Hospital, Army Medical University, Chongqing, People's Republic of China
| | - Dong Zhang
- Department of Radiology, Xinqiao Hospital, Army Medical University, Chongqing, People's Republic of China
| | - Mingfu Gong
- Department of Radiology, Xinqiao Hospital, Army Medical University, Chongqing, People's Republic of China
| |
Collapse
|
12
|
Dreier DA, Nouri MZ, Denslow ND, Martyniuk CJ. Lipidomics reveals multiple stressor effects (temperature × mitochondrial toxicant) in the zebrafish embryo toxicity test. CHEMOSPHERE 2021; 264:128472. [PMID: 33039916 DOI: 10.1016/j.chemosphere.2020.128472] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 09/25/2020] [Accepted: 09/26/2020] [Indexed: 05/27/2023]
Abstract
Aquatic organisms are exposed to multiple stressors in the environment, including contaminants and rising temperatures due to climate change. The objective of this study was to characterize the effect of increased temperature on chemical-induced toxicity and lipid profiles during embryonic development and hatch in fish. This is important because temperature and many environmental chemicals modulate cellular metabolism and lipids, both of which play integral roles for normal embryonic development. As such, we employed the zebrafish embryo toxicity test for multiple stressor exposures, using the mitochondrial toxicant 2,4-Dinitrophenol (DNP; 6-30 μM) in conjunction with different temperature treatments (28 °C and 33 °C). We found a positive relationship between temperature and lethality at lower DNP concentrations, suggesting temperature stress can increase toxicant sensitivity. Next, we used LC-MS/MS for lipidomics following exposure to sublethal stressor combinations. It was determined that temperature stress at 33 °C augmented DNP-induced effects on the lipidome, including the upregulation of bioactive lipids involved in apoptosis (e.g., ceramides). These data reveal potential implications for climate change and sensitivity to environmental pollution and demonstrate the utility of lipidomics to characterize metabolic pathways underlying toxicity. Data such as these are expected to advance adverse outcome pathways by establishing multiple stressor networks that include intermediate lipid responses.
Collapse
Affiliation(s)
- David A Dreier
- Center for Environmental & Human Toxicology, Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL, USA
| | - Mohammad-Zaman Nouri
- Center for Environmental & Human Toxicology, Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL, USA
| | - Nancy D Denslow
- Center for Environmental & Human Toxicology, Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL, USA
| | - Christopher J Martyniuk
- Center for Environmental & Human Toxicology, Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
13
|
Li ZH, Li P, Wu Y. Regulation of glutathione-dependent antioxidant defense system of grass carp Ctenopharyngodon idella under the combined stress of mercury and temperature. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:1689-1696. [PMID: 32845466 DOI: 10.1007/s11356-020-10587-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Accepted: 08/20/2020] [Indexed: 06/11/2023]
Abstract
In this study, we investigated the combined effects of temperatures fluencies and mercury (Hg) on glutathione-dependent antioxidant system in fish, by measuring the oxidative stress indicator (LPO, lipid peroxidation) and the parameters involved in the glutathione-related antioxidant defense system (GPx, glutathione peroxidase; GR, glutathione reductase; GST, glutathione S-transferase; GSH, reduced glutathione), as well as the expression of related genes in grass carp, Ctenopharyngodon idella. Fish (45.37 ± 3.58 g) were exposed to 10 test groups, e.g., 15 °C with/without Hg, 20 °C with/without Hg, 25 °C with/without Hg, 30 °C with/without Hg, 35 °C with/without Hg for 4 weeks. Three-way ANOVA was used to analyze the correlation between the measured parameters and experimental conditions (water temperature, Hg exposure, exposure time, and their interactions.). Our results show that there is no interaction between mercury and low temperature, but the combined effect at high temperature has been confirmed, which indicated the glutathione-dependent enzyme system in grass carp has a complex regulatory mechanism with temperature fluctuations. In the actual field monitoring, it is necessary to consider the impact of extreme temperature on the toxicity of pollutants in the aquatic ecosystem.
Collapse
Affiliation(s)
- Zhi-Hua Li
- Marine College, Shandong University, Weihai, 264209, Shandong, China.
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, 430223, China.
| | - Ping Li
- Marine College, Shandong University, Weihai, 264209, Shandong, China.
| | - Yanhua Wu
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, 430223, China
| |
Collapse
|
14
|
Lv B, Wang J, Zhuo J, Yang H, Yang S, Wang Z, Song Q. Transcriptome sequencing reveals the effects of cadmium toxicity on the cold tolerance of the wolf spider Pirata subpiraticus. CHEMOSPHERE 2020; 254:126802. [PMID: 32660694 DOI: 10.1016/j.chemosphere.2020.126802] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 04/12/2020] [Accepted: 04/12/2020] [Indexed: 06/11/2023]
Abstract
As the predominant predator of pests in rice fields, spiders have been exposed to cadmium (Cd) pollution for a long time. The livability of spiders during the overwintering period is closely related to population growth in spring, but the effects of Cd on spider's survival of cold hardness and the underlining mechanism remain unclear. In the present study, we found that some growth parameters (body length, width, mass and livability) in the wolf spider Pirata subpiraticus were altered distinctively under Cd stress. To investigate the effects of Cd toxicity on the spider at molecular levels, RNA-sequencing was performed on the spiderlings undergoing ambient temperature alterations. Transcriptome data showed that a total of 807 differentially expressed genes (DEGs) were yielded in the comparison. The obtained DEGs were mainly linked with metabolism-related process, including oxidoreductase activity and lipid transport, and 25 DEGs were associated with the reported cryoprotectants, including glycerol, arginine, cysteine, heat shock protein, glucose and mannose. Growth factors (insulin growth factor, platelet-derived growth factor and transforming growth factor) and cytochrome P450 encoding genes were dramatically expressed in the spider. Furthermore, transcriptional factors (TFs) family were characterized according to the transcriptomic profile, and ZBTB TFs were represented the most distinctive alterations in the characterized genes. Collectively, our study illustrated that Cd poses disadvantageous effects on the growth of P. subpiraticus at cold ambient temperature, and the spiders are capable of responding to the adverse Cd stress by expressing the genes involved in the metabolism of energy substances, cryoprotectants and immune-related components.
Collapse
Affiliation(s)
- Bo Lv
- College of Life Science, Hunan Normal University, Changsha, 410006, Hunan, China
| | - Juan Wang
- College of Life Science, Hunan Normal University, Changsha, 410006, Hunan, China
| | - Junzhe Zhuo
- College of Bioscience and Biotechnology, Hunan Agriculture University, Changsha, Hunan, 410128, China
| | - Huilin Yang
- College of Bioscience and Biotechnology, Hunan Agriculture University, Changsha, Hunan, 410128, China
| | - Sufang Yang
- College of Life Science, Hunan Normal University, Changsha, 410006, Hunan, China
| | - Zhi Wang
- College of Life Science, Hunan Normal University, Changsha, 410006, Hunan, China.
| | - Qisheng Song
- Division of Plant Sciences, University of Missouri, Columbia, MO, 65211, USA
| |
Collapse
|
15
|
Lacave JM, Bilbao E, Gilliland D, Mura F, Dini L, Cajaraville MP, Orbea A. Bioaccumulation, cellular and molecular effects in adult zebrafish after exposure to cadmium sulphide nanoparticles and to ionic cadmium. CHEMOSPHERE 2020; 238:124588. [PMID: 31545210 DOI: 10.1016/j.chemosphere.2019.124588] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 08/06/2019] [Accepted: 08/13/2019] [Indexed: 06/10/2023]
Abstract
Few works have addressed the effects provoked by the exposure to cadmium containing nanoparticles (NPs) on adult zebrafish (Danio rerio). We studied the effects of CdS NPs (5 nm) or ionic cadmium (10 μg Cd/L) after 3 and 21 d of exposure and at 6 months post-exposure (mpe). Acute toxicity was recorded after exposure to both forms of cadmium. Significant cadmium accumulation was measured in the whole fish after both treatments and autometallography showed a higher accumulation of metal in the intestine than that in the liver. Histopathological alterations, such as inflammation in gills and vacuolization in the liver, were detected after the exposure to both cadmium forms and, in a lower extent, at 6 mpe. X-ray analysis proved the presence of CdS NPs in these organs. The hepatic transcriptome analysis revealed that gene ontology terms such as "immune response" or "actin binding" were over-represented after 21 d of exposure to ionic cadmium respect to CdS NPs treatment. Exposure to CdS NPs caused a significant effect on pathways involved in the immune response and oxidative stress, while the exposure to ionic cadmium affected significantly pathways involved in DNA damage and repair and in the energetic metabolism. Oxidative damage to liver proteins was detected after the exposure to ionic cadmium, while a stronger destabilization of the hepatocyte lysosomal membrane was recorded under exposure to CdS NPs. In summary, although ionic cadmium provoked stronger effects than CdS NPs, both cadmium forms exerted an array of lethal and sublethal effects to zebrafish.
Collapse
Affiliation(s)
- José María Lacave
- CBET Research Group, Dept. of Zoology and Animal Cell Biology, Research Centre for Experimental Marine Biology and Biotechnology PiE and Science and Technology Faculty, University of the Basque Country (UPV/EHU), Sarriena z/g, E-48940, Leioa, Basque Country, Spain
| | - Eider Bilbao
- CBET Research Group, Dept. of Zoology and Animal Cell Biology, Research Centre for Experimental Marine Biology and Biotechnology PiE and Science and Technology Faculty, University of the Basque Country (UPV/EHU), Sarriena z/g, E-48940, Leioa, Basque Country, Spain
| | - Douglas Gilliland
- European Commission, JRC Directorate F, Health, Consumers and Reference Materials, Via E. Fermi, 2749, I-21027, Ispra, VA, Italy
| | - Francesco Mura
- Dept. of Basic and Applied Sciences for Engineering and Center for Nanotechnologies Applied to Engineering, Sapienza University of Rome Via A. Scarpa 16, Rome, 00161, Italy
| | - Luciana Dini
- Dept. of Biological and Environmental Science and Technology (Di.S.Te.B.A), University of Salento & CNR, Nanotec, 73100, Lecce, Italy
| | - Miren P Cajaraville
- CBET Research Group, Dept. of Zoology and Animal Cell Biology, Research Centre for Experimental Marine Biology and Biotechnology PiE and Science and Technology Faculty, University of the Basque Country (UPV/EHU), Sarriena z/g, E-48940, Leioa, Basque Country, Spain
| | - Amaia Orbea
- CBET Research Group, Dept. of Zoology and Animal Cell Biology, Research Centre for Experimental Marine Biology and Biotechnology PiE and Science and Technology Faculty, University of the Basque Country (UPV/EHU), Sarriena z/g, E-48940, Leioa, Basque Country, Spain.
| |
Collapse
|
16
|
Mehdi H, Bragg LM, Servos MR, Craig PM. Multiple Stressors in the Environment: The Effects of Exposure to an Antidepressant (Venlafaxine) and Increased Temperature on Zebrafish Metabolism. Front Physiol 2019; 10:1431. [PMID: 31803073 PMCID: PMC6877669 DOI: 10.3389/fphys.2019.01431] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 11/04/2019] [Indexed: 12/18/2022] Open
Abstract
Aquatic organisms are continuously exposed to multiple environmental stressors working cumulatively to alter ecosystems. Wastewater-dominated environments are often riddled by a myriad of stressors, such as chemical and thermal stressors. The objective of this study was to examine the effects of an environmentally relevant concentration of a commonly prescribed antidepressant, venlafaxine (VFX) [1.0 μg/L], in addition to a 5°C increase in water temperature on zebrafish metabolism. Fish were chronically exposed (21 days) to one of four conditions: (i) 0 μg/L VFX at 27°C; (ii) 1.0 μg/L VFX at 27°C; (iii) 0 μg/L VFX at 32°C; (iv) 1.0 μg/L VFX at 32°C. Following exposure, whole-body metabolism was assessed by routine metabolic rate (RMR) measurements, whereas tissue-specific metabolism was assessed by measuring the activities of major metabolic enzymes in addition to glucose levels in muscle. RMR was significantly higher in the multi-stressed group relative to Control. The combination of both stressors resulted in elevated pyruvate kinase activity and glucose levels, while lipid metabolism was depressed, as measured by 3-hydroxyacyl CoA dehydrogenase activity. Citrate synthase activity increased with the onset of temperature, but only in the group treatment without VFX. Catalase activity was also elevated with the onset of the temperature stressor, however, that was not the case for the multi-stressed group, potentially indicating a deleterious effect of VFX on the anti-oxidant defense mechanism. The results of this study highlight the importance of multiple-stressor research, as it able to further bridge the gap between field and laboratory studies, as well as have the potential of yielding surprising results that may have not been predicted using a conventional single-stressor approach.
Collapse
Affiliation(s)
- Hossein Mehdi
- Department of Biology, University of Waterloo, Waterloo, ON, Canada
| | | | | | | |
Collapse
|
17
|
Okoye CN, MacDonald-Jay N, Kamunde C. Effects of bioenergetics, temperature and cadmium on liver mitochondria reactive oxygen species production and consumption. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2019; 214:105264. [PMID: 31377504 DOI: 10.1016/j.aquatox.2019.105264] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 07/22/2019] [Accepted: 07/24/2019] [Indexed: 06/10/2023]
Abstract
A by-product of mitochondrial substrate oxidation and electron transfer to generate cellular energy (ATP) is reactive oxygen species (ROS). Superoxide anion radical and hydrogen peroxide (H2O2) are the proximal ROS produced by the mitochondria. Because low levels of ROS serve critical regulatory roles in cell physiology while excessive levels or inappropriately localized ROS result in aberrant physiological states, mitochondrial ROS need to be tightly regulated. While it is known that regulation of mitochondrial ROS involves balancing the rates of production and removal, the effects of stressors on these processes remain largely unknown. To illuminate how stressors modulate mitochondrial ROS homeostasis, we investigated the effects of temperature and cadmium (Cd) on H2O2 emission and consumption in rainbow trout liver mitochondria. We show that H2O2 emission rates increase with temperature and Cd exposure. Energizing mitochondria with malate-glutamate or succinate increased the rate of H2O2 emission; however, Cd exposure imposed different patterns of H2O2 emission depending on the concentration and substrate. Specifically, mitochondria respiring on malate-glutamate exhibited a saturable graded concentration-response curve that plateaued at 5 μM while mitochondria respiring on succinate had a biphasic concentration-response curve characterized by a spike in the emission rate at 1 μM Cd followed by gradual diminution at higher Cd concentrations. To explain the observed substrate- and concentration-dependent effects of Cd, we sequestered specific mitochondrial ROS-emitting sites using blockers of electron transfer and then tested the effect of the metal. The results indicate that the biphasic H2O2 emission response imposed by succinate is due to site IIF but is further modified at sites IQ and IIIQo. Moreover, the saturable graded H2O2 emission response in mitochondria energized with malate-glutamate is consistent with effect of Cd on site IF. Additionally, Cd and temperature acted cooperatively to increase mitochondrial H2O2 emission suggesting that increased toxicity of Cd at high temperature may be due to increased oxidative insult. Surprisingly, despite their clear stimulatory effect on H2O2 emission, Cd, temperature and bioenergetic status did not affect the kinetics of mitochondrial H2O2 consumption; the rate constants and half-lives for all the conditions tested were similar. Overall, our study indicates that the production processes of rainbow trout liver mitochondrial H2O2 metabolism are highly responsive to stressors and bioenergetics while the consumption processes are recalcitrant. The latter denotes the presence of a robust H2O2 scavenging system in liver mitochondria that would maintain H2O2 homeostasis in the face of increased production and reduced scavenging capacity.
Collapse
Affiliation(s)
- Chidozie N Okoye
- Department of Biomedical Sciences, Atlantic Veterinary College, University of Prince Edward Island, 550 University Avenue, Charlottetown, PE, C1A 4P3, Canada
| | - Nicole MacDonald-Jay
- Department of Biomedical Sciences, Atlantic Veterinary College, University of Prince Edward Island, 550 University Avenue, Charlottetown, PE, C1A 4P3, Canada
| | - Collins Kamunde
- Department of Biomedical Sciences, Atlantic Veterinary College, University of Prince Edward Island, 550 University Avenue, Charlottetown, PE, C1A 4P3, Canada.
| |
Collapse
|
18
|
Pilehvar A, Town RM, Blust R. The effect of thermal pre-incubation and exposure on sensitivity of zebrafish (Danio rerio) to copper and cadmium single and binary exposures. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2019; 213:105226. [PMID: 31229889 DOI: 10.1016/j.aquatox.2019.105226] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 06/11/2019] [Accepted: 06/13/2019] [Indexed: 06/09/2023]
Abstract
Zebrafish (Danio rerio) is a prominent model organism in a wide range of biological studies including toxicology. However, toxicological studies are often performed at species specific optimum temperature, and knowledge on the effect of different temperature regimes on the toxicity of metal ions is rather limited. To address this knowledge gap, present study investigates the effect of various thermal scenarios (simultaneous and sequential; acute and chronic) on the toxicity of Cu and Cd in zebrafish. For this purpose we assessed mortality and whole body metal burdens as indicators of toxicity and bioavailability, respectively, and whole body electrolyte concentrations and body condition as the indicators of physiological condition. Thermal pre-incubations (for 12 or 96 h or 28 days) and subsequent metal ion exposures (for 10 days) were conducted at 17, 22, 25, 28, 32 and 34 °C. The metal exposures were performed at Cu concentrations of 1.2 μM and Cd concentrations of 0.2 μM, both singly and in binary mixtures. Irrespective of thermal treatments, Cu exposures resulted in greater mortality than Cd exposures at the given concentrations. Moreover, the Cu and Cd mixture indicated a synergistic effect. While acute pre-incubation for 12 or 96 h at elevated temperatures increased mortality in the subsequent metal exposure at the optimum temperature (28 °C), pre-incubation at cold temperatures in this scenario appeared to increase tolerance towards the subsequent metal exposure. Chronic thermal pre-incubation of zebrafish to a range of temperatures for 28 days moderated the effect of temperature fluctuations on subsequent metal toxicity at the optimum temperature. Chronic thermal pre-incubation at a range of temperatures followed by metal exposure at the same temperature showed that environmental temperature variations (higher or lower than optimal temperature) coupled with metal exposure, led to increased mortality, furthermore, the highest whole body metal burdens were measured in this scenario. Nevertheless, neither the whole body burden of metals, nor the metal accumulation rate, were predictors of mortality, i.e. these two values were not higher in dead fish in comparison to those that survived the exposures. Finally, we observed a significant decrease in the whole body Na+ level of dead fish in comparison to fish which survived the exposure conditions, suggesting that survival depends on maintaining Na+ homeostasis under the applied multi-stress conditions. Overall, our results show that thermal pre-history and ambient temperature play an important role in determining the tolerance of zebrafish towards metal ion stress.
Collapse
Affiliation(s)
- Ali Pilehvar
- Laboratory of Systemic, Physiological and Ecotoxicological Research (SPHERE), Department of Biology, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium.
| | - Raewyn M Town
- Laboratory of Systemic, Physiological and Ecotoxicological Research (SPHERE), Department of Biology, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium
| | - Ronny Blust
- Laboratory of Systemic, Physiological and Ecotoxicological Research (SPHERE), Department of Biology, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium
| |
Collapse
|
19
|
Hani YMI, Turies C, Palluel O, Delahaut L, Bado-Nilles A, Geffard A, Dedourge-Geffard O, Porcher JM. Effects of a chronic exposure to different water temperatures and/or to an environmental cadmium concentration on the reproduction of the threespine stickleback (Gasterosteus aculeatus). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 174:48-57. [PMID: 30818260 DOI: 10.1016/j.ecoenv.2019.02.032] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 01/17/2019] [Accepted: 02/11/2019] [Indexed: 05/12/2023]
Abstract
Knowledge about combined effects of chemicals and temperature on reproductive capacity of fish are rare in literature, especially when it comes to the effects of chronic low-dose chemical exposure combined to the thermal stress. The aim of the study was to evaluate the single and combined effects of temperature (16, 18, 21 °C) and an environmentally relevant concentration of waterborne cadmium (1 µg L-1, nominal concentration) on the reproductive outputs of threespine stickleback (Gasterosteus aculeatus), and their consequences on offspring survival parameters. The high temperature (21 °C) was the only factor that affected parental parameters (gonadosomatic index "GSI", and vitellogenin "VTG" particularly). On females, 21 °C had a stimulating effect on gonadal development evaluated by an early increase, followed by a sharp decrease of GSI, probably indicating gonadal atresia. Promoting effect of temperature was corroborated by an early production of VTG. In vitro fertilization assays showed interesting results, particularly cadmium effects. As it was supposed, high temperature had a negative impact on offspring parameters (significant decrease in survival and an increase of unhatched embryos). Parental exposure to the very low concentration of cadmium had also negative consequences on mortality rate (significant increase) and hatching rate (significant decrease). Our results indicate that in a global warming context, high temperature and its combination with contaminant may impact reproductive capacity of G. aculeatus, by decreasing parental investment (low eggs and/or sperm quality).
Collapse
Affiliation(s)
- Younes Mohamed Ismail Hani
- Institut National de l'Environnement Industriel et des Risques (INERIS), UMR-I 02 SEBIO (Stress Environnementaux et Biosurveillance des milieux aquatiques), Verneuil-en-Halatte, France; Université de Reims Champagne-Ardenne (URCA), UMR-I 02 SEBIO (Stress Environnementaux et Biosurveillance des milieux aquatiques), Moulin de la Housse, Reims, France.
| | - Cyril Turies
- Institut National de l'Environnement Industriel et des Risques (INERIS), UMR-I 02 SEBIO (Stress Environnementaux et Biosurveillance des milieux aquatiques), Verneuil-en-Halatte, France
| | - Olivier Palluel
- Institut National de l'Environnement Industriel et des Risques (INERIS), UMR-I 02 SEBIO (Stress Environnementaux et Biosurveillance des milieux aquatiques), Verneuil-en-Halatte, France
| | - Laurence Delahaut
- Université de Reims Champagne-Ardenne (URCA), UMR-I 02 SEBIO (Stress Environnementaux et Biosurveillance des milieux aquatiques), Moulin de la Housse, Reims, France
| | - Anne Bado-Nilles
- Institut National de l'Environnement Industriel et des Risques (INERIS), UMR-I 02 SEBIO (Stress Environnementaux et Biosurveillance des milieux aquatiques), Verneuil-en-Halatte, France
| | - Alain Geffard
- Université de Reims Champagne-Ardenne (URCA), UMR-I 02 SEBIO (Stress Environnementaux et Biosurveillance des milieux aquatiques), Moulin de la Housse, Reims, France
| | - Odile Dedourge-Geffard
- Université de Reims Champagne-Ardenne (URCA), UMR-I 02 SEBIO (Stress Environnementaux et Biosurveillance des milieux aquatiques), Moulin de la Housse, Reims, France
| | - Jean-Marc Porcher
- Institut National de l'Environnement Industriel et des Risques (INERIS), UMR-I 02 SEBIO (Stress Environnementaux et Biosurveillance des milieux aquatiques), Verneuil-en-Halatte, France
| |
Collapse
|
20
|
Xiao W, Huang C, Xu F, Yan J, Bian H, Fu Q, Xie K, Wang L, Tang Y. A simple and compact smartphone-based device for the quantitative readout of colloidal gold lateral flow immunoassay strips. SENSORS AND ACTUATORS. B, CHEMICAL 2018; 266:63-70. [PMID: 32288251 PMCID: PMC7127147 DOI: 10.1016/j.snb.2018.03.110] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2018] [Revised: 03/16/2018] [Accepted: 03/18/2018] [Indexed: 05/17/2023]
Abstract
Colloidal gold lateral flow immunoassay strips (AuNPs-LFIS) have been widely applied as qualitative diagnostic tools for point-of-care tests (POCT). If strip readers were incorporated, their use could be extended to quantitative analysis. However, their cost and non-portability render commercial strip readers unavailable for use in either home testing, community or rural hospital diagnosis. This is particularly true for on-site testing. Here, a smartphone-based reader was designed and 3D-printed for quantitatively assess AuNPs-LFIS. The basic principle of the devise was relying on a smartphone's ambient light sensor (SPALS). This sensor was harnessed to measure the transmitted light intensities originating from the T-lines on the strips, the transmitted light intensities vary with concentration of AuNP on the T-lines. To validate this approach, our newly developed smartphone's ambient light sensor-based reader (SPALS-reader) was used to readout AuNPs-LFIS of three analytical targets: cadmium ion (Cd2+; limit of detection (LOD) was 0.16 ng/mL), clenbuterol (CL; LOD was 0.046 ng/mL), and porcine epidemic diarrhea virus (PEDV; LOD was 0.055 μg/mL). The result showed good consistency with the results of conventional image analysis approaches, indicating that the smartphone-based device is appropriate for use in AuNPs-LFIS readouts. Compared with the traditional analysis method, the developed AuNPs-LFIS reader is easier operated, lower cost and more portable, which provided an on-site quantitative analysis tool for AuNPs-LFIS and enhances the applied range of AuNPs-LFIS.
Collapse
Affiliation(s)
- Wei Xiao
- Department of Bioengineering, Guangdong Province Engineering Research Center for Antibody Drug and Immunoassay, Jinan University, Guangzhou 510632, China
| | - Caihong Huang
- Department of Bioengineering, Guangdong Province Engineering Research Center for Antibody Drug and Immunoassay, Jinan University, Guangzhou 510632, China
| | - Fei Xu
- Department of Bioengineering, Guangdong Province Engineering Research Center for Antibody Drug and Immunoassay, Jinan University, Guangzhou 510632, China
| | - Junjie Yan
- Department of Bioengineering, Guangdong Province Engineering Research Center for Antibody Drug and Immunoassay, Jinan University, Guangzhou 510632, China
| | - Hongfen Bian
- Department of Bioengineering, Guangdong Province Engineering Research Center for Antibody Drug and Immunoassay, Jinan University, Guangzhou 510632, China
| | - Qiangqiang Fu
- Department of Bioengineering, Guangdong Province Engineering Research Center for Antibody Drug and Immunoassay, Jinan University, Guangzhou 510632, China
| | - Kaixin Xie
- Department of Bioengineering, Guangdong Province Engineering Research Center for Antibody Drug and Immunoassay, Jinan University, Guangzhou 510632, China
| | - Lei Wang
- Department of Bioengineering, Guangdong Province Engineering Research Center for Antibody Drug and Immunoassay, Jinan University, Guangzhou 510632, China
| | - Yong Tang
- Department of Bioengineering, Guangdong Province Engineering Research Center for Antibody Drug and Immunoassay, Jinan University, Guangzhou 510632, China
- Institute of Food Safety and Nutrition, Jinan University, Guangzhou 510632, China
- Corresponding author at: Department of Bioengineering, Guangdong Province Engineering Research Center for antibody drug and immunoassay, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
21
|
Hani YMI, Turies C, Palluel O, Delahaut L, Gaillet V, Bado-Nilles A, Porcher JM, Geffard A, Dedourge-Geffard O. Effects of chronic exposure to cadmium and temperature, alone or combined, on the threespine stickleback (Gasterosteus aculeatus): Interest of digestive enzymes as biomarkers. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2018; 199:252-262. [PMID: 29677587 DOI: 10.1016/j.aquatox.2018.04.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 04/01/2018] [Accepted: 04/10/2018] [Indexed: 06/08/2023]
Abstract
The development of predictive, sensitive and reliable biomarkers is of crucial importance for aquatic biomonitoring to assess the effects of chemical substances on aquatic organisms, especially when it comes to combined effects with other stressors (e.g. temperature). The first purpose of the present study was to evaluate the single and combined effects of 90 days of exposure to an environmental cadmium concentration (0.5 μg L-1) and two water temperatures (16 and 21 °C) on different parameters. These parameters are involved in (i) the antioxidant system (superoxide dismutase activity -SOD- and total glutathione levels -GSH-), (ii) the energy metabolism, i.e. energy reserves (glycogen, lipids, proteins) and digestive enzymes (trypsin, amylase, intestinal alkaline phosphatase -IAP-), and (iii) biometric parameters (weight, length, Fulton's condition factor, and the gonadosomatic index -GSI-) of threespine stickleback (Gasterosteus aculeatus). The second purpose was to determine the interest of the three digestive enzymes as biomarkers in comparison with the other parameters. The higher temperature (21 °C) impacted the anti-oxidant and energy reserve parameters. In liver, GSH levels increased on day 60, while SOD decreased on days 15 and 90, with a significant decrease of protein and lipid energy reserves on day 90. In muscle, the higher temperature decreased SOD activity only on day 90. G. aculeatus biometric parameters were also impacted by the higher temperature, which limited stickleback growth after 90 days of exposure. In female sticklebacks, the GSI peaked on day 60 and decreased sharply on day 90, while the highest values were reached at day 90 in the control groups, suggesting impaired reproduction in sticklebacks raised at 21 °C. These results suggest that 21 °C is an upper-limit temperature for long-term physiological processes in sticklebacks. In contrast, very low-concentration cadmium exposure had no effect on classical biomarkers (energy reserves, antioxidant parameters, biometric parameters). However, digestive enzymes showed an interesting sensitivity to cadmium, which was emphasized by high temperature. The activity of the three digestive enzymes decreased significantly on day 90 when sticklebacks were exposed to cadmium alone, while the decrease was stronger and was recorded earlier (from day 15) when they were exposed to the cadmium-temperature combination. Compared to conventional measurements, digestive enzymes responded rapidly. This could be an important advantage for them to be used as early warning tools to reflect the health status of organisms, particularly for trypsin and IAP activities.
Collapse
Affiliation(s)
- Younes Mohamed Ismail Hani
- Institut National de l'Environnement Industriel et des Risques (INERIS), UMR-I 02 SEBIO (Stress Environnementaux et Biosurveillance des milieux aquatiques), Verneuil-en-Halatte, France, France; Université de Reims Champagne-Ardenne (URCA), UMR-I 02 SEBIO (Stress Environnementaux et Biosurveillance des milieux aquatiques), Moulin de la Housse, Reims, France
| | - Cyril Turies
- Institut National de l'Environnement Industriel et des Risques (INERIS), UMR-I 02 SEBIO (Stress Environnementaux et Biosurveillance des milieux aquatiques), Verneuil-en-Halatte, France, France
| | - Olivier Palluel
- Institut National de l'Environnement Industriel et des Risques (INERIS), UMR-I 02 SEBIO (Stress Environnementaux et Biosurveillance des milieux aquatiques), Verneuil-en-Halatte, France, France
| | - Laurence Delahaut
- Université de Reims Champagne-Ardenne (URCA), UMR-I 02 SEBIO (Stress Environnementaux et Biosurveillance des milieux aquatiques), Moulin de la Housse, Reims, France
| | - Véronique Gaillet
- Université de Reims Champagne-Ardenne (URCA), UMR-I 02 SEBIO (Stress Environnementaux et Biosurveillance des milieux aquatiques), Moulin de la Housse, Reims, France
| | - Anne Bado-Nilles
- Institut National de l'Environnement Industriel et des Risques (INERIS), UMR-I 02 SEBIO (Stress Environnementaux et Biosurveillance des milieux aquatiques), Verneuil-en-Halatte, France, France
| | - Jean-Marc Porcher
- Institut National de l'Environnement Industriel et des Risques (INERIS), UMR-I 02 SEBIO (Stress Environnementaux et Biosurveillance des milieux aquatiques), Verneuil-en-Halatte, France, France
| | - Alain Geffard
- Université de Reims Champagne-Ardenne (URCA), UMR-I 02 SEBIO (Stress Environnementaux et Biosurveillance des milieux aquatiques), Moulin de la Housse, Reims, France
| | - Odile Dedourge-Geffard
- Université de Reims Champagne-Ardenne (URCA), UMR-I 02 SEBIO (Stress Environnementaux et Biosurveillance des milieux aquatiques), Moulin de la Housse, Reims, France.
| |
Collapse
|
22
|
Guo SN, Zheng JL, Yuan SS, Zhu QL. Effects of heat and cadmium exposure on stress-related responses in the liver of female zebrafish: Heat increases cadmium toxicity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 618:1363-1370. [PMID: 29042086 DOI: 10.1016/j.scitotenv.2017.09.264] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 08/15/2017] [Accepted: 09/24/2017] [Indexed: 06/07/2023]
Abstract
In this study, female zebrafish (Danio rerio) were exposed to 26°C or 34°C, 0 or 197μg/L cadmium (Cd), singly or in combination for 7days. Multiple stress-related indicators were evaluated in the liver. Mortality, lipid peroxidation (LPO) and ultrastructural damage increased significantly by Cd exposure alone, and were not affected by heat alone. Interestingly, the combined exposure increased LPO, ultrastructural damage, and mortality compared with Cd exposure alone. The results indicated that elevated temperature increased Cd toxicity, which could be explained by several reasons. Firstly, Cd-exposed fish failed to activate the antioxidant defense system under heat stress. Secondly, expression levels of heat shock protein 70 (HSP70) were not significantly up-regulated by heat in Cd-exposed fish but increased by 117 times in Cd-free fish. Besides, hypermethylation of heat shock factor (HSF) binding motif in HSP70 promoter was observed during the combined exposure, indicating that simultaneous exposure may have partially suppressed the cytoprotective up-regulation of HSP70. Thirdly, heat induced an immunosuppressive effect in Cd-exposed fish, as reflected by the reduced mRNA and activity levels of nitric oxide synthase (iNOS) and interleukin-1β (IL-1β) expression levels. Finally, heat down-regulated Zir-, Irt-like protein 8 (ZIP8) and copper transporter 1 (CTR1) and up-regulated metallothioneins (MTs) in Cd-exposed fish, possibly suggesting Cu and Zn depletion and Cd accumulation. Hence, our data provide evidences that warmer temperatures can potentiate Cd toxicity, involved in the regulation of gene transcription, enzymatic activity, and DNA methylation. We found that heat indicators showed varied sensitivity between normal and Cd-exposed fish, emphasizing that the field metal pollution should be carefully considered when evaluating effects of climate change.
Collapse
Affiliation(s)
- Sai-Nan Guo
- National Engineering Research Center of Marine Facilities Aquaculture, Zhejiang Ocean University, Zhoushan 316022, PR China
| | - Jia-Lang Zheng
- National Engineering Research Center of Marine Facilities Aquaculture, Zhejiang Ocean University, Zhoushan 316022, PR China.
| | - Shuang-Shuang Yuan
- National Engineering Research Center of Marine Facilities Aquaculture, Zhejiang Ocean University, Zhoushan 316022, PR China
| | - Qing-Ling Zhu
- Postgraduate Work Department, Zhejiang Ocean University, Zhoushan 316022, PR China
| |
Collapse
|
23
|
Akiyama M, Shinkai Y, Unoki T, Shim I, Ishii I, Kumagai Y. The Capture of Cadmium by Reactive Polysulfides Attenuates Cadmium-Induced Adaptive Responses and Hepatotoxicity. Chem Res Toxicol 2017; 30:2209-2217. [DOI: 10.1021/acs.chemrestox.7b00278] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Masahiro Akiyama
- Environmental
Biology Laboratory, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Yasuhiro Shinkai
- Environmental
Biology Laboratory, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Takamitsu Unoki
- Environmental
Biology Laboratory, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Ilseob Shim
- Department
of Environmental Health Research, National Institute of Environmental Research (NIER), Environmental Complex, Gyungseodong, Seogu, Incheon 22689, Korea
| | - Isao Ishii
- Laboratory
of Health Chemistry, Showa Pharmaceutical University, Machida, Tokyo 194-8543, Japan
| | - Yoshito Kumagai
- Environmental
Biology Laboratory, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| |
Collapse
|
24
|
Zhu QL, Guo SN, Yuan SS, Lv ZM, Zheng JL, Xia H. Heat indicators of oxidative stress, inflammation and metal transport show dependence of cadmium pollution history in the liver of female zebrafish. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2017; 191:1-9. [PMID: 28763775 DOI: 10.1016/j.aquatox.2017.07.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 07/16/2017] [Accepted: 07/17/2017] [Indexed: 06/07/2023]
Abstract
Environmental stressors such as high temperature and metal exposure may occur sequentially, simultaneously, previously in aquatic ecosystems. However, information about whether responses to high temperature depend on Cd exposure history is still unknown in fish. Zebrafish were exposed to 0 (group 1), 2.5 (group 2) and 5μg/L (group 3) cadmium (Cd) for 10 weeks, and then each group was subjected to Cd-free water maintained at 26°C and 32°C for 7days respectively. 26 indicators were used to compare differences between 26°C and 32°C in the liver of female zebrafish, including 5 biochemical indicators (activity of Cu/Zn-SOD, CAT and iNOS; LPO; MT protein), 8 molecular indicators of oxidative stress (mRNA levels of Nrf2, Cu/Zn-SOD, CAT, HSF1, HSF2, HSP70, MTF-1 and MT), 5 molecular indicators of inflammation (mRNA levels of IL-6, IL-1β, TNF-α, iNOS and NF-κB), 8 molecular indicators of metal transport (mRNA levels of, ZnT1, ZnT5, ZIP8, ZIP10, ATP7A, ATP7B and CTR1). All biochemical indicators were unchanged in group 1 and changed in group 2 and 3. Contrarily, differences were observed in almost all of molecular indicators of inflammation and metal transport in group 1, about half in group 2, and few in group 3. We also found that all molecular indicators of oxidative stress in group 2 and fewer in group 1 and 3 were significantly affected by heat. Our data indicated that heat indicators of oxidative stress, inflammation and metal transport showed dependence of previous cadmium exposure in the liver of zebrafish, emphasizing metal pollution history should be carefully considered when evaluating heat stress in fish.
Collapse
Affiliation(s)
- Qing-Ling Zhu
- Zhejiang Ocean University, Zhoushan 316022, PR China
| | - Sai-Nan Guo
- Zhejiang Ocean University, Zhoushan 316022, PR China
| | | | - Zhen-Ming Lv
- Zhejiang Ocean University, Zhoushan 316022, PR China
| | | | - Hu Xia
- Collaborative Innovation Center for Efficient and Health Production of Fisheries in Hunan Province, Key Laboratory of Health Aquaculture and Product Processing in Dongting Lake Area of Hunan Province, Zoology Key Laboratory of Hunan Higher Education, Hunan University of Arts and Science, Hunan Changde 415000, PR China
| |
Collapse
|
25
|
Zheng JL, Guo SN, Yuan SS, Xia H, Zhu QL, Lv ZM. Preheating mitigates cadmium toxicity in zebrafish livers: Evidence from promoter demethylation, gene transcription to biochemical levels. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2017; 190:104-111. [PMID: 28704659 DOI: 10.1016/j.aquatox.2017.06.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2017] [Revised: 06/21/2017] [Accepted: 06/23/2017] [Indexed: 06/07/2023]
Abstract
The working hypothesis for this study was that moderate heat stress would alleviate the deleterious effects of subsequent cadmium (Cd) exposure on fish. Thus, zebrafish (Danio rerio) were subjected to water maintained at 26°C and 34°C for 4days, and then exposed to 0 or 200μg/L Cd for 1 week at 26°C. Multiple indicators were measured from livers of zebrafish at different levels, including DNA, RNA, protein and enzymatic activity associated with oxidative stress, inflammation and metal transport. The ameliorative effect of preheatinging on Cd toxicity was demonstrated. In the Cd-exposed groups, preheating decreased mortality and lipid peroxidation, increased activity levels of catalase (CAT) and copper/zinc-superoxide dismutase (Cu/Zn-SOD), and up-regulated mRNA levels of heat shock protein 70 (HSP70) and heat shock factor 2 (HSF2). Preheating also mitigated Cd-induced increases in protein and mRNA levels of metallothioneins (MTs), and mRNA levels of several inflammation-related genes. Furthermore, preheating alone dramatically up-regulated mRNA levels of genes related to antioxidant and immune defenses, zinc and copper transporters, protein folding, and reduced methylation levels in the HSF binding motif of the HSP70 promoter. Overall, preheating-induced accumulation of transcripts via demethylation might support the rapid defense responses at post-transcriptional levels caused by subsequent Cd exposure, indicating an adaptive mechanism for organisms exposed to one mild stressor followed by another.
Collapse
Affiliation(s)
- Jia-Lang Zheng
- National Engineering Research Center of Marine Facilities Aquaculture, Zhejiang Ocean University, Zhoushan 316022, PR China.
| | - Sai-Nan Guo
- National Engineering Research Center of Marine Facilities Aquaculture, Zhejiang Ocean University, Zhoushan 316022, PR China
| | - Shuang-Shuang Yuan
- National Engineering Research Center of Marine Facilities Aquaculture, Zhejiang Ocean University, Zhoushan 316022, PR China
| | - Hu Xia
- Collaborative Innovation Center for Efficient and Health Production of Fisheries in Hunan Province, Key Laboratory of Health Aquaculture and Product Processing in Dongting Lake Area of Hunan Province, Zoology Key Laboratory of Hunan Higher Education, Hunan University of Arts and Science, Hunan Changde 415000, PR China
| | - Qing-Ling Zhu
- Postgraduate Work Department, Zhejiang Ocean University, Zhoushan 316022, PR China
| | - Zhen-Ming Lv
- National Engineering Research Center of Marine Facilities Aquaculture, Zhejiang Ocean University, Zhoushan 316022, PR China
| |
Collapse
|
26
|
Renieri EA, Sfakianakis DG, Alegakis AA, Safenkova IV, Buha A, Matović V, Tzardi M, Dzantiev BB, Divanach P, Kentouri M, Tsatsakis AM. Nonlinear responses to waterborne cadmium exposure in zebrafish. An in vivo study. ENVIRONMENTAL RESEARCH 2017; 157:173-181. [PMID: 28570961 DOI: 10.1016/j.envres.2017.05.021] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 05/09/2017] [Accepted: 05/18/2017] [Indexed: 06/07/2023]
Abstract
Cadmium (Cd) has proved to be associated with numerous toxic effects in aquatic organisms via waterborne exposure. With a view to investigate Cd toxicity along a broad spectrum of exposures reaching from environmental to toxic, we employed adult zebrafish (Danio rerio) for an in vivo study. A number of 10 fish per tank were placed in 40L tanks and were exposed for 30 days to 0.0, 5.0, 25, 50, 75, 100 and 1000μgCd per liter. There were 2 tanks for each Cd exposure (duplicate experiment). Mortality was recorded daily, dead fish were collected and tissue samples were obtained for histologic observation, whereas remaining tissues were stored for Cd burden determination. Surviving fish were collected at the end of the experiment. Median overall survival (OS) in days was found to be 9.0, 11.0, 8.0 and 7.0 for 25μg/L, 50μg/L, 75μg/L and 100μg/L respectively, with all of them showing mortality greater than 50%. Remarkably, fish exposed to the highest Cd concentration (1000μg/L) survived the longest exhibiting a mean OS of 29.2 days. Cd determination in fish tissue was conducted with an in house ICP-MS method and levels ranged from 3.1 to 29.1ng/mg. Log Cd tissue levels were significantly correlated with the log Cd exposure levels (r = 0.535, p < 0.001). The highest Cd burden was determined for fish exposed to 1000μgCd /L (mean = 12.2ng/mg). Histopathology supported these results. Our findings disclose a deviation in toxic responses through the range of Cd concentrations, leading to nonlinear responses. These differentiated responses, could be linked to hormesis phenomena.
Collapse
Affiliation(s)
- Elisavet A Renieri
- Laboratory of Toxicology, University of Crete, Medical School, Crete, Greece
| | | | | | - Irina V Safenkova
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, Russia
| | - Aleksandra Buha
- Department of Toxicology "Akademik Danilo Soldatovic", University of Belgrade-Faculty of Pharmacy, Belgrade, Serbia
| | - Vesna Matović
- Department of Toxicology "Akademik Danilo Soldatovic", University of Belgrade-Faculty of Pharmacy, Belgrade, Serbia
| | - Maria Tzardi
- Laboratory of Pathology, University General Hospital, Heraklion, Crete, Greece
| | - Boris B Dzantiev
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, Russia
| | - Pascal Divanach
- Institute of Marine Biology, Biotechnology and Aquaculture, Hellenic Center for Marine Research, Iraklion, Crete, Greece
| | | | | |
Collapse
|
27
|
Connors PK, Malenke JR, Dearing MD. Ambient temperature‐mediated changes in hepatic gene expression of a mammalian herbivore (
Neotoma lepida
). Mol Ecol 2017; 26:4322-4338. [DOI: 10.1111/mec.14192] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 05/03/2017] [Accepted: 05/15/2017] [Indexed: 02/04/2023]
Affiliation(s)
| | - Jael R. Malenke
- Department of Biology University of Utah Salt Lake City UT USA
| | | |
Collapse
|
28
|
Zheng JL, Yuan SS, Wu CW, Lv ZM. Acute exposure to waterborne cadmium induced oxidative stress and immunotoxicity in the brain, ovary and liver of zebrafish (Danio rerio). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2016; 180:36-44. [PMID: 27642707 DOI: 10.1016/j.aquatox.2016.09.012] [Citation(s) in RCA: 133] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 09/12/2016] [Accepted: 09/13/2016] [Indexed: 05/24/2023]
Abstract
Cadmium (Cd) is an environmental contaminant that poses serious risks to aquatic organisms and their associated ecosystem. The mechanisms underlying Cd-induced oxidative stress and immunotoxicity in fish remain largely unknown. In this study, adult female zebrafish were exposed to 0 (control), 1mgL-1 Cd for 24h and 96h, and the oxidative stress and inflammatory responses induced by Cd were evaluated in the brain, liver and ovary. Reactive oxygen species (ROS), nitric oxide (NO), and malondialdehyde (MDA) increased in a time-dependent manner after treatment with Cd in the brain and liver. The increase may result from the disturbance of genes including copper and zinc superoxide dismutase (Cu/Zn-SOD), catalase (CAT), inducible nitric oxide synthase (iNOS), and ciclooxigenase-2 (COX-2) at mRNA, protein and activity levels. Although ROS, NO and MDA were not significantly affected by Cd in the ovary, the up-regulation of Cu/Zn-SOD, CAT, iNOS, and COX-2 was observed. Exposure to Cd induced a sharp increase in the protein levels of tumor necrosis factor alpha (TNF-α) in the brain, liver and ovary, possibly contributing to activate inflammatory responses. Furthermore, we also found a dramatic increase in mRNA levels of NF-E2-related factor 2 (Nrf2) and nuclear transcription factor κB (NF-κB) at 24h in the liver and ovary. The corresponding changes in the mRNA levels of Kelch-like-ECH-associated protein 1 (Keap1a and Keap1b) and the inhibitor of κBα (IκBαa and IκBαb) may contribute to regulate the transcriptional activity of Nrf2 and NF-κB, respectively. Contrarily, mRNA levels of Nrf2, NF-κB, Keap1, Keap1b, IκBαa and IκBαb remained stable at 24 and 96h in the brain. Taken together, we demonstrated Cd-induced oxidative stress and immunotoxicity in fish, possibly through transcriptional regulation of Nrf2 and NF-κB and gene modifications at transcriptional, translational, post-translational levels, which would greatly extend our understanding on the Cd toxicity.
Collapse
Affiliation(s)
- Jia-Lang Zheng
- National Engineering Research Center of Marine Facilities Aquaculture, Zhejiang Ocean University, Zhoushan 316022, PR China.
| | - Shuang-Shuang Yuan
- National Engineering Research Center of Marine Facilities Aquaculture, Zhejiang Ocean University, Zhoushan 316022, PR China
| | - Chang-Wen Wu
- National Engineering Research Center of Marine Facilities Aquaculture, Zhejiang Ocean University, Zhoushan 316022, PR China
| | - Zhen-Ming Lv
- National Engineering Research Center of Marine Facilities Aquaculture, Zhejiang Ocean University, Zhoushan 316022, PR China
| |
Collapse
|
29
|
Olsvik PA, Waagbø R, Hevrøy EM, Remø SC, Søfteland L. In vitro Assessment of Hg Toxicity in Hepatocytes from Heat-Stressed Atlantic Salmon. Biol Trace Elem Res 2016; 174:226-239. [PMID: 27094051 DOI: 10.1007/s12011-016-0670-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 03/13/2016] [Indexed: 12/28/2022]
Abstract
Global warming may alter the bioavailability of contaminants in aquatic environments. In this work, mercury (Hg2+) toxicity was studied in cells obtained from Atlantic salmon smolt kept at 15 °C (optimal growth temperature) for 3 months or at a stepwise increase to 20 °C (temperature-stress) during 3 months prior to cell harvest to evaluate whether acclimation temperature affects Hg toxicity. To examine possible altered dietary requirements in warmer seas, one group of fish following the stepwise temperature regimes was fed a diet spiked with antioxidants. Atlantic salmon hepatocytes were exposed in vitro to 0, 1.0, or 100 μM Hg2+ for 48 h. Cytotoxicity, determined as electrical impedance changes with the xCELLigence system, and transcriptional responses, determined with RT-qPCR, were assessed as measures of toxicity. The results showed that inorganic Hg at a concentration up to 100 μM is not cytotoxic to Atlantic salmon hepatocytes. Significance and directional responses of the 18 evaluated target genes suggest that both Hg and temperature stress affected the transcription of genes encoding proteins involved in the protection against ROS-generated oxidative stress. Both stressors also affected the transcription of genes linked to lipid metabolism. Spiking the diet with antioxidants resulted in higher concentrations of Se and vitamin C and reduced concentration of Hg in the liver in vivo, but no interactions were seen between the dietary supplementation of antioxidants and Hg toxicity in vitro. In conclusion, no evidence was found suggesting that inorganic Hg is more toxic in cells harvested from temperature-stressed fish.
Collapse
Affiliation(s)
- Pål A Olsvik
- National Institute of Nutrition and Seafood Research, Nordnesboder 1-2, N-5005, Bergen, Norway.
| | - Rune Waagbø
- National Institute of Nutrition and Seafood Research, Nordnesboder 1-2, N-5005, Bergen, Norway
| | - Ernst M Hevrøy
- National Institute of Nutrition and Seafood Research, Nordnesboder 1-2, N-5005, Bergen, Norway
- EWOS AS, N-5803, Bergen, Norway
| | - Sofie C Remø
- National Institute of Nutrition and Seafood Research, Nordnesboder 1-2, N-5005, Bergen, Norway
| | - Liv Søfteland
- National Institute of Nutrition and Seafood Research, Nordnesboder 1-2, N-5005, Bergen, Norway
| |
Collapse
|
30
|
Bae E, Samanta P, Yoo J, Jung J. Effects of multigenerational exposure to elevated temperature on reproduction, oxidative stress, and Cu toxicity in Daphnia magna. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2016; 132:366-371. [PMID: 27376351 DOI: 10.1016/j.ecoenv.2016.06.034] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Revised: 06/17/2016] [Accepted: 06/20/2016] [Indexed: 06/06/2023]
Abstract
This study evaluated the effect of temperature (20 and 25°C) on reproduction, oxidative stress, and copper (Cu) toxicity in Daphnia magna across three generations (F0, F1, and F2). Exposing D. magna to elevated temperature significantly decreased the number of offspring per female per day, the time to first brood, and body length compared to exposure to the optimal temperature (p<0.05). In addition, elevated temperature induced a significantly higher production of reactive oxygen species and lipid peroxidation (p<0.05). These findings suggest that D. magna likely responded to thermal stress by investing more energy into defense mechanisms, rather than growth and reproduction. In addition, oxidative stress at the elevated temperature gradually increased with each generation, possibly owing to the reduced fitness of the offspring. Exposing D. magna to 25°C (EC50=34±3µgL(-1)) substantially increased the median effective concentration of Cu in all generations compared to exposure to 20°C (EC50=25±3µgL(-1)), indicating a decrease in acute toxicity at elevated temperature. However, elevated temperature significantly increased the oxidative stress induced by a sublethal concentration of Cu (10µgL(-1)). The interaction between elevated temperature and Cu exposure appears to be synergistic; however, this needs to be confirmed using multiple generations in a long-term experiment.
Collapse
Affiliation(s)
- Eunhye Bae
- Division of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Palas Samanta
- Division of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Jisu Yoo
- Division of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Jinho Jung
- Division of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, Republic of Korea.
| |
Collapse
|
31
|
Naïja A, Marchand J, Kestemont P, Haouas Z, Blust R, Chénais B, Helal AN. Biomarkers assessment in the peacock blenny Salaria pavo exposed to cadmium. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:16296-16312. [PMID: 27155832 DOI: 10.1007/s11356-016-6754-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Accepted: 04/25/2016] [Indexed: 06/05/2023]
Abstract
Cadmium (Cd) is one of the most toxic metals and is widely distributed in freshwater and marine environments. It has received much attention from a toxicological perspective. The aim of this study was to assess the effect of Cd in the peacock blenny Salaria pavo, a species of the family of blennies that was used as bioindicator of water pollution. We performed a sublethal contamination of fish to 2 mg CdCl2 L(-1) during 1, 4, 10, and 15 days. Cd accumulation was measured in gills and liver and displayed a significant increase of its concentration throughout the experiment, with slightly higher levels in the liver, except after 4 days. Partial-length cDNA of mt1, mt2, mnsod, cuznsod, cat, and gpx were characterized. Results from mRNA expression levels displayed an up-regulation of mt2 and mnsod. Biomarker activities were determined in gills and liver. In gills, data displayed an inhibition of EROD and GST activities. Cd exposure significantly increased GPx activities but did not affect CAT levels throughout the experiment. No LPO induction was observed in gills of exposed fish. Regarding the liver, the activity of all enzymes and MDA levels increased significantly from the beginning of the experiment except EROD that increased after 15 days of contamination only. At the histological level, fish exhibited pathological symptoms in gills and liver with a predominance of circulatory disturbances in gills and regressive changes in the liver. Our results displayed that peacock blennies are able to survive Cd toxicity due to various physiological adaptation mechanisms.
Collapse
Affiliation(s)
- Azza Naïja
- Bioressources: Integrative Biology and Valuation (BIOLIVAL), Higher Institute of Biotechnology of Monastir, Avenue Tahar Hadded, BP 74, 5000, Monastir, Tunisia
| | - Justine Marchand
- EA2160 Mer Molécules Santé, LUNAM, IUML-FR 3473 CNRS, University of Le Mans, Le Mans, France.
| | - Patrick Kestemont
- Research Unit in Environmental and Evolutionary Biology (URBE), University of Namur (FUNDP), Rue de Bruxelles 61, B-5000, Namur, Belgium
| | - Zohra Haouas
- Research Unit of Genetic, Laboratory of Histology and Cytogenetic, Faculty of Medicine, Avenue Avicenne, 5019, Monastir, Tunisia
| | - Ronny Blust
- Systemic Physiological and Ecotoxicological Research (SPHERE), Department of Biology, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerpen, Belgium
| | - Benoit Chénais
- EA2160 Mer Molécules Santé, LUNAM, IUML-FR 3473 CNRS, University of Le Mans, Le Mans, France
| | - Ahmed Noureddine Helal
- Bioressources: Integrative Biology and Valuation (BIOLIVAL), Higher Institute of Biotechnology of Monastir, Avenue Tahar Hadded, BP 74, 5000, Monastir, Tunisia
| |
Collapse
|
32
|
Grasset J, Ollivier É, Bougas B, Yannic G, Campbell PGC, Bernatchez L, Couture P. Combined effects of temperature changes and metal contamination at different levels of biological organization in yellow perch. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2016; 177:324-332. [PMID: 27351718 DOI: 10.1016/j.aquatox.2016.06.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Revised: 06/10/2016] [Accepted: 06/11/2016] [Indexed: 06/06/2023]
Abstract
In this study, we measured the effects of temperature (9°C, 20°C, and 28°C), metal contamination (cadmium and nickel) and their interaction on yellow perch (Perca flavescens) using liver enzymatic and transcriptomic endpoints and biometric indices. Kidney metal concentrations increased with a rise of temperature. The biometric indices analysed (Fulton condition factor, pyloric cæca, hepatosomatic and gonadosomatic indices) generally decreased with an increase of temperature but not with metal contamination. At the enzymatic level, the activity of superoxide dismutase (SOD), involved in antioxidant response, was affected by both temperature and metal contamination, whereas the activity of glucose-6-phosphate dehydrogenase (G6PDH), involved in energy accumulation but also in antioxidant response, was only affected by metal exposure. The response of perch to the stressors at the transcriptional level differed from the metabolic response. In particular, the transcription level of the cco and g6pdh genes sharply decreased with increasing temperature, while the activities of the corresponding enzymes remained stable. The normal response of the transcription level of the apoptotic gene (diablo) to heat stress was also altered in metal-contaminated fish. The combination of metal and temperature stresses also modified the response of antioxidant metabolism induced by these stressors individually. This study contributes to a better understanding of the influences of natural stressors like temperature on biomarkers commonly used in ecotoxicological studies and will facilitate their interpretation in the context of multiple stressors characteristic of field situations.
Collapse
Affiliation(s)
- Julie Grasset
- Institut National de la Recherche Scientifique (INRS), Centre Eau Terre Environnement, 490 de la Couronne, Québec, QC G1K 9A9, Canada; Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, QC G1V 0A6, Canada
| | - Élodie Ollivier
- Institut National de la Recherche Scientifique (INRS), Centre Eau Terre Environnement, 490 de la Couronne, Québec, QC G1K 9A9, Canada
| | - Bérénice Bougas
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, QC G1V 0A6, Canada
| | - Glenn Yannic
- Laboratoire d'Écologie Alpine, UMR CNRS 5553, Université de Savoie Mont Blanc, 73376 Le Bourget-du-lac, France
| | - Peter G C Campbell
- Institut National de la Recherche Scientifique (INRS), Centre Eau Terre Environnement, 490 de la Couronne, Québec, QC G1K 9A9, Canada
| | - Louis Bernatchez
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, QC G1V 0A6, Canada
| | - Patrice Couture
- Institut National de la Recherche Scientifique (INRS), Centre Eau Terre Environnement, 490 de la Couronne, Québec, QC G1K 9A9, Canada.
| |
Collapse
|
33
|
Fish pre-acclimation temperature only modestly affects cadmium toxicity in Atlantic salmon hepatocytes. J Therm Biol 2016; 57:21-34. [PMID: 27033036 DOI: 10.1016/j.jtherbio.2016.02.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Revised: 02/02/2016] [Accepted: 02/10/2016] [Indexed: 01/08/2023]
Abstract
An emerging focus in environmental toxicology is how climate change will alter bioavailability and uptake of contaminants in organisms. Ectothermic animals unable to adjust their temperature by local migration, such as farmed fish kept in net pens, may become more vulnerable to contaminants in warmer seas. The aim of this work was to study cadmium (Cd) toxicity in cells obtained from fish acclimated to sub-optimal growth temperature. Atlantic salmon hepatocytes, harvested from fish pre-acclimated either at 15°C (optimal growth temperature) or 20°C (heat-stressed), were exposed in vitro to two concentrations of Cd (control, 1 and 100µM Cd) for 48h. Cd-induced cytotoxicity, determined with the xCELLigence system, was more pronounced in cells from fish pre-acclimated to a high temperature than in cells from fish grown at optimal temperature. A feed spiked with antioxidants could not ameliorate the Cd-induced cytotoxicity in cells from temperature-stressed fish. At the transcriptional level, Cd exposure affected 11 out of 20 examined genes, of which most are linked to oxidative stress. The transcriptional levels of a majority of the altered genes were changed in cells harvested from fish grown at sub-optimal temperature. Interaction effects between Cd exposure and fish pre-acclimation temperature were seen for four transcripts, hmox1, mapk1, fth1 and mmp13. Overall, this study shows that cells from temperature-stressed fish are modestly more vulnerable to Cd stress, and indicate that mechanisms linked to oxidative stress may be differentially affected in temperature-stressed cells.
Collapse
|
34
|
Sasaki K, Lesbarrères D, Watson G, Litzgus J. Mining-caused changes to habitat structure affect amphibian and reptile population ecology more than metal pollution. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2015; 25:2240-2254. [PMID: 26910952 DOI: 10.1890/14-1418.1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Emissions from smelting not only contaminate water and soil with metals, but also induce extensive forest dieback and changes in resource availability and microclimate. The relative effects of such co-occurring stressors are often unknown, but this information is imperative in developing targeted restoration strategies. We assessed the role and relative effects of structural alterations of terrestrial habitat and metal pollution caused by century-long smelting operations on amphibian and reptile communities by collecting environmental and time- and area-standardized multivariate abundance data along three spatially replicated impact gradients. Overall, species richness, diversity, and abundance declined progressively with increasing levels of metals (As, Cu, and Ni) and soil temperature (T(s)) and decreasing canopy cover, amount of coarse woody debris (CWD), and relative humidity (RH). The composite habitat variable (which included canopy cover, CWD, T(s), and RH) was more strongly associated with most response metrics than the composite metal variable (As, Cu, and Ni), and canopy cover alone explained 19-74% of the variance. Moreover, species that use terrestrial habitat for specific behaviors (e.g., hibernation, dispersal), especially forest-dependent species, were more severely affected than largely aquatic species. These results suggest that structural alterations of terrestrial habitat and concomitant changes in the resource availability and microclimate have stronger effects than metal pollution per se. Furthermore, much of the variation in response metrics was explained by the joint action of several environmental variables, implying synergistic effects (e.g., exacerbation of metal toxicity by elevated temperatures in sites with reduced canopy cover). We thus argue that the restoration of terrestrial habitat conditions is a key to successful recovery of herpetofauna communities in smelting-altered landscapes.
Collapse
|
35
|
Fu Q, Liu HL, Wu Z, Liu A, Yao C, Li X, Xiao W, Yu S, Luo Z, Tang Y. Rough surface Au@Ag core-shell nanoparticles to fabricating high sensitivity SERS immunochromatographic sensors. J Nanobiotechnology 2015; 13:81. [PMID: 26577252 PMCID: PMC4650504 DOI: 10.1186/s12951-015-0142-0] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Accepted: 10/26/2015] [Indexed: 12/11/2022] Open
Abstract
Immunochromatographic sensors (ICSs) are inexpensive, simple, portable, and robust, thus making ICSs commonplace in clinical diagnoses, food testing, and environmental monitoring. However, commonly used gold nanoparticles (AuNPs) ICSs have low sensitivity. Therefore, we developed highly sensitive surface enhanced Raman scattering (SERS) ICSs. To enhance the sensitivity of SERS ICSs, rough surface core-shell Au@Ag nanoparticles (RSAu@AgNPs) were prepared by coating silver on the surface of gold nanoflowers (AuNFs). Then these nanoparticles were used as SERS substrate in the SERS ICSs, after which the SERS ICSs were implemented to detect haemoglobin and heavy metal cadmium ion (Cd(2+)). The limit of detection (LOD) of the SERS ICSs for detecting haemoglobin was 8 ng/mL, and the linear range of the SERS ICSs was from 31.3 to 2000 ng/mL. The LOD of the SERS ICSs for detecting Cd(2+) was 0.05 ng/mL and the linear analysis range was from 0.05 to 25 ng/mL. The cross reactivity of the SERS ICSs was studied and results showed that the SERS ICSs exhibited highly specific for detection of haemoglobin and Cd(2+), respectively. The SERS ICSs were then used to detect haemoglobin (spiked in serum and in stool) and Cd(2+) (spiked in tap water, river water, and soil leaching water), and the results showed high recovery. These characteristics indicated that SERS ICSs were ideal tools for clinical diagnosis and environmental pollution monitoring.
Collapse
Affiliation(s)
- Qiangqiang Fu
- Guangdong Province Key Laboratory of Molecular Immunology and Antibody Engineering, Department of Bioengineering, Jinan University, Guangzhou, 510632, People's Republic of China.
| | - Hongwu Liu Liu
- Integrated Optics and Biophotonics Laboratory, Department of Electronic Engineering, Jinan University, Guangzhou, 510632, People's Republic of China.
| | - Ze Wu
- Guangdong Province Key Laboratory of Molecular Immunology and Antibody Engineering, Department of Bioengineering, Jinan University, Guangzhou, 510632, People's Republic of China.
| | - An Liu
- Integrated Optics and Biophotonics Laboratory, Department of Electronic Engineering, Jinan University, Guangzhou, 510632, People's Republic of China.
| | - Cuize Yao
- Guangdong Province Key Laboratory of Molecular Immunology and Antibody Engineering, Department of Bioengineering, Jinan University, Guangzhou, 510632, People's Republic of China.
| | - Xiuqing Li
- Guangdong Province Key Laboratory of Molecular Immunology and Antibody Engineering, Department of Bioengineering, Jinan University, Guangzhou, 510632, People's Republic of China.
| | - Wei Xiao
- Guangdong Province Key Laboratory of Molecular Immunology and Antibody Engineering, Department of Bioengineering, Jinan University, Guangzhou, 510632, People's Republic of China.
| | - Shiting Yu
- Guangdong Province Key Laboratory of Molecular Immunology and Antibody Engineering, Department of Bioengineering, Jinan University, Guangzhou, 510632, People's Republic of China.
| | - Zhi Luo
- Integrated Optics and Biophotonics Laboratory, Department of Electronic Engineering, Jinan University, Guangzhou, 510632, People's Republic of China.
| | - Yong Tang
- Guangdong Province Key Laboratory of Molecular Immunology and Antibody Engineering, Department of Bioengineering, Jinan University, Guangzhou, 510632, People's Republic of China. .,Institute of Biotranslational Medicine, Jinan University, Guangzhou, 510632, People's Republic of China.
| |
Collapse
|
36
|
Xia JG, Nie LJ, Mi XM, Wang WZ, Ma YJ, Cao ZD, Fu SJ. Behavior, metabolism and swimming physiology in juvenile Spinibarbus sinensis exposed to PFOS under different temperatures. FISH PHYSIOLOGY AND BIOCHEMISTRY 2015; 41:1293-1304. [PMID: 26077224 DOI: 10.1007/s10695-015-0086-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Accepted: 06/09/2015] [Indexed: 06/04/2023]
Abstract
The harmful effects of perfluorooctane sulfonate (PFOS) are of growing international concern. This paper aimed to gain an integrated understanding of fitness-related ecological end points, such as behavior, metabolism and swimming physiology, in juvenile Spinibarbus sinensis in response to PFOS toxicity at different temperatures. The fish were exposed to a range of PFOS concentrations (0, 0.32, 0.8, 2 and 5 mg/L) at different temperatures (18 and 28 °C) for 30 days. The effects on fish behavior, metabolic characteristics and aerobic swimming performance caused by PFOS at different temperatures were investigated. Our results showed that both PFOS and temperature had important influences on spontaneous swimming behavior, social interactions, routine metabolic rate (RMR), net energetic cost of transport (COTnet) and critical swimming speed (U crit) in fish. The lowest observed effect concentration for both U crit and RMR was 5 and 0.8 mg/L at 18 and 28 °C, respectively. We found that PFOS affected various behavioral and social end points and also appeared to affect metabolic rates and reduced U crit, likely as a result of increased COTnet, and that many of these effects also changed with respect to temperature. Our results further the understanding of the metabolic and behavioral toxicity of PFOS to aquatic organisms.
Collapse
Affiliation(s)
- Ji-Gang Xia
- Laboratory of Evolutionary Physiology and Behavior, Chongqing Key Laboratory of Animal Biology, College of Life Sciences, Chongqing Normal University, Chongqing, 401331, China.
| | - Li-Juan Nie
- Laboratory of Evolutionary Physiology and Behavior, Chongqing Key Laboratory of Animal Biology, College of Life Sciences, Chongqing Normal University, Chongqing, 401331, China
| | - Xia-Mei Mi
- Laboratory of Evolutionary Physiology and Behavior, Chongqing Key Laboratory of Animal Biology, College of Life Sciences, Chongqing Normal University, Chongqing, 401331, China
| | - Wei-Zhen Wang
- Laboratory of Evolutionary Physiology and Behavior, Chongqing Key Laboratory of Animal Biology, College of Life Sciences, Chongqing Normal University, Chongqing, 401331, China
| | - Yi-Jie Ma
- Laboratory of Evolutionary Physiology and Behavior, Chongqing Key Laboratory of Animal Biology, College of Life Sciences, Chongqing Normal University, Chongqing, 401331, China
| | - Zhen-Dong Cao
- Laboratory of Evolutionary Physiology and Behavior, Chongqing Key Laboratory of Animal Biology, College of Life Sciences, Chongqing Normal University, Chongqing, 401331, China
| | - Shi-Jian Fu
- Laboratory of Evolutionary Physiology and Behavior, Chongqing Key Laboratory of Animal Biology, College of Life Sciences, Chongqing Normal University, Chongqing, 401331, China.
| |
Collapse
|
37
|
Yin J, Yang JM, Zhang F, Miao P, Lin Y, Chen ML. Individual and joint toxic effects of cadmium sulfate and α-naphthoflavone on the development of zebrafish embryo. J Zhejiang Univ Sci B 2015; 15:766-75. [PMID: 25183031 DOI: 10.1631/jzus.b1400091] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
This paper aims to evaluate the individual and joint toxicities of cadmium sulfate (CdSO4) and α-naphthoflavone (ANF) in zebrafish embryos. As a result, CdSO4 caused both lethal and sub-lethal effects, such as 24 h post-fertilization (hpf) death and 72 hpf delayed hatching. However, ANF only caused sub-lethal effects, including 48 hpf cardiac edema and 72 hpf delayed hatching. Taking 24 hpf death and 48 hpf cardiac edema as endpoints, the toxicities of CdSO4 and ANF were significantly enhanced by each other. Consistently, both CdSO4 and ANF caused significant oxidative stress, including decreases in the reduced glutathione (GSH) level, inhibition of superoxide dismutase (SOD) activity, as well as increases in malondialdehyde (MDA) content in zebrafish embryos, but these mixtures produced much more significant alterations on the biomarkers. Co-treatment of CdSO4 and ANF significantly down-regulated the mRNA level of multidrug resistance-associated protein (mrp) 1 and cytochrome P450 (cyp) 1a, which constituted the protective mechanisms for zebrafish embryos to chemical toxins. In conclusion, co-treatment of CdSO4 and ANF exhibited a much more severe damage in zebrafish embryos than individual treatment. Meanwhile, production of oxidative stress and altered expression of mrp1 and cyp1a could be important components of such joint toxicity.
Collapse
Affiliation(s)
- Jian Yin
- CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academic of Sciences, Suzhou 215163, China; Suzhou Xiexin Photovoltaic Technology Co., Ltd., Suzhou 215163, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | | | | | | | | | | |
Collapse
|
38
|
Meador JP. Tissue concentrations as the dose metric to assess potential toxic effects of metals in field-collected fish: Copper and cadmium. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2015; 34:1309-1319. [PMID: 25939475 DOI: 10.1002/etc.2910] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Revised: 11/17/2014] [Accepted: 01/26/2015] [Indexed: 06/04/2023]
Abstract
The present study examined the available literature linking whole-body tissue concentrations with toxic effects in fish species for copper and cadmium. The variability in effect concentration for both copper and cadmium among species occurred within an order of magnitude for all responses, whereas the range for lethal toxicity based on water exposure spanned approximately 4 to 5 orders of magnitude. Fish tissue concentrations causing adverse effects were just above background concentrations, occurring between 1 μg/g and 10 μg/g for copper and 0.1 μg/g to 4 μg/g for cadmium. The results also show that salmonids are especially sensitive to cadmium, which appears to be a function of chemical potency. No studies were found that indicated adverse effects without increases in whole-body concentration of these metals. This narrow range for dose-response implies that a toxicological spillover point occurs when the detoxification capacity of various tissues within the animal are exceeded, and this likely occurs at a similar whole-body concentration for all naïvely exposed fish species. Elevated whole-body concentrations in fish from the field may be indicative of possible acclimation to metals that may or may not result in effects for target species. Acclimation concentrations may be useful in that they signal excessive metal concentrations in water, sediment, or prey species for a given site and indicate likely toxic effects for species unable to acclimate to excess metal exposure. Using tissue residues as the dose metric for these metals provides another line of evidence for assessing impaired ecosystems and greater confidence that hazard concentrations are protective for all fish species.
Collapse
Affiliation(s)
- James P Meador
- Environmental and Fisheries Sciences Division, Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Seattle, Washington, USA
| |
Collapse
|
39
|
Wang J, Zhang H, Zhang T, Zhang R, Liu R, Chen Y. Molecular mechanism on cadmium-induced activity changes of catalase and superoxide dismutase. Int J Biol Macromol 2015; 77:59-67. [PMID: 25795390 DOI: 10.1016/j.ijbiomac.2015.02.037] [Citation(s) in RCA: 118] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2014] [Revised: 08/23/2014] [Accepted: 02/23/2015] [Indexed: 01/04/2023]
Abstract
Cadmium contributes to adverse effects of organisms probably because of its ability to induce oxidative stress via alterations in activities of antioxidant enzymes catalase (CAT) and superoxide dismutase (SOD), but their molecular mechanisms remain unclear. We investigated the molecular mechanism of CAT and SOD response under Cd-induced oxidative stress in the liver of zebrafish. The enzyme activity changes observed in vitro were consistent with those seen in vivo, indicating the direct interaction of CAT and SOD with Cd contributes to their activity change in vivo. Further experiments utilizing multiple spectroscopic methods, isothermal titration calorimetry and a molecular docking study were performed to explore the mechanism of molecular interaction of CAT and SOD with Cd. Different interaction patterns were found that resulted in misfolding and changed the enzyme activities. Taken together, we suggest the misfolding of CAT and SOD contributes to their activity change under Cd-induced oxidative stress in vivo.
Collapse
Affiliation(s)
- Jing Wang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, 27# Shanda South Road, Jinan 250100, Shandong Province, PR China
| | - Hao Zhang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, 27# Shanda South Road, Jinan 250100, Shandong Province, PR China
| | - Tong Zhang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, 27# Shanda South Road, Jinan 250100, Shandong Province, PR China
| | - Rui Zhang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, 27# Shanda South Road, Jinan 250100, Shandong Province, PR China
| | - Rutao Liu
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, 27# Shanda South Road, Jinan 250100, Shandong Province, PR China.
| | - Yadong Chen
- Laboratory of Molecular Design and Drug Discovery, School of Basic Science, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, PR China
| |
Collapse
|
40
|
Nunes B, Caldeira C, Pereira JL, Gonçalves F, Correia AT. Perturbations in ROS-related processes of the fish Gambusia holbrooki after acute and chronic exposures to the metals copper and cadmium. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2015; 22:3756-3765. [PMID: 25263413 DOI: 10.1007/s11356-014-3580-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Accepted: 09/08/2014] [Indexed: 06/03/2023]
Abstract
Metallic contamination is a widespread phenomena, particularly in areas impacted by human activities, and has become a relevant environmental concern. However, the toxicity of metals on fish requires full characterization in terms of short- and long-term effects. Thus, the purpose of this study was to determine the acute and chronic oxidative stress response in liver and gills of Gambusia holbrooki exposed to copper and cadmium. To assess the effects of these two metals, we adopted a strategy of analyzing the pollution effects caused by salts of the two metallic elements, and we quantified the oxidative stress biomarkers catalase, glutathione reductase, glutathione-S-transferases, and lipid peroxidation after exposure (4 and 28 days) to ecologically relevant concentrations, thus simulating actual conditions of exposure in the wild. Our results showed that copper elicited strong effects in all tested biomarkers for both acute and chronic challenges. Cadmium caused a similar response and was shown to cause significant changes particularly in catalase and glutathione-S-transferases activities. These findings evidence that ecologically relevant concentrations of common anthropogenic contaminants are causative agents of serious imbalances (namely oxidative stress) that are likely to trigger life-threatening events.
Collapse
Affiliation(s)
- Bruno Nunes
- Departamento de Biologia, Centro de Estudos do Ambiente e do Mar (CESAM), Universidade de Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal,
| | | | | | | | | |
Collapse
|
41
|
Microwave-assisted synthesis of BSA-modified silver nanoparticles as a selective fluorescent probe for detection and cellular imaging of cadmium(II). Mikrochim Acta 2015. [DOI: 10.1007/s00604-014-1438-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
42
|
Influence of water temperature and waterborne cadmium toxicity on growth performance and metallothionein–cadmium distribution in different organs of Nile tilapia, Oreochromis niloticus (L.). J Therm Biol 2014; 45:157-62. [DOI: 10.1016/j.jtherbio.2014.09.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Revised: 09/11/2014] [Accepted: 09/12/2014] [Indexed: 11/20/2022]
|
43
|
Vergauwen L, Knapen D, Hagenaars A, Blust R. Hypothermal and hyperthermal acclimation differentially modulate cadmium accumulation and toxicity in the zebrafish. CHEMOSPHERE 2013; 91:521-529. [PMID: 23332880 DOI: 10.1016/j.chemosphere.2012.12.028] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2012] [Revised: 12/01/2012] [Accepted: 12/08/2012] [Indexed: 06/01/2023]
Abstract
Despite the fact that aquatic organisms are mostly poikilothermic and environmental temperature variations can have considerable impact on chemical toxicity, toxicity studies are mainly performed at the species' specific standard or optimal temperature. Since the zebrafish is a recommended test species for use in toxicity tests, we investigated the temperature dependence of 96 h cadmium accumulation and toxicity in zebrafish acclimated to 18, 26, 30 or 34°C. Zebrafish showed high cadmium tolerance with acute 96 h LC50 values of 121.5, 102.4, 124.6 and 126.7 μM at 18, 26, 30 and 34°C respectively. Differences in cadmium toxicity at the different temperatures were small and toxicity did not increase with increasing temperature as is often suggested. We did however observe an interesting concentration dependent crossover pattern in which the temperature dependence at the highest exposure concentrations was exactly opposite to the pattern at the lower concentrations. At the highest concentrations the following order of toxicity was observed: 26°C>18°C>30°C>34°C. Possibly, either the warm acclimation provoked a general stress response which protected organisms against future severe stress situations, or resulted in specific defence mechanisms which also provided protection against cadmium exposure. Although at 18°C cadmium accumulation decreased more than would be expected based on the metabolic rate, cadmium toxicity was not proportionately decreased. This increased cadmium sensitivity in the cold was likely due to the combined effect of low temperature and cadmium exposure on sodium loss. This study shows that the temperature dependence of cadmium toxicity results from the combination of altered cadmium accumulation and sensitivity. Inclusion of the temperature effect in the calculation of environmental quality standards may have to be considered to ensure that more sensitive species are also protected at suboptimal temperatures.
Collapse
Affiliation(s)
- Lucia Vergauwen
- Systemic Physiological and Ecotoxicological Research (SPHERE), Department of Biology, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerpen, Belgium.
| | | | | | | |
Collapse
|