1
|
Green SL, Silvester E, Dworkin S, Shakya M, Klein A, Lowe R, Datta K, Holland A. Molecular variations to the proteome of zebrafish larvae induced by environmentally relevant copper concentrations. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 272:106963. [PMID: 38776608 DOI: 10.1016/j.aquatox.2024.106963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 05/14/2024] [Accepted: 05/16/2024] [Indexed: 05/25/2024]
Abstract
Contaminants are increasingly accumulating in aquatic environments and biota, with potential adverse effects on individual organisms, communities and ecosystems. However, studies that explore the molecular changes in fish caused by environmentally relevant concentrations of metals, such as copper (Cu), are limited. This study uses embryos of the model organism zebrafish (Danio rerio) to investigate effect of Cu on the proteome and amino acid (AA) composition of fish. Wild-type embryos at 24 h post-fertilisation were exposed to Cu (2 µg L-1 to 120 µg L-1) for 96 h and the number of healthy larvae were determined based on larvae that had hatched and did not display loss of equilibrium (LOE). The effect concentrations where Cu caused a 10 % (EC10) or 50 % (EC50) decrease in the number of healthy larvae were calculated as 3.7 µg L-1 and 10.9 µg L-1, respectively. Proteomics analysis of embryos exposed to the EC10 and EC50 concentrations of Cu revealed the proteome to differ more strongly after 48 h than 96 h, suggesting the acclimatisation of some larvae. Exposure to excess Cu caused differentially expressed proteins (DEPs) involved in oxidative stress, mitochondrial respiration, and neural transduction as well as the modulation of the AAs (Proline, Glycine and Alanine). This is the first study to suggest that LOE displayed by Cu-stressed fish may involve the disruption to GABAergic proteins and the calcium-dependent inhibitory neurotransmitter GABA. Moreover, this study highlights that proteomics and AA analysis can be used to identify potential biomarkers for environmental monitoring.
Collapse
Affiliation(s)
- Sarah L Green
- Department of Environment and Genetics, La Trobe University, 133 Mckoy Street, West Wodonga, Albury-Wodonga Campus, Victoria 3690, Australia.
| | - Ewen Silvester
- Department of Environment and Genetics, La Trobe University, 133 Mckoy Street, West Wodonga, Albury-Wodonga Campus, Victoria 3690, Australia
| | - Sebastian Dworkin
- Department of Microbiology, Anatomy, Physiology and Pharmacology, La Trobe University, Bundoora Campus, Victoria, Australia
| | - Manisha Shakya
- School of Environmental and Rural Science, Faculty of Science, Agriculture, Business and Law, University of New England, Armidale, New South Wales, Australia
| | - Annaleise Klein
- Australian Synchrotron, ANSTO, 800 Blackburn Road, Clayton, Victoria 3168, Australia
| | - Rohan Lowe
- Proteomics and Metabolomics Platform, La Trobe University, Bundoora Campus, Victoria, Australia
| | - Keshava Datta
- Proteomics and Metabolomics Platform, La Trobe University, Bundoora Campus, Victoria, Australia
| | - Aleicia Holland
- Department of Environment and Genetics, La Trobe University, 133 Mckoy Street, West Wodonga, Albury-Wodonga Campus, Victoria 3690, Australia
| |
Collapse
|
2
|
Stilwell JM, Perry SM, Petrie-Hanson L, Sheffler R, Buchweitz JP, Delaune AJ. Pyrethroid-associated nephrotoxicity in channel catfish, Ictalurus punctatus, and blue catfish, I. furcatus, at a public aquarium. Vet Pathol 2024; 61:633-640. [PMID: 38193450 DOI: 10.1177/03009858231222226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2024]
Abstract
Over the course of an approximately 11-month period, an outdoor, freshwater, mixed species, recirculating, display system at a public aquarium experienced intermittent mortalities of channel catfish (Ictalurus punctatus) and blue catfish (I. furcatus). Catfish acutely presented for abnormal buoyancy, coelomic distention, and protein-rich coelomic effusion. Gross lesions typically involved massive coelomic distension with protein-rich effusion, generalized edema, and gastric hemorrhage and edema. Microscopically, primary lesions included renal tubular necrosis, gastric edema with mucosal hemorrhages, and generalized edema. Aerobic culture and virus isolation could not recover a consistent infectious agent. Intracoelomic injection of coelomic effusion and aspirated retrobulbar fluid from a catfish into naïve zebrafish (bioassay) produced peracute mortality in 3 of 4 fish and nervous signs in the fourth compared with 2 saline-injected control zebrafish that had - no mortality or clinical signs. Kidney tissue and coelomic effusion were submitted for gas chromatography tandem mass spectrometry by multiple reaction monitoring against laboratory standards, which detected the presence of multiple pyrethroid toxins, including bioallethrin, bifenthrin, trans-permethrin, phenothrin, and deltamethrin. Detection of multiple pyrethroids presumably reflects multiple exposures with several products. As such, the contributions of each pyrethroid toward clinical presentation, lesion development, and disease pathogenesis cannot be determined, but they are suspected to have collectively resulted in disrupted osmoregulation and fluid overload due to renal injury. Pesticide-induced toxicoses involving aquarium fish are rarely reported with this being the first description of pyrethroid-induced lesions and mortality in public aquarium-held fish.
Collapse
Affiliation(s)
| | - Sean M Perry
- Mississippi State University, Mississippi State, MS
- Mississippi Aquarium, Gulfport, MS
| | | | | | | | - Alexa J Delaune
- Mississippi State University, Mississippi State, MS
- Mississippi Aquarium, Gulfport, MS
| |
Collapse
|
3
|
Yang S, Bai Y, Tao J, Tu C, Chen B, Huang X, Zhang L, Liu L, Li L, Qin Z. Exploration of the immune response of grass carp (Ctenopharyngodon idellus) erythrocytes during bacterial infection. FISH & SHELLFISH IMMUNOLOGY 2024; 149:109526. [PMID: 38554743 DOI: 10.1016/j.fsi.2024.109526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/29/2024] [Accepted: 03/27/2024] [Indexed: 04/02/2024]
Abstract
In teleost blood, red blood cells (RBCs) are the most common type of cell, and they differ from mammalian RBCs in having a nucleus and other organelles. As nucleated cells, teleost RBCs contribute to the immune response against pathogens, but their antibacterial mechanism remains unclear. Here, we utilized RNA-Seq to analyze gene expression patterns of grass carp (Ctenopharyngodon idellus) RBCs (GcRBCs) stimulated by Aeromonas hydrophila, Escherichia coli, and Staphylococcus aureus. Our transcriptomic data showed that bacterial stimulation generated many differentially expressed genes (DEGs). Furthermore, several inflammatory pathways responded to bacterial activation, and the TLR, IL-17, and tumor necrosis factor (TNF) signaling pathways were significantly activated based on Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis. Furthermore, the findings of qRT-PCR showed markedly elevated expression of various cytokines, including IL-1β, IL4, IL6, IL8, IL12, and TNFα, in GcRBCs after incubation with bacteria. Reactive oxygen species (ROS) production in GcRBCs was markedly increased after the cells were stimulated with the three bacteria, and the expression of superoxide dismutase, glutathione peroxidase, and antioxidant enzymes, including catalase, was altered. Flow cytometry analysis showed that the apoptosis rate of GcRBCs was enhanced after stimulation with the three bacteria for different times. In summary, our findings reveal that bacterial stimulation activates the immune response of GcRBCs by regulating ROS release, cytokine expression, and the antioxidant system, leading to apoptosis of GcRBCs.
Collapse
Affiliation(s)
- Shiyi Yang
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong Province, 510222, China
| | - Yanhan Bai
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong Province, 510222, China
| | - Junjie Tao
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong Province, 510222, China
| | - Chengming Tu
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong Province, 510222, China
| | - Bing Chen
- Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China.
| | - Xiaoman Huang
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong Province, 510222, China
| | - Linpeng Zhang
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong Province, 510222, China
| | - Lihan Liu
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong Province, 510222, China
| | - Lin Li
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong Province, 510222, China.
| | - Zhendong Qin
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong Province, 510222, China.
| |
Collapse
|
4
|
Kumar M, Singh S, Jain A, Yadav S, Dubey A, Trivedi SP. A review on heavy metal-induced toxicity in fishes: Bioaccumulation, antioxidant defense system, histopathological manifestations, and transcriptional profiling of genes. J Trace Elem Med Biol 2024; 83:127377. [PMID: 38183919 DOI: 10.1016/j.jtemb.2023.127377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 12/22/2023] [Accepted: 12/22/2023] [Indexed: 01/08/2024]
Abstract
AIM This review provides information about heavy metal occurrence in the environment, destructive mechanisms, and lethal effects on fish. SUMMARY Heavy metals (HMs) are one of the major causes of environmental contamination globally. The advancement of industries has led to the emanation of toxic substances into the environment. HMs are stable, imperishable compounds and can accumulate in different fish organs when they reach the aquatic regimes. The most ubiquitous HMs are chromium, arsenic, mercury, cadmium, lead, copper, and nickel which can pollute the environment and affect the physiology of fishes. Accumulation of metals in the fish organs causes structural lesions and functional disturbances. Contamination of heavy metals induces oxidative stress, histopathological manifestations, and altered transcriptional gene regulation in the exposed fishes. CONCLUSION Heavy metal bioaccumulation leads to different anomalies in the non-target species. Metal toxicity may cause aquatic organisms to exhibit cellular dysfunction and disturb ecological equilibrium.
Collapse
Affiliation(s)
- Manoj Kumar
- Environmental Toxicology and Bioremediation Laboratory, Department of Zoology, University of Lucknow, Lucknow, India.
| | - Shefalee Singh
- Environmental Toxicology and Bioremediation Laboratory, Department of Zoology, University of Lucknow, Lucknow, India
| | - Anamika Jain
- Environmental Toxicology and Bioremediation Laboratory, Department of Zoology, University of Lucknow, Lucknow, India
| | - Seema Yadav
- Environmental Toxicology and Bioremediation Laboratory, Department of Zoology, University of Lucknow, Lucknow, India
| | - Aastha Dubey
- Environmental Toxicology and Bioremediation Laboratory, Department of Zoology, University of Lucknow, Lucknow, India
| | - Sunil P Trivedi
- Environmental Toxicology and Bioremediation Laboratory, Department of Zoology, University of Lucknow, Lucknow, India
| |
Collapse
|
5
|
Tao J, Tu C, Xu Z, Bai Y, Chen B, Yang S, Huang X, Zhang L, Liu L, Lin L, Qin Z. The infection of Aeromonas hydrophila activated Multiple programmed cell death pathways in red blood cells of Clarias fuscus. FISH & SHELLFISH IMMUNOLOGY 2024; 145:109315. [PMID: 38134975 DOI: 10.1016/j.fsi.2023.109315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 12/14/2023] [Accepted: 12/17/2023] [Indexed: 12/24/2023]
Abstract
In contrast to mammalian red blood cells (RBCs), Osteichthyes RBCs contain a nucleus and organelles, suggesting the involvement of more intricate mechanisms, particularly in the context of ferroptosis. In this study, we utilized RBCs from Clarias fuscus (referred to as Cf-RBCs) as a model system. We conducted RNA-seq analysis to quantify gene expression levels in Cf-RBCs after exposure to both Aeromonas hydrophila and lipopolysaccharides. Our analysis unveiled 1326 differentially expressed genes (DEGs) in Cf-RBCs following 4 h of incubation with A. hydrophila, comprising 715 and 611 genes with upregulated and downregulated expression, respectively. These DEGs were further categorized into functional clusters: 292 related to cellular processes, 241 involved in environmental information processing, 272 associated with genetic information processing, and 399 linked to organismal systems. Additionally, notable changes were observed in genes associated with the autophagy pathway at 4 h, and alterations in the ferroptosis pathway were observed at 8 h following A. hydrophila incubation. To validate these findings, we assessed the expression of cytokines (DMT1, TFR1, LC3, and GSS). All selected genes were significantly upregulated after exposure to A. hydrophila. Using flow cytometry, we evaluated the extent of ferroptosis, and the group incubated with A. hydrophila for 8 h exhibited higher levels of lipid peroxidation compared with the 4-h incubation group, even under baseline conditions. An evaluation of the glutathione redox system through GSSG/GSH ratios indicated an increased ratio in Cf-RBCs after exposure to A. hydrophila. In summary, our data suggest that A. hydrophila may induce ferroptosis in Cf-RBCs, potentially by triggering the cystine/glutamate antiporter system (system XC-), while Cf-RBCs counteract ferroptosis through the regulation of the glutathione redox system. These findings contribute to our understanding of the iron overload mechanism in Osteichthyes RBCs, provide insights into the management of bacterial diseases in Clarias fuscus, and offer potential strategies to mitigate economic losses in aquaculture.
Collapse
Affiliation(s)
- Junjie Tao
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong Province, 510222, China
| | - Chengming Tu
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong Province, 510222, China
| | - Zizheng Xu
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong Province, 510222, China
| | - Yanhan Bai
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong Province, 510222, China
| | - Bing Chen
- Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Shiyi Yang
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong Province, 510222, China
| | - Xiaoman Huang
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong Province, 510222, China
| | - Linpeng Zhang
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong Province, 510222, China
| | - Lihan Liu
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong Province, 510222, China
| | - Li Lin
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong Province, 510222, China.
| | - Zhendong Qin
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong Province, 510222, China.
| |
Collapse
|
6
|
Vörösházi J, Mackei M, Sebők C, Tráj P, Márton RA, Horváth DG, Huber K, Neogrády Z, Mátis G. Investigation of the effects of T-2 toxin in chicken-derived three-dimensional hepatic cell cultures. Sci Rep 2024; 14:1195. [PMID: 38216675 PMCID: PMC10786837 DOI: 10.1038/s41598-024-51689-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 01/08/2024] [Indexed: 01/14/2024] Open
Abstract
Despite being one of the most common contaminants of poultry feed, the molecular effects of T-2 toxin on the liver of the exposed animals are still not fully elucidated. To gain more accurate understanding, the effects of T-2 toxin were investigated in the present study in chicken-derived three-dimensional (3D) primary hepatic cell cultures. 3D spheroids were treated with three concentrations (100, 500, 1000 nM) of T-2 toxin for 24 h. Cellular metabolic activity declined in all treated groups as reflected by the Cell Counting Kit-8 assay, while extracellular lactate dehydrogenase activity was increased after 500 nM T-2 toxin exposure. The levels of oxidative stress markers malondialdehyde and protein carbonyl were reduced by the toxin, suggesting effective antioxidant compensatory mechanisms of the liver. Concerning the pro-inflammatory cytokines, IL-6 concentration was decreased, while IL-8 concentration was increased by 100 nM T-2 toxin exposure, indicating the multifaceted immunomodulatory action of the toxin. Further, the metabolic profile of hepatic spheroids was also modulated, confirming the altered lipid and amino acid metabolism of toxin-exposed liver cells. Based on these results, T-2 toxin affected cell viability, hepatocellular metabolism and inflammatory response, likely carried out its toxic effects by affecting the oxidative homeostasis of the cells.
Collapse
Affiliation(s)
- Júlia Vörösházi
- Division of Biochemistry, Department of Physiology and Biochemistry, University of Veterinary Medicine, Budapest, 1078, Hungary.
| | - Máté Mackei
- Division of Biochemistry, Department of Physiology and Biochemistry, University of Veterinary Medicine, Budapest, 1078, Hungary
- National Laboratory of Infectious Animal Diseases, Antimicrobial Resistance, Veterinary Public Health and Food Chain Safety, University of Veterinary Medicine, Budapest, 1078, Hungary
| | - Csilla Sebők
- Division of Biochemistry, Department of Physiology and Biochemistry, University of Veterinary Medicine, Budapest, 1078, Hungary
| | - Patrik Tráj
- Division of Biochemistry, Department of Physiology and Biochemistry, University of Veterinary Medicine, Budapest, 1078, Hungary
| | - Rege Anna Márton
- Division of Biochemistry, Department of Physiology and Biochemistry, University of Veterinary Medicine, Budapest, 1078, Hungary
- National Laboratory of Infectious Animal Diseases, Antimicrobial Resistance, Veterinary Public Health and Food Chain Safety, University of Veterinary Medicine, Budapest, 1078, Hungary
| | - Dávid Géza Horváth
- Department of Pathology, University of Veterinary Medicine, Budapest, 1078, Hungary
| | - Korinna Huber
- Institute of Animal Science, University of Hohenheim, 70599, Stuttgart, Germany
| | - Zsuzsanna Neogrády
- Division of Biochemistry, Department of Physiology and Biochemistry, University of Veterinary Medicine, Budapest, 1078, Hungary
| | - Gábor Mátis
- Division of Biochemistry, Department of Physiology and Biochemistry, University of Veterinary Medicine, Budapest, 1078, Hungary
- National Laboratory of Infectious Animal Diseases, Antimicrobial Resistance, Veterinary Public Health and Food Chain Safety, University of Veterinary Medicine, Budapest, 1078, Hungary
| |
Collapse
|
7
|
Long J, Yang P, Liu Y, Liu X, Li H, Su X, Zhang T, Xu J, Chen G, Jiang J. The Extract of Angelica sinensis Inhibits Hypoxia-Reoxygenation and Copper-Induced Oxidative Lesions and Apoptosis in Branchiae and Red Blood Corpuscles of Fish. Vet Sci 2023; 11:1. [PMID: 38275917 PMCID: PMC10821500 DOI: 10.3390/vetsci11010001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/11/2023] [Accepted: 12/14/2023] [Indexed: 01/27/2024] Open
Abstract
The study explored the effects of Angelica sinensis extract (AsE) on oxidative lesions and apoptosis in branchiae and red blood corpuscles in hypoxia-reoxygenation (HR) and Cu-treated carp (Cyprinus carpio var. Jian). After feeding trial for 30 days, the carp were exposed to HR and CuSO4. The results indicated that dietary AsE increased the durative time, decreased the oxygen consumption rate, suppressed ROS generation and cellular component oxidation, decreased enzymatic antioxidant activity and reduced glutathione (GSH) levels in red blood corpuscles and branchiae in carp under hypoxia. Moreover, dietary AsE avoided the loss of Na+,K+-ATPase, metabolic and antioxidant enzyme activities, ROS generation and cellular component oxidation, as well as the increase in caspase-8, 9, and 3 activities in the branchiae of the carp and inhibited ROS generation. It furthermore avoided the loss of Na+,K+-ATPase and metabolic enzyme activities, the decrease in GSH levels and hemoglobin content, the increase in the activities of caspase-8, 9, and 3 and the increase in the levels of cytochrome c and phosphatidylserine exposure in the red blood corpuscles of Cu-exposed carp. The present results suggested that dietary AsE improved hypoxia tolerance and inhibited HR or Cu-triggered oxidative lesions and apoptosis. Therefore, AsE can be utilized as a natural inhibitor of Cu and HR stress in fish.
Collapse
Affiliation(s)
- Jiao Long
- Key Laboratory of Sichuan Province for Conservation and Utilization of Fishes Resources in the Upper Reaches of the Yangtze River, College of Life Sciences, Neijiang Normal University, Neijiang 641100, China; (J.L.); (P.Y.); (Y.L.); (X.L.); (X.S.); (T.Z.); (J.X.); (G.C.)
| | - Pengyan Yang
- Key Laboratory of Sichuan Province for Conservation and Utilization of Fishes Resources in the Upper Reaches of the Yangtze River, College of Life Sciences, Neijiang Normal University, Neijiang 641100, China; (J.L.); (P.Y.); (Y.L.); (X.L.); (X.S.); (T.Z.); (J.X.); (G.C.)
| | - Yihua Liu
- Key Laboratory of Sichuan Province for Conservation and Utilization of Fishes Resources in the Upper Reaches of the Yangtze River, College of Life Sciences, Neijiang Normal University, Neijiang 641100, China; (J.L.); (P.Y.); (Y.L.); (X.L.); (X.S.); (T.Z.); (J.X.); (G.C.)
| | - Xiaoru Liu
- Key Laboratory of Sichuan Province for Conservation and Utilization of Fishes Resources in the Upper Reaches of the Yangtze River, College of Life Sciences, Neijiang Normal University, Neijiang 641100, China; (J.L.); (P.Y.); (Y.L.); (X.L.); (X.S.); (T.Z.); (J.X.); (G.C.)
| | - Huatao Li
- Key Laboratory of Sichuan Province for Conservation and Utilization of Fishes Resources in the Upper Reaches of the Yangtze River, College of Life Sciences, Neijiang Normal University, Neijiang 641100, China; (J.L.); (P.Y.); (Y.L.); (X.L.); (X.S.); (T.Z.); (J.X.); (G.C.)
| | - Xiaoyu Su
- Key Laboratory of Sichuan Province for Conservation and Utilization of Fishes Resources in the Upper Reaches of the Yangtze River, College of Life Sciences, Neijiang Normal University, Neijiang 641100, China; (J.L.); (P.Y.); (Y.L.); (X.L.); (X.S.); (T.Z.); (J.X.); (G.C.)
| | - Ting Zhang
- Key Laboratory of Sichuan Province for Conservation and Utilization of Fishes Resources in the Upper Reaches of the Yangtze River, College of Life Sciences, Neijiang Normal University, Neijiang 641100, China; (J.L.); (P.Y.); (Y.L.); (X.L.); (X.S.); (T.Z.); (J.X.); (G.C.)
| | - Jing Xu
- Key Laboratory of Sichuan Province for Conservation and Utilization of Fishes Resources in the Upper Reaches of the Yangtze River, College of Life Sciences, Neijiang Normal University, Neijiang 641100, China; (J.L.); (P.Y.); (Y.L.); (X.L.); (X.S.); (T.Z.); (J.X.); (G.C.)
| | - Gangfu Chen
- Key Laboratory of Sichuan Province for Conservation and Utilization of Fishes Resources in the Upper Reaches of the Yangtze River, College of Life Sciences, Neijiang Normal University, Neijiang 641100, China; (J.L.); (P.Y.); (Y.L.); (X.L.); (X.S.); (T.Z.); (J.X.); (G.C.)
| | - Jun Jiang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China;
| |
Collapse
|
8
|
Hoffman SS, Liang D, Hood RB, Tan Y, Terrell ML, Marder ME, Barton H, Pearson MA, Walker DI, Barr DB, Jones DP, Marcus M. Assessing Metabolic Differences Associated with Exposure to Polybrominated Biphenyl and Polychlorinated Biphenyls in the Michigan PBB Registry. ENVIRONMENTAL HEALTH PERSPECTIVES 2023; 131:107005. [PMID: 37815925 PMCID: PMC10564108 DOI: 10.1289/ehp12657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 09/11/2023] [Accepted: 09/18/2023] [Indexed: 10/12/2023]
Abstract
BACKGROUND Polybrominated biphenyls (PBB) and polychlorinated biphenyls (PCB) are persistent organic pollutants with potential endocrine-disrupting effects linked to adverse health outcomes. OBJECTIVES In this study, we utilize high-resolution metabolomics (HRM) to identify internal exposure and biological responses underlying PCB and multigenerational PBB exposure for participants enrolled in the Michigan PBB Registry. METHODS HRM profiling was conducted on plasma samples collected from 2013 to 2014 from a subset of participants enrolled in the Michigan PBB Registry, including 369 directly exposed individuals (F0) who were alive when PBB mixtures were accidentally introduced into the food chain and 129 participants exposed to PBB in utero or through breastfeeding, if applicable (F1). Metabolome-wide association studies were performed for PBB-153 separately for each generation and Σ PCB (PCB-118, PCB-138, PCB-153, and PCB-180) in the two generations combined, as both had direct PCB exposure. Metabolite and metabolic pathway alterations were evaluated following a well-established untargeted HRM workflow. RESULTS Mean levels were 1.75 ng / mL [standard deviation (SD): 13.9] for PBB-153 and 1.04 ng / mL (SD: 0.788) for Σ PCB . Sixty-two and 26 metabolic features were significantly associated with PBB-153 in F0 and F1 [false discovery rate (FDR) p < 0.2 ], respectively. There were 2,861 features associated with Σ PCB (FDR p < 0.2 ). Metabolic pathway enrichment analysis using a bioinformatics tool revealed perturbations associated with Σ PCB in numerous oxidative stress and inflammation pathways (e.g., carnitine shuttle, glycosphingolipid, and vitamin B9 metabolism). Metabolic perturbations associated with PBB-153 in F0 were related to oxidative stress (e.g., pentose phosphate and vitamin C metabolism) and in F1 were related to energy production (e.g., pyrimidine, amino sugars, and lysine metabolism). Using authentic chemical standards, we confirmed the chemical identity of 29 metabolites associated with Σ PCB levels (level 1 evidence). CONCLUSIONS Our results demonstrate that serum PBB-153 is associated with alterations in inflammation and oxidative stress-related pathways, which differed when stratified by generation. We also found that Σ PCB was associated with the downregulation of important neurotransmitters, serotonin, and 4-aminobutanoate. These findings provide novel insights for future investigations of molecular mechanisms underlying PBB and PCB exposure on health. https://doi.org/10.1289/EHP12657.
Collapse
Affiliation(s)
- Susan S. Hoffman
- Department of Epidemiology, Emory University, Atlanta, Georgia, USA
| | - Donghai Liang
- Department of Epidemiology, Emory University, Atlanta, Georgia, USA
- Gangarosa Department of Environmental Health, Emory University, Atlanta, Georgia, USA
| | - Robert B. Hood
- Department of Epidemiology, Emory University, Atlanta, Georgia, USA
| | - Youran Tan
- Gangarosa Department of Environmental Health, Emory University, Atlanta, Georgia, USA
| | | | - M. Elizabeth Marder
- Department of Environmental Toxicology, University of California, Davis, Davis, California, USA
| | - Hillary Barton
- Department of Epidemiology, Emory University, Atlanta, Georgia, USA
| | - Melanie A. Pearson
- Gangarosa Department of Environmental Health, Emory University, Atlanta, Georgia, USA
| | - Douglas I. Walker
- Gangarosa Department of Environmental Health, Emory University, Atlanta, Georgia, USA
| | - Dana Boyd Barr
- Gangarosa Department of Environmental Health, Emory University, Atlanta, Georgia, USA
| | - Dean P. Jones
- School of Medicine, Emory University, Atlanta, Georgia, USA
| | - Michele Marcus
- Department of Epidemiology, Emory University, Atlanta, Georgia, USA
- Gangarosa Department of Environmental Health, Emory University, Atlanta, Georgia, USA
| |
Collapse
|
9
|
Kozak N, Kahilainen KK, Pakkanen HK, Hayden B, Østbye K, Taipale SJ. Mercury and amino acid content relations in northern pike (Esox lucius) in subarctic lakes along a climate-productivity gradient. ENVIRONMENTAL RESEARCH 2023; 233:116511. [PMID: 37369304 DOI: 10.1016/j.envres.2023.116511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 06/22/2023] [Accepted: 06/24/2023] [Indexed: 06/29/2023]
Abstract
Mercury is a highly toxic element for consumers, but its relation to amino acids and physiology of wild fish is not well known. The main aim of this study was to evaluate how total mercury content (THg) of northern pike (Esox lucius) is related to amino acids and potentially important environmental and biological factors along a climate-productivity gradient of ten subarctic lakes. Linear regression between THg and sixteen amino acids content [nmol mg-1 dry weight] from white dorsal muscle of pike from these lakes were tested. Lastly, a general linear model (GLM) for age-corrected THg was used to test which factors are significantly related to mercury content of pike. There was a positive relationship between THg and proline. Seven out of sixteen analysed amino acids (histidine, threonine, arginine, serine, glutamic acid, glycine, and aspartic acid) were significantly negatively related to warmer and more productive lakes, while THg showed a positive relationship. GLM model indicated higher THg was found in higher trophic level pike with lower cysteine content and inhabiting warmer and more productive lakes with larger catchment containing substantial proportion of peatland area. In general, THg was not only related to the biological and environmental variables but also to amino acid content.
Collapse
Affiliation(s)
- Natalia Kozak
- Department of Forestry and Wildlife Management, Inland Norway University of Applied Sciences, Campus Evenstad, Anne Evenstad Veg 80, NO-2480, Koppang, Norway.
| | - Kimmo K Kahilainen
- Lammi Biological Station, University of Helsinki, Pääjärventie 320, FI-16900, Lammi, Finland; Kilpisjärvi Biological Station, University of Helsinki, Käsivarrentie 14622, FI-99490, Kilpisjärvi, Finland
| | - Hannu K Pakkanen
- Department of Biological and Environmental Science, University of Jyväskylä, P.O.Box 35 (YA), FI-40014, Jyväskylä, Finland
| | - Brian Hayden
- Biology Department, Canadian Rivers Institute, University of New Brunswick, Fredericton, NB E3B 5A3, Canada
| | - Kjartan Østbye
- Department of Forestry and Wildlife Management, Inland Norway University of Applied Sciences, Campus Evenstad, Anne Evenstad Veg 80, NO-2480, Koppang, Norway; Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, P.O.Box 1066, Blindern, NO-0316, Oslo, Norway
| | - Sami J Taipale
- Department of Biological and Environmental Science, University of Jyväskylä, P.O.Box 35 (YA), FI-40014, Jyväskylä, Finland
| |
Collapse
|
10
|
Dagoudo M, Mutebi ET, Qiang J, Tao YF, Zhu HJ, Ngoepe TK, Xu P. Effects of acute heat stress on haemato-biochemical parameters, oxidative resistance ability, and immune responses of hybrid yellow catfish (pelteobagrus fulvidraco × P. vachelli) juveniles. Vet Res Commun 2023; 47:1217-1229. [PMID: 36707493 DOI: 10.1007/s11259-022-10062-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 12/22/2022] [Indexed: 01/29/2023]
Abstract
This study investigated the effect of heat stress on the physiological parameters, oxidation resistance ability and immune responses in juvenile hybrid yellow catfish. Heat stress group exposed to 35 °C and control to 28 °C. Blood and liver were sampled at different hours' post-exposure. Results showed that red blood cell (RBC), white blood cell (WBC) counts, Hemoglobin (HGB) levels and hematocrit (HCT) values increased significantly (P < 0.05) post-exposure to heat stress. This indicates the increase of cell metabolism. Serum alanine aminotransferase (ALT) and aspartate transaminase (AST) activities, total cholesterol (TC), total protein (TP), triglyceride (TG) and glucose increased significantly (P < 0.05) indicating the need to cope with stress and cell damage. Liver TC, TG, COR hormone, C3 complement increased significantly from 24 to 96 h. Heat stress mostly affects the hepatic antioxidant and immune resistance functions, resulting in increments of cortisol levels, lysozyme, superoxide dismutase (SOD), and catalase (CAT) enzyme activities. The increase of Malondialdehyde (MDA), alkaline phosphatase (AKP) indicate stimulation of the immune responses to protect the liver cells from damage. The decrease in Liver TP indicated liver impairment. Decrease in Glycogen content from 6 to 96 h indicated mobilization of more metabolites to cope with increased energy demand. Interestingly, results showed that heat stress trigged costly responses in the experimental fish like accelerated metabolism and deplete energy reserves, which could indirectly affect ability of fish to set up efficient long term defense responses against stress. These results provide insight into prevention and management of stress in juvenile hybrid yellow catfish.
Collapse
Affiliation(s)
- Missinhoun Dagoudo
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Freshwater Fisheries Research Center, Ministry of Agriculture, Chinese Academy of Fishery Sciences, No.9 East Shanshui Road, 214081, Wuxi, Jiangsu, China.
- Wuxi Fisheries College of Nanjing Agricultural University, 214081, Wuxi, Jiangsu, China.
| | - Ezra Tumukunde Mutebi
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Freshwater Fisheries Research Center, Ministry of Agriculture, Chinese Academy of Fishery Sciences, No.9 East Shanshui Road, 214081, Wuxi, Jiangsu, China
- Wuxi Fisheries College of Nanjing Agricultural University, 214081, Wuxi, Jiangsu, China
| | - Jun Qiang
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Freshwater Fisheries Research Center, Ministry of Agriculture, Chinese Academy of Fishery Sciences, No.9 East Shanshui Road, 214081, Wuxi, Jiangsu, China
| | - Yi-Fan Tao
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Freshwater Fisheries Research Center, Ministry of Agriculture, Chinese Academy of Fishery Sciences, No.9 East Shanshui Road, 214081, Wuxi, Jiangsu, China
| | - Hao-Jun Zhu
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Freshwater Fisheries Research Center, Ministry of Agriculture, Chinese Academy of Fishery Sciences, No.9 East Shanshui Road, 214081, Wuxi, Jiangsu, China
| | - Tlou Kevin Ngoepe
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Freshwater Fisheries Research Center, Ministry of Agriculture, Chinese Academy of Fishery Sciences, No.9 East Shanshui Road, 214081, Wuxi, Jiangsu, China
- Wuxi Fisheries College of Nanjing Agricultural University, 214081, Wuxi, Jiangsu, China
| | - Pao Xu
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Freshwater Fisheries Research Center, Ministry of Agriculture, Chinese Academy of Fishery Sciences, No.9 East Shanshui Road, 214081, Wuxi, Jiangsu, China
| |
Collapse
|
11
|
Wu X, Lai J, Chen Y, Liu Y, Song M, Li F, Li P, Li Q, Gong Q. Combination of metabolome and proteome analyses provides insights into the mechanism underlying growth differences in Acipenser dabryanus. iScience 2023; 26:107413. [PMID: 37559901 PMCID: PMC10407750 DOI: 10.1016/j.isci.2023.107413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 04/26/2023] [Accepted: 07/14/2023] [Indexed: 08/11/2023] Open
Abstract
To analyze the differences between different-sized Acipenser dabryanus, we randomly selected 600 3-month-old A. dabryanus juveniles. Four months later, the blood and white muscle of these fish were analyzed. The results showed no significant difference in the length-weight relationship (LWR) b value between the large and small A. dabryanus. The levels of serum growth hormone (gh) and insulin-like growth factor 1 (igf1) in the large A. dabryanus were significantly lower than those in the small, whereas the activity levels of Total superoxide dismutase (T-sod) and catalase (cat) were opposite to the results of gh and igf1. A total of 212 and 245 metabolites showed significant changes in the positive and negative polarity mode, respectively. Among 3,308 proteins identified, 69 proteins showed upregulated expression, and 185 proteins showed downregulated expression. These results indicated that the growth advantage of A. dabryanus was closely related to glycolysis, protein synthesis, and antioxidant function.
Collapse
Affiliation(s)
- Xiaoyun Wu
- The Fishery Institute of the Sichuan Academy of Agricultural Sciences, Chengdu 611730, China
- Fish Resources and Environment in the Upper Reaches of the Yangtze River Observation and Research Station of Sichuan Province, Chengdu 611730, China
| | - Jiansheng Lai
- The Fishery Institute of the Sichuan Academy of Agricultural Sciences, Chengdu 611730, China
- Fish Resources and Environment in the Upper Reaches of the Yangtze River Observation and Research Station of Sichuan Province, Chengdu 611730, China
| | - Yeyu Chen
- The Fishery Institute of the Sichuan Academy of Agricultural Sciences, Chengdu 611730, China
- Fish Resources and Environment in the Upper Reaches of the Yangtze River Observation and Research Station of Sichuan Province, Chengdu 611730, China
| | - Ya Liu
- The Fishery Institute of the Sichuan Academy of Agricultural Sciences, Chengdu 611730, China
- Fish Resources and Environment in the Upper Reaches of the Yangtze River Observation and Research Station of Sichuan Province, Chengdu 611730, China
| | - Mingjiang Song
- The Fishery Institute of the Sichuan Academy of Agricultural Sciences, Chengdu 611730, China
- Fish Resources and Environment in the Upper Reaches of the Yangtze River Observation and Research Station of Sichuan Province, Chengdu 611730, China
| | - Feiyang Li
- The Fishery Institute of the Sichuan Academy of Agricultural Sciences, Chengdu 611730, China
- Fish Resources and Environment in the Upper Reaches of the Yangtze River Observation and Research Station of Sichuan Province, Chengdu 611730, China
| | - Pengcheng Li
- The Fishery Institute of the Sichuan Academy of Agricultural Sciences, Chengdu 611730, China
- Fish Resources and Environment in the Upper Reaches of the Yangtze River Observation and Research Station of Sichuan Province, Chengdu 611730, China
| | - Qingzhi Li
- The Fishery Institute of the Sichuan Academy of Agricultural Sciences, Chengdu 611730, China
- Fish Resources and Environment in the Upper Reaches of the Yangtze River Observation and Research Station of Sichuan Province, Chengdu 611730, China
| | - Quan Gong
- The Fishery Institute of the Sichuan Academy of Agricultural Sciences, Chengdu 611730, China
- Fish Resources and Environment in the Upper Reaches of the Yangtze River Observation and Research Station of Sichuan Province, Chengdu 611730, China
| |
Collapse
|
12
|
Abbasi M, Taheri Mirghaed A, Hoseini SM, Rajabiesterabadi H, Hoseinifar SH, Van Doan H. Effects of Dietary Glycine Supplementation on Growth Performance, Immunological, and Erythrocyte Antioxidant Parameters in Common Carp, Cyprinus carpio. Animals (Basel) 2023; 13:ani13030412. [PMID: 36766300 PMCID: PMC9913273 DOI: 10.3390/ani13030412] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/17/2023] [Accepted: 01/18/2023] [Indexed: 01/28/2023] Open
Abstract
The effects of dietary glycine supplementation, 0 (control), 5 (5 GL), and 10 (10 GL) g/kg, have been investigated on growth performance, hematological parameters, erythrocyte antioxidant capacity, humoral and mucosal immunity in common carp, Cyprinus carpio. After eight weeks feeding, the 5 GL treatment exhibited significant improvement in growth performance and feed efficacy, compared to the control treatment. Red blood cell (RBC) and white blood cell (WBC) counts, hemoglobin, hematocrit, neutrophil and monocyte counts/percentages, RBC reduced glutathione (GSH) content, and skin mucosal alkaline phosphatase, peroxidase, protease, and lysozyme activities were similar in the glycine-treated fish and significantly higher than the control treatment. Blood lymphocyte percentage decreased in the glycine-treated fish, but lymphocyte count increased, compared to the control fish. RBC glutathione reductase activities in the glycine-treated fish were similar and significantly lower than the control treatment. The highest plasma lysozyme and alternative complement activities were observed in GL treatment. The glycine-treated fish, particularly 5 GL, exhibited significant improvement in RBC osmotic fragility resistance. Dietary glycine had no significant effects on RBC glutathione peroxidase activity, plasma immunoglobulin, eosinophil percentage/count, and hematological indices. In conclusion, most of the benefits of dietary glycine supplementation may be mediated by increased glutathione synthesis and antioxidant power.
Collapse
Affiliation(s)
- Marzieh Abbasi
- Fisheries Department, Faculty of Natural Resources, University of Guilan, Sowmeh Sara 4361996196, Iran
| | - Ali Taheri Mirghaed
- Department of Aquatic Animal Health, Faculty of Veterinary Medicine, University of Tehran, Tehran 14119963111, Iran
| | - Seyyed Morteza Hoseini
- Inland Waters Aquatics Resources Research Center, Iranian Fisheries Sciences Research Institute, Agricultural Research, Education and Extension Organization, Gorgan 4916687631, Iran
| | - Hamid Rajabiesterabadi
- Young Researchers and Elite Club, Azadshahr Branch, Islamic Azad University, Golestan 8998549617, Iran
| | - Seyed Hossein Hoseinifar
- Department of Fisheries, Faculty of Fisheries and Environmental Sciences, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan 4913815739, Iran
| | - Hien Van Doan
- Department of Fisheries, Faculty of Fisheries and Environmental Sciences, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan 4913815739, Iran
- Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand
- Correspondence: ; Tel.: +66-53-941-000
| |
Collapse
|
13
|
Kladchenko E, Gostyukhina O, Soldatov A, Rychkova V, Andreyeva A. Functional changes in hemocytes and antioxidant activity in gills of the ark clam Anadara kagoshimensis (Bivalvia: Arcidae) induced by salinity fluctuations. Comp Biochem Physiol B Biochem Mol Biol 2022; 264:110810. [DOI: 10.1016/j.cbpb.2022.110810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 10/28/2022] [Accepted: 10/31/2022] [Indexed: 11/06/2022]
|
14
|
Wu H, Tatiyaborworntham N, Hajimohammadi M, Decker EA, Richards MP, Undeland I. Model systems for studying lipid oxidation associated with muscle foods: Methods, challenges, and prospects. Crit Rev Food Sci Nutr 2022; 64:153-171. [PMID: 35916770 DOI: 10.1080/10408398.2022.2105302] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Lipid oxidation is a complex process in muscle-based foods (red meat, poultry and fish) causing severe quality deterioration, e.g., off-odors, discoloration, texture defects and nutritional loss. The complexity of muscle tissue -both composition and structure- poses as a formidable challenge in directly clarifying the mechanisms of lipid oxidation in muscle-based foods. Therefore, different in vitro model systems simulating different aspects of muscle have been used to study the pathways of lipid oxidation. In this review, we discuss the principle, preparation, implementation as well as advantages and disadvantages of seven commonly-studied model systems that mimic either compositional or structural aspects of actual meat: emulsions, fatty acid micelles, liposomes, microsomes, erythrocytes, washed muscle mince, and muscle homogenates. Furthermore, we evaluate the prospects of stem cells, tissue cultures and three-dimensional printing for future model system development. Based on this reviewing of oxidation models, tailoring correct model to different study aims could be facilitated, and readers are becoming acquainted with advantages and shortcomings. In addition, insight into recent technology developments, e.g., stem cell- and tissue-cultures as well as three-dimensional printing could provide new opportunities to overcome the current bottlenecks of lipid oxidation studies in muscle.
Collapse
Affiliation(s)
- Haizhou Wu
- Department of Biology and Biological Engineering-Food and Nutrition Science, Chalmers University of Technology, Gothenburg, SE, Sweden
| | - Nantawat Tatiyaborworntham
- Food Biotechnology Research Team, National Center for Genetic Engineering and Biotechnology (BIOTEC), Pathum Thani, Thailand
| | | | - Eric A Decker
- Department of Food Science, University of Massachusetts Amherst, Amherst, MA, USA
| | - Mark P Richards
- Department of Animal and Dairy Sciences, Meat Science and Animal Biologics Discovery, University of Wisconsin-Madison, Madison, WI, USA
| | - Ingrid Undeland
- Department of Biology and Biological Engineering-Food and Nutrition Science, Chalmers University of Technology, Gothenburg, SE, Sweden
| |
Collapse
|
15
|
Hassel C, Couchet M, Jacquemot N, Blavignac C, Loï C, Moinard C, Cia D. Citrulline protects human retinal pigment epithelium from hydrogen peroxide and iron/ascorbate induced damages. J Cell Mol Med 2022; 26:2808-2818. [PMID: 35460170 PMCID: PMC9097847 DOI: 10.1111/jcmm.17294] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 03/08/2022] [Accepted: 03/10/2022] [Indexed: 12/18/2022] Open
Abstract
Oxidative stress plays an important role in the ageing of the retina and in the pathogenesis of retinal diseases such as age‐related macular degeneration (ARMD). Hydrogen peroxide is a reactive oxygen species generated by the photo‐excited lipofuscin that accumulates during ageing in the retinal pigment epithelium (RPE), and the age‐related accumulation of lipofuscin is associated with ARMD. Iron also accumulates with age in the RPE that may contribute to ARMD as an important source of oxidative stress. The aim of this work was to investigate the effects of L‐Citrulline (CIT), a naturally occurring amino acid with known antioxidant properties, on oxidative stressed cultured RPE cells. Human RPE (ARPE‐19) cells were exposed to hydrogen peroxide (H2O2) or iron/ascorbate (I/A) for 4 h, either in the presence of CIT or after 24 h of pretreatment. Here, we show that supplementation with CIT protects ARPE‐19 cells against H2O2 and I/A. CIT improves cell metabolic activity, decreases ROS production, limits lipid peroxidation, reduces cell death and attenuates IL‐8 secretion. Our study evidences that CIT is able to protect human RPE cells from oxidative damage and suggests potential protective effect for the treatment of retinal diseases associated with oxidative stress.
Collapse
Affiliation(s)
- Chervin Hassel
- Université Clermont Auvergne, INSERM U1107 NEURO-DOL, Laboratoire de Biophysique Neurosensorielle, Clermont-Ferrand, France
| | - Morgane Couchet
- Université Grenoble-Alpes, INSERM U1055, Laboratoire de Bioénergétique Fondamentale et Appliquée, Grenoble, France
| | - Nathalie Jacquemot
- Université Clermont Auvergne, INSERM U1107 NEURO-DOL, Laboratoire de Biophysique Neurosensorielle, Clermont-Ferrand, France
| | - Christelle Blavignac
- Université Clermont Auvergne, Centre Imagerie Cellulaire Santé, Clermont-Ferrand, France
| | | | - Christophe Moinard
- Université Grenoble-Alpes, INSERM U1055, Laboratoire de Bioénergétique Fondamentale et Appliquée, Grenoble, France
| | - David Cia
- Université Clermont Auvergne, INSERM U1107 NEURO-DOL, Laboratoire de Biophysique Neurosensorielle, Clermont-Ferrand, France
| |
Collapse
|
16
|
Souza MRDPDE, Zaleski T, Machado C, Kandalski PK, Forgati M, D' Bastiani E, Piechnik CA, Donatti L. Effect of heat stress on the antioxidant defense system and erythrocyte morphology of Antarctic fishes. AN ACAD BRAS CIENC 2021; 94:e20190657. [PMID: 34730667 DOI: 10.1590/0001-3765202220190657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 12/01/2019] [Indexed: 11/22/2022] Open
Abstract
This study analyzed the effect of thermal stress on erythrocytes of Notothenia rossii and Notothenia coriiceps, abundant notothenioids in Admiralty Bay, Antarctic Peninsula. In both species, the antioxidant defense system enzymes, superoxide dismutase, catalase, glutathione peroxidase, glutathione-S transferase, glutathione reductase were punctually altered (8°C for 1, 3 and 6 days) in erythrocytes, indicating that these markers are not ideal for termal stress. However, under the influence of thermal stress, morphological changes in Notothenia coriiceps erythrocytes were observed at all exposure times (1, 3 and 6 days at 8°C), and in Notothenia rossii occurred in 6 days. These results suggest that Notothenia corriceps presents a lower tolerance to thermal stress at 8°C for up to 6 days, since the cellular and nuclear alterations recorded are pathological and may be deleterious to the cells. Among the morphological markers analyzed in this work, we believe that the shape change and nuclear bubble formation may be good stress biomarkers in erythrocytes of Notothenia rossii and Notothenia coriiceps.
Collapse
Affiliation(s)
- Maria Rosa D P DE Souza
- Universidade Federal do Paraná, Departamento de Biologia Celular, Av. Cel. Francisco H. dos Santos, s/n, Jardim das Américas, 81531-970 Curitiba, PR, Brazil
| | - Tania Zaleski
- Universidade Federal do Paraná, Departamento de Biologia Celular, Av. Cel. Francisco H. dos Santos, s/n, Jardim das Américas, 81531-970 Curitiba, PR, Brazil
| | - Cintia Machado
- Universidade Federal do Paraná, Departamento de Biologia Celular, Av. Cel. Francisco H. dos Santos, s/n, Jardim das Américas, 81531-970 Curitiba, PR, Brazil
| | - Priscila K Kandalski
- Universidade Federal do Paraná, Departamento de Biologia Celular, Av. Cel. Francisco H. dos Santos, s/n, Jardim das Américas, 81531-970 Curitiba, PR, Brazil
| | - Mariana Forgati
- Universidade Federal do Paraná, Departamento de Biologia Celular, Av. Cel. Francisco H. dos Santos, s/n, Jardim das Américas, 81531-970 Curitiba, PR, Brazil
| | - Elvira D' Bastiani
- Universidade Federal do Paraná, Departamento de Zoologia, Av. Cel. Francisco H. dos Santos, s/n, Jardim das Américas, 81531-970 Curitiba, PR, Brazil
| | - Cláudio A Piechnik
- Universidade Federal do Paraná, Departamento de Biologia Celular, Av. Cel. Francisco H. dos Santos, s/n, Jardim das Américas, 81531-970 Curitiba, PR, Brazil
| | - Lucélia Donatti
- Universidade Federal do Paraná, Departamento de Biologia Celular, Av. Cel. Francisco H. dos Santos, s/n, Jardim das Américas, 81531-970 Curitiba, PR, Brazil
| |
Collapse
|
17
|
Kou H, Hu J, Vijayaraman SB, Wang AL, Zheng Y, Chen J, He G, Miao Y, Lin L. Evaluation of dietary zinc on antioxidant-related gene expression, antioxidant capability and immunity of soft-shelled turtles Pelodiscussinensis. FISH & SHELLFISH IMMUNOLOGY 2021; 118:303-312. [PMID: 34481088 DOI: 10.1016/j.fsi.2021.08.033] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/21/2021] [Accepted: 08/23/2021] [Indexed: 06/13/2023]
Abstract
Zinc (Zn) plays a role in the antioxidant capacity and immunity of aquatic animals. A twelve-week feeding experiment was performed to estimate the impact of dietary zinc on antioxidant enzyme-related gene expression, antioxidant enzyme activity and non-specific immune functions of soft-shelled turtles, Pelodiscus sinensis. Six fishmeal-based experimental diets with 32.45% protein were formulated, which contained 35.43, 46.23, 55.38, 66.74, 75.06 and 85.24 mg/kg Zn, respectively. Catalase (CAT), glutathione peroxidase (GSH-Px) and superoxide dismutase (SOD) levels improved with an elevation in dietary Zn from 35.43 to 55.38 mg/kg and then reduced when dietary Zn was further elevated. The expression levels of Nrf2 and antioxidant-related genes CuZnSOD, MnSOD, CAT, GPX1, GPX2, GPX3 and GPX4 escalated with elevating Zn concentration up to 55.38 mg/kg in diets and then reduced as dietary Zn elevated. The expression levels of Kelch-like ECH-associating protein 1 (keap1) showed a reverse trend with that of Nrf2. The contents of malondialdehyde (MDA) in the 55.38 and 66.74 mg/kg Zn diet-fed groups were the lowest. Alkaline phosphatase activity (AKP), superoxide anion (O2-), lysozyme activity and total antioxidant capacity (T-AOC) improved with an escalation in dietary Zn concentration up to 66.74 mg/kg. Optimal dietary Zn improved antioxidant capability, immunity, and antioxidant enzyme-related gene expression. The dietary Zn demand for soft-shelled turtles were 60.93 and 61.63 mg/kg, based on second regression analysis of SOD and T-AOC activity, respectively.
Collapse
Affiliation(s)
- Hongyan Kou
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, Guangdong Provincial Key Laboratory of Waterfowl Healthy Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, 510225, China
| | - Junru Hu
- Guangdong Key Laboratory of Animal Breeding and Nutrition, Key Laboratory of Animal Nutrition and Feed Science in South China of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Sarath Babu Vijayaraman
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, Guangdong Provincial Key Laboratory of Waterfowl Healthy Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, 510225, China
| | - An-Li Wang
- Key Laboratory of Ecology and Environment Science in Guangdong Higher Education, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, College of Life Science, South China Normal University, Guangzhou, 510631, China
| | - Yanyun Zheng
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, Guangdong Provincial Key Laboratory of Waterfowl Healthy Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, 510225, China
| | - Jiajia Chen
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, Guangdong Provincial Key Laboratory of Waterfowl Healthy Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, 510225, China
| | - Guoping He
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, Guangdong Provincial Key Laboratory of Waterfowl Healthy Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, 510225, China
| | - Yutao Miao
- Key Laboratory of Ecology and Environment Science in Guangdong Higher Education, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, College of Life Science, South China Normal University, Guangzhou, 510631, China; Institute of Modern Aquaculture Science and Engineering, South China Normal University, Guangzhou, 510631, China.
| | - Li Lin
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, Guangdong Provincial Key Laboratory of Waterfowl Healthy Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, 510225, China.
| |
Collapse
|
18
|
Jiang S, Wang D, Wang R, Zhao C, Ma Q, Wu H, Xie X. Reconstructing a recycling and nonauxotroph biosynthetic pathway in Escherichia coli toward highly efficient production of L-citrulline. Metab Eng 2021; 68:220-231. [PMID: 34688880 DOI: 10.1016/j.ymben.2021.10.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 09/28/2021] [Accepted: 10/19/2021] [Indexed: 10/20/2022]
Abstract
L-citrulline is a high-value amino acid with promising application in medicinal and food industries. Construction of highly efficient microbial cell factories for L-citrulline production is still an open issue due to complex metabolic flux distribution and L-arginine auxotrophy. In this study, we constructed a nonauxotrophic cell factory in Escherichia coli for high-titer L-citrulline production by coupling modular engineering strategies with dynamic pathway regulation. First, the biosynthetic pathway of L-citrulline was enhanced after blockage of the degradation pathway and introduction of heterologous biosynthetic genes from Corynebacterium glutamicum. Specifically, a superior recycling biosynthetic pathway was designed to replace the native linear pathway by deleting native acetylornithine deacetylase. Next, the carbamoyl phosphate and L-glutamate biosynthetic modules, the NADPH generation module, and the efflux module were modified to increase L-citrulline titer further. Finally, a toggle switch that responded to cell density was designed to dynamically control the expression of the argG gene and reconstruct a nonauxotrophic pathway. Without extra supplement of L-arginine during fermentation, the final CIT24 strain produced 82.1 g/L L-citrulline in a 5-L bioreactor with a yield of 0.34 g/g glucose and a productivity of 1.71 g/(L ⋅ h), which were the highest values reported by microbial fermentation. Our study not only demonstrated the successful design of cell factory for high-level L-citrulline production but also provided references of coupling the rational module engineering strategies and dynamic regulation strategies to produce high-value intermediate metabolites.
Collapse
Affiliation(s)
- Shuai Jiang
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin University of Science & Technology, Tianjin, 300457, PR China; College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, PR China
| | - Dehu Wang
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin University of Science & Technology, Tianjin, 300457, PR China; College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, PR China
| | - Ruirui Wang
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin University of Science & Technology, Tianjin, 300457, PR China; College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, PR China
| | - Chunguang Zhao
- Ningxia Eppen Biotech Co, Ltd, Ningxia, 750000, PR China
| | - Qian Ma
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin University of Science & Technology, Tianjin, 300457, PR China; College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, PR China
| | - Heyun Wu
- College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin, 300457, PR China.
| | - Xixian Xie
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin University of Science & Technology, Tianjin, 300457, PR China; College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, PR China.
| |
Collapse
|
19
|
Zhang C, Jiang D, Wang J, Qi Q. The effects of TPT and dietary quercetin on growth, hepatic oxidative damage and apoptosis in zebrafish. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 224:112697. [PMID: 34450426 DOI: 10.1016/j.ecoenv.2021.112697] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 08/20/2021] [Accepted: 08/22/2021] [Indexed: 06/13/2023]
Abstract
The objective of this study was to determine the effects of triphenyltin (TPT) and dietary quercetin on the growth, oxidative stress and apoptosis in zebrafish. A total of 240 fish were divided into 4 groups with three replicates as follows: fish were fed with the basal diet as the control group (D1), only 10 ng/L TPT (D2), 10 ng/L TPT + 100 mg/kg quercetin (D3), and only 100 mg/Kg quercetin as the D4 group. At the end of the study period (56 d), the results showed that the growth performance of the fish that were fed 100 mg/kg quercetin was significantly higher than that of fish that were exposed to 10 ng/L TPT. Quercetin ameliorated oxidative stress, which decreased malondialdehyde (MDA) and nitric oxide (NO) levels and improved antioxidant enzyme activities. The mRNA expressions of the key apoptotic gene and pro-inflammatory cytokines were significantly induced by TPT exposure. However, dietary quercetin prevented a marked increase in the Bax, caspase3 and caspase9 transcript abundances that were induced by TPT. In addition, the quercetin treatments decreased inflammation by regulating the NF-kB signalling pathway. In conclusion, our findings suggested that TPT induced oxidative stress and apoptosis in zebrafish and that the pretreatment with quercetin showed an ameliorative role. Dietary 100 mg/ kg quercetin helps to prevent oxidative damage, apoptosis and inflammation in TPT treated zebrafish.
Collapse
Affiliation(s)
- Chunnuan Zhang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471003, People's Republic of China.
| | - Dongxue Jiang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471003, People's Republic of China
| | - Junhui Wang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471003, People's Republic of China
| | - Qian Qi
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471003, People's Republic of China.
| |
Collapse
|
20
|
Morales-Lange B, Agboola JO, Hansen JØ, Lagos L, Øyås O, Mercado L, Mydland LT, Øverland M. The Spleen as a Target to Characterize Immunomodulatory Effects of Down-Stream Processed Cyberlindnera jadinii Yeasts in Atlantic Salmon Exposed to a Dietary Soybean Meal Challenge. Front Immunol 2021; 12:708747. [PMID: 34489959 PMCID: PMC8417602 DOI: 10.3389/fimmu.2021.708747] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 08/03/2021] [Indexed: 12/12/2022] Open
Abstract
Aquaculture feeds have changed dramatically from being largely based on fishmeal (FM) towards increased use of plant protein sources, which could impact the fish's immune response. In order to characterize immunomodulatory properties of novel functional ingredients, this study used four diets, one based on FM, a challenging diet with 40% soybean meal (SBM), and two diets containing 40% SBM with 5% of Cyberlindnera jadinii yeast exposed to different down-stream processing conditions: heat-inactivated (ICJ) or autolysation (ACJ). The immunomodulatory effects of the diets were analyzed in the spleen of Atlantic salmon after 37 days of feeding, using a transcriptomic evaluation by RNA sequencing (RNA-seq) and the detection of specific immunological markers at the protein level through indirect Enzyme-linked Immunosorbent Assay (indirect ELISA). The results showed that SBM (compared to FM) induced a down-regulation of pathways related to ion binding and transport, along with an increase at the protein level of pro-inflammatory cytokines such as tumor necrosis factor alpha (TNFα) and interferon gamma (IFNγ). On the other hand, while ICJ (compared to FM-group) maintain the inflammatory response associated with SBM, with higher levels of TNFα and IFNγ, and with an upregulation of creatine kinase activity and phosphagen metabolic process, the inclusion of ACJ was able to modulate the response of Atlantic salmon compared to fish fed the SBM-diet by the activation of biological pathways related to endocytosis, Pattern recognition receptor (PPRs)-signal transduction and transporter activity. In addition, ACJ was also able to control the pro-inflammatory profile of SBM, increasing Interleukin 10 (IL-10) levels and decreasing TNFα production, triggering an immune response similar to that of fish fed an FM-based diet. Finally, we suggest that the spleen is a good candidate to characterize the immunomodulatory effects of functional ingredients in Atlantic salmon. Moreover, the inclusion of ACJ in fish diets, with the ability to control inflammatory processes, could be considered in the formulation of sustainable salmon feed.
Collapse
Affiliation(s)
- Byron Morales-Lange
- Department of Animal and Aquaculture Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, Ås, Norway
| | - Jeleel Opeyemi Agboola
- Department of Animal and Aquaculture Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, Ås, Norway
| | - Jon Øvrum Hansen
- Department of Animal and Aquaculture Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, Ås, Norway
| | - Leidy Lagos
- Department of Animal and Aquaculture Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, Ås, Norway
| | - Ove Øyås
- Department of Animal and Aquaculture Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, Ås, Norway
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
| | - Luis Mercado
- Grupo de Marcadores Inmunológicos en Organismos Acuáticos, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Liv Torunn Mydland
- Department of Animal and Aquaculture Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, Ås, Norway
| | - Margareth Øverland
- Department of Animal and Aquaculture Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, Ås, Norway
| |
Collapse
|
21
|
Li X, Zheng S, Wu G. Nutrition and Functions of Amino Acids in Fish. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1285:133-168. [PMID: 33770406 DOI: 10.1007/978-3-030-54462-1_8] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Aquaculture is increasingly important for providing humans with high-quality animal protein to improve growth, development and health. Farm-raised fish and shellfish now exceed captured fisheries for foods. More than 70% of the production cost is dependent on the supply of compound feeds. A public debate or concern over aquaculture is its environmental sustainability as many fish species have high requirements for dietary protein and fishmeal. Protein or amino acids (AAs), which are the major component of tissue growth, are generally the most expensive nutrients in animal production and, therefore, are crucial for aquatic feed development. There is compelling evidence that an adequate supply of both traditionally classified nutritionally essential amino acids (EAAs) and non-essential amino acids (NEAAs) in diets improve the growth, development and production performance of aquatic animals (e.g., larval metamorphosis). The processes for the utilization of dietary AAs or protein utilization by animals include digestion, absorption and metabolism. The digestibility and bioavailability of AAs should be carefully evaluated because feed production processes and AA degradation in the gut affect the amounts of dietary AAs that enter the blood circulation. Absorbed AAs are utilized for the syntheses of protein, peptides, AAs, and other metabolites (including nucleotides); biological oxidation and ATP production; gluconeogenesis and lipogenesis; and the regulation of acid-base balance, anti-oxidative reactions, and immune responses. Fish producers usually focus on the content or digestibility of dietary crude protein without considering the supply of AAs in the diet. In experiments involving dietary supplementation with AAs, inappropriate AAs (e.g., glycine and glutamate) are often used as the isonitrogenous control. At present, limited knowledge is available about either the cell- and tissue-specific metabolism of AAs or the effects of feed processing methods on the digestion and utilization of AAs in different fish species. These issues should be addressed to develop environment-friendly aquafeeds and reduce feed costs to sustain the global aquaculture.
Collapse
Affiliation(s)
- Xinyu Li
- Department of Animal Science, Texas A&M University, College Station, TX, USA
| | - Shixuan Zheng
- Guangdong Yuehai Feeds Group Co., Ltd., Zhanjiang, Guangdong, China
| | - Guoyao Wu
- Department of Animal Science, Texas A&M University, College Station, TX, USA.
| |
Collapse
|
22
|
Zhao Y, Yan MY, Jiang Q, Yin L, Zhou XQ, Feng L, Liu Y, Jiang WD, Wu P, Zhao J, Jiang J. Isoleucine improved growth performance, and intestinal immunological and physical barrier function of hybrid catfish Pelteobagrus vachelli × Leiocassis longirostris. FISH & SHELLFISH IMMUNOLOGY 2021; 109:20-33. [PMID: 32991991 DOI: 10.1016/j.fsi.2020.09.035] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 09/15/2020] [Accepted: 09/26/2020] [Indexed: 06/11/2023]
Abstract
This study was performed to determine effects of dietary isoleucine (Ile) on growth performance, and intestinal immunological and physical barrier function of hybrid catfish Pelteobagrus vachelli × Leiocassis longirostris. Six hundred and thirty fish (33.11 ± 0.09 g) were randomly divided into seven experimental groups with three replicates each, and respectively fed seven diets with 5.0, 7.5, 10.0, 12.5, 15.0, 17.5, and 20.0 g Ile kg-1 diets for 8 weeks. The results showed improvement of growth performance, feed intake, feed utilization, relative gut length (RGL), and intestinal fold height and width by dietary Ile (P < 0.05). Meanwhile, dietary Ile (12.5 g kg-1 diet) improved the activities of lysozyme (LZM), acid phosphatase, alkaline phosphatase and the contents of complement 3 (C3), C4, and immunoglobulin M (IgM) (P < 0.05). The c-type-lectin, c-LZM, g-LZM, and hepcidin mRNA expressions in the intestine were up-regulated in fish fed diets with 10.0-20.0 g Ile kg-1 diet (P < 0.05). Dietary Ile (10.0-12.5 g Ile kg-1 diet) increased intestinal β-defensin mRNA expression partially in association with Sirt1/ERK/90RSK signaling pathway. Dietary Ile (12.5-15.0 g Ile kg-1 diet) decreased oxidative damage and improved antioxidant ability by increasing activities and expressions of superoxide dismutase, glutathione peroxidase, and glutathione reductase, glutathione-S-transferase (P < 0.05). The occludin, ZO-1, ZO-2, claudin3, and claudin 7 mRNA expressions in the intestine were up-regulated in fish fed diets with 10.0 and 12.5 g Ile kg-1 diet (P < 0.05), whereas the myosin light chain kinase gene expression was decreased in fish fed diets with 7.5-17.5 g Ile kg-1 diet. Dietary Ile (10-12.5 g Ile kg-1 diet) decreased apoptotic responses by reducing the expression of caspase3 and caspase 9 via the AKT/TOR signaling pathway. Based on the quadratic regression analysis of PWG, the dietary Ile requirement of hybrid catfish was estimated to be 12.43 g Ile kg-1 diet, corresponding to 32.05 g Ile kg-1 dietary protein. Collectively, dietary Ile improved growth performance and immunological and physical barrier function of intestine in hybrid catfish.
Collapse
Affiliation(s)
- Ye Zhao
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Ming-Yao Yan
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Qin Jiang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Long Yin
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xiao-Qiu Zhou
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Ya'an, 625014, China
| | - Lin Feng
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Ya'an, 625014, China
| | - Yang Liu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Ya'an, 625014, China
| | - Wei-Dan Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Ya'an, 625014, China
| | - Pei Wu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Ya'an, 625014, China
| | - Juan Zhao
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Ya'an, 625014, China.
| | - Jun Jiang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Ya'an, 625014, China.
| |
Collapse
|
23
|
Chen X, Wang Q, Guo Z, Zhao Y, Luo S, Yu T, Zhang D, Wang G. Identification of the Nrf2 in the fathead minnow muscle cell line: role for a regulation in response to H 2O 2 induced the oxidative stress in fish cell. FISH PHYSIOLOGY AND BIOCHEMISTRY 2020; 46:1699-1711. [PMID: 32621163 DOI: 10.1007/s10695-020-00822-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 05/15/2020] [Indexed: 06/11/2023]
Abstract
The Nrf2 (nuclear factor erythroid 2-related factor 2) plays a central role in cell protection against a wide variety of environmental stressors through the Nrf2-Keap1 (Kelch-like ECH-associated protein 1) pathway, but its involvement in modulation of antioxidant system of fish cell is still largely unexplored. The present study focused on the molecular cloning and silencing of the Nrf2 in the fathead minnow muscle cell line (FHM) in response to the oxidative stress induced by H2O2. A full-length cDNA of coding Nrf2 was cloned from FHM cells by RT-PCR and RACE approaches. The obtained cDNA covered 2578 bp with an open reading frame (1770 bp) of encoding 589 amino acids. Sequence alignment and phylogenetic analysis revealed a high degree of conservation (51-86%) among 16 fishes. Based on the cloned Nrf2 sequence, the siRNA-242 of targeting Nrf2 with the best knocking down efficiency was designed and detected. Then, the mRNA levels of Keap1, Nrf2, Maf (musculoaponeurotic fibrosarcoma oncogene), and HO-1 (haemoxygenase-1); the activities of T-SOD (total superoxide dismutase), CAT (catalase), and GSH-PX (glutathione peroxidase); the levels of GSH (glutathione) and MDA (malonaldehyde); and the cell cycle and apoptosis were analyzed to investigate the molecular responses after H2O2 exposure. These results showed a coordinated transcriptional regulation of Keap1, Maf, and HO-1 and antioxidants (T-SOD, GSH, CAT, and GSH-PX) and MDA levels after H2O2 exposure, leading to oxidative damage and apoptosis. These findings provided an insight to understand the mechanisms of Nrf2 against oxidative stress in fish.
Collapse
Affiliation(s)
- Xiumei Chen
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, Jilin, China
- Jilin Provincial Key Laboratory of Animal Nutrition and Feed Science, Jilin Agricultural University, Changchun, 130118, Jilin, China
- Ministry of Education Laboratory of Animal Production and Quality Security, Jilin Agricultural University, Changchun, 130118, Jilin, China
- Joint Laboratory of Modern Agricultural Technology International Cooperation, Ministry of Education, Jilin Agricultural University, Changchun, 130118, Jilin, China
| | - Qiuju Wang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, Jilin, China
- Jilin Provincial Key Laboratory of Animal Nutrition and Feed Science, Jilin Agricultural University, Changchun, 130118, Jilin, China
- Ministry of Education Laboratory of Animal Production and Quality Security, Jilin Agricultural University, Changchun, 130118, Jilin, China
- Joint Laboratory of Modern Agricultural Technology International Cooperation, Ministry of Education, Jilin Agricultural University, Changchun, 130118, Jilin, China
| | - Zhixin Guo
- College of life science, Tonghua Normal University, Tonghua, 134001, Jilin, China
| | - Yunlong Zhao
- College of life science, Tonghua Normal University, Tonghua, 134001, Jilin, China
| | - Sha Luo
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, Jilin, China
| | - Ting Yu
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, Jilin, China
| | - Dongming Zhang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, Jilin, China.
- Jilin Provincial Key Laboratory of Animal Nutrition and Feed Science, Jilin Agricultural University, Changchun, 130118, Jilin, China.
- Ministry of Education Laboratory of Animal Production and Quality Security, Jilin Agricultural University, Changchun, 130118, Jilin, China.
- Joint Laboratory of Modern Agricultural Technology International Cooperation, Ministry of Education, Jilin Agricultural University, Changchun, 130118, Jilin, China.
- College of life science, Tonghua Normal University, Tonghua, 134001, Jilin, China.
| | - Guiqin Wang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, Jilin, China
- Jilin Provincial Key Laboratory of Animal Nutrition and Feed Science, Jilin Agricultural University, Changchun, 130118, Jilin, China
- Ministry of Education Laboratory of Animal Production and Quality Security, Jilin Agricultural University, Changchun, 130118, Jilin, China
- Joint Laboratory of Modern Agricultural Technology International Cooperation, Ministry of Education, Jilin Agricultural University, Changchun, 130118, Jilin, China
| |
Collapse
|
24
|
Li H, Ma Y, Liu Y, Wu M, Long J, Jing X, Zhou S, Yuan P, Jiang J. Integrated biomarker parameters response to the toxic effects of high stocking density, CuSO 4, and trichlorfon on fish and protective role mediated by Angelica sinensis extract. FISH PHYSIOLOGY AND BIOCHEMISTRY 2020; 46:1679-1698. [PMID: 32557080 DOI: 10.1007/s10695-020-00821-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 05/14/2020] [Indexed: 06/11/2023]
Abstract
The present study explored the protective role of dietary the extract of Angelica sinensis (EAs) on high density, CuSO4, or trichlorfon-treated Crucian carp (Carassius auratus auratus). Firstly, the study showed that the optimum density for growth and growth inhibition was 0.49 and 0.98 fish L-1 water, respectively. Dietary EAs relieved the high density-induced growth inhibition in Crucian carp. The appropriate concentration of EAs for recovery of growth was estimated to be 4.30 g kg-1 diet in high-density fish. Moreover, high density decreased both digestive and absorptive enzyme activities and increased lipid oxidation in digestive organs, suggesting the ability of high density to induce oxidative damage. However, dietary EAs inhibited the oxidative damage through elevating ROS scavenging ability and enzymatic antioxidant activity in digestive organs. Secondly, our data demonstrated that the appropriate concentration of CuSO4 to induce the decrease in feed intake (FI) was 0.8 mg Cu L-1 water. Dietary EAs returned to FI of Crucian carp treated with CuSO4. The appropriate concentration of EAs for recovery of FI was estimated to be 4.25 g kg-1 diet. Moreover, dietary EAs suppressed the CuSO4-induced decrease in digestion and absorption capacity and increase in protein metabolism in digestive organs of Crucian carp. Finally, the present results suggested that dietary EAs inhibited the trichlorfon-induced rollover (loss of equilibrium) in Crucian carp. The appropriate concentration of EAs for inhibition of rollover was estimated to be 4.18 g kg-1 diet. Moreover, trichlorfon stimulated not only the decrease in energy metabolism but also lipid and protein oxidation, suggesting that trichlorfon caused loss of function and oxidative damage in muscles of fish. However, dietary EAs improved muscular function and inhibited oxidative damage via quenching ROS and elevating non-enzymatic and enzymatic antioxidant activity in muscles of trichlorfon-induced fish. So, EAs could be used as an inhibitor of high density, CuSO4, and trichlorfon stress in fish.
Collapse
Affiliation(s)
- HuaTao Li
- Key Laboratory of Sichuan Province for Conservation and Utilization of Fishes Resources in the Upper Reaches of the Yangtze River, College of Life Sciences, Neijiang Normal University, Neijiang, 641100, Sichuan, China.
| | - YuTing Ma
- Key Laboratory of Sichuan Province for Conservation and Utilization of Fishes Resources in the Upper Reaches of the Yangtze River, College of Life Sciences, Neijiang Normal University, Neijiang, 641100, Sichuan, China
| | - Ying Liu
- Key Laboratory of Sichuan Province for Conservation and Utilization of Fishes Resources in the Upper Reaches of the Yangtze River, College of Life Sciences, Neijiang Normal University, Neijiang, 641100, Sichuan, China
| | - Min Wu
- Archives, Neijiang Normal University, Neijiang, 641100, Sichuan, China
| | - Jiao Long
- Key Laboratory of Sichuan Province for Conservation and Utilization of Fishes Resources in the Upper Reaches of the Yangtze River, College of Life Sciences, Neijiang Normal University, Neijiang, 641100, Sichuan, China
| | - XiaoQin Jing
- Key Laboratory of Sichuan Province for Conservation and Utilization of Fishes Resources in the Upper Reaches of the Yangtze River, College of Life Sciences, Neijiang Normal University, Neijiang, 641100, Sichuan, China
| | - SiShun Zhou
- Key Laboratory of Sichuan Province for Conservation and Utilization of Fishes Resources in the Upper Reaches of the Yangtze River, College of Life Sciences, Neijiang Normal University, Neijiang, 641100, Sichuan, China
| | - Ping Yuan
- Key Laboratory of Sichuan Province for Conservation and Utilization of Fishes Resources in the Upper Reaches of the Yangtze River, College of Life Sciences, Neijiang Normal University, Neijiang, 641100, Sichuan, China
| | - Jun Jiang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| |
Collapse
|
25
|
Ramos-Pinto L, Azeredo R, Silva C, Conceição LEC, Dias J, Montero D, Torrecillas S, Silva TS, Costas B. Short-Term Supplementation of Dietary Arginine and Citrulline Modulates Gilthead Seabream ( Sparus aurata) Immune Status. Front Immunol 2020; 11:1544. [PMID: 32849522 PMCID: PMC7419597 DOI: 10.3389/fimmu.2020.01544] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 06/11/2020] [Indexed: 11/23/2022] Open
Abstract
Several amino acids (AA) are known to regulate key metabolic pathways that are crucial for immune responses. In particular, arginine (ARG) appears to have important roles regarding immune modulation since it is required for macrophage responses and lymphocyte development. Moreover, citrulline (CIT) is a precursor of arginine, and it was reported as an alternative to ARG for improving macrophage function in mammals. The present study aimed to explore the effects of dietary ARG and CIT supplementation on the gilthead seabream (Sparus aurata) immune status. Triplicate groups of fish (23.1 ± 0.4 g) were either fed a control diet (CTRL) with a balanced AA profile, or the CTRL diet supplemented with graded levels of ARG or CIT (i.e., 0.5 and 1% of feed; ARG1, CIT1, ARG2, and CIT2, respectively). After 2 and 4 weeks of feeding, fish were euthanized and blood was collected for blood smears, plasma for humoral immune parameters and shotgun proteomics, and head-kidney tissue for the measurement of health-related transcripts. A total of 94 proteins were identified in the plasma of all treatments. Among them, components of the complement system, apolipoproteins, as well as some glycoproteins were found to be highly abundant. After performing a PLS of the expressed proteins, differences between the two sampling points were observed. In this regard, component 1 (61%) was correlated with the effect of sampling time, whereas component 2 (18%) seemed associated to individual variability within diet. Gilthead seabream fed ARG2 and CIT2 at 4 weeks were more distant than fish fed all dietary treatments at 2 weeks and fish fed the CTRL diet at 4 weeks. Therefore, data suggest that the modulatory effects of AA supplementation at the proteome level were more effective after 4 weeks of feeding and at the higher inclusion level (i.e., 1% of feed). The bactericidal activity increased in fish fed the highest supplementation level of both AAs after 4 weeks. Peripheral monocyte numbers correlated positively with nitric oxide, which showed an increasing trend in a dose-dependent manner. The colony-stimulating factor 1 receptor tended to be up-regulated at the final sampling point regardless of dietary treatments. Data from this study point to an immunostimulatory effect of dietary ARG or CIT supplementation after 4 weeks of feeding in the gilthead seabream, particularly when supplemented at a 1% inclusion level.
Collapse
Affiliation(s)
- Lourenço Ramos-Pinto
- Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR), Universidade Do Porto, Terminal de Cruzeiros Do Porto de Leixões, Matosinhos, Portugal
- Instituto de Ciências Biomédicas Abel Salazar (ICBAS-UP), Universidade Do Porto, Porto, Portugal
- SPAROS Lda., Área Empresarial de Marim, Olhão, Portugal
| | - Rita Azeredo
- Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR), Universidade Do Porto, Terminal de Cruzeiros Do Porto de Leixões, Matosinhos, Portugal
- Instituto de Ciências Biomédicas Abel Salazar (ICBAS-UP), Universidade Do Porto, Porto, Portugal
| | - Carlota Silva
- Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR), Universidade Do Porto, Terminal de Cruzeiros Do Porto de Leixões, Matosinhos, Portugal
| | | | - Jorge Dias
- SPAROS Lda., Área Empresarial de Marim, Olhão, Portugal
| | - Daniel Montero
- Grupo de Investigación en Acuicultura (GIA), IU-ECOAQUA, Universidad de Las Palmas de Gran Canaria, Las Palmas, Spain
| | - Silvia Torrecillas
- Grupo de Investigación en Acuicultura (GIA), IU-ECOAQUA, Universidad de Las Palmas de Gran Canaria, Las Palmas, Spain
| | - Tomé S. Silva
- SPAROS Lda., Área Empresarial de Marim, Olhão, Portugal
| | - Benjamin Costas
- Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR), Universidade Do Porto, Terminal de Cruzeiros Do Porto de Leixões, Matosinhos, Portugal
- Instituto de Ciências Biomédicas Abel Salazar (ICBAS-UP), Universidade Do Porto, Porto, Portugal
| |
Collapse
|
26
|
Yang C, Lim W, Song G. Mediation of oxidative stress toxicity induced by pyrethroid pesticides in fish. Comp Biochem Physiol C Toxicol Pharmacol 2020; 234:108758. [PMID: 32289527 DOI: 10.1016/j.cbpc.2020.108758] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 03/23/2020] [Accepted: 03/31/2020] [Indexed: 12/21/2022]
Abstract
Organophosphate and organochlorine pesticides are banned in most countries because they cause high toxicity and bioaccumulation in non-target organisms. Pyrethroid pesticides have been applied to agriculture and aquaculture since the 1970s to replace traditional pesticides. However, pyrethroids are approximately 1000 times more toxic to fish than to mammals and birds. Fish-specific organs such as the gills and their late metabolic action against this type of pesticide make fish highly susceptible to the toxicity of pyrethroid pesticides. Oxidative stress plays an important role in the neurological, reproductive, and developmental toxicity caused by pyrethroids. Deltamethrin, cypermethrin, and lambda-cyhalothrin are representative pyrethroid pesticides that induce oxidative stress in tissues such as the gills, liver, and muscles of fish and cause histopathological changes. Although they are observed in low concentrations in aquatic environments such as rivers, lakes, and surface water they induce DNA damage and apoptosis in fish. Pyrethroid pesticides cause ROS-mediated oxidative stress in fish species including carp, tilapia, and trout. They also cause lipid peroxidation and alter the state of DNA, proteins, and lipids in the cells of fish. Moreover, changes in antioxidant enzyme activity following pyrethroid pesticide exposure make fish more susceptible to oxidative stress caused by environmental pollutants. In this review, we examine the occurrence of pyrethroid pesticides in the aquatic environment and oxidative stress-induced toxicity in fish exposed to pyrethroids.
Collapse
Affiliation(s)
- Changwon Yang
- Institute of Animal Molecular Biotechnology, Korea University, Seoul 02841, Republic of Korea; Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Whasun Lim
- Department of Food and Nutrition, Kookmin University, Seoul 02707, Republic of Korea.
| | - Gwonhwa Song
- Institute of Animal Molecular Biotechnology, Korea University, Seoul 02841, Republic of Korea; Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea.
| |
Collapse
|
27
|
Li X, Zheng S, Wu G. Nutrition and metabolism of glutamate and glutamine in fish. Amino Acids 2020; 52:671-691. [PMID: 32405703 DOI: 10.1007/s00726-020-02851-2] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 04/29/2020] [Indexed: 12/14/2022]
Abstract
Glutamate (Glu) and glutamine (Gln) comprise a large proportion of total amino acids (AAs) in fish in the free and protein-bound forms. Both Glu and Gln are synthesized de novo from other α-amino acids and ammonia. Although these two AAs had long been considered as nutritionally non-essential AAs for an aquatic animal, they must be included adequately in its diet to support optimal health (particularly intestinal health) and maximal growth. In research on fish nutrition, Glu has been used frequently as an isonitrogenous control on the basis of the assumption that this AA has no nutritional or physiological function. In addition, purified diets used for feeding fish generally lack glutamine. As functional AAs, Glu and Gln are major metabolic fuels for tissues of fish (including the intestine, liver, kidneys, and skeletal muscle), and play important roles not only in protein synthesis but also in glutathione synthesis and anti-oxidative reactions. The universality of Glu and Gln as abundant intracellular AAs depends on their enormous versatility in metabolism. Dietary supplementation with Glu and Gln to farmed fish can improve their growth performance, intestinal development, innate and adaptive immune responses, skeletal muscle development and fillet quality, ammonia removal, and the endocrine status. Glu (mainly as monosodium glutamate), glutamine, or AminoGut (a mixture of Glu and Gln) is a promising feed additive to reduce the use of fishmeal, while gaining the profitability of global aquaculture production. Thus, the concept of dietary requirements of fish for Glu and Gln is a paradigm shift in the nutrition of aquatic animals (including fish).
Collapse
Affiliation(s)
- Xinyu Li
- Department of Animal Science, Texas A&M University, College Station, TX, 77843, USA
| | - Shixuan Zheng
- Guangdong Yuehai Feeds Group Co., Ltd, Zhanjiang, 524017, Guangdong, China
| | - Guoyao Wu
- Department of Animal Science, Texas A&M University, College Station, TX, 77843, USA.
| |
Collapse
|
28
|
Srikanth K, Park JE, Ji SY, Kim KH, Lee YK, Kumar H, Kim M, Baek YC, Kim H, Jang GW, Choi BH, Lee SD. Genome-Wide Transcriptome and Metabolome Analyses Provide Novel Insights and Suggest a Sex-Specific Response to Heat Stress in Pigs. Genes (Basel) 2020; 11:genes11050540. [PMID: 32403423 PMCID: PMC7291089 DOI: 10.3390/genes11050540] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 05/06/2020] [Accepted: 05/06/2020] [Indexed: 12/16/2022] Open
Abstract
Heat stress (HS) negatively impacts pig production and swine health. Therefore, to understand the genetic and metabolic responses of pigs to HS, we used RNA-Seq and high resolution magic angle spinning (HR-MAS) NMR analyses to compare the transcriptomes and metabolomes of Duroc pigs (n = 6, 3 barrows and 3 gilts) exposed to heat stress (33 °C and 60% RH) with a control group (25 °C and 60% RH). HS resulted in the differential expression of 552 (236 up, 316 down) and 879 (540 up, 339 down) genes and significant enrichment of 30 and 31 plasma metabolites in female and male pigs, respectively. Apoptosis, response to heat, Toll-like receptor signaling and oxidative stress were enriched among the up-regulated genes, while negative regulation of the immune response, ATP synthesis and the ribosomal pathway were enriched among down-regulated genes. Twelve and ten metabolic pathways were found to be enriched (among them, four metabolic pathways, including arginine and proline metabolism, and three metabolic pathways, including pantothenate and CoA biosynthesis), overlapping between the transcriptome and metabolome analyses in the female and male group respectively. The limited overlap between pathways enriched with differentially expressed genes and enriched plasma metabolites between the sexes suggests a sex-specific response to HS in pigs.
Collapse
Affiliation(s)
- Krishnamoorthy Srikanth
- Amimal Genomics and Bioinformatics Division, National Institute of Animal Science, RDA, Wanju 55365, Korea; (K.S.); (J.-E.P.); (H.K.); (H.K.); (G.-W.J.); (B.-H.C.)
| | - Jong-Eun Park
- Amimal Genomics and Bioinformatics Division, National Institute of Animal Science, RDA, Wanju 55365, Korea; (K.S.); (J.-E.P.); (H.K.); (H.K.); (G.-W.J.); (B.-H.C.)
| | - Sang Yun Ji
- Animal Nutrition and Physiology Team, National Institute of Animal Science, RDA, Wanju 55365, Korea; (S.Y.J.); (K.H.K.); (Y.K.L.); (M.K.); (Y.C.B.)
| | - Ki Hyun Kim
- Animal Nutrition and Physiology Team, National Institute of Animal Science, RDA, Wanju 55365, Korea; (S.Y.J.); (K.H.K.); (Y.K.L.); (M.K.); (Y.C.B.)
| | - Yoo Kyung Lee
- Animal Nutrition and Physiology Team, National Institute of Animal Science, RDA, Wanju 55365, Korea; (S.Y.J.); (K.H.K.); (Y.K.L.); (M.K.); (Y.C.B.)
| | - Himansu Kumar
- Amimal Genomics and Bioinformatics Division, National Institute of Animal Science, RDA, Wanju 55365, Korea; (K.S.); (J.-E.P.); (H.K.); (H.K.); (G.-W.J.); (B.-H.C.)
| | - Minji Kim
- Animal Nutrition and Physiology Team, National Institute of Animal Science, RDA, Wanju 55365, Korea; (S.Y.J.); (K.H.K.); (Y.K.L.); (M.K.); (Y.C.B.)
| | - Youl Chang Baek
- Animal Nutrition and Physiology Team, National Institute of Animal Science, RDA, Wanju 55365, Korea; (S.Y.J.); (K.H.K.); (Y.K.L.); (M.K.); (Y.C.B.)
| | - Hana Kim
- Amimal Genomics and Bioinformatics Division, National Institute of Animal Science, RDA, Wanju 55365, Korea; (K.S.); (J.-E.P.); (H.K.); (H.K.); (G.-W.J.); (B.-H.C.)
| | - Gul-Won Jang
- Amimal Genomics and Bioinformatics Division, National Institute of Animal Science, RDA, Wanju 55365, Korea; (K.S.); (J.-E.P.); (H.K.); (H.K.); (G.-W.J.); (B.-H.C.)
| | - Bong-Hwan Choi
- Amimal Genomics and Bioinformatics Division, National Institute of Animal Science, RDA, Wanju 55365, Korea; (K.S.); (J.-E.P.); (H.K.); (H.K.); (G.-W.J.); (B.-H.C.)
| | - Sung Dae Lee
- Animal Nutrition and Physiology Team, National Institute of Animal Science, RDA, Wanju 55365, Korea; (S.Y.J.); (K.H.K.); (Y.K.L.); (M.K.); (Y.C.B.)
- Correspondence: ; Tel.: +82-63-238-7454; Fax: +82-63-238-7497
| |
Collapse
|
29
|
Souza FD, Asampille G, Uppangala S, Kalthur G, Atreya HS, Adiga SK. Sperm-mediated DNA lesions alter metabolite levels in spent embryo culture medium. Reprod Fertil Dev 2019; 31:443-450. [PMID: 30223941 DOI: 10.1071/rd18136] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 08/10/2018] [Indexed: 11/23/2022] Open
Abstract
Paternal genetic alterations may affect embryo viability and reproductive outcomes. Currently it is unknown whether embryo metabolism is affected by sperm-mediated abnormalities. Hence, using a mouse model, this study investigated the response to paternally transmitted DNA lesions on genetic integrity and metabolism in preimplantation embryos. Spent embryo culture media were analysed for metabolites by nuclear magnetic resonance spectroscopy and embryonic genetic integrity was determined by terminal deoxynucleotidyl transferase dUTP nick-end labelling (TUNEL) assay on embryonic Day 4.5 (E4.5). Metabolic signatures were compared between normally derived embryos (control) and embryos derived from spermatozoa carrying induced DNA lesions (SDL). SDL embryos showed a significant reduction in blastocyst formation on E3.5 and E4.5 (P<0.0001) and had an approximately 2-fold increase in TUNEL-positive cells (P<0.01). A cohort of SDL embryos showing delayed development on E4.5 had increased uptake of pyruvate (P<0.05) and released significantly less alanine (P<0.05) to the medium compared with the corresponding control embryos. On the other hand, normally developed SDL embryos had a reduced (P<0.001) pyruvate-to-alanine ratio compared with normally developed embryos from the control group. Hence, the difference in the metabolic behaviour of SDL embryos may be attributed to paternally transmitted DNA lesions in SDL embryos.
Collapse
Affiliation(s)
- Fiona D Souza
- Department of Clinical Embryology, Kasturba Medical College, Manipal Academy of Higher Education, Manipal-576104, India
| | | | - Shubhashree Uppangala
- Department of Clinical Embryology, Kasturba Medical College, Manipal Academy of Higher Education, Manipal-576104, India
| | - Guruprasad Kalthur
- Department of Clinical Embryology, Kasturba Medical College, Manipal Academy of Higher Education, Manipal-576104, India
| | - Hanudatta S Atreya
- NMR Research Centre, Indian Institute of Science, Bangalore-560012, India
| | - Satish Kumar Adiga
- Department of Clinical Embryology, Kasturba Medical College, Manipal Academy of Higher Education, Manipal-576104, India
| |
Collapse
|
30
|
Duan XD, Jiang WD, Wu P, Liu Y, Jiang J, Tan BP, Yang QH, Kuang SY, Tang L, Zhou XQ, Feng L. Soybean β-conglycinin caused intestinal inflammation and oxidative damage in association with NF-κB, TOR and Nrf2 in juvenile grass carp (Ctenopharyngodon idella): varying among different intestinal segments. FISH & SHELLFISH IMMUNOLOGY 2019; 95:105-116. [PMID: 31610288 DOI: 10.1016/j.fsi.2019.10.021] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Revised: 10/05/2019] [Accepted: 10/09/2019] [Indexed: 06/10/2023]
Abstract
The current study aimed to investigate the effects and mechanisms of dietary soybean β-conglycinin in immune function and oxidative damage among different intestinal segments of juvenile grass carp (Ctenopharyngodon idella). 240 fish (13.77 ± 0.10 g) were fed control or 8% β-conglycinin diet for 7 weeks. Dietary β-conglycinin caused inconsistent suppression effects on the innate immune by decreasing complement component, lysozyme, antimicrobial peptide and acid phosphatase among different intestinal segments. Meanwhile, dietary β-conglycinin caused inflammation in the mid and distal intestine by raising pro-inflammatory cytokines and declining anti-inflammatory cytokines mRNA levels, while more serious in the distal intestine than in the mid intestine. Furthermore, dietary β-conglycinin regulating inflammatory cytokines might be associated with transcription factors nuclear factor-κB P65 (NF-κB P65) nucleus translocation and target of rapamycin (TOR) phosphorylation in the distal intestine but only related to TOR phosphorylation in the mid intestine. Interestingly, in the proximal intestine, dietary β-conglycinin decreased both pro-inflammatory and anti-inflammatory cytokines mRNA level, and did not affect NF-κB P65 nucleus translocation and TOR phosphorylation. For oxidative damage, dietary β-conglycinin exposure elevated both malondialdehyde (MDA) and protein carbonyl (PC) contents in the distal intestine, which might be attributed to the suppression of the Mn-SOD, catalase (CAT) and glutathione peroxidase (GPx) activities. In the mid intestine, dietary β-conglycinin only increased PC content in association with the low activities of CAT, GPx and glutathione peroxidase (GR). Unexpectedly, in the proximal intestine, dietary β-conglycinin did not significantly change MDA and PC contents while decreased antioxidant enzyme activities. Furtherly, dietary β-conglycinin affect the antioxidant enzyme activity might be regulated by the varying pattern of nuclear factor-erythroid 2-related factor 2 (Nrf2) nucleus translocation among these three intestinal segments. In summary, dietary β-conglycinin caused intestinal inflammation and oxidative damage in association with NF-κB, TOR and Nrf2 signaling molecules, which were varying among the three intestinal segments of grass carp.
Collapse
Affiliation(s)
- Xu-Dong Duan
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Wei-Dan Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China; Key Laboratory of Animal Disease-resistant Nutrition, Ministry of Education, China
| | - Pei Wu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China; Key Laboratory of Animal Disease-resistant Nutrition, Ministry of Education, China
| | - Yang Liu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China; Key Laboratory of Animal Disease-resistant Nutrition and Feed, Ministry of Agriculture and Rural Affairs, China
| | - Jun Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Bei-Ping Tan
- Laboratory of Aquatic Animal Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Qi-Hui Yang
- Laboratory of Aquatic Animal Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Sheng-Yao Kuang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu, 610066, China
| | - Ling Tang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu, 610066, China
| | - Xiao-Qiu Zhou
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China; Key Laboratory of Animal Disease-resistant Nutrition, Sichuan Province, China.
| | - Lin Feng
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China; Key Laboratory of Animal Disease-resistant Nutrition, Sichuan Province, China.
| |
Collapse
|
31
|
Jiang WD, Zhou XQ, Zhang L, Liu Y, Wu P, Jiang J, Kuang SY, Tang L, Tang WN, Zhang YA, Shi HQ, Feng L. Vitamin A deficiency impairs intestinal physical barrier function of fish. FISH & SHELLFISH IMMUNOLOGY 2019; 87:546-558. [PMID: 30716522 DOI: 10.1016/j.fsi.2019.01.056] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2018] [Revised: 01/28/2019] [Accepted: 01/31/2019] [Indexed: 06/09/2023]
Abstract
The present study was the first to investigate the effects of dietary vitamin A (VA) on the intestinal physical barrier function associated with oxidation, antioxidant system, apoptosis and cell-cellular tight junction (TJ) in the proximal (PI), mid (MI) and distal (DI) intestines of young grass carp (Ctenopharyngodon idella). Fish were fed graded levels of dietary VA for 10 weeks, and then a challenge test using an injection of Aeromonas hydrophila was conducted for 14 days. Results indicated that dietary VA deficiency caused oxidative damage to fish intestine partly by the reduced non-enzymatic antioxidant components glutathione (GSH) and VA contents as well as reduced antioxidant enzyme activities [not including manganese superoxide dismutase (MnSOD)]. Further results observed that the decreased antioxidant enzyme activities by VA deficiency were partly related to the down-regulation of their corresponding mRNA levels which were regulated by the down-regulation of NF-E2-related factor 2 (Nrf2) mRNA levels and up-regulation of kelch-like-ECH-associated protein (Keap1a) (rather than Keap1b) mRNA levels in three intestinal segments of fish. Meanwhile, VA deficiency up-regulated the mRNA levels of the apoptosis signalling [caspase-3, caspase-8, caspase-9 (rather than caspase-7)] associated with the inhibition of the target of rapamycin (TOR) signalling pathway in three intestinal segments of fish. Additionally, VA deficiency decreased the mRNA levels of TJ complexes [claudin-b, claudin-c, claudin-3, claudin-12, claudin-15a, occludin and zonula occludens-1 (ZO-1) in the PI, MI and DI, as well as claudin-7 and claudin-11a in the MI and DI] linked to the up-regulation of myosin light chain kinase (MLCK) signalling. These results suggested that VA deficiency impaired structural integrity in three intestinal segments of fish. Meanwhile, excessive VA also showed similar negative effects on these indexes. Taken together, the current study firstly demonstrated that VA deficiency impaired physical barrier functions associated with impaired antioxidant capacity, aggravated cell apoptosis and disrupted TJ complexes in the PI, MI and DI, but different segments performed different actions in fish. Based on protecting fish against protein oxidation, the optimal VA levels for grass carp were estimated to be 2622 IU/kg diet.
Collapse
Affiliation(s)
- Wei-Dan Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xiao-Qiu Zhou
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu, 611130, China
| | - Li Zhang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yang Liu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu, 611130, China
| | - Pei Wu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu, 611130, China
| | - Jun Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Sheng-Yao Kuang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu, 610066, China
| | - Ling Tang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu, 610066, China
| | - Wu-Neng Tang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu, 610066, China
| | - Yong-An Zhang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - He-Qun Shi
- Guangzhou Cohoo Bio-tech Research & Development Centre, Guangzhou, 510663, Guangdong, China
| | - Lin Feng
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu, 611130, China.
| |
Collapse
|
32
|
Li H, Tang S, Du W, Jiang J, Peng P, Yuan P, Liao Y, Long J, Zhou S. The effects of ethoxyquin and Angelica sinensis extracts on lipid oxidation in fish feeds and growth, digestive and absorptive capacities and antioxidant status in juvenile red carp (Cyprinus carpio var. xingguonensis): a comparative study. FISH PHYSIOLOGY AND BIOCHEMISTRY 2019; 45:43-61. [PMID: 29980882 DOI: 10.1007/s10695-018-0533-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 06/25/2018] [Indexed: 06/08/2023]
Abstract
Firstly, a linoleic and linolenic acid emulsion and fish feeds were incubated with graded levels of ethoxyquin (EQ) and petroleum ether extract, ethyl acetate extract (EAE), ethanol extract and aqueous extract of Angelica sinensis. The results showed that EQ and extracts of Angelica sinensis (EAs) inhibited lipid oxidation in material above. Of all of the examined EAs, EAE showed the strongest protective effects against the lipid oxidation. Moreover, EAE at high concentrations showed a stronger inhibitory effect on lipid oxidation than that of EQ. Next, 7 experimental diets that respectively supplemented 0.0, 0.2, 0.8 and 3.2 g kg-1 of EQ and EAE were fed to 280 juvenile red carp (Cyprinus carpio var. xingguonensis) with seven treatment groups for 30 days. The results indicated that dietary EAE improved growth performance in carp. Moreover, dietary EAE increased the activities of trypsin, lipase, alpha-amylase, alkaline phosphatase, glutamate-oxaloacetate transaminase and glutamate-pyruvate transaminase (GPT) and decreased plasma ammonia content in carp. Meanwhile, dietary EAE reduced the levels of malondialdehyde and raised the activities of anti-superoxide anion, anti-hydroxyl radical, superoxide dismutase, catalase, glutathione peroxidase and glutathione reductase and the content of reduced glutathione in the hepatopancreas and intestine of carp. However, with the exception of GPT, dietary EQ got the opposite results to dietary EAE in carp. These results revealed that dietary EAE improved the digestive, absorptive and antioxidant capacities in fish. However, dietary EQ inhibited the digestive, absorptive and antioxidant capacities in fish. So, EAE could be used as a natural antioxidant for replacing EQ in fish feeds.
Collapse
Affiliation(s)
- HuaTao Li
- Key Laboratory of Sichuan Province for Conservation and Utilization of Fishes Resources in the Upper Reaches of the Yangtze River, Neijiang Normal University, Neijiang, 641000, Sichuan, China.
- College of Life Science, Neijiang Normal University, Neijiang, 641000, Sichuan, China.
| | - SiYi Tang
- College of Life Science, Neijiang Normal University, Neijiang, 641000, Sichuan, China
| | - WenHao Du
- College of Life Science, Neijiang Normal University, Neijiang, 641000, Sichuan, China
| | - Jun Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - PeiYuan Peng
- College of Life Science, Neijiang Normal University, Neijiang, 641000, Sichuan, China
| | - Ping Yuan
- College of Life Science, Neijiang Normal University, Neijiang, 641000, Sichuan, China
| | - YiHong Liao
- College of Life Science, Neijiang Normal University, Neijiang, 641000, Sichuan, China
| | - Jiao Long
- College of Life Science, Neijiang Normal University, Neijiang, 641000, Sichuan, China
| | - SiShun Zhou
- College of Life Science, Neijiang Normal University, Neijiang, 641000, Sichuan, China
| |
Collapse
|
33
|
Lin Y, Miao LH, Pan WJ, Huang X, Dengu JM, Zhang WX, Ge XP, Liu B, Ren MC, Zhou QL, Xie J, Pan LK, Xi BW. Effect of nitrite exposure on the antioxidant enzymes and glutathione system in the liver of bighead carp, Aristichthys nobilis. FISH & SHELLFISH IMMUNOLOGY 2018; 76:126-132. [PMID: 29438848 DOI: 10.1016/j.fsi.2018.02.015] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 02/02/2018] [Accepted: 02/07/2018] [Indexed: 06/08/2023]
Abstract
Nitrite (NO2-) can cause oxidative stress in aquatic animal when it accumulates in the organism, resulting in different toxic effects on fish. In the present study, we investigated the effects of nitrite exposure on the antioxidant enzymes and glutathione system in the liver of Bighead carp (Aristichthys nobilis). Fish [Initial average weight: (180.05 ± 0.092) g] were exposed to 48.634 mg/L nitrite for 96 h, and a subsequent 96 h for the recovery test. Fish livers were collected to assay antioxidant enzymes activity, hepatic structure and expression of genes after 0 h, 6 h, 12 h, 24 h, 48 h, 72 h, 96 h of exposure and12 h, 24 h, 48 h, 72 h, 96 h of recovery. The results showed that the activity of glutathione peroxidase (GSH-Px), glutathione S-transferase (GST), and glutathione reductase (GR) increased significantly in the early stages of nitrite exposure. The study also showed that nitrite significantly up-regulated the mRNA levels of glutathione peroxidase (GSH-Px), glutathione S-transferase (GST), and glutathione reductase (GR) after 6, 48, and 72 h of exposure respectively. Nitrite also increased the formation of malondialdehyde (MDA), oxidized glutathione (GSSG), and the activity of catalase (CAT). Nitrite was observed to reduce the activity of superoxide dismutase (SOD) and the level of glutathione (GSH). In the recovery test, GSH and the GSSG recovered but did not return to pre-stress levels. The results suggested that the glutathione system played important roles in nitrite-induced oxidative stress in fish. The bighead carp responds to oxidative stress by enhancing the activity of GSH-Px, GST, GR and up-regulating the expression level of GSH-Px, GST, GR, a whilst simultaneously maintaining the dynamic balance of GSH/GSSG. CAT was also indispensable. They could reduce the degree of lipid peroxidation, and ultimately protect the body from oxidative damage.
Collapse
Affiliation(s)
- Yan Lin
- Key Laboratory of Genetic Breeding and Aquaculture Biology of Freshwater Fishes, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Ling-Hong Miao
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China; Key Laboratory of Genetic Breeding and Aquaculture Biology of Freshwater Fishes, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Wen-Jing Pan
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China
| | - Xin Huang
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China
| | - Jack Mike Dengu
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China
| | - Wu-Xiao Zhang
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China
| | - Xian-Ping Ge
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China; Key Laboratory of Genetic Breeding and Aquaculture Biology of Freshwater Fishes, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China.
| | - Bo Liu
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China; Key Laboratory of Genetic Breeding and Aquaculture Biology of Freshwater Fishes, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Ming-Chun Ren
- Key Laboratory of Genetic Breeding and Aquaculture Biology of Freshwater Fishes, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Qun-Lan Zhou
- Key Laboratory of Genetic Breeding and Aquaculture Biology of Freshwater Fishes, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Jun Xie
- Key Laboratory of Genetic Breeding and Aquaculture Biology of Freshwater Fishes, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Liang-Kun Pan
- Key Laboratory of Genetic Breeding and Aquaculture Biology of Freshwater Fishes, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Bing-Wen Xi
- Key Laboratory of Genetic Breeding and Aquaculture Biology of Freshwater Fishes, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| |
Collapse
|
34
|
Wu Y, Liu W, Li Q, Li Y, Yan Y, Huang F, Wu X, Zhou Q, Shu X, Ruan Z. Dietary chlorogenic acid regulates gut microbiota, serum-free amino acids and colonic serotonin levels in growing pigs. Int J Food Sci Nutr 2017; 69:566-573. [DOI: 10.1080/09637486.2017.1394449] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Yi Wu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Nanchang University, Nanchang, China
| | - Wenhui Liu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Nanchang University, Nanchang, China
| | - Qi Li
- School of Public Health, Nanchang University, Nanchang, China
| | - Yafei Li
- Jiangxi Academy of Medical Science, College Community Hospital, Nanchang University, Nanchang, China
| | - Yali Yan
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Nanchang University, Nanchang, China
| | - Fang Huang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Nanchang University, Nanchang, China
| | - Xin Wu
- Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Quancheng Zhou
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, China
| | - Xugang Shu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Nanchang University, Nanchang, China
| | - Zheng Ruan
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Nanchang University, Nanchang, China
| |
Collapse
|
35
|
Jiang WD, Tang RJ, Liu Y, Wu P, Kuang SY, Jiang J, Tang L, Tang WN, Zhang YA, Zhou XQ, Feng L. Impairment of gill structural integrity by manganese deficiency or excess related to induction of oxidative damage, apoptosis and dysfunction of the physical barrier as regulated by NF-κB, caspase and Nrf2 signaling in fish. FISH & SHELLFISH IMMUNOLOGY 2017; 70:280-292. [PMID: 28887111 DOI: 10.1016/j.fsi.2017.09.022] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 08/24/2017] [Accepted: 09/05/2017] [Indexed: 06/07/2023]
Abstract
This study is for the first time to explore the possible effects of dietary manganese (Mn) on structural integrity and the related signaling in the gills of fish. Grass carp (Ctenopharyngodon idella) were fed with six diets containing graded levels of Mn [3.65-27.86 mg Mn/kg diet] for 8 weeks. The results firstly demonstrated that Mn deficiency aggravated inflammation indicated by up-regulation of pro-inflammatory cytokines (tumour necrosis factor α, interleukin 8, and interleukin 1β mRNA levels) and down-regulation of anti-inflammatory cytokines (interleukin 10, transforming growth factor-β1) mRNA levels, which might be partially related to the up-regulation of nuclear factor kappa B (NF-κB p65) and down-regulation of nuclear inhibitor factor κBα (iκBα) mRNA levels in the gills of fish. Meanwhile, Mn deficiency caused DNA fragmentation, which might be partially associated with the up-regulation of the apoptosis signaling (caspase-3, caspase-8 and caspase-9) in the gills of fish. Furthermore, Mn deficiency-caused apoptosis might be partly related to the increases of oxidative damage that indicated by increases of lipid peroxidation and protein oxidation, and decreases of antioxidant enzyme activities [included Mn superoxide dismutase (MnSOD), catalase (CAT), glutathione peroxidase (GPx), glutathione reductase (GR) and glutathione-S-transferase (GST)]. However, Mn deficiency only down-regulated MnSOD and GST mRNA levels, which might be partially related to the up-regulation of NF-E2-related factor-2 (Nrf2) inhibitor (Keap1), and only down-regulated the gene expression of claudin-b and claudin-15 to disrupt the TJ in the gills of fish. Excessive Mn led to negative effects on partial parameters studied in the gills of fish. The optimal levels of Mn based on protecting against ROS, MDA and PC in the gills of grass carp were 17.04, 16.86 and 21.20 mg/kg diet, respectively. Collectively, Mn deficiency or excess could cause inflammation, apoptosis, antioxidant system disruption and change tight junction protein (claudin-b and claudin-15) transcription abundances, which might be partially related to the NF-κB p65, caspase-(3,8,9) and Nrf2 signaling, in the gills of fish.
Collapse
Affiliation(s)
- Wei-Dan Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Sichuan, Chengdu, 611130, China; Fish Nutrition and Safety in Production Sichuan University Key Laboratory, Sichuan Agricultural University, Sichuan, Chengdu, 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Sichuan, Chengdu, 611130, China
| | - Ren-Jun Tang
- Animal Nutrition Institute, Sichuan Agricultural University, Sichuan, Chengdu, 611130, China
| | - Yang Liu
- Animal Nutrition Institute, Sichuan Agricultural University, Sichuan, Chengdu, 611130, China; Fish Nutrition and Safety in Production Sichuan University Key Laboratory, Sichuan Agricultural University, Sichuan, Chengdu, 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Sichuan, Chengdu, 611130, China
| | - Pei Wu
- Animal Nutrition Institute, Sichuan Agricultural University, Sichuan, Chengdu, 611130, China; Fish Nutrition and Safety in Production Sichuan University Key Laboratory, Sichuan Agricultural University, Sichuan, Chengdu, 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Sichuan, Chengdu, 611130, China
| | - Sheng-Yao Kuang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu, 610066, China
| | - Jun Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Sichuan, Chengdu, 611130, China; Fish Nutrition and Safety in Production Sichuan University Key Laboratory, Sichuan Agricultural University, Sichuan, Chengdu, 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Sichuan, Chengdu, 611130, China
| | - Ling Tang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu, 610066, China
| | - Wu-Neng Tang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu, 610066, China
| | - Yong-An Zhang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Xiao-Qiu Zhou
- Animal Nutrition Institute, Sichuan Agricultural University, Sichuan, Chengdu, 611130, China; Fish Nutrition and Safety in Production Sichuan University Key Laboratory, Sichuan Agricultural University, Sichuan, Chengdu, 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Sichuan, Chengdu, 611130, China.
| | - Lin Feng
- Animal Nutrition Institute, Sichuan Agricultural University, Sichuan, Chengdu, 611130, China; Fish Nutrition and Safety in Production Sichuan University Key Laboratory, Sichuan Agricultural University, Sichuan, Chengdu, 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Sichuan, Chengdu, 611130, China.
| |
Collapse
|
36
|
Zhao J, Wu P, Jiang W, Liu Y, Jiang J, Zhang Y, Zhou X, Feng L. Preventive and reparative effects of isoleucine against copper-induced oxidative damage in primary fish enterocytes. FISH PHYSIOLOGY AND BIOCHEMISTRY 2017; 43:1021-1032. [PMID: 28130733 DOI: 10.1007/s10695-017-0349-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2016] [Accepted: 01/16/2017] [Indexed: 06/06/2023]
Abstract
The present study aimed to assess the possible preventive and reparative effects of isoleucine (Ile) against copper (Cu)-induced oxidative stress in fish enterocytes in vitro. In experiment 1, enterocytes were preincubated with increasing concentrations of Ile (0, 50, 120, 190, 260, and 330 mg L-1) for 72 h followed by exposure to 6 mg L-1 Cu for 24 h. In experiment 2, the enterocytes were pretreated with 6 mg L-1 Cu for 24 h and then treated with 0-330 mg L-1 Ile for 72 h to investigate its potential reparative role. The results of experiment 1 showed that Cu exposure increased lactate dehydrogenase (LDH) activity and malondialdehyde and protein carbonyl (PC) content; these changes were completely suppressed by pretreatment with Ile at optimum concentrations (P < 0.05). Moreover, Ile pretreatment prevented the decrease in superoxide dismutase (SOD) and glutathione peroxidase (GPx) activities in the enterocytes exposed to Cu (P < 0.05). Additionally, cells exposed to Cu exhibited adaptive increases in glutathione-S-transferase (GST) activity. In experiment 2, the LDH activity and protein oxidation induced by Cu were completely reversed by Ile posttreatment. Meanwhile, the Cu-induced decrease in SOD, GPx, and GST activity was completely reversed by subsequent Ile treatment, but the reduced glutathione content was not restored. Collectively, these results indicate that Ile suppresses Cu-induced oxidative damage via preventive and reparative pathways in primary enterocytes and thus protects the structural integrity of enterocytes in fish.
Collapse
Affiliation(s)
- Juan Zhao
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Pei Wu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Ya'an, Sichuan, 625014, China
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Ya'an, Sichuan, 625014, China
| | - Weidan Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Ya'an, Sichuan, 625014, China
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Ya'an, Sichuan, 625014, China
| | - Yang Liu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Ya'an, Sichuan, 625014, China
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Ya'an, Sichuan, 625014, China
| | - Jun Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Ya'an, Sichuan, 625014, China
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Ya'an, Sichuan, 625014, China
| | - Yongan Zhang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Xiaoqiu Zhou
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Ya'an, Sichuan, 625014, China.
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Ya'an, Sichuan, 625014, China.
- Animal Nutrition Institute, Sichuan Agricultural University, Ya'an, Sichuan, 625014, China.
| | - Lin Feng
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Ya'an, Sichuan, 625014, China
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Ya'an, Sichuan, 625014, China
| |
Collapse
|
37
|
Klein RD, Borges VD, Rosa CE, Colares EP, Robaldo RB, Martinez PE, Bianchini A. Effects of increasing temperature on antioxidant defense system and oxidative stress parameters in the Antarctic fish Notothenia coriiceps and Notothenia rossii. J Therm Biol 2017; 68:110-118. [DOI: 10.1016/j.jtherbio.2017.02.016] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 02/24/2017] [Accepted: 02/24/2017] [Indexed: 10/20/2022]
|
38
|
Feng L, Gan L, Jiang WD, Wu P, Liu Y, Jiang J, Tang L, Kuang SY, Tang WN, Zhang YA, Zhou XQ. Gill structural integrity changes in fish deficient or excessive in dietary isoleucine: Towards the modulation of tight junction protein, inflammation, apoptosis and antioxidant defense via NF-κB, TOR and Nrf2 signaling pathways. FISH & SHELLFISH IMMUNOLOGY 2017; 63:127-138. [PMID: 28193461 DOI: 10.1016/j.fsi.2017.02.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 12/31/2016] [Accepted: 02/09/2017] [Indexed: 06/06/2023]
Abstract
This study firstly aimed to test the impact of dietary isoleucine (Ile) on tight junction protein, inflammation, apoptosis, antioxidant defense and related signaling molecule gene expression in the gill of fish. Young grass carp (Ctenopharyngodon idella) (weighing 256.8 ± 3.5 g) were fed six diets containing graded levels of Ile, namely, 3.8, 6.6, 9.3, 12.5, 15.2 and 18.5 g/kg diet for 8 weeks. The results firstly revealed that Ile deficiency down-regulated the mRNA expressions of claudin-3, claudin-b, claudin-c, occludin and zonula occludens-1 (ZO-1) and up-regulated the mRNA expression of claudin-12, which led to the intercellular structure damage of fish gill. These effects were partially ascribed to the up-regulation of pro-inflammatory cytokines [interleukin 1β (IL-1β), interleukin 8 (IL-8) and tumor necrosis factor-α (TNF-α)] mRNA expressions that referring to up-regulated nuclear factor κB P65 (NF-κB P65) mRNA expression and down-regulated inhibitor factor κBα (IκBα) mRNA expression, and the down-regulation of anti-inflammatory cytokines [interleukin 10 (IL-10) and transforming growth factor β1 (TGF-β1)] mRNA expressions that referring to the down-regulated TOR and S6K1 mRNA expression. Interestingly, no change in claudin 15 mRNA level was observed among every treatment. At the same time, the results firstly indicated that Ile deficiency also resulted in the cellular structure damage of fish gill: (1) DNA fragmentation partially due to the up-regulation of caspase-3, caspase-8 and caspase-9 mRNA expression; (2) increase in protein carbonyl (PC), malondialdehyde (MDA) and ROS contents, which may be partially attributed to the impaired antioxidant defense [indicated by decreased glutathione (GSH) level and depressed anti-superoxide anion (ASA), anti-hydroxyl radical (a-HR), copper/zinc superoxide dismutase (Cu/Zn-SOD), catalase (CAT) and glutathione peroxidase (GPx) activities] that referring to the down-regulation of corresponding antioxidant enzyme mRNA expressions and the related signaling molecules Nrf2 mRNA expression. Ile excess caused similar negative effects that observed in Ile-deficient group, whereas these negative effects were reversed with appropriate Ile supplementation. In conclusion, our results indicated that Ile deficiency or excess disrupted the structural integrity of fish gill, partially due to the trigger of apoptosis, the impairment of antioxidant defense, and the regulation of tight junction protein, inflammatory cytokines, apoptosis-related, antioxidant enzymes and related signaling molecules mRNA expressions in the fish gill.
Collapse
Affiliation(s)
- Lin Feng
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu, 611130, China
| | - Lu Gan
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Wei-Dan Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu, 611130, China
| | - Pei Wu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yang Liu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu, 611130, China
| | - Jun Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu, 611130, China
| | - Ling Tang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu, 610066, China
| | - Sheng-Yao Kuang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu, 610066, China
| | - Wu-Neng Tang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu, 610066, China
| | - Yong-An Zhang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Xiao-Qiu Zhou
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu, 611130, China.
| |
Collapse
|
39
|
Agalakova NI, Ivanova TI, Gusev GP, Nazarenkova AV, Sufiyeva DA. Apoptotic death in erythrocytes of lamprey Lampetra fluviatilis induced by ionomycin and tert-butyl hydroperoxide. Comp Biochem Physiol C Toxicol Pharmacol 2017; 194:48-60. [PMID: 28163253 DOI: 10.1016/j.cbpc.2017.01.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Revised: 01/23/2017] [Accepted: 01/31/2017] [Indexed: 11/30/2022]
Abstract
The work examined the effects of Ca2+ overload and oxidative damage on erythrocytes of river lamprey Lampetra fluvialtilis. The cells were incubated for 3h with 0.1-5μM Ca2+ ionophore ionomycin in combination with 2.5mM Ca2+ and 10-100μM pro-oxidant agent tert-butyl hydroperoxide (tBHP). The sensitivity of lamprey RBCs to studied compounds was evaluated by the kinetics of their death. Both toxicants induced dose- and time dependent phosphatidylserine (PS) externalization (annexin V-FITC labeling) and loss of membrane integrity (propidium iodide uptake). Highest doses of ionomycin (1-2μM) increased the number of PS-exposed erythrocytes to 7-9% within 3h, while 100μM tBHP produced up to 50% of annexin V-FITC-positive cells. Caspase inhibitor Boc-D-FMK (50μM), calpain inhibitor PD150606 (10μM) and broad protease inhibitor leupeptin (200μM) did not prevent ionomycin-induced PS externalization, whereas tBHP-triggered apoptosis was blunted by Boc-D-FMK. tBHP-dependent death of lamprey erythrocytes was accompanied by the decrease in relative cell size, loss of cell viability, activation of caspases 9 and 3/7, and loss of mitochondrial membrane potential, but all these processes were partially attenuated by Boc-D-FMK. None of examined death-associated events were observed in ionomycin-treated erythrocytes except activation of caspase-9. Incubation with ionomycin did not alter intracellular K+ and Na+ content, while exposure to tBHP resulted in 80% loss of K+ and 2.8-fold accumulation of Na+. Thus, lamprey erythrocytes appear to be more susceptible to oxidative damage. Ca2+ overload does not activate the cytosolic death pathways in these cells.
Collapse
Affiliation(s)
- Natalia I Agalakova
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, M. Thorez av. 44, Sankt-Petersburg, 194223, Russia.
| | - Tatiana I Ivanova
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, M. Thorez av. 44, Sankt-Petersburg, 194223, Russia
| | - Gennadii P Gusev
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, M. Thorez av. 44, Sankt-Petersburg, 194223, Russia
| | - Anna V Nazarenkova
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, M. Thorez av. 44, Sankt-Petersburg, 194223, Russia
| | - Dina A Sufiyeva
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, M. Thorez av. 44, Sankt-Petersburg, 194223, Russia
| |
Collapse
|
40
|
Cooperation of erythrocytes with leukocytes in immune response of a teleost Oplegnathus fasciatus. Genes Genomics 2016. [DOI: 10.1007/s13258-016-0437-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
41
|
Jiang WD, Feng L, Qu B, Wu P, Kuang SY, Jiang J, Tang L, Tang WN, Zhang YA, Zhou XQ, Liu Y. Changes in integrity of the gill during histidine deficiency or excess due to depression of cellular anti-oxidative ability, induction of apoptosis, inflammation and impair of cell-cell tight junctions related to Nrf2, TOR and NF-κB signaling in fish. FISH & SHELLFISH IMMUNOLOGY 2016; 56:111-122. [PMID: 27394967 DOI: 10.1016/j.fsi.2016.07.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 06/29/2016] [Accepted: 07/05/2016] [Indexed: 06/06/2023]
Abstract
This study firstly explored the possible effects of dietary histidine on structural integrity and the related signaling factor gene expression in the gills of fish. Young grass carp (Ctenopharyngodon idella) were fed with six diets containing gradual levels of histidine for 8 weeks. The results firstly demonstrated that histidine deficiency caused increases in reactive oxygen species (ROS) contents, and severe oxidative damage (lipid peroxidation and protein oxidation) in the gills of fish, which was partially due to the decreased glutathione (GSH) content and antioxidant enzyme activities [superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), glutathione-S-transferase (GST) and glutathione reductase (GR)]. Further investigations indicated that histidine deficiency caused depressions of those antioxidant enzyme activities are related to the down-regulation of corresponding antioxidant enzyme genes and the related signaling factor Nrf2 mRNA levels. Meanwhile, histidine deficiency induced DNA fragmentation via up-regulation of caspase-3, caspase-8 and caspase-9 expressions that referring to the down-regulation of TOR and S6K mRNA levels. Furthermore, His deficiency down-regulated claudin-b, claudin-c, claudin-3, claudin-12, claudin-15, occludin and ZO-1 transcription in fish gills. These effects were partially related to the up-regulation of pro-inflammatory cytokines, interleukin 1β (IL-1β), interleukin 8 (IL-8), tumor necrosis factor-α (TNF-α) and related signaling factor nuclear factor κB P65 (NF-κB P65) mRNA levels, and the down-regulation of anti-inflammatory cytokines, interleukin 10 (IL-10), transforming growth factor β1 (TGF-β1) and related signaling factor IκBα mRNA levels. Excessive histidine exhibited negative effects that were similar to histidine deficiency, whereas the optimal histidine levels reversed those negative effects. Taken together, our results showed that histidine deficiency or excess impaired the structural integrity of fish gill by disrupted fish antioxidant defenses and regulating the expression of tight junction protein, cytokines, apoptosis, antioxidant enzymes, NF-κB p65, IκBα, TOR, Nrf2, Keap1 and apoptosis-related genes in the fish gills.
Collapse
Affiliation(s)
- Wei-Dan Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, Sichuan, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Lin Feng
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, Sichuan, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Biao Qu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Pei Wu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Sheng-Yao Kuang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu 610066, China
| | - Jun Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, Sichuan, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Ling Tang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu 610066, China
| | - Wu-Neng Tang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu 610066, China
| | - Yong-An Zhang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Xiao-Qiu Zhou
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, Sichuan, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
| | - Yang Liu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, Sichuan, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
| |
Collapse
|
42
|
Li H, Zhou X, Wu M, Deng M, Wang C, Hou J, Mou P. The cytotoxicity and protective effects of Astragalus membranaceus extracts and butylated hydroxyanisole on hydroxyl radical-induced apoptosis in fish erythrocytes. ACTA ACUST UNITED AC 2016; 2:376-382. [PMID: 29767041 PMCID: PMC5941053 DOI: 10.1016/j.aninu.2016.08.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2016] [Accepted: 08/08/2016] [Indexed: 12/22/2022]
Abstract
Erythrocytes play an essential role in transporting O2 and CO2 for respiration in fish. However, erythrocytes continuously suffer from reactive oxygen species (ROS) -induced oxidative stress and apoptosis. Thus, it is essential to expand our knowledge of how to protect erythrocytes against ROS-induced oxidative stress and apoptosis in fish. In this study, we explored the cytotoxicity and the effects of butylated hydroxyanisole (BHA), ethyl ether extracts, ethyl acetate extracts, acetone extracts (AE), ethanol extracts, and aqueous extracts of Astragalus membranaceus (EAm) on hydroxyl radical (•OH)-induced apoptosis in carp erythrocytes. The rat hepatocytes and carp erythrocytes were incubated with different concentrations of BHA or EAm(0.125 to 1 mg/mL). The toxicity in rat hepatocytes and carp erythrocytes was then measured using a 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) assay and a haemolysis assay, respectively. The carp erythrocytes were treated with BHA or EAm in the presence of 40 μmol/L FeSO4 and 20 μmol/L H2O2 at 37 °C, except for the control group. Oxidative stress and apoptosis parameters in the carp erythrocytes were then evaluated using the commercial kit. The results indicated that at high concentrations, BHA and EAm could induce toxicity in rat hepatocytes and fish erythrocytes. However, BHA was more toxic than EAm at the same concentrations. Moreover, the toxicity order of BHA and EAm in the fish erythrocytes approximately agreed with that for the rat hepatocytes. Butylated hydroxyanisole and EAm suppressed the •OH-induced phosphatidylserine exposure and DNA fragmentation (the biomarkers of apoptosis) by decreasing the generation of ROS, inhibiting the oxidation of cellular components, and restoring the activities of antioxidants in carp erythrocytes. Of all of the examined EAm, the AE showed the strongest effects. The effects of AE on superoxide anion, H2O2, met-haemoglobin and reduced glutathione levels, as well as glutathione reductase activity and apoptosis were equivalent to or stronger than those of BHA. These results revealed that the AE of Astragalus membranaceus could be used as a potential natural antioxidant or apoptosis inhibitor in fish erythrocytes.
Collapse
Affiliation(s)
- Huatao Li
- College of Life Sciences, Neijiang Normal University, Neijiang 641000, China.,Conservation and Utilization of Fishes Resources in the Upper Reaches of the Yangtze River Key Laboratory of Sichuan Province, Neijiang Normal University, Neijiang 641000, China
| | - Xiaoqiu Zhou
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Min Wu
- Archives, Neijiang Normal University, Neijiang 641000, China
| | - Mengling Deng
- College of Life Sciences, Neijiang Normal University, Neijiang 641000, China.,Conservation and Utilization of Fishes Resources in the Upper Reaches of the Yangtze River Key Laboratory of Sichuan Province, Neijiang Normal University, Neijiang 641000, China
| | - Chao Wang
- College of Life Sciences, Neijiang Normal University, Neijiang 641000, China.,Conservation and Utilization of Fishes Resources in the Upper Reaches of the Yangtze River Key Laboratory of Sichuan Province, Neijiang Normal University, Neijiang 641000, China
| | - Jingjing Hou
- College of Life Sciences, Neijiang Normal University, Neijiang 641000, China.,Conservation and Utilization of Fishes Resources in the Upper Reaches of the Yangtze River Key Laboratory of Sichuan Province, Neijiang Normal University, Neijiang 641000, China
| | - Pengju Mou
- College of Life Sciences, Neijiang Normal University, Neijiang 641000, China.,Conservation and Utilization of Fishes Resources in the Upper Reaches of the Yangtze River Key Laboratory of Sichuan Province, Neijiang Normal University, Neijiang 641000, China
| |
Collapse
|
43
|
Uppangala S, Pudakalakatti S, D'souza F, Salian SR, Kalthur G, Kumar P, Atreya H, Adiga SK. Influence of sperm DNA damage on human preimplantation embryo metabolism. Reprod Biol 2016; 16:234-241. [PMID: 27492188 DOI: 10.1016/j.repbio.2016.07.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Revised: 07/22/2016] [Accepted: 07/23/2016] [Indexed: 12/15/2022]
Abstract
Understanding the embryo metabolic response to sperm induced specific abnormalities could help in developing the metabolic markers to prevent the transfer of embryos carrying sperm mediated defects. In this study, NMR based metabolic profiling of the embryo spent media was employed in 34 patients undergoing ICSI cycles. Processed ejaculates were tested for DNA damage using comet assay. Relative intensities of the metabolites from 74 embryo spent media samples from 34 patients and 23 medium controls were profiled using 1H NMR and compared between 'male-factor' and control groups. Relative intensities in the subgroups which are independent of patients with male factor or tubal factors, but related to the extent of sperm DNA damage were also compared. Sperm characteristics including DNA damage levels (Olive tail moment, OTM) were significantly different between 'male factor' and control groups (P<0.001-0.0001). Of the metabolites analyzed, glutamine intensity was significantly lower in 'male factor' group (P<0.01) whereas, pyruvate intensity was significantly lower in embryos derived from the processed sperm fraction having <1.0 OTM (P=0.003). In contrast glutamine and alanine intensities were significantly higher in the embryos derived from sperm population having OTM <1.0. (P=0.03 & 0.005 respectively). Pyruvate to alanine ratio was significantly lower in <1.0 OTM group (P<0.0001). This study indicates that increased level of sperm DNA damage in the processed ejaculate affects embryo metabolism which could be related to embryonic genetic integrity.
Collapse
Affiliation(s)
- Shubhashree Uppangala
- Division of Clinical Embryology, Kasturba Medical College, Manipal University, Manipal, India
| | | | - Fiona D'souza
- Division of Clinical Embryology, Kasturba Medical College, Manipal University, Manipal, India
| | - Sujith Raj Salian
- Division of Clinical Embryology, Kasturba Medical College, Manipal University, Manipal, India
| | - Guruprasad Kalthur
- Division of Clinical Embryology, Kasturba Medical College, Manipal University, Manipal, India
| | - Pratap Kumar
- Department of Obstetrics & Gynecology, Kasturba Medical College, Manipal University, Manipal, India
| | - Hanudatta Atreya
- NMR Research Centre, Indian Institute of Science, Bangalore, India; Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore, India.
| | - Satish Kumar Adiga
- Division of Clinical Embryology, Kasturba Medical College, Manipal University, Manipal, India.
| |
Collapse
|
44
|
Cao C, Zhao X, Fan R, Zhao J, Luan Y, Zhang Z, Xu S. Dietary selenium increases the antioxidant levels and ATPase activity in the arteries and veins of poultry. Biol Trace Elem Res 2016; 172:222-227. [PMID: 26637493 DOI: 10.1007/s12011-015-0584-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Accepted: 11/30/2015] [Indexed: 12/25/2022]
Abstract
Selenium (Se) deficiency is associated with the pathogenesis of vascular diseases. It has been shown that oxidative levels and ATPase activity were involved in Se deficiency diseases in humans and mammals; however, the mechanism by how Se influences the oxidative levels and ATPase activity in the poultry vasculature is unclear. We assessed the effects of dietary Se deficiency on the oxidative stress parameters (superoxide dismutase, catalase, and hydroxyl radical) and ATPase (Na(+)K(+)-ATPase, Ca(++)-ATPase, Mg(++)-ATPase, and Ca(++)Mg(++)-ATPase) activity in broiler poultry. A total of 40 broilers (1-day old) were randomly divided into a Se-deficient group (L group, fed a Se-deficient diet containing 0.08 mg/kg Se) and a control group (C group, fed a diet containing sodium selenite at 0.20 mg/kg Se). Then, arteries and veins were collected following euthanasia when typical symptoms of Se deficiency appeared. Antioxidant indexes and ATPase activity were evaluated using standard assays in arteries and veins. The results indicated that superoxide dismutase activity in the artery according to dietary Se deficiency was significantly lower (p < 0.05) compared with the C group. The catalase activity in the veins and hydroxyl radical inhibition in the arteries and veins by dietary Se deficiency were significantly higher (p < 0.05) compared with the C group. The Se-deficient group showed a significantly lower (p < 0.05) tendency in Na(+)K(+)-ATPase activity, Ca(++)-ATPase activity, and Ca(++)Mg(++)-ATPase activity. There were strong correlations between antioxidant indexes and Ca(++)-ATPase activity. Thus, these results indicate that antioxidant indexes and ATPases may have special roles in broiler artery and vein injuries under Se deficiency.
Collapse
Affiliation(s)
- Changyu Cao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Xia Zhao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Ruifeng Fan
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Jinxin Zhao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Yilin Luan
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Ziwei Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China.
| | - Shiwen Xu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China.
| |
Collapse
|
45
|
Jiang WD, Qu B, Feng L, Jiang J, Kuang SY, Wu P, Tang L, Tang WN, Zhang YA, Zhou XQ, Liu Y. Histidine Prevents Cu-Induced Oxidative Stress and the Associated Decreases in mRNA from Encoding Tight Junction Proteins in the Intestine of Grass Carp (Ctenopharyngodon idella). PLoS One 2016; 11:e0157001. [PMID: 27280406 PMCID: PMC4900568 DOI: 10.1371/journal.pone.0157001] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Accepted: 05/22/2016] [Indexed: 01/14/2023] Open
Abstract
Copper (Cu) is a common heavy metal pollutant in aquatic environments that originates from natural as well as anthropogenic sources. The present study investigated whether Cu causes oxidative damage and induces changes in the expression of genes that encode tight junction (TJ) proteins, cytokines and antioxidant-related genes in the intestine of the grass carp (Ctenopharyngodon idella). We demonstrated that Cu decreases the survival rate of fish and increases oxidative damage as measured by increases in malondialdehyde and protein carbonyl contents. Cu exposure significantly decreased the expression of genes that encode the tight junction proteins, namely, claudin (CLDN)-c, -3 and -15 as well as occludin and zonula occludens-1, in the intestine of fish. In addition, Cu exposure increases the mRNA levels of the pro-inflammatory cytokines, specifically, IL-8, TNF-α and its related signalling factor (nuclear factor kappa B, NF-κB), which was partly correlated to the decreased mRNA levels of NF-κB inhibitor protein (IκB). These changes were associated with Cu-induced oxidative stress detected by corresponding decreases in glutathione (GSH) content, as well as decreases in the copper, zinc-superoxide dismutase (SOD1) and glutathione peroxidase (GPx) activities and mRNA levels, which were associated with the down-regulated antioxidant signalling factor NF-E2-related factor-2 (Nrf2) mRNA levels, and the Kelch-like-ECH-associated protein1 (Keap1) mRNA levels in the intestine of fish. Histidine supplementation in diets (3.7 up to 12.2 g/kg) blocked Cu-induced changes. These results indicated that Cu-induced decreases in intestinal TJ proteins and cytokine mRNA levels might be partially mediated by oxidative stress and are prevented by histidine supplementation in fish diet.
Collapse
Affiliation(s)
- Wei-Dan Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Biao Qu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Lin Feng
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Jun Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Sheng-Yao Kuang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, 610066, Chengdu, China
| | - Pei Wu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Ling Tang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, 610066, Chengdu, China
| | - Wu-Neng Tang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, 610066, Chengdu, China
| | - Yong-An Zhang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Xiao-Qiu Zhou
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Yang Liu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| |
Collapse
|
46
|
Li H, Zhou X, Gao P, Li Q, Li H, Huang R, Wu M. Inhibition of lipid oxidation in foods and feeds and hydroxyl radical-treated fish erythrocytes: A comparative study of Ginkgo biloba leaves extracts and synthetic antioxidants. ACTA ACUST UNITED AC 2016; 2:234-241. [PMID: 29767013 PMCID: PMC5941021 DOI: 10.1016/j.aninu.2016.04.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Revised: 04/19/2016] [Accepted: 04/21/2016] [Indexed: 01/01/2023]
Abstract
This study explored the effects of butylated hydroxytoluene (BHT) and ethoxyquin (EQ) and ethyl ether extracts, ethyl acetate extracts (EAE), acetone extracts, ethanol extracts and aqueous extracts of Ginkgo biloba leaves (EGbs) on lipid oxidation in a linoleic acid emulsion, fish flesh and fish feed and in hydroxyl radical (·OH)-treated carp erythrocytes. The linoleic acid, fish flesh and fish feed were incubated with BHT, EQ and EGbs at 45°C for 8 d, respectively, except for the control group. The lipid oxidation in the linoleic acid emulsion, fish flesh and fish feed was then measured by the ferric thiocyanate method or thiobarbituric acid method. The carp erythrocytes were treated with BHT, EQ or EGbs in the presence of 40 μmol/L FeSO4 and 20 μmol/L H2O2 at 37°C for 6 h, except for the control group. Oxidative stress and apoptosis parameters in carp erythrocytes were then evaluated by the commercial kit. The results showed that BHT, EQ and EGbs inhibited lipid oxidation in the linoleic acid emulsion, fish flesh and fish feed and ·OH-induced phosphatidylserine exposure and DNA fragmentation (the biomarkers of apoptosis) in carp erythrocytes. Furthermore, BHT, EQ and EGbs decreased the generation of reactive oxygen species (ROS), inhibited the oxidation of cellular components and restored the activities of enzymatic antioxidants in ·OH-treated carp erythrocytes. Of all examined EGbs, EAE showed the strongest effects. The effects of EAE on lipid oxidation in the linoleic acid emulsion and on superoxide anion and malonaldehyde levels, catalase activity and apoptosis in ·OH-treated carp erythrocytes were equivalent to or stronger than those of BHT. Moreover, these results indicated that the inhibition order of EGbs on the generation of ROS and oxidation of cellular components in fish erythrocytes approximately agreed with that for the food and feed materials tested above. And, the antioxidative and anti-apoptotic effects of EGbs were positively correlated with their flavonoid content. Taken together, these results revealed that the fish erythrocyte system can be used as an experimental model to evaluate lipid oxidation in food and feed ingredients. The EAE can be used as a potential natural antioxidant or apoptosis inhibitor. The inhibition effects of EGbs on lipid oxidation and apoptosis may be due to the presence of flavonoid compounds.
Collapse
Affiliation(s)
- Huatao Li
- College of Life Sciences, Neijiang Normal University, Neijiang 641000, China.,Conservation and Utilization of Fishes Resources in the Upper Reaches of the Yangtze River Key Laboratory of Sichuan Province, Neijiang Normal University, Neijiang 641000, China
| | - Xiaoqiu Zhou
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Ping Gao
- College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Qiuyue Li
- College of Life Sciences, Neijiang Normal University, Neijiang 641000, China.,Conservation and Utilization of Fishes Resources in the Upper Reaches of the Yangtze River Key Laboratory of Sichuan Province, Neijiang Normal University, Neijiang 641000, China
| | - Hansi Li
- College of Life Sciences, Neijiang Normal University, Neijiang 641000, China.,Conservation and Utilization of Fishes Resources in the Upper Reaches of the Yangtze River Key Laboratory of Sichuan Province, Neijiang Normal University, Neijiang 641000, China
| | - Rong Huang
- College of Life Sciences, Neijiang Normal University, Neijiang 641000, China.,Conservation and Utilization of Fishes Resources in the Upper Reaches of the Yangtze River Key Laboratory of Sichuan Province, Neijiang Normal University, Neijiang 641000, China
| | - Min Wu
- Archives, Neijiang Normal University, Neijiang 641000, China
| |
Collapse
|
47
|
Wang B, Feng L, Chen GF, Jiang WD, Liu Y, Kuang SY, Jiang J, Tang L, Wu P, Tang WN, Zhang YA, Zhao J, Zhou XQ. Jian carp (Cyprinus carpio var. Jian) intestinal immune responses, antioxidant status and tight junction protein mRNA expression are modulated via Nrf2 and PKC in response to dietary arginine deficiency. FISH & SHELLFISH IMMUNOLOGY 2016; 51:116-124. [PMID: 26518504 DOI: 10.1016/j.fsi.2015.10.032] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Revised: 10/20/2015] [Accepted: 10/23/2015] [Indexed: 06/05/2023]
Abstract
This study investigated the effect of dietary arginine on the immune response, antioxidant status and tight junction mRNA expression in the intestine of juvenile Jian carp (Cyprinus carpio var. Jian). A total of 1200 juvenile Jian carp with an average initial weight of 6.33 ± 0.03 g were fed graded levels of arginine (9.8-24.5 g kg(-1) diet) for nine weeks. The study showed that arginine deficiency up-regulated interleukin 1, interleukin 8 and transforming growth factor-β and down-regulated tumour necrosis factor α gene expression (P < 0.05). Additionally, arginine deficiency increased malondialdehyde (MDA), protein carbonyl (PC) and glutathione contents and decreased the activities of copper/zinc superoxide dismutase (SOD1), glutathione peroxidase (GPx), catalase (CAT) and glutathione reductase (GR) and glutathione-S-transferase (GST) (P < 0.05). Meanwhile, arginine deficiency significantly increased claudin 7, occludin, protein kinase C, NF-E2-related factor 2 and Kelch-like-ECH- associated protein 1 mRNA expression and decreased SOD1, CAT and GR mRNA expression (P < 0.05). All of these results indicated that arginine deficiency impaired intestinal immune function via the regulation of mRNA expression of cytokines, tight junction proteins, antioxidant enzymes, Nrf2/Keap1 and PKC in fish intestine.
Collapse
Affiliation(s)
- Biao Wang
- Animal Nutrition Institute, Sichuan Agricultural University, Ya'an 625014, China
| | - Lin Feng
- Animal Nutrition Institute, Sichuan Agricultural University, Ya'an 625014, China
| | - Gang-Fu Chen
- Animal Nutrition Institute, Sichuan Agricultural University, Ya'an 625014, China
| | - Wei-Dan Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Ya'an 625014, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Ya'an 625014, China; Fish Nutrition and Safety in Production Sichuan University Key Laboratory, Sichuan Agricultural University, Ya'an 625014, China
| | - Yang Liu
- Animal Nutrition Institute, Sichuan Agricultural University, Ya'an 625014, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Ya'an 625014, China; Fish Nutrition and Safety in Production Sichuan University Key Laboratory, Sichuan Agricultural University, Ya'an 625014, China
| | - Sheng-Yao Kuang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu 610066, China
| | - Jun Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Ya'an 625014, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Ya'an 625014, China; Fish Nutrition and Safety in Production Sichuan University Key Laboratory, Sichuan Agricultural University, Ya'an 625014, China
| | - Ling Tang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu 610066, China
| | - Pei Wu
- Animal Nutrition Institute, Sichuan Agricultural University, Ya'an 625014, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Ya'an 625014, China; Fish Nutrition and Safety in Production Sichuan University Key Laboratory, Sichuan Agricultural University, Ya'an 625014, China
| | - Wu-Neng Tang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu 610066, China
| | - Yong-An Zhang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Juan Zhao
- Animal Nutrition Institute, Sichuan Agricultural University, Ya'an 625014, China
| | - Xiao-Qiu Zhou
- Animal Nutrition Institute, Sichuan Agricultural University, Ya'an 625014, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Ya'an 625014, China; Fish Nutrition and Safety in Production Sichuan University Key Laboratory, Sichuan Agricultural University, Ya'an 625014, China.
| |
Collapse
|
48
|
Li H, Jiang W, Liu Y, Jiang J, Zhang Y, Wu P, Zhao J, Duan X, Zhou X, Feng L. The metabolites of glutamine prevent hydroxyl radical-induced apoptosis through inhibiting mitochondria and calcium ion involved pathways in fish erythrocytes. Free Radic Biol Med 2016; 92:126-140. [PMID: 26795598 DOI: 10.1016/j.freeradbiomed.2016.01.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Revised: 01/12/2016] [Accepted: 01/12/2016] [Indexed: 12/12/2022]
Abstract
The present study explored the apoptosis pathways in hydroxyl radicals ((∙)OH)-induced carp erythrocytes. Carp erythrocytes were treated with the caspase inhibitors in physiological carp saline (PCS) or Ca(2+)-free PCS in the presence of 40μM FeSO4/20μM H2O2. The results showed that the generation of reactive oxygen species (ROS), the release of cytochrome c and DNA fragmentation were caspase-dependent, and Ca(2+) was involved in calpain activation and phosphatidylserine (PS) exposure in (∙)OH-induced carp erythrocytes. Moreover, the results suggested that caspases were involved in PS exposure, and Ca(2+) was involved in DNA fragmentation in (∙)OH-induced fish erythrocytes. These results demonstrated that there might be two apoptosis pathways in fish erythrocytes, one is the caspase and cytochrome c-dependent apoptosis that is similar to that in mammal nucleated cells, the other is the Ca(2+)-involved apoptosis that was similar to that in mammal non-nucleated erythrocytes. So, fish erythrocytes may be used as a model for studying oxidative stress and apoptosis in mammal cells. Furthermore, the present study investigated the effects of glutamine (Gln)'s metabolites [alanine (Ala), citrulline (Cit), proline (Pro) and their combination (Ala10Pro4Cit1)] on the pathways of apoptosis in fish erythrocytes. The results displayed that Ala, Cit, Pro and Ala10Pro4Cit1 effectively suppressed ROS generation, cytochrome c release, activation of caspase-3, caspase-8 and caspase-9 at the physiological concentrations, prevented Ca(2+) influx, calpain activation, PS exposure, DNA fragmentation and the degradation of the cytoskeleton and oxidation of membrane and hemoglobin (Hb) and increased activity of anti-hydroxyl radical (AHR) in (∙)OH-induced carp erythrocytes. Ala10Pro4Cit1 produced a synergistic effect of inhibited oxidative stress and apoptosis in fish erythrocytes. These results demonstrated that Ala, Cit, Pro and their combination can protect mammal erythrocytes and nucleated cells against oxidative stress and apoptosis. The studies supported the use of Gln, Ala, Cit and Pro as oxidative stress and apoptosis inhibitors in mammal cells and the hypothesis that the inhibited effects of Gln on oxidative stress and apoptosis are at least partly dependent on that of its metabolites in mammalian.
Collapse
Affiliation(s)
- Huatao Li
- Animal Nutrition Institute, Sichuan Agricultural University, Sichuan, Chengdu 611130, China; Conservation and Utilization of Fishes Resources in the Upper Reaches of the Yangtze River Key Laboratory of Sichuan Province, Neijiang Normal University, Sichuan, Neijiang 641000, China
| | - Weidan Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Sichuan, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Sichuan, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of Ministry of Education, Sichuan Agricultural University, Sichuan, Chengdu 611130, China
| | - Yang Liu
- Animal Nutrition Institute, Sichuan Agricultural University, Sichuan, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Sichuan, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of Ministry of Education, Sichuan Agricultural University, Sichuan, Chengdu 611130, China
| | - Jun Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Sichuan, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Sichuan, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of Ministry of Education, Sichuan Agricultural University, Sichuan, Chengdu 611130, China
| | - Yongan Zhang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Pei Wu
- Animal Nutrition Institute, Sichuan Agricultural University, Sichuan, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Sichuan, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of Ministry of Education, Sichuan Agricultural University, Sichuan, Chengdu 611130, China
| | - Juan Zhao
- Animal Nutrition Institute, Sichuan Agricultural University, Sichuan, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Sichuan, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of Ministry of Education, Sichuan Agricultural University, Sichuan, Chengdu 611130, China
| | - Xudong Duan
- Animal Nutrition Institute, Sichuan Agricultural University, Sichuan, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Sichuan, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of Ministry of Education, Sichuan Agricultural University, Sichuan, Chengdu 611130, China
| | - Xiaoqiu Zhou
- Animal Nutrition Institute, Sichuan Agricultural University, Sichuan, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Sichuan, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of Ministry of Education, Sichuan Agricultural University, Sichuan, Chengdu 611130, China.
| | - Lin Feng
- Animal Nutrition Institute, Sichuan Agricultural University, Sichuan, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Sichuan, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of Ministry of Education, Sichuan Agricultural University, Sichuan, Chengdu 611130, China.
| |
Collapse
|
49
|
Li H, Jiang W, Liu Y, Jiang J, Zhang Y, Wu P, Zhao J, Duan X, Zhou X, Feng L. Data in the activities of caspases and the levels of reactive oxygen species and cytochrome c in the •OH-induced fish erythrocytes treated with alanine, citrulline, proline and their combination. Data Brief 2016; 7:16-22. [PMID: 26952131 PMCID: PMC4761654 DOI: 10.1016/j.dib.2016.02.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Accepted: 02/01/2016] [Indexed: 11/26/2022] Open
Abstract
The present study explored the effects of alanine (Ala), citrulline (Cit), proline (Pro) and their combination (Ala10Pro4Cit1) on the activities of caspases and levels of reactive oxygen species (ROS) and cytochrome c in hydroxyl radicals (•OH)-induced carp erythrocytes. The data displayed that •OH induced the increases in the activities of caspase-3, caspase-8 and caspase-9 and the levels of ROS and cytochrome c in carp erythrocytes. However, Ala, Cit, Pro and Ala10Pro4Cit1 effectively suppressed the •OH-induced increases in the activities of caspase-3, caspase-8 and caspase-9 and the levels of ROS and cytochrome c in carp erythrocytes. Furthermore, the activities of caspase-3, caspase-8 and caspase-9 and the levels of ROS and cytochrome c were gradually decreased with increasing concentrations of Ala, Cit, Pro and Ala10Pro4Cit1 (0.175-1.400 mM) in the •OH-induced carp erythrocytes. These data demonstrated that the 50% inhibitory doses (ID50) of Ala10Pro4Cit1 on the activities of caspase-8, caspase-9 and caspase-3 and levels of ROS and cytochrome c were respectively estimated to be the minimum values among amino acids examined so far. The 5% inhibitory doses (ID5) of Ala, Cit, Pro and Ala10Pro4Cit1 on the activities of caspase-8, caspase-9 and caspase-3 and levels of ROS and cytochrome c were estimated to be at their physiological concentrations in mammalian. Our research article for further interpretation and discussion from these data in Li et al. (2016) [1].
Collapse
Affiliation(s)
- Huatao Li
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan, China; Conservation and Utilization of Fishes resources in the Upper Reaches of the Yangtze River Key Laboratory of Sichuan Province, Neijiang Normal University, Neijiang 641000, Sichuan, China
| | - Weidan Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, Sichuan, China; Key Laboratory for Animal Disease-Resistance Nutrition of Ministry of Education, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Yang Liu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, Sichuan, China; Key Laboratory for Animal Disease-Resistance Nutrition of Ministry of Education, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Jun Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, Sichuan, China; Key Laboratory for Animal Disease-Resistance Nutrition of Ministry of Education, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Yongan Zhang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, Hubei, China
| | - Pei Wu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, Sichuan, China; Key Laboratory for Animal Disease-Resistance Nutrition of Ministry of Education, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Juan Zhao
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, Sichuan, China; Key Laboratory for Animal Disease-Resistance Nutrition of Ministry of Education, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Xudong Duan
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, Sichuan, China; Key Laboratory for Animal Disease-Resistance Nutrition of Ministry of Education, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Xiaoqiu Zhou
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, Sichuan, China; Key Laboratory for Animal Disease-Resistance Nutrition of Ministry of Education, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Lin Feng
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, Sichuan, China; Key Laboratory for Animal Disease-Resistance Nutrition of Ministry of Education, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| |
Collapse
|
50
|
Li H, Feng L, Jiang W, Liu Y, Jiang J, Zhang Y, Wu P, Zhou X. Ca(2+) and caspases are involved in hydroxyl radical-induced apoptosis in erythrocytes of Jian carp (Cyprinus carpio var. Jian). FISH PHYSIOLOGY AND BIOCHEMISTRY 2015; 41:1305-1319. [PMID: 26080678 DOI: 10.1007/s10695-015-0087-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Accepted: 06/11/2015] [Indexed: 06/04/2023]
Abstract
There are young erythrocytes and mature erythrocytes in the peripheral blood of fish. The present study explored the apoptosis in hydroxyl radical ((·)OH)-induced young and mature erythrocytes of Jian carp (Cyprinus carpio var. Jian). Carp erythrocytes from the peripheral blood were separated into the young fraction, the intermediate fraction and the mature fraction using fixed-angle centrifugation. The erythrocytes in three age fractions were treated with the caspase inhibitors (zVAD-fmk) in physiological carp saline (PCS) or Ca(2+)-free PCS in the presence of 40 μM FeSO4/20 μM H2O2. The results showed that the (·)OH-induced reactive oxygen species (ROS) generation, phosphatidylserine (PS) exposure and DNA fragmentation are caspase dependent in carp erythrocytes. Furthermore, the ROS generation, PS exposure and DNA fragmentation in the more young fraction are more dependent on the caspase activity. This suggested that the caspases are involved in the (·)OH-induced apoptosis in the young erythrocytes of fish. Results also indicated that Ca(2+) is involved in (·)OH-induced calpain activation, PS exposure and DNA fragmentation in carp erythrocytes. Moreover, the calpain activation, DNA fragmentation and PS exposure in the more mature fraction are more dependent on the levels of Ca(2+). This revealed that (·)OH-induced apoptosis is Ca(2+) dependent in the mature erythrocytes of fish. Taken together, there might be two apoptosis pathways in fish erythrocytes: one is the caspase-dependent apoptosis in the young erythrocytes and the other is the Ca(2+)-involved apoptosis in the mature erythrocytes.
Collapse
Affiliation(s)
- HuaTao Li
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Conservation and Utilization of Fishes Resources in the Upper Reaches of the Yangtze River Key Laboratory of Sichuan Province, Neijiang Normal University, Neijiang, 641000, Sichuan, China
| | - Lin Feng
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Key Laboratory for Animal Disease-Resistance Nutrition of Ministry of Education, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - WeiDan Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Key Laboratory for Animal Disease-Resistance Nutrition of Ministry of Education, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Yang Liu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Key Laboratory for Animal Disease-Resistance Nutrition of Ministry of Education, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Jun Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Key Laboratory for Animal Disease-Resistance Nutrition of Ministry of Education, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - YongAn Zhang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Pei Wu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Key Laboratory for Animal Disease-Resistance Nutrition of Ministry of Education, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - XiaoQiu Zhou
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.
- Key Laboratory for Animal Disease-Resistance Nutrition of Ministry of Education, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.
| |
Collapse
|