1
|
Sharma V, Sharma P, Singh TG. Leukotriene signaling in neurodegeneration: implications for treatment strategies. Inflammopharmacology 2024; 32:3571-3584. [PMID: 39167313 DOI: 10.1007/s10787-024-01557-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 08/11/2024] [Indexed: 08/23/2024]
Abstract
Leukotrienes (LTs) are a group of substances that cause inflammation. They are produced by the enzyme 5-lipoxygenase (5-LOX) from arachidonic acid. Cysteinyl LTs are a group of lipid molecules that have a prominent role in inflammatory signaling in the allergic diseases. Although they are traditionally known for their role in allergic disease, current advancements in bio-medical research have shed light on the involvement of these inflammatory mediators in diseases such as in the inflammation related to central nervous system (CNS) disorders. Among the CNS diseases, LTs, along with 5-LOX and their receptors, have been shown to be associated with multiple sclerosis (MS), Alzheimer's disease (AD), and Parkinson's disease (PD). Through a comprehensive review of current research and experimentation, this investigation provides an insight on the biosynthesis, receptors, and biological effects of LTs in the body. Furthermore, implications of leukotriene signaling in CNS and its intricate role in neurodegeneration are also studied. Through the revelation of these insights, our aim is to establish a foundation for the development of enhanced and focused therapeutic approaches in the continuous endeavor to combat neurodegeneration. Furthermore, the pharmacological inhibition of leukotriene signaling with selective inhibitors offers promising prospects for future interventions and treatments for neurodegenerative diseases.
Collapse
Affiliation(s)
- Veerta Sharma
- Chitkara College of Pharmacy, Chitkara University, Rajpura, 140401, Punjab, India
| | - Prateek Sharma
- Chitkara College of Pharmacy, Chitkara University, Rajpura, 140401, Punjab, India
| | - Thakur Gurjeet Singh
- Chitkara College of Pharmacy, Chitkara University, Rajpura, 140401, Punjab, India.
| |
Collapse
|
2
|
Kamatham PT, Shukla R, Khatri DK, Vora LK. Pathogenesis, diagnostics, and therapeutics for Alzheimer's disease: Breaking the memory barrier. Ageing Res Rev 2024; 101:102481. [PMID: 39236855 DOI: 10.1016/j.arr.2024.102481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/28/2024] [Accepted: 08/29/2024] [Indexed: 09/07/2024]
Abstract
Alzheimer's disease (AD) is the most common cause of dementia and accounts for 60-70 % of all cases. It affects millions of people worldwide. AD poses a substantial economic burden on societies and healthcare systems. AD is a progressive neurodegenerative disorder characterized by cognitive decline, memory loss, and impaired daily functioning. As the prevalence of AD continues to increase, understanding its pathogenesis, improving diagnostic methods, and developing effective therapeutics have become paramount. This comprehensive review delves into the intricate mechanisms underlying AD, explores the current state of diagnostic techniques, and examines emerging therapeutic strategies. By revealing the complexities of AD, this review aims to contribute to the growing body of knowledge surrounding this devastating disease.
Collapse
Affiliation(s)
- Pushpa Tryphena Kamatham
- Molecular and Cellular Neuroscience Laboratory, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana 500037, India
| | - Rashi Shukla
- Molecular and Cellular Neuroscience Laboratory, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana 500037, India
| | - Dharmendra Kumar Khatri
- Department of Pharmacology, Nims Institute of Pharmacy, Nims University Rajasthan, Jaipur, India.
| | - Lalitkumar K Vora
- School of Pharmacy, Medical Biology Centre, Queen's University Belfast, 97 Lisburn Road, Belfast, Northern Ireland BT9 7BL, UK.
| |
Collapse
|
3
|
Khan H, Naseem T, Kaushik P, Narang J, Khan R, Panwar S, Parvez S. Decoding paradoxical links of cytokine markers in cognition: Cross talk between physiology, inflammaging, and Alzheimer's disease- related cognitive decline. Ageing Res Rev 2024; 101:102535. [PMID: 39374831 DOI: 10.1016/j.arr.2024.102535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 09/29/2024] [Accepted: 10/01/2024] [Indexed: 10/09/2024]
Abstract
Recent research has revolutionized our understanding of memory consolidation by emphasizing the critical role of astrocytes, microglia, and immune cells in through cytokine signaling. Cytokines, compact proteins, play pivotal roles in neuronal development, synaptic transmission, and normal aging. This review explores the cellular mechanisms contributing to cognitive decline in inflammaging and Alzheimer's disease, highlighting the paradoxical effects of most studied cytokines (IL-1, IL-6, TNF-α) in brain function, which act as a double-edged sword in brain physiology, acting both as facilitators of healthy cognitive function and as a potential contributor to cognitive decline.
Collapse
Affiliation(s)
- Hiba Khan
- Department of Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India
| | - Talib Naseem
- Department of Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India
| | - Pooja Kaushik
- Department of Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India
| | - Jagriti Narang
- Department of Biotechnology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India
| | - Rehan Khan
- Chemical Biology Unit, Institute of Nano Science and Technology, Sector 81, Knowledge City, Sahibzada Ajit Singh Nagar, Mohali, Punjab 140306, India
| | - Siddharth Panwar
- School of Computing and Electrical Engineering, Indian Institute of Technology, Mandi, Himachal Pradesh 175075, India
| | - Suhel Parvez
- Department of Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India.
| |
Collapse
|
4
|
Ruisch IH, Widomska J, De Witte W, Mota NR, Fanelli G, Van Gils V, Jansen WJ, Vos SJB, Fóthi A, Barta C, Berkel S, Alam KA, Martinez A, Haavik J, O'Leary A, Slattery D, Sullivan M, Glennon J, Buitelaar JK, Bralten J, Franke B, Poelmans G. Molecular landscape of the overlap between Alzheimer's disease and somatic insulin-related diseases. Alzheimers Res Ther 2024; 16:239. [PMID: 39465382 PMCID: PMC11514822 DOI: 10.1186/s13195-024-01609-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 10/21/2024] [Indexed: 10/29/2024]
Abstract
Alzheimer's disease (AD) is a multifactorial disease with both genetic and environmental factors contributing to its etiology. Previous evidence has implicated disturbed insulin signaling as a key mechanism that plays a role in both neurodegenerative diseases such as AD and comorbid somatic diseases such as diabetes mellitus type 2 (DM2). In this study, we analysed available genome-wide association studies (GWASs) of AD and somatic insulin-related diseases and conditions (SID), i.e., DM2, metabolic syndrome and obesity, to identify genes associated with both AD and SID that could increase our insights into their molecular underpinnings. We then performed functional enrichment analyses of these genes. Subsequently, using (additional) GWAS data, we conducted shared genetic etiology analyses between AD and SID, on the one hand, and blood and cerebrospinal fluid (CSF) metabolite levels on the other hand. Further, integrating all these analysis results with elaborate literature searches, we built a molecular landscape of the overlap between AD and SID. From the landscape, multiple functional themes emerged, including insulin signaling, estrogen signaling, synaptic transmission, lipid metabolism and tau signaling. We also found shared genetic etiologies between AD/SID and the blood/CSF levels of multiple metabolites, pointing towards "energy metabolism" as a key metabolic pathway that is affected in both AD and SID. Lastly, the landscape provided leads for putative novel drug targets for AD (including MARK4, TMEM219, FKBP5, NDUFS3 and IL34) that could be further developed into new AD treatments.
Collapse
Affiliation(s)
- I Hyun Ruisch
- Department of Cognitive Neuroscience, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Joanna Widomska
- Department of Cognitive Neuroscience, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Ward De Witte
- Department of Cognitive Neuroscience, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Nina R Mota
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| | - Giuseppe Fanelli
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Veerle Van Gils
- Department of Psychiatry & Neuropsychology, Alzheimer Center Limburg, School for Mental Health and Neuroscience, Maastricht University, Maastricht, Netherlands
| | - Willemijn J Jansen
- Department of Psychiatry & Neuropsychology, Alzheimer Center Limburg, School for Mental Health and Neuroscience, Maastricht University, Maastricht, Netherlands
| | - Stephanie J B Vos
- Department of Psychiatry & Neuropsychology, Alzheimer Center Limburg, School for Mental Health and Neuroscience, Maastricht University, Maastricht, Netherlands
| | - Abel Fóthi
- Department of Molecular Biology, Institute of Biochemistry and Molecular Biology, Semmelweis University, Budapest, Hungary
| | - Csaba Barta
- Department of Molecular Biology, Institute of Biochemistry and Molecular Biology, Semmelweis University, Budapest, Hungary
| | - Simone Berkel
- Institute of Human Genetics, Heidelberg University, Heidelberg, Germany
| | - Kazi A Alam
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Aurora Martinez
- Department of Biomedicine, University of Bergen, Bergen, Norway
- K.G. Jebsen Center for Translational Research in Parkinson's Disease, University of Bergen, Neuro-SysMed Center, Department of Neurology, Haukeland University Hospital, Bergen, Norway
| | - Jan Haavik
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Aet O'Leary
- Department of Psychiatry, University Hospital, Frankfurt, Germany
| | - David Slattery
- Department of Psychiatry, Psychosomatics and Psychotherapy, Goethe-Universität, Frankfurt, Germany
| | - Mairéad Sullivan
- Conway Institute of Biomedical and Biomolecular Research, School of Medicine, University College Dublin, Dublin, Ireland
| | - Jeffrey Glennon
- Conway Institute of Biomedical and Biomolecular Research, School of Medicine, University College Dublin, Dublin, Ireland
| | - Jan K Buitelaar
- Department of Cognitive Neuroscience, Radboud University Medical Center, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| | - Janita Bralten
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| | - Barbara Franke
- Department of Cognitive Neuroscience, Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| | - Geert Poelmans
- Department of Cognitive Neuroscience, Radboud University Medical Center, Nijmegen, The Netherlands.
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands.
| |
Collapse
|
5
|
Kulkarni R, Kumari S, Dhapola R, Sharma P, Singh SK, Medhi B, HariKrishnaReddy D. Association Between the Gut Microbiota and Alzheimer's Disease: An Update on Signaling Pathways and Translational Therapeutics. Mol Neurobiol 2024:10.1007/s12035-024-04545-2. [PMID: 39460901 DOI: 10.1007/s12035-024-04545-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 10/10/2024] [Indexed: 10/28/2024]
Abstract
Alzheimer's disease (AD) is a cognitive disease with high morbidity and mortality. In AD patients, the diversity of the gut microbiota is altered, which influences pathology through the gut-brain axis. Probiotic therapy alleviates pathological and psychological consequences by restoring the diversity of the gut microbial flora. This study addresses the role of altered gut microbiota in the progression of neuroinflammation, which is a major hallmark of AD. This process begins with the activation of glial cells, leading to the release of proinflammatory cytokines and the modulation of cholinergic anti-inflammatory pathways. Short-chain fatty acids, which are bacterial metabolites, provide neuroprotective effects and maintain blood‒brain barrier integrity. Furthermore, the gut microbiota stimulates oxidative stress and mitochondrial dysfunction, which promote AD progression. The signaling pathways involved in gut dysbiosis-mediated neuroinflammation-mediated promotion of AD include cGAS-STING, C/EBPβ/AEP, RAGE, TLR4 Myd88, and the NLRP3 inflammasome. Preclinical studies have shown that natural extracts such as Ganmaidazao extract, isoorentin, camelia oil, Sparassis crispa-1, and xanthocerasides improve gut health and can delay the worsening of AD. Clinical studies using probiotics such as Bifidobacterium spp., yeast beta-glucan, and drugs such as sodium oligomannate and rifaximine have shown improvements in gut health, resulting in the amelioration of AD symptoms. This study incorporates the most current research on the pathophysiology of AD involving the gut microbiota and highlights the knowledge gaps that need to be filled to develop potent therapeutics against AD.
Collapse
Affiliation(s)
- Rutweek Kulkarni
- Advanced Pharmacology and Neuroscience Laboratory, Department of Pharmacology, School of Health Sciences, Central University of Punjab, Bathinda, 151401, Punjab, India
| | - Sneha Kumari
- Advanced Pharmacology and Neuroscience Laboratory, Department of Pharmacology, School of Health Sciences, Central University of Punjab, Bathinda, 151401, Punjab, India
| | - Rishika Dhapola
- Advanced Pharmacology and Neuroscience Laboratory, Department of Pharmacology, School of Health Sciences, Central University of Punjab, Bathinda, 151401, Punjab, India
| | - Prajjwal Sharma
- Advanced Pharmacology and Neuroscience Laboratory, Department of Pharmacology, School of Health Sciences, Central University of Punjab, Bathinda, 151401, Punjab, India
| | - Sunil K Singh
- Department of Biochemistry, School of Basic Sciences, Central University of Punjab, Ghudda, Bathinda, Punjab, India
| | - Bikash Medhi
- Department of Pharmacology, Post Graduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | - Dibbanti HariKrishnaReddy
- Advanced Pharmacology and Neuroscience Laboratory, Department of Pharmacology, School of Health Sciences, Central University of Punjab, Bathinda, 151401, Punjab, India.
| |
Collapse
|
6
|
Guo Y, Cai C, Zhang B, Tan B, Tang Q, Lei Z, Qi X, Chen J, Zheng X, Zi D, Li S, Tan J. Targeting USP11 regulation by a novel lithium-organic coordination compound improves neuropathologies and cognitive functions in Alzheimer transgenic mice. EMBO Mol Med 2024:10.1038/s44321-024-00146-7. [PMID: 39394468 DOI: 10.1038/s44321-024-00146-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 09/13/2024] [Accepted: 09/16/2024] [Indexed: 10/13/2024] Open
Abstract
Alzheimer's Disease (AD), as the most common neurodegenerative disease worldwide, severely impairs patients' cognitive functions. Although its exact etiology remains unclear, the abnormal aggregations of misfolded β-amyloid peptide and tau protein are considered pivotal in its pathological progression. Recent studies identify ubiquitin-specific protease 11 (USP11) as the key regulator of tau deubiquitination, exacerbating tau aggregation and AD pathology. Thereby, inhibiting USP11 function, via either blocking USP11 activity or lowering USP11 protein level, may serve as an effective therapeutic strategy against AD. Our research introduces IsoLiPro, a unique lithium isobutyrate-L-proline coordination compound, effectively lowers USP11 protein level and enhances tau ubiquitination in vitro. Additionally, long-term oral administration of IsoLiPro dramatically reduces total and phosphorylated tau levels in AD transgenic mice. Moreover, IsoLiPro also significantly lessens β-amyloid deposition and synaptic damage, improving cognitive functions in these animal models. These results indicate that IsoLiPro, as a novel small-molecule USP11 inhibitor, can effectively alleviate AD-like pathologies and improve cognitive functions, offering promise as a potential multi-targeting therapeutic agent against AD.
Collapse
Affiliation(s)
- Yi Guo
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education; Key Laboratory of Molecular Biology, Guizhou Medical University, Guiyang, 550025, Guizhou, China
| | - Chuanbin Cai
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education; Key Laboratory of Molecular Biology, Guizhou Medical University, Guiyang, 550025, Guizhou, China
| | - Bingjie Zhang
- Anyu Biotechnology (Hangzhou) Co., Ltd., Hangzhou, 310000, Zhejiang, China
| | - Bo Tan
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong SAR, China
| | - Qinmin Tang
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education; Key Laboratory of Molecular Biology, Guizhou Medical University, Guiyang, 550025, Guizhou, China
| | - Zhifeng Lei
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education; Key Laboratory of Molecular Biology, Guizhou Medical University, Guiyang, 550025, Guizhou, China
| | - Xiaolan Qi
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education; Key Laboratory of Molecular Biology, Guizhou Medical University, Guiyang, 550025, Guizhou, China
| | - Jiang Chen
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education; Key Laboratory of Molecular Biology, Guizhou Medical University, Guiyang, 550025, Guizhou, China
- Department of Pharmacy, School of Medicine, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Xiaojiang Zheng
- Anyu Biotechnology (Hangzhou) Co., Ltd., Hangzhou, 310000, Zhejiang, China
| | - Dan Zi
- Department of Gynecology, Guizhou Provincial People's Hospital, Guiyang, 550025, Guizhou, China
| | - Song Li
- First Affiliated Hospital of Dalian Medical University, Dalian, 116021, Liaoning, China.
| | - Jun Tan
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education; Key Laboratory of Molecular Biology, Guizhou Medical University, Guiyang, 550025, Guizhou, China.
- Anyu Biotechnology (Hangzhou) Co., Ltd., Hangzhou, 310000, Zhejiang, China.
- Institute of Translational Medicine; Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, 310015, Zhejiang, China.
| |
Collapse
|
7
|
Childs R, Karamacoska D, Lim CK, Steiner-Lim GZ. "Let's talk about sex, inflammaging, and cognition, baby": A meta-analysis and meta-regression of 106 case-control studies on mild cognitive impairment and Alzheimer's disease. Brain Behav Immun Health 2024; 40:100819. [PMID: 39161876 PMCID: PMC11331696 DOI: 10.1016/j.bbih.2024.100819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 06/21/2024] [Accepted: 07/06/2024] [Indexed: 08/21/2024] Open
Abstract
Background Chronic inflammation is recognised as an important component of Alzheimer's disease (AD), yet its relationship with cognitive decline, sex-differences, and age is not well understood. This study investigated the relationship between inflammatory markers, cognition, sex, and age in individuals with mild cognitive impairment (MCI) and AD. Methods A systematic review was performed to identify case-control studies which measured cognitive function and inflammatory markers in serum, plasma, and cerebrospinal fluid in individuals with MCI or AD compared with healthy control (HC) participants. Meta-analysis was performed with Hedges' g calculated in a random effects model. Meta-regression was conducted using age, sex, and mini-mental status exam (MMSE) values. Results A total of 106 studies without a high risk of bias were included in the meta-analysis including 18,145 individuals: 5625 AD participants, 3907 MCI participants, and 8613 HC participants. Combined serum and plasma meta-analysis found that IL1β, IL6, IL8, IL18, CRP, and hsCRP were significantly raised in individuals with AD compared to HC. In CSF, YKL40, and MCP-1 were raised in AD compared to HC. YKL40 was also raised in MCI compared to HC. Meta-regression analysis highlighted several novel findings: MMSE was negatively correlated with IL6 and positively correlated with IL1α in AD, while in MCI studies, MMSE was negatively correlated with IL8 and TNFα. Meta-regression also revealed sex-specific differences in levels of IL1α, IL4, IL6, IL18, hsCRP, MCP-1, and YKL-40 across AD and MCI studies, and age was found to account for heterogeneity of CRP, MCP-1, and IL4 in MCI and AD. Conclusion Elevated levels of IL6 and YKL40 may reflect microglial inflammatory activity in both MCI and AD. Systemic inflammation may interact with the central nervous system, as poor cognitive function in individuals with AD and MCI was associated with higher levels of serum and plasma proinflammatory cytokines IL6 and TNFα. Moreover, variations of systemic inflammation between males and females may be modulated by sex-specific hormonal changes, such as declining oestrogen levels in females throughout the menopause transition. Longitudinal studies sampling a range of biospecimen types are needed to elucidate the nuances of the relationship between inflammation and cognition in individuals with MCI and AD, and understand how systemic and central inflammation differentially impact cognitive function.
Collapse
Affiliation(s)
- Ryan Childs
- NICM Health Research Institute, Western Sydney University, Penrith, NSW, 2751, Australia
| | - Diana Karamacoska
- NICM Health Research Institute, Western Sydney University, Penrith, NSW, 2751, Australia
| | - Chai K. Lim
- Faculty of Medicine, Health, and Human Sciences, Macquarie University, Macquarie Park NSW, 2190, Australia
| | | |
Collapse
|
8
|
Lv T, Yu H, Ji Z, Ma L. The association between arthritis and cognitive function impairment in the older adults: Based on the NHANES 2011-2014. PLoS One 2024; 19:e0310546. [PMID: 39331629 PMCID: PMC11432873 DOI: 10.1371/journal.pone.0310546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 09/02/2024] [Indexed: 09/29/2024] Open
Abstract
OBJECTIVE Arthritis has been postulated as a prevalent potential risk factor for the emergence of dementia and cognitive impairment. This conjecture prompted an examination of the correlation between arthritis and cognitive impairment using the National Health and Nutrition Examination Survey (NHANES) repository. The analysis was meticulously adjusted for potential confounders such as age and assorted systemic comorbidities, to ensure robustness in the results obtained. METHODS Among 2,398 adults aged 60 years and above, logistic regression and cubic spline models were employed to elucidate the relationship between arthritis and cognitive performance. This was assessed utilizing tests such as Immediate Recall test (IRT), Delayed Recall test (DRT), Animal Fluency Test (AFT), and Digit Symbol Substitution Test (DSST). RESULTS In our investigation, a total of 19931 individuals were analyzed, among which 2,398 patients (12.03%) were identified with arthritis. Subjects with arthritis inflammation had lower DSST and AFT scores compared to the healthy group, indicating cognitive decline. After adjusting for all covariates, arthritis was significantly associated with higher DSST and AFT scores by logistic regression modeling (OR: 0.796, 95% CI: 0.649-0.975; OR: 0.769, 95% CI: 0.611-0.968). CONCLUSION Our analysis underscores the potential linkage between arthritis prevalence and cognitive impairment within a nationally representative of US older adults.
Collapse
Affiliation(s)
- Taihong Lv
- Department of General Practice, Beijing TianTan Hospital, Capital Medical University, Beijing, China
| | - Hanming Yu
- Department of Pulmonary and Critical Care Medicine, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Zishuo Ji
- Department of Neurology, Beijing TianTan Hospital, Capital Medical University, Beijing, China
| | - Li Ma
- Department of General Practice, Beijing TianTan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
9
|
Li QQ, Yu Q, Liu ZY, Zhang Q, Li MY, Hu Y. Sevoflurane anesthesia during late gestation induces cognitive disorder in rat offspring via the TLR4/BDNF/TrkB/CREB pathway. J Neuropathol Exp Neurol 2024:nlae096. [PMID: 39271176 DOI: 10.1093/jnen/nlae096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2024] Open
Abstract
Sevoflurane (Sevo) is widely used for general anesthesia during pregnancy. Emerging evidence indicates that maternal Sevo exposure can trigger developmental neurotoxicity in the offspring. Nonetheless, the underlying mechanisms need further investigation. Pregnant Sprague-Dawley rats on gestational day 18 were exposed to 3.5% Sevo to induce the rat model of neurotoxicity. TAK-242, a TLR4 inhibitor, was administrated to inhibit the signaling transduction. Hippocampal tissues of rat offspring were harvested for immunohistochemical staining, TUNEL staining, Western blotting, ELISA, and measurement of oxidative stress-related markers. Serum samples were collected to evaluate lipid metabolism-associated factors. Morris water maze was implemented to test the cognitive function of offspring rats. Rat hippocampal neurons were isolated to elucidate the effect of TAK-242 on the BDNF/TrkB/CREB signaling in vitro. The results showed that maternal Sevo exposure during the third trimester induced neuroinflammation, lipid metabolism disturbance, and oxidative stress, and impaired the spatial learning and memory of rat offspring. Sevo upregulated TLR4 and impeded BDNF/TrkB/CREB signaling transduction in the hippocampus of rat offspring; TAK-242 administration reversed these effects. In conclusion, Sevo anesthesia during late gestation impairs the learning and memory ability of rat offspring possibly by promoting neuroinflammation and disturbing lipid metabolism via the TLR4/BDNF/TrkB/CREB pathway.
Collapse
Affiliation(s)
- Qian-Qian Li
- Department of Anesthesiology and Operative Medicine, Medical Center of Anesthesiology and Pain, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Qi Yu
- Department of Anesthesiology and Operative Medicine, Medical Center of Anesthesiology and Pain, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Zhi-Yi Liu
- Department of Anesthesiology and Operative Medicine, Medical Center of Anesthesiology and Pain, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Qin Zhang
- Department of Anesthesiology and Operative Medicine, Medical Center of Anesthesiology and Pain, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Meng-Yuan Li
- Department of Anesthesiology and Operative Medicine, Medical Center of Anesthesiology and Pain, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Yan Hu
- Department of Anesthesiology and Operative Medicine, Medical Center of Anesthesiology and Pain, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| |
Collapse
|
10
|
Fairley LH, Lai KO, Grimm A, Eckert A, Barron AM. The mitochondrial translocator protein (TSPO) in Alzheimer's disease: Therapeutic and immunomodulatory functions. Biochimie 2024; 224:120-131. [PMID: 38971458 DOI: 10.1016/j.biochi.2024.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 07/03/2024] [Accepted: 07/03/2024] [Indexed: 07/08/2024]
Abstract
The translocator protein (TSPO) has been widely investigated as a PET-imaging biomarker of neuroinflammation and, more recently, as a therapeutic target for the treatment of neurodegenerative disease. TSPO ligands have been shown to exert neuroprotective effects in vivo and in vitro models of Alzheimer's disease (AD), by reducing toxic beta amyloid peptides, and attenuating brain atrophy. Recent transcriptomic and proteomic analyses, and the generation of TSPO-KO mice, have enabled new insights into the mechanistic function of TSPO in AD. Using a multi-omics approach in both TSPO-KO- and TSPO ligand-treated mice, we have demonstrated a key role for TSPO in microglial respiratory metabolism and phagocytosis in AD. In this review, we discuss emerging evidence for therapeutic and immunomodulatory functions of TSPO in AD, and new tools for studying TSPO in the brain.
Collapse
Affiliation(s)
- Lauren H Fairley
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, 308232, Singapore
| | - Kei Onn Lai
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, 308232, Singapore
| | - Amandine Grimm
- Transfaculty Research Platform, Molecular & Cognitive Neuroscience, Neurobiology Laboratory for Brain Aging and Mental Health, University of Basel, Basel, Switzerland; Psychiatric University Clinics, Basel, Switzerland
| | - Anne Eckert
- Transfaculty Research Platform, Molecular & Cognitive Neuroscience, Neurobiology Laboratory for Brain Aging and Mental Health, University of Basel, Basel, Switzerland; Psychiatric University Clinics, Basel, Switzerland
| | - Anna M Barron
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, 308232, Singapore.
| |
Collapse
|
11
|
Zhang R, Liu S, Mousavi SM. Cognitive Dysfunction and Exercise: From Epigenetic to Genetic Molecular Mechanisms. Mol Neurobiol 2024; 61:6279-6299. [PMID: 38286967 DOI: 10.1007/s12035-024-03970-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 01/19/2024] [Indexed: 01/31/2024]
Abstract
Maintaining good health is crucial, and exercise plays a vital role in achieving this goal. It offers a range of positive benefits for cognitive function, regardless of age. However, as our population ages and life expectancy increases, cognitive impairment has become a prevalent issue, often coexisting with age-related neurodegenerative conditions. This can result in devastating consequences such as memory loss, difficulty speaking, and confusion, greatly hindering one's ability to lead an ordinary life. In addition, the decrease in mental capacity has a significant effect on an individual's physical and emotional well-being, greatly reducing their overall level of contentment and causing a significant financial burden for communities. While most current approaches aim to slow the decline of cognition, exercise offers a non-pharmacological, safe, and accessible solution. Its effects on cognition are intricate and involve changes in the brain's neural plasticity, mitochondrial stability, and energy metabolism. Moreover, exercise triggers the release of cytokines, playing a significant role in the body-brain connection and its impact on cognition. Additionally, exercise can influence gene expression through epigenetic mechanisms, leading to lasting improvements in brain function and behavior. Herein, we summarized various genetic and epigenetic mechanisms that can be modulated by exercise in cognitive dysfunction.
Collapse
Affiliation(s)
- Runhong Zhang
- Department of Physical Education, Luliang University, Lishi, 033000, Shanxi, China.
| | - Shangwu Liu
- Department of Physical Education, Luliang University, Lishi, 033000, Shanxi, China
| | | |
Collapse
|
12
|
Li S, Zhao L, Xiao J, Guo Y, Fu R, Zhang Y, Xu S. The gut microbiome: an important role in neurodegenerative diseases and their therapeutic advances. Mol Cell Biochem 2024; 479:2217-2243. [PMID: 37787835 DOI: 10.1007/s11010-023-04853-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 09/06/2023] [Indexed: 10/04/2023]
Abstract
There are complex interactions between the gut and the brain. With increasing research on the relationship between gut microbiota and brain function, accumulated clinical and preclinical evidence suggests that gut microbiota is intimately involved in the pathogenesis of neurodegenerative diseases (NDs). Increasingly studies are beginning to focus on the association between gut microbiota and central nervous system (CNS) degenerative pathologies to find potential therapies for these refractory diseases. In this review, we summarize the changes in the gut microbiota in Alzheimer's disease, Parkinson's disease, multiple sclerosis, and amyotrophic lateral sclerosis and contribute to our understanding of the function of the gut microbiota in NDs and its possible involvement in the pathogenesis. We subsequently discuss therapeutic approaches targeting gut microbial abnormalities in these diseases, including antibiotics, diet, probiotics, and fecal microbiota transplantation (FMT). Furthermore, we summarize some completed and ongoing clinical trials of interventions with gut microbes for NDs, which may provide new ideas for studying NDs.
Collapse
Affiliation(s)
- Songlin Li
- Medical Experiment Center, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Linna Zhao
- Medical Experiment Center, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Tianjin Key Laboratory of Translational Research of TCM Prescription and Syndrome, Tianjin, China
| | - Jie Xiao
- Medical Experiment Center, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yuying Guo
- Medical Experiment Center, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Tianjin Key Laboratory of Translational Research of TCM Prescription and Syndrome, Tianjin, China
| | - Rong Fu
- Medical Experiment Center, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yunsha Zhang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Shixin Xu
- Medical Experiment Center, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China.
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China.
- Tianjin Key Laboratory of Translational Research of TCM Prescription and Syndrome, Tianjin, China.
| |
Collapse
|
13
|
Wang K, Zan S, Xu J, Sun W, Li C, Zhang W, Ni D, Cheng R, Li L, Yu Z, Zhang L, Liu S, Cui Y, Zhang Y. Yishen Huazhuo decoction regulates microglial polarization to reduce Alzheimer's disease-related neuroinflammation through TREM2. Heliyon 2024; 10:e35800. [PMID: 39220981 PMCID: PMC11363852 DOI: 10.1016/j.heliyon.2024.e35800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 07/29/2024] [Accepted: 08/05/2024] [Indexed: 09/04/2024] Open
Abstract
Background Aging is the primary risk factor for the onset of Alzheimer's disease (AD). Inflamma-aging is a major feature in the process of aging, and the chronic neuroinflammation caused by inflamma-aging is closely related to AD. As the main participant of neuroinflammation, the polarization of microglia (MG) could influence the development of neuroinflammation. Objective This study aims to observe the impact of YHD on microglia (MG) polarization and neuroinflammation to delay the onset and progression of AD. Methods In vivo experiment, four-month senescence accelerated mouse prone 8 (SAMP8) were used as the model group, the SAMR1 mice of the same age were used as the control group. In YHD group, 6.24 g/kg YHD was intragastrically administrated continuously for 12 weeks, and Ibuprofen 0.026 g/kg in positive control group. Morris Water Maze test was used to evaluate the learning and memory ability, Nissl's staining and immunofluorescence double staining for neuron damage and MG M1/M2 polarization, Enzyme-Linked Immunosorbent Assay (ELISA) for neuroinflammation biomarkers in hippocampus, Western blot for key protein expression of TREM2/NF-κB signaling pathway. In vitro experiments, 10 μM/l Aβ1-42 induced BV-2 cell model was used to re-verify the effect of YHD regulating MG polarization to reduce neuroinflammation. Also, TREM2 small interfering RNA (siRNA) was used to clarify the key target of YHD. Results YHD could improve the learning and memory ability of SAMP8 mice evaluated by the Morris Water Maze test. Like Ibuprofen, YHD could regulate the M1/M2 polarization of MG and the levels of neuroinflammatory markers TNF-α and IL-10 in hippocampus, and relieve neuroinflammation and neuron loss. In addition, YHD could also regulate the expression of PU.1, TREM2, p-NF-κB P65 in the TREM2/NF-κB signaling pathway. Further in vitro experiments, we found that YHD had a significant regulatory effect on Aβ1-42-induced BV-2 cell polarization, and it could significantly increase PU.1, TREM2, decrease p-NF-κB P65, p-IKKβ, TNF-α, IL-6, IL-1β. At the same time, using siRNA to inhibit TREM2, it proved that TREM2 was a key target for YHD to promote Aβ1-42-induced BV-2 cell M2 polarization to reduce neuroinflammation. Conclusions YHD could regulate the TREM2/NF-κB signaling pathway through TREM2, thereby to adjust MG polarization and reduce AD-related neuroinflammation.
Collapse
Affiliation(s)
- Kai Wang
- The Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300250, China
| | - Shujie Zan
- Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Jiachun Xu
- The Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300250, China
| | - Weiming Sun
- The Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300250, China
| | - Caixia Li
- Tianjin Key Laboratory of Acute Abdomen Disease Associated Organ Injury and ITCWM Repair, Institute of Acute Abdominal Diseases of Integrated Traditional Chinese and Western Medicine, Tianjin Nankai Hospital, Nankai Clinical College, Tianjin Medical University, Tianjin, 300100 China
| | - Wei Zhang
- Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Daoyan Ni
- The Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300250, China
| | - Ruzhen Cheng
- Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Lin Li
- Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Zhen Yu
- Department of Encephalopathy, Tianjin Academy of Traditional Chinese Medicine Affiliated Hospital, Tianjin 300120, China
| | - Linlin Zhang
- The Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300250, China
| | - Shuang Liu
- The Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300250, China
| | - Yuanwu Cui
- Shenzhen Traditional Chinese Medicine Treatment Hospital, Shenzhen, 518100, China
| | - Yulian Zhang
- The Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300250, China
| |
Collapse
|
14
|
Guirguis V, Pupillo F, Rodrigues S, Walker N, Roth H, Liedig CE, Maggi RG, Breitschwerdt EB, Frohlich F. Bartonella spp. infection in people with Mild Cognitive Impairment: A pilot study. PLoS One 2024; 19:e0307060. [PMID: 39172940 PMCID: PMC11340988 DOI: 10.1371/journal.pone.0307060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 06/30/2024] [Indexed: 08/24/2024] Open
Abstract
Mild Cognitive Impairment (MCI) is a neurological disorder at the transition between normal cognitive decline and dementia. Despite the potential role of neuroinflammation in the pathogenesis of MCI, infectious triggers remain mostly unknown. Infection with Bartonella spp., a zoonotic bacterium, has recently been associated with diffuse neurological and psychiatric symptoms. Given the preferential endothelial localization of Bartonella spp. and the role of vascular changes in neurocognitive decline, we hypothesized that there is an association between Bartonella spp. infection and pathologically accelerated decline in cognitive function in aging. To test this hypothesis, we collected serological and molecular markers of past and present Bartonella spp. infection in a sample of older people with and without MCI. Samples were processed in a blinded way to exclude laboratory biases. Contrary to our hypothesis, people with MCI were not more likely than people without MCI to have an active Bartonella spp. infection as measured by droplet digital PCR (p = 0.735) and quantitative PCR (p = 1). In addition, there was no significant difference in positive serological results between cases and controls (p = 0.461). Overall, higher-than-expected active Bartonella spp. infection (37% by ddPCR) and seroreactivity (71% by indirect fluorescent antibody assay) were found in people without MCI. Conclusions require caution, as our study was limited by the small number of cases with MCI. Overall, our results identified a higher than previously recognized rate of exposure and infection with Bartonella spp. in this older study population but does not support a specific role for such infection in MCI.
Collapse
Affiliation(s)
- Verina Guirguis
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
- Carolina Center for Neurostimulation, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
| | - Francesca Pupillo
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
- Carolina Center for Neurostimulation, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
| | - Siena Rodrigues
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
- Carolina Center for Neurostimulation, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
| | - Nathan Walker
- Department of Neurology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
| | - Heidi Roth
- Department of Neurology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
| | - Chance E. Liedig
- Intracellular Pathogens Research Laboratory, Center for Comparative Medicine, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, United States of America
| | - Richardo G. Maggi
- Intracellular Pathogens Research Laboratory, Center for Comparative Medicine, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, United States of America
| | - Edward B. Breitschwerdt
- Department of Neurology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
| | - Flavio Frohlich
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
- Carolina Center for Neurostimulation, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
| |
Collapse
|
15
|
Wang W, Long P, He M, Luo T, Li Y, Yang L, Zhang Y, Wen X. Pomegranate polyphenol punicalagin as a nutraceutical for mitigating mild cognitive impairment: An overview of beneficial properties. Eur J Pharmacol 2024; 977:176750. [PMID: 38897439 DOI: 10.1016/j.ejphar.2024.176750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/25/2024] [Accepted: 06/16/2024] [Indexed: 06/21/2024]
Abstract
Dementia treatment has become a global research priority, driven by the increase in the aging population. Punicalagin, the primary polyphenol found in pomegranate fruit, exhibits a variety of benefits. Today, a growing body of research is showing that punicalagin is a nutraceutical for the prevention of mild cognitive impairment (MCI). However, a comprehensive review is still lacking. The aim of this paper is to provide a comprehensive review of the physicochemical properties, origin and pharmacokinetics of punicalagin, while emphasizing the significance and mechanisms of its potential role in the prevention and treatment of MCI. Preclinical and clinical studies have demonstrated that Punicalagin possesses the potential to effectively target and enhance the treatment of MCI. Potential mechanisms by which punicalagin alleviates MCI include antioxidative damage, anti-neuroinflammation, promotion of neurogenesis, and modulation of neurotransmitter interactions. Overall, punicalagin is safer and shows potential as a therapeutic compound for the prevention and treatment of MCI, although more rigorous randomized controlled trials involving large populations are required.
Collapse
Affiliation(s)
- Wenjun Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; Department of Ophthalmology, The General Hospital of Western Theater Command, Chengdu, 610000, China
| | - Pan Long
- Department of Ophthalmology, The General Hospital of Western Theater Command, Chengdu, 610000, China
| | - Mengshan He
- The Academy of Chinese Health Risks, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Tao Luo
- Department of Ophthalmology, The General Hospital of Western Theater Command, Chengdu, 610000, China
| | - Yubo Li
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; Department of Traditional Chinese Medicine, The General Hospital of Western Theater Command, Chengdu, 610000, China
| | - Ling Yang
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; Department of Traditional Chinese Medicine, The General Hospital of Western Theater Command, Chengdu, 610000, China
| | - Yi Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Xudong Wen
- Department of Gastroenterology, Chengdu Integrated TCM&Western Medicine Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu, 610059, China.
| |
Collapse
|
16
|
Hou J, Wang X, Zhang J, Shen Z, Li X, Yang Y. Chuanxiong Renshen Decoction Inhibits Alzheimer's Disease Neuroinflammation by Regulating PPARγ/NF-κB Pathway. Drug Des Devel Ther 2024; 18:3209-3232. [PMID: 39071817 PMCID: PMC11283787 DOI: 10.2147/dddt.s462266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 07/12/2024] [Indexed: 07/30/2024] Open
Abstract
Background and Aim Previous studies of our research group have shown that Chuanxiong Renshen Decoction (CRD) has the effect of treating AD, but the exact mechanism of its effect is still not clarified. The aim of this study was to investigate the effect and mechanism of CRD on AD neuroinflammation. Materials and Methods Morris Water Maze (MWM) tests were employed to assess the memory and learning capacity of AD mice. HE and Nissl staining were used to observe the neural cells of mice. The expression of Iba-1 and CD86 were detected by immunohistochemical staining. Utilize UHPLC-MS/MS metabolomics techniques and the KEGG to analyze the metabolic pathways of CRD against AD. Lipopolysaccharide (LPS) induced BV2 microglia cells to construct a neuroinflammatory model. The expression of Iba-1 and CD86 were detected by immunofluorescence and flow cytometry. The contents of TNF-α and IL-1β were detected by ELISA. Western blot assay was used to detect the expression of PPARγ, p-NF-κB p65, NF-κB p65 proteins and inflammatory cytokines iNOS and COX-2 in PPARγ/NF-κB pathway with and without PPARγ inhibitor GW9662. Results CRD ameliorated the learning and memory ability of 3×Tg-AD mice, repaired the damaged nerve cells in the hippocampus, reduced the area of Iba-1 and CD86 positive areas in both the hippocampus and cortex regions, as well as attenuated serum levels of IL-1β and TNF-α in mice. CRD-containing serum significantly decreased the expression level of Iba-1, significantly reduced the levels of TNF-α and IL-1β, significantly increased the protein expression of PPARγ, and significantly decreased the proteins expression of iNOS, COX-2 and p-NF-κB p65 in BV2 microglia cells. After addition of PPARγ inhibitor GW9662, the inhibitory effect of CRD-containing serum on NF-κB activation was significantly weakened. Conclusion CRD can activate PPARγ, regulating PPARγ/NF-κB signaling pathway, inhibiting microglia over-activation and reducing AD neuroinflammation.
Collapse
Affiliation(s)
- Jinling Hou
- School of Pharmacy, Hangzhou Medical College, Hangzhou, People’s Republic of China
| | - Xiaoyan Wang
- School of Pharmacy, Hangzhou Medical College, Hangzhou, People’s Republic of China
| | - Jian Zhang
- School of Pharmacy, Hangzhou Medical College, Hangzhou, People’s Republic of China
| | - Zhuojun Shen
- School of Pharmacy, Hangzhou Medical College, Hangzhou, People’s Republic of China
| | - Xiang Li
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, People’s Republic of China
| | - Yuanxiao Yang
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, People’s Republic of China
| |
Collapse
|
17
|
Xia Y, Dore V, Fripp J, Bourgeat P, Laws SM, Fowler CJ, Rainey-Smith SR, Martins RN, Rowe C, Masters CL, Coulson EJ, Maruff P. Association of Basal Forebrain Atrophy With Cognitive Decline in Early Alzheimer Disease. Neurology 2024; 103:e209626. [PMID: 38885444 PMCID: PMC11254448 DOI: 10.1212/wnl.0000000000209626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 05/09/2024] [Indexed: 06/20/2024] Open
Abstract
BACKGROUND AND OBJECTIVES In early Alzheimer disease (AD), β-amyloid (Aβ) deposition is associated with volume loss in the basal forebrain (BF) and cognitive decline. However, the extent to which Aβ-related BF atrophy manifests as cognitive decline is not understood. This study sought to characterize the relationship between BF atrophy and the decline in memory and attention in patients with early AD. METHODS Participants from the Australian Imaging, Biomarkers and Lifestyle (AIBL) study who completed Aβ-PET imaging and repeated MRI and cognitive assessments were included. At baseline, participants were classified based on their clinical dementia stage and Aβ status, yielding groups that were cognitively unimpaired (CU) Aβ-, CU Aβ+, and mild cognitive impairment (MCI) Aβ+. Linear mixed-effects models were used to assess changes in volumetric measures of BF subregions and the hippocampus and changes in AIBL memory and attention composite scores for each group compared with CU Aβ- participants. Associations between Aβ burden, brain atrophy, and cognitive decline were evaluated and explored further using mediation analyses. RESULTS The cohort included 476 participants (72.6 ± 5.9 years, 55.0% female) with longitudinal data from a median follow-up period of 6.1 years. Compared with the CU Aβ- group (n = 308), both CU Aβ+ (n = 107) and MCI Aβ+ (n = 61) adults showed faster decline in BF and hippocampal volumes and in memory and attention (Cohen d = 0.73-1.74). Rates of atrophy in BF subregions and the hippocampus correlated with cognitive decline, and each individually mediated the impact of Aβ burden on memory and attention decline. When all mediators were considered simultaneously, hippocampal atrophy primarily influenced the effect of Aβ burden on memory decline (β [SE] = -0.139 [0.032], proportion mediated [PM] = 28.0%) while the atrophy of the posterior nucleus basalis of Meynert in the BF (β [SE] = -0.068 [0.029], PM = 13.1%) and hippocampus (β [SE] = -0.121 [0.033], PM = 23.4%) distinctively influenced Aβ-related attention decline. DISCUSSION These findings highlight the significant role of BF atrophy in the complex pathway linking Aβ to cognitive impairment in early stages of AD. Volumetric assessment of BF subregions could be essential in elucidating the relationships between the brain structure and behavior in AD.
Collapse
Affiliation(s)
- Ying Xia
- From the The Australian e-Health Research Centre (Y.X., V.D., J.F., P.B.), CSIRO Health and Biosecurity, Brisbane; Department of Nuclear Medicine and Centre for PET (V.D., C.R.), Austin Health, Melbourne; Centre for Precision Health (S.M.L.), Edith Cowan University; Collaborative Genomics and Translation Group (S.M.L.), School of Medical and Health Sciences, Edith Cowan University, Joondalup; Curtin Medical School (S.M.L.), Curtin University, Bentley; The Florey Institute of Neuroscience and Mental Health (C.J.F., C.R., C.L.M., P.M.), The University of Melbourne; Centre for Healthy Ageing (S.R.R.-S.), Health Futures Institute, Murdoch University; Australian Alzheimer's Research Foundation (S.R.R.-S., R.N.M.), Sarich Neuroscience Research Institute, Nedlands; School of Psychological Science (S.R.R.-S.), University of Western Australia, Crawley; School of Medical and Health Sciences (S.R.R.-S., R.N.M.), Edith Cowan University, Joondalup; Department of Biomedical Sciences (R.N.M.), Macquarie University, Sydney; Queensland Brain Institute (E.J.C.), and School of Biomedical Sciences (E.J.C.), The University of Queensland, Brisbane; and Cogstate Ltd. (P.M.), Melbourne, Australia
| | - Vincent Dore
- From the The Australian e-Health Research Centre (Y.X., V.D., J.F., P.B.), CSIRO Health and Biosecurity, Brisbane; Department of Nuclear Medicine and Centre for PET (V.D., C.R.), Austin Health, Melbourne; Centre for Precision Health (S.M.L.), Edith Cowan University; Collaborative Genomics and Translation Group (S.M.L.), School of Medical and Health Sciences, Edith Cowan University, Joondalup; Curtin Medical School (S.M.L.), Curtin University, Bentley; The Florey Institute of Neuroscience and Mental Health (C.J.F., C.R., C.L.M., P.M.), The University of Melbourne; Centre for Healthy Ageing (S.R.R.-S.), Health Futures Institute, Murdoch University; Australian Alzheimer's Research Foundation (S.R.R.-S., R.N.M.), Sarich Neuroscience Research Institute, Nedlands; School of Psychological Science (S.R.R.-S.), University of Western Australia, Crawley; School of Medical and Health Sciences (S.R.R.-S., R.N.M.), Edith Cowan University, Joondalup; Department of Biomedical Sciences (R.N.M.), Macquarie University, Sydney; Queensland Brain Institute (E.J.C.), and School of Biomedical Sciences (E.J.C.), The University of Queensland, Brisbane; and Cogstate Ltd. (P.M.), Melbourne, Australia
| | - Jurgen Fripp
- From the The Australian e-Health Research Centre (Y.X., V.D., J.F., P.B.), CSIRO Health and Biosecurity, Brisbane; Department of Nuclear Medicine and Centre for PET (V.D., C.R.), Austin Health, Melbourne; Centre for Precision Health (S.M.L.), Edith Cowan University; Collaborative Genomics and Translation Group (S.M.L.), School of Medical and Health Sciences, Edith Cowan University, Joondalup; Curtin Medical School (S.M.L.), Curtin University, Bentley; The Florey Institute of Neuroscience and Mental Health (C.J.F., C.R., C.L.M., P.M.), The University of Melbourne; Centre for Healthy Ageing (S.R.R.-S.), Health Futures Institute, Murdoch University; Australian Alzheimer's Research Foundation (S.R.R.-S., R.N.M.), Sarich Neuroscience Research Institute, Nedlands; School of Psychological Science (S.R.R.-S.), University of Western Australia, Crawley; School of Medical and Health Sciences (S.R.R.-S., R.N.M.), Edith Cowan University, Joondalup; Department of Biomedical Sciences (R.N.M.), Macquarie University, Sydney; Queensland Brain Institute (E.J.C.), and School of Biomedical Sciences (E.J.C.), The University of Queensland, Brisbane; and Cogstate Ltd. (P.M.), Melbourne, Australia
| | - Pierrick Bourgeat
- From the The Australian e-Health Research Centre (Y.X., V.D., J.F., P.B.), CSIRO Health and Biosecurity, Brisbane; Department of Nuclear Medicine and Centre for PET (V.D., C.R.), Austin Health, Melbourne; Centre for Precision Health (S.M.L.), Edith Cowan University; Collaborative Genomics and Translation Group (S.M.L.), School of Medical and Health Sciences, Edith Cowan University, Joondalup; Curtin Medical School (S.M.L.), Curtin University, Bentley; The Florey Institute of Neuroscience and Mental Health (C.J.F., C.R., C.L.M., P.M.), The University of Melbourne; Centre for Healthy Ageing (S.R.R.-S.), Health Futures Institute, Murdoch University; Australian Alzheimer's Research Foundation (S.R.R.-S., R.N.M.), Sarich Neuroscience Research Institute, Nedlands; School of Psychological Science (S.R.R.-S.), University of Western Australia, Crawley; School of Medical and Health Sciences (S.R.R.-S., R.N.M.), Edith Cowan University, Joondalup; Department of Biomedical Sciences (R.N.M.), Macquarie University, Sydney; Queensland Brain Institute (E.J.C.), and School of Biomedical Sciences (E.J.C.), The University of Queensland, Brisbane; and Cogstate Ltd. (P.M.), Melbourne, Australia
| | - Simon M Laws
- From the The Australian e-Health Research Centre (Y.X., V.D., J.F., P.B.), CSIRO Health and Biosecurity, Brisbane; Department of Nuclear Medicine and Centre for PET (V.D., C.R.), Austin Health, Melbourne; Centre for Precision Health (S.M.L.), Edith Cowan University; Collaborative Genomics and Translation Group (S.M.L.), School of Medical and Health Sciences, Edith Cowan University, Joondalup; Curtin Medical School (S.M.L.), Curtin University, Bentley; The Florey Institute of Neuroscience and Mental Health (C.J.F., C.R., C.L.M., P.M.), The University of Melbourne; Centre for Healthy Ageing (S.R.R.-S.), Health Futures Institute, Murdoch University; Australian Alzheimer's Research Foundation (S.R.R.-S., R.N.M.), Sarich Neuroscience Research Institute, Nedlands; School of Psychological Science (S.R.R.-S.), University of Western Australia, Crawley; School of Medical and Health Sciences (S.R.R.-S., R.N.M.), Edith Cowan University, Joondalup; Department of Biomedical Sciences (R.N.M.), Macquarie University, Sydney; Queensland Brain Institute (E.J.C.), and School of Biomedical Sciences (E.J.C.), The University of Queensland, Brisbane; and Cogstate Ltd. (P.M.), Melbourne, Australia
| | - Christopher J Fowler
- From the The Australian e-Health Research Centre (Y.X., V.D., J.F., P.B.), CSIRO Health and Biosecurity, Brisbane; Department of Nuclear Medicine and Centre for PET (V.D., C.R.), Austin Health, Melbourne; Centre for Precision Health (S.M.L.), Edith Cowan University; Collaborative Genomics and Translation Group (S.M.L.), School of Medical and Health Sciences, Edith Cowan University, Joondalup; Curtin Medical School (S.M.L.), Curtin University, Bentley; The Florey Institute of Neuroscience and Mental Health (C.J.F., C.R., C.L.M., P.M.), The University of Melbourne; Centre for Healthy Ageing (S.R.R.-S.), Health Futures Institute, Murdoch University; Australian Alzheimer's Research Foundation (S.R.R.-S., R.N.M.), Sarich Neuroscience Research Institute, Nedlands; School of Psychological Science (S.R.R.-S.), University of Western Australia, Crawley; School of Medical and Health Sciences (S.R.R.-S., R.N.M.), Edith Cowan University, Joondalup; Department of Biomedical Sciences (R.N.M.), Macquarie University, Sydney; Queensland Brain Institute (E.J.C.), and School of Biomedical Sciences (E.J.C.), The University of Queensland, Brisbane; and Cogstate Ltd. (P.M.), Melbourne, Australia
| | - Stephanie R Rainey-Smith
- From the The Australian e-Health Research Centre (Y.X., V.D., J.F., P.B.), CSIRO Health and Biosecurity, Brisbane; Department of Nuclear Medicine and Centre for PET (V.D., C.R.), Austin Health, Melbourne; Centre for Precision Health (S.M.L.), Edith Cowan University; Collaborative Genomics and Translation Group (S.M.L.), School of Medical and Health Sciences, Edith Cowan University, Joondalup; Curtin Medical School (S.M.L.), Curtin University, Bentley; The Florey Institute of Neuroscience and Mental Health (C.J.F., C.R., C.L.M., P.M.), The University of Melbourne; Centre for Healthy Ageing (S.R.R.-S.), Health Futures Institute, Murdoch University; Australian Alzheimer's Research Foundation (S.R.R.-S., R.N.M.), Sarich Neuroscience Research Institute, Nedlands; School of Psychological Science (S.R.R.-S.), University of Western Australia, Crawley; School of Medical and Health Sciences (S.R.R.-S., R.N.M.), Edith Cowan University, Joondalup; Department of Biomedical Sciences (R.N.M.), Macquarie University, Sydney; Queensland Brain Institute (E.J.C.), and School of Biomedical Sciences (E.J.C.), The University of Queensland, Brisbane; and Cogstate Ltd. (P.M.), Melbourne, Australia
| | - Ralph N Martins
- From the The Australian e-Health Research Centre (Y.X., V.D., J.F., P.B.), CSIRO Health and Biosecurity, Brisbane; Department of Nuclear Medicine and Centre for PET (V.D., C.R.), Austin Health, Melbourne; Centre for Precision Health (S.M.L.), Edith Cowan University; Collaborative Genomics and Translation Group (S.M.L.), School of Medical and Health Sciences, Edith Cowan University, Joondalup; Curtin Medical School (S.M.L.), Curtin University, Bentley; The Florey Institute of Neuroscience and Mental Health (C.J.F., C.R., C.L.M., P.M.), The University of Melbourne; Centre for Healthy Ageing (S.R.R.-S.), Health Futures Institute, Murdoch University; Australian Alzheimer's Research Foundation (S.R.R.-S., R.N.M.), Sarich Neuroscience Research Institute, Nedlands; School of Psychological Science (S.R.R.-S.), University of Western Australia, Crawley; School of Medical and Health Sciences (S.R.R.-S., R.N.M.), Edith Cowan University, Joondalup; Department of Biomedical Sciences (R.N.M.), Macquarie University, Sydney; Queensland Brain Institute (E.J.C.), and School of Biomedical Sciences (E.J.C.), The University of Queensland, Brisbane; and Cogstate Ltd. (P.M.), Melbourne, Australia
| | - Christopher Rowe
- From the The Australian e-Health Research Centre (Y.X., V.D., J.F., P.B.), CSIRO Health and Biosecurity, Brisbane; Department of Nuclear Medicine and Centre for PET (V.D., C.R.), Austin Health, Melbourne; Centre for Precision Health (S.M.L.), Edith Cowan University; Collaborative Genomics and Translation Group (S.M.L.), School of Medical and Health Sciences, Edith Cowan University, Joondalup; Curtin Medical School (S.M.L.), Curtin University, Bentley; The Florey Institute of Neuroscience and Mental Health (C.J.F., C.R., C.L.M., P.M.), The University of Melbourne; Centre for Healthy Ageing (S.R.R.-S.), Health Futures Institute, Murdoch University; Australian Alzheimer's Research Foundation (S.R.R.-S., R.N.M.), Sarich Neuroscience Research Institute, Nedlands; School of Psychological Science (S.R.R.-S.), University of Western Australia, Crawley; School of Medical and Health Sciences (S.R.R.-S., R.N.M.), Edith Cowan University, Joondalup; Department of Biomedical Sciences (R.N.M.), Macquarie University, Sydney; Queensland Brain Institute (E.J.C.), and School of Biomedical Sciences (E.J.C.), The University of Queensland, Brisbane; and Cogstate Ltd. (P.M.), Melbourne, Australia
| | - Colin L Masters
- From the The Australian e-Health Research Centre (Y.X., V.D., J.F., P.B.), CSIRO Health and Biosecurity, Brisbane; Department of Nuclear Medicine and Centre for PET (V.D., C.R.), Austin Health, Melbourne; Centre for Precision Health (S.M.L.), Edith Cowan University; Collaborative Genomics and Translation Group (S.M.L.), School of Medical and Health Sciences, Edith Cowan University, Joondalup; Curtin Medical School (S.M.L.), Curtin University, Bentley; The Florey Institute of Neuroscience and Mental Health (C.J.F., C.R., C.L.M., P.M.), The University of Melbourne; Centre for Healthy Ageing (S.R.R.-S.), Health Futures Institute, Murdoch University; Australian Alzheimer's Research Foundation (S.R.R.-S., R.N.M.), Sarich Neuroscience Research Institute, Nedlands; School of Psychological Science (S.R.R.-S.), University of Western Australia, Crawley; School of Medical and Health Sciences (S.R.R.-S., R.N.M.), Edith Cowan University, Joondalup; Department of Biomedical Sciences (R.N.M.), Macquarie University, Sydney; Queensland Brain Institute (E.J.C.), and School of Biomedical Sciences (E.J.C.), The University of Queensland, Brisbane; and Cogstate Ltd. (P.M.), Melbourne, Australia
| | - Elizabeth J Coulson
- From the The Australian e-Health Research Centre (Y.X., V.D., J.F., P.B.), CSIRO Health and Biosecurity, Brisbane; Department of Nuclear Medicine and Centre for PET (V.D., C.R.), Austin Health, Melbourne; Centre for Precision Health (S.M.L.), Edith Cowan University; Collaborative Genomics and Translation Group (S.M.L.), School of Medical and Health Sciences, Edith Cowan University, Joondalup; Curtin Medical School (S.M.L.), Curtin University, Bentley; The Florey Institute of Neuroscience and Mental Health (C.J.F., C.R., C.L.M., P.M.), The University of Melbourne; Centre for Healthy Ageing (S.R.R.-S.), Health Futures Institute, Murdoch University; Australian Alzheimer's Research Foundation (S.R.R.-S., R.N.M.), Sarich Neuroscience Research Institute, Nedlands; School of Psychological Science (S.R.R.-S.), University of Western Australia, Crawley; School of Medical and Health Sciences (S.R.R.-S., R.N.M.), Edith Cowan University, Joondalup; Department of Biomedical Sciences (R.N.M.), Macquarie University, Sydney; Queensland Brain Institute (E.J.C.), and School of Biomedical Sciences (E.J.C.), The University of Queensland, Brisbane; and Cogstate Ltd. (P.M.), Melbourne, Australia
| | - Paul Maruff
- From the The Australian e-Health Research Centre (Y.X., V.D., J.F., P.B.), CSIRO Health and Biosecurity, Brisbane; Department of Nuclear Medicine and Centre for PET (V.D., C.R.), Austin Health, Melbourne; Centre for Precision Health (S.M.L.), Edith Cowan University; Collaborative Genomics and Translation Group (S.M.L.), School of Medical and Health Sciences, Edith Cowan University, Joondalup; Curtin Medical School (S.M.L.), Curtin University, Bentley; The Florey Institute of Neuroscience and Mental Health (C.J.F., C.R., C.L.M., P.M.), The University of Melbourne; Centre for Healthy Ageing (S.R.R.-S.), Health Futures Institute, Murdoch University; Australian Alzheimer's Research Foundation (S.R.R.-S., R.N.M.), Sarich Neuroscience Research Institute, Nedlands; School of Psychological Science (S.R.R.-S.), University of Western Australia, Crawley; School of Medical and Health Sciences (S.R.R.-S., R.N.M.), Edith Cowan University, Joondalup; Department of Biomedical Sciences (R.N.M.), Macquarie University, Sydney; Queensland Brain Institute (E.J.C.), and School of Biomedical Sciences (E.J.C.), The University of Queensland, Brisbane; and Cogstate Ltd. (P.M.), Melbourne, Australia
| |
Collapse
|
18
|
He S, Yu Y, Chen PQ, Sun HM, Gao XR, Sun HZ, Ge JF. Insufficient Plasma Melatonin and Its Association With Neuropsychiatric Impairments in Patients With T2DM. J Diabetes Res 2024; 2024:5661751. [PMID: 38988702 PMCID: PMC11236469 DOI: 10.1155/2024/5661751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 06/07/2024] [Accepted: 06/19/2024] [Indexed: 07/12/2024] Open
Abstract
Purpose: Type 2 diabetes mellitus (T2DM) is associated with multiple neuropsychiatric impairments, including cognitive dysfunction, and melatonin (MLT) plays a crucial role in maintaining normal neuropsychiatric functions. This study is aimed at investigating the change in plasma MLT levels and its association with neuropsychiatric impairments in T2DM patients. Methods: One hundred twenty-six T2DM patients were recruited, and their demographics and clinical data were collected. Apart from the plasma glycated hemoglobin (HbA1c) levels and other routine metabolic indicators, the plasma concentrations of MLT, C-reactive protein (CRP), Interleukin 6 (IL-6), soluble myeloid triggered receptor 1 (sTREM 1), and receptor 2 (sTREM 2) were measured. Moreover, the executive function and depressive tendency were evaluated via the Behavior Rating Inventory of Executive Function-Adult Version (BRIEF-A) and the Epidemiological Research Center Depression Scale (CES-D), respectively. Result: Compared with the low HbA1c group, the T2DM patients in the high HbA1c group presented lower plasma MLT levels but higher plasma concentrations of inflammatory biomarker levels, together with higher scores in the BRIEF-A and CES-D scales. Moreover, results of the Pearson correlation test showed that the plasma MLT levels were negatively correlated with the BRIEF-A and CES-D scores, as well as plasma concentrations of HbA1c and inflammatory indications, indicating that MLT may mediate their neuroinflammation and neuropsychiatric impairments. Furthermore, the ROC curve results indicated that plasma MLT levels have a predictive effect on executive impairment and depressive status in T2DM patients. Conclusion: MLT levels decreased in patients with T2DM and were associated with neuropsychiatric impairments and inflammatory status, and MLT might be developed as a therapeutic agent and predictive indicator for T2DM-associated executive impairment and depression status.
Collapse
Affiliation(s)
- Shuai He
- School of Pharmacy Anhui Medical University, 81 Mei-Shan Road, Hefei 230032, China
- The Key Laboratory of Anti-Inflammatory and Immune Medicine Ministry of Education Anhui Medical University, Hefei, China
- Anhui Provincial Laboratory of Inflammatory and Immunity Disease Anhui Institute of Innovative Drugs, Hefei, China
| | - Yue Yu
- Department of Pharmacy North District of The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Peng-Quan Chen
- School of Pharmacy Anhui Medical University, 81 Mei-Shan Road, Hefei 230032, China
- The Key Laboratory of Anti-Inflammatory and Immune Medicine Ministry of Education Anhui Medical University, Hefei, China
- Anhui Provincial Laboratory of Inflammatory and Immunity Disease Anhui Institute of Innovative Drugs, Hefei, China
| | - Hui-Min Sun
- School of Pharmacy Anhui Medical University, 81 Mei-Shan Road, Hefei 230032, China
- The Key Laboratory of Anti-Inflammatory and Immune Medicine Ministry of Education Anhui Medical University, Hefei, China
- Anhui Provincial Laboratory of Inflammatory and Immunity Disease Anhui Institute of Innovative Drugs, Hefei, China
| | - Xin-Ran Gao
- School of Pharmacy Anhui Medical University, 81 Mei-Shan Road, Hefei 230032, China
- The Key Laboratory of Anti-Inflammatory and Immune Medicine Ministry of Education Anhui Medical University, Hefei, China
- Anhui Provincial Laboratory of Inflammatory and Immunity Disease Anhui Institute of Innovative Drugs, Hefei, China
| | - Huai-Zhi Sun
- School of Pharmacy Anhui Medical University, 81 Mei-Shan Road, Hefei 230032, China
- The Key Laboratory of Anti-Inflammatory and Immune Medicine Ministry of Education Anhui Medical University, Hefei, China
- Anhui Provincial Laboratory of Inflammatory and Immunity Disease Anhui Institute of Innovative Drugs, Hefei, China
| | - Jin-Fang Ge
- School of Pharmacy Anhui Medical University, 81 Mei-Shan Road, Hefei 230032, China
- The Key Laboratory of Anti-Inflammatory and Immune Medicine Ministry of Education Anhui Medical University, Hefei, China
- Anhui Provincial Laboratory of Inflammatory and Immunity Disease Anhui Institute of Innovative Drugs, Hefei, China
| |
Collapse
|
19
|
Mian M, Tahiri J, Eldin R, Altabaa M, Sehar U, Reddy PH. Overlooked cases of mild cognitive impairment: Implications to early Alzheimer's disease. Ageing Res Rev 2024; 98:102335. [PMID: 38744405 PMCID: PMC11180381 DOI: 10.1016/j.arr.2024.102335] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 05/02/2024] [Accepted: 05/08/2024] [Indexed: 05/16/2024]
Abstract
Mild cognitive impairment (MCI) marks the initial phase of memory decline or other cognitive functions like language or spatial perception, while individuals typically retain the capacity to carry out everyday tasks independently. Our comprehensive article investigates the intricate landscape of cognitive disorders, focusing on MCI and Alzheimer's disease (AD) and Alzheimer's disease-related dementias (ADRD). The study aims to understand the signs of MCI, early Alzheimer's disease, and healthy brain aging while assessing factors influencing disease progression, pathology development and susceptibility. A systematic literature review of over 100 articles was conducted, emphasizing MCI, AD and ADRD within the elderly populations. The synthesis of results reveals significant findings regarding ethnicity, gender, lifestyle, comorbidities, and diagnostic tools. Ethnicity was found to influence MCI prevalence, with disparities observed across diverse populations. Gender differences were evident in cognitive performance and decline, highlighting the need for personalized management strategies. Lifestyle factors and comorbidities were identified as crucial influencers of cognitive health. Regarding diagnostic tools, the Montreal Cognitive Assessment (MoCA) emerged as superior to the Mini-Mental State Examination (MMSE) in early MCI detection. Overall, our article provides insights into the multifaceted nature of cognitive disorders, emphasizing the importance of tailored interventions and comprehensive assessment strategies for effective cognitive health management.
Collapse
Affiliation(s)
- Maamoon Mian
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Jihane Tahiri
- School of Biology, Texas Tech University, Lubbock, TX 79430, USA
| | - Ryan Eldin
- Department of Biomedical Sciences, Texas A&M University College of Dentistry, Dallas, TX 75246, USA
| | - Mohamad Altabaa
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Ujala Sehar
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - P Hemachandra Reddy
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Nutritional Sciences Department, College Human Sciences, Texas Tech University, Lubbock, TX 79409; Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Department of Neurology, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Department of Public Health, Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Department of Speech, Language, and Hearing Sciences, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA.
| |
Collapse
|
20
|
Baril AA, Picard C, Labonté A, Sanchez E, Duclos C, Mohammediyan B, Breitner JCS, Villeneuve S, Poirier J. Longer sleep duration and neuroinflammation in at-risk elderly with a parental history of Alzheimer's disease. Sleep 2024; 47:zsae081. [PMID: 38526098 PMCID: PMC11168764 DOI: 10.1093/sleep/zsae081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 02/26/2024] [Indexed: 03/26/2024] Open
Abstract
STUDY OBJECTIVES Although short sleep could promote neurodegeneration, long sleep may be a marker of ongoing neurodegeneration, potentially as a result of neuroinflammation. The objective was to evaluate sleep patterns with age of expected Alzheimer's disease (AD) onset and neuroinflammation. METHODS We tested 203 dementia-free participants (68.5 ± 5.4 years old, 78M). The PREVENT-AD cohort includes older persons with a parental history of AD whose age was nearing their expected AD onset. We estimated expected years to AD onset by subtracting the participants' age from their parent's at AD dementia onset. We extracted actigraphy sleep variables of interest (times of sleep onset and morning awakening, time in bed, sleep efficiency, and sleep duration) and general profiles (sleep fragmentation, phase delay, and hypersomnia). Cerebrospinal fluid (CSF) inflammatory biomarkers were assessed with OLINK multiplex technology. RESULTS Proximity to, or exceeding, expected age of onset was associated with a sleep profile suggestive of hypersomnia (longer sleep and later morning awakening time). This hypersomnia sleep profile was associated with higher CSF neuroinflammatory biomarkers (IL-6, MCP-1, and global score). Interaction analyses revealed that some of these sleep-neuroinflammation associations were present mostly in those closer/exceeding the age of expected AD onset, APOE4 carriers, and those with better memory performance. CONCLUSIONS Proximity to, or exceeding, parental AD dementia onset was associated with a longer sleep pattern, which was related to elevated proinflammatory CSF biomarkers. We speculate that longer sleep may serve a compensatory purpose potentially triggered by neuroinflammation as individuals are approaching AD onset. Further studies should investigate whether neuroinflammatory-triggered long sleep duration could mitigate cognitive deficits.
Collapse
Affiliation(s)
- Andrée-Ann Baril
- Center for Advanced Research in Sleep Medicine, Hôpital du Sacré-Coeur de Montréal, CIUSSS-NIM, Montréal, QC, Canada
- Department of Medicine, Université de Montréal, Montréal, QC, Canada
| | - Cynthia Picard
- Center for Studies on Prevention of Alzheimer's Disease, Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada
| | - Anne Labonté
- Center for Studies on Prevention of Alzheimer's Disease, Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada
| | - Erlan Sanchez
- Sunnybrook Research Institute, University of Toronto, Toronto, ON, Canada
| | - Catherine Duclos
- Center for Advanced Research in Sleep Medicine, Hôpital du Sacré-Coeur de Montréal, CIUSSS-NIM, Montréal, QC, Canada
- Department of Anesthesiology and Pain Medicine, Université de Montréal, Montréal, QC, Canada
| | - Béry Mohammediyan
- Center for Studies on Prevention of Alzheimer's Disease, Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada
| | - John C S Breitner
- Center for Studies on Prevention of Alzheimer's Disease, Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada
| | - Sylvia Villeneuve
- Center for Studies on Prevention of Alzheimer's Disease, Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada
| | - Judes Poirier
- Center for Studies on Prevention of Alzheimer's Disease, Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada
| |
Collapse
|
21
|
Han Z, Zhang L, Ma M, Keshavarzi M. Effects of MicroRNAs and Long Non-coding RNAs on Beneficial Action of Exercise on Cognition in Degenerative Diseases: A Review. Mol Neurobiol 2024:10.1007/s12035-024-04292-4. [PMID: 38869810 DOI: 10.1007/s12035-024-04292-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 06/06/2024] [Indexed: 06/14/2024]
Abstract
Recent research has exposed a growing body of proof underscoring the importance of microRNAs (miRNAs) and long noncoding RNAs (lncRNAs) in maintaining the physical composition of neurons and influencing cognitive functioning in both standard and atypical circumstances. Extensive research has been conducted on the possible application of miRNAs and lncRNAs as biomarkers for various diseases, with a particular focus on brain disorders, as they possess remarkable durability in cell-free surroundings and can endure repeated freezing and thawing processes. It is intriguing to note that miRNAs and lncRNAs have the ability to function through paracrine mechanisms, thereby playing a role in communication between different organs. Recent research has proposed that the improvement of cognitive abilities through physical exercise in mentally healthy individuals is a valuable method for uncovering potential connections between miRNAs, or microRNAs, and lncRNAs, and human cognitive function. The process of cross-correlating data from disease models and patients with existing data will be crucial in identifying essential miRNAs and lncRNAs, which can potentially act as biomarkers or drug targets in the treatment of cognitive disorders. By combining this method with additional research in animal models, we can determine the function of these molecules and their potential impact on therapy. This article discusses the latest research about the primary miRNAs, lncRNAs, and their exosomes that are affected by physical activity in terms of human cognitive function.
Collapse
Affiliation(s)
- Zhen Han
- Department of Physical Education, Zhejiang International Studies University, Hangzhou, 310023, Zhejiang, China
| | - Lei Zhang
- Institute of Physical Education and Sports, Capital University Of Physical Education And Sports, Beijing, 100191, China.
| | - Minhang Ma
- Department of Physical Education, Zhejiang International Studies University, Hangzhou, 310023, Zhejiang, China
| | - Maryam Keshavarzi
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
22
|
Tseng CEJ, Canales C, Marcus RE, Parmar AJ, Hightower BG, Mullett JE, Makary MM, Tassone AU, Saro HK, Townsend PH, Birtwell K, Nowinski L, Thom RP, Palumbo ML, Keary C, Catana C, McDougle CJ, Hooker JM, Zürcher NR. In vivo translocator protein in females with autism spectrum disorder: a pilot study. Neuropsychopharmacology 2024; 49:1193-1201. [PMID: 38615126 PMCID: PMC11109261 DOI: 10.1038/s41386-024-01859-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 03/21/2024] [Accepted: 04/02/2024] [Indexed: 04/15/2024]
Abstract
Sex-based differences in the prevalence of autism spectrum disorder (ASD) are well-documented, with a male-to-female ratio of approximately 4:1. The clinical presentation of the core symptoms of ASD can also vary between sexes. Previously, positron emission tomography (PET) studies have identified alterations in the in vivo levels of translocator protein (TSPO)-a mitochondrial protein-in primarily or only male adults with ASD, with our group reporting lower TSPO relative to whole brain mean in males with ASD. However, whether in vivo TSPO levels are altered in females with ASD, specifically, is unknown. This is the first pilot study to measure in vivo TSPO in the brain in adult females with ASD using [11C]PBR28 PET-magnetic resonance imaging (MRI). Twelve adult females with ASD and 10 age- and TSPO genotype-matched controls (CON) completed one or two [11C]PBR28 PET-MRI scans. Females with ASD exhibited elevated [11C]PBR28 standardized uptake value ratio (SUVR) in the midcingulate cortex and splenium of the corpus callosum compared to CON. No brain area showed lower [11C]PBR28 SUVR in females with ASD compared to CON. Test-retest over several months showed stable [11C]PBR28 SUVR across time in both groups. Elevated regional [11C]PBR28 SUVR in females with ASD stand in stark contrast to our previous findings of lower regional [11C]PBR28 SUVR in males with ASD. Preliminary evidence of regionally elevated mitochondrial protein TSPO relative to whole brain mean in ASD females may reflect neuroimmuno-metabolic alterations specific to females with ASD.
Collapse
Affiliation(s)
- Chieh-En Jane Tseng
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Camila Canales
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA
- Lurie Center for Autism, Massachusetts General Hospital, Lexington, MA, USA
| | - Rachel E Marcus
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA
- Lurie Center for Autism, Massachusetts General Hospital, Lexington, MA, USA
| | - Anjali J Parmar
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA
| | - Baileigh G Hightower
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA
- Lurie Center for Autism, Massachusetts General Hospital, Lexington, MA, USA
| | - Jennifer E Mullett
- Lurie Center for Autism, Massachusetts General Hospital, Lexington, MA, USA
- Department of Pediatrics, Indiana University, Indianapolis, IN, USA
| | - Meena M Makary
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA
- Harvard Medical School, Boston, MA, USA
- Systems and Biomedical Engineering Department, Faculty of Engineering, Cairo University, Cairo, Egypt
| | - Alison U Tassone
- Lurie Center for Autism, Massachusetts General Hospital, Lexington, MA, USA
| | - Hannah K Saro
- Lurie Center for Autism, Massachusetts General Hospital, Lexington, MA, USA
| | - Paige Hickey Townsend
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA
- Harvard Medical School, Boston, MA, USA
- Lurie Center for Autism, Massachusetts General Hospital, Lexington, MA, USA
| | - Kirstin Birtwell
- Harvard Medical School, Boston, MA, USA
- Lurie Center for Autism, Massachusetts General Hospital, Lexington, MA, USA
| | - Lisa Nowinski
- Harvard Medical School, Boston, MA, USA
- Lurie Center for Autism, Massachusetts General Hospital, Lexington, MA, USA
| | - Robyn P Thom
- Harvard Medical School, Boston, MA, USA
- Lurie Center for Autism, Massachusetts General Hospital, Lexington, MA, USA
| | - Michelle L Palumbo
- Harvard Medical School, Boston, MA, USA
- Lurie Center for Autism, Massachusetts General Hospital, Lexington, MA, USA
| | - Christopher Keary
- Harvard Medical School, Boston, MA, USA
- Lurie Center for Autism, Massachusetts General Hospital, Lexington, MA, USA
| | - Ciprian Catana
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Christopher J McDougle
- Harvard Medical School, Boston, MA, USA
- Lurie Center for Autism, Massachusetts General Hospital, Lexington, MA, USA
| | - Jacob M Hooker
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA
- Harvard Medical School, Boston, MA, USA
- Lurie Center for Autism, Massachusetts General Hospital, Lexington, MA, USA
| | - Nicole R Zürcher
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA.
- Harvard Medical School, Boston, MA, USA.
- Lurie Center for Autism, Massachusetts General Hospital, Lexington, MA, USA.
| |
Collapse
|
23
|
Huang Y, Wang YF, Miao J, Zheng RF, Li JY. Short-chain fatty acids: Important components of the gut-brain axis against AD. Biomed Pharmacother 2024; 175:116601. [PMID: 38749177 DOI: 10.1016/j.biopha.2024.116601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 04/11/2024] [Accepted: 04/11/2024] [Indexed: 06/03/2024] Open
Abstract
Alzheimer's disease (AD) comprises a group of neurodegenerative disorders with some changes in the brain, which could lead to the deposition of certain proteins and result in the degeneration and death of brain cells. Patients with AD manifest primarily as cognitive decline, psychiatric symptoms, and behavioural disorders. Short-chain fatty acids (SCFAs) are a class of saturated fatty acids (SFAs) produced by gut microorganisms through the fermentation of dietary fibre ingested. SCFAs, as a significant mediator of signalling, can have diverse physiological and pathological roles in the brain through the gut-brain axis, and play a positive effect on AD via multiple pathways. Firstly, differences in SCFAs and microbial changes have been stated in AD cases of humans and mice in this paper. And then, mechanisms of three main SCFAs in treating with AD have been summarized, as well as differences of gut bacteria. Finally, functions of SCFAs played in regulating intestinal flora homeostasis, modulating the immune system, and the metabolic system, which were considered to be beneficial for the treatment of AD, have been elucidated, and the key roles of gut bacteria and SCFAs were pointed out. All in all, this paper provides an overview of SCFAs and gut bacteria in AD, and can help people to understand the importance of gut-brain axis in AD.
Collapse
Affiliation(s)
- Yan Huang
- College of Life Science and Technology, Xinjiang University, Urumqi 830000, China
| | - Yi Feng Wang
- College of Life Science and Technology, Xinjiang University, Urumqi 830000, China
| | - Jing Miao
- School of Pharmaceutical Sciences and Institute of Materia Medica, Xinjiang University, Urumqi 830017, China; Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, Xinjiang University, Urumqi 830004, China.
| | - Rui Fang Zheng
- Xinjiang Key Laboratory of Uygur Medical Research, Xinjiang Institute of Materia Medica, Urumqi 830004, China.
| | - Jin Yao Li
- College of Life Science and Technology, Xinjiang University, Urumqi 830000, China; Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, Xinjiang University, Urumqi 830004, China.
| |
Collapse
|
24
|
Cao Y, Zhu X, Shang J, Zheng J, Tian X, Han Q, Shen J. Correlation between lipoprotein-associated phospholipase A2 and poststroke mild cognitive impairment. Expert Rev Mol Diagn 2024; 24:541-547. [PMID: 38958430 DOI: 10.1080/14737159.2024.2370410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 04/24/2024] [Indexed: 07/04/2024]
Abstract
OBJECTIVES This study aimed to investigate the correlation between serum lipoprotein-associated phospholipase A2 (Lp-PLA2) and poststroke mild cognitive impairment (PSMCI). METHODS The patients included in the study were divided into PSMCI (68 cases) and cognitively normal (CN) (218 cases) groups and followed up for six months. Demographic and clinical data were collected. A logistic regression analysis was performed to determine whether Lp-PLA2 is an independent risk factor for PSMCI. Spearman's correlation analysis was used to examine the correlation between Lp-PLA2 levels and Montreal Cognitive Assessment (MoCA) scores. A receiver operating characteristic (ROC) curve analysis was performed to determine the diagnostic threshold value of Lp-PLA2 for PSMCI. RESULTS Serum Lp-PLA2 levels were significantly higher in the PSMCI group than in the CN group. The logistic regression analysis showed that Lp-PLA2 was an independent risk factor for PSMCI (OR = 1.05, 95% CI = 1.03-1.07). Spearman's correlation analysis revealed a significant correlation between the Lp-PLA2 levels and MoCA scores (R = -0.49). The area under the ROC curve for Lp-PLA2 was 0.849, and the threshold value for PSMCI occurrence was 236.8 ng/ml. CONCLUSIONS Elevated serum Lp-PLA2 is an independent risk factor for PSMCI and may serve as a potential biomarker for PSMCI.
Collapse
Affiliation(s)
- Yawei Cao
- Clinical Laboratory, Huai'an First People's Hospital, The Affiliated Huai'an No.1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu, China
| | - Xiaofeng Zhu
- Department of Neurology, Huai'an First People's Hospital, The Affiliated Huai'an No.1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu, China
| | - Jin Shang
- Department of Neurology, Huai'an First People's Hospital, The Affiliated Huai'an No.1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu, China
| | - Jinlong Zheng
- Department of Neurology, Huai'an First People's Hospital, The Affiliated Huai'an No.1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu, China
| | - Xiangyang Tian
- Department of Neurology, Huai'an First People's Hospital, The Affiliated Huai'an No.1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu, China
| | - Qiu Han
- Department of Neurology, Huai'an First People's Hospital, The Affiliated Huai'an No.1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu, China
| | - Jun Shen
- Department of Neurology, The Second People's Hospital of Huai'an, The Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an, Jiangsu, China
| |
Collapse
|
25
|
Wilcockson TDW, Roy S. Could Alcohol-Related Cognitive Decline Be the Result of Iron-Induced Neuroinflammation? Brain Sci 2024; 14:520. [PMID: 38928521 PMCID: PMC11201715 DOI: 10.3390/brainsci14060520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/20/2024] [Accepted: 05/18/2024] [Indexed: 06/28/2024] Open
Abstract
Excessive and prolonged alcohol use can have long-term severe neurological consequences. The mechanisms involved may be complicated; however, new evidence seems to indicate the involvement of iron accumulation and neuroinflammation. Prolonged alcohol consumption has been linked to the accumulation of iron in specific regions of the brain. Evidence suggests that excess iron in the brain can trigger microglia activation in response. This activation leads to the release of pro-inflammatory cytokines and reactive oxygen species, which can cause damage to neurons and surrounding brain tissue. Additionally, iron-induced oxidative stress and inflammation can disrupt the blood-brain barrier, allowing immune cells from the periphery to infiltrate the brain. This infiltration can lead to further neuroinflammatory responses. Inflammation in the brain subsequently disrupts neuronal networks, impairs synaptic plasticity, and accelerates neuronal cell death. Consequently, cognitive functions such as memory, attention, and decision-making are compromised. Additionally, chronic neuroinflammation can hasten the development and progression of neurodegenerative diseases, further exacerbating cognitive impairment. Therefore, alcohol could act as a trigger for iron-induced neuroinflammation and cognitive decline. Overall, the mechanisms at play here seem to strongly link alcohol with cognitive decline, with neuroinflammation resulting from alcohol-induced iron accumulation playing a pivotal role.
Collapse
Affiliation(s)
- Thomas D. W. Wilcockson
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough LE11 3TU, UK
| | - Sankanika Roy
- Department of Neurology, Leicester Royal Infirmary, Leicester LE1 5WW, UK;
| |
Collapse
|
26
|
Pan J, Hu J, Meng D, Chen L, Wei X. Neuroinflammation in dementia: A meta-analysis of PET imaging studies. Medicine (Baltimore) 2024; 103:e38086. [PMID: 38701247 PMCID: PMC11062685 DOI: 10.1097/md.0000000000038086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 04/11/2024] [Indexed: 05/05/2024] Open
Abstract
BACKGROUND Dementia is a major public health challenge for aging societies worldwide. Neuroinflammation is thought to be a key factor in dementia development. The aim of this study was to comprehensively assess translocator protein (TSPO) expression by positron emission tomography (PET) imaging to reveal the characteristics of neuroinflammation in dementia. METHODS We used a meta-analysis to retrieve literature on TSPO expression in dementia using PET imaging technology, including but not limited to the quality of the study design, sample size, and the type of TSPO ligand used in the study. For the included studies, we extracted key data, including TSPO expression levels, clinical characteristics of the study participants, and specific information on brain regions. Meta-analysis was performed using R software to assess the relationship between TSPO expression and dementia. RESULTS After screening, 12 studies that met the criteria were included. The results of the meta-analysis showed that the expression level of TSPO was significantly elevated in patients with dementia, especially in the hippocampal region. The OR in the hippocampus was 1.50 with a 95% CI of 1.09 to 1.25, indicating a significant increase in the expression of TSPO in this region compared to controls. Elevated levels of inflammation in the prefrontal lobe and cingulate gyrus are associated with cognitive impairment in patients. This was despite an OR of 1.00 in the anterior cingulate gyrus, indicating that TSPO expression in this region did not correlate significantly with the findings. The overall heterogeneity test showed I² = 51%, indicating moderate heterogeneity. CONCLUSION This study summarizes the existing literature on TSPO expression in specific regions of the brain in patients with dementia, and also provides some preliminary evidence on the possible association between neuroinflammation and dementia. However, the heterogeneity of results and limitations of the study suggest that we need to interpret these findings with caution. Future studies need to adopt a more rigorous and consistent methodological design to more accurately assess the role of neuroinflammation in dementia, thereby providing a more reliable evidence base for understanding pathological mechanisms and developing potential therapeutic strategies.
Collapse
Affiliation(s)
- Jie Pan
- Department of Neurology, The First Hospital of Jiaxing (Affiliated Hospital of Jiaxing University), Jiaxing City, Zhejiang Province, China
| | - Jin Hu
- Department of Neurology, The First Hospital of Jiaxing (Affiliated Hospital of Jiaxing University), Jiaxing City, Zhejiang Province, China
| | - Danyang Meng
- Department of Neurology, The First Hospital of Jiaxing (Affiliated Hospital of Jiaxing University), Jiaxing City, Zhejiang Province, China
| | - Liang Chen
- Department of Head and Neck Surgery, The First Hospital of Jiaxing (Affiliated Hospital of Jiaxing University), Jiaxing City, Zhejiang Province, China
| | - Xianling Wei
- Department of Nuclear Medicine, The First Hospital of Jiaxing (Affiliated Hospital of Jiaxing University), Jiaxing City, Zhejiang Province, China
| |
Collapse
|
27
|
Rossano SM, Johnson AS, Smith A, Ziaggi G, Roetman A, Guzman D, Okafor A, Klein J, Tomljanovic Z, Stern Y, Brickman AM, Lee S, Kreisl WC, Lao P. Microglia measured by TSPO PET are associated with Alzheimer's disease pathology and mediate key steps in a disease progression model. Alzheimers Dement 2024; 20:2397-2407. [PMID: 38298155 PMCID: PMC11032543 DOI: 10.1002/alz.13699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 10/30/2023] [Accepted: 12/18/2023] [Indexed: 02/02/2024]
Abstract
INTRODUCTION Evidence suggests microglial activation precedes regional tau and neurodegeneration in Alzheimer's disease (AD). We characterized microglia with translocator protein (TSPO) positron emission tomography (PET) within an AD progression model where global amyloid beta (Aβ) precedes local tau and neurodegeneration, resulting in cognitive impairment. METHODS Florbetaben, PBR28, and MK-6240 PET, T1 magnetic resonance imaging, and cognitive measures were performed in 19 cognitively unimpaired older adults and 22 patients with mild cognitive impairment or mild AD to examine associations among microglia activation, Aβ, tau, and cognition, adjusting for neurodegeneration. Mediation analyses evaluated the possible role of microglial activation along the AD progression model. RESULTS Higher PBR28 uptake was associated with higher Aβ, higher tau, and lower MMSE score, independent of neurodegeneration. PBR28 mediated associations between tau in early and middle Braak stages, between tau and neurodegeneration, and between neurodegeneration and cognition. DISCUSSION Microglia are associated with AD pathology and cognition and may mediate relationships between subsequent steps in AD progression.
Collapse
Affiliation(s)
- Samantha M. Rossano
- Department of Neurology, Taub Institute for Research on Alzheimer's Disease and the Aging BrainColumbia University Irving Medical CenterNew YorkNew YorkUSA
| | - Aubrey S. Johnson
- Department of Neurology, Taub Institute for Research on Alzheimer's Disease and the Aging BrainColumbia University Irving Medical CenterNew YorkNew YorkUSA
| | - Anna Smith
- Department of Neurology, Taub Institute for Research on Alzheimer's Disease and the Aging BrainColumbia University Irving Medical CenterNew YorkNew YorkUSA
| | - Galen Ziaggi
- Department of Neurology, Taub Institute for Research on Alzheimer's Disease and the Aging BrainColumbia University Irving Medical CenterNew YorkNew YorkUSA
| | - Andrew Roetman
- Department of Neurology, Taub Institute for Research on Alzheimer's Disease and the Aging BrainColumbia University Irving Medical CenterNew YorkNew YorkUSA
| | - Diana Guzman
- Department of Neurology, Taub Institute for Research on Alzheimer's Disease and the Aging BrainColumbia University Irving Medical CenterNew YorkNew YorkUSA
| | - Amarachukwu Okafor
- Department of Neurology, Taub Institute for Research on Alzheimer's Disease and the Aging BrainColumbia University Irving Medical CenterNew YorkNew YorkUSA
| | - Julia Klein
- Department of Anesthesiology and Perioperative MedicineUniversity of California Los Angeles HealthLos AngelesCaliforniaUSA
| | - Zeljko Tomljanovic
- Department of Neurology, Taub Institute for Research on Alzheimer's Disease and the Aging BrainColumbia University Irving Medical CenterNew YorkNew YorkUSA
| | - Yaakov Stern
- Department of Neurology, Taub Institute for Research on Alzheimer's Disease and the Aging BrainColumbia University Irving Medical CenterNew YorkNew YorkUSA
| | - Adam M. Brickman
- Department of Neurology, Taub Institute for Research on Alzheimer's Disease and the Aging BrainColumbia University Irving Medical CenterNew YorkNew YorkUSA
| | - Seonjoo Lee
- Department of Psychiatry and BiostatisticsColumbia University Irving Medical CenterNew YorkNew YorkUSA
| | - William C. Kreisl
- Department of Neurology, Taub Institute for Research on Alzheimer's Disease and the Aging BrainColumbia University Irving Medical CenterNew YorkNew YorkUSA
| | - Patrick Lao
- Department of Neurology, Taub Institute for Research on Alzheimer's Disease and the Aging BrainColumbia University Irving Medical CenterNew YorkNew YorkUSA
| |
Collapse
|
28
|
Tachibana A, Iga JI, Ozaki T, Yoshida T, Yoshino Y, Shimizu H, Mori T, Furuta Y, Shibata M, Ohara T, Hata J, Taki Y, Mikami T, Maeda T, Ono K, Mimura M, Nakashima K, Takebayashi M, Ninomiya T, Ueno SI. Serum high-sensitivity C-reactive protein and dementia in a community-dwelling Japanese older population (JPSC-AD). Sci Rep 2024; 14:7374. [PMID: 38548879 PMCID: PMC10978957 DOI: 10.1038/s41598-024-57922-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 03/22/2024] [Indexed: 04/01/2024] Open
Abstract
In recent years, the association between neuroinflammatory markers and dementia, especially Alzheimer's disease (AD), has attracted much attention. However, the evidence for the relationship between serum-hs-CRP and dementia including AD are inconsistent. Therefore, the relationships of serum high-sensitivity CRP (hs-CRP) with dementia including AD and with regions of interest of brain MRI were investigated. A total of 11,957 community residents aged 65 years or older were recruited in eight sites in Japan (JPSC-AD Study). After applying exclusion criteria, 10,085 participants who underwent blood tests and health-related examinations were analyzed. Then, serum hs-CRP levels were classified according to clinical cutoff values, and odds ratios for the presence of all-cause dementia and its subtypes were calculated for each serum hs-CRP level. In addition, the association between serum hs-CRP and brain volume regions of interest was also examined using analysis of covariance with data from 8614 individuals in the same cohort who underwent brain MRI. After multivariable adjustment, the odds ratios (ORs) for all-cause dementia were 1.04 (95% confidence interval [CI] 0.76-1.43), 1.68 (95%CI 1.08-2.61), and 1.51 (95%CI 1.08-2.11) for 1.0-1.9 mg/L, 2.0-2.9 mg/L, and ≥ 3.0 mg/L, respectively, compared to < 1.0 mg/L, and those for AD were 0.72 (95%CI 0.48-1.08), 1.76 (95%CI 1.08-2.89), and 1.61 (95%CI 1.11-2.35), for 1.0-1.9 mg/L, 2.0-2.9 mg/L, and ≥ 3.0 mg/L, respectively, compared to < 1.0 mg/L. Multivariable-adjusted ORs for all-cause dementia and for AD prevalence increased significantly with increasing serum hs-CRP levels (p for trend < 0.001 and p = 0.001, respectively). In addition, the multivariable-adjusted temporal cortex volume/estimated total intracranial volume ratio decreased significantly with increasing serum hs-CRP levels (< 1.0 mg/L 4.28%, 1.0-1.9 mg/L 4.27%, 2.0-2.9 mg/L 4.29%, ≥ 3.0 mg/L 4.21%; p for trend = 0.004). This study's results suggest that elevated serum hs-CRP levels are associated with greater risk of presence of dementia, especially AD, and of temporal cortex atrophy in a community-dwelling Japanese older population.
Collapse
Affiliation(s)
- Ayumi Tachibana
- Department of Neuropsychiatry, Neuroscience, Ehime University Graduate School of Medicine, Shitsukawa, Toon City, Ehime, 791-0295, Japan
| | - Jun-Ichi Iga
- Department of Neuropsychiatry, Neuroscience, Ehime University Graduate School of Medicine, Shitsukawa, Toon City, Ehime, 791-0295, Japan.
| | - Tomoki Ozaki
- Department of Neuropsychiatry, Neuroscience, Ehime University Graduate School of Medicine, Shitsukawa, Toon City, Ehime, 791-0295, Japan
| | - Taku Yoshida
- Department of Neuropsychiatry, Matsukaze Hospital, Shikokuchuo, Ehime, Japan
| | - Yuta Yoshino
- Department of Neuropsychiatry, Neuroscience, Ehime University Graduate School of Medicine, Shitsukawa, Toon City, Ehime, 791-0295, Japan
| | - Hideaki Shimizu
- Department of Psychiatry, Heisei Hospital, Ozu, Ehime, Japan
| | - Takaaki Mori
- Department of Neuropsychiatry, Neuroscience, Ehime University Graduate School of Medicine, Shitsukawa, Toon City, Ehime, 791-0295, Japan
| | - Yoshihiko Furuta
- Department of Epidemiology and Public Health, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Mao Shibata
- Department of Epidemiology and Public Health, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Tomoyuki Ohara
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Jun Hata
- Department of Epidemiology and Public Health, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yasuyuki Taki
- Department of Aging Research and Geriatric Medicine, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Tatsuya Mikami
- Department of Preemptive Medicine, Graduate School of Medicine, Hirosaki University, Hirosaki, Japan
| | - Tetsuya Maeda
- Division of Neurology and Gerontology, Department of Internal Medicine, School of Medicine, Iwate Medical University, Morioka, Iwate, Japan
| | - Kenjiro Ono
- Department of Neurology, Kanazawa University Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Masaru Mimura
- Center for Preventive Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Kenji Nakashima
- National Hospital Organization, Matsue Medical Center, Matsue, Shimane, Japan
| | - Minoru Takebayashi
- Department of Neuropsychiatry, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Toshiharu Ninomiya
- Department of Epidemiology and Public Health, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Shu-Ichi Ueno
- Department of Neuropsychiatry, Neuroscience, Ehime University Graduate School of Medicine, Shitsukawa, Toon City, Ehime, 791-0295, Japan
| |
Collapse
|
29
|
Huang Y, Zhang R, Hong X, Liu S, Zhang S, Guo M, Shi L, Li Z, Liu Y. Correlation between sarcopenia index and cognitive function in older adult women: A cross-sectional study using NHANES data. J Clin Neurosci 2024; 122:73-79. [PMID: 38489954 DOI: 10.1016/j.jocn.2024.02.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 02/06/2024] [Accepted: 02/27/2024] [Indexed: 03/17/2024]
Abstract
OBJECTIVES The Sarcopenia Index (SI) has the potential as a biomarker for sarcopenia, which is characterized by muscle loss. There is a clear association between sarcopenia and cognitive impairment. However, the relationship between SI and cognitive impairment is yet to be fully understood. METHODS We employed data extracted from the U.S. National Health and Nutrition Examination Survey (NHANES) spanning the years 1999 to 2002. Our study encompassed individuals aged 65 to 80 who possessed accessible information regarding both SI and cognitive evaluations with a GFR ≥ 90. Cognitive function was assessed using the digit symbol substitution test (DSST). SI was calculated by serum creatinine (mg/dL)/cystatin C (mg/L)*100. Employing multivariate modeling, we estimated the connection between SI and cognitive performance. Furthermore, to enhance the reliability of our data analysis, we categorized SI using tertiles and subsequently calculated the P-value for trend. RESULTS After adjustment for potential confounders, we found SI was significantly and positively correlated with cognitive function scores both in older female in the American population [β = 0.160, 95 % confidence interval (CI) 0.050 to 0.271, P = 0.00461]. Similarly, when the total cognitive function score was treated as a categorical variable according to tertiles, higher SI was related to better total cognitive function scores in females [odds ratio (OR) = 3.968, 95 % CI 1.863 to 6.073, P = 0.00025] following adjustment for confounders. CONCLUSIONS Higher SI was correlated with a lower prevalence of cognitive impairment among older adult women with normal kidney function.
Collapse
Affiliation(s)
- Yajuan Huang
- Department of Nephrology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; Key Laboratory of Human Microbiome and Chronic Diseases (Sun Yat-sen University), Ministry of Education, Guangzhou, China; Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Rui Zhang
- Department of Nephrology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; Key Laboratory of Human Microbiome and Chronic Diseases (Sun Yat-sen University), Ministry of Education, Guangzhou, China; Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xinyang Hong
- Key Laboratory of Human Microbiome and Chronic Diseases (Sun Yat-sen University), Ministry of Education, Guangzhou, China; Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; Department of Neurology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Shunjie Liu
- Key Laboratory of Human Microbiome and Chronic Diseases (Sun Yat-sen University), Ministry of Education, Guangzhou, China; Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; Department of Neurology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Su Zhang
- Key Laboratory of Human Microbiome and Chronic Diseases (Sun Yat-sen University), Ministry of Education, Guangzhou, China; Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; Department of Neurology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Mengxia Guo
- Key Laboratory of Human Microbiome and Chronic Diseases (Sun Yat-sen University), Ministry of Education, Guangzhou, China; Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; Department of Neurology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Lishuo Shi
- Key Laboratory of Human Microbiome and Chronic Diseases (Sun Yat-sen University), Ministry of Education, Guangzhou, China; Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; Center for Clinical Research, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zhong Li
- Key Laboratory of Human Microbiome and Chronic Diseases (Sun Yat-sen University), Ministry of Education, Guangzhou, China; Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; Department of Neurology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; Shenzhen Research Institute of Sun Yat-Sen University, Hi-tech Industrial Park, Nanshan District, Shenzhen, China; Guangdong Provincal Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.
| | - Yunyun Liu
- Key Laboratory of Human Microbiome and Chronic Diseases (Sun Yat-sen University), Ministry of Education, Guangzhou, China; Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; Department of Neurology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
30
|
Wrzesień A, Andrzejewski K, Jampolska M, Kaczyńska K. Respiratory Dysfunction in Alzheimer's Disease-Consequence or Underlying Cause? Applying Animal Models to the Study of Respiratory Malfunctions. Int J Mol Sci 2024; 25:2327. [PMID: 38397004 PMCID: PMC10888758 DOI: 10.3390/ijms25042327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 02/09/2024] [Accepted: 02/14/2024] [Indexed: 02/25/2024] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative brain disease that is the most common cause of dementia among the elderly. In addition to dementia, which is the loss of cognitive function, including thinking, remembering, and reasoning, and behavioral abilities, AD patients also experience respiratory disturbances. The most common respiratory problems observed in AD patients are pneumonia, shortness of breath, respiratory muscle weakness, and obstructive sleep apnea (OSA). The latter is considered an outcome of Alzheimer's disease and is suggested to be a causative factor. While this narrative review addresses the bidirectional relationship between obstructive sleep apnea and Alzheimer's disease and reports on existing studies describing the most common respiratory disorders found in patients with Alzheimer's disease, its main purpose is to review all currently available studies using animal models of Alzheimer's disease to study respiratory impairments. These studies on animal models of AD are few in number but are crucial for establishing mechanisms, causation, implementing potential therapies for respiratory disorders, and ultimately applying these findings to clinical practice. This review summarizes what is already known in the context of research on respiratory disorders in animal models, while pointing out directions for future research.
Collapse
Affiliation(s)
| | | | | | - Katarzyna Kaczyńska
- Department of Respiration Physiology, Mossakowski Medical Research Institute, Polish Academy of Sciences, 02-106 Warsaw, Poland; (A.W.); (K.A.); (M.J.)
| |
Collapse
|
31
|
Fang T, Dai Y, Hu X, Xu Y, Qiao J. Evaluation of serum neurofilament light chain and glial fibrillary acidic protein in the diagnosis of Alzheimer's disease. Front Neurol 2024; 15:1320653. [PMID: 38352136 PMCID: PMC10861667 DOI: 10.3389/fneur.2024.1320653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Accepted: 01/15/2024] [Indexed: 02/16/2024] Open
Abstract
Purpose This study aimed to evaluate the use of serum neurofilament light chain (NfL) and glial fibrillary acidic protein (GFAP) in the diagnosis of Alzheimer's disease (AD) and the differential diagnosis between AD and mild cognitive impairment (MCI). Methods From September 2021 to October 2022, we collected venous blood from patients and healthy individuals who visited our hospital's Neurology Department, and we isolated serum to detect NfL and GFAP using direct chemiluminescence. The results were analyzed using one-way analysis of variance (ANOVA) analysis and receiver operating characteristic (ROC) curves. Results Pairwise comparisons among the three groups showed that compared with the health checkup (HC) group, serum NfL and GFAP were increased in both AD and MCI (PNfL < 0.05, PGFAP < 0.01). There were significant differences in GFAP between MCI and AD groups, and the level in AD group was higher (p < 0.01), while there was no difference in NfL. Both serum NfL and serum GFAP levels can independently diagnose AD (p < 0.01). The ROC curve showed that GFAP had a higher diagnostic efficacy, with an area under the ROC curve (AUC) of 0.928. The cut-off values of the two serum markers for the diagnosis of AD were NfL > 40.09 pg./mL and GFAP >31.40 pg./mL. Sensitivity and specificity for NfL in the diagnosis of AD were 59.6 and 76.2%, respectively, and for GFAP, they were 90.4 and 82.1%, respectively. The combined diagnosis of GFAP and NfL improved the diagnostic efficiency (AUC = 0.931, sensitivity = 78.8%, specificity = 92.3%). The cut-off value of GFAP for the differential diagnosis of MCI and AD was 46.05 pg./mL. Conclusion Both serum NfL and serum GFAP can be used as biomarkers for the diagnosis of AD. Serum GFAP has better diagnostic efficacy and can distinguish AD from MCI. A combined diagnosis can improve diagnostic specificity.
Collapse
Affiliation(s)
| | | | | | - Yuanhong Xu
- Department of Clinical Laboratory, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Jinping Qiao
- Department of Clinical Laboratory, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| |
Collapse
|
32
|
Zhang M, Qian XH, Hu J, Zhang Y, Lin X, Hai W, Shi K, Jiang X, Li Y, Tang HD, Li B. Integrating TSPO PET imaging and transcriptomics to unveil the role of neuroinflammation and amyloid-β deposition in Alzheimer's disease. Eur J Nucl Med Mol Imaging 2024; 51:455-467. [PMID: 37801139 PMCID: PMC10774172 DOI: 10.1007/s00259-023-06446-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 09/15/2023] [Indexed: 10/07/2023]
Abstract
PURPOSE Despite the revealed role of immunological dysfunctions in the development and progression of Alzheimer's disease (AD) through animal and postmortem investigations, direct evidence regarding the impact of genetic factors on microglia response and amyloid-β (Aβ) deposition in AD individuals is lacking. This study aims to elucidate this mechanism by integrating transcriptomics and TSPO, Aβ PET imaging in clinical AD cohort. METHODS We analyzed 85 patients with PET/MR imaging for microglial activation (TSPO, [18F]DPA-714) and Aβ ([18F]AV-45) within the prospective Alzheimer's Disease Immunization and Microbiota Initiative Study Cohort (ADIMIC). Immune-related differentially expressed genes (IREDGs), identified based on AlzData, were screened and verified using blood samples from ADIMIC. Correlation and mediation analyses were applied to investigate the relationships between immune-related genes expression, TSPO and Aβ PET imaging. RESULTS TSPO uptake increased significantly both in aMCI (P < 0.05) and AD participants (P < 0.01) and showed a positive correlation with Aβ deposition (r = 0.42, P < 0.001). Decreased expression of TGFBR3, FABP3, CXCR4 and CD200 was observed in AD group. CD200 expression was significantly negatively associated with TSPO PET uptake (r =-0.33, P = 0.013). Mediation analysis indicated that CD200 acted as a significant mediator between TSPO uptake and Aβ deposition (total effect B = 1.92, P = 0.004) and MMSE score (total effect B =-54.01, P = 0.003). CONCLUSION By integrating transcriptomics and TSPO PET imaging in the same clinical AD cohort, this study revealed CD200 played an important role in regulating neuroinflammation, Aβ deposition and cognitive dysfunction.
Collapse
Affiliation(s)
- Miao Zhang
- Department of Nuclear Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiao-Hang Qian
- Department of Geriatrics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Medical Center On Aging of Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jialin Hu
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Yaoyu Zhang
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaozhu Lin
- Department of Nuclear Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wangxi Hai
- Department of Nuclear Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Kuangyu Shi
- Department of Nuclear Medicine, Bern University Hospital, University of Bern, Bern, Switzerland
- Department of Informatics, Technische Universität München, Munich, Germany
| | - Xufeng Jiang
- Department of Nuclear Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Yao Li
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China.
| | - Hui-Dong Tang
- Department of Geriatrics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Medical Center On Aging of Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Biao Li
- Department of Nuclear Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
33
|
Triumbari EKA, Chiaravalloti A, Schillaci O, Mercuri NB, Liguori C. Positron Emission Tomography/Computed Tomography Imaging in Therapeutic Clinical Trials in Alzheimer's Disease: An Overview of the Current State of the Art of Research. J Alzheimers Dis 2024; 101:S603-S628. [PMID: 39422956 DOI: 10.3233/jad-240349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
The integration of positron emission tomography/computed tomography (PET/CT) has revolutionized the landscape of Alzheimer's disease (AD) research and therapeutic interventions. By combining structural and functional imaging, PET/CT provides a comprehensive understanding of disease pathology and response to treatment assessment. PET/CT, particularly with 2-deoxy-2-[fluorine-18]fluoro-D-glucose (18F-FDG), facilitates the visualization of glucose metabolism in the brain, enabling early diagnosis, staging, and monitoring of neurodegenerative disease progression. The advent of amyloid and tau PET imaging has further propelled the field forward, offering invaluable tools for tracking pathological hallmarks, assessing treatment response, and predicting clinical outcomes. While some therapeutic interventions targeting amyloid plaque load showed promising results with the reduction of cerebral amyloid accumulation over time, others failed to demonstrate a significant impact of anti-amyloid agents for reducing the amyloid plaques burden in AD brains. Tau PET imaging has conversely fueled the advent of disease-modifying therapeutic strategies in AD by supporting the assessment of neurofibrillary tangles of tau pathology deposition over time. Looking ahead, PET imaging holds immense promise for studying additional targets such as neuroinflammation, cholinergic deficit, and synaptic dysfunction. Advances in radiotracer development, dedicated brain PET/CT scanners, and Artificial Intelligence-powered software are poised to enhance the quality, sensitivity, and diagnostic power of molecular neuroimaging. Consequently, PET/CT remains at the forefront of AD research, offering unparalleled opportunities for unravelling the complexities of the disease and advancing therapeutic interventions, although it is not yet enough alone to allow patients' recruitment in therapeutic clinical trials.
Collapse
Affiliation(s)
| | - Agostino Chiaravalloti
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
- IRCCS Neuromed, Pozzilli, Italy
| | - Orazio Schillaci
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | - Nicola Biagio Mercuri
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
- Neurology Unit, University Hospital of Rome "Tor Vergata", Rome, Italy
| | - Claudio Liguori
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
- Neurology Unit, University Hospital of Rome "Tor Vergata", Rome, Italy
| |
Collapse
|
34
|
Leng F, Hinz R, Gentleman S, Dani M, Brooks DJ, Edison P. Combined Neuroinflammation and Amyloid PET Markers in Predicting Disease Progression in Cognitively Impaired Subjects. J Alzheimers Dis 2024; 100:973-986. [PMID: 39031352 DOI: 10.3233/jad-230442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/22/2024]
Abstract
Background Neuroinflammation in Alzheimer's disease is known as an important process in the disease, yet how microglial activation affects disease progression remains unclear. Objective The current study aims to interrogate the predictive value of neuroinflammation biomarker (11C-PBR28 PET), together with A/T/N imaging markers on disease deterioration in a cognitively impaired patient cohort. Methods The study included 6 AD and 27 MCI patients, who had MRI, 11C-PBR28, 18F-flutemetamol (amyloid marker), 18F-AV1451 (tau marker) PET scans, and were followed up with multiple neuropsychological assessments for at least one year (1.6 and 2.8 years on average for AD and MCI). The predictive values of imaging biomarkers on baseline and longitudinal cognition were interrogated using linear regression to identify the biomarkers that could explain disease progression. Results Linear mixed models found the average intercepts (baseline) MMSE were 23.5 for AD and 28.2 for MCI patients, and the slope of MMSE (annual change) were -0.74 for AD and -0.52 for MCI patients. White matter microstructural integrity was predictive of baseline cognition, while PET markers of amyloid, tau and neuroinflammation were predictive of longitudinal cognitive decline. Both amyloid and neuroinflammation PET markers were predictors independent of each other. And a sub-group analysis showed the predictive effect of neuroinflammation on cognitive decline is independent of amyloid and tau. Conclusions Our study highlights the prognostic value of disease specific markers (amyloid, tau and neuroinflammation) in clinically diagnosed AD and MCI patients and suggests that the effects of these molecular markers are mediated by structural damage to the brain.
Collapse
Affiliation(s)
- Fangda Leng
- Department of Brain Sciences, Imperial College London, London, UK
- Department of Neurology, Peking University First Hospital, Beijing, China
| | - Rainer Hinz
- Wolfson Molecular Imaging Centre, University of Manchester, Oxford, UK
| | - Steve Gentleman
- Department of Brain Sciences, Imperial College London, London, UK
| | - Melanie Dani
- Department of Brain Sciences, Imperial College London, London, UK
| | - David J Brooks
- Department of Brain Sciences, Imperial College London, London, UK
- Institute of Neuroscience, University of Newcastle upon Tyne, Newcastle upon Tyne, UK
| | - Paul Edison
- Department of Brain Sciences, Imperial College London, London, UK
- School of Medicine, Cardiff University, Cardiff, UK
| |
Collapse
|
35
|
Zou T, Zhou X, Wang Q, Zhao Y, Zhu M, Zhang L, Chen W, Abuliz P, Miao H, Kabinur K, Alimu K. Associations of serum DNA methylation levels of chemokine signaling pathway genes with mild cognitive impairment (MCI) and Alzheimer's disease (AD). PLoS One 2023; 18:e0295320. [PMID: 38039290 PMCID: PMC10691689 DOI: 10.1371/journal.pone.0295320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 11/18/2023] [Indexed: 12/03/2023] Open
Abstract
OBJECTIVE To investigate the associations of serum DNA methylation levels of chemokine signaling pathway genes with Alzheimer's disease (AD) and mild cognitive impairment (MCI) in elderly people in Xinjiang, China, and to screen out genes whose DNA methylation could distinguish AD and MCI. MATERIALS AND METHODS 37 AD, 40 MCI and 80 controls were included in the present study. DNA methylation assay was done using quantitative methylation-specific polymerase chain reaction (qMSP). Genotyping was done using Sanger sequencing. RESULTS DNA methylation levels of ADCY2, MAP2K1 and AKT1 were significantly different among AD, MCI and controls. In the comparisons of each two groups, AKT1 and MAP2K1's methylation was both significantly different between AD and MCI (p < 0.05), whereas MAP2K1's methylation was also significantly different between MCI and controls. Therefore, AKT1's methylation was considered as the candidate serum marker to distinguish AD from MCI, and its association with AD was independent of APOE ε4 allele (p < 0.05). AKT1 hypermethylation was an independent risk factor for AD and MAP2K1 hypomethylation was an independent risk factor for MCI in logistic regression analysis (p < 0.05). CONCLUSION This study found that the serum of AKT1 hypermethylation is related to AD independently of APOE ε4, which was differentially expressed in the Entorhinal Cortex of the brain and was an independent risk factor for AD. It could be used as one of the candidate serum markers to distinguish AD and MCI. Serum of MAP2K1 hypomethylation is an independent risk factor for MCI.
Collapse
Affiliation(s)
- Ting Zou
- Department of Geriatrics, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang Province, China
| | - Xiaohui Zhou
- Department of Geriatrics, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang Province, China
| | - Qinwen Wang
- Ningbo Key Lab of Behavior Neuroscience, Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, Zhejiang Province, China
| | - Yongjie Zhao
- Department of Geriatrics, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang Province, China
| | - Meisheng Zhu
- Department of Geriatrics, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang Province, China
| | - Lei Zhang
- Department of Geriatrics, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang Province, China
| | - Wei Chen
- Department of Geriatrics, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang Province, China
| | - Pari Abuliz
- Department of Geriatrics, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang Province, China
| | - Haijun Miao
- Department of Geriatrics, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang Province, China
| | - Keyimu Kabinur
- Department of Geriatrics, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang Province, China
| | - Kader Alimu
- Department of Geriatrics, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang Province, China
| |
Collapse
|
36
|
Zou H, Chen X, Lu J, Zhou W, Zou X, Wu H, Li Z, Zhou X. Neurotropin alleviates cognitive impairment by inhibiting TLR4/MyD88/NF-κB inflammation signaling pathway in mice with vascular dementia. Neurochem Int 2023; 171:105625. [PMID: 37774797 DOI: 10.1016/j.neuint.2023.105625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 09/26/2023] [Accepted: 09/26/2023] [Indexed: 10/01/2023]
Abstract
Vascular dementia (VD) is the second most common cause of dementia after Alzheimer's disease. Neuroinflammation contributes to pathogenesis of VD. Neurotropin (NTP) is an analgesic that has been shown to suppress inflammation and neural repair. But its effects on VD are still unclear. Therefore, this study aimed to investigate the therapeutic effects and potential mechanisms of NTP in the VD model mice established by bilateral common carotid artery stenosis method. In VD mice, we found that NTP treatment increased cerebral blood flow by Laser speckle imaging, reduced neuron loss by Nissl, HE and immunochemistry staining, attenuated white matter damage by magnetic resonance imaging and ultrastructural damage by transmission electron microscope, improved cognitive functions by new object recognition test and three-chamber test, Y maze test and Morris water maze test, inhibited significantly glial activation by immunofluorescence methods, reduced the expression of TLR4, down-regulated expression of MyD88 and phosphorylation of NF-κB P65, decreased the levels of pro-inflammatory cytokines IL-1β, IL-6 and TNFα. Further, we showed that administration of a TLR4 inhibitor TAK242 had a similar effect to NTP, while the TLR4 agonist CRX-527 attenuated the effect of NTP in the VD mice. Collectively, our study suggested that NTP alleviates cognitive impairment by inhibiting TLR4/MyD88/NF-κB inflammation signaling pathway in the VD mice. Thus, NTP may be a promising therapeutic approach and a potential TLR4 inhibitor for VD.
Collapse
Affiliation(s)
- Huihui Zou
- Special Medical Service Center, Neuroscience Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, China
| | - Xinrun Chen
- Department of Neurology, General Hospital of Southern Theater Command, Chinese People's Liberation Army, Guangzhou, China
| | - Jiancong Lu
- Special Medical Service Center, Neuroscience Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, China
| | - Wanfei Zhou
- Special Medical Service Center, Neuroscience Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, China
| | - Xiaopei Zou
- Special Medical Service Center, Neuroscience Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, China
| | - Heyong Wu
- Special Medical Service Center, Neuroscience Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, China
| | - Zhou Li
- Department of Intensive Care Unit, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, China.
| | - Xianju Zhou
- Special Medical Service Center, Neuroscience Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, China.
| |
Collapse
|
37
|
Dong L, Jiang N, Bai J, Li Y, Song Z, Liu X, Zhang C. Neuroprotective Effects of Dammarane Sapogenins Against lipopolysaccharide-induced Cognitive Impairment, Neuroinflammation and Synaptic Dysfunction. Neurochem Res 2023; 48:3525-3537. [PMID: 37490197 DOI: 10.1007/s11064-023-03997-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/11/2023] [Accepted: 07/15/2023] [Indexed: 07/26/2023]
Abstract
Neuroinflammation is a critical driver in the pathogenesis and progression of neurodegenerative disorders. Dammarane sapogenins (DS), a deglycosylated product of ginsenoside, possess a variety of potent biological activities. The present study aimed to explore the neuroprotective effects of DS in a rat model of neuroinflammation induced by intracerebroventricular injection of lipopolysaccharide (LPS). Our study revealed that DS pretreatment effectively improved LPS-induced associative learning and memory impairments in the active avoidance response test and spatial learning and memory in Morris water maze test. DS also remarkably inhibited LPS-induced neuroinflammation by suppressing microglia overactivation, pro-inflammatory cytok ine release (TNF-α and IL-1β) and reducing neuronal loss in the CA1 and DG regions of the hippocampus. Importantly, pretreatment with DS reversed LPS-induced upregulation of HMGB1 and TLR4 and inhibited their downstream NF-κB signaling activation, as evidenced by increased IκBα and decreased p-NF-κB p65 levels. Furthermore, DS ameliorated LPS-induced synaptic dysfunction by decreasing MMP-9 and increasing NMDAR1 expression in the hippocampus. Taken together, this study suggests that DS could be a promising treatment for preventing cognitive impairments caused by neuroinflammation.
Collapse
Affiliation(s)
- Liming Dong
- Department of Pharmacy, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, China
- Research Center for Pharmacology & Toxicology, Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China
| | - Ning Jiang
- Research Center for Pharmacology & Toxicology, Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China
| | - Jie Bai
- Department of Pharmacy, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, China
| | - Yiman Li
- Department of Pharmacy, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, China
| | - Zhihui Song
- Department of Pharmacy, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, China
| | - Xinmin Liu
- Research Center for Pharmacology & Toxicology, Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China
| | - Chao Zhang
- Department of Pharmacy, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, China.
| |
Collapse
|
38
|
Zhou J, Yang C, Xv Q, Wang L, Shen L, Lv Q. Usefulness of Serum Translocator Protein as a Potential Predictive Biochemical Marker of Three-Month Cognitive Impairment After Acute Intracerebral Hemorrhage: A Prospective Observational Cohort Study. Int J Gen Med 2023; 16:5389-5403. [PMID: 38021045 PMCID: PMC10674616 DOI: 10.2147/ijgm.s438503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Accepted: 11/08/2023] [Indexed: 12/01/2023] Open
Abstract
Background Translocator protein (TSPO) is a biomarker of neuroinflammation and brain injury. This study aimed to ascertain the potential of serum TSPO as a predictor of cognitive impairment after acute intracerebral hemorrhage (ICH). Methods In this prospective observational cohort study, 276 patients with supratentorial ICH were randomly assigned to two groups (184 patients in the study group and 92 in the validation group) in a 2:1 ratio. Serum TSPO levels were gauged at admission, and cognitive status was assessed using the Montreal Cognitive Assessment Scale (MoCA) post-stroke 3 months. A MoCA score of < 26 was considered indicative of cognitive impairment. Results Serum TSPO levels were inversely correlated with MoCA scores (ρ=-0.592; P<0.001). Multivariate linear regression analysis showed that serum TSPO levels were independently associated with MoCA scores (β, -0.934; 95% confidence interval (CI), -1.412--0.455; VIF, 1.473; P<0.001). Serum TSPO levels were substantially higher in patients with cognitive impairment than in the remaining patients (median, 2.7 versus 1.6 ng/mL; P<0.001). Serum TSPO levels were linearly correlated with the risk of cognitive impairment under a restricted cubic spline (P=0.325) and independently predicted cognitive impairment (odds ratio, 1.589; 95% CI, 1.139-2.216; P=0.016). Subgroup analysis showed that the relationship between serum TSPO levels and cognitive impairment was not markedly influenced by other parameters, such as age, sex, drinking, smoking, hypertension, diabetes mellitus, body mass index, and dyslipidemia (all P for interaction > 0.05). The model, which contained serum TSPO, National Institutes of Health Stroke Scale scores and hematoma volume, performed well under the receiver operating characteristic curve, calibration curve and decision curve, and using the Hosmer-Lemeshow test. This model was validated in the validation group. Conclusion Serum TSPO level upon admission after ICH was independently associated with cognitive impairment, substantializing serum TSPO as a reliable predictor of post-ICH cognitive impairment.
Collapse
Affiliation(s)
- Jing Zhou
- Department of Neurosurgery, Shengzhou People’s Hospital (the First Affiliated Hospital of Zhejiang University Shengzhou Branch), Shengzhou, Zhejiang, People’s Republic of China
| | - Chunsong Yang
- Department of Neurosurgery, Shengzhou People’s Hospital (the First Affiliated Hospital of Zhejiang University Shengzhou Branch), Shengzhou, Zhejiang, People’s Republic of China
| | - Qichen Xv
- Department of Neurosurgery, Shengzhou People’s Hospital (the First Affiliated Hospital of Zhejiang University Shengzhou Branch), Shengzhou, Zhejiang, People’s Republic of China
| | - Liyun Wang
- Department of Neurosurgery, Shengzhou People’s Hospital (the First Affiliated Hospital of Zhejiang University Shengzhou Branch), Shengzhou, Zhejiang, People’s Republic of China
| | - Liangjun Shen
- Department of Neurosurgery, Shengzhou People’s Hospital (the First Affiliated Hospital of Zhejiang University Shengzhou Branch), Shengzhou, Zhejiang, People’s Republic of China
| | - Qingwei Lv
- Department of Neurosurgery, Shengzhou People’s Hospital (the First Affiliated Hospital of Zhejiang University Shengzhou Branch), Shengzhou, Zhejiang, People’s Republic of China
| |
Collapse
|
39
|
Choi JH, Choi HK, Lee KB. In Situ Detection of Neuroinflammation using Multi-cellular 3D Neurovascular Unit-on-a-Chip. ADVANCED FUNCTIONAL MATERIALS 2023; 33:2304382. [PMID: 39308874 PMCID: PMC11412436 DOI: 10.1002/adfm.202304382] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Indexed: 09/25/2024]
Abstract
The human neurovascular system is a complex network of blood vessels and brain cells that is essential to the proper functioning of the brain. In recent years, researchers have become increasingly interested in the role of this system in developing drugs to treat neuroinflammation. This process is believed to contribute to the development of several neurodegenerative diseases, including Alzheimer's and Parkinson's diseases. While much remains to be learned about the precise mechanisms by which the neurovascular system interacts with the brain and how it can be targeted for therapeutic purposes, this area of research holds great promise for the future of neurology and medicine. Currently, creating neurovascular models begins with animal models, followed by testing on humans in clinical trials. However, the high number of medication failures that pass through animal testing indicates that animal models do not always reflect the outcome of human clinical trials. To overcome the challenges of neurovascular systems and the issues with animal models, we have developed a one-of-a-kind in vitro neurovascular unit-on-a-chip to accurately replicate the in vivo human neurovascular microenvironment. This neuroinflammation-on-a-chip platform has the potential to enhance the current methods of drug development and testing to treat neurodegenerative diseases. By replicating the human neurovascular unit in vitro, a more accurate representation of human physiology can be achieved compared to animal models. The ability to detect pro-inflammatory cytokines in situ and monitor physiological changes, such as barrier function, in real-time can provide an invaluable tool for evaluating the efficacy and safety of drugs. Moreover, using nano-sized graphene oxide for in situ detection of inflammatory responses is an innovative approach that can advance the field of neuroinflammation research. Overall, our developed neuroinflammation-on-a-chip system has the potential to provide a more efficient and effective method for developing drugs for treating neurodegenerative diseases and other central nervous system (CNS) diseases.
Collapse
Affiliation(s)
- Jin-Ha Choi
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey,123 Bevier Road, Piscataway, NJ 08854, USA
- School of Chemical Engineering, Jeonbuk National University, Jeonju, 54896, Korea
| | - Hye Kyu Choi
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey,123 Bevier Road, Piscataway, NJ 08854, USA
| | - Ki-Bum Lee
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey,123 Bevier Road, Piscataway, NJ 08854, USA
| |
Collapse
|
40
|
Guo B, Zhang J, Zhang W, Chen F, Liu B. Gut microbiota-derived short chain fatty acids act as mediators of the gut-brain axis targeting age-related neurodegenerative disorders: a narrative review. Crit Rev Food Sci Nutr 2023:1-22. [PMID: 37897083 DOI: 10.1080/10408398.2023.2272769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2023]
Abstract
Neurodegenerative diseases associated with aging are often accompanied by cognitive decline and gut microbiota disorder. But the impact of gut microbiota on these cognitive disturbances remains incompletely understood. Short chain fatty acids (SCFAs) are major metabolites produced by gut microbiota during the digestion of dietary fiber, serving as an energy source for gut epithelial cells and/or circulating to other organs, such as the liver and brain, through the bloodstream. SCFAs have been shown to cross the blood-brain barrier and played crucial roles in brain metabolism, with potential implications in mediating Alzheimer's disease (AD) and Parkinson's disease (PD). However, the underlying mechanisms that SCFAs might influence psychological functioning, including affective and cognitive processes and their neural basis, have not been fully elucidated. Furthermore, the dietary sources which determine these SCFAs production was not thoroughly evaluated yet. This comprehensive review explores the production of SCFAs by gut microbiota, their transportation through the gut-brain axis, and the potential mechanisms by which they influence age-related neurodegenerative disorders. Also, the review discusses the importance of dietary fiber sources and the challenges associated with harnessing dietary-derived SCFAs as promoters of neurological health in elderly individuals. Overall, this study suggests that gut microbiota-derived SCFAs and/or dietary fibers hold promise as potential targets and strategies for addressing age-related neurodegenerative disorders.
Collapse
Affiliation(s)
- Bingbing Guo
- Faculty of Environment and Life, Beijing University of Technology, Beijing, China
| | - Jingyi Zhang
- Faculty of Environment and Life, Beijing University of Technology, Beijing, China
| | - Weihao Zhang
- Faculty of Environment and Life, Beijing University of Technology, Beijing, China
| | - Feng Chen
- Shenzhen Key Laboratory of Food Nutrition and Health, Institute for Innovative Development of Food Industry, Department of Food Science and Engineering, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, China
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Shenzhen University, Shenzhen, China
| | - Bin Liu
- Shenzhen Key Laboratory of Food Nutrition and Health, Institute for Innovative Development of Food Industry, Department of Food Science and Engineering, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, China
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Shenzhen University, Shenzhen, China
| |
Collapse
|
41
|
Saleem A, Shah SIA, Mangar SA, Coello C, Wall MB, Rizzo G, Jones T, Price PM. Cognitive Dysfunction in Patients Treated with Androgen Deprivation Therapy: A Multimodality Functional Imaging Study to Evaluate Neuroinflammation. Prostate Cancer 2023; 2023:6641707. [PMID: 37885823 PMCID: PMC10599921 DOI: 10.1155/2023/6641707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 07/14/2023] [Accepted: 10/05/2023] [Indexed: 10/28/2023] Open
Abstract
Background Androgen deprivation therapy (ADT) for prostate cancer is implicated as a possible cause of cognitive impairment (CI). CI in dementia and Alzheimer's disease is associated with neuroinflammation. In this study, we investigated a potential role of neuroinflammation in ADT-related CI. Methods Patients with prostate cancer on ADT for ≥3 months were categorized as having ADT-emergent CI or normal cognition (NC) based on self-report at interview. Neuroinflammation was evaluated using positron emission tomography (PET) with the translocator protein (TSPO) radioligand [11C]-PBR28. [11C]-PBR28 uptake in various brain regions was quantified as standardized uptake value (SUVR, normalized to cerebellum) and related to blood oxygen level-dependent functional magnetic resonance imaging (BOLD-fMRI) choice-reaction time task (CRT) activation maps. Results Eleven patients underwent PET: four with reported CI (rCI), six with reported NC (rNC), and one status unrecorded. PET did not reveal any between-group differences in SUVR regionally or globally. There was no difference between groups on brain activation to the CRT. Regardless of the reported cognitive status, there was strong correlation between PET-TSPO signal and CRT activation in the hippocampus, amygdala, and medial cortex. Conclusions We found no difference in neuroinflammation measured by PET-TSPO between patients with rCI and rNC. However, we speculate that the strong correlation between TSPO uptake and BOLD-fMRI activation in brain regions involved in memory and known to have high androgen-receptor expression mediating plasticity (hippocampus and amygdala) might reflect inflammatory effects of ADT with compensatory upregulated/increased synaptic functions. Further studies of this imaging readout are warranted to investigate ADT-related CI.
Collapse
Affiliation(s)
- Azeem Saleem
- Invicro, Burlington Danes Building, Imperial College London, Hammersmith Hospital, Du Cane Road, London, UK
- Hull York Medical School, University of Hull, Cottingham Road, Hull HU6 7RX, UK
| | - Syed Imran Ali Shah
- Department of Surgery and Cancer, Imperial College, London, UK
- Department of Biochemistry, CMH Lahore Medical College & Institute of Dentistry, Lahore, Pakistan
| | | | - Christopher Coello
- Invicro, Burlington Danes Building, Imperial College London, Hammersmith Hospital, Du Cane Road, London, UK
| | - Matthew B. Wall
- Invicro, Burlington Danes Building, Imperial College London, Hammersmith Hospital, Du Cane Road, London, UK
| | - Gaia Rizzo
- Invicro, Burlington Danes Building, Imperial College London, Hammersmith Hospital, Du Cane Road, London, UK
- Division of Brain Sciences, Imperial College London, London, UK
| | - Terry Jones
- Department of Radiology, University of California Davis Medical Center, Davis, California, USA
| | | |
Collapse
|
42
|
Zailani H, Satyanarayanan SK, Liao WC, Hsu YT, Huang SY, Gałecki P, Su KP, Chang JPC. Roles of Omega-3 Polyunsaturated Fatty Acids in Managing Cognitive Impairment in Chronic Obstructive Pulmonary Disease: A Review. Nutrients 2023; 15:4363. [PMID: 37892438 PMCID: PMC10609799 DOI: 10.3390/nu15204363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/08/2023] [Accepted: 10/11/2023] [Indexed: 10/29/2023] Open
Abstract
Chronic obstructive pulmonary disease (COPD) contributes significantly to the death of people worldwide, especially the elderly. An essential feature of COPD is pulmonary inflammation, which results from long-term exposure to noxious substances from cigarette smoking and other environmental pollutants. Pulmonary inflammatory mediators spill over to the blood, leading to systemic inflammation, which is believed to play a significant role in the onset of a host of comorbidities associated with COPD. A substantial comorbidity of concern in COPD patients that is often overlooked in COPD management is cognitive impairment. The exact pathophysiology of cognitive impairment in COPD patients remains a mystery; however, hypoxia, oxidative stress, systemic inflammation, and cerebral manifestations of these conditions are believed to play crucial roles. Furthermore, the use of medications to treat cognitive impairment symptomatology in COPD patients has been reported to be associated with life-threatening adverse effects, hence the need for alternative medications with reduced side effects. In this Review, we aim to discuss the impact of cognitive impairment in COPD management and the potential mechanisms associated with increased risk of cognitive impairment in COPD patients. The promising roles of omega-3 polyunsaturated fatty acids (ω-3 PUFAs) in improving cognitive deficits in COPD patients are also discussed. Interestingly, ω-3 PUFAs can potentially enhance the cognitive impairment symptomatology associated with COPD because they can modulate inflammatory processes, activate the antioxidant defence system, and promote amyloid-beta clearance from the brain. Thus, clinical studies are crucial to assess the efficacy of ω-3 PUFAs in managing cognitive impairment in COPD patients.
Collapse
Grants
- MOST 109-2320-B-038-057-MY3, 109-2320-B-039-066, 110-2321-B-006-004, 111-2321-B-006-008, 110-2811-B-039-507, 110-2320-B-039-048-MY2, and 110-2320-B-039-047-MY3, 110-2813-C-039-327-B, 110-2314-B-039-029-MY3, 111-2314-B-039-041-MY3 Ministry of Science and Technology, Taiwan
- ANHRF 109-31, 109-40, 110-13, 110-26, 110-44, 110-45, 111-27, and 111-28 An-Nan Hospital, China Medical University, Tainan, Taiwan
- CMRC-CMA-2 Higher Education Sprout Project by the Ministry of Education (MOE), Taiwan
- CMU 110-AWARD-02, CMU108-SR-106, CMU110-N-17, CMU110-SR-73 China Medical University, Taichung, Taiwan
- CRS-108-048, DMR-105-053, DMR-109-102, DMR-109-244, DMR-HHC-109-11, DMR-HHC-109-12, DMR-HHC-110-10, DMR-110-124, DMR-111-245 and DMR-HHC-111-8 China Medical University Hospital, Taichung, Taiwan
Collapse
Affiliation(s)
- Halliru Zailani
- Mind-Body Interface Laboratory (MBI-Lab), Department of Psychiatry, China Medical University Hospital, Taichung 404327, Taiwan; (H.Z.); (S.K.S.)
- Graduate Institute of Nutrition, China Medical University, Taichung 404, Taiwan
- Department of Biochemistry, Ahmadu Bello University, Zaria 810106, Nigeria
| | - Senthil Kumaran Satyanarayanan
- Mind-Body Interface Laboratory (MBI-Lab), Department of Psychiatry, China Medical University Hospital, Taichung 404327, Taiwan; (H.Z.); (S.K.S.)
| | - Wei-Chih Liao
- Division of Pulmonary and Critical Medicine, Department of Internal Medicine, China Medical University Hospital, Taichung 404327, Taiwan
| | - Yi-Ting Hsu
- Department of Neurology, China Medical University Hospital, Taichung 404327, Taiwan;
| | - Shih-Yi Huang
- School of Nutrition and Health Sciences, Taipei Medical University, Taipei 11031, Taiwan
- Nutrition Research Centre, Taipei Medical University Hospital, Taipei 110, Taiwan
| | - Piotr Gałecki
- Department of Adult Psychiatry, Medical University of Lodz, 91-229 Lodz, Poland;
| | - Kuan-Pin Su
- Mind-Body Interface Laboratory (MBI-Lab), Department of Psychiatry, China Medical University Hospital, Taichung 404327, Taiwan; (H.Z.); (S.K.S.)
- College of Medicine, China Medical University, Taichung 404, Taiwan
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 404, Taiwan
- An-Nan Hospital, China Medical University, Tainan 717, Taiwan
| | - Jane Pei-Chen Chang
- Mind-Body Interface Laboratory (MBI-Lab), Department of Psychiatry, China Medical University Hospital, Taichung 404327, Taiwan; (H.Z.); (S.K.S.)
- College of Medicine, China Medical University, Taichung 404, Taiwan
| |
Collapse
|
43
|
Li T, Tao X, Sun R, Han C, Li X, Zhu Z, Li W, Huang P, Gong W. Cognitive-exercise dual-task intervention ameliorates cognitive decline in natural aging rats via inhibiting the promotion of LncRNA NEAT1/miR-124-3p on caveolin-1-PI3K/Akt/GSK3β Pathway. Brain Res Bull 2023; 202:110761. [PMID: 37714275 DOI: 10.1016/j.brainresbull.2023.110761] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 09/09/2023] [Accepted: 09/11/2023] [Indexed: 09/17/2023]
Abstract
Aging-related cognitive impairment (ARCI) is rapidly becoming a healthcare priority. However, there is currently no excellent cure for it. Cognitive-exercise dual-task intervention (CEDI) is a promising method to improve ARCI, while the underlying mechanisms remain unclear. Long non-coding RNAs (lncRNAs) and microRNAs (miRNAs) are involved in the onset, development, and rehabilitation of ARCI. This study aimed to investigate the effects of CEDI and the role of regulation of the lncRNA NEAT1/miR-124-3p on the caveolin-1-PI3K/Akt/GSK3β pathway in CEDI improving cognitive function. Forty 18-month-old natural aging rats were randomly assigned to four groups: exercise training group, cognitive training group, CEDI group, and aging control group, and underwent 12 weeks of intervention. A novel object recognition test was performed to determine the cognitive function, and the hippocampus was separated three days after the behavioral tests for further molecular detection. In an in vitro study, the mouse hippocampal neuronal cell line HT22 was cultured. MiR-124-3p and lncRNA NEAT1 were over-expressed or down-expressed, respectively. The expressions of related proteins, lncRNA, and miRNA were examined by WB and/or qRT-PCR. The results showed that compared with the aging control group, the CEDI group had a higher discrimination index, and significantly decreased the expressions of lncRNA NEAT1, and the protein expressions of caveolin-1 and p-GSK3β, while significantly increased the expressions of miR-124-3p, and the protein expressions of p-PI3K and p-Akt. Inhibition of the lncRNA NEAT1 could significantly increase the protein expressions of p-PI3K and p-Akt in HT22 cells. Upregulation of miR-124-3p decreased the protein expressions of caveolin-1 and p-GSK3β, and increased the protein expressions of p-PI3K and p-Akt significantly. Inhibition of miR-124-3p had the opposite effects. Our study demonstrated that CEDI improved cognitive function in aging rats better than a single intervention. The mechanisms of cognitive improvement could be related to the regulation of the lncRNA NEAT1/miR-124-3p on the caveolin-1-PI3K/Akt/GSK3β pathway.
Collapse
Affiliation(s)
- Tiancong Li
- Beijing Rehabilitation Hospital, Beijing Rehabilitation Medicine Academy, Capital Medical University, Beijing, China
| | - Xue Tao
- Department of Research, Beijing Rehabilitation Hospital, Capital Medical University, Beijing, China
| | - Ruifeng Sun
- Beijing Rehabilitation Hospital, Beijing Rehabilitation Medicine Academy, Capital Medical University, Beijing, China
| | - Conglin Han
- Rehabilitation Medicine Academy, Weifang Medical University, Weifang, Shandong, China
| | - Xiaoling Li
- Department of Neurological Rehabilitation, Beijing Rehabilitation Hospital, Capital Medical University, Beijing, China
| | - Ziman Zhu
- Beijing Rehabilitation Hospital, Beijing Rehabilitation Medicine Academy, Capital Medical University, Beijing, China
| | - Wenshan Li
- Beijing Rehabilitation Hospital, Beijing Rehabilitation Medicine Academy, Capital Medical University, Beijing, China
| | - Peiling Huang
- Department of Neurological Rehabilitation, Beijing Rehabilitation Hospital, Capital Medical University, Beijing, China
| | - Weijun Gong
- Beijing Rehabilitation Hospital, Beijing Rehabilitation Medicine Academy, Capital Medical University, Beijing, China; Department of Neurological Rehabilitation, Beijing Rehabilitation Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
44
|
Li SJ, Ma MH, Li JM, Lu XY, Lu CB, Zhou SF, Zhang LX, Li MQ, Shao TZ, Bai SP, Yan XX, Li F, Li CQ. CNTN1 Aggravates Neuroinflammation and Triggers Cognitive Deficits in Male Mice by Boosting Crosstalk between Microglia and Astrocytes. Aging Dis 2023; 14:1853-1869. [PMID: 37196127 PMCID: PMC10529752 DOI: 10.14336/ad.2023.0228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 02/28/2023] [Indexed: 05/19/2023] Open
Abstract
A wealth of knowledge regarding glial cell-mediated neuroinflammation, which contributes to cognitive deficits in Alzheimer's disease (AD) has emerged in recent years. Contactin 1(CNTN1), a member of the cell adhesion molecule and immunoglobulin supergene family, is centrally involved in axonal growth regulation and is also a key player in inflammation-associated disorders. However, whether CNTN1 plays a role in inflammation-related cognitive deficits and how this process is triggered and orchestrated remain to be fully elucidated. In this study, we examined postmortem brains with AD. CNTN1 immunoreactivity was markedly increased, particularly in the CA3 subregion, as compared with non-AD brains. Furthermore, by applying an adeno-associated virus-based approach to overexpress CNTN1 directly via stereotactic injection in mice, we demonstrated that hippocampal CNTN1 overexpression triggered cognitive deficits detected by novel object-recognition, novel place-recognition and social cognition tests. The mechanisms underlying these cognitive deficits could be attributed to hippocampal microglia and astrocyte activation, which led to aberrant expression of excitatory amino acid transporters (EAAT)1/EAAT2. This resulted in long-term potentiation (LTP) impairment that could be reversed by minocyline, an antibiotic and the best-known inhibitor of microglial activation. Taken together, our results identified Cntn1 as a susceptibility factor involved in regulating cognitive deficits via functional actions in the hippocampus. This factor correlated with microglial activation and triggered astrocyte activation with abnormal EAAT1/EAAT2 expression and LTP impairment. Overall, these findings may significantly advance our understanding of the pathophysiological mechanisms underlying the risk of neuroinflammation related cognitive deficits.
Collapse
Affiliation(s)
- Song-Ji Li
- The International-Joint Lab for Non-invasive Neural Modulation/Key Laboratory for the Brain Research of Henan Province, Xinxiang Medical University, Xinxiang, Henan, China.
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, Hunan, China.
- Department of Human Anatomy and Histoembryology, Xinxiang Medical University, Xinxiang, Henan, China.
| | - Min-Hui Ma
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, Hunan, China.
| | - Jun-Mei Li
- The International-Joint Lab for Non-invasive Neural Modulation/Key Laboratory for the Brain Research of Henan Province, Xinxiang Medical University, Xinxiang, Henan, China.
- College of Pharmacy, Xinxiang Medical University, Xinxiang, Henan, China
| | - Xiao-Yu Lu
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, Hunan, China.
| | - Cheng-Biao Lu
- The International-Joint Lab for Non-invasive Neural Modulation/Key Laboratory for the Brain Research of Henan Province, Xinxiang Medical University, Xinxiang, Henan, China.
| | - Shi-Fen Zhou
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, Hunan, China.
| | - Lin-Xuan Zhang
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, Hunan, China.
| | - Meng-Qing Li
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, Hunan, China.
| | - Tong-Ze Shao
- 5-year Clinical Medicine Program, Xinxiang Medical University, Xinxiang, Henan, China.
| | - Su-Ping Bai
- College of Pharmacy, Xinxiang Medical University, Xinxiang, Henan, China
| | - Xiao-Xin Yan
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, Hunan, China.
| | - Fang Li
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, Hunan, China.
| | - Chang-Qi Li
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, Hunan, China.
| |
Collapse
|
45
|
Gouilly D, Rafiq M, Nogueira L, Salabert AS, Payoux P, Péran P, Pariente J. Beyond the amyloid cascade: An update of Alzheimer's disease pathophysiology. Rev Neurol (Paris) 2023; 179:812-830. [PMID: 36906457 DOI: 10.1016/j.neurol.2022.12.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 10/02/2022] [Accepted: 12/02/2022] [Indexed: 03/13/2023]
Abstract
Alzheimer's disease (AD) is a multi-etiology disease. The biological system of AD is associated with multidomain genetic, molecular, cellular, and network brain dysfunctions, interacting with central and peripheral immunity. These dysfunctions have been primarily conceptualized according to the assumption that amyloid deposition in the brain, whether from a stochastic or a genetic accident, is the upstream pathological change. However, the arborescence of AD pathological changes suggests that a single amyloid pathway might be too restrictive or inconsistent with a cascading effect. In this review, we discuss the recent human studies of late-onset AD pathophysiology in an attempt to establish a general updated view focusing on the early stages. Several factors highlight heterogenous multi-cellular pathological changes in AD, which seem to work in a self-amplifying manner with amyloid and tau pathologies. Neuroinflammation has an increasing importance as a major pathological driver, and perhaps as a convergent biological basis of aging, genetic, lifestyle and environmental risk factors.
Collapse
Affiliation(s)
- D Gouilly
- Toulouse Neuroimaging Center, Toulouse, France.
| | - M Rafiq
- Toulouse Neuroimaging Center, Toulouse, France; Department of Cognitive Neurology, Epilepsy and Movement Disorders, CHU Toulouse Purpan, France
| | - L Nogueira
- Department of Cell Biology and Cytology, CHU Toulouse Purpan, France
| | - A-S Salabert
- Toulouse Neuroimaging Center, Toulouse, France; Department of Nuclear Medicine, CHU Toulouse Purpan, France
| | - P Payoux
- Toulouse Neuroimaging Center, Toulouse, France; Department of Nuclear Medicine, CHU Toulouse Purpan, France; Center of Clinical Investigation, CHU Toulouse Purpan (CIC1436), France
| | - P Péran
- Toulouse Neuroimaging Center, Toulouse, France
| | - J Pariente
- Toulouse Neuroimaging Center, Toulouse, France; Department of Cognitive Neurology, Epilepsy and Movement Disorders, CHU Toulouse Purpan, France; Center of Clinical Investigation, CHU Toulouse Purpan (CIC1436), France
| |
Collapse
|
46
|
De Picker LJ, Morrens M, Branchi I, Haarman BCM, Terada T, Kang MS, Boche D, Tremblay ME, Leroy C, Bottlaender M, Ottoy J. TSPO PET brain inflammation imaging: A transdiagnostic systematic review and meta-analysis of 156 case-control studies. Brain Behav Immun 2023; 113:415-431. [PMID: 37543251 DOI: 10.1016/j.bbi.2023.07.023] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 06/26/2023] [Accepted: 07/30/2023] [Indexed: 08/07/2023] Open
Abstract
INTRODUCTION The 18-kDa translocator protein (TSPO) is increasingly recognized as a molecular target for PET imaging of inflammatory responses in various central nervous system (CNS) disorders. However, the reported sensitivity and specificity of TSPO PET to identify brain inflammatory processes appears to vary greatly across disorders, disease stages, and applied quantification methods. To advance TSPO PET as a potential biomarker to evaluate brain inflammation and anti-inflammatory therapies, a better understanding of its applicability across disorders is needed. We conducted a transdiagnostic systematic review and meta-analysis of all in vivo human TSPO PET imaging case-control studies in the CNS. Specifically, we investigated the direction, strength, and heterogeneity associated with the TSPO PET signal across disorders in pre-specified brain regions, and explored the demographic and methodological sources of heterogeneity. METHODS We searched for English peer-reviewed articles that reported in vivo human case-control TSPO PET differences. We extracted the demographic details, TSPO PET outcomes, and technical variables of the PET procedure. A random-effects meta-analysis was applied to estimate case-control standardized mean differences (SMD) of the TSPO PET signal in the lobar/whole-brain cortical grey matter (cGM), thalamus, and cortico-limbic circuitry between different illness categories. Heterogeneity was evaluated with the I2 statistic and explored using subgroup and meta-regression analyses for radioligand generation, PET quantification method, age, sex, and publication year. Significance was set at the False Discovery Rate (FDR)-corrected P < 0.05. RESULTS 156 individual case-control studies were included in the systematic review, incorporating data for 2381 healthy controls and 2626 patients. 139 studies documented meta-analysable data and were grouped into 11 illness categories. Across all the illness categories, we observed a significantly higher TSPO PET signal in cases compared to controls for the cGM (n = 121 studies, SMD = 0.358, PFDR < 0.001, I2 = 68%), with a significant difference between the illness categories (P = 0.004). cGM increases were only significant for Alzheimer's disease (SMD = 0.693, PFDR < 0.001, I2 = 64%) and other neurodegenerative disorders (SMD = 0.929, PFDR < 0.001, I2 = 73%). Cortico-limbic increases (n = 97 studies, SMD = 0.541, P < 0.001, I2 = 67%) were most prominent for Alzheimer's disease, mild cognitive impairment, other neurodegenerative disorders, mood disorders and multiple sclerosis. Thalamic involvement (n = 79 studies, SMD = 0.393, P < 0.001, I2 = 71%) was observed for Alzheimer's disease, other neurodegenerative disorders, multiple sclerosis, and chronic pain and functional disorders (all PFDR < 0.05). Main outcomes for systemic immunological disorders, viral infections, substance use disorders, schizophrenia and traumatic brain injury were not significant. We identified multiple sources of between-study variance to the TSPO PET signal including a strong transdiagnostic effect of the quantification method (explaining 25% of between-study variance; VT-based SMD = 0.000 versus reference tissue-based studies SMD = 0.630; F = 20.49, df = 1;103, P < 0.001), patient age (9% of variance), and radioligand generation (5% of variance). CONCLUSION This study is the first overarching transdiagnostic meta-analysis of case-control TSPO PET findings in humans across several brain regions. We observed robust increases in the TSPO signal for specific types of disorders, which were widespread or focal depending on illness category. We also found a large and transdiagnostic horizontal (positive) shift of the effect estimates of reference tissue-based compared to VT-based studies. Our results can support future studies to optimize experimental design and power calculations, by taking into account the type of disorder, brain region-of-interest, radioligand, and quantification method.
Collapse
Affiliation(s)
- Livia J De Picker
- Collaborative Antwerp Psychiatric Research Institute (CAPRI), Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium; Scientific Initiative of Neuropsychiatric and Psychopharmacological Studies (SINAPS), University Psychiatric Centre Campus Duffel, Duffel, Belgium.
| | - Manuel Morrens
- Collaborative Antwerp Psychiatric Research Institute (CAPRI), Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium; Scientific Initiative of Neuropsychiatric and Psychopharmacological Studies (SINAPS), University Psychiatric Centre Campus Duffel, Duffel, Belgium
| | - Igor Branchi
- Center for Behavioral Sciences and Mental Health, Istituto Superiore di Sanità, Roma, Italy
| | - Bartholomeus C M Haarman
- Department of Psychiatry, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Tatsuhiro Terada
- Department of Biofunctional Imaging, Preeminent Medical Photonics Education & Research Center, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Min Su Kang
- LC Campbell Cognitive Neurology Unit, Hurvitz Brain Sciences Program, Sunnybrook Research Institute, University of Toronto, Toronto, ON, Canada
| | - Delphine Boche
- Clinical Neurosciences, Clinical and Experimental Sciences School, Faculty of Medicine, University of Southampton, UK
| | - Marie-Eve Tremblay
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada; Centre for Advanced Materials and Related Technology (CAMTEC), University of Victoria, BC, Canada; Neurology and Neurosurgery Department, McGill University, Montréal, QC, Canada; Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada
| | - Claire Leroy
- Université Paris-Saclay, Inserm, CNRS, CEA, Laboratoire d'Imagerie Biomédicale Multimodale Paris-Saclay (BioMaps), Orsay, France
| | - Michel Bottlaender
- Université Paris-Saclay, Inserm, CNRS, CEA, Laboratoire d'Imagerie Biomédicale Multimodale Paris-Saclay (BioMaps), Orsay, France; Université Paris-Saclay, UNIACT, Neurospin, CEA, Gif-sur-Yvette, France
| | - Julie Ottoy
- LC Campbell Cognitive Neurology Unit, Hurvitz Brain Sciences Program, Sunnybrook Research Institute, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
47
|
Sun M, Li Y, Liu M, Li Q, Shi L, Ruan X, Huo Y, Zhou Z, Zhang X, Ma Y, Mi W. Insulin alleviates lipopolysaccharide-induced cognitive impairment via inhibiting neuroinflammation and ferroptosis. Eur J Pharmacol 2023; 955:175929. [PMID: 37479016 DOI: 10.1016/j.ejphar.2023.175929] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 07/18/2023] [Accepted: 07/18/2023] [Indexed: 07/23/2023]
Abstract
Neuroinflammation is regarded to be a key mediator in cerebral diseases with attendant cognitive decline. Ferroptosis, characterized by iron-dependent lipid peroxidation, participates in neuroinflammation and cognitive impairment. Recent studies have revealed insulin's neuroprotective effects and involvement in the regulation of numerous central functions. But the effect of insulin on cognitive impairment induced by neuroinflammation has been rarely explored. In this study, we constructed a cognitive impairment model by intracerebroventricular injection of lipopolysaccharide (LPS) and a single dosage of insulin was mixed in the LPS solution to explore the potential mechanisms through which insulin treatment could improve LPS-induced cognitive dysfunction. At 24 h after treatment, we found that insulin treatment significantly improved LPS-induced cognitive decline, neuronal injuries, and blood-brain barrier (BBB) disruption. Insulin treatment could also inhibit the LPS-induced activation of microglia and astrocytes, and the release of tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β) in the hippocampus. Furthermore, insulin treatment inhibited LPS-induced ferroptosis in the hippocampus by decreasing iron accumulation levels, regulating ferroptosis-related proteins including transferrin, glutathione peroxidase 4 (GPX4), ferritin heavy chin 1 (FTH1) and cystine/glutamate antiporter (xCT), inhibiting oxidative stress injuries and lipid peroxidation in the hippocampus. In conclusion, our finding that insulin treatment could alleviate LPS-induced cognitive impairment by inhibiting neuroinflammation and ferroptosis provides a new potential therapeutic method to ameliorate cognitive decline.
Collapse
Affiliation(s)
- Miao Sun
- Department of Anesthesiology, The First Medical Center of Chinese PLA General Hospital, Beijing, 100853, China; Department of Anesthesiology, The First Affiliated Hospital, Jinzhou Medical University, Jinzhou, Liaoning Province, 121000, China
| | - Yang Li
- Department of Anesthesiology, The First Medical Center of Chinese PLA General Hospital, Beijing, 100853, China
| | - Min Liu
- Department of Anesthesiology, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, China
| | - Qingxiao Li
- Department of Nuclear Medicine, The First Medical Center of Chinese PLA General Hospital, Beijing, 100853, China
| | - Likai Shi
- Department of Anesthesiology, The First Medical Center of Chinese PLA General Hospital, Beijing, 100853, China
| | - Xianghan Ruan
- Department of Anesthesiology, The First Medical Center of Chinese PLA General Hospital, Beijing, 100853, China
| | - Yuting Huo
- Department of Anesthesiology, The First Medical Center of Chinese PLA General Hospital, Beijing, 100853, China
| | - Zhikang Zhou
- Department of Anesthesiology, The First Medical Center of Chinese PLA General Hospital, Beijing, 100853, China
| | - Xiaoying Zhang
- Department of Anesthesiology, The First Medical Center of Chinese PLA General Hospital, Beijing, 100853, China.
| | - Yulong Ma
- Department of Anesthesiology, The First Medical Center of Chinese PLA General Hospital, Beijing, 100853, China.
| | - Weidong Mi
- Department of Anesthesiology, The First Medical Center of Chinese PLA General Hospital, Beijing, 100853, China.
| |
Collapse
|
48
|
Yin Y, Wei L, Caseley EA, Lopez‐Charcas O, Wei Y, Li D, Muench SP, Roger S, Wang L, Jiang L. Leveraging the ATP-P2X7 receptor signalling axis to alleviate traumatic CNS damage and related complications. Med Res Rev 2023; 43:1346-1373. [PMID: 36924449 PMCID: PMC10947395 DOI: 10.1002/med.21952] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 11/11/2022] [Accepted: 02/28/2023] [Indexed: 03/18/2023]
Abstract
The P2X7 receptor is an exceptional member of the P2X purinergic receptor family, with its activation requiring high concentrations of extracellular adenosine 5'-triphosphate (ATP) that are often associated with tissue damage and inflammation. In the central nervous system (CNS), it is highly expressed in glial cells, particularly in microglia. In this review, we discuss the role and mechanisms of the P2X7 receptor in mediating neuroinflammation and other pathogenic events in a variety of traumatic CNS damage conditions, which lead to loss of neurological and cognitive functions. We raise the perspective on the steady progress in developing CNS-penetrant P2X7 receptor-specific antagonists that leverage the ATP-P2X7 receptor signaling axis as a potential therapeutic strategy to alleviate traumatic CNS damage and related complications.
Collapse
Affiliation(s)
- Yaling Yin
- Sino‐UK Joint Laboratory of Brain Function and Injury of Henan Province, Department of Physiology and PathophysiologyXinxiang Medical UniversityXinxiangChina
| | - Linyu Wei
- Sino‐UK Joint Laboratory of Brain Function and Injury of Henan Province, Department of Physiology and PathophysiologyXinxiang Medical UniversityXinxiangChina
| | - Emily A. Caseley
- Faculty of Biological Sciences, School of Biomedical SciencesUniversity of LeedsLeedsUK
| | - Osbaldo Lopez‐Charcas
- EA4245, Transplantation, Immunology and Inflammation, Faculty of MedicineUniversity of ToursToursFrance
| | - Yingjuan Wei
- Sino‐UK Joint Laboratory of Brain Function and Injury of Henan Province, Department of Physiology and PathophysiologyXinxiang Medical UniversityXinxiangChina
| | - Dongliang Li
- Sino‐UK Joint Laboratory of Brain Function and Injury of Henan Province, Department of Physiology and PathophysiologyXinxiang Medical UniversityXinxiangChina
- Sanquan College of Xinxiang Medical UniversityXinxiangChina
| | - Steve P. Muench
- Faculty of Biological Sciences, School of Biomedical SciencesUniversity of LeedsLeedsUK
| | - Sebastian Roger
- EA4245, Transplantation, Immunology and Inflammation, Faculty of MedicineUniversity of ToursToursFrance
| | - Lu Wang
- Sino‐UK Joint Laboratory of Brain Function and Injury of Henan Province, Department of Physiology and PathophysiologyXinxiang Medical UniversityXinxiangChina
| | - Lin‐Hua Jiang
- Sino‐UK Joint Laboratory of Brain Function and Injury of Henan Province, Department of Physiology and PathophysiologyXinxiang Medical UniversityXinxiangChina
- Faculty of Biological Sciences, School of Biomedical SciencesUniversity of LeedsLeedsUK
| |
Collapse
|
49
|
Kwon H, Lee EH, Park SY, Park JY, Hong JH, Kim EK, Shin TS, Kim YK, Han PL. Lactobacillus-derived extracellular vesicles counteract Aβ42-induced abnormal transcriptional changes through the upregulation of MeCP2 and Sirt1 and improve Aβ pathology in Tg-APP/PS1 mice. Exp Mol Med 2023; 55:2067-2082. [PMID: 37704750 PMCID: PMC10545704 DOI: 10.1038/s12276-023-01084-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 06/05/2023] [Accepted: 06/27/2023] [Indexed: 09/15/2023] Open
Abstract
Mounting evidence suggests that probiotics are beneficial for treating Alzheimer's disease (AD). However, the mechanisms by which specific probiotics modify AD pathophysiology are not clearly understood. In this study, we investigated whether Lactobacillus paracasei-derived extracellular vesicles (Lpc-EV) can directly act on neuronal cells to modify amyloid-beta (Aβ)-induced transcriptional changes and Aβ pathology in the brains of Tg-APP/PS1 mice. Lpc-EV treatment in HT22 neuronal cells counteracts Aβ-induced downregulation of Brain-derived neurotrophic factor (Bdnf), Neurotrophin 3 (Nt3), Nt4/5, and TrkB receptor, and reverses Aβ-induced altered expression of diverse nuclear factors, including the downregulation of Methyl-CpG binding protein 2 (Mecp2) and Sirtuin 1 (Sirt1). Systematic siRNA-mediated knockdown experiments indicate that the upregulation of Bdnf, Nt3, Nt4/5, and TrkB by Lpc-EV is mediated via multiple epigenetic factors whose activation converges on Mecp2 and Sirt1. In addition, Lpc-EV reverses Aβ-induced downregulation of the Aβ-degrading proteases Matrix metalloproteinase 2 (Mmp-2), Mmp-9, and Neprilysin (Nep), whose upregulation is also controlled by MeCP2 and Sirt1. Lpc-EV treatment restores the downregulated expression of Bdnf, Nt4/5, TrkB, Mmp-2, Mmp-9, and Nep; induces the upregulation of MeCP2 and Sirt1 in the hippocampus; alleviates Aβ accumulation and neuroinflammatory responses in the brain; and mitigates cognitive decline in Tg-APP/PS1 mice. These results suggest that Lpc-EV cargo contains a neuroactive component that upregulates the expression of neurotrophic factors and Aβ-degrading proteases (Mmp-2, Mmp-9, and Nep) through the upregulation of MeCP2 and Sirt1, and ameliorates Aβ pathology and cognitive deficits in Tg-APP/PS1 mice.
Collapse
Affiliation(s)
- Hyejin Kwon
- Department of Brain and Cognitive Sciences, Scranton College, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Eun-Hwa Lee
- Department of Brain and Cognitive Sciences, Scranton College, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - So-Young Park
- Department of Brain and Cognitive Sciences, Scranton College, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Jin-Young Park
- Department of Brain and Cognitive Sciences, Scranton College, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Jin-Hwan Hong
- Department of Brain and Cognitive Sciences, Scranton College, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Eun-Kyung Kim
- MD Healthcare Inc., Rm 1403 Woori Technology Bldg, World Cup Buk-Ro 56-Gil, Mapo-Gu, Seoul, 03923, Republic of Korea
| | - Tae-Seop Shin
- MD Healthcare Inc., Rm 1403 Woori Technology Bldg, World Cup Buk-Ro 56-Gil, Mapo-Gu, Seoul, 03923, Republic of Korea
| | - Yoon-Keun Kim
- MD Healthcare Inc., Rm 1403 Woori Technology Bldg, World Cup Buk-Ro 56-Gil, Mapo-Gu, Seoul, 03923, Republic of Korea.
| | - Pyung-Lim Han
- Department of Brain and Cognitive Sciences, Scranton College, Ewha Womans University, Seoul, 03760, Republic of Korea.
| |
Collapse
|
50
|
Zhao Q, Chen J, Wu M, Yin X, Jiang Q, Gao H, Zheng H. Microbiota from healthy mice alleviates cognitive decline via reshaping the gut-brain metabolic axis in diabetic mice. Chem Biol Interact 2023; 382:110638. [PMID: 37473910 DOI: 10.1016/j.cbi.2023.110638] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 07/12/2023] [Accepted: 07/17/2023] [Indexed: 07/22/2023]
Abstract
Diabetic cognitive decline has been associated with the gut microbial disorders, but its potential gut-brain axis mechanisms remain unclear. Herein we transplanted the gut microbiota from healthy mice into type 1 diabetic (T1D) mice and then investigated the effect of fecal microbiota transplantation (FMT) on cognitive function and the gut-brain metabolic axis. The results demonstrate that FMT from healthy mice effectively improved the learning and memory abilities in T1D mice, and significantly reduced neuroinflammation and neuron injury in the cortex and hippocampus. Moreover, FMT partly reversed the gut microbiota and gut-brain metabolic disorders, particularly glutamate metabolism. In vitro study, we found that glutamate notably decreased microglia activation and the expression levels of proinflammatory factor. Hence, our study suggests that glutamate serves as a key signal metabolite connecting the gut to brain and affects cognitive functions.
Collapse
Affiliation(s)
- Qihui Zhao
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Junli Chen
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Mengjun Wu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Xiaoli Yin
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Qiaoying Jiang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Hongchang Gao
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China.
| | - Hong Zheng
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China.
| |
Collapse
|