1
|
Pu L, Wang Y, Pang W, Wei J, Wu J, Guo C, Weina Gao. Propolis does not significantly modulate immune function in an older population: A preliminary study. Heliyon 2024; 10:e41056. [PMID: 39759320 PMCID: PMC11699101 DOI: 10.1016/j.heliyon.2024.e41056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 11/16/2024] [Accepted: 12/06/2024] [Indexed: 01/03/2025] Open
Abstract
Purpose The human trial aimed to study the influence of propolis on immune function in the elderly. Methods Non-institutionalized community-dwelling individuals aged 60-80 years were recruited from Tianjin, China. Participants were assigned randomly to either the Chinese propolis group (600 mg/day, n = 32) or the control group (n = 30). Serum antibodies and biochemical indices were measured using commercial kits; cytokines were detected using ELISA assay, and the functions of lymphocytes and neutrophils were assayed using the MTT and Staphylococcal methods, respectively. A dietary survey was conducted based on 24-h recall. Results The study lasted for 12 weeks. Immunoglobulin G (IgG) levels notably increased at week 6 although these levels returned to baseline by week 12 in the Chinese propolis group. No significant difference was detected in serum antibodies, cytokines, or lymphocyte and neutrophil functions between the two groups at any time point. Conclusions Chinese propolis could stimulate IgG secretion within a certain period, but it was restored to baseline levels over time. Propolis does not significantly affect other immune markers in the elderly.
Collapse
Affiliation(s)
| | | | - Wei Pang
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, China
| | - Jingyu Wei
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, China
| | - Jianquan Wu
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, China
| | - Changjiang Guo
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, China
| | - Weina Gao
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, China
| |
Collapse
|
2
|
Srinivasan S, Mishra S, Fan KKH, Wang L, Im J, Segura C, Mukherjee N, Huang G, Rao M, Ma C, Zhang N. Age-Dependent Bi-Phasic Dynamics of Ly49 +CD8 + Regulatory T Cell Population. Aging Cell 2024:e14461. [PMID: 39696807 DOI: 10.1111/acel.14461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 12/04/2024] [Accepted: 12/07/2024] [Indexed: 12/20/2024] Open
Abstract
Aging is tightly associated with reduced immune protection but increased risk of autoimmunity and inflammatory conditions. Regulatory T cells are one of the key cells to maintaining immune homeostasis. The age-dependent changes in CD4+Foxp3+ regulatory T cells (Tregs) have been well documented. However, the nonredundant Foxp3-CD8+ Tregs were never examined in the context of aging. This study first established clear distinctions between phenotypically overlapping CD8+ Tregs and virtual memory T cells. Then, we elucidated the dynamics of CD8+ Tregs across the lifespan in mice and further extended our investigation to human peripheral blood mononuclear cells (PBMCs). In mice, we discovered a bi-phasic dynamic shift in the frequency of CD8+CD44hiCD122hiLy49+ Tregs, with a steady increase in young adults and a notable peak in middle age followed by a decline in older mice. Transcriptomic analysis revealed that mouse CD8+ Tregs upregulated a selected set of natural killer (NK) cell-associated genes, including NKG2D, with age. Importantly, NKG2D might negatively regulate CD8+ Tregs. Additionally, by analyzing a scRNA-seq dataset of human PBMC, we found a distinct CD8+ Treg-like subset (Cluster 10) with comparable age-dependent frequency changes and gene expression, suggesting a conserved aging pattern in CD8+ Treg across mice and humans. In summary, our findings highlight the importance of CD8+ Tregs in immune regulation and aging.
Collapse
Affiliation(s)
- Saranya Srinivasan
- Department of Microbiology, Immunology and Molecular Genetics, Long School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Shruti Mishra
- Department of Microbiology, Immunology and Molecular Genetics, Long School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
- Gilead Sciences Inc, California, USA
| | - Kenneth Ka-Ho Fan
- Department of Microbiology, Immunology and Molecular Genetics, Long School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Liwen Wang
- Department of Microbiology, Immunology and Molecular Genetics, Long School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
- Department of Hematology, Third Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - John Im
- Department of Microbiology, Immunology and Molecular Genetics, Long School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Courtney Segura
- Department of Microbiology, Immunology and Molecular Genetics, Long School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Neelam Mukherjee
- Department of Urology, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Gang Huang
- Department of Cell Systems and Anatomy, Greehey Children's Cancer Research Institute, San Antonio, Texas, USA
| | - Manjeet Rao
- Department of Cell Systems and Anatomy, Greehey Children's Cancer Research Institute, San Antonio, Texas, USA
| | - Chaoyu Ma
- Department of Microbiology, Immunology and Molecular Genetics, Long School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Nu Zhang
- Department of Microbiology, Immunology and Molecular Genetics, Long School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
- South Texas Veterans Health Care System, San Antonio, Texas, USA
| |
Collapse
|
3
|
Zhou H, Han X, Huang C, Wu H, Hu Y, Chen C, Tao J. Exercise-induced adaptive response of different immune organs during ageing. Ageing Res Rev 2024; 102:102573. [PMID: 39486525 DOI: 10.1016/j.arr.2024.102573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 10/20/2024] [Accepted: 10/29/2024] [Indexed: 11/04/2024]
Abstract
The immune system plays a crucial role in the ageing process. As individuals age, significant alterations in the immune system experiences occur, marked by a decline in immune cell count, compromised immune function, and decreased immune regulation across various immune organs. These changes collectively weaken the capacity to combat diseases and infections, highlighting the vulnerability that accompanies ageing. Exercise is a potent intervention that profoundly influences holistic well-being and disease mitigation, with a notable emphasis on immune modulation. In general, regular moderate exercise holds significant potential to enhance immune defense mechanisms and metabolic well-being by augmenting the circulation and activation of immune cells. However, some exercise modalities would trigger detrimental effects on the immune system. It can be seen that the regulatory responses of various immune organs to diverse exercise patterns are different. This review aims to examine the immunological responses elicited by exercise across various immune organs, including the lymph nodes, spleen, bone marrow, and thymus, to underscore the nuanced interplay between exercise patterns and the immune organ. This underscores the importance of customizing exercise interventions to optimize immune function across the lifespan.
Collapse
Affiliation(s)
- Huanghao Zhou
- College of Rehsabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China; National-Local Joint Engineering Research Center of Rehabilitation Medicine Technology, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China; Rehabilitation Industry Institute, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
| | - Xiao Han
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian, China
| | - Chunxiu Huang
- College of Rehsabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China; National-Local Joint Engineering Research Center of Rehabilitation Medicine Technology, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China; Rehabilitation Industry Institute, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
| | - Huijuan Wu
- College of Rehsabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China; National-Local Joint Engineering Research Center of Rehabilitation Medicine Technology, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China; Rehabilitation Industry Institute, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
| | - Yue Hu
- College of Rehsabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China; National-Local Joint Engineering Research Center of Rehabilitation Medicine Technology, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China; Rehabilitation Industry Institute, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
| | - Cong Chen
- National-Local Joint Engineering Research Center of Rehabilitation Medicine Technology, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China; Rehabilitation Industry Institute, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China.
| | - Jing Tao
- College of Rehsabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China; National-Local Joint Engineering Research Center of Rehabilitation Medicine Technology, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China; Rehabilitation Industry Institute, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China.
| |
Collapse
|
4
|
Chen Y, Li X, Yang M, Jia C, He Z, Zhou S, Ruan P, Wang Y, Tang C, Pan W, Long H, Zhao M, Lu L, Peng W, Akbar A, Wu IX, Li S, Wu H, Lu Q. Time-restricted eating reveals a "younger" immune system and reshapes the intestinal microbiome in human. Redox Biol 2024; 78:103422. [PMID: 39561680 PMCID: PMC11616606 DOI: 10.1016/j.redox.2024.103422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 10/31/2024] [Accepted: 11/05/2024] [Indexed: 11/21/2024] Open
Abstract
Time-restricted eating (TRE) has been shown to extent lifespans in drosophila and mouse models by affecting metabolic and anti-inflammatory activities. However, the effect of TRE on the human immune system, especially on immunosenescence, intestinal microbiome, and metabolism remains unclear. We conducted a 30-day 16:8 TRE single-arm clinical trial with 49 participants. Participants consumed daily meals from 9 a.m. to 5 p.m., provided by a nutrition canteen with a balanced, calorie-appropriate nutrition, which is designed by clinical nutritionists (ChiCTR2200058137). We monitored weight changes and weight-related parameters and focused on changes in the frequency of CD4+ senescent T cells, immune repertoire from peripheral blood, as well as serum metabolites and gut microbiota. We found that up to 95.9 % of subjects experienced sustained weight loss after TRE. The frequency of circulating senescent CD4+ T cells was decreased, while the frequency of Th1, Treg, Tfh-like, and B cells was increased. Regarding the immune repertoire, the proportions of T cell receptor alpha and beta chains were increased, whereas B cell receptor kappa and lambda chains were reduced. In addition, a reduced class switch recombination from immunoglobulin M (IgM) to immunoglobulin A (IgA) was observed. TRE upregulated the levels of anti-inflammatory and anti-aging serum metabolites named sphingosine-1-phosphate and prostaglandin-1. Additionally, several anti-inflammatory bacteria and probiotics were increased, such as Akkermansia and Rikenellaceae, and the composition of the gut microbiota tended to be "younger". Overall, TRE showed multiple anti-aging effects, which may help humans maintain a healthy lifestyle to stay "young". Clinical Trial Registration URL: https://www.chictr.org.cn/showproj.html?proj=159876.
Collapse
Affiliation(s)
- Yiran Chen
- Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences & Peking Union Medical College, Nanjing, 210042, China; Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, 210042, China; Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Nanjing, 210042, China; Research Unit of Key Technologies of Immune-related Skin Diseases Diagnosis and Treatment, Chinese Academy of Medical Sciences Institute of Dermatology, Nanjing, 210042, China
| | - Xi Li
- Department of Dermatology, The Second Xiangya Hospital of Central South University, Hunan Key Laboratory of Medical Epigenomics, 139 Middle Renmin Road, Changsha, Hunan, 410011, China
| | - Ming Yang
- Department of Dermatology, The Second Xiangya Hospital of Central South University, Hunan Key Laboratory of Medical Epigenomics, 139 Middle Renmin Road, Changsha, Hunan, 410011, China
| | - Chen Jia
- Department of Dermatology, The Second Xiangya Hospital of Central South University, Hunan Key Laboratory of Medical Epigenomics, 139 Middle Renmin Road, Changsha, Hunan, 410011, China
| | - Zhenghao He
- Department of Dermatology, The Second Xiangya Hospital of Central South University, Hunan Key Laboratory of Medical Epigenomics, 139 Middle Renmin Road, Changsha, Hunan, 410011, China
| | - Suqing Zhou
- Department of Dermatology, The Second Xiangya Hospital of Central South University, Hunan Key Laboratory of Medical Epigenomics, 139 Middle Renmin Road, Changsha, Hunan, 410011, China
| | - Pinglang Ruan
- Department of Dermatology, The Second Xiangya Hospital of Central South University, Hunan Key Laboratory of Medical Epigenomics, 139 Middle Renmin Road, Changsha, Hunan, 410011, China
| | - Yikun Wang
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Congli Tang
- Nanjing ARP Biotechnology Co., Ltd, Nanjing, 210046, China
| | - Wenjing Pan
- Nanjing ARP Biotechnology Co., Ltd, Nanjing, 210046, China; Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou, 412007, China
| | - Hai Long
- Department of Dermatology, The Second Xiangya Hospital of Central South University, Hunan Key Laboratory of Medical Epigenomics, 139 Middle Renmin Road, Changsha, Hunan, 410011, China
| | - Ming Zhao
- Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences & Peking Union Medical College, Nanjing, 210042, China; Department of Dermatology, The Second Xiangya Hospital of Central South University, Hunan Key Laboratory of Medical Epigenomics, 139 Middle Renmin Road, Changsha, Hunan, 410011, China
| | - Liwei Lu
- Department of Pathology and Shenzhen Institute of Research and Innovation, The University of Hong Kong, Hong Kong, 518057, China
| | - Weijun Peng
- Department of Integrated Traditional Chinese & Western Medicine, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Arne Akbar
- Associate of the Institute of Healthy Ageing, Division of Infection & Immunity, University College of London, London, WC1E 6BT, United Kingdom
| | - Irene Xy Wu
- Xiangya School of Public Health, Central South University, 4/F, Changsha, Hunan, 410006, China
| | - Song Li
- Key Laboratory of Rare Pediatric Diseases, Ministry of Education, Hengyang Medical School, University of South China, Hengyang, Hunan, China; National Health Commission Key Laboratory of Birth Defect Research and Prevention, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, Hunan, China.
| | - Haijing Wu
- Department of Dermatology, The Second Xiangya Hospital of Central South University, Hunan Key Laboratory of Medical Epigenomics, 139 Middle Renmin Road, Changsha, Hunan, 410011, China.
| | - Qianjin Lu
- Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences & Peking Union Medical College, Nanjing, 210042, China; Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, 210042, China; Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Nanjing, 210042, China; Research Unit of Key Technologies of Immune-related Skin Diseases Diagnosis and Treatment, Chinese Academy of Medical Sciences Institute of Dermatology, Nanjing, 210042, China; Department of Dermatology, The Second Xiangya Hospital of Central South University, Hunan Key Laboratory of Medical Epigenomics, 139 Middle Renmin Road, Changsha, Hunan, 410011, China.
| |
Collapse
|
5
|
Chanda F, Lin KX, Chaurembo AI, Huang JY, Zhang HJ, Deng WH, Xu YJ, Li Y, Fu LD, Cui HD, Shu C, Chen Y, Xing N, Lin HB. PM 2.5-mediated cardiovascular disease in aging: Cardiometabolic risks, molecular mechanisms and potential interventions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176255. [PMID: 39276993 DOI: 10.1016/j.scitotenv.2024.176255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 09/10/2024] [Accepted: 09/11/2024] [Indexed: 09/17/2024]
Abstract
Air pollution, particularly fine particulate matter (PM2.5) with <2.5 μm in diameter, is a major public health concern. Studies have consistently linked PM2.5 exposure to a heightened risk of cardiovascular diseases (CVDs) such as ischemic heart disease (IHD), heart failure (HF), and cardiac arrhythmias. Notably, individuals with pre-existing age-related cardiometabolic conditions appear more susceptible. However, the specific impact of PM2.5 on CVDs susceptibility in older adults remains unclear. Therefore, this review addresses this gap by discussing the factors that make the elderly more vulnerable to PM2.5-induced CVDs. Accordingly, we focused on physiological aging, increased susceptibility, cardiometabolic risk factors, CVDs, and biological mechanisms. This review concludes by examining potential interventions to reduce exposure and the adverse health effects of PM2.5 in the elderly population. The latter includes dietary modifications, medications, and exploration of the potential benefits of supplements. By comprehensively analyzing these factors, this review aims to provide a deeper understanding of the detrimental effects of PM2.5 on cardiovascular health in older adults. This knowledge can inform future research and guide strategies to protect vulnerable populations from the adverse effects of air pollution.
Collapse
Affiliation(s)
- Francis Chanda
- Zhongshan Institute for Drug Discovery, SIMM, CAS, Zhongshan, Guangdong, China; State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China; University of Chinese Academy of Sciences, Beijing, China
| | - Kai-Xuan Lin
- Department of Cardiology, Zhongshan Hospital of Traditional Chinese Medicine Affiliated to Guangzhou University of Traditional Chinese Medicine, Zhongshan, Guangdong, China; Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Abdallah Iddy Chaurembo
- Zhongshan Institute for Drug Discovery, SIMM, CAS, Zhongshan, Guangdong, China; State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China; University of Chinese Academy of Sciences, Beijing, China
| | - Jian-Yuan Huang
- Zhongshan Institute for Drug Discovery, SIMM, CAS, Zhongshan, Guangdong, China; School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Hui-Juan Zhang
- Zhongshan Institute for Drug Discovery, SIMM, CAS, Zhongshan, Guangdong, China; School of Pharmacy, Zunyi Medical University, Zunyi, Guizhou, China
| | - Wen-Hui Deng
- Zhongshan Institute for Drug Discovery, SIMM, CAS, Zhongshan, Guangdong, China; School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Yun-Jing Xu
- Zhongshan Institute for Drug Discovery, SIMM, CAS, Zhongshan, Guangdong, China; State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China; University of Chinese Academy of Sciences, Beijing, China
| | - Yuan Li
- Zhongshan Institute for Drug Discovery, SIMM, CAS, Zhongshan, Guangdong, China; Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Li-Dan Fu
- Zhongshan Institute for Drug Discovery, SIMM, CAS, Zhongshan, Guangdong, China; School of Pharmacy, Zunyi Medical University, Zunyi, Guizhou, China
| | - Hao-Dong Cui
- Zhongshan Institute for Drug Discovery, SIMM, CAS, Zhongshan, Guangdong, China; School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, Guizhou, China
| | - Chi Shu
- Zhongshan Institute for Drug Discovery, SIMM, CAS, Zhongshan, Guangdong, China; Food Science College, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Yang Chen
- University of Chinese Academy of Sciences, Beijing, China; Research Center for Atmospheric Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, China
| | - Na Xing
- Zhongshan Institute for Drug Discovery, SIMM, CAS, Zhongshan, Guangdong, China.
| | - Han-Bin Lin
- Zhongshan Institute for Drug Discovery, SIMM, CAS, Zhongshan, Guangdong, China; State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China; University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
6
|
Kumari M, Dasriya VL, Ali SA, Behare PV. Evaluation of antioxidant and anti-inflammatory properties of Lacticaseibacillus rhamnosus Ram12-derived exopolysaccharide in a D-galactose-induced liver injury mouse model. Int J Biol Macromol 2024; 281:136241. [PMID: 39366628 DOI: 10.1016/j.ijbiomac.2024.136241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/16/2024] [Accepted: 09/30/2024] [Indexed: 10/06/2024]
Abstract
We investigated the antioxidant and anti-inflammatory properties of Lacticaseibacillus rhamnosus Ram12-derived EPSRam12 in a D-galactose-induced liver injury mouse model. Initially, EPSRam12 was characterized for its composition, molecular weight, and structural features. It was then administered orally to D-galactose-induced mice (which had received an intraperitoneal injection of D-galactose, 100 mg/kg body weight) at doses of 25 mg/kg (low dose) and 50 mg/kg (high dose) for 45 days. After treatment, biochemical markers, antioxidant status, cytokine levels, and liver inflammatory gene expression were evaluated. The results showed that EPSRam12 was a branched chain heteropolysaccharide comprising mannose, rhamnose, and arabinose monosaccharides with molecular weight of 2.6 million Daltons. EPSRam12, with its unique structural features such as hydroxyl and methyl groups, glycosidic bonds, and functional groups like carboxylates and sulfates, demonstrated promising bioactive properties. Administering EPSRam12 to D-galactose-induced mice resulted in a significant increase in antioxidant enzyme activity and a reduction in oxidative stress indicators. Additionally, it exhibited anti-inflammatory effects by modulating cytokine levels, lowering pro-inflammatory markers, and inhibiting key inflammatory pathways in the liver in a dose-dependent manner. Our findings underscore the potential of EPSRam12 as an effective antioxidant and anti-inflammatory agent, with promising applications in functional foods and pharmaceuticals.
Collapse
Affiliation(s)
- Manorama Kumari
- Technofunctional Starter Lab, National Collection of Dairy Cultures (NCDC), Dairy Microbiology Division, National Dairy Research Institute, Karnal 132001, Haryana, India
| | - Vaishali L Dasriya
- Technofunctional Starter Lab, National Collection of Dairy Cultures (NCDC), Dairy Microbiology Division, National Dairy Research Institute, Karnal 132001, Haryana, India
| | - Syed Azmal Ali
- Proteomics of Stem Cells and Cancer, German Cancer Research Center (DKFZ), Heidelberg 69121, Germany
| | - Pradip V Behare
- Technofunctional Starter Lab, National Collection of Dairy Cultures (NCDC), Dairy Microbiology Division, National Dairy Research Institute, Karnal 132001, Haryana, India.
| |
Collapse
|
7
|
Sun Y, Lu J, Wu J, Qi X, Huang Y, Lin K, Yang J, Wang H, Li J, Fang S, Yang A, Chen S, Chang W, Jin J, Xu Z, Wang S. Potential mechanism of CARD16 protein action and susceptibility to sepsis in the elderly infected population: Through transcriptome analysis of blood. Int J Biol Macromol 2024; 281:136578. [PMID: 39406325 DOI: 10.1016/j.ijbiomac.2024.136578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 10/09/2024] [Accepted: 10/12/2024] [Indexed: 10/25/2024]
Abstract
As global aging accelerates, the super-elderly population is at higher risk of infectious diseases, especially sepsis, a condition that may be associated with declining immune system function and abnormal inflammatory responses. The aim of this study was to investigate the role of CARD16 protein in sepsis susceptibility in the elderly population and its potential mechanism, and to reveal the expression characteristics of CARD16-related genes through blood transcriptomic analysis. Transcriptome sequencing was conducted on peripheral blood samples obtained from patients suffering from senile sepsis, along with samples from a healthy elderly control group. To examine the differences in gene expression, bioinformatics techniques were employed to compare the expression levels of CARD16-related genes between the two groups. Additionally, a comprehensive analysis was performed on the downstream inflammatory pathways and cytokines that are regulated by CARD16.The findings from the transcriptome analysis indicated that the expression of CARD16 was markedly upregulated in the cohort of patients experiencing hypersenile sepsis. This upregulation was associated with an increase in a variety of pro-inflammatory factors. Further network analysis suggested that CARD16 may potentiate the inflammatory response by modulating the NF-κB signaling pathway, which could consequently heighten the patients' vulnerability to sepsis.In comparison to the healthy elderly control group, the levels of anti-inflammatory genes in the super-elderly cohort were found to be significantly diminished. This observation points to a notable imbalance in immune regulation, further emphasizing the altered immune response in individuals with senile sepsis.
Collapse
Affiliation(s)
- Yuhan Sun
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai 200040, China
| | - Jiahuan Lu
- Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200336, China
| | - Jing Wu
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai 200040, China; Shanghai Sci-Tech InnoCenter for Infection and Immunity, Shanghai 200052, China
| | - Xiao Qi
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai 200040, China
| | - Yanfang Huang
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai 200040, China
| | - Ke Lin
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai 200040, China
| | - Jingnan Yang
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai 200040, China
| | - Hua Wang
- Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200336, China
| | - Jinwei Li
- Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200336, China
| | - Shuyu Fang
- Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200336, China
| | - Ali Yang
- Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200336, China
| | - Shu Chen
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai 200040, China
| | - Wenhong Chang
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai 200040, China; Shanghai Sci-Tech InnoCenter for Infection and Immunity, Shanghai 200052, China; Institute of Infection and Health, Fudan University, Shanghai 200040, China
| | - Jialin Jin
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai 200040, China.
| | - Zhongqing Xu
- Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200336, China.
| | - Sen Wang
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai 200040, China; Shanghai Sci-Tech InnoCenter for Infection and Immunity, Shanghai 200052, China.
| |
Collapse
|
8
|
Fonseca MCM, Sansone D, Farah D, Fiorini AC, Scorza CA, Scorza FA. Seasonality as a risk factor for deaths in Parkinson's disease. Clinics (Sao Paulo) 2024; 79:100506. [PMID: 39461195 PMCID: PMC11543644 DOI: 10.1016/j.clinsp.2024.100506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 07/21/2024] [Indexed: 10/29/2024] Open
Abstract
BACKGROUND According to growing evidence, sleep disruption harms biological processes and circadian homeostasis. Diurnal motor symptom volatility in Parkinson's Disease (PD) has been extensively studied. Few studies examined seasonal variability in PD symptoms, some showing it and others not. OBJECTIVE To investigate whether PD patients' deaths follow a rhythmic pattern due to circadian rhythm alterations. METHODS This study used only unidentified patient databases. People with PD, ICD10 code G20, in at least one death certificate field were selected. The Continuous Wavelet Transform and Fourier Transform were checked for oscillation and its duration. RESULTS The 18-year analysis found 43,072 PD deaths. The Continuous Wavelet transform revealed a 351.87-day annual component (p < 0.05). Winter in the southern hemisphere saw more deaths, mainly in July. The Continuous Wavelet transform identified a significant daily component (p < 0.05) of 22.81 hours. Fatalities peaked around 9 a.m. Pneumonia is the leading cause of death in PD, and women and men have the same rhythm pattern. CONCLUSION Parkinson's disease mortality in Brazil follows a pattern. Using over 40.000 death certificates from 18 years, the authors found that Parkinson's patient fatalities rise in winter and peak in July at about 9 a.m. Sunlight reduction increases mortality risk in the long term. Low sunshine lowers temperatures, increasing short-term death risk. This is crucial because it prioritizes the sun, seasons, and circadian rhythm over low temperatures.
Collapse
Affiliation(s)
- Marcelo C M Fonseca
- Departamento de Ginecologia, Escola Paulista de Medicina/Universidade Federal de São Paulo (EPM/UNIFESP), São Paulo, SP, Brasil.
| | - Dayan Sansone
- Departamento de Ginecologia, Escola Paulista de Medicina/Universidade Federal de São Paulo (EPM/UNIFESP), São Paulo, SP, Brasil
| | - Daniela Farah
- Departamento de Ginecologia, Escola Paulista de Medicina/Universidade Federal de São Paulo (EPM/UNIFESP), São Paulo, SP, Brasil
| | - Ana Claudia Fiorini
- Departamento de Fonoaudiologia, Escola Paulista de Medicina/Universidade Federal de São Paulo (EPM/UNIFESP). São Paulo, SP, Brasil; Programa de Estudos Pós-Graduado em Fonoaudiologia, Pontifícia Universidade Católica de São Paulo (PUC-SP), São Paulo, SP, Brasil
| | - Carla A Scorza
- Disciplina de Neurociência, Escola Paulista de Medicina/Universidade Federal de São Paulo (EPM/UNIFESP). São Paulo, SP, Brasil
| | - Fulvio A Scorza
- Disciplina de Neurociência, Escola Paulista de Medicina/Universidade Federal de São Paulo (EPM/UNIFESP). São Paulo, SP, Brasil
| |
Collapse
|
9
|
Wrona MV, Ghosh R, Coll K, Chun C, Yousefzadeh MJ. The 3 I's of immunity and aging: immunosenescence, inflammaging, and immune resilience. FRONTIERS IN AGING 2024; 5:1490302. [PMID: 39478807 PMCID: PMC11521913 DOI: 10.3389/fragi.2024.1490302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 09/23/2024] [Indexed: 11/02/2024]
Abstract
As we age, our immune system's ability to effectively respond to pathogens declines, a phenomenon known as immunosenescence. This age-related deterioration affects both innate and adaptive immunity, compromising immune function and leading to chronic inflammation that accelerates aging. Immunosenescence is characterized by alterations in immune cell populations and impaired functionality, resulting in increased susceptibility to infections, diminished vaccine efficacy, and higher prevalence of age-related diseases. Chronic low-grade inflammation further exacerbates these issues, contributing to a decline in overall health and resilience. This review delves into the characteristics of immunosenescence and examines the various intrinsic and extrinsic factors contributing to immune aging and how the hallmarks of aging and cell fates can play a crucial role in this process. Additionally, it discusses the impact of sex, age, social determinants, and gut microbiota health on immune aging, illustrating the complex interplay of these factors in altering immune function. Furthermore, the concept of immune resilience is explored, focusing on the metrics for assessing immune health and identifying strategies to enhance immune function. These strategies include lifestyle interventions such as diet, regular physical activity, stress management, and the use of gerotherapeutics and other approaches. Understanding and mitigating the effects of immunosenescence are crucial for developing interventions that support robust immune responses in aged individuals.
Collapse
Affiliation(s)
- Marianna V. Wrona
- Columbia University in the City of New York, New York, NY, United States
| | - Rituparna Ghosh
- Columbia Center for Human Longevity, Columbia University Medical Center, New York, NY, United States
- Columbia Center for Translational Immunology, Columbia University Medical Center, New York, NY, United States
- Department of Medicine, Columbia University Medical Center, New York, NY, United States
| | - Kaitlyn Coll
- Florida International University, Miami, FL, United States
| | - Connor Chun
- Bronx High School of Science, New York, NY, United States
| | - Matthew J. Yousefzadeh
- Columbia University in the City of New York, New York, NY, United States
- Columbia Center for Human Longevity, Columbia University Medical Center, New York, NY, United States
- Columbia Center for Translational Immunology, Columbia University Medical Center, New York, NY, United States
- Department of Medicine, Columbia University Medical Center, New York, NY, United States
| |
Collapse
|
10
|
Huang Y, Feng J, Xu J, Dong L, Su W, Li B, Witwer KW, Zheng L. Associations of age and sex with characteristics of extracellular vesicles and protein-enriched fractions of blood plasma. Aging Cell 2024:e14356. [PMID: 39373063 DOI: 10.1111/acel.14356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 08/28/2024] [Accepted: 09/09/2024] [Indexed: 10/08/2024] Open
Abstract
Extracellular vesicles (EVs) are nanosized particles that are released by various cell types and play vital roles in intercellular communication. They carry biological molecules reflecting the physiological and pathological states of their source cells and tissues, showing potential as biomarkers. However, the impact of demographic factors like age and sex on the properties of blood plasma EVs remains underexplored. This study aims to fill this gap by evaluating how these factors influence the particle count and proteomic profiles of plasma EV preparations and corresponding protein fractions. Plasma samples from 120 healthy volunteers were collected and pooled into six groups: young males (age: 27.6 ± 4.0), young females (27.4 ± 3.8), middle-aged males (48.8 ± 3.8), middle-aged females (48.9 ± 3.9), old males (69.3 ± 3.9), and old females (69.4 ± 4.3). EV- and protein-enriched fractions were separated by size-exclusion chromatography (SEC). Fractions were characterized for particle number concentration and protein composition to identify characteristics affected by age and biological sex. Plasma EVs and corresponding protein fractions exhibited distinct characteristics, with differential enrichment of markers related to EVs and other blood components, including lipoproteins. Proteomic profiles of both EVs and protein fractions displayed sex- and age-dependent differences. Differentially abundant proteins displayed functions previously identified in the context of aging and sex differences, highlighting their utility as biomarkers. Age and sex significantly affect the characteristics of plasma EVs and proteins, potentially influencing their efficacy and interpretation as biomarkers in clinical applications. This study lays the groundwork for detailed mechanistic research to understand how EVs mediate age- and sex-related effects in health.
Collapse
Affiliation(s)
- Yiyao Huang
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Junjie Feng
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Jiannan Xu
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Liang Dong
- Department of Urology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wanting Su
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Bo Li
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Kenneth W Witwer
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Richman Family Precision Medicine Center of Excellence in Alzheimer's Disease, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Lei Zheng
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
11
|
Mendonça BS, Nascimento LMM, Ferro JNDS, Dos Santos Reis MD. The effect of plant-derived polyphenols on the immune system during aging: a systematic review. Immunopharmacol Immunotoxicol 2024; 46:604-617. [PMID: 39069754 DOI: 10.1080/08923973.2024.2384911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 07/22/2024] [Indexed: 07/30/2024]
Abstract
OBJECTIVE Polyphenols are organic compounds with diverse biological activities such as anti-inflammatory and antioxidant effects, making them important candidates for the development of anti-aging drugs. In this systematic review, we aimed to answer the question: can plant-derived polyphenols have an immunomodulatory effect in experimental models of aging? METHODS We systematically searched Web of Science, MEDLINE/Pubmed, and Embase to select articles using the following combinations of terms and synonyms: polyphenols, phenols, senescence, aging, and immune. The selected articles were evaluated for reporting quality and risk-of-bias according to standard guidelines. RESULTS The most used polyphenol was resveratrol, followed by curcumin, salidroside, and gallic acid. These molecules demonstrated an ability to restore immune function both in vitro and in vivo. The mechanism of action was not completely elucidated in these studies, but inhibition of NF-kB signaling, and antioxidant properties seemed to account for the anti-aging effects. All articles included in the review had good quality of reporting but failed to describe an adequate sample size, criteria for inclusion/exclusion, randomization, and blinding. CONCLUSION We conclude that polyphenols are promising immunomodulatory substances for use in anti-aging therapies. However, more research with standardized analysis is needed to understand the role of these molecules in the prevention or reduction of damage associated with the aging process, as well as to determine the safety profile and consequences of systemic action.
Collapse
Affiliation(s)
- Beatriz Santana Mendonça
- Laboratory of Cell Biology, Institute of Health and Biological Sciences, Federal University of Alagoas, Maceió
| | | | | | | |
Collapse
|
12
|
Sofianovich O, Willis-Urena K, Dong Y, Ignea C. Bioengineered yeast for preventing age-related diseases. Trends Biotechnol 2024:S0167-7799(24)00239-7. [PMID: 39358048 DOI: 10.1016/j.tibtech.2024.08.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 08/21/2024] [Accepted: 08/22/2024] [Indexed: 10/04/2024]
Abstract
The aging process entails a multifaceted decline in the capacity to restore homeostasis in response to stress. A prevalent characteristic of many age-related diseases is the presence of low-grade chronic inflammation, a risk factor contributing significantly to morbidity and mortality in the elderly population. Specific lifestyle interventions, such as regular physical activity, targeted diet, and supplementation, can delay the accumulation of chronic age-associated conditions by mitigating inflammation processes. Bioengineered yeast-producing compounds with distinctive bioactivities, including anti-inflammatory properties, have the potential to provide rich dietary alternatives for the prevention of age-related diseases. This review highlights recent achievements in engineering effective yeast platforms, namely Saccharomyces cerevisiae and Yarrowia lipolytica, that hold promise in retarding the onset of aging and age-related ailments.
Collapse
Affiliation(s)
- Olga Sofianovich
- Department of Bioengineering, McGill University, Montreal, QC, Canada, H3A 0C3
| | - Kate Willis-Urena
- Department of Bioengineering, McGill University, Montreal, QC, Canada, H3A 0C3
| | - Yueming Dong
- Department of Bioengineering, McGill University, Montreal, QC, Canada, H3A 0C3
| | - Codruta Ignea
- Department of Bioengineering, McGill University, Montreal, QC, Canada, H3A 0C3.
| |
Collapse
|
13
|
Andonian BJ, Hippensteel JA, Abuabara K, Boyle EM, Colbert JF, Devinney MJ, Faye AS, Kochar B, Lee J, Litke R, Nair D, Sattui SE, Sheshadri A, Sherman AN, Singh N, Zhang Y, LaHue SC. Inflammation and aging-related disease: A transdisciplinary inflammaging framework. GeroScience 2024:10.1007/s11357-024-01364-0. [PMID: 39352664 DOI: 10.1007/s11357-024-01364-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 09/23/2024] [Indexed: 10/04/2024] Open
Abstract
Inflammaging, a state of chronic, progressive low-grade inflammation during aging, is associated with several adverse clinical outcomes, including frailty, disability, and death. Chronic inflammation is a hallmark of aging and is linked to the pathogenesis of many aging-related diseases. Anti-inflammatory therapies are also increasingly being studied as potential anti-aging treatments, and clinical trials have shown benefits in selected aging-related diseases. Despite promising advances, significant gaps remain in defining, measuring, treating, and integrating inflammaging into clinical geroscience research. The Clin-STAR Inflammation Research Interest Group was formed by a group of transdisciplinary clinician-scientists with the goal of advancing inflammaging-related clinical research and improving patient-centered care for older adults. Here, we integrate insights from nine medical subspecialties to illustrate the widespread impact of inflammaging on diseases linked to aging, highlighting the extensive opportunities for targeted interventions. We then propose a transdisciplinary approach to enhance understanding and treatment of inflammaging that aims to improve comprehensive care for our aging patients.
Collapse
Affiliation(s)
- Brian J Andonian
- Division of Rheumatology and Immunology, Duke University School of Medicine, Durham, NC, USA.
| | - Joseph A Hippensteel
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Katrina Abuabara
- Department of Dermatology, University of California San Francisco, San Francisco, CA, USA
| | - Eileen M Boyle
- Department of Haematology, University College London Cancer Institute, London, UK
| | - James F Colbert
- Division of Infectious Diseases, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Michael J Devinney
- Division of Critical Care, Department of Anesthesiology, Duke University School of Medicine, Durham, NC, USA
| | - Adam S Faye
- Division of Gastroenterology, Department of Population Health, NYU Langone Medical Center, New York, NY, USA
| | - Bharati Kochar
- Division of Gastroenterology, Massachusetts General Hospital, Boston, MA, USA
| | - Jiha Lee
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Rachel Litke
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Devika Nair
- Department of Medicine, Division of Nephrology and Hypertension, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Sebastian E Sattui
- Division of Rheumatology and Clinical Immunology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Anoop Sheshadri
- Division of Nephrology, Department of Medicine, University of California, San Francisco, Nephrology Section, San Francisco Veterans Affairs Medical Center, San Francisco, CA, USA
| | | | - Namrata Singh
- Division of Rheumatology, University of Washington, Seattle, WA, USA
| | - Yinan Zhang
- Department of Neurology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Sara C LaHue
- Department of Neurology, School of Medicine, and the UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| |
Collapse
|
14
|
Hungerbühler V, Özcelik R, Abakar MF, Zakaria FA, Eiden M, Hartnack S, Kimala P, Kittl S, Michel J, Suter-Riniker F, Dürr S. Diagnostic serology test comparison for Q fever and Rift Valley fever in humans and livestock from pastoral communities. PLoS Negl Trop Dis 2024; 18:e0012300. [PMID: 39401261 PMCID: PMC11501034 DOI: 10.1371/journal.pntd.0012300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 10/24/2024] [Accepted: 09/30/2024] [Indexed: 10/26/2024] Open
Abstract
Q fever (QF) and Rift Valley fever (RVF) are endemic zoonotic diseases in African countries, causing significant health and economic burdens. Accurate prevalence estimates, crucial for disease control, rely on robust diagnostic tests. While enzyme-linked immunosorbent assays (ELISA) are not the gold standard, they offer rapid, cost-effective, and practical alternatives. However, varying results from different tests and laboratories can complicate comparing epidemiological studies. This study aimed to assess the agreement of test results for QF and RVF in humans and livestock across different laboratory conditions and, for humans, different types of diagnostic tests. We measured inter-laboratory agreement using concordance, Cohen's kappa, and prevalence and bias-adjusted kappa (PABAK) on 91 human and 102 livestock samples collected from rural regions in Chad. The serum aliquots were tested using ELISA in Chad, and indirect immunofluorescence assay (IFA) (for human QF and RVF) and ELISA (for livestock QF and RVF) in Switzerland and Germany. Additionally, we examined demographic factors influencing test agreement, including district, setting (village vs. camp), sex, age, and livestock species of the sampled individuals. The inter-laboratory agreement ranged from fair to moderate. For humans, QF concordance was 62.5%, Cohen's kappa was 0.31, RVF concordance was 81.1%, and Cohen's kappa was 0.52. For livestock, QF concordance was 92.3%, Cohen's kappa was 0.59, RVF concordance was 94.0%, and Cohen's kappa was 0.59. Multivariable analysis revealed that QF test agreement is significantly higher in younger humans and people living in villages compared to camps and tends to be higher in livestock from Danamadji compared to Yao, and in small ruminants compared to cattle. Additionally, RVF agreement was found to be higher in younger humans. Our findings emphasize the need to consider sample conditions, test performance, and influencing factors when conducting and interpreting epidemiological seroprevalence studies.
Collapse
Affiliation(s)
- Valerie Hungerbühler
- Veterinary Public Health Institute, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Ranya Özcelik
- Veterinary Public Health Institute, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | | | | | - Martin Eiden
- Institute for Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Greifswald – Insel Riems, Germany
| | - Sonja Hartnack
- Section of Epidemiology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Pidou Kimala
- Institut de Recherche en Elevage pour le Développement, N’Djamena, Chad
| | - Sonja Kittl
- Institute of Veterinary Bacteriology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Janine Michel
- Robert Koch Institute, Centre for Biological Threats and Special Pathogens, Highly Pathogenic Viruses, Berlin, Germany
| | - Franziska Suter-Riniker
- IFIK, Institute for Infectious Diseases, Faculty of Medicine, University of Bern, Bern, Switzerland
| | - Salome Dürr
- Veterinary Public Health Institute, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| |
Collapse
|
15
|
Qi Y, Yan Y, Tang D, Han J, Zhu X, Cui M, Wu H, Tao Y, Fan F. Inflammatory and Immune Mechanisms in COPD: Current Status and Therapeutic Prospects. J Inflamm Res 2024; 17:6603-6618. [PMID: 39318994 PMCID: PMC11421452 DOI: 10.2147/jir.s478568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 09/12/2024] [Indexed: 09/26/2024] Open
Abstract
Background Chronic obstructive pulmonary disease (COPD) currently ranks among the top three causes of mortality worldwide, presenting as a prevalent and complex respiratory ailment. Ongoing research has underscored the pivotal role of immune function in the onset and progression of COPD. The immune response in COPD patients exhibits abnormalities, characterized by diminished anti-infection capacity due to immune senescence, heightened activation of neutrophils and macrophages, T cell infiltration, and aberrant B cell activity, collectively contributing to airway inflammation and lung injury in COPD. Objective This review aimed to explore the pivotal role of the immune system in COPD and its therapeutic potential. Methods We conducted a review of immunity and COPD published within the past decade in the Web of Science and PubMed databases, sorting through and summarizing relevant literature. Results This article examines the pivotal roles of the immune system in COPD. Understanding the specific functions and interactions of these immune cells could facilitate the development of novel therapeutic strategies and interventions aimed at controlling inflammation, enhancing immune function, and mitigating the impact of respiratory infections in COPD patients.
Collapse
Affiliation(s)
- Yanan Qi
- School of Pharmacy, Bengbu Medical University, Bengbu, People’s Republic of China
- Anhui Engineering Technology Research Center of Biochemical Pharmaceutical, Bengbu, People’s Republic of China
| | - Yuanyuan Yan
- School of Pharmacy, Bengbu Medical University, Bengbu, People’s Republic of China
- Anhui Engineering Technology Research Center of Biochemical Pharmaceutical, Bengbu, People’s Republic of China
| | - Dawei Tang
- School of Pharmacy, Bengbu Medical University, Bengbu, People’s Republic of China
- Anhui Engineering Technology Research Center of Biochemical Pharmaceutical, Bengbu, People’s Republic of China
| | - Jingjing Han
- School of Pharmacy, Bengbu Medical University, Bengbu, People’s Republic of China
- Anhui Engineering Technology Research Center of Biochemical Pharmaceutical, Bengbu, People’s Republic of China
| | - Xinyi Zhu
- School of Pharmacy, Bengbu Medical University, Bengbu, People’s Republic of China
- Anhui Engineering Technology Research Center of Biochemical Pharmaceutical, Bengbu, People’s Republic of China
| | - Mengting Cui
- School of Pharmacy, Bengbu Medical University, Bengbu, People’s Republic of China
- Anhui Engineering Technology Research Center of Biochemical Pharmaceutical, Bengbu, People’s Republic of China
| | - Hongyan Wu
- Institute of Biomedical Technology, Jiangsu Vocational College of Medicine, Yancheng, Jiangsu, 224005, People’s Republic of China
| | - Yu Tao
- School of Pharmacy, Bengbu Medical University, Bengbu, People’s Republic of China
- Anhui Engineering Technology Research Center of Biochemical Pharmaceutical, Bengbu, People’s Republic of China
| | - Fangtian Fan
- School of Pharmacy, Bengbu Medical University, Bengbu, People’s Republic of China
- Anhui Engineering Technology Research Center of Biochemical Pharmaceutical, Bengbu, People’s Republic of China
| |
Collapse
|
16
|
Li C, Wen Q, Zhu G, Zhang Y, Wang Y, Luo D, Wu J. Association of the panimmune-inflammatory value (PIV) with all-cause and cardiovascular mortality in maintenance hemodialysis patients: a propensity score matching retrospective study. Int Urol Nephrol 2024:10.1007/s11255-024-04203-5. [PMID: 39254905 DOI: 10.1007/s11255-024-04203-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Accepted: 09/03/2024] [Indexed: 09/11/2024]
Abstract
PURPOSE The panimmune-inflammatory value (PIV) is a novel inflammatory indicator. However, its role in maintenance hemodialysis (MHD) remains unclear. Our goal was to explore the predictive value of PIV for cardiovascular and all-cause mortality in MHD patients. METHODS In this retrospective cohort study, 507 patients receiving MHD between November 2017 and December 2022 were enrolled. The PIV value was calculated as follows: neutrophil count × monocyte count × platelet count/lymphocyte count. Patients were divided into two groups on the basis of the median PIV. Propensity score matching (PSM) was used to adjust for imbalances in baseline information between groups. Kaplan‒Meier curves, Cox regression, the Fine‒Gray competing risk model, and restricted cubic spline (RCS) curves were used to analyze the relationship between PIV and mortality. RESULTS By the end of follow-up, 126 deaths had occurred, 91 of which were due to cardiovascular disease. The Kaplan‒Meier curves demonstrated that MHD patients with higher PIV levels had a poorer prognosis for all-cause death (p = 0.019). PIV levels were linked to all-cause death in multivariate Cox proportional risk regression (HR = 1.76; 95% CI 1.14, 2.72; p = 0.011). The Fine‒Gray model revealed a greater cumulative incidence of cardiovascular death in the higher PIV group (p = 0.035). PIV levels were linked to cardiovascular mortality in the Fine‒Gray competing risk model (HR = 2.06; 95% CI 1.25, 3.42; p = 0.005). The RCS revealed a nonlinear relationship between PIV and mortality risk (p < 0.05). Using 63 years of age as the threshold, we observed a multiplicative interaction effect between age and PIV for all-cause mortality (p = 0.006). CONCLUSION In MHD patients, PIV is an independent hazard factor for cardiovascular-related mortality and all-cause mortality.
Collapse
Affiliation(s)
- Chunmin Li
- Department of Nephrology, Tongren Hospital of Wuhan University (Wuhan Third Hospital), Wuhan University, 216 Guanshan Road, Wuhan, 430074, People's Republic of China
| | - Qian Wen
- Department of Nephrology, Tongren Hospital of Wuhan University (Wuhan Third Hospital), Wuhan University, 216 Guanshan Road, Wuhan, 430074, People's Republic of China
| | - Geli Zhu
- Department of Nephrology, Tongren Hospital of Wuhan University (Wuhan Third Hospital), Wuhan University, 216 Guanshan Road, Wuhan, 430074, People's Republic of China
| | - Yanxia Zhang
- Department of Nephrology, Tongren Hospital of Wuhan University (Wuhan Third Hospital), Wuhan University, 216 Guanshan Road, Wuhan, 430074, People's Republic of China
| | - Yuan Wang
- Department of Nephrology, Tongren Hospital of Wuhan University (Wuhan Third Hospital), Wuhan University, 216 Guanshan Road, Wuhan, 430074, People's Republic of China
| | - Dan Luo
- Department of Nephrology, Tongren Hospital of Wuhan University (Wuhan Third Hospital), Wuhan University, 216 Guanshan Road, Wuhan, 430074, People's Republic of China
| | - Jun Wu
- Department of Nephrology, Tongren Hospital of Wuhan University (Wuhan Third Hospital), Wuhan University, 216 Guanshan Road, Wuhan, 430074, People's Republic of China.
| |
Collapse
|
17
|
Arcos Hodar J, Jung S, Soudy M, Barvaux S, del Sol A. The cell rejuvenation atlas: leveraging network biology to identify master regulators of rejuvenation strategies. Aging (Albany NY) 2024; 16:12168-12190. [PMID: 39264584 PMCID: PMC11424581 DOI: 10.18632/aging.206105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 07/19/2024] [Indexed: 09/13/2024]
Abstract
Current rejuvenation strategies, which range from calorie restriction to in vivo partial reprogramming, only improve a few specific cellular processes. In addition, the molecular mechanisms underlying these approaches are largely unknown, which hinders the design of more holistic cellular rejuvenation strategies. To address this issue, we developed SINGULAR (Single-cell RNA-seq Investigation of Rejuvenation Agents and Longevity), a cell rejuvenation atlas that provides a unified system biology analysis of diverse rejuvenation strategies across multiple organs at single-cell resolution. In particular, we leverage network biology approaches to characterize and compare the effects of each strategy at the level of intracellular signaling, cell-cell communication, and transcriptional regulation. As a result, we identified master regulators orchestrating the rejuvenation response and propose that targeting a combination of them leads to a more holistic improvement of age-dysregulated cellular processes. Thus, the interactive database accompanying SINGULAR is expected to facilitate the future design of synthetic rejuvenation interventions.
Collapse
Affiliation(s)
- Javier Arcos Hodar
- Computational Biology Group, CIC bioGUNE-BRTA (Basque Research and Technology Alliance), Bizkaia Technology Park, Derio, Spain
| | - Sascha Jung
- Computational Biology Group, CIC bioGUNE-BRTA (Basque Research and Technology Alliance), Bizkaia Technology Park, Derio, Spain
| | - Mohamed Soudy
- Computational Biology Group, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette L-4362, Luxembourg
- Biomedical Data Science Group, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette L-4362, Luxembourg
| | - Sybille Barvaux
- Computational Biology Group, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette L-4362, Luxembourg
| | - Antonio del Sol
- Computational Biology Group, CIC bioGUNE-BRTA (Basque Research and Technology Alliance), Bizkaia Technology Park, Derio, Spain
- Computational Biology Group, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette L-4362, Luxembourg
- Ikerbasque, Basque Foundation for Science, Bilbao, Bizkaia 48012, Spain
| |
Collapse
|
18
|
Krsek A, Ostojic L, Zivalj D, Baticic L. Navigating the Neuroimmunomodulation Frontier: Pioneering Approaches and Promising Horizons-A Comprehensive Review. Int J Mol Sci 2024; 25:9695. [PMID: 39273641 PMCID: PMC11396210 DOI: 10.3390/ijms25179695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/30/2024] [Accepted: 09/03/2024] [Indexed: 09/15/2024] Open
Abstract
The research in neuroimmunomodulation aims to shed light on the complex relationships that exist between the immune and neurological systems and how they affect the human body. This multidisciplinary field focuses on the way immune responses are influenced by brain activity and how neural function is impacted by immunological signaling. This provides important insights into a range of medical disorders. Targeting both brain and immunological pathways, neuroimmunomodulatory approaches are used in clinical pain management to address chronic pain. Pharmacological therapies aim to modulate neuroimmune interactions and reduce inflammation. Furthermore, bioelectronic techniques like vagus nerve stimulation offer non-invasive control of these systems, while neuromodulation techniques like transcranial magnetic stimulation modify immunological and neuronal responses to reduce pain. Within the context of aging, neuroimmunomodulation analyzes the ways in which immunological and neurological alterations brought on by aging contribute to cognitive decline and neurodegenerative illnesses. Restoring neuroimmune homeostasis through strategies shows promise in reducing age-related cognitive decline. Research into mood disorders focuses on how immunological dysregulation relates to illnesses including anxiety and depression. Immune system fluctuations are increasingly recognized for their impact on brain function, leading to novel treatments that target these interactions. This review emphasizes how interdisciplinary cooperation and continuous research are necessary to better understand the complex relationship between the neurological and immune systems.
Collapse
Affiliation(s)
- Antea Krsek
- Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia
| | - Leona Ostojic
- Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia
| | - Dorotea Zivalj
- Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia
| | - Lara Baticic
- Department of Medical Chemistry, Biochemistry and Clinical Chemistry, Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia
| |
Collapse
|
19
|
Xu Y, He C, Xi Y, Zhang Y, Bai Y. Gut microbiota and immunosenescence in cancer. Semin Cancer Biol 2024; 104-105:32-45. [PMID: 39127266 DOI: 10.1016/j.semcancer.2024.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/24/2024] [Accepted: 07/29/2024] [Indexed: 08/12/2024]
Abstract
Cancer is generally defined as a disease of aging. With aging, the composition, diversity and functional characteristics of the gut microbiota occur changes, with a decline of beneficial commensal microbes triggered by intrinsic and extrinsic factors (e.g., diet, drugs and chronic health conditions). Nowadays, dysbiosis of the gut microbiota is recognized as a hallmark of cancer. At the same time, aging is accompanied by changes in innate and adaptive immunity, known as immunosenescence, as well as chronic low-grade inflammation, known as inflammaging. The elevated cancer incidence and mortality in the elderly are linked with aging-associated alterations in the gut microbiota that elicit systemic metabolic alterations, leading to immune dysregulation with potentially tumorigenic effects. The gut microbiota and immunosenescence might both affect the response to treatment in cancer patients. In-depth understanding of age-associated alterations in the gut microbiota and immunity will shed light on the risk of cancer development and progression in the elderly. Here, we describe the aging-associated changes of the gut microbiota in cancer, and review the evolving understanding of the gut microbiota-targeted intervention strategies. Furthermore, we summarize the knowledge on the cellular and molecular mechanisms of immunosenescence and its impact on cancer. Finally, we discuss the latest knowledge about the relationships between gut microbiota and immunosenescence, with implications for cancer therapy. Intervention strategies targeting the gut microbiota may attenuate inflammaging and rejuvenate immune function to provide antitumor benefits in elderly patients.
Collapse
Affiliation(s)
- Yaozheng Xu
- Department of Laboratory Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110136, China; Liaoning Clinical Research Center for Laboratory Medicine, Shenyang, Liaoning 110136, China.
| | - Chuan He
- Department of Laboratory Medicine, The First Hospital of China Medical University, Shenyang, Liaoning 110001, China.
| | - Ying Xi
- Department of Laboratory Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110136, China; Liaoning Clinical Research Center for Laboratory Medicine, Shenyang, Liaoning 110136, China.
| | - Yue Zhang
- Department of Laboratory Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110136, China; Liaoning Clinical Research Center for Laboratory Medicine, Shenyang, Liaoning 110136, China.
| | - Yibo Bai
- Department of Laboratory Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110136, China; Liaoning Clinical Research Center for Laboratory Medicine, Shenyang, Liaoning 110136, China.
| |
Collapse
|
20
|
Wu R, Wu J, Jin H, Ma H, Huang H, Xu W, Sun S, Liu X, Dong K, Xie Y, Zeng J, Wang F. Olink and gut microbial metabolomics reveal new biomarkers for the prediction and diagnosis of PMOP. J Bone Miner Metab 2024; 42:503-515. [PMID: 39153113 DOI: 10.1007/s00774-024-01545-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 08/02/2024] [Indexed: 08/19/2024]
Abstract
LNTRODUCTION Postmenopausal osteoporosis (PMOP) can cause postmenopausal women to experience pain and interference. Identifying and exploring potential early diagnostic biomarkers of PMOP is of substantial clinical value and social significance. This study aimed to screen for potential novel diagnostic biomarkers of PMOP through a multiomics approach, providing new directions and ideas for the early prevention and treatment of this disease. MATERIALS AND METHODS Fifteen postmenopausal women with osteoporosis and 12 without were recruited. Clinical information was collected, and various clinical biochemical parameters were tested. Plasma and fecal samples were collected and analyzed using Olink proteomics and gut microbial metabolomics. RESULTS The functions of the differentially abundant metabolites were mainly related to autophagy and arginine and proline metabolism and were involved in immunoinflammatory metabolic processes. Olink showed significant differences in the expression of seven inflammation-related proteins between the two groups. CONCLUSION We demonstrated that metabolic differences between PMOP patients and healthy controls were associated with inflammatory responses and found seven proteins with significant differences. Among these proteins, CDCP1, IL10, and IL-1alpha combined with clinical indicators had high discriminant efficiency in identifying PMOP. This is also the first study to demonstrate noteworthy changes in CDCP1 levels in patients with PMOP.
Collapse
Affiliation(s)
- Ruizhe Wu
- Department of Orthopaedics, The Second Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, Hunan Province, China
| | - Jie Wu
- Department of Orthopaedics, The Second Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, Hunan Province, China
| | - Hui Jin
- Department of Orthopaedics, The Second Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, Hunan Province, China
| | - Huaiyu Ma
- Department of Orthopaedics, The Second Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, Hunan Province, China
| | - Hongxing Huang
- Department of Orthopaedics, The Third Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, China
| | - Wuji Xu
- Department of Orthopaedics, The Second Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, Hunan Province, China
| | - Shaoqiu Sun
- Department of Orthopaedics, The Second Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, Hunan Province, China
| | - Xiaolan Liu
- Department of Orthopaedics, The Second Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, Hunan Province, China
| | - Kefang Dong
- Department of Orthopaedics, The Second Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, Hunan Province, China
| | - Yisong Xie
- Department of Orthopaedics, The Second Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, Hunan Province, China
| | - Jingqi Zeng
- Department of Orthopaedics, The Second Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, Hunan Province, China.
| | - Fan Wang
- Department of Orthopaedics, The Second Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, Hunan Province, China.
| |
Collapse
|
21
|
Soraci L, Beccacece A, Princiotto M, Villalta Savedra E, Gambuzza ME, Aguennouz M, Corsonello A, Luciani F, Muglia L, Filicetti E, Greco GI, Volpentesta M, Biscetti L. The emerging links between immunosenescence in innate immune system and neurocryptococcosis. Front Immunol 2024; 15:1410090. [PMID: 39229268 PMCID: PMC11369721 DOI: 10.3389/fimmu.2024.1410090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 07/29/2024] [Indexed: 09/05/2024] Open
Abstract
Immunosenescence refers to the age-related progressive decline of immune function contributing to the increased susceptibility to infectious diseases in older people. Neurocryptococcosis, an infectious disease of central nervous system (CNS) caused by Cryptococcus neoformans (C. Neoformans) and C. gattii, has been observed with increased frequency in aged people, as result of the reactivation of a latent infection or community acquisition. These opportunistic microorganisms belonging to kingdom of fungi are capable of surviving and replicating within macrophages. Typically, cryptococcus is expelled by vomocytosis, a non-lytic expulsive mechanism also promoted by interferon (IFN)-I, or by cell lysis. However, whereas in a first phase cryptococcal vomocytosis leads to a latent asymptomatic infection confined to the lung, an enhancement in vomocytosis, promoted by IFN-I overproduction, can be deleterious, leading the fungus to reach the blood stream and invade the CNS. Cryptococcus may not be easy to diagnose in older individuals and, if not timely treated, could be potentially lethal. Therefore, this review aims to elucidate the putative causes of the increased incidence of cryptococcal CNS infection in older people discussing in depth the mechanisms of immunosenscence potentially able to predispose to neurocryptococcosis, laying the foundations for future research. A deepest understanding of this relationship could provide new ways to improve the prevention and recognition of neurocryptococcosis in aged frail people, in order to quickly manage pharmacological interventions and to adopt further preventive measures able to reduce the main risk factors.
Collapse
Affiliation(s)
- Luca Soraci
- Unit of Geriatric Medicine, Italian National Research Center on Aging (IRCCS INRCA), Cosenza, Italy
| | - Alessia Beccacece
- Centre for Biostatistics and Applied Geriatric Clinical Epidemiology, Italian National Research Center on Aging (IRCCS INRCA), Ancona, Italy
| | | | | | | | - M’Hammed Aguennouz
- Department of Clinical and Experimental Medicine, Unit of Neurology and Neuromuscular Diseases, University of Messina, Messina, Italy
| | - Andrea Corsonello
- Unit of Geriatric Medicine, Italian National Research Center on Aging (IRCCS INRCA), Cosenza, Italy
- Department of Pharmacy, Health and Nutritional Sciences, School of Medicine and Digital Technologies, University of Calabria, Arcavacata di Rende, Italy
| | | | - Lucia Muglia
- Centre for Biostatistics and Applied Geriatric Clinical Epidemiology, Italian National Research Center on Aging (IRCCS INRCA), Cosenza, Italy
| | - Elvira Filicetti
- Unit of Geriatric Medicine, Italian National Research Center on Aging (IRCCS INRCA), Cosenza, Italy
| | - Giada Ida Greco
- Unit of Geriatric Medicine, Italian National Research Center on Aging (IRCCS INRCA), Cosenza, Italy
| | - Mara Volpentesta
- Unit of Geriatric Medicine, Italian National Research Center on Aging (IRCCS INRCA), Cosenza, Italy
| | - Leonardo Biscetti
- Section of Neurology, Italian National Research Center on Aging (IRCCS INRCA), Ancona, Italy
| |
Collapse
|
22
|
Cheng XR, Zhao ZW, Chen YY, Song J, Ma JH, Zhang CX, Amadou I, Lu NY, Tang X, Guan B. Interventional Effect of Donkey Bone Collagen Peptide Iron Chelate on Cyclophosphamide Induced Immunosuppressive Mice. Nutrients 2024; 16:2413. [PMID: 39125294 PMCID: PMC11314553 DOI: 10.3390/nu16152413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/08/2024] [Accepted: 07/20/2024] [Indexed: 08/12/2024] Open
Abstract
Immunodeficiency can disrupt normal physiological activity and function. In this study, donkey bone collagen peptide (DP) and its iron chelate (DPI) were evaluated their potential as immunomodulators in cyclophosphamide (Cytoxan®, CTX)-induced Balb/c mice. The femoral tissue, lymphocytes, and serum from groups of mice were subjected to hematoxylin and eosin (H&E) staining, methylthiazolyldiphenyl-tetrazolium bromide (MTT) cell proliferation assays, and enzyme-linked immunosorbent assay (ELISA), respectively. Furthermore, a non-targeted metabolomics analysis based on UPLC-MS/MS and a reverse transcription polymerase chain reaction (RT-qPCR) technology were used to explore the specific metabolic pathways of DPI regulating immunocompromise. The results showed that CTX was able to significantly reduce the proliferative activity of mouse splenic lymphocytes and led to abnormal cytokine expression. After DP and DPI interventions, bone marrow tissue damage was significantly improved. In particular, DPI showed the ability to regulate the levels of immune factors more effectively than Fe2+ and DP. Furthermore, metabolomic analysis in both positive and negative ion modes showed that DPI and DP jointly regulated the levels of 20 plasma differential metabolites, while DPI and Fe2+ jointly regulated 14, and all 3 jointly regulated 10. Fe2+ and DP regulated energy metabolism and pyrimidine metabolism pathways, respectively. In contrast, DPI mainly modulated the purine salvage pathway and the JAK/STAT signaling pathway, which are the key to immune function. Therefore, DPI shows more effective immune regulation than Fe2+ and DP alone, and has good application potential in improving immunosuppression.
Collapse
Affiliation(s)
- Xiang-Rong Cheng
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
| | - Zi-Wei Zhao
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
| | - Yu-Yao Chen
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
| | - Jie Song
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
| | - Jia-Hui Ma
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
| | - Chen-Xi Zhang
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
| | - Issoufou Amadou
- Faculty of Agriculture and Environment Sciences, Dan Dicko Dankoulodo University of Maradi, Maradi BP 465, Niger
| | - Nai-Yan Lu
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
| | - Xue Tang
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
| | - Bin Guan
- Department of Pharmacy, Affiliated Wuxi Fifth Hospital of Jiangnan University, Wuxi 214011, China
- Department of Pharmacy, The Fifth People’s Hospital of Wuxi, Wuxi 214011, China
| |
Collapse
|
23
|
Kaszubowska L, Kaczor JJ, Karnia MJ, Foerster J, Kmieć Z. Expression of a stress-inducible heme oxygenase-1 in NK cells is maintained in the process of human aging. Front Immunol 2024; 15:1398468. [PMID: 39100660 PMCID: PMC11294084 DOI: 10.3389/fimmu.2024.1398468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Accepted: 07/08/2024] [Indexed: 08/06/2024] Open
Abstract
Introduction Heme oxygenase-1 (HO-1) is a stress-inducible heat shock protein (HSP32) that exerts cytoprotective effects against oxidative stress and inflammation, and is involved in the maintenance of cellular homeostasis. This study aimed to evaluate the expression of HO-1 in natural killer (NK) cells from individuals of different age groups after stimulation with various factors, and to analyze the relationships between the concentration of this cytoprotective protein and parameters corresponding to oxidative stress and inflammation, that is, NOD-like receptor protein 3 (NLRP3), glutathione (GSH), GSH disulfide (GSSG), and interleukin 6 (IL-6). Methods The study population comprised three age groups: young adults (age range, 19-23 years), older adults aged under 85 years (age range, 73-84 years), and older adults aged over 85 years (age range, 85-92 years). NLRP3, GSH, and GSSG concentrations were measured in serum, whereas the HO-1 concentration and IL-6 expression were studied in NK cells cultivated for 48 h and stimulated with IL-2, lipopolysaccharide (LPS), or phorbol 12-myristate 13-acetate (PMA) with ionomycin. Results The analysis of serum NLRP3, GSH, and GSSG concentrations revealed no statistically significant differences among the studied age groups. However, some typical trends of aging were observed, such as a decrease in GSH concentration and an increase in both GSSG level, and GSSG/GSH ratio. The highest basal expression of IL-6 and lowest basal content of HO-1 were found in NK cells of adults over 85 years of age. The NK cells in this age group also showed the highest sensitivity to stimulation with the applied factors. Moreover, statistically significant negative correlations were observed between HO-1 and IL-6 expression levels in the studied NK cells. Conclusions These results showed that NK cells can express HO-1 at a basal level, which was significantly increased in activated cells, even in the oldest group of adults. The reciprocal relationship between HO-1 and IL-6 expression suggests a negative feedback loop between these parameters.
Collapse
Affiliation(s)
| | - Jan Jacek Kaczor
- Department of Animal and Human Physiology, University of Gdańsk, Gdańsk, Poland
| | | | - Jerzy Foerster
- Department of Social and Clinical Gerontology, Medical University of Gdańsk, Gdańsk, Poland
| | - Zbigniew Kmieć
- Department of Histology, Medical University of Gdańsk, Gdańsk, Poland
| |
Collapse
|
24
|
Larbi A. From Genesis to Old Age: Exploring the Immune System One Cell at a Time with Flow Cytometry. Biomedicines 2024; 12:1469. [PMID: 39062042 PMCID: PMC11275137 DOI: 10.3390/biomedicines12071469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 06/21/2024] [Accepted: 06/28/2024] [Indexed: 07/28/2024] Open
Abstract
The immune system is a highly complex and tightly regulated system that plays a crucial role in protecting the body against external threats, such as pathogens, and internal abnormalities, like cancer cells. It undergoes development during fetal stages and continuously learns from each encounter with pathogens, allowing it to develop immunological memory and provide a wide range of immune protection. Over time, after numerous encounters and years of functioning, the immune system can begin to show signs of erosion, which is commonly named immunosenescence. In this review, we aim to explore how the immune system responds to initial encounters with antigens and how it handles persistent stimulations throughout a person's lifetime. Our understanding of the immune system has greatly benefited from advanced technologies like flow cytometry. In this context, we will discuss the valuable contribution of flow cytometry in enhancing our knowledge of the immune system behavior in aging, with a specific focus on T-cells. Moreover, we will expand our discussion to the flow cytometry-based assessment of extracellular vesicles, a recently discovered communication channel in biology, and their implications for immune system functioning.
Collapse
Affiliation(s)
- Anis Larbi
- Medical and Scientific Affairs, Beckman Coulter Life Sciences, 22 Avenue des Nations, 93420 Villepinte, France;
- Department of Medicine, Division of Geriatrics, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC J1K 2R1, Canada
| |
Collapse
|
25
|
Ding M, Yan J, Chen Y, Liu J, Chao G, Zhang S. Changes in M6A methylation: A key factor in the vicious cycle of flora -gut aging. Ageing Res Rev 2024; 98:102351. [PMID: 38820855 DOI: 10.1016/j.arr.2024.102351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 05/16/2024] [Accepted: 05/27/2024] [Indexed: 06/02/2024]
Abstract
The aging process significantly impacts the gastrointestinal tract and various bodily systems, exacerbating age-related diseases. Research suggests a correlation between an imbalance in intestinal flora and gut aging, yet the precise mechanism remains incompletely elucidated. Epigenetic modifications, particularly m6A methylation, play a pivotal role in driving aging and are closely associated with gut aging. Maintaining a healthy balance of intestinal microbes is contingent upon m6A methylation, which is believed to be crucial in the vicious cycle of gut aging and intestinal flora. This article highlights the importance of m6A methylation in the nexus between gut aging and flora. It proposes the potential for targeted m6A methylation to break the vicious cycle of gut aging and flora imbalance, offering novel perspectives on attenuating or reversing gut aging.
Collapse
Affiliation(s)
- Menglu Ding
- The Second Affiliated Hospital of Zhejiang Chinese Medical University (The Xin Hua Hospital of Zhejiang Province), Hangzhou, PR China; Department of General Practice, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou 310000, PR China
| | - Junbin Yan
- The Second Affiliated Hospital of Zhejiang Chinese Medical University (The Xin Hua Hospital of Zhejiang Province), Hangzhou, PR China; Department of General Practice, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou 310000, PR China
| | - Yuxuan Chen
- The Second Affiliated Hospital of Zhejiang Chinese Medical University (The Xin Hua Hospital of Zhejiang Province), Hangzhou, PR China; Department of General Practice, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou 310000, PR China
| | - Jinguo Liu
- The Second Affiliated Hospital of Zhejiang Chinese Medical University (The Xin Hua Hospital of Zhejiang Province), Hangzhou, PR China; Department of General Practice, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou 310000, PR China
| | - Guanqun Chao
- The Second Affiliated Hospital of Zhejiang Chinese Medical University (The Xin Hua Hospital of Zhejiang Province), Hangzhou, PR China; Department of General Practice, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou 310000, PR China.
| | - Shuo Zhang
- The Second Affiliated Hospital of Zhejiang Chinese Medical University (The Xin Hua Hospital of Zhejiang Province), Hangzhou, PR China; Department of General Practice, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou 310000, PR China.
| |
Collapse
|
26
|
Yan Z, Wen JX, Niu Y, Jiang TW, Huang JH, Chen H, Chen Q, Wang YF, Yan L, Hu ZD, Zheng WQ. Diagnostic accuracy and cellular origin of pleural fluid CXCR3 ligands for tuberculous pleural effusion. Cytokine 2024; 179:156618. [PMID: 38663252 DOI: 10.1016/j.cyto.2024.156618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 04/06/2024] [Accepted: 04/12/2024] [Indexed: 05/21/2024]
Abstract
BACKGROUND Pleural biomarkers represent potential diagnostic tools for tuberculous pleural effusion (TPE) due to their advantages of low cost, short turnaround time, and less invasiveness. This study evaluated the diagnostic accuracy of two CXCR3 ligands, C-X-C motif chemokine ligand 9 (CXCL9) and CXCL11, for TPE. In addition, we investigated the cellular origins and biological roles of CXCL9 and CXCL11 in the development of TPE. METHODS This double-blind study prospectively enrolled patients with undiagnosed pleural effusion from two centers (Hohhot and Changshu) in China. Pleural fluid on admission was obtained and levels of CXCL9 and CXCL11 were measured by an enzyme-linked immunosorbent assay (ELISA). The receiver operating characteristic (ROC) curve and the decision curve analysis (DCA) were used to evaluate their diagnostic accuracy and net benefit, respectively. THP-1 cell-derived macrophages were treated with Bacillus Calmette-Guérin (BCG), and quantitative real-time PCR (qRT-PCR) and ELISA were used to determine the mRNA and protein levels of CXCL9 and CXCL11. The chemoattractant activities of CXCL9 and CXCL11 for T helper (Th) cells were analyzed by a transwell assay. RESULTS One hundred and fifty-three (20 TPEs and 133 non-TPEs) patients were enrolled in the Hohhot Center, and 58 (13 TPEs and 45 non-TPEs) were enrolled in the Changshu Center. In both centers, we observed increased CXCL9 and CXCL11 in TPE patients. The areas under the ROC curves (AUCs) of pleural CXCL9 and CXCL11 in the Hohhot Center were 0.70 (95 % CI: 0.55-0.85) and 0.68 (95 % CI: 0.52-0.84), respectively. In the Changshu Center, the AUCs of CXCL9 and CXCL11 were 0.96 (95 % CI: 0.92-1.00) and 0.97 (95 % CI: 0.94-1.00), respectively. The AUCs of CXCL9 and CXCL11 decreased with the advancement of age. The decision curves of CXCL9 and CXCL11 showed net benefits in both centers. CXCL9 and CXCL11 were upregulated in BCG-treated macrophages. Pleural fluid from TPE and conditioned medium from BCG-treated macrophages were chemotactic for Th cells. Anti-CXCL9 or CXCL11 neutralizing antibodies could partly block the chemotactic activity. CONCLUSIONS Pleural CXCL9 and CXCL11 are potential diagnostic markers for TPE, but their diagnostic accuracy is compromised in elderly patients. CXCL9 and CXCL11 can promote the migration of peripheral Th cells, thus representing a therapeutic target for the treatment of TPE.
Collapse
Affiliation(s)
- Zhi Yan
- Department of Laboratory Medicine, the Affiliated Hospital of Inner Mongolia Medical University, Hohhot 010050, China; School of Medical Laboratory & Department of Cell Biology, Tianjin Medical University, Tianjin 300203, China
| | - Jian-Xun Wen
- Department of Medical Experiment Center, the Basic Medical Sciences College of Inner Mongolia Medical University, Hohhot 010050, China
| | - Yan Niu
- Department of Medical Experiment Center, the Basic Medical Sciences College of Inner Mongolia Medical University, Hohhot 010050, China
| | - Ting-Wang Jiang
- Department of Key Laboratory, the Affiliated Changshu Hospital of Nantong University, Changshu 215500, China
| | - Jin-Hong Huang
- Department of Pulmonary and Critical Care Medicine, the Affiliated Changshu Hospital of Nantong University, Changshu 215500, China
| | - Hong Chen
- Department of Pulmonary and Critical Care Medicine, the Affiliated Changshu Hospital of Nantong University, Changshu 215500, China
| | - Qi Chen
- The Third Clinical Medical College of Ningxia Medical University, Yinchuan 750004, China
| | - Ya-Fei Wang
- Department of Laboratory Medicine, the Affiliated Hospital of Inner Mongolia Medical University, Hohhot 010050, China; Key Laboratory for Biomarkers, Inner Mongolia Medical University, Hohhot 010050, China
| | - Li Yan
- Key Laboratory for Biomarkers, Inner Mongolia Medical University, Hohhot 010050, China; Department of Respiratory and Critical Care Medicine, the Affiliated Hospital of Inner Mongolia Medical University, Hohhot 010050, China
| | - Zhi-De Hu
- Department of Laboratory Medicine, the Affiliated Hospital of Inner Mongolia Medical University, Hohhot 010050, China; Key Laboratory for Biomarkers, Inner Mongolia Medical University, Hohhot 010050, China
| | - Wen-Qi Zheng
- Department of Laboratory Medicine, the Affiliated Hospital of Inner Mongolia Medical University, Hohhot 010050, China; Key Laboratory for Biomarkers, Inner Mongolia Medical University, Hohhot 010050, China.
| |
Collapse
|
27
|
Borges M, Vilela Rodrigues JP, Freato Gonçalves AM, Silveira Almeida Campos M, Rossi Varallo F, Barbosa Zanetti MO, Regis Leira Pereira L. An Analysis of Drug-Related Problems in the Neurology Ward of a Tertiary Teaching Hospital: A Cross-Sectional Study. Cureus 2024; 16:e63829. [PMID: 39099928 PMCID: PMC11297551 DOI: 10.7759/cureus.63829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/04/2024] [Indexed: 08/06/2024] Open
Abstract
Background and objective Drugs that act on the central nervous system have a high potential to cause drug-related problems (DRPs). A clinical pharmacist aided by collaborative efforts within an interdisciplinary healthcare team can prevent, detect, and resolve DRPs, thereby contributing to the promotion of medication safety and improving the quality of life of individuals under care. This study aimed to assess DRPs identified in the neurology ward of a tertiary hospital from February 2016 to November 2019. Methods This was a descriptive study with a cross-sectional and retrospective design involving secondary data collected from pharmaceutical care (PC) records. Student's t-tests, Pearson correlation coefficients, Poisson models, and logistic regression models were used to analyze the associations between age, number and type of medications, duration of hospitalization, and the occurrence of DRPs. Results A total of 130 patients were included in the study, and a total of 266 DRPs were detected, with 93 patients experiencing more than one DRP and 37 not presenting any DRPs. Necessity-related DRPs were the most prevalent (46.6%) type, followed by safety-related DRPs (28.6%). The prevalence of safety-related DRPs was higher in individuals older than 60 years (p<0.001). Conclusions Of note, 84.6% of the interventions suggested by pharmacists to resolve DRPs were accepted by the healthcare team. The high number of DRPs found underscores the importance of the clinical role of the pharmacist and interprofessional collaboration in the care of neurological patients, especially in the pharmaceutical follow-up of elderly individuals.
Collapse
Affiliation(s)
- Milena Borges
- Department of Pharmaceutical Sciences, University of São Paulo, Ribeirão Preto, BRA
| | | | | | | | | | | | | |
Collapse
|
28
|
Müller L, Di Benedetto S. Inflammaging, immunosenescence, and cardiovascular aging: insights into long COVID implications. Front Cardiovasc Med 2024; 11:1384996. [PMID: 38988667 PMCID: PMC11233824 DOI: 10.3389/fcvm.2024.1384996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Accepted: 06/14/2024] [Indexed: 07/12/2024] Open
Abstract
Aging leads to physiological changes, including inflammaging-a chronic low-grade inflammatory state with significant implications for various physiological systems, particularly for cardiovascular health. Concurrently, immunosenescence-the age-related decline in immune function, exacerbates vulnerabilities to cardiovascular pathologies in older individuals. Examining the dynamic connections between immunosenescence, inflammation, and cardiovascular aging, this mini-review aims to disentangle some of these interactions for a better understanding of their complex interplay. In the context of cardiovascular aging, the chronic inflammatory state associated with inflammaging compromises vascular integrity and function, contributing to atherosclerosis, endothelial dysfunction, arterial stiffening, and hypertension. The aging immune system's decline amplifies oxidative stress, fostering an environment conducive to atherosclerotic plaque formation. Noteworthy inflammatory markers, such as the high-sensitivity C-reactive protein, interleukin-6, interleukin-1β, interleukin-18, and tumor necrosis factor-alpha emerge as key players in cardiovascular aging, triggering inflammatory signaling pathways and intensifying inflammaging and immunosenescence. In this review we aim to explore the molecular and cellular mechanisms underlying inflammaging and immunosenescence, shedding light on their nuanced contributions to cardiovascular diseases. Furthermore, we explore the reciprocal relationship between immunosenescence and inflammaging, revealing a self-reinforcing cycle that intensifies cardiovascular risks. This understanding opens avenues for potential therapeutic targets to break this cycle and mitigate cardiovascular dysfunction in aging individuals. Furthermore, we address the implications of Long COVID, introducing an additional layer of complexity to the relationship between aging, immunosenescence, inflammaging, and cardiovascular health. Our review aims to stimulate continued exploration and advance our understanding within the realm of aging and cardiovascular health.
Collapse
Affiliation(s)
- Ludmila Müller
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany
| | | |
Collapse
|
29
|
Xu W, Yang T, Zhang J, Li H, Guo M. Rhodiola rosea: a review in the context of PPPM approach. EPMA J 2024; 15:233-259. [PMID: 38841616 PMCID: PMC11147995 DOI: 10.1007/s13167-024-00367-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 05/08/2024] [Indexed: 06/07/2024]
Abstract
A natural "medicine and food" plant, Rhodiola rosea (RR) is primarily made up of organic acids, phenolic compounds, sterols, glycosides, vitamins, lipids, proteins, amino acids, trace elements, and other physiologically active substances. In vitro, non-clinical and clinical studies confirmed that it exerts anti-inflammatory, antioxidant, and immune regulatory effects, balances the gut microbiota, and alleviates vascular circulatory disorders. RR can prolong life and has great application potential in preventing and treating suboptimal health, non-communicable diseases, and COVID-19. This narrative review discusses the effects of RR in preventing organ damage (such as the liver, lung, heart, brain, kidneys, intestines, and blood vessels) in non-communicable diseases from the perspective of predictive, preventive, and personalised medicine (PPPM/3PM). In conclusion, as an adaptogen, RR can provide personalised health strategies to improve the quality of life and overall health status.
Collapse
Affiliation(s)
- Wenqian Xu
- Henan University of Traditional Chinese Medicine, Zhengzhou, China
| | | | - Jinyuan Zhang
- The Third People’s Hospital of Henan Province, Zhengzhou, China
| | - Heguo Li
- Department of Spleen, Stomach, Liver and Gallbladder, The First Affiliated Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou, China
| | - Min Guo
- Department of Spleen, Stomach, Liver and Gallbladder, The First Affiliated Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou, China
| |
Collapse
|
30
|
Lénárt N, Cserép C, Császár E, Pósfai B, Dénes Á. Microglia-neuron-vascular interactions in ischemia. Glia 2024; 72:833-856. [PMID: 37964690 DOI: 10.1002/glia.24487] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 10/24/2023] [Accepted: 10/24/2023] [Indexed: 11/16/2023]
Abstract
Cerebral ischemia is a devastating condition that results in impaired blood flow in the brain leading to acute brain injury. As the most common form of stroke, occlusion of cerebral arteries leads to a characteristic sequence of pathophysiological changes in the brain tissue. The mechanisms involved, and comorbidities that determine outcome after an ischemic event appear to be highly heterogeneous. On their own, the processes leading to neuronal injury in the absence of sufficient blood supply to meet the metabolic demand of the cells are complex and manifest at different temporal and spatial scales. While the contribution of non-neuronal cells to stroke pathophysiology is increasingly recognized, recent data show that microglia, the main immune cells of the central nervous system parenchyma, play previously unrecognized roles in basic physiological processes beyond their inflammatory functions, which markedly change during ischemic conditions. In this review, we aim to discuss some of the known microglia-neuron-vascular interactions assumed to contribute to the acute and delayed pathologies after cerebral ischemia. Because the mechanisms of neuronal injury have been extensively discussed in several excellent previous reviews, here we focus on some recently explored pathways that may directly or indirectly shape neuronal injury through microglia-related actions. These discoveries suggest that modulating gliovascular processes in different forms of stroke and other neurological disorders might have presently unexplored therapeutic potential in combination with neuroprotective and flow restoration strategies.
Collapse
Affiliation(s)
- Nikolett Lénárt
- Momentum Laboratory of Neuroimmunology, Institute of Experimental Medicine, Budapest, Hungary
| | - Csaba Cserép
- Momentum Laboratory of Neuroimmunology, Institute of Experimental Medicine, Budapest, Hungary
| | - Eszter Császár
- Momentum Laboratory of Neuroimmunology, Institute of Experimental Medicine, Budapest, Hungary
| | - Balázs Pósfai
- Momentum Laboratory of Neuroimmunology, Institute of Experimental Medicine, Budapest, Hungary
| | - Ádám Dénes
- Momentum Laboratory of Neuroimmunology, Institute of Experimental Medicine, Budapest, Hungary
| |
Collapse
|
31
|
Dai K, Geng Z, Zhang W, Wei X, Wang J, Nie G, Liu C. Biomaterial design for regenerating aged bone: materiobiological advances and paradigmatic shifts. Natl Sci Rev 2024; 11:nwae076. [PMID: 38577669 PMCID: PMC10989671 DOI: 10.1093/nsr/nwae076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 01/04/2024] [Accepted: 02/26/2024] [Indexed: 04/06/2024] Open
Abstract
China's aging demographic poses a challenge for treating prevalent bone diseases impacting life quality. As bone regeneration capacity diminishes with age due to cellular dysfunction and inflammation, advanced biomaterials-based approaches offer hope for aged bone regeneration. This review synthesizes materiobiology principles, focusing on biomaterials that target specific biological functions to restore tissue integrity. It covers strategies for stem cell manipulation, regulation of the inflammatory microenvironment, blood vessel regeneration, intervention in bone anabolism and catabolism, and nerve regulation. The review also explores molecular and cellular mechanisms underlying aged bone regeneration and proposes a database-driven design process for future biomaterial development. These insights may also guide therapies for other age-related conditions, contributing to the pursuit of 'healthy aging'.
Collapse
Affiliation(s)
- Kai Dai
- Engineering Research Center for Biomedical Materials of the Ministry of Education, East China University of Science and Technology, Shanghai 200237, China
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
- Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology; Shanghai 200237, China
- Key Laboratory for Ultrafine Materials of the Ministry of Education, East China University of Science and Technology, Shanghai 200237, China
| | - Zhen Geng
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai 200444, China
| | - Wenchao Zhang
- Engineering Research Center for Biomedical Materials of the Ministry of Education, East China University of Science and Technology, Shanghai 200237, China
- Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology; Shanghai 200237, China
| | - Xue Wei
- Engineering Research Center for Biomedical Materials of the Ministry of Education, East China University of Science and Technology, Shanghai 200237, China
- Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology; Shanghai 200237, China
| | - Jing Wang
- Engineering Research Center for Biomedical Materials of the Ministry of Education, East China University of Science and Technology, Shanghai 200237, China
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
- Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology; Shanghai 200237, China
| | - Guangjun Nie
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Centre for Excellence in Nanoscience, National Centre for Nanoscience and Technology, Beijing 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Changsheng Liu
- Engineering Research Center for Biomedical Materials of the Ministry of Education, East China University of Science and Technology, Shanghai 200237, China
- Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology; Shanghai 200237, China
- Key Laboratory for Ultrafine Materials of the Ministry of Education, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
32
|
Silva M, Avni D, Varela J, Barreira L. The Ocean's Pharmacy: Health Discoveries in Marine Algae. Molecules 2024; 29:1900. [PMID: 38675719 PMCID: PMC11055030 DOI: 10.3390/molecules29081900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/15/2024] [Accepted: 04/18/2024] [Indexed: 04/28/2024] Open
Abstract
Non-communicable diseases (NCDs) represent a global health challenge, constituting a major cause of mortality and disease burden in the 21st century. Addressing the prevention and management of NCDs is crucial for improving global public health, emphasizing the need for comprehensive strategies, early interventions, and innovative therapeutic approaches to mitigate their far-reaching consequences. Marine organisms, mainly algae, produce diverse marine natural products with significant therapeutic potential. Harnessing the largely untapped potential of algae could revolutionize drug development and contribute to combating NCDs, marking a crucial step toward natural and targeted therapeutic approaches. This review examines bioactive extracts, compounds, and commercial products derived from macro- and microalgae, exploring their protective properties against oxidative stress, inflammation, cardiovascular, gastrointestinal, metabolic diseases, and cancer across in vitro, cell-based, in vivo, and clinical studies. Most research focuses on macroalgae, demonstrating antioxidant, anti-inflammatory, cardioprotective, gut health modulation, metabolic health promotion, and anti-cancer effects. Microalgae products also exhibit anti-inflammatory, cardioprotective, and anti-cancer properties. Although studies mainly investigated extracts and fractions, isolated compounds from algae have also been explored. Notably, polysaccharides, phlorotannins, carotenoids, and terpenes emerge as prominent compounds, collectively representing 42.4% of the investigated compounds.
Collapse
Affiliation(s)
- Mélanie Silva
- Centre of Marine Sciences, University of Algarve, 8005-139 Faro, Portugal; (M.S.); (J.V.)
| | - Dorit Avni
- MIGAL Galilee Institute, Kiryat Shmona 1106000, Israel;
| | - João Varela
- Centre of Marine Sciences, University of Algarve, 8005-139 Faro, Portugal; (M.S.); (J.V.)
- Green Colab—Associação Oceano Verde, University of Algarve, 8005-139 Faro, Portugal
| | - Luísa Barreira
- Centre of Marine Sciences, University of Algarve, 8005-139 Faro, Portugal; (M.S.); (J.V.)
- Green Colab—Associação Oceano Verde, University of Algarve, 8005-139 Faro, Portugal
| |
Collapse
|
33
|
Pinto TNC, da Silva CCBM, Pinto RMC, da Silva Duarte AJ, Benard G, Fernandes JR. Tobacco exposure, but not aging, shifts the frequency of peripheral blood B cell subpopulations. GeroScience 2024; 46:2729-2738. [PMID: 38157147 PMCID: PMC10828235 DOI: 10.1007/s11357-023-01051-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 12/19/2023] [Indexed: 01/03/2024] Open
Abstract
Several disturbances in T-cell mediated immunity have been described during aging, but immunosenescence of the B-cell compartment is less well elucidated. The peripheral blood B-cell compartment (CD19+) can be split into six main subpopulations according to the cell surface markers IgD, CD27, CD24, and CD38: Transitional, naïve, unswitched, switched, double negative and plasmablasts. We thus aimed to verify whether shifts in these subsets occur during healthy and pathological aging. We recruited three groups of aged people (> 60 years old), healthy, COPD patients, and smokers without altered pulmonary function test, and a fourth group of individuals 18-40 years old (youngs). Total B-cells percentage and absolute number were similar among the healthy aged, COPD patients, and youngs, but the smokers showed significantly higher absolute numbers. While all six B-cell subset percentages were comparable among the healthy aged, COPD patients, and youngs, smokers showed significantly higher percentages of switched B-cells and reduced naïve B-cells than the other three groups, resulting in an inverted naive:switched ratio. Analysis of the cell subset absolute numbers showed a similar trend. Overall, our results suggest that aging drives milder alterations in the distribution of peripheral blood B-cell subpopulations than in the T-cell compartment. We suggest that it is the T-cell immunosenescence that most contributes to the poor humoral immune responses in the elderly, vaccine responses included. Surprisingly it was the smokers who showed significant alterations when compared with the youngs, healthy aged, and aged COPD patients, probably as a result of the chronic immune stimulation described in active smoking subjects.
Collapse
Affiliation(s)
- Thalyta Nery Carvalho Pinto
- Laboratory of Dermatology and Immunodeficiencies (LIM56), Faculdade de Medicina, Tropical Medicine Institute, Universidade de São Paulo, Av. Dr. Arnaldo, São Paulo, 455, Brazil
| | | | - Regina Maria Carvalho Pinto
- Pulmonary Department, Heart Institute (InCor), School of Medicine, São Paulo University, Av. Dr. Enéas de Carvalho Aguiar, São Paulo, 44, Brazil
| | - Alberto José da Silva Duarte
- Laboratory of Dermatology and Immunodeficiencies (LIM56), Faculdade de Medicina, Tropical Medicine Institute, Universidade de São Paulo, Av. Dr. Arnaldo, São Paulo, 455, Brazil
| | - Gil Benard
- Laboratory of Dermatology and Immunodeficiencies (LIM56), Faculdade de Medicina, Tropical Medicine Institute, Universidade de São Paulo, Av. Dr. Arnaldo, São Paulo, 455, Brazil
| | - Juliana Ruiz Fernandes
- Laboratory of Dermatology and Immunodeficiencies (LIM56), Faculdade de Medicina, Tropical Medicine Institute, Universidade de São Paulo, Av. Dr. Arnaldo, São Paulo, 455, Brazil.
| |
Collapse
|
34
|
Wang S, Zhang X, Hou Y, Zhang Y, Chen J, Gao S, Duan H, Gu S, Yu S, Cai Y. SIRT6 activates PPARα to improve doxorubicin-induced myocardial cell aging and damage. Chem Biol Interact 2024; 392:110920. [PMID: 38395252 DOI: 10.1016/j.cbi.2024.110920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 01/26/2024] [Accepted: 02/18/2024] [Indexed: 02/25/2024]
Abstract
The Sirtuins family, formally known as the Silent Information Regulator Factors, constitutes a highly conserved group of histone deacetylases. Recent studies have illuminated SIRT6's role in doxorubicin (DOX)-induced oxidative stress and apoptosis within myocardial cells. Nevertheless, the extent of SIRT6's impact on DOX-triggered myocardial cell aging and damage remains uncertain, with the associated mechanisms yet to be fully understood. In our research, we examined the influence of SIRT6 on DOX-induced cardiomyocyte senescence using β-galactosidase and γ-H2AX staining. Additionally, we gauged the mRNA expression of senescence-associated genes, namely p16, p21, and p53, through Real-time PCR. Employing ELISA assay kits, MDA, and total SOD activity assay kits, we measured inflammatory factors TNF-α, IL-6, and IL-1β, alongside oxidative stress-related indicators. The results unequivocally indicated that SIRT6 overexpression robustly inhibited DOX-induced cardiomyocyte senescence. Furthermore, we established that SIRT6 overexpression suppressed the inflammatory response and oxidative stress induced by DOX in cardiomyocytes. Conversely, silencing SIRT6 exacerbated DOX-induced cardiomyocyte injury. Our investigations further unveiled that SIRT6 upregulated the expression of genes CD36, CPT1, LCAD, MCAD associated with fatty acid oxidation through its interaction with PPARα, thereby exerting anti-aging effects. In vivo, the overexpression of SIRT6 was observed to restore DOX-induced declines in EF and FS to normal levels in mice. Echocardiography and HE staining revealed the restoration of cardiomyocyte alignment, affording protection against DOX-induced myocardial senescence and injury. The findings from this study suggest that SIRT6 holds significant promise as a therapeutic target for mitigating DOX-induced cardiomyopathy.
Collapse
Affiliation(s)
- Shulin Wang
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Guangzhou Medical University, Guangzhou, China
| | - Xuan Zhang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Afffliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Yanhong Hou
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Afffliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Yuliang Zhang
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Guangzhou Medical University, Guangzhou, China
| | - Jiamin Chen
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Afffliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Shuhan Gao
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Afffliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Huiying Duan
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Afffliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Shaoju Gu
- Laboratory Animal Centre, Guangzhou Medical University, Guangzhou, China.
| | - Shanshan Yu
- Department of Pharmacy, Zhujiang Hospital, Southern Medical University, Guangzhou, China; Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China.
| | - Yi Cai
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Guangzhou Medical University, Guangzhou, China; Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Afffliated Hospital, Guangzhou Medical University, Guangzhou, China.
| |
Collapse
|
35
|
Smulders L, Deelen J. Genetics of human longevity: From variants to genes to pathways. J Intern Med 2024; 295:416-435. [PMID: 37941149 DOI: 10.1111/joim.13740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/10/2023]
Abstract
The current increase in lifespan without an equivalent increase in healthspan poses a grave challenge to the healthcare system and a severe burden on society. However, some individuals seem to be able to live a long and healthy life without the occurrence of major debilitating chronic diseases, and part of this trait seems to be hidden in their genome. In this review, we discuss the findings from studies on the genetic component of human longevity and the main challenges accompanying these studies. We subsequently focus on results from genetic studies in model organisms and comparative genomic approaches to highlight the most important conserved longevity-associated pathways. By combining the results from studies using these different approaches, we conclude that only five main pathways have been consistently linked to longevity, namely (1) insulin/insulin-like growth factor 1 signalling, (2) DNA-damage response and repair, (3) immune function, (4) cholesterol metabolism and (5) telomere maintenance. As our current approaches to study the relevance of these pathways in humans are limited, we suggest that future studies on the genetics of human longevity should focus on the identification and functional characterization of rare genetic variants in genes involved in these pathways.
Collapse
Affiliation(s)
- Larissa Smulders
- Max Planck Institute for Biology of Ageing, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Ageing-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Joris Deelen
- Max Planck Institute for Biology of Ageing, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Ageing-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| |
Collapse
|
36
|
Pei Y, Li T, Chen C, Huang Y, Yang Y, Zhou T, Shi M. Clinical features that predict the mortality risk in older patients with Omicron pneumonia: the MLWAP score. Intern Emerg Med 2024; 19:465-475. [PMID: 38104038 PMCID: PMC10954909 DOI: 10.1007/s11739-023-03506-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 12/06/2023] [Indexed: 12/19/2023]
Abstract
In December 2022, the Chinese suffered widespread Omicron of SARS-CoV-2 with variable symptom severity and outcome. We wanted to develop a scoring model to predict the mortality risk of older Omicron pneumonia patients by analyzing admission data. We enrolled 227 Omicron pneumonia patients aged 60 years and older, admitted to our hospital from December 15, 2022, to January 16, 2023, and divided them randomly into a 70% training set and a 30% test set. The former were used to identify predictors and develop a model, the latter to verify the model, using the area under the receiver operating characteristic curve (AUC), the Hosmer-Lemeshow goodness-of-fit test, a calibration curve to test its performance and comparing it to the existing scores. The MLWAP score was calculated based on a multivariate logistic regression model to predict mortality with a weighted score that included immunosuppression, lactate ≥ 2.4, white blood cell count ≥ 6.70 × 109/L, age ≥ 77 years, and PaO2/FiO2 ≤ 211. The AUC for the model in the training and test sets was 0.852 (95% CI, 0.792-0.912) and 0.875 (95% CI, 0.789-0.961), respectively. The calibration curves showed a good fit. We grouped the risk scores into low (score 0-7 points), medium (8-10 points), and high (11-13 points). This model had a sensitivity of 0.849, specificity of 0.714, and better predictive ability than the CURB-65 and PSI scores (AUROC = 0.859 vs. 0.788 vs. 0.801, respectively). The MLWAP-mortality score may help clinicians to stratify hospitalized older Omicron pneumonia patients into relevant risk categories, rationally allocate medical resources, and reduce the mortality.
Collapse
Affiliation(s)
- Yongjian Pei
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Soochow University, 1055 SanXiang Road, Gusu District, Suzhou, 215004, Jiangsu, China
| | - Ting Li
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Soochow University, 1055 SanXiang Road, Gusu District, Suzhou, 215004, Jiangsu, China
| | - Chen Chen
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Soochow University, 1055 SanXiang Road, Gusu District, Suzhou, 215004, Jiangsu, China
| | - Yongkang Huang
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Soochow University, 1055 SanXiang Road, Gusu District, Suzhou, 215004, Jiangsu, China
| | - Yun Yang
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Soochow University, 1055 SanXiang Road, Gusu District, Suzhou, 215004, Jiangsu, China
| | - Tong Zhou
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Soochow University, 1055 SanXiang Road, Gusu District, Suzhou, 215004, Jiangsu, China
| | - Minhua Shi
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Soochow University, 1055 SanXiang Road, Gusu District, Suzhou, 215004, Jiangsu, China.
| |
Collapse
|
37
|
Zayoud K, Chikhaoui A, Kraoua I, Tebourbi A, Najjar D, Ayari S, Safra I, Kraiem I, Turki I, Menif S, Yacoub-Youssef H. Immunity in the Progeroid Model of Cockayne Syndrome: Biomarkers of Pathological Aging. Cells 2024; 13:402. [PMID: 38474366 DOI: 10.3390/cells13050402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 01/29/2024] [Accepted: 01/30/2024] [Indexed: 03/14/2024] Open
Abstract
Cockayne syndrome (CS) is a rare autosomal recessive disorder that affects the DNA repair process. It is a progeroid syndrome predisposing patients to accelerated aging and to increased susceptibility to respiratory infections. Here, we studied the immune status of CS patients to determine potential biomarkers associated with pathological aging. CS patients, as well as elderly and young, healthy donors, were enrolled in this study. Complete blood counts for patients and donors were assessed, immune cell subsets were analyzed using flow cytometry, and candidate cytokines were analyzed via multi-analyte ELISArray kits. In CS patients, we noticed a high percentage of lymphocytes, an increased rate of intermediate and non-classical monocytes, and a high level of pro-inflammatory cytokine IL-8. In addition, we identified an increased rate of particular subtypes of T Lymphocyte CD8+ CD28- CD27-, which are senescent T cells. Thus, an inflammatory state was found in CS patients that is similar to that observed in the elderly donors and is associated with an immunosenescence status in both groups. This could explain the CS patients' increased susceptibility to infections, which is partly due to an aging-associated inflammation process.
Collapse
Affiliation(s)
- Khouloud Zayoud
- Laboratory of Biomedical Genomics and Oncogenetics (LR16IPT05), Institut Pasteur de Tunis, Université Tunis El Manar, El Manar I, Tunis 1002, Tunisia
- Faculty of Sciences of Bizerte, Bizerte 7021, Tunisia
| | - Asma Chikhaoui
- Laboratory of Biomedical Genomics and Oncogenetics (LR16IPT05), Institut Pasteur de Tunis, Université Tunis El Manar, El Manar I, Tunis 1002, Tunisia
| | - Ichraf Kraoua
- Department of Neuropediatrics, National Institute of Neurology Mongi Ben Hamida, Tunis 1007, Tunisia
| | - Anis Tebourbi
- Orthopedic and Trauma Surgery Department, Mongi Slim Hospital, La Marsa 2070, Tunisia
| | - Dorra Najjar
- Laboratory of Biomedical Genomics and Oncogenetics (LR16IPT05), Institut Pasteur de Tunis, Université Tunis El Manar, El Manar I, Tunis 1002, Tunisia
| | - Saker Ayari
- Orthopedic and Trauma Surgery Department, Mongi Slim Hospital, La Marsa 2070, Tunisia
| | - Ines Safra
- Laboratory of Molecular and Cellular Hematology (LR16IPT07), Institut Pasteur de Tunis, Université Tunis El Manar, El Manar I, Tunis 1002, Tunisia
| | - Imen Kraiem
- Laboratory of Molecular and Cellular Hematology (LR16IPT07), Institut Pasteur de Tunis, Université Tunis El Manar, El Manar I, Tunis 1002, Tunisia
| | - Ilhem Turki
- Department of Neuropediatrics, National Institute of Neurology Mongi Ben Hamida, Tunis 1007, Tunisia
| | - Samia Menif
- Laboratory of Molecular and Cellular Hematology (LR16IPT07), Institut Pasteur de Tunis, Université Tunis El Manar, El Manar I, Tunis 1002, Tunisia
| | - Houda Yacoub-Youssef
- Laboratory of Biomedical Genomics and Oncogenetics (LR16IPT05), Institut Pasteur de Tunis, Université Tunis El Manar, El Manar I, Tunis 1002, Tunisia
| |
Collapse
|
38
|
Shema C, Lu Y, Wang L, Zhang Y. Monocyte alteration in elderly hip fracture healing: monocyte promising role in bone regeneration. Immun Ageing 2024; 21:12. [PMID: 38308312 PMCID: PMC10837905 DOI: 10.1186/s12979-024-00413-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 01/22/2024] [Indexed: 02/04/2024]
Abstract
Individual aged with various change in cell and cellular microenvironments and the skeletal system undergoes physiological changes that affect the process of bone fracture healing. These changes are accompanied by alterations in regulating critical genes involved in this healing process. Unfortunately, the elderly are particularly susceptible to hip bone fractures, which pose a significant burden associated with higher morbidity and mortality rates. A notable change in older adults is the increased expression of activation, adhesion, and migration markers in circulating monocytes. However, there is a decrease in the expression of co-inhibitory molecules. Recently, research evidence has shown that the migration of specific monocyte subsets to the site of hip fracture plays a crucial role in bone resorption and remodeling, especially concerning age-related factors. In this review, we summarize the current knowledge about uniqueness characteristics of monocytes, and their potential regulation and moderation to enhance the healing process of hip fractures. This breakthrough could significantly contribute to the comprehension of aging process at a fundamental aging mechanism through this initiative would represent a crucial stride for diagnosing and treating age related hip fracture.
Collapse
Affiliation(s)
- Clement Shema
- Department of Orthopedic Research Center, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, P.R. China
| | - Yining Lu
- Department of Orthopedic Research Center, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, P.R. China
- Department of Orthopedic Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Ling Wang
- Department of Orthopedic Research Center, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, P.R. China.
- Department of Orthopedic Oncology, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, P.R. China.
| | - Yingze Zhang
- Department of Orthopedic Research Center, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, P.R. China.
- Department of Orthopedic Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, China.
| |
Collapse
|
39
|
Guo X, Su W, Wang X, Hu W, Meng J, Ahmed MA, Qu G, Sun Y. Assessing the effects of air pollution and residential greenness on frailty in older adults: a prospective cohort study from China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:9091-9105. [PMID: 38183550 DOI: 10.1007/s11356-023-31741-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 12/22/2023] [Indexed: 01/08/2024]
Abstract
Many studies have established a correlation between air pollution and green space with age-related diseases, yet the relationship between air pollution, green space, and frailty among older adults is not fully understood. The primary objective of this investigation is to examine the longitudinal association among air pollution, green space, and frailty in older adults, as well as the potential interaction and mediating effect. Analyzed data were obtained from the multi-wave CLHLS investigation (2008-2018). The participants' environmental exposure was evaluated using six air pollutants (PM1, PM2.5, PM10, PM10-2.5, O3, and NO2), and normalized difference vegetation index (NDVI). Annual ambient air pollutants were estimated using satellite-based spatiotemporal models. Time-varying Cox proportional risk models were employed to investigate the longitudinal relationships between air pollutants, greenness, and the onset of frailty in the elderly population. We conducted a variety of subgroup analyses, sensitivity analyses, and assessed potential interaction and causal mediating effects. A total of 6953 eligible elderly individuals were enrolled in our study. In the fully adjusted model, per IQR uptick in levels of PM1, PM2.5, PM10, PM10-2.5, O3, and NO2 corresponded to a 17% (95% CI 1.10-1.24), 25% (95% CI 1.17-1.34), 29% (95% CI 1.20-1.39), 35% (95% CI 1.24-1.47), 12% (95% CI 1.04-1.20), and 11% (95% CI 1.05-1.18) increase in frailty risk, respectively. For NDVI, increased IQR was significantly negatively associated with the risk of frailty (aHR 0.82, 95% CI 0.77-0.87). Our results revealed a significant interaction effect among O3, NO2, and residential greenness. PM1, PM2.5, PM10, and PM10-2.5 play a mediating role in the estimated relationship between residential greenness and frailty. In summary, our study reveals that PM1, PM2.5, PM10, PM10-2.5, O3, and NO2 correspond to elevated risks of frailty in the elderly. Residential greenness is associated with a lower risk of frailty in the elderly. Residential greenness can exert a positive impact on frailty by reducing particulate matter concentrations.
Collapse
Affiliation(s)
- Xianwei Guo
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Wenqi Su
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Xingyue Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Wenjing Hu
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Jia Meng
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Mubashir Ayaz Ahmed
- Division of Pulmonary Critical Care and Sleep Medicine, Albert Einstein Medical Center, Philadelphia, PA, USA
| | - Guangbo Qu
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Yehuan Sun
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei, 230032, Anhui, China.
| |
Collapse
|
40
|
Li Y, Wei Z, Su L. Anti-aging effects of icariin and the underlying mechanisms: A mini-review. Aging Med (Milton) 2024; 7:90-95. [PMID: 38571677 PMCID: PMC10985774 DOI: 10.1002/agm2.12284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/02/2024] [Accepted: 01/04/2024] [Indexed: 04/05/2024] Open
Abstract
Aging is an extremely intricate and progressive phenomenon that is implicated in many physiological and pathological conditions. Icariin (ICA) is the main active ingredient of Epimedium and has exhibited multiple bioactivities, such as anti-tumor, neuroprotective, antioxidant, anti-inflammatory, and anti-aging properties. ICA could extend healthspan in both invertebrate and vertebrate models. In this review, the roles of ICA in protection from declined reproductive function, neurodegeneration, osteoporosis, aging intestinal microecology, and senescence of cardiovascular system will be summarized. Furthermore, the underlying mechanisms of ICA-mediated anti-aging effects will be introduced. Finally, we will discuss some key aspects that constrain the usage of ICA in clinical practice and the corresponding strategies to solve these issues.
Collapse
Affiliation(s)
- Ying Li
- Department of HematologyChangchun Central HospitalChangchunChina
| | - Zhi‐Feng Wei
- Department of HematologyThe First Hospital of Jilin UniversityChangchunChina
- Jilin Provincial Key Laboratory of Hematology Precision MedicineThe First Hospital of Jilin UniversityChangchunChina
| | - Long Su
- Department of HematologyThe First Hospital of Jilin UniversityChangchunChina
- Jilin Provincial Key Laboratory of Hematology Precision MedicineThe First Hospital of Jilin UniversityChangchunChina
| |
Collapse
|
41
|
Bi J, Zhang C, Lu C, Mo C, Zeng J, Yao M, Jia B, Liu Z, Yuan P, Xu S. Age-related bone diseases: Role of inflammaging. J Autoimmun 2024; 143:103169. [PMID: 38340675 DOI: 10.1016/j.jaut.2024.103169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 01/03/2024] [Accepted: 01/19/2024] [Indexed: 02/12/2024]
Abstract
Bone aging is characterized by an imbalance in the physiological and pathological processes of osteogenesis, osteoclastogenesis, adipogenesis, and chondrogenesis, resulting in exacerbated bone loss and the development of age-related bone diseases, including osteoporosis, osteoarthritis, rheumatoid arthritis, and periodontitis. Inflammaging, a novel concept in the field of aging research, pertains to the persistent and gradual escalation of pro-inflammatory reactions during the aging process. This phenomenon is distinguished by its low intensity, systemic nature, absence of symptoms, and potential for management. The mechanisms by which inflammaging contribute to age-related chronic diseases, particularly in the context of age-related bone diseases, remain unclear. The precise manner in which systemic inflammation induces bone aging and consequently contributes to the development of age-related bone diseases has yet to be fully elucidated. This article primarily examines the mechanisms underlying inflammaging and its association with age-related bone diseases, to elucidate the potential mechanisms of inflammaging in age-related bone diseases and offer insights for developing preventive and therapeutic strategies for such conditions.
Collapse
Affiliation(s)
- Jiaming Bi
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, China
| | - Caimei Zhang
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, China
| | - Caihong Lu
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, China
| | - Chuzi Mo
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, China
| | - Jiawei Zeng
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, China
| | - Mingyan Yao
- Department of Endocrinology, The Third Hospital of Hebei Medical University, Shijiazhuang, China; Department of Endocrinology, Baoding No.1 Central Hospital, Baoding, China
| | - Bo Jia
- Department of Oral and Maxillofacial Surgery, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, China
| | - Zhongjun Liu
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, China
| | - Peiyan Yuan
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, China.
| | - Shuaimei Xu
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, China.
| |
Collapse
|
42
|
Wei W, Li T, Chen J, Fan Z, Gao F, Yu Z, Jiang Y. SIRT3/6: an amazing challenge and opportunity in the fight against fibrosis and aging. Cell Mol Life Sci 2024; 81:69. [PMID: 38294557 PMCID: PMC10830597 DOI: 10.1007/s00018-023-05093-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/29/2023] [Accepted: 12/09/2023] [Indexed: 02/01/2024]
Abstract
Fibrosis is a typical aging-related pathological process involving almost all organs, including the heart, kidney, liver, lung, and skin. Fibrogenesis is a highly orchestrated process defined by sequences of cellular response and molecular signals mechanisms underlying the disease. In pathophysiologic conditions associated with organ fibrosis, a variety of injurious stimuli such as metabolic disorders, epigenetic changes, and aging may induce the progression of fibrosis. Sirtuins protein is a kind of deacetylase which can regulate cell metabolism and participate in a variety of cell physiological functions. In this review, we outline our current understanding of common principles of fibrogenic mechanisms and the functional role of SIRT3/6 in aging-related fibrosis. In addition, sequences of novel protective strategies have been identified directly or indirectly according to these mechanisms. Here, we highlight the role and biological function of SIRT3/6 focus on aging fibrosis, as well as their inhibitors and activators as novel preventative or therapeutic interventions for aging-related tissue fibrosis.
Collapse
Affiliation(s)
- Wenxin Wei
- School of Queen Mary, Nanchang University, Nanchang, 330031, China
| | - Tian Li
- School of Basic Medicine, Fourth Military Medical University, Xi'an, 710032, China.
| | - Jinlong Chen
- School of Chemistry and Chemical Engineering, Nangchang University, 999 Xuefu Rd, Nanchang, 330031, China
| | - Zhen Fan
- The Hospital Affiliated to Shanxi University of Chinese Medicine, Xianyang, 712000, China.
| | - Feng Gao
- Shanxi University of Chinese Medicine, Xianyang, 712046, China
| | - Zhibiao Yu
- School of Chemistry and Chemical Engineering, Nangchang University, 999 Xuefu Rd, Nanchang, 330031, China
| | - Yihao Jiang
- School of Chemistry and Chemical Engineering, Nangchang University, 999 Xuefu Rd, Nanchang, 330031, China.
| |
Collapse
|
43
|
Yan P, Ke B, Fang X. Bioinformatics reveals the pathophysiological relationship between diabetic nephropathy and periodontitis in the context of aging. Heliyon 2024; 10:e24872. [PMID: 38304805 PMCID: PMC10830875 DOI: 10.1016/j.heliyon.2024.e24872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 01/08/2024] [Accepted: 01/16/2024] [Indexed: 02/03/2024] Open
Abstract
Diabetic nephropathy (DN) is one of the most common microvascular complications of diabetes mellitus. Periodontitis (PD) is a microbially-induced chronic inflammatory disease that is thought to have a bidirectional relationship with diabetes mellitus. DN and PD are recognized as models associated with accelerated aging. This study is divided into two parts, the first of which explores the bidirectional causal relationship through Mendelian randomization (MR). The second part aims to investigate the relationship between PD and DN in terms of potential crosstalk genes, aging-related genes, biological pathways, and processes using bioinformatic methods. MR analysis showed no evidence to support a causal relationship between DN and PD (P = 0.34) or PD and DN (P = 0.77). Using the GEO database, we screened 83 crosstalk genes overlapping in two diseases. Twelve paired genes identified by Pearson correlation and the four hub genes in the key cluster were jointly evaluated as key crosstalk-aging genes. Using support vector machine recursive feature elimination (SVM-RFE) and maximal clique centrality (MCC) algorithms, feature selection established five genes as the key crosstalk-aging genes. Based on five key genes, an ANN diagnostic model with reliable diagnosis of two diseases was developed. Gene enrichment analysis indicates that AGE-RAGE pathway signaling, the complement system, and multiple immune inflammatory pathways may be involved in common features of both diseases. Immune infiltration analysis reveals that most immune cells are differentially expressed in PD and DN, with dendritic cells and T cells assuming vital roles in both diseases. Overall, although there is no causal link, CSF1R, CXCL6, VCAM1, JUN and IL1B may be potential crosstalk-aging genes linking PD and DN. The common pathways and markers explored in this study could contribute to a deeper understanding of the common pathogenesis of both diseases in the context of aging and provide a theoretical basis for future research.
Collapse
Affiliation(s)
- Peng Yan
- Department of Nephrology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Ben Ke
- Department of Nephrology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Xiangdong Fang
- Department of Nephrology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| |
Collapse
|
44
|
Lv J, Zhang C, Liu X, Gu C, Liu Y, Gao Y, Huang Z, Jiang Q, Chen B, He D, Wang T, Xu Z, Su W. An aging-related immune landscape in the hematopoietic immune system. Immun Ageing 2024; 21:3. [PMID: 38169405 PMCID: PMC10759628 DOI: 10.1186/s12979-023-00403-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 12/11/2023] [Indexed: 01/05/2024]
Abstract
BACKGROUND Aging is a holistic change that has a major impact on the immune system, and immunosenescence contributes to the overall progression of aging. The bone marrow is the most important hematopoietic immune organ, while the spleen, as the most important extramedullary hematopoietic immune organ, maintains homeostasis of the human hematopoietic immune system (HIS) in cooperation with the bone marrow. However, the overall changes in the HIS during aging have not been described. Here, we describe a hematopoietic immune map of the spleen and bone marrow of young and old mice using single-cell sequencing and flow cytometry techniques. RESULTS We observed extensive, complex changes in the HIS during aging. Compared with young mice, the immune cells of aged mice showed a marked tendency toward myeloid differentiation, with the neutrophil population accounting for a significant proportion of this response. In this change, hypoxia-inducible factor 1-alpha (Hif1α) was significantly overexpressed, and this enhanced the immune efficacy and inflammatory response of neutrophils. Our research revealed that during the aging process, hematopoietic stem cells undergo significant changes in function and composition, and their polymorphism and differentiation abilities are downregulated. Moreover, we found that the highly responsive CD62L + HSCs were obviously downregulated in aging, suggesting that they may play an important role in the aging process. CONCLUSIONS Overall, aging extensively alters the cellular composition and function of the HIS. These findings could potentially give high-dimensional insights and enable more accurate functional and developmental analyses as well as immune monitoring in HIS aging.
Collapse
Affiliation(s)
- Jianjie Lv
- State Key Laboratory of Ophthalmology, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, 510060, China
| | - Chun Zhang
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Xiuxing Liu
- State Key Laboratory of Ophthalmology, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, 510060, China
| | - Chenyang Gu
- State Key Laboratory of Ophthalmology, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, 510060, China
| | - Yidan Liu
- State Key Laboratory of Ophthalmology, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, 510060, China
| | - Yuehan Gao
- State Key Laboratory of Ophthalmology, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, 510060, China
| | - Zhaohao Huang
- State Key Laboratory of Ophthalmology, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, 510060, China
| | - Qi Jiang
- State Key Laboratory of Ophthalmology, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, 510060, China
| | - Binyao Chen
- State Key Laboratory of Ophthalmology, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, 510060, China
| | - Daquan He
- State Key Laboratory of Ophthalmology, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, 510060, China
| | - Tianfu Wang
- State Key Laboratory of Ophthalmology, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, 510060, China
| | - Zhuping Xu
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Wenru Su
- State Key Laboratory of Ophthalmology, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, 510060, China.
| |
Collapse
|
45
|
Chen X, Xiang F, Cao X, Lv W, Shen B, Zou J, Ding X. Immunological features of ESRD patients undergoing hemodialysis of various ages. Int Urol Nephrol 2024; 56:313-323. [PMID: 37358762 DOI: 10.1007/s11255-023-03683-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 06/19/2023] [Indexed: 06/27/2023]
Abstract
AIMS To investigate the immunological characteristics of hemodialysis (HD) patients with end-stage renal disease (ESRD) of various ages, and the impact of age-related immune alterations on these patients, with a focus on peripheral T cells. METHODS From September 2016 to September 2019, HD patients were enrolled and followed prospectively for 3 years. Patients were divided into three groups based on their ages: < 45, 45 to 64, and ≥ 65. The distribution of T cell subsets in different age groups was investigated and compared. The effects of altered T cell subsets on overall survival were also investigated. RESULTS A total of 371 HD patients were enrolled. The reduced number of naive CD8+ T cells (P < 0.001) and increased number of EMRA CD8+ T cells (P = 0.024) were independently associated with the advanced age among all T cell subsets studied. Patient survival may be affected by numerical changes in naive CD8+ T cells. However, when HD patients were < 45 or ≥ 65 years, the reduction had no significant impact on survival. Only in HD patients aged 45 to 64 years, the number of naïve CD8+ T cells found to be insufficient but not deficient, identified as an independent predictor of poor survival. CONCLUSIONS The most significant age-related immune change in HD patients was a decrease in peripheral naive CD8+ T cells, which was an independent predictor of 3-year overall survival in HD patients aged 45 ~ 64 years.
Collapse
Affiliation(s)
- XiaoHong Chen
- Shanghai Institute of Kidney and Dialysis, Shanghai, China
- Shanghai Key Laboratory of Kidney and Blood Purification, Shanghai, China
- Hemodialysis Quality Control Center of Shanghai, Shanghai, China
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Medical Center of Kidney, Shanghai, China
| | - FangFang Xiang
- Shanghai Institute of Kidney and Dialysis, Shanghai, China
- Shanghai Key Laboratory of Kidney and Blood Purification, Shanghai, China
- Hemodialysis Quality Control Center of Shanghai, Shanghai, China
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Medical Center of Kidney, Shanghai, China
| | - XueSen Cao
- Shanghai Institute of Kidney and Dialysis, Shanghai, China
- Shanghai Key Laboratory of Kidney and Blood Purification, Shanghai, China
- Hemodialysis Quality Control Center of Shanghai, Shanghai, China
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Medical Center of Kidney, Shanghai, China
| | - WenLv Lv
- Shanghai Institute of Kidney and Dialysis, Shanghai, China
- Shanghai Key Laboratory of Kidney and Blood Purification, Shanghai, China
- Hemodialysis Quality Control Center of Shanghai, Shanghai, China
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Medical Center of Kidney, Shanghai, China
| | - Bo Shen
- Shanghai Institute of Kidney and Dialysis, Shanghai, China
- Shanghai Key Laboratory of Kidney and Blood Purification, Shanghai, China
- Hemodialysis Quality Control Center of Shanghai, Shanghai, China
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Medical Center of Kidney, Shanghai, China
| | - JianZhou Zou
- Shanghai Institute of Kidney and Dialysis, Shanghai, China
- Shanghai Key Laboratory of Kidney and Blood Purification, Shanghai, China
- Hemodialysis Quality Control Center of Shanghai, Shanghai, China
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Medical Center of Kidney, Shanghai, China
| | - XiaoQiang Ding
- Shanghai Institute of Kidney and Dialysis, Shanghai, China.
- Shanghai Key Laboratory of Kidney and Blood Purification, Shanghai, China.
- Hemodialysis Quality Control Center of Shanghai, Shanghai, China.
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China.
- Shanghai Medical Center of Kidney, Shanghai, China.
- Blood Purification Center, Zhongshan Hospital of Fudan University, 136 Yi Xue Yuan Road, Shanghai, 200032, People's Republic of China.
| |
Collapse
|
46
|
Guo Y, Zhao H, Ren M, Wang Y, Wang L, Tang L. Efficacy and safety of rituximab in elderly patients with membranous nephropathy. Front Pharmacol 2023; 14:1323334. [PMID: 38186651 PMCID: PMC10771833 DOI: 10.3389/fphar.2023.1323334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 12/11/2023] [Indexed: 01/09/2024] Open
Abstract
Objectives: Advancing age is a risk factor for treatment-related side effects and mortality in membranous nephropathy (MN) patients treated with traditional immunosuppressive regimens. This study aimed to determine the efficacy and safety of rituximab (RTX) in the treatment of elderly patients with MN. Methods: We performed a single center retrospective review of 37 consecutive MN patients aged 70 and older at the time of RTX infusion. We also enrolled 76 young patients (<70 years old) with MN as the control group. We assessed clinical and laboratory indices, remission rates, and adverse events at RTX infusion, 3 months, and last visit. Results: A total of 37 elderly patients with MN were included, with a median follow-up period of 15.50 (10.00, 24.40) months. Of the 37 patients, 75.68% were male, and mean age was 71.89 ± 2.47 years. At last visit, 7 (18.92%) patients achieved complete remission, and 26 (70.27%) patients achieved complete or partial remission. There were no differences in the complete remission rate and complete or partial remission rate at last visit compared to young patients (26.32% vs. 18.92%, p = 0.387; 85.53% vs. 70.27%, p = 0.055). After RTX treatment, three of 6 elderly patients with pneumonia died due to ineffective treatment of the infection in RTX therapy courses. The results of multivariant regression analysis showed that elderly patients have an increased risk of serious infection, compared with patients younger than 70 years (OR = 32.874, 95% CI 1.300-831.490, p = 0.034). For each increase of 1 g/L in serum albumin, the risk of serious infection would decrease by 43.2% (OR = 0.568, 95% CI 0.334-0.969, p = 0.038). Conclusion: This study demonstrates that RTX is effective in the treatment of elderly patients with MN. However, we also observed a high incidence of infectious complications. Our experience was limited by its retrospective design and relatively small sample size, and further randomized controlled studies with large sample size are needed to confirm our preliminary findings.
Collapse
Affiliation(s)
- Yanhong Guo
- Department of Nephropathy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Huayan Zhao
- Department of Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Mingjing Ren
- Department of Nephropathy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yulin Wang
- Department of Nephropathy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Liuwei Wang
- Department of Nephropathy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Lin Tang
- Department of Nephropathy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
47
|
Yang J, Liu J, Liang J, Li F, Wang W, Chen H, Xie X. Epithelial-mesenchymal transition in age-associated thymic involution: Mechanisms and therapeutic implications. Ageing Res Rev 2023; 92:102115. [PMID: 37922996 DOI: 10.1016/j.arr.2023.102115] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 10/17/2023] [Accepted: 10/29/2023] [Indexed: 11/07/2023]
Abstract
The thymus is a critical immune organ with endocrine and immune functions that plays important roles in the physiological and pathological processes of the body. However, with aging, the thymus undergoes degenerative changes leading to decreased production and output of naive T cells and the secretion of thymic hormones and related cytokines, thereby promoting the occurrence and development of various age-associated diseases. Therefore, identifying essential processes that regulate age-associated thymic involution is crucial for long-term control of thymic involution and age-associated disease progression. Epithelial-mesenchymal transition (EMT) is a well-established process involved in organ aging and functional impairment through tissue fibrosis in several organs, such as the heart and kidney. In the thymus, EMT promotes fibrosis and potentially adipogenesis, leading to thymic involution. This review focuses on the factors involved in thymic involution, including oxidative stress, inflammation, and hormones, from the perspective of EMT. Furthermore, current interventions for reversing age-associated thymic involution by targeting EMT-associated processes are summarized. Understanding the key mechanisms of thymic involution through EMT as an entry point may promote the development of new therapies and clinical agents to reverse thymic involution and age-associated disease.
Collapse
Affiliation(s)
- Jiali Yang
- The School of Basic Medical Sciences, Southwest Medical University, Luzhou, China; Public Center of Experimental Technology, Model Animal and Human Disease Research of Luzhou Key Laboratory, Southwest Medical University, Luzhou, China
| | - Juan Liu
- The School of Basic Medical Sciences, Southwest Medical University, Luzhou, China; Public Center of Experimental Technology, Model Animal and Human Disease Research of Luzhou Key Laboratory, Southwest Medical University, Luzhou, China
| | - Jiayu Liang
- The School of Basic Medical Sciences, Southwest Medical University, Luzhou, China; Public Center of Experimental Technology, Model Animal and Human Disease Research of Luzhou Key Laboratory, Southwest Medical University, Luzhou, China
| | - Fan Li
- The School of Basic Medical Sciences, Southwest Medical University, Luzhou, China; Public Center of Experimental Technology, Model Animal and Human Disease Research of Luzhou Key Laboratory, Southwest Medical University, Luzhou, China
| | - Wenwen Wang
- The School of Basic Medical Sciences, Southwest Medical University, Luzhou, China; Public Center of Experimental Technology, Model Animal and Human Disease Research of Luzhou Key Laboratory, Southwest Medical University, Luzhou, China
| | - Huan Chen
- The School of Basic Medical Sciences, Southwest Medical University, Luzhou, China; Nucleic Acid Medicine of Luzhou Key Laboratory, Southwest Medical University, Luzhou, China.
| | - Xiang Xie
- The School of Basic Medical Sciences, Southwest Medical University, Luzhou, China; Public Center of Experimental Technology, Model Animal and Human Disease Research of Luzhou Key Laboratory, Southwest Medical University, Luzhou, China.
| |
Collapse
|
48
|
Kytridou V, Gkikas I, Garcia MN, Cepeda O, Hildebolt CF. A literature review of local and systemic considerations for endodontic treatments in older adults. Gerodontology 2023; 40:410-421. [PMID: 36971290 DOI: 10.1111/ger.12679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 12/09/2022] [Accepted: 12/28/2022] [Indexed: 11/17/2023]
Abstract
OBJECTIVES The aim of this literature review was to summarise the clinical important findings on the endodontic treatment outcome in older patients (≥60 years old) with pulpal/periapical disease considering local and systemic factors from a body of knowledge that is heterogeneous in methods or disciplines. BACKGROUND Due to the increasing number of older patients in the endodontic practice, and the current trend for tooth preservation, the need for clinicians to have a better understanding of age-related implications that may influence the required endodontic treatment in older adults to retain their natural dentition is indispensable. METHODS PubMed/Medline and Embase was searched by a medical librarian using specific terms based on inclusion/exclusion criteria. The reference list was hand-seached for additional relevant publications between 2005-2020. A combination of these terms was performed uing Boolean operators and MeSH terms. RESULTS Of the 1577 publications identified manually and electronically, 25 were included to be fully reviewed by the examiners. The data was derived from three systematic reviews, one systematic and meta-analysis, three case series, four prospective and 14 retrospective cohorts. Overall, there was heterogeneity in reporting as well as limitations in most studies. CONCLUSIONS The outcome of endodontic treatment (ET) either nonsurgical or surgical or combination of these is not affected by older age. ET can be the treatment of choice in older patients wiht pulpal/periapical disease. There is no evidence that older age per se affects the outcome of any type of endodontic treatment.
Collapse
Affiliation(s)
- Vasiliki Kytridou
- Section Head of Endodontics, Department of Applied Dental Medicine, Southern Illinois University School of Dental Medicine, Alton, Illinois, USA
| | - Ioannis Gkikas
- Section of Oral and Maxillofacial Surgery, Department of Applied Dental Medicine, Southern Illinois University School of Dental Medicine, Alton, Illinois, USA
| | - Miryam Nathalia Garcia
- Applied Dental Medicine Department, Section of Periodontics, Southern Illinois University School of Dental Medicine, Alton, Illinois, USA
| | - Oscar Cepeda
- Division of Geriatric Medicine, St. Louis VA Medical Center, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - Charles F Hildebolt
- Washington University School of Medicine, Saint Louis, Missouri, USA
- Southern Illinois University School of Dental Medicine, Alton, Illinois, USA
| |
Collapse
|
49
|
He Z, He W, Hu C, Liao J, Deng W, Sun H, Huang Q, Chen W, Zhang L, Liu M, Dong J. Cross-species comparison illuminates the importance of iron homeostasis for splenic anti-immunosenescence. Aging Cell 2023; 22:e13982. [PMID: 37681451 PMCID: PMC10652311 DOI: 10.1111/acel.13982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 08/21/2023] [Accepted: 08/23/2023] [Indexed: 09/09/2023] Open
Abstract
Although immunosenescence may result in increased morbidity and mortality, many mammals have evolved effective immune coping strategies to extend their lifespans. Thus, the immune systems of long-lived mammals present unique models to study healthy longevity. To identify the molecular clues of anti-immunosenescence, we first built high-quality reference genome for a long-lived myotis bat, and then compared three long-lived mammals (i.e., bat, naked mole rat, and human) versus the short-lived mammal, mouse, in splenic immune cells at single-cell resolution. A close relationship between B:T cell ratio and immunosenescence was detected, as B:T cell ratio was much higher in mouse than long-lived mammals and significantly increased during aging. Importantly, we identified several iron-related genes that could resist immunosenescence changes, especially the iron chaperon, PCBP1, which was upregulated in long-lived mammals but dramatically downregulated during aging in all splenic immune cell types. Supportively, immune cells of mouse spleens contained more free iron than those of bat spleens, suggesting higher level of ROS-induced damage in mouse. PCBP1 downregulation during aging was also detected in hepatic but not pulmonary immune cells, which is consistent with the crucial roles of spleen and liver in organismal iron recycling. Furthermore, PCBP1 perturbation in immune cell lines would result in cellular iron dyshomeostasis and senescence. Finally, we identified two transcription factors that could regulate PCBP1 during aging. Together, our findings highlight the importance of iron homeostasis in splenic anti-immunosenescence, and provide unique insight for improving human healthspan.
Collapse
Affiliation(s)
- Ziqing He
- GMU‐GIBH Joint School of Life Sciences, The Guangdong‐Hong Kong‐Macau Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou National LaboratoryGuangzhou Medical UniversityGuangzhouChina
- Faculty of Health SciencesUniversity of MacauMacauChina
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory)GuangzhouChina
| | - Weiya He
- GMU‐GIBH Joint School of Life Sciences, The Guangdong‐Hong Kong‐Macau Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou National LaboratoryGuangzhou Medical UniversityGuangzhouChina
- Faculty of Health SciencesUniversity of MacauMacauChina
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory)GuangzhouChina
| | - Chuanxia Hu
- GMU‐GIBH Joint School of Life Sciences, The Guangdong‐Hong Kong‐Macau Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou National LaboratoryGuangzhou Medical UniversityGuangzhouChina
| | - Jiayu Liao
- GMU‐GIBH Joint School of Life Sciences, The Guangdong‐Hong Kong‐Macau Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou National LaboratoryGuangzhou Medical UniversityGuangzhouChina
| | - Wenjun Deng
- GMU‐GIBH Joint School of Life Sciences, The Guangdong‐Hong Kong‐Macau Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou National LaboratoryGuangzhou Medical UniversityGuangzhouChina
| | - Haijian Sun
- GMU‐GIBH Joint School of Life Sciences, The Guangdong‐Hong Kong‐Macau Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou National LaboratoryGuangzhou Medical UniversityGuangzhouChina
- Faculty of Health SciencesUniversity of MacauMacauChina
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory)GuangzhouChina
| | - Qingpei Huang
- GMU‐GIBH Joint School of Life Sciences, The Guangdong‐Hong Kong‐Macau Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou National LaboratoryGuangzhou Medical UniversityGuangzhouChina
| | - Weilue Chen
- GMU‐GIBH Joint School of Life Sciences, The Guangdong‐Hong Kong‐Macau Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou National LaboratoryGuangzhou Medical UniversityGuangzhouChina
| | - Libiao Zhang
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and UtilizationInstitute of Zoology, Guangdong Academy of SciencesGuangzhouChina
| | - Meiling Liu
- GMU‐GIBH Joint School of Life Sciences, The Guangdong‐Hong Kong‐Macau Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou National LaboratoryGuangzhou Medical UniversityGuangzhouChina
| | - Ji Dong
- GMU‐GIBH Joint School of Life Sciences, The Guangdong‐Hong Kong‐Macau Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou National LaboratoryGuangzhou Medical UniversityGuangzhouChina
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory)GuangzhouChina
| |
Collapse
|
50
|
Zhang X, Tyrrell DJ, Alliston T, Schilling B, Yousefzadeh MJ, Schafer MJ. Senescence and Inflammation: Summary of a Gerontological Society of America and National Institute on Aging-Sponsored Symposium. J Gerontol A Biol Sci Med Sci 2023; 78:1733-1739. [PMID: 37148367 PMCID: PMC10562889 DOI: 10.1093/gerona/glad120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Indexed: 05/08/2023] Open
Abstract
The National Institute on Aging sponsored a symposium at the Gerontological Society of America (GSA) annual meeting in Indianapolis, Indiana, to discuss recent discoveries related to senescent and inflammatory mechanisms in aging and disease. Consistent with the 2022 Biological Sciences GSA program led by Dr. Rozalyn Anderson, the symposium featured early-stage investigators and a leader in the field of geroscience research. Cell senescence and immune interactions coordinate homeostatic and protective programming throughout the life span. Dysfunctional communication in this exchange eventuates in inflammation-related compositional changes in aged tissues, including propagation of the senescence-associated secretory phenotype and accumulation of senescent and exhausted immune cells. Presentations in this symposium explored senescent and immune-related dysfunction in aging from diverse viewpoints and featured emerging cellular and molecular methods. A central takeaway from the event was that the use of new models and approaches, including single-cell -omics, novel mouse models, and 3D culture systems, is revealing dynamic properties and interactions of senescent and immune cell fates. This knowledge is critical for devising new therapeutic approaches with important translational relevance.
Collapse
Affiliation(s)
- Xu Zhang
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, Minnesota, USA
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota, USA
| | - Daniel J Tyrrell
- Division of Molecular and Cellular Pathology, University of Alabama at Birmingham, Birmingham, Alabama, USA
- Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama, USA
- Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Tamara Alliston
- Department of Orthopaedic Surgery, University of California San Francisco, San Francisco, California, USA
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, California, USA
| | - Birgit Schilling
- The Buck Institute for Research on Aging, Novato, California, USA
| | - Matthew J Yousefzadeh
- Institute on the Biology of Aging and Metabolism, University of Minnesota, Minneapolis, Minnesota, USA
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, Minnesota, USA
| | - Marissa J Schafer
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, Minnesota, USA
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, USA
- Department of Neurology, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|