1
|
Abstract
Epidemiologic studies detected an inverse relationship between HDL (high-density lipoprotein) cholesterol (HDL-C) levels and atherosclerotic cardiovascular disease (ASCVD), identifying HDL-C as a major risk factor for ASCVD and suggesting atheroprotective functions of HDL. However, the role of HDL-C as a mediator of risk for ASCVD has been called into question by the failure of HDL-C-raising drugs to reduce cardiovascular events in clinical trials. Progress in understanding the heterogeneous nature of HDL particles in terms of their protein, lipid, and small RNA composition has contributed to the realization that HDL-C levels do not necessarily reflect HDL function. The most examined atheroprotective function of HDL is reverse cholesterol transport, whereby HDL removes cholesterol from plaque macrophage foam cells and delivers it to the liver for processing and excretion into bile. Indeed, in several studies, HDL has shown inverse associations between HDL cholesterol efflux capacity and ASCVD in humans. Inflammation plays a key role in the pathogenesis of atherosclerosis and vulnerable plaque formation, and a fundamental function of HDL is suppression of inflammatory signaling in macrophages and other cells. Oxidation is also a critical process to ASCVD in promoting atherogenic oxidative modifications of LDL (low-density lipoprotein) and cellular inflammation. HDL and its proteins including apoAI (apolipoprotein AI) and PON1 (paraoxonase 1) prevent cellular oxidative stress and LDL modifications. Importantly, HDL in humans with ASCVD is oxidatively modified rendering HDL dysfunctional and proinflammatory. Modification of HDL with reactive carbonyl species, such as malondialdehyde and isolevuglandins, dramatically impairs the antiatherogenic functions of HDL. Importantly, treatment of murine models of atherosclerosis with scavengers of reactive dicarbonyls improves HDL function and reduces systemic inflammation, atherosclerosis development, and features of plaque instability. Here, we discuss the HDL antiatherogenic functions in relation to oxidative modifications and the potential of reactive dicarbonyl scavengers as a therapeutic approach for ASCVD.
Collapse
Affiliation(s)
- MacRae F. Linton
- 1. Department of Medicine, Division of Cardiovascular Medicine, Atherosclerosis Research Unit, Vanderbilt University School of Medicine, Nashville, TN 37232
- 2. Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - Patricia G. Yancey
- 1. Department of Medicine, Division of Cardiovascular Medicine, Atherosclerosis Research Unit, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - Huan Tao
- 1. Department of Medicine, Division of Cardiovascular Medicine, Atherosclerosis Research Unit, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - Sean S. Davies
- 2. Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232
| |
Collapse
|
2
|
Denimal D, Monier S, Bouillet B, Vergès B, Duvillard L. High-Density Lipoprotein Alterations in Type 2 Diabetes and Obesity. Metabolites 2023; 13:metabo13020253. [PMID: 36837872 PMCID: PMC9967905 DOI: 10.3390/metabo13020253] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/07/2023] [Accepted: 02/07/2023] [Indexed: 02/12/2023] Open
Abstract
Alterations affecting high-density lipoproteins (HDLs) are one of the various abnormalities observed in dyslipidemia in type 2 diabetes mellitus (T2DM) and obesity. Kinetic studies have demonstrated that the catabolism of HDL particles is accelerated. Both the size and the lipidome and proteome of HDL particles are significantly modified, which likely contributes to some of the functional defects of HDLs. Studies on cholesterol efflux capacity have yielded heterogeneous results, ranging from a defect to an improvement. Several studies indicate that HDLs are less able to inhibit the nuclear factor kappa-B (NF-κB) proinflammatory pathway, and subsequently, the adhesion of monocytes on endothelium and their recruitment into the subendothelial space. In addition, the antioxidative function of HDL particles is diminished, thus facilitating the deleterious effects of oxidized low-density lipoproteins on vasculature. Lastly, the HDL-induced activation of endothelial nitric oxide synthase is less effective in T2DM and metabolic syndrome, contributing to several HDL functional defects, such as an impaired capacity to promote vasodilatation and endothelium repair, and difficulty counteracting the production of reactive oxygen species and inflammation.
Collapse
Affiliation(s)
- Damien Denimal
- INSERM, UMR1231, University of Burgundy, 21000 Dijon, France
- Department of Biochemistry, CHU Dijon Bourgogne, 21000 Dijon, France
- Correspondence:
| | - Serge Monier
- INSERM, UMR1231, University of Burgundy, 21000 Dijon, France
| | - Benjamin Bouillet
- INSERM, UMR1231, University of Burgundy, 21000 Dijon, France
- Department of Endocrinology and Diabetology, CHU Dijon Bourgogne, 21000 Dijon, France
| | - Bruno Vergès
- INSERM, UMR1231, University of Burgundy, 21000 Dijon, France
- Department of Endocrinology and Diabetology, CHU Dijon Bourgogne, 21000 Dijon, France
| | - Laurence Duvillard
- INSERM, UMR1231, University of Burgundy, 21000 Dijon, France
- Department of Biochemistry, CHU Dijon Bourgogne, 21000 Dijon, France
| |
Collapse
|
3
|
Härdfeldt J, Cariello M, Simonelli S, Ossoli A, Scialpi N, Piglionica M, Pasculli E, Noia A, Berardi E, Suppressa P, Piazzolla G, Sabbà C, Calabresi L, Moschetta A. Abdominal obesity negatively influences key metrics of reverse cholesterol transport. Biochim Biophys Acta Mol Cell Biol Lipids 2022; 1867:159087. [PMID: 34813947 DOI: 10.1016/j.bbalip.2021.159087] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 11/09/2021] [Accepted: 11/14/2021] [Indexed: 12/26/2022]
Abstract
Cardiometabolic risk factors increase the risk of atherosclerotic cardiovascular disease (ASCVD), but whether these metabolic anomalies affect the anti-atherogenic function of reverse cholesterol transport (RCT) is not yet clearly known. The present study aimed to delineate if the function and maturation of high density lipoprotein (HDL) particles cross-sectionally associate with surrogate markers of ASCVD in a population comprising of different degree of cardiometabolic risk. We enrolled 131 subjects and characterized cardiometabolic risk based on the IDF criteria's for metabolic syndrome (MS). In this population, cholesterol efflux capacity (CEC), Lecithin-cholesterol acyltransferase (LCAT) and ApoA-1 glycation was associated with waist circumference, abdominal visceral fat (VFA) and abdominal subcutaneous fat. In multivariate analyses, VFA was identified as a critical contributor for low CEC and LCAT. When stratified into groups based on the presence of cardiometabolic risk factors, we found a prominent reduction in CEC and LCAT as a function of the progressive increase of cardiometabolic risk from 0-2, 0-3 to 0-4/5, whereas an increase in Pre-β-HDL and ApoA-1 glycation was observed between the lowest and highest risk groups. These findings confirm the connection between MS and its predisposing conditions to an impairment of atheroprotective efflux-promoting function of HDLs. Furthermore, we have identified the bona fide pathogenically contribution of abdominal obesity to profound alterations of key metrics of RCT.
Collapse
Affiliation(s)
- Jennifer Härdfeldt
- Department of Interdisciplinary Medicine, Aldo Moro University of Bari, Piazza Giulio Cesare 11, 70124 Bari, Italy; INBB, National Institute for Biostructures and Biosystems, Viale delle Medaglie d'Oro 305, 00136 Rome, Italy; Metabolism Unit, Department of Medicine, Karolinska Institutet at Karolinska University Hospital Huddinge, S-141 86 Stockholm, Sweden
| | - Marica Cariello
- Department of Interdisciplinary Medicine, Aldo Moro University of Bari, Piazza Giulio Cesare 11, 70124 Bari, Italy
| | - Sara Simonelli
- Center E. Grossi Paoletti, Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, via Balzaretti 9, 20133 Milano, Italy
| | - Alice Ossoli
- Center E. Grossi Paoletti, Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, via Balzaretti 9, 20133 Milano, Italy
| | - Natasha Scialpi
- Department of Interdisciplinary Medicine, Aldo Moro University of Bari, Piazza Giulio Cesare 11, 70124 Bari, Italy
| | - Marilidia Piglionica
- Department of Interdisciplinary Medicine, Aldo Moro University of Bari, Piazza Giulio Cesare 11, 70124 Bari, Italy; INBB, National Institute for Biostructures and Biosystems, Viale delle Medaglie d'Oro 305, 00136 Rome, Italy
| | - Emanuela Pasculli
- Department of Interdisciplinary Medicine, Aldo Moro University of Bari, Piazza Giulio Cesare 11, 70124 Bari, Italy
| | - Alessia Noia
- Department of Interdisciplinary Medicine, Aldo Moro University of Bari, Piazza Giulio Cesare 11, 70124 Bari, Italy
| | - Elsa Berardi
- Department of Interdisciplinary Medicine, Aldo Moro University of Bari, Piazza Giulio Cesare 11, 70124 Bari, Italy
| | - Patrizia Suppressa
- Department of Interdisciplinary Medicine, Aldo Moro University of Bari, Piazza Giulio Cesare 11, 70124 Bari, Italy
| | - Giuseppina Piazzolla
- Department of Interdisciplinary Medicine, Aldo Moro University of Bari, Piazza Giulio Cesare 11, 70124 Bari, Italy
| | - Carlo Sabbà
- Department of Interdisciplinary Medicine, Aldo Moro University of Bari, Piazza Giulio Cesare 11, 70124 Bari, Italy
| | - Laura Calabresi
- Center E. Grossi Paoletti, Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, via Balzaretti 9, 20133 Milano, Italy
| | - Antonio Moschetta
- Department of Interdisciplinary Medicine, Aldo Moro University of Bari, Piazza Giulio Cesare 11, 70124 Bari, Italy; INBB, National Institute for Biostructures and Biosystems, Viale delle Medaglie d'Oro 305, 00136 Rome, Italy; National Cancer Research Center, IRCCS Istituto Tumori "Giovanni Paolo II", Bari, Italy.
| |
Collapse
|
4
|
Akinmolayemi O, Saldanha S, Joshi PH, Deodhar S, Ayers CR, Neeland IJ, Rohatgi A. Cholesterol efflux capacity and its association with prevalent metabolic syndrome in a multi-ethnic population (Dallas Heart Study). PLoS One 2021; 16:e0257574. [PMID: 34547056 PMCID: PMC8454977 DOI: 10.1371/journal.pone.0257574] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 09/04/2021] [Indexed: 01/08/2023] Open
Abstract
Metabolic syndrome (MetS) is characterized by adiposity and atherogenic dyslipidemia consisting of elevated triglyceride and decreased high density lipoprotein cholesterol (HDL-C) levels however, cholesterol concentration alone does not reflect HDL functionality. Cholesterol efflux capacity (CEC) captures a key anti-atherosclerotic function of HDL; studies linking CEC to MetS have yielded inconsistent findings and lacked racial/ethnic diversity. The aim of this study was to evaluate the association between CEC and MetS in a large multi-ethnic population utilizing two different CEC assays interrogating overlapping but distinct reverse cholesterol transport pathways. A cross-sectional study was performed using the Dallas Heart Study cohort and cholesterol efflux was measured with radiolabeled and fluorescent cholesterol assays. The relationship between CEC and MetS was assessed using multivariable regression analyses. A total of 2241 participants were included (mean age was 50 years; 38% men and 53% Blacks). CEC was independently and inversely associated with MetS irrespective of efflux assay (CEC-radiolabeled, adjusted OR 0·71 [95% CI 0·65-0·80]. CEC-fluorescent, adjusted OR 0·85 [95% CI 0·77-0·94]). Both CEC measures were inversely associated with waist circumference and directly associated with HDL-C but not with other MetS components. There was an interaction by sex but not by race such that the inverse associations between CEC and MetS were somewhat attenuated in men (OR 0·86, 95%CI 0·74-1·01). In this large multi-ethnic cohort, impaired CEC is linked to MetS irrespective of efflux assay and race/ethnicity but less so among men. Future studies are needed to assess whether CEC mediates the atherosclerotic cardiovascular disease risk of MetS.
Collapse
Affiliation(s)
- Oludamilola Akinmolayemi
- Department of Internal Medicine, Columbia University Irving Medical Center and NewYork-Presbyterian Hospital, New York, New York, United States of America
| | - Suzanne Saldanha
- Division of Cardiology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Parag H. Joshi
- Division of Cardiology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Sneha Deodhar
- Division of Cardiology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Colby R. Ayers
- Division of Cardiology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Ian J. Neeland
- University Hospitals Harrington Heart and Vascular Institute and Case Western Reserve University School of Medicine, Cleveland, Ohio, United States of America
| | - Anand Rohatgi
- Division of Cardiology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| |
Collapse
|
5
|
Yubero-Serrano EM, Alcalá-Diaz JF, Gutierrez-Mariscal FM, Arenas-de Larriva AP, Peña-Orihuela PJ, Blanco-Rojo R, Martinez-Botas J, Torres-Peña JD, Perez-Martinez P, Ordovas JM, Delgado-Lista J, Gómez-Coronado D, Lopez-Miranda J. Association between cholesterol efflux capacity and peripheral artery disease in coronary heart disease patients with and without type 2 diabetes: from the CORDIOPREV study. Cardiovasc Diabetol 2021; 20:72. [PMID: 33766036 PMCID: PMC7993540 DOI: 10.1186/s12933-021-01260-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Accepted: 03/13/2021] [Indexed: 01/09/2023] Open
Abstract
Background Peripheral artery disease (PAD) is recognized as a significant predictor of mortality and adverse cardiovascular outcomes in patients with coronary heart disease (CHD). In fact, coexisting PAD and CHD is strongly associated with a greater coronary event recurrence compared with either one of them alone. High-density lipoprotein (HDL)-mediated cholesterol efflux capacity (CEC) is found to be inversely associated with an increased risk of incident CHD. However, this association is not established in patients with PAD in the context of secondary prevention. In this sense, our main aim was to evaluate the association between CEC and PAD in patients with CHD and whether the concurrent presence of PAD and T2DM influences this association. Methods CHD patients (n = 1002) from the CORDIOPREV study were classified according to the presence or absence of PAD (ankle-brachial index, ABI ≤ 0.9 and ABI > 0.9 and < 1.4, respectively) and T2DM status. CEC was quantified by incubation of cholesterol-loaded THP-1 cells with the participants' apoB-depleted plasma was performed. Results The presence of PAD determined low CEC in non-T2DM and newly-diagnosed T2DM patients. Coexisting PAD and newly-diagnosed T2DM provided and additive effect providing an impaired CEC compared to non-T2DM patients with PAD. In established T2DM patients, the presence of PAD did not determine differences in CEC, compared to those without PAD, which may be restored by glucose-lowering treatment. Conclusions Our findings suggest an inverse relationship between CEC and PAD in CHD patients. These results support the importance of identifying underlying mechanisms of PAD, in the context of secondary prevention, that provide potential therapeutic targets, that is the case of CEC, and establishing strategies to prevent or reduce the high risk of cardiovascular events of these patients. Trial registrationhttps://clinicaltrials.gov/ct2/show/NCT00924937. Unique Identifier: NCT00924937![]()
Collapse
Affiliation(s)
- Elena M Yubero-Serrano
- Lipids and Atherosclerosis Unit. Servicio de Medicina Interna, Reina Sofia University Hospital, Maimonides Institute for Biomedical Research in Córdoba, University of Córdoba, Córdoba, Spain. .,CIBER Physiopathology of Obesity and Nutrition (CIBEROBN), Institute of Health Carlos III, Madrid, Spain.
| | - Juan F Alcalá-Diaz
- Lipids and Atherosclerosis Unit. Servicio de Medicina Interna, Reina Sofia University Hospital, Maimonides Institute for Biomedical Research in Córdoba, University of Córdoba, Córdoba, Spain.,CIBER Physiopathology of Obesity and Nutrition (CIBEROBN), Institute of Health Carlos III, Madrid, Spain
| | - Francisco M Gutierrez-Mariscal
- Lipids and Atherosclerosis Unit. Servicio de Medicina Interna, Reina Sofia University Hospital, Maimonides Institute for Biomedical Research in Córdoba, University of Córdoba, Córdoba, Spain.,CIBER Physiopathology of Obesity and Nutrition (CIBEROBN), Institute of Health Carlos III, Madrid, Spain
| | - Antonio P Arenas-de Larriva
- Lipids and Atherosclerosis Unit. Servicio de Medicina Interna, Reina Sofia University Hospital, Maimonides Institute for Biomedical Research in Córdoba, University of Córdoba, Córdoba, Spain.,CIBER Physiopathology of Obesity and Nutrition (CIBEROBN), Institute of Health Carlos III, Madrid, Spain
| | - Patricia J Peña-Orihuela
- Lipids and Atherosclerosis Unit. Servicio de Medicina Interna, Reina Sofia University Hospital, Maimonides Institute for Biomedical Research in Córdoba, University of Córdoba, Córdoba, Spain.,CIBER Physiopathology of Obesity and Nutrition (CIBEROBN), Institute of Health Carlos III, Madrid, Spain
| | - Ruth Blanco-Rojo
- Research and Development Department, Biosearch Life, Granada, Spain
| | - Javier Martinez-Botas
- CIBER Physiopathology of Obesity and Nutrition (CIBEROBN), Institute of Health Carlos III, Madrid, Spain.,Department of Biochemistry-Research, Hospital Universitario Ramón Y Cajal, Instituto Ramón Y Cajal de Investigacion Sanitaria (IRyCIS), Madrid, Spain
| | - Jose D Torres-Peña
- Lipids and Atherosclerosis Unit. Servicio de Medicina Interna, Reina Sofia University Hospital, Maimonides Institute for Biomedical Research in Córdoba, University of Córdoba, Córdoba, Spain.,CIBER Physiopathology of Obesity and Nutrition (CIBEROBN), Institute of Health Carlos III, Madrid, Spain
| | - Pablo Perez-Martinez
- Lipids and Atherosclerosis Unit. Servicio de Medicina Interna, Reina Sofia University Hospital, Maimonides Institute for Biomedical Research in Córdoba, University of Córdoba, Córdoba, Spain.,CIBER Physiopathology of Obesity and Nutrition (CIBEROBN), Institute of Health Carlos III, Madrid, Spain
| | - Jose M Ordovas
- Jean Mayer US Department of Agriculture Human Nutrition Research Center On Aging, Tufts University School of Medicine, Boston, MA, USA.,IMDEA-Food Institute, CEI UAM + CSIC, Madrid, Spain
| | - Javier Delgado-Lista
- Lipids and Atherosclerosis Unit. Servicio de Medicina Interna, Reina Sofia University Hospital, Maimonides Institute for Biomedical Research in Córdoba, University of Córdoba, Córdoba, Spain.,CIBER Physiopathology of Obesity and Nutrition (CIBEROBN), Institute of Health Carlos III, Madrid, Spain
| | - Diego Gómez-Coronado
- CIBER Physiopathology of Obesity and Nutrition (CIBEROBN), Institute of Health Carlos III, Madrid, Spain.,Department of Biochemistry-Research, Hospital Universitario Ramón Y Cajal, Instituto Ramón Y Cajal de Investigacion Sanitaria (IRyCIS), Madrid, Spain
| | - Jose Lopez-Miranda
- Lipids and Atherosclerosis Unit. Servicio de Medicina Interna, Reina Sofia University Hospital, Maimonides Institute for Biomedical Research in Córdoba, University of Córdoba, Córdoba, Spain. .,CIBER Physiopathology of Obesity and Nutrition (CIBEROBN), Institute of Health Carlos III, Madrid, Spain.
| |
Collapse
|
6
|
Adorni MP, Ronda N, Bernini F, Zimetti F. High Density Lipoprotein Cholesterol Efflux Capacity and Atherosclerosis in Cardiovascular Disease: Pathophysiological Aspects and Pharmacological Perspectives. Cells 2021; 10:cells10030574. [PMID: 33807918 PMCID: PMC8002038 DOI: 10.3390/cells10030574] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 03/01/2021] [Accepted: 03/02/2021] [Indexed: 02/06/2023] Open
Abstract
Over the years, the relationship between high-density lipoprotein (HDL) and atherosclerosis, initially highlighted by the Framingham study, has been revealed to be extremely complex, due to the multiple HDL functions involved in atheroprotection. Among them, HDL cholesterol efflux capacity (CEC), the ability of HDL to promote cell cholesterol efflux from cells, has emerged as a better predictor of cardiovascular (CV) risk compared to merely plasma HDL-cholesterol (HDL-C) levels. HDL CEC is impaired in many genetic and pathological conditions associated to high CV risk such as dyslipidemia, chronic kidney disease, diabetes, inflammatory and autoimmune diseases, endocrine disorders, etc. The present review describes the current knowledge on HDL CEC modifications in these conditions, focusing on the most recent human studies and on genetic and pathophysiologic aspects. In addition, the most relevant strategies possibly modulating HDL CEC, including lifestyle modifications, as well as nutraceutical and pharmacological interventions, will be discussed. The objective of this review is to help understanding whether, from the current evidence, HDL CEC may be considered as a valid biomarker of CV risk and a potential pharmacological target for novel therapeutic approaches.
Collapse
Affiliation(s)
- Maria Pia Adorni
- Unit of Neurosciences, Department of Medicine and Surgery, University of Parma, 43125 Parma, Italy;
| | - Nicoletta Ronda
- Department of Food and Drug, University of Parma, 43124 Parma, Italy; (N.R.); (F.Z.)
| | - Franco Bernini
- Department of Food and Drug, University of Parma, 43124 Parma, Italy; (N.R.); (F.Z.)
- Correspondence:
| | - Francesca Zimetti
- Department of Food and Drug, University of Parma, 43124 Parma, Italy; (N.R.); (F.Z.)
| |
Collapse
|
7
|
Luquain-Costaz C, Kockx M, Anastasius M, Chow V, Kontush A, Jessup W, Kritharides L. Increased ABCA1 (ATP-Binding Cassette Transporter A1)-Specific Cholesterol Efflux Capacity in Schizophrenia. Arterioscler Thromb Vasc Biol 2020; 40:2728-2737. [DOI: 10.1161/atvbaha.120.314847] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Objective:
Patients with schizophrenia have increased long-term mortality attributable to cardiovascular disease and commonly demonstrate features of mixed dyslipidemia with low HDL-C (high-density lipoprotein cholesterol). The removal of cholesterol from cells by HDL via specific ATP-binding cholesterol transporters is a major functional property of HDL, and its measurement as cholesterol efflux capacity (CEC) can predict cardiovascular risk. Whether HDL function is impaired in patients with schizophrenia is unknown.
Approach and Results:
We measured basal and ABCA1 (ATP-binding cassette transporter A1)- and ABCG1 (ATP-binding cassette transporter G1)-dependent CEC, comparing patients with schizophrenia with age- and sex-matched healthy controls, and related our findings to nuclear magnetic resonance analysis of lipoprotein subclasses. Total plasma cholesterol and LDL-C (low-density lipoprotein cholesterol) were comparable between healthy controls (n=51) and patients (n=120), but patients with schizophrenia had increased total plasma triglyceride, low HDL-C and apo (apolipoprotein) A-I concentrations. Nuclear magnetic resonance analysis indicated a marked (15-fold) increase in large triglyceride-rich lipoprotein particle concentration, increased small dense LDL particles, and fewer large HDL particles. Despite lower HDL-C concentration, basal CEC was 13.7±1.6% higher, ABCA1-specific efflux was 35.9±1.6% higher, and ABCG1 efflux not different, in patients versus controls. In patients with schizophrenia, ABCA1-specific efflux correlated with the abundance of small 7.8 nm HDL particles but not with serum plasminogen or triglyceride levels.
Conclusions:
Patients with schizophrenia have increased concentrations of atherogenic apoB-containing lipoproteins, decreased concentrations of large HDL particles, but enhanced ABCA1-mediated CEC. In this population, preventative strategies should focus on reducing atherogenic lipoproteins rather than increasing CEC.
Collapse
Affiliation(s)
| | - Maaike Kockx
- ANZAC Research institute, Concord Repatriation General Hospital and University of Sydney, Australia (M.K., M.A., V.C., W.J., L.K.)
| | - Malcolm Anastasius
- ANZAC Research institute, Concord Repatriation General Hospital and University of Sydney, Australia (M.K., M.A., V.C., W.J., L.K.)
| | - Vincent Chow
- ANZAC Research institute, Concord Repatriation General Hospital and University of Sydney, Australia (M.K., M.A., V.C., W.J., L.K.)
- Department of Cardiology, Concord Repatriation General Hospital, Sydney, Australia (V.C., L.K.)
| | - Anatol Kontush
- INSERM Unit 1166, Faculty of Medicine Pitié-Salpétrière and Sorbonne University, Paris, France (A.K.)
| | - Wendy Jessup
- ANZAC Research institute, Concord Repatriation General Hospital and University of Sydney, Australia (M.K., M.A., V.C., W.J., L.K.)
| | - Leonard Kritharides
- ANZAC Research institute, Concord Repatriation General Hospital and University of Sydney, Australia (M.K., M.A., V.C., W.J., L.K.)
- Department of Cardiology, Concord Repatriation General Hospital, Sydney, Australia (V.C., L.K.)
| |
Collapse
|
8
|
Castaño D, Rattanasopa C, Monteiro-Cardoso VF, Corlianò M, Liu Y, Zhong S, Rusu M, Liehn EA, Singaraja RR. Lipid efflux mechanisms, relation to disease and potential therapeutic aspects. Adv Drug Deliv Rev 2020; 159:54-93. [PMID: 32423566 DOI: 10.1016/j.addr.2020.04.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 04/29/2020] [Accepted: 04/30/2020] [Indexed: 02/06/2023]
Abstract
Lipids are hydrophobic and amphiphilic molecules involved in diverse functions such as membrane structure, energy metabolism, immunity, and signaling. However, altered intra-cellular lipid levels or composition can lead to metabolic and inflammatory dysfunction, as well as lipotoxicity. Thus, intra-cellular lipid homeostasis is tightly regulated by multiple mechanisms. Since most peripheral cells do not catabolize cholesterol, efflux (extra-cellular transport) of cholesterol is vital for lipid homeostasis. Defective efflux contributes to atherosclerotic plaque development, impaired β-cell insulin secretion, and neuropathology. Of these, defective lipid efflux in macrophages in the arterial walls leading to foam cell and atherosclerotic plaque formation has been the most well studied, likely because a leading global cause of death is cardiovascular disease. Circulating high density lipoprotein particles play critical roles as acceptors of effluxed cellular lipids, suggesting their importance in disease etiology. We review here mechanisms and pathways that modulate lipid efflux, the role of lipid efflux in disease etiology, and therapeutic options aimed at modulating this critical process.
Collapse
|
9
|
High-density lipoprotein cholesterol efflux capacity is not associated with atherosclerosis and prevalence of cardiovascular outcome: The CODAM study. J Clin Lipidol 2019; 14:122-132.e4. [PMID: 31791716 DOI: 10.1016/j.jacl.2019.10.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 10/19/2019] [Accepted: 10/23/2019] [Indexed: 12/26/2022]
Abstract
BACKGROUND Cholesterol Efflux Capacity (CEC) is considered to be a key atheroprotective property of high-density lipoproteins (HDL). However, the role of HDL-CEC in atherosclerosis and cardiovascular (CV) risk is still controversial, and data in individuals with diabetes are limited. OBJECTIVE In this study, we have investigated the relationship of CEC and other HDL characteristics with clinical and subclinical atherosclerosis in subjects with elevated cardiovascular diseases (CVD) risk and Type 2 Diabetes Mellitus (T2DM). METHODS Using multiple linear regression analyses, we determined the relationship of HDL-CEC with carotid intima-media thickness (cIMT, Z-Score), an endothelial dysfunction (EnD) Score (Z-Score), prevalent CVD (n = 150 cases) and history of CV events (CVE, n = 85 cases) in an observational cohort (CODAM, n = 574, 59.6 ± 0.3 yr, 61.3% men, 24.4% T2DM). Stratified analyses were performed to determine if the associations differed between individuals with normal glucose metabolism (NGM) and those with disturbed glucose metabolism. RESULTS HDL-CEC was not associated with either marker of atherosclerosis (cIMT, EnD Score) nor with CVD or CVE. In contrast, other HDL characteristics that is, HDL-Cholesterol (HDL-C, Z-Score), apolipoprotein A-I (apoA-I, Z-Score), HDL size (Z-Score) and HDL particle number (HDL-P, Z-Score) were inversely and significantly associated with the EnD Score (s -0.226 to -0.097, P < .05) and CVE (ORs 0.61 to 0.68, P < .05). In stratified analyses, HDL size and HDL-P were significantly associated with the EnD Score in individuals with NGM (Pinteraction .039 and .005, respectively), but not in those with (pre)diabetes. HDL-C and apoA-I were inversely associated with prevalent CVD in individuals with (pre)diabetes (Pinteraction = .074 and .034, respectively), but not in those with NGM. CONCLUSION HDL-CEC is not associated with clinical or subclinical atherosclerosis, neither in the whole population nor in individuals with (pre)diabetes, while other HDL characteristics show atheroprotective associations. The atheroprotective associations of HDL-size and HDL-P are lost in (pre)diabetes, while higher concentrations of HDL-C and apoA-I are associated with a lower prevalence of CVD in (pre)diabetes.
Collapse
|
10
|
Ossoli A, Pavanello C, Giorgio E, Calabresi L, Gomaraschi M. Dysfunctional HDL as a Therapeutic Target for Atherosclerosis Prevention. Curr Med Chem 2019; 26:1610-1630. [DOI: 10.2174/0929867325666180316115726] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Revised: 11/24/2017] [Accepted: 12/26/2017] [Indexed: 12/12/2022]
Abstract
Hypercholesterolemia is one of the main risk factors for the development of atherosclerosis. Among the various lipoprotein classes, however, high density lipoproteins (HDL) are inversely associated with the incidence of atherosclerosis, since they are able to exert a series of atheroprotective functions. The central role of HDL within the reverse cholesterol transport, their antioxidant and anti-inflammatory properties and their ability to preserve endothelial homeostasis are likely responsible for HDL-mediated atheroprotection. However, drugs that effectively raise HDL-C failed to result in a decreased incidence of cardiovascular event, suggesting that plasma levels of HDL-C and HDL function are not always related. Several evidences are showing that different pathologic conditions, especially those associated with an inflammatory response, can cause dramatic alterations of HDL protein and lipid cargo resulting in HDL dysfunction. Established and investigational drugs designed to affect lipid metabolism and to increase HDL-C are only partly effective in correcting HDL dysfunction.
Collapse
Affiliation(s)
- Alice Ossoli
- Centro E. Grossi Paoletti, Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milano, Italy
| | - Chiara Pavanello
- Centro E. Grossi Paoletti, Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milano, Italy
| | - Eleonora Giorgio
- Centro E. Grossi Paoletti, Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milano, Italy
| | - Laura Calabresi
- Centro E. Grossi Paoletti, Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milano, Italy
| | - Monica Gomaraschi
- Centro E. Grossi Paoletti, Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milano, Italy
| |
Collapse
|
11
|
Beneficial Effects of Adiponectin on Glucose and Lipid Metabolism and Atherosclerotic Progression: Mechanisms and Perspectives. Int J Mol Sci 2019; 20:ijms20051190. [PMID: 30857216 PMCID: PMC6429491 DOI: 10.3390/ijms20051190] [Citation(s) in RCA: 274] [Impact Index Per Article: 45.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 03/01/2019] [Accepted: 03/05/2019] [Indexed: 12/14/2022] Open
Abstract
Circulating adiponectin concentrations are reduced in obese individuals, and this reduction has been proposed to have a crucial role in the pathogenesis of atherosclerosis and cardiovascular diseases associated with obesity and the metabolic syndrome. We focus on the effects of adiponectin on glucose and lipid metabolism and on the molecular anti-atherosclerotic properties of adiponectin and also discuss the factors that increase the circulating levels of adiponectin. Adiponectin reduces inflammatory cytokines and oxidative stress, which leads to an improvement of insulin resistance. Adiponectin-induced improvement of insulin resistance and adiponectin itself reduce hepatic glucose production and increase the utilization of glucose and fatty acids by skeletal muscles, lowering blood glucose levels. Adiponectin has also β cell protective effects and may prevent the development of diabetes. Adiponectin concentration has been found to be correlated with lipoprotein metabolism; especially, it is associated with the metabolism of high-density lipoprotein (HDL) and triglyceride (TG). Adiponectin appears to increase HDL and decrease TG. Adiponectin increases ATP-binding cassette transporter A1 and lipoprotein lipase (LPL) and decreases hepatic lipase, which may elevate HDL. Increased LPL mass/activity and very low density lipoprotein (VLDL) receptor and reduced apo-CIII may increase VLDL catabolism and result in the reduction of serum TG. Further, adiponectin has various molecular anti-atherosclerotic properties, such as reduction of scavenger receptors in macrophages and increase of cholesterol efflux. These findings suggest that high levels of circulating adiponectin can protect against atherosclerosis. Weight loss, exercise, nutritional factors, anti-diabetic drugs, lipid-lowering drugs, and anti-hypertensive drugs have been associated with an increase of serum adiponectin level.
Collapse
|
12
|
Antibodies Against the C-Terminus of ApoA-1 Are Inversely Associated with Cholesterol Efflux Capacity and HDL Metabolism in Subjects with and without Type 2 Diabetes Mellitus. Int J Mol Sci 2019; 20:ijms20030732. [PMID: 30744100 PMCID: PMC6387386 DOI: 10.3390/ijms20030732] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 02/06/2019] [Accepted: 02/06/2019] [Indexed: 01/31/2023] Open
Abstract
Background: We determined relationships of cholesterol efflux capacity (CEC), plasma cholesterol esterification (EST) and cholesteryl ester transfer (CET) with anti-c-terminus apoA-1 (Ac-terAA1) and anti-apolipoprotein (apo)-1 (AAA1) autoantibodies in subjects with and without Type 2 diabetes mellitus (T2D). Methods: In 75 T2D subjects and 75 nondiabetic subjects, Ac-terAA1 and AAA1 plasma levels were measured by enzyme-linked immunosorbent assay. CEC was measured as [3H]-cholesterol efflux from human cultured fibroblasts to diluted individual subject plasma. Plasma EST and CET were assayed by isotope methods. Results: Ac-terAA1 and AAA1 levels and were similar between T2D and control subjects. Univariate regression analysis (n = 150) demonstrated that Ac-terAA1 levels were inversely correlated with CEC, EST, CET, total cholesterol, non-HDL cholesterol, triglycerides and apolipoprotein B, (p < 0.05 to p < 0.01), but not with glucose and HbA1c. In separate multivariable linear regression models, CEC, EST and CET were inversely associated with Ac-terAA1 levels independently of age, sex, T2D and drug use (β = −0.186, p = 0.026; β = −0.261, p < 0.001; and β = −0.321, p < 0.001; respectively). These associations were lost after additional adjustment for non-HDL cholesterol and triglycerides. No associations were observed for AAA1. Conclusions: CEC, plasma EST and CET are inversely associated with Ac-terAA1 autoantibodies, conceivably attributable to an inverse relationship of these autoantibodies with apolipoprotein B-containing lipoproteins.
Collapse
|
13
|
Phospholipid transfer protein and alpha-1 antitrypsin regulate Hck kinase activity during neutrophil degranulation. Sci Rep 2018; 8:15394. [PMID: 30337619 PMCID: PMC6193999 DOI: 10.1038/s41598-018-33851-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 10/07/2018] [Indexed: 01/21/2023] Open
Abstract
Excessive neutrophil degranulation is a common feature of many inflammatory disorders, including alpha-1 antitrypsin (AAT) deficiency. Our group has demonstrated that phospholipid transfer protein (PLTP) prevents neutrophil degranulation but serine proteases, which AAT inhibits, cleave PLTP in diseased airways. We propose to identify if airway PLTP activity can be restored by AAT augmentation therapy and how PLTP subdues degranulation of neutrophils in AAT deficient subjects. Airway PLTP activity was lower in AAT deficient patients but elevated in the airways of patients on augmentation therapy. Functional AAT protein (from PiMM homozygotes) prevented PLTP cleavage unlike its mutated ZZ variant (PiZZ). PLTP lowered leukotriene B4 induced degranulation of primary, secondary and tertiary granules from neutrophils from both groups (n = 14/group). Neutrophils isolated from Pltp knockout mice have enhance neutrophil degranulation. Both AAT and PLTP reduced neutrophil degranulation and superoxide production, possibly though their inhibition of the Src tyrosine kinase, Hck. Src kinase inhibitors saracatinib and dasatinib reduced neutrophil degranulation and superoxide production. Therefore, AAT protects PLTP from proteolytic cleavage and both AAT and PLTP mediate degranulation, possibly via Hck tyrosine kinase inhibition. Deficiency of AAT could contribute to reduced lung PLTP activity and elevated neutrophil signaling associated with lung disease.
Collapse
|
14
|
van den Berg EH, Gruppen EG, Ebtehaj S, Bakker SJL, Tietge UJF, Dullaart RPF. Cholesterol efflux capacity is impaired in subjects with an elevated Fatty Liver Index, a proxy of non-alcoholic fatty liver disease. Atherosclerosis 2018; 277:21-27. [PMID: 30170220 DOI: 10.1016/j.atherosclerosis.2018.07.028] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 07/06/2018] [Accepted: 07/19/2018] [Indexed: 02/08/2023]
Abstract
BACKGROUND AND AIMS Non-alcoholic fatty liver disease (NAFLD) parallels the obesity epidemic and associates with components of the metabolic syndrome (MetS). Cholesterol efflux capacity (CEC) represents a key metric of high density lipoprotein (HDL) function which may predict atherosclerotic cardiovascular disease (CVD). Here we assessed the relationship of CEC with NAFLD. METHODS CEC was determined from THP-1 macrophage foam cells towards apolipoprotein B-depleted plasma among 639 subjects (454 men; 36 subjects with type 2 diabetes mellitus (T2D); 226 with MetS), participating in the Prevention of Renal and Vascular End-Stage Disease (PREVEND) study. A Fatty Liver Index (FLI) ≥ 60 was used as a proxy of NAFLD. RESULTS 372 participants had a FLI ≥60, which coincided with an increased prevalence of T2D and MetS (p = 0.009 and p < 0.001), as well as with central obesity, higher systolic blood pressure, glucose, total cholesterol, triglycerides and high sensitivity C-reactive protein (hsCRP), and decreased HDL cholesterol (p < 0.001 for each). In multivariable linear regression analyses, CEC was inversely associated with an elevated FLI, when taking account of clinical covariates (fully adjusted model: β = -0.091, p = 0.043), and alternatively when taking account of systolic blood pressure, waist/hip ratio, glucose, HDL cholesterol, triglycerides and hsCRP (fully adjusted model: β = -0.103, p = 0.034). CONCLUSIONS Impaired CEC is associated with NAFLD, as inferred from a FLI≥60, even when taking account of lower HDL cholesterol and enhanced low-grade chronic inflammation. Reduced CEC could contribute to accelerated CVD in NAFLD patients.
Collapse
Affiliation(s)
- Eline H van den Berg
- Department of Endocrinology, University of Groningen, University Medical Center Groningen, The Netherlands; Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, The Netherlands
| | - Eke G Gruppen
- Department of Endocrinology, University of Groningen, University Medical Center Groningen, The Netherlands; Department of Nephrology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713GZ, Groningen, The Netherlands
| | - Sanam Ebtehaj
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713GZ, Groningen, The Netherlands
| | - Stephan J L Bakker
- Department of Nephrology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713GZ, Groningen, The Netherlands
| | - Uwe J F Tietge
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713GZ, Groningen, The Netherlands
| | - Robin P F Dullaart
- Department of Endocrinology, University of Groningen, University Medical Center Groningen, The Netherlands.
| |
Collapse
|
15
|
In vitro oxidized HDL and HDL from type 2 diabetes patients have reduced ability to efflux oxysterols from THP-1 macrophages. Biochimie 2018; 153:232-237. [PMID: 29704538 DOI: 10.1016/j.biochi.2018.04.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 04/23/2018] [Indexed: 02/02/2023]
Abstract
Oxidized LDL (OxLDL) that are enriched in products of lipid peroxidation including oxysterols have been shown to induce cellular oxidative stress and cytotoxicity therefore accelerating atheroma plaque formation. Upon oxLDL exposure of THP-1 macrophages, intracellular oxidation of LDL derived-cholesterol as well as endogenous cholesterol was increased. The oxysterols intracellularly produced were efficiently exported to HDL whereas apolipoprotein A1 was inefficient. These findings prompted us to investigate the consequences of modification of HDL by oxidation and glycation as observed in type 2 diabetes with respect to oxysterol and cholesterol efflux. We show that efflux of oxysterols was significantly impaired after in vitro oxidation and glycoxidation of HDL whereas glycation alone had no impact. Cholesterol efflux was only slightly decreased by oxHDL or glycoxidized HDL and not changed with glycated HDL. The defect of HDL towards oxysterol efflux was also observed with HDL isolated from diabetic subjects as compared to healthy controls. These findings support a deleterious cellular retention of oxysterols due to dysfunctional HDL in type 2 diabetes.
Collapse
|
16
|
Ebtehaj S, Gruppen EG, Parvizi M, Tietge UJF, Dullaart RPF. The anti-inflammatory function of HDL is impaired in type 2 diabetes: role of hyperglycemia, paraoxonase-1 and low grade inflammation. Cardiovasc Diabetol 2017; 16:132. [PMID: 29025405 PMCID: PMC5639738 DOI: 10.1186/s12933-017-0613-8] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 10/04/2017] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Functional properties of high density lipoproteins (HDL) are increasingly recognized to play a physiological role in atheroprotection. Type 2 diabetes mellitus (T2DM) is characterized by low HDL cholesterol, but the effect of chronic hyperglycemia on the anti-inflammatory capacity of HDL, a metric of HDL function, is unclear. Therefore, the aim of the present study was to establish the impact of T2DM on the HDL anti-inflammatory capacity, taking paraoxonase-1 (PON-1) activity and low grade inflammation into account. METHODS The HDL anti-inflammatory capacity, determined as the ability to suppress tumor necrosis factor-α (TNF-α) induced vascular cell adhesion molecule-1 (VCAM-1) mRNA expression in endothelial cells in vitro (higher values indicate lower anti-inflammatory capacity), PON-1 (arylesterase) activity, hs-C-reactive protein (hs-CRP), serum amyloid A (SAA) and TNF-α were compared in 40 subjects with T2DM (no insulin or statin treatment) and 36 non-diabetic subjects. RESULTS T2DM was associated with impaired HDL anti-inflammatory capacity (3.18 vs 1.05 fold increase in VCAM-1 mRNA expression; P < 0.001), coinciding with decreased HDL cholesterol (P = 0.001), apolipoprotein A-I (P = 0.038) and PON-1 activity (P = 0.023), as well as increased hs-CRP (P = 0.043) and TNF-α (P = 0.005). In all subjects combined, age- and sex-adjusted multivariable linear regression analysis demonstrated that impaired HDL anti-inflammatory capacity was associated with hyperglycemia (β = 0.499, P < 0.001), lower PON-1 activity (β = - 0.192, P = 0.030) and higher hs-CRP (β = 0.220, P = 0.016). CONCLUSIONS The HDL anti-inflammatory capacity is substantially impaired in T2DM, at least partly attributable to the degree of hyperglycemia, decreased PON-1 activity and enhanced low grade chronic inflammation. Decreased anti-inflammatory protection capacity of HDL conceivably contributes to the increased atherosclerosis risk associated with T2DM.
Collapse
Affiliation(s)
- Sanam Ebtehaj
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713GZ, Groningen, The Netherlands
| | - Eke G Gruppen
- Department of Endocrinology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713GZ, Groningen, The Netherlands
| | - Mojtaba Parvizi
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713GZ, Groningen, The Netherlands
| | - Uwe J F Tietge
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713GZ, Groningen, The Netherlands.
| | - Robin P F Dullaart
- Department of Endocrinology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713GZ, Groningen, The Netherlands
| |
Collapse
|
17
|
Borja MS, Hammerson B, Tang C, Savinova OV, Shearer GC, Oda MN. Apolipoprotein A-I exchange is impaired in metabolic syndrome patients asymptomatic for diabetes and cardiovascular disease. PLoS One 2017; 12:e0182217. [PMID: 28767713 PMCID: PMC5540550 DOI: 10.1371/journal.pone.0182217] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 07/15/2017] [Indexed: 01/17/2023] Open
Abstract
OBJECTIVE We tested the hypothesis that HDL-apolipoprotein A-I exchange (HAE), a measure of high-density lipoprotein (HDL) function and a key step in reverse cholesterol transport (RCT), is impaired in metabolic syndrome (MetSyn) patients who are asymptomatic for diabetes and cardiovascular disease. We also compared HAE with cell-based cholesterol efflux capacity (CEC) to address previous reports that CEC is enhanced in MetSyn populations. METHODS HAE and ABCA1-specific CEC were measured as tests of HDL function in 60 MetSyn patients and 14 normolipidemic control subjects. Predictors of HAE and CEC were evaluated with multiple linear regression modeling using clinical markers of MetSyn and CVD risk. RESULTS HAE was significantly reduced in MetSyn patients (49.0 ± 10.9% vs. 61.2 ± 6.1%, P < 0.0001), as was ABCA1-specific CEC (10.1 ± 1.6% vs. 12.3 ± 2.0%, P < 0.002). Multiple linear regression analysis identified apoA-I concentration as a significant positive predictor of HAE, and MetSyn patients had significantly lower HAE per mg/dL of apoA-I (P = 0.004). MetSyn status was a negative predictor of CEC, but triglyceride (TG) was a positive predictor of CEC, with MetSyn patients having higher CEC per mg/dL of TG, but lower overall CEC compared to controls. CONCLUSIONS MetSyn patients have impaired HAE that contributes to reduced capacity for ABCA1-mediated CEC. MetSyn status is inversely correlated with CEC but positively correlated with TG, which explains the contradictory results from earlier MetSyn studies focused on CEC. HAE and CEC are inhibited in MetSyn patients over a broad range of absolute apoA-I and HDL particle levels, supporting the observation that this patient population bears significant residual cardiovascular disease risk.
Collapse
Affiliation(s)
- Mark S. Borja
- Children’s Hospital Oakland Research Institute, Oakland, California, United States of America
| | - Bradley Hammerson
- Children’s Hospital Oakland Research Institute, Oakland, California, United States of America
| | - Chongren Tang
- Department of Medicine, University of Washington, Seattle, Washington, United States of America
| | - Olga V. Savinova
- Cardiovascular Health Research Center, Sanford Research USD, Sioux Falls, South Dakota, United States of America
| | - Gregory C. Shearer
- Cardiovascular Health Research Center, Sanford Research USD, Sioux Falls, South Dakota, United States of America
- Department of Internal Medicine, Sanford School of Medicine, University of South Dakota, Vermillion, South Dakota, United States of America
| | - Michael N. Oda
- Children’s Hospital Oakland Research Institute, Oakland, California, United States of America
- * E-mail:
| |
Collapse
|
18
|
Kamtchueng Simo O, Ikhlef S, Berrougui H, Khalil A. Advanced glycation end products affect cholesterol homeostasis by impairing ABCA1 expression on macrophages. Can J Physiol Pharmacol 2017; 95:977-984. [PMID: 28704619 DOI: 10.1139/cjpp-2017-0170] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Reverse cholesterol transport (RCT), which is intimately linked to high-density lipoproteins (HDLs), plays a key role in cholesterol homeostasis and the prevention of atherosclerosis. The goal of the present study was to investigate the effect of aging and advanced glycation end products (AGEs) on RCT as well as on other factors that may affect the antiatherogenic property of HDLs. The transfer of macrophage-derived cholesterol to the plasma and liver and then to the feces for elimination was significantly lower in aged mice than in young mice. Chronic injection of d -galactose (D-gal) or AGEs also significantly reduced RCT (65.3% reduction in [3H]cholesterol levels in the plasma of D-gal-treated mice after 48 h compared with control mice, P < 0.01). The injection of both D-gal and aminoguanidine hydrochloride increased [3H]cholesterol levels in the plasma, although the levels were lower than those of control mice. The in vitro incubation of HDLs with dicarbonyl compounds increased the carbonyl and conjugated diene content of HDLs and significantly reduced PON1 paraoxonase activity (87.4% lower than control HDLs, P < 0.0001). Treating J774A.1 macrophages with glycated fetal bovine serum increased carbonyl formation (39.5% increase, P < 0.003) and reduced ABCA1 protein expression and the capacity of macrophages to liberate cholesterol (69.1% decrease, P < 0.0001). Our results showed, for the first time, that RCT is altered with aging and that AGEs contribute significantly to this alteration.
Collapse
Affiliation(s)
| | - Souade Ikhlef
- a Research Centre on Aging, Sherbrooke, QC J1H 4C4, Canada.,b Department of Biology, University Sultan moulay Slimane, Beni Mellal, Morocco
| | - Hicham Berrougui
- a Research Centre on Aging, Sherbrooke, QC J1H 4C4, Canada.,b Department of Biology, University Sultan moulay Slimane, Beni Mellal, Morocco
| | - Abdelouahed Khalil
- a Research Centre on Aging, Sherbrooke, QC J1H 4C4, Canada.,c Department of Medicine, Geriatrics Service, Faculty of Medicine and Health Sciences, University of Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| |
Collapse
|
19
|
Gall J, Frisdal E, Bittar R, Le Goff W, Bruckert E, Lesnik P, Guerin M, Giral P. Association of Cholesterol Efflux Capacity With Clinical Features of Metabolic Syndrome: Relevance to Atherosclerosis. J Am Heart Assoc 2016; 5:e004808. [PMID: 27881422 PMCID: PMC5210394 DOI: 10.1161/jaha.116.004808] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Accepted: 10/24/2016] [Indexed: 02/06/2023]
Abstract
BACKGROUND The contribution of high-density lipoprotein to cardiovascular benefit is closely linked to its role in the cellular cholesterol efflux process; however, various clinical and biochemical variables are known to modulate the overall cholesterol efflux process. The aim of this study was to evaluate the extent to which clinical and biological anomalies associated with the establishment of the metabolic syndrome modulate cholesterol efflux capacity and contribute to development of atherosclerosis. METHODS AND RESULTS This study involved patients (n=1202) displaying atherogenic dyslipidemia in primary prevention who were referred to our prevention center. Among these patients, 25% presented at least 3 criteria of the metabolic syndrome, as defined by the National Cholesterol Education Program Adult Treatment Panel III. We measured the capacity of 40-fold diluted serum to mediate cholesterol efflux from cholesterol-loaded human THP-1 macrophages. Cholesterol efflux capacity was reduced progressively by 4% to 11% (P<0.0001) as a function of the increasing number of coexisting criteria for the metabolic syndrome from 1 to 5. This observation was primarily related to reductions in scavenger receptor class B member 1 and ATP binding cassette subfamily G member 1-dependent efflux. Multivariate analyses indicate that serum efflux capacity was significantly associated with established metabolic syndrome (odds ratio 0.45; 95% CI 0.28-0.72; P=0.009) independent of age, low-density lipoprotein cholesterol, status with regard to lipid-lowering therapy, smoking status, and alcohol consumption. CONCLUSIONS Our study revealed that individual criteria of metabolic syndrome are closely related synergistically to cholesterol efflux capacity. In addition, established metabolic syndrome and cholesterol efflux capacity were independently associated with clinical features of atherosclerosis.
Collapse
Affiliation(s)
- Julie Gall
- INSERM UMRS1166, Hôpital de la Pitié, Paris, France
- Sorbonne Universités UPMC Univ Paris 06, Paris, France
| | - Eric Frisdal
- INSERM UMRS1166, Hôpital de la Pitié, Paris, France
- ICAN - Institute of CardioMetabolism and Nutrition, Hôpital de la Pitié, Paris, France
- Sorbonne Universités UPMC Univ Paris 06, Paris, France
| | - Randa Bittar
- INSERM UMRS1166, Hôpital de la Pitié, Paris, France
- Department of Metabolic Biochemistry, AP-HP, Hopital de la Pitié, Paris, France
| | - Wilfried Le Goff
- INSERM UMRS1166, Hôpital de la Pitié, Paris, France
- ICAN - Institute of CardioMetabolism and Nutrition, Hôpital de la Pitié, Paris, France
- Sorbonne Universités UPMC Univ Paris 06, Paris, France
| | - Eric Bruckert
- INSERM UMRS1166, Hôpital de la Pitié, Paris, France
- ICAN - Institute of CardioMetabolism and Nutrition, Hôpital de la Pitié, Paris, France
- Sorbonne Universités UPMC Univ Paris 06, Paris, France
- Department of Endocrinology-Metabolism, AP-HP, Hopital de la Pitié, Paris, France
| | - Philippe Lesnik
- INSERM UMRS1166, Hôpital de la Pitié, Paris, France
- ICAN - Institute of CardioMetabolism and Nutrition, Hôpital de la Pitié, Paris, France
- Sorbonne Universités UPMC Univ Paris 06, Paris, France
| | - Maryse Guerin
- INSERM UMRS1166, Hôpital de la Pitié, Paris, France
- ICAN - Institute of CardioMetabolism and Nutrition, Hôpital de la Pitié, Paris, France
- Sorbonne Universités UPMC Univ Paris 06, Paris, France
| | - Philippe Giral
- INSERM UMRS1166, Hôpital de la Pitié, Paris, France
- ICAN - Institute of CardioMetabolism and Nutrition, Hôpital de la Pitié, Paris, France
- Sorbonne Universités UPMC Univ Paris 06, Paris, France
- Department of Endocrinology-Metabolism, AP-HP, Hopital de la Pitié, Paris, France
| |
Collapse
|
20
|
Bisgaier CL, Ackermann R, Rea T, Rodrigueza WV, Hartman D. ApoA-IMilano phospholipid complex (ETC-216) infusion in human volunteers. Insights into the phenotypic characteristics of ApoA-IMilano carriers. Pharmacol Res 2016; 111:86-99. [DOI: 10.1016/j.phrs.2016.05.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2015] [Revised: 05/02/2016] [Accepted: 05/02/2016] [Indexed: 12/15/2022]
|
21
|
Impaired HDL cholesterol efflux in metabolic syndrome is unrelated to glucose tolerance status: the CODAM study. Sci Rep 2016; 6:27367. [PMID: 27270665 PMCID: PMC4897620 DOI: 10.1038/srep27367] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Accepted: 05/13/2016] [Indexed: 12/27/2022] Open
Abstract
Type 2 diabetes mellitus (T2DM) and metabolic syndrome (MetS) increase atherosclerotic cardiovascular disease risk. Cholesterol efflux capacity (CEC) is a key metric of the anti-atherosclerotic functionality of high-density lipoproteins (HDL). The present study aimed to delineate if T2DM and MetS cross-sectionally associate with altered CEC in a large high cardiometabolic risk population. CEC was determined from THP-1 macrophage foam cells towards apolipoprotein B-depleted plasma from 552 subjects of the CODAM cohort (288 controls, 126 impaired glucose metabolism [IGM], 138 T2DM). MetS was present in 297 participants. CEC was not different between different glucose tolerance categories but was lower in MetS (P < 0.001), at least partly attributable to lower HDL cholesterol (HDL-C) and apoA-I levels (P < 0.001 for each). Low grade inflammation was increased in IGM, T2DM and MetS as determined by a score comprising 8 different biomarkers (P < 0.05-< 0.001; n = 547). CEC inversely associated with low-grade inflammation taking account of HDL-C or apoA-I in MetS (P < 0.02), but not in subjects without MetS (interaction: P = 0.015). This study demonstrates that IGM and T2DM do not impact the HDL CEC function, while efflux is lower in MetS, partly dependent on plasma HDL-C levels. Enhanced low-grade inflammation in MetS may conceivably impair CEC even independent of HDL-C and apoA-I.
Collapse
|
22
|
Abstract
A low plasma level of high-density lipoprotein (HDL) cholesterol (HDL-C) is a major risk factor for the development of atherosclerotic cardiovascular disease (ASCVD). However, several observations have highlighted the shortcomings of using cholesterol content as the sole reflection of HDL metabolism. In particular, several large randomized controlled trials of extended release niacin and cholesteryl-ester transfer protein (CETP) inhibitors on background statin therapy have failed to show improvement in ASCVD outcomes despite significant increases in HDL-C. Reverse cholesterol transport (RCT) is the principal HDL function that impacts macrophage foam cell formation and other functions such as endothelial activation of endothelial nitric oxide synthase, monocyte adhesion, and platelet aggregation. Cholesterol efflux from macrophages to plasma/serum reflects the first critical step of RCT and is considered a key anti-atherosclerotic function of HDL. Whether this function is operative in humans remains to be seen, but recent studies assessing cholesterol efflux in humans suggest that the cholesterol efflux capacity (CEC) of human plasma or serum is a potent marker of ASCVD risk. This review describes the methodology of measuring CEC ex vivo from human samples and the findings to date linking CEC to human disease. Studies to date confirm that CEC can be reliably measured using stored human blood samples as cholesterol acceptors and suggest that CEC may be a promising new biomarker for atherosclerotic and metabolic diseases. Further studies are needed to standardize measurements and clarify the role CEC may play in predicting risk of developing disease and response to therapies.
Collapse
Affiliation(s)
- Anand Rohatgi
- Division of Cardiology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
23
|
Lê QH, El Alaoui M, Véricel E, Ségrestin B, Soulère L, Guichardant M, Lagarde M, Moulin P, Calzada C. Glycoxidized HDL, HDL enriched with oxidized phospholipids and HDL from diabetic patients inhibit platelet function. J Clin Endocrinol Metab 2015; 100:2006-14. [PMID: 25794249 PMCID: PMC4803888 DOI: 10.1210/jc.2014-4214] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
CONTEXT High-density lipoproteins (HDL) possess atheroprotective properties including anti-thrombotic and antioxidant effects. Very few studies relate to the functional effects of oxidized HDL on platelets in type 2 diabetes (T2D). OBJECTIVE The objective of our study was to investigate the effects of in vitro glycoxidized HDL and HDL from patients with T2D on platelet aggregation and arachidonic acid signaling cascade. At the same time, the contents of hydroxylated fatty acids were assessed in HDL. RESULTS Compared with control HDL, in vitro glycoxidized HDL had decreased proportions of linoleic (LA) and arachidonic (AA) acids in phospholipids and cholesteryl esters, and increased concentrations of hydroxy-octadecadienoic acids (9-HODE and 13-HODE) and 15-hydroxy-eicosatetraenoic acid (15-HETE), derived from LA and AA respectively, especially hydroxy derivatives esterified in phospholipids. Glycoxidized HDL dose-dependently decreased collagen-induced platelet aggregation by binding to scavenger receptor BI (SR-BI). Glycoxidized HDL prevented collagen-induced increased phosphorylation of platelet p38 MAPK and cytosolic phospholipase A2, as well as intracellular calcium mobilization. HDL enriched with oxidized phosphatidylcholine (PC), namely PC(16:0/13-HODE) dose-dependently inhibited platelet aggregation. Increased concentrations of 9-HODE, 13-HODE, and 15-HETE in phospholipids (2.1-, 2.1-, and 2.4-fold increase, respectively) were found in HDL from patients with T2D, and these HDL also inhibited platelet aggregation via SR-BI. CONCLUSIONS Our results suggest that in vitro glycoxidized HDL as well as HDL from patients with T2D inhibit platelet aggregation, and suggest that oxidized LA-containing phospholipids may contribute to the anti-aggregatory effects of glycoxidized HDL and HDL from patients with T2D.
Collapse
Affiliation(s)
- Quang Huy Lê
- CARMEN, Laboratoire de recherche en cardiovasculaire, métabolisme, diabétologie et nutrition
Université Claude Bernard Lyon 1Institut National des Sciences Appliquées LyonInstitut national de la recherche agronomique (INRA)INSERMHospices Civils de LyonFaculté de Médecine Lyon Sud - BP 12 - 165 Chemin du Grand Revoyet - 69921 Oullins cedex INSA, Bâtiment. IMBL, La Doua - 11 Avenue Jean Capelle - 69621 Villeurbanne Cedex
| | - Meddy El Alaoui
- ICBMS, Institut de Chimie et Biochimie Moléculaires et Supramoléculaires
Université Claude Bernard Lyon 1Institut National des Sciences Appliquées LyonÉcole Supérieure Chimie Physique Électronique de LyonCentre National de la Recherche ScientifiqueBâtiment CPE 43 Boulvard du 11 Novembre 1918 69622 Villeurbanne Cedex
| | - Evelyne Véricel
- CARMEN, Laboratoire de recherche en cardiovasculaire, métabolisme, diabétologie et nutrition
Université Claude Bernard Lyon 1Institut National des Sciences Appliquées LyonInstitut national de la recherche agronomique (INRA)INSERMHospices Civils de LyonFaculté de Médecine Lyon Sud - BP 12 - 165 Chemin du Grand Revoyet - 69921 Oullins cedex INSA, Bâtiment. IMBL, La Doua - 11 Avenue Jean Capelle - 69621 Villeurbanne Cedex
| | | | - Laurent Soulère
- ICBMS, Institut de Chimie et Biochimie Moléculaires et Supramoléculaires
Université Claude Bernard Lyon 1Institut National des Sciences Appliquées LyonÉcole Supérieure Chimie Physique Électronique de LyonCentre National de la Recherche ScientifiqueBâtiment CPE 43 Boulvard du 11 Novembre 1918 69622 Villeurbanne Cedex
| | - Michel Guichardant
- CARMEN, Laboratoire de recherche en cardiovasculaire, métabolisme, diabétologie et nutrition
Université Claude Bernard Lyon 1Institut National des Sciences Appliquées LyonInstitut national de la recherche agronomique (INRA)INSERMHospices Civils de LyonFaculté de Médecine Lyon Sud - BP 12 - 165 Chemin du Grand Revoyet - 69921 Oullins cedex INSA, Bâtiment. IMBL, La Doua - 11 Avenue Jean Capelle - 69621 Villeurbanne Cedex
| | - Michel Lagarde
- CARMEN, Laboratoire de recherche en cardiovasculaire, métabolisme, diabétologie et nutrition
Université Claude Bernard Lyon 1Institut National des Sciences Appliquées LyonInstitut national de la recherche agronomique (INRA)INSERMHospices Civils de LyonFaculté de Médecine Lyon Sud - BP 12 - 165 Chemin du Grand Revoyet - 69921 Oullins cedex INSA, Bâtiment. IMBL, La Doua - 11 Avenue Jean Capelle - 69621 Villeurbanne Cedex
| | - Philippe Moulin
- CARMEN, Laboratoire de recherche en cardiovasculaire, métabolisme, diabétologie et nutrition
Université Claude Bernard Lyon 1Institut National des Sciences Appliquées LyonInstitut national de la recherche agronomique (INRA)INSERMHospices Civils de LyonFaculté de Médecine Lyon Sud - BP 12 - 165 Chemin du Grand Revoyet - 69921 Oullins cedex INSA, Bâtiment. IMBL, La Doua - 11 Avenue Jean Capelle - 69621 Villeurbanne Cedex
- Fédération d'Endocrinologie
Hospices Civils de Lyon69677 Lyon Bron
| | - Catherine Calzada
- CARMEN, Laboratoire de recherche en cardiovasculaire, métabolisme, diabétologie et nutrition
Université Claude Bernard Lyon 1Institut National des Sciences Appliquées LyonInstitut national de la recherche agronomique (INRA)INSERMHospices Civils de LyonFaculté de Médecine Lyon Sud - BP 12 - 165 Chemin du Grand Revoyet - 69921 Oullins cedex INSA, Bâtiment. IMBL, La Doua - 11 Avenue Jean Capelle - 69621 Villeurbanne Cedex
- * Correspondence should be addressed to Catherine Calzada
| |
Collapse
|
24
|
Elevated baseline plasma phospholipid protein (PLTP) levels are an independent predictor of long-term all-cause mortality in patients with diabetes mellitus and known or suspected coronary artery disease. Atherosclerosis 2015; 239:503-8. [PMID: 25710294 DOI: 10.1016/j.atherosclerosis.2015.02.017] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Revised: 01/11/2015] [Accepted: 02/08/2015] [Indexed: 12/13/2022]
Abstract
OBJECTIVES To investigate the long-term prognostic significance of baseline plasma PLTP levels in a group of well-characterized male patients with diabetes mellitus and known or suspected coronary artery disease referred for coronary angiography. BACKGROUND PLTP is a plasma protein that mediates the net transfer and exchange of phospholipids between lipoproteins. It has been implicated in the pathogenesis of atherosclerosis and elevated plasma levels have been reported in patients with diabetes mellitus. METHODS Baseline plasma PLTP levels were measured in 154 male patients with diabetes mellitus who were referred for coronary angiography and followed prospectively for 5 years for the development of all-cause mortality. RESULTS After adjustment for a variety of baseline clinical, angiographic and laboratory parameters, plasma PLTP levels (analyzed as a continuous variable) were an independent predictor of all-cause mortality at 5 years (HR, 1.55; 95% CI, 1.22-2.00; P = 0.0009). Furthermore, in 3 additional multivariate models that also included a wide variety of contemporary biomarkers with established prognostic efficacy (i.e., ST2, GDF-15, Cystatin C, Fibrinogen, and NT-proBNP), PLTP remained an independent predictor of all-cause mortality at 5 years. CONCLUSIONS Elevated baseline plasma levels of PLTP are associated with an increased risk of long-term all-cause mortality in patients with diabetes and known or suspected coronary disease. Furthermore, this association is independent of a variety of clinical, angiographic, and laboratory variables, including a whole host of contemporary biomarkers with established prognostic efficacy.
Collapse
|
25
|
Plasma Lipids, Lipoprotein Metabolism and HDL Lipid Transfers are Equally Altered in Metabolic Syndrome and in Type 2 Diabetes. Lipids 2014; 49:677-84. [DOI: 10.1007/s11745-014-3899-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Accepted: 03/20/2014] [Indexed: 10/25/2022]
|
26
|
Brehm A, Geraghty P, Campos M, Garcia-Arcos I, Dabo AJ, Gaffney A, Eden E, Jiang XC, D'Armiento J, Foronjy R. Cathepsin G degradation of phospholipid transfer protein (PLTP) augments pulmonary inflammation. FASEB J 2014; 28:2318-31. [PMID: 24532668 DOI: 10.1096/fj.13-246843] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Phospholipid transfer protein (PLTP) regulates phospholipid transport in the circulation and is highly expressed within the lung epithelium, where it is secreted into the alveolar space. Since PLTP expression is increased in chronic obstructive pulmonary disease (COPD), this study aimed to determine how PLTP affects lung signaling and inflammation. Despite its increased expression, PLTP activity decreased by 80% in COPD bronchoalveolar lavage fluid (BALF) due to serine protease cleavage, primarily by cathepsin G. Likewise, PLTP BALF activity levels decreased by 20 and 40% in smoke-exposed mice and in the media of smoke-treated small airway epithelial (SAE) cells, respectively. To assess how PLTP affected inflammatory responses in a lung injury model, PLTP siRNA or recombinant protein was administered to the lungs of mice prior to LPS challenge. Silencing PLTP at baseline caused a 68% increase in inflammatory cell infiltration, a 120 and 340% increase in ERK and NF-κB activation, and increased MMP-9, IL1β, and IFN-γ levels after LPS treatment by 39, 140, and 190%, respectively. Conversely, PLTP protein administration countered these effects in this model. Thus, these findings establish a novel anti-inflammatory function of PLTP in the lung and suggest that proteolytic cleavage of PLTP by cathepsin G may enhance the injurious inflammatory responses that occur in COPD.
Collapse
Affiliation(s)
- Anthony Brehm
- 2Department of Medicine, St. Luke's Roosevelt, Mt. Sinai Health System, Antenucci Bldg., 432 West 58th St., Rm. 311, New York, NY 10019, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Triolo M, Annema W, de Boer JF, Tietge UJF, Dullaart RPF. Simvastatin and bezafibrate increase cholesterol efflux in men with type 2 diabetes. Eur J Clin Invest 2014; 44:240-8. [PMID: 24325778 DOI: 10.1111/eci.12226] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Accepted: 12/07/2013] [Indexed: 12/17/2022]
Abstract
BACKGROUND The importance of functional properties of high-density lipoproteins (HDL) for atheroprotection is increasingly recognized. We determined the impact of lipid-lowering therapy on 3 key HDL functionalities in Type 2 diabetes mellitus (T2DM). MATERIALS AND METHODS A placebo-controlled, randomized cross-over study (three 8-week treatment periods with simvastatin (40 mg daily), bezafibrate (400 mg daily), alone and in combination) was carried out in 14 men with T2DM. Cholesterol efflux was determined using human THP-1 monocyte-derived macrophages, HDL antioxidative capacity was measured as inhibition of low-density lipoprotein oxidation in vitro, and HDL anti-inflammatory capacity was assessed as suppression of thrombin-induced monocyte chemotactic protein 1 expression in human umbilical vein endothelial cells. Pre-β-HDL was assayed using crossed immunoelectrophoresis. RESULTS While cholesterol efflux increased in response to simvastatin, bezafibrate and combination treatment (+12 to +23%; anova, P = 0.001), HDL antioxidative capacity (P = 0.23) and HDL anti-inflammatory capacity (P = 0.15) did not change significantly. Averaged changes in cellular cholesterol efflux during active treatment were correlated positively with changes in HDL cholesterol, apoA-I and pre-β-HDL (P < 0.05 to P < 0.001). There were no inter-relationships between changes in the three HDL functionalities during treatment (P > 0.10). Changes in HDL antioxidative capacity and anti-inflammatory capacity were also unrelated to changes in HDL cholesterol and apoA-I, while changes in HDL antioxidative capacity were related inversely to pre-β-HDL (P < 0.05). CONCLUSION Simvastatin and bezafibrate increase cholesterol efflux, parallel to HDL cholesterol and apoA-I responses. The antioxidative and anti-inflammatory properties of HDL are not to an important extent affected by these therapeutic interventions.
Collapse
Affiliation(s)
- Michela Triolo
- Department of Endocrinology, Center for Liver, Digestive and Metabolic Diseases, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands; Department of Pediatrics, Center for Liver, Digestive and Metabolic Diseases, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | | | | | | | | |
Collapse
|
28
|
Li XM, Tang WHW, Mosior MK, Huang Y, Wu Y, Matter W, Gao V, Schmitt D, Didonato JA, Fisher EA, Smith JD, Hazen SL. Paradoxical association of enhanced cholesterol efflux with increased incident cardiovascular risks. Arterioscler Thromb Vasc Biol 2013; 33:1696-705. [PMID: 23520163 DOI: 10.1161/atvbaha.113.301373] [Citation(s) in RCA: 256] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Diminished cholesterol efflux activity of apolipoprotein B (apoB)-depleted serum is associated with prevalent coronary artery disease, but its prognostic value for incident cardiovascular events is unclear. We investigated the relationship of cholesterol efflux activity with both prevalent coronary artery disease and incident development of major adverse cardiovascular events (death, myocardial infarction, or stroke). APPROACH AND RESULTS Cholesterol efflux activity from free cholesterol-enriched macrophages was measured in 2 case-control cohorts: (1) an angiographic cohort (n=1150) comprising stable subjects undergoing elective diagnostic coronary angiography and (2) an outpatient cohort (n=577). Analysis of media from cholesterol efflux assays revealed that the high-density lipoprotein fraction (1.063<d<1.21) contained only a minority (≈ 40%) of [(14)C]cholesterol released, with the majority found within the lipoprotein particle-depleted fraction, where ≈ 60% was recovered after apolipoprotein A1 immunoprecipitation. Albumin immunoprecipitation recovered another ≈ 30% of radiolabeled cholesterol within this fraction. Enhanced cholesterol efflux activity from ATP-binding cassette transporter A1-stimulated macrophages was associated with reduced risk of prevalent coronary artery disease in unadjusted models within both cohorts; however, the inverse risk relationship remained significant after adjustment for traditional coronary artery disease risk factors only within the outpatient cohort. Surprisingly, higher cholesterol efflux activity was associated with increase in prospective (3 years) risk of myocardial infarction/stroke (adjusted hazard ratio, 2.19; 95% confidence interval, 1.02-4.74) and major adverse cardiovascular events (adjusted hazard ratio, 1.85; 95% confidence interval, 1.11-3.06). CONCLUSIONS Heightened cholesterol efflux to apoB-depleted serum was paradoxically associated with increased prospective risk for myocardial infarction, stroke, and death. The majority of released radiolabeled cholesterol from macrophages in cholesterol efflux activity assays does not reside within a high-density lipoprotein particle.
Collapse
Affiliation(s)
- Xin-Min Li
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Chan DC, Hoang A, Barrett PHR, Wong ATY, Nestel PJ, Sviridov D, Watts GF. Apolipoprotein B-100 and apoA-II kinetics as determinants of cellular cholesterol efflux. J Clin Endocrinol Metab 2012; 97:E1658-66. [PMID: 22745238 DOI: 10.1210/jc.2012-1522] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
CONTEXT Cellular cholesterol efflux is a key step in reverse cholesterol transport and may depend on the metabolism of apolipoprotein (apo) B-100, apoA-I, and apoA-II. OBJECTIVE We examined the associations between cholesterol efflux and plasma concentrations and kinetics of very low-density lipoprotein (VLDL), intermediate-density lipoprotein (IDL), and low-density lipoprotein (LDL)-apoB-100, high-density lipoprotein (HDL)-apoA-I, and HDL-apoA-II in men. DESIGN, SUBJECTS, AND METHODS: Thirty men were recruited from the community with a wide range of body mass index. The capacity of plasma and HDL to efflux cholesterol was measured ex vivo. Apolipoprotein kinetics were measured using stable isotope techniques and multicompartmental modeling. RESULTS Cholesterol efflux to whole plasma was correlated with plasma levels of cholesterol, triglyceride, apoB-100, insulin, cholesteryl ester transfer protein, and lecithin-cholesterol acyltransferase, body mass index and waist circumference (P < 0.05 in all). Cholesterol efflux was inversely correlated with the fractional catabolic rate (FCR) of VLDL (r = -0.728), IDL (r = -0.662), and LDL-apoB-100 (r = -0.479) but positively correlated with the FCR (r = 0.438) and production rate (r = 0.468) of HDL-apoA-II. In multiple regression analysis, the concentration and FCR of VLDL-apoB-100 (β-coefficient = 0.708 and -0.518, respectively) and IDL-apoB-100 (β-coefficient = 0.354 and -0.447, respectively) were independent predictors of cholesterol efflux. The association of cholesterol efflux with apoB-100 metabolism was diminished after removal of apoB-100-containing lipoproteins from plasma prior to efflux. All associations, except for cholesteryl ester transfer protein, were lost when cholesterol efflux to isolated HDL was tested. CONCLUSIONS The plasma concentration and kinetics of apoB-100-containing lipoproteins are significant predictors of the capacity of whole plasma to effect cellular cholesterol efflux.
Collapse
Affiliation(s)
- Dick C Chan
- School of Medicine and Pharmacology, University of Western Australia, Royal Perth Hospital, G.P.O. Box X2213, Perth, Western Australia 6847, Australia
| | | | | | | | | | | | | |
Collapse
|
30
|
Low H, Hoang A, Forbes J, Thomas M, Lyons JG, Nestel P, Bach LA, Sviridov D. Advanced glycation end-products (AGEs) and functionality of reverse cholesterol transport in patients with type 2 diabetes and in mouse models. Diabetologia 2012; 55:2513-21. [PMID: 22572804 DOI: 10.1007/s00125-012-2570-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2012] [Accepted: 04/05/2012] [Indexed: 01/01/2023]
Abstract
AIMS/HYPOTHESIS We investigated the contribution of AGEs to the impairment of reverse cholesterol transport (RCT) variables in diabetic individuals and in two animal models of diabetic obesity and of renal impairment. METHODS The capacity of plasma and HDL from 26 individuals with moderately controlled type 2 diabetes to support cholesterol efflux was compared with 26 age- and sex-matched individuals without diabetes. We also compared the rates of RCT in vivo in two animal models: db/db mice and mice with chronic renal failure. RESULTS Diabetic individuals had characteristic dyslipidaemia and higher levels of plasma AGEs. The capacity of whole plasma, ApoB-depleted plasma and isolated HDL to support cholesterol efflux was greater for diabetic patients compared with controls despite their lower HDL-cholesterol levels. The capacity of plasma to support cholesterol efflux correlated with plasma levels of cholesteryl ester transfer protein and levels of ApoB, but not with levels of AGE. RCT was severely impaired in db/db mice despite elevated HDL-cholesterol levels and no change in AGE concentration, whereas RCT in uraemic mice was unaffected despite elevated AGE levels. CONCLUSIONS/INTERPRETATION AGEs are unlikely to contribute significantly to the impairment of RCT in type 2 diabetes.
Collapse
Affiliation(s)
- H Low
- Baker Heart and Diabetes Institute, PO Box 6492, St Kilda Road Central, Melbourne, VIC 8008, Australia
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Jiang XC, Jin W, Hussain MM. The impact of phospholipid transfer protein (PLTP) on lipoprotein metabolism. Nutr Metab (Lond) 2012; 9:75. [PMID: 22897926 PMCID: PMC3495888 DOI: 10.1186/1743-7075-9-75] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2012] [Accepted: 06/30/2012] [Indexed: 02/05/2023] Open
Abstract
It has been reported that phospholipid transfer protein (PLTP) is an independent risk factor for human coronary artery disease. In mouse models, it has been demonstrated that PLTP overexpression induces atherosclerosis, while its deficiency reduces it. PLTP is considered a promising target for pharmacological intervention to treat atherosclerosis. However, we must still answer a number of questions before its pharmaceutical potential can be fully explored. In this review, we summarized the recent progresses made in the PLTP research field and focused on its effect on apoB-containing- triglyceride-rich particle and HDL metabolism.
Collapse
Affiliation(s)
- Xian-Cheng Jiang
- Department of Cell Biology, Downstate Medical Center, State University of New York, 450 Clarkson Ave,, Box 5, Brooklyn, NY, 11203, USA.
| | | | | |
Collapse
|
32
|
Al-Zoairy R, Melmer A, Ress C, Laimer M, Kaser S, Ebenbichler C. Lipid profile changes after pronounced weight loss induced by bariatric surgery. ACTA ACUST UNITED AC 2012. [DOI: 10.2217/clp.12.9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
33
|
de Vries R, Perton FG, van Tol A, Dullaart RPF. Carotid intima media thickness is related positively to plasma pre ß-high density lipoproteins in non-diabetic subjects. Clin Chim Acta 2011; 413:473-7. [PMID: 22100832 DOI: 10.1016/j.cca.2011.11.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2011] [Revised: 10/27/2011] [Accepted: 11/03/2011] [Indexed: 10/15/2022]
Abstract
BACKGROUND Lipid-poor or lipid-free high density lipoprotein (HDL) particles, designated pre ß-HDL, stimulate removal of cell-derived cholesterol to the extracellular compartment, which is an initial step in the reverse cholesterol transport pathway. Pre ß-HDL levels may be elevated in subjects with established cardiovascular disease. We determined the relationship of carotid intima media thickness (IMT), a marker of subclinical atherosclerosis, with pre ß-HDL in subjects without clinically manifest cardiovascular disease. METHODS IMT and plasma pre ß-HDL, assayed by crossed immuno-electrophoresis, were determined in 70 non-diabetic subjects (aged 56±9 years; non-smokers only; 27 women). RESULTS IMT was correlated positively with pre ß-HDL, both expressed as plasma apolipoprotein (apo) A-I concentration (r=0.271, p=0.023) and as% of apo A-I (r=0.341, p=0.004). In contrast, IMT was correlated inversely with HDL cholesterol (r=-0.253, p=0.035). IMT was also related positively to pre ß-HDL after adjustment for age, sex, systolic blood pressure (in apoA-I concentration, ß=0.203, p=0.043; in% of plasma apoA-I, ß=0.235, p=0.023). IMT remained associated with pre ß-HDL after additional adjustment for either body mass index, plasma glucose, cholesterol, triglycerides, HDL cholesterol, apoA-I and apoB. CONCLUSION Subclinical atherosclerosis may relate to higher plasma pre ß-HDL independently of apoA-I and HDL cholesterol levels.
Collapse
Affiliation(s)
- Rindert de Vries
- Department of Endocrinology, University Medical Center Groningen and University of Groningen, Groningen, The Netherlands
| | | | | | | |
Collapse
|
34
|
Yazdanyar A, Yeang C, Jiang XC. Role of phospholipid transfer protein in high-density lipoprotein- mediated reverse cholesterol transport. Curr Atheroscler Rep 2011; 13:242-8. [PMID: 21365262 PMCID: PMC3085729 DOI: 10.1007/s11883-011-0172-5] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Reverse cholesterol transport (RCT) describes the process whereby cholesterol in peripheral tissues is transported to the liver where it is ultimately excreted in the form of bile. Given the atherogenic role of cholesterol accumulation within the vessel intima, removal of cholesterol through RCT is considered an anti-atherogenic process. The major constituents of RCT include cell membrane– bound lipid transporters, plasma lipid acceptors, plasma proteins and enzymes, and lipid receptors of liver cell membrane. One major cholesterol acceptor in RCT is high-density lipoprotein (HDL). Both the characteristics and level of HDL are critical determinants for RCT. It is known that phospholipid transfer protein (PLTP) impacts both HDL cholesterol level and biological quality of the HDL molecule. Recent data suggest that PLTP has a site-specific variation in its function. Moreover, the RCT pathway also has multiple steps both in the peripheral tissues and circulation. Therefore, PLTP may influence the RCT pathway at multiple levels. In this review, we focus on the potential role of PLTP in RCT through its impact on HDL homeostasis. The relationship between PLTP and RCT is expected to be an important area in finding novel therapies for atherosclerosis.
Collapse
Affiliation(s)
- Amirfarbod Yazdanyar
- Department of cell Biology, SUNY Downstate Medical Center, 450 Clarkson Ave. Box 5, Brooklyn, NY 11203, USA
| | | | | |
Collapse
|
35
|
Patel DC, Albrecht C, Pavitt D, Paul V, Pourreyron C, Newman SP, Godsland IF, Valabhji J, Johnston DG. Type 2 diabetes is associated with reduced ATP-binding cassette transporter A1 gene expression, protein and function. PLoS One 2011; 6:e22142. [PMID: 21829447 PMCID: PMC3144880 DOI: 10.1371/journal.pone.0022142] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2011] [Accepted: 06/16/2011] [Indexed: 01/05/2023] Open
Abstract
Objective Increasing plasma glucose levels are associated with increasing risk of vascular disease. We tested the hypothesis that there is a glycaemia-mediated impairment of reverse cholesterol transport (RCT). We studied the influence of plasma glucose on expression and function of a key mediator in RCT, the ATP binding cassette transporter-A1 (ABCA1) and expression of its regulators, liver X receptor-α (LXRα) and peroxisome proliferator-activated receptor–γ (PPARγ). Methods and Results Leukocyte ABCA1, LXRα and PPARγ expression was measured by polymerase chain reaction in 63 men with varying degrees of glucose homeostasis. ABCA1 protein concentrations were measured in leukocytes. In a sub-group of 25 men, ABCA1 function was quantified as apolipoprotein-A1-mediated cholesterol efflux from 2–3 week cultured skin fibroblasts. Leukocyte ABCA1 expression correlated negatively with circulating HbA1c and glucose (rho = −0.41, p<0.001; rho = −0.34, p = 0.006 respectively) and was reduced in Type 2 diabetes (T2DM) (p = 0.03). Leukocyte ABCA1 protein was lower in T2DM (p = 0.03) and positively associated with plasma HDL cholesterol (HDL-C) (rho = 0.34, p = 0.02). Apolipoprotein-A1-mediated cholesterol efflux correlated negatively with fasting glucose (rho = −0.50, p = 0.01) and positively with HDL-C (rho = 0.41, p = 0.02). It was reduced in T2DM compared with controls (p = 0.04). These relationships were independent of LXRα and PPARγ expression. Conclusions ABCA1 expression and protein concentrations in leukocytes, as well as function in cultured skin fibroblasts, are reduced in T2DM. ABCA1 protein concentration and function are associated with HDL-C levels. These findings indicate a glycaemia- related, persistent disruption of a key component of RCT.
Collapse
Affiliation(s)
- Dipesh C Patel
- Division of Medicine, Imperial College London, London, United Kingdom.
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Patel DC, Albrecht C, Pavitt D, Paul V, Pourreyron C, Newman SP, Godsland IF, Valabhji J, Johnston DG. Type 2 diabetes is associated with reduced ATP-binding cassette transporter A1 gene expression, protein and function. PLoS One 2011; 13:254-9. [PMID: 21829447 DOI: 10.2459/jcm.0b013e3283522422] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
OBJECTIVE Increasing plasma glucose levels are associated with increasing risk of vascular disease. We tested the hypothesis that there is a glycaemia-mediated impairment of reverse cholesterol transport (RCT). We studied the influence of plasma glucose on expression and function of a key mediator in RCT, the ATP binding cassette transporter-A1 (ABCA1) and expression of its regulators, liver X receptor-α (LXRα) and peroxisome proliferator-activated receptor-γ (PPARγ). METHODS AND RESULTS Leukocyte ABCA1, LXRα and PPARγ expression was measured by polymerase chain reaction in 63 men with varying degrees of glucose homeostasis. ABCA1 protein concentrations were measured in leukocytes. In a sub-group of 25 men, ABCA1 function was quantified as apolipoprotein-A1-mediated cholesterol efflux from 2-3 week cultured skin fibroblasts. Leukocyte ABCA1 expression correlated negatively with circulating HbA1c and glucose (rho = -0.41, p<0.001; rho = -0.34, p = 0.006 respectively) and was reduced in Type 2 diabetes (T2DM) (p = 0.03). Leukocyte ABCA1 protein was lower in T2DM (p = 0.03) and positively associated with plasma HDL cholesterol (HDL-C) (rho = 0.34, p = 0.02). Apolipoprotein-A1-mediated cholesterol efflux correlated negatively with fasting glucose (rho = -0.50, p = 0.01) and positively with HDL-C (rho = 0.41, p = 0.02). It was reduced in T2DM compared with controls (p = 0.04). These relationships were independent of LXRα and PPARγ expression. CONCLUSIONS ABCA1 expression and protein concentrations in leukocytes, as well as function in cultured skin fibroblasts, are reduced in T2DM. ABCA1 protein concentration and function are associated with HDL-C levels. These findings indicate a glycaemia-related, persistent disruption of a key component of RCT.
Collapse
Affiliation(s)
- Dipesh C Patel
- Division of Medicine, Imperial College London, London, United Kingdom.
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Sviridov D. Fenofibrate, homocysteine, cholesterol efflux and primum non nocere. Atherosclerosis 2011; 219:24-5. [PMID: 21752378 DOI: 10.1016/j.atherosclerosis.2011.06.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2011] [Accepted: 06/13/2011] [Indexed: 10/18/2022]
Affiliation(s)
- Dmitri Sviridov
- Baker IDI Heart and Diabetes Institute, PO Box 6492, St. Kilda Central, Melbourne 8008, VIC, Australia.
| |
Collapse
|
38
|
Albers JJ, Vuletic S, Cheung MC. Role of plasma phospholipid transfer protein in lipid and lipoprotein metabolism. Biochim Biophys Acta Mol Cell Biol Lipids 2011; 1821:345-57. [PMID: 21736953 DOI: 10.1016/j.bbalip.2011.06.013] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2011] [Revised: 06/01/2011] [Accepted: 06/14/2011] [Indexed: 12/13/2022]
Abstract
The understanding of the physiological and pathophysiological role of PLTP has greatly increased since the discovery of PLTP more than a quarter of century ago. A comprehensive review of PLTP is presented on the following topics: PLTP gene organization and structure; PLTP transfer properties; different forms of PLTP; characteristics of plasma PLTP complexes; relationship of plasma PLTP activity, mass and specific activity with lipoprotein and metabolic factors; role of PLTP in lipoprotein metabolism; PLTP and reverse cholesterol transport; insights from studies of PLTP variants; insights of PLTP from animal studies; PLTP and atherosclerosis; PLTP and signal transduction; PLTP in the brain; and PLTP in human disease. PLTP's central role in lipoprotein metabolism and lipid transport in the vascular compartment has been firmly established. However, more studies are needed to further delineate PLTP's functions in specific tissues, such as the lung, brain and adipose tissue. Furthermore, the specific role that PLTP plays in human diseases, such as atherosclerosis, cancer, or neurodegenerative disease, remains to be clarified. Exciting directions for future research include evaluation of PLTP's physiological relevance in intracellular lipid metabolism and signal transduction, which undoubtedly will advance our knowledge of PLTP functions in health and disease. This article is part of a Special Issue entitled Advances in High Density Lipoprotein Formation and Metabolism: A Tribute to John F. Oram (1945-2010).
Collapse
Affiliation(s)
- John J Albers
- Northwest Lipid Metabolism and Diabetes Research Laboratories, Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, University of Washington, 401 Queen Anne Ave N, Seattle, WA 98109, USA.
| | | | | |
Collapse
|
39
|
Khera AV, Cuchel M, de la Llera-Moya M, Rodrigues A, Burke MF, Jafri K, French BC, Phillips JA, Mucksavage ML, Wilensky RL, Mohler ER, Rothblat GH, Rader DJ. Cholesterol efflux capacity, high-density lipoprotein function, and atherosclerosis. N Engl J Med 2011; 364:127-35. [PMID: 21226578 PMCID: PMC3030449 DOI: 10.1056/nejmoa1001689] [Citation(s) in RCA: 1538] [Impact Index Per Article: 109.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND High-density lipoprotein (HDL) may provide cardiovascular protection by promoting reverse cholesterol transport from macrophages. We hypothesized that the capacity of HDL to accept cholesterol from macrophages would serve as a predictor of atherosclerotic burden. METHODS We measured cholesterol efflux capacity in 203 healthy volunteers who underwent assessment of carotid artery intima-media thickness, 442 patients with angiographically confirmed coronary artery disease, and 351 patients without such angiographically confirmed disease. We quantified efflux capacity by using a validated ex vivo system that involved incubation of macrophages with apolipoprotein B-depleted serum from the study participants. RESULTS The levels of HDL cholesterol and apolipoprotein A-I were significant determinants of cholesterol efflux capacity but accounted for less than 40% of the observed variation. An inverse relationship was noted between efflux capacity and carotid intima-media thickness both before and after adjustment for the HDL cholesterol level. Furthermore, efflux capacity was a strong inverse predictor of coronary disease status (adjusted odds ratio for coronary disease per 1-SD increase in efflux capacity, 0.70; 95% confidence interval [CI], 0.59 to 0.83; P<0.001). This relationship was attenuated, but remained significant, after additional adjustment for the HDL cholesterol level (odds ratio per 1-SD increase, 0.75; 95% CI, 0.63 to 0.90; P=0.002) or apolipoprotein A-I level (odds ratio per 1-SD increase, 0.74; 95% CI, 0.61 to 0.89; P=0.002). Additional studies showed enhanced efflux capacity in patients with the metabolic syndrome and low HDL cholesterol levels who were treated with pioglitazone, but not in patients with hypercholesterolemia who were treated with statins. CONCLUSIONS Cholesterol efflux capacity from macrophages, a metric of HDL function, has a strong inverse association with both carotid intima-media thickness and the likelihood of angiographic coronary artery disease, independently of the HDL cholesterol level. (Funded by the National Heart, Lung, and Blood Institute and others.).
Collapse
Affiliation(s)
- Amit V Khera
- Cardiovascular Institute, University of Pennsylvania, Philadelphia, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Kappelle PJWH, van Tol A, Wolffenbuttel BHR, Dullaart RPF. Cholesteryl Ester Transfer Protein Inhibition in Cardiovascular Risk Management: Ongoing Trials will End the Confusion. Cardiovasc Ther 2010; 29:e89-99. [DOI: 10.1111/j.1755-5922.2010.00201.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
|
41
|
Impact of android overweight or obesity and insulin resistance on basal and postprandial SR-BI and ABCA1-mediated serum cholesterol efflux capacities. Atherosclerosis 2010; 209:422-9. [DOI: 10.1016/j.atherosclerosis.2009.09.025] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2009] [Revised: 09/17/2009] [Accepted: 09/18/2009] [Indexed: 10/20/2022]
|
42
|
Dullaart RPF, Dallinga-Thie GM. Beneficial effects of reconstituted HDL onex vivoandin vitroplatelet reactivity. ACTA ACUST UNITED AC 2010. [DOI: 10.2217/clp.10.3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
43
|
Plomgaard P, Dullaart RPF, de Vries R, Groen AK, Dahlbäck B, Nielsen LB. Apolipoprotein M predicts pre-beta-HDL formation: studies in type 2 diabetic and nondiabetic subjects. J Intern Med 2009; 266:258-67. [PMID: 19457058 DOI: 10.1111/j.1365-2796.2009.02095.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
OBJECTIVE Studies in mice suggest that plasma apoM is lowered in hyperinsulinaemic diabetes and that apoM stimulates formation of pre-beta-HDL. Pre-beta-HDL is an acceptor of cellular cholesterol and may be critical for reverse cholesterol transport. Herein, we examined whether patients with type 2 diabetes have reduced plasma apoM and whether apoM is associated with pre-beta-HDL formation and cellular cholesterol efflux. DESIGN In 78 patients with type 2 diabetes and 89 control subjects, we measured plasma apoM with ELISA, pre-beta-HDL and pre-beta-HDL formation, phospholipid transfer protein (PLTP) activity and the ability of plasma to promote cholesterol efflux from cultured fibroblasts. RESULTS ApoM was approximately 9% lower in patients with type 2 diabetes compared to controls (0.025 +/- 0.006 vs. 0.027 +/- 0.007 g L(-1), P = 0.01). The difference in apoM was largely attributable to diabetes-associated obesity. ApoM was positively related to both HDL (r = 0.16; P = 0.04) and LDL cholesterol (r = 0.28; P = 0.0003). Pre-beta-HDL and pre-beta-HDL formation were not different between diabetic and control subjects. ApoM predicted pre-beta-HDL (r = 0.16; P = 0.04) and pre-beta-HDL formation (r = 0.19; P = 0.02), even independently of positive relationships with apoA-I, HDL-cholesterol and PLTP activity. Cellular cholesterol efflux to plasma was positively related to pre-beta-HDL and PLTP activity but not significantly to apoM. CONCLUSIONS Plasma apoM is modestly reduced in type 2 diabetes. Pre-beta-HDL and pre-beta-HDL formation are positively associated with apoM, supporting the hypothesis that apoM plays a role in HDL remodelling in humans. Lower apoM may provide a mechanism to explain why pre-beta-HDL formation is not increased in type 2 diabetes despite elevated PLTP activity.
Collapse
Affiliation(s)
- P Plomgaard
- Department of Clinical Biochemistry, Rigshospitalet, Copenhagen, Denmark
| | | | | | | | | | | |
Collapse
|
44
|
Dallinga-Thie G, van Tol A, Dullaart R. Plasma pre β-HDL formation is decreased by atorvastatin treatment in type 2 diabetes mellitus: Role of phospholipid transfer protein. Biochim Biophys Acta Mol Cell Biol Lipids 2009; 1791:714-8. [DOI: 10.1016/j.bbalip.2009.03.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2009] [Revised: 02/28/2009] [Accepted: 03/09/2009] [Indexed: 11/27/2022]
|
45
|
Tzotzas T, Desrumaux C, Lagrost L. Plasma phospholipid transfer protein (PLTP): review of an emerging cardiometabolic risk factor. Obes Rev 2009; 10:403-11. [PMID: 19413703 DOI: 10.1111/j.1467-789x.2009.00586.x] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Plasma phospholipid transfer protein (PLTP) is a lipid transfer glycoprotein that binds to and transfers a number of amphipathic compounds. In earlier studies, the attention of the scientific community focused on the positive role of PLTP in high-density lipoprotein (HDL) metabolism. However, this potentially anti-atherogenic role of PLTP has been challenged recently by another picture: PLTP arose as a pro-atherogenic factor through its ability to increase the production of apolipoprotein B-containing lipoproteins, to decrease their antioxidative protection and to trigger inflammation. In humans, PLTP has mostly been studied in patients with cardiometabolic disorders. Both PLTP and related cholesteryl ester transfer protein (CETP) are secreted proteins, and adipose tissue is an important contributor to the systemic pools of these two proteins. Coincidently, high levels of PLTP and CETP have been found in the plasma of obese patients. PLTP activity and mass have been reported to be abnormally elevated in type 2 diabetes mellitus (T2DM) and insulin-resistant states, and this elevation is frequently associated with hypertriglyceridemia and obesity. This review article presents the state of knowledge on the implication of PLTP in lipoprotein metabolism, on its atherogenic potential, and the complexity of its implication in obesity, insulin resistance and T2DM.
Collapse
Affiliation(s)
- T Tzotzas
- Department of Nutrition and Dietetics, Technological Educational Institution, Thessaloniki, Greece.
| | | | | |
Collapse
|
46
|
Abstract
High-density lipoprotein (HDL) plays an important protective role against atherosclerosis, and the anti-atherogenic properties of HDL include the promotion of cellular cholesterol efflux and reverse cholesterol transport (RCT), as well as antioxidant, anti-inflammatory and anticoagulant effects. RCT is a complex pathway, which transports cholesterol from peripheral cells and tissues to the liver for its metabolism and biliary excretion. The major steps in the RCT pathway include the efflux of free cholesterol mediated by cholesterol transporters from cells to the main extracellular acceptor HDL, the conversion of free cholesterol to cholesteryl esters and the subsequent removal of cholesteryl ester in HDL by the liver. The efficiency of RCT is influenced by the mobilization of cellular lipids for efflux and the intravascular remodelling and kinetics of HDL metabolism. Despite the increased cardiovascular risk in people with type 2 diabetes, current knowledge on RCT in diabetes is limited. In this article, abnormalities in RCT in type 2 diabetes mellitus and therapeutic strategies targeting HDL and RCT will be reviewed.
Collapse
Affiliation(s)
- K C B Tan
- Department of Medicine, University of Hong Kong, Hong Kong.
| |
Collapse
|
47
|
Zhou H, Tan KCB, Shiu SWM, Wong Y. Cellular cholesterol efflux to serum is impaired in diabetic nephropathy. Diabetes Metab Res Rev 2008; 24:617-23. [PMID: 18802933 DOI: 10.1002/dmrr.895] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
BACKGROUND Cholesterol efflux from cells is an early step of reverse cholesterol transport (RCT) and the capacity of serum to induce cellular cholesterol efflux has recently been shown to be an independent predictor of coronary artery atherosclerosis. Our aim is to evaluate the capacity of serum to induce ATP-binding cassette transporter A1 (ABCA1) and scavenger receptor class B type I (SR-BI) mediated cholesterol efflux in type 2 diabetic patients with nephropathy. METHODS Diabetic patients were recruited according to their urinary albumin excretion rate (normoalbuminuria, microalbuminuria and proteinuria) with 20 subjects in each group and compared with 20 age-matched controls. The ability of the serum to induce cholesterol efflux was measured using a cell culture system. RESULTS Serum capacity to induce ABCA1-mediated cholesterol efflux was decreased in patients with microalbuminuria or proteinuria (p < 0.05) whereas SR-BI-mediated cholesterol efflux was impaired in all three groups of diabetic patients (p < 0.05). Plasma high-density lipoprotein (HDL) cholesterol and apoAI were reduced in all groups of diabetic patients, but pre-beta-HDL was only significantly decreased in those with microalbuminuria or proteinuria. Serum advanced glycation end products (AGEs) were significantly increased in diabetic patients with microalbuminuria or proteinuria. Serum AGEs and pre-beta-HDL were the significant independent determinants of ABCA1-mediated cholesterol efflux, whereas plasma HDL and log (creatinine) were the significant determinants of SR-BI-mediated cholesterol efflux. CONCLUSION The capacity of serum to induce ABCA1- and SR-BI-mediated cholesterol efflux was impaired in diabetic patients with incipient or overt nephropathy. These abnormalities may contribute to the accelerated development of atherosclerotic vascular disease in these patients.
Collapse
Affiliation(s)
- Huali Zhou
- Department of Medicine, University of Hong Kong, Hong Kong
| | | | | | | |
Collapse
|
48
|
Mooradian AD, Haas MJ, Wehmeier KR, Wong NCW. Obesity-related changes in high-density lipoprotein metabolism. Obesity (Silver Spring) 2008; 16:1152-60. [PMID: 18388903 DOI: 10.1038/oby.2008.202] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Obesity is associated with a 3-or-more-fold increase in the risk of fatal and nonfatal myocardial infarction (1,2,3,4,5,6). The American Heart Association has reclassified obesity as a major, modifiable risk factor for coronary heart disease (7). The increased prevalence of premature coronary heart disease in obesity is attributed to multiple factors (8,9,10). A principal contributor to this serious morbidity is the alterations in plasma lipid and lipoprotein levels. The dyslipidemia of obesity is commonly manifested as high plasma triglyceride levels, low high-density lipoprotein cholesterol (HDLc), and normal low-density lipoprotein cholesterol (LDLc) with preponderance of small dense LDL particles (7,8,9,10). However, there is a considerable heterogeneity of plasma lipid profile in overweight and obese people. The precise cause of this heterogeneity is not entirely clear but has been partly attributed to the degree of visceral adiposity and insulin resistance. The emergence of glucose intolerance or a genetic predisposition to familial combined hyperlipidemia will further modify the plasma lipid phenotype in obese people (11,12,13,14,15).
Collapse
Affiliation(s)
- Arshag D Mooradian
- Department of Medicine, University of Florida College of Medicine, Jacksonville, Florida, USA.
| | | | | | | |
Collapse
|
49
|
Guan JZ, Tamasawa N, Murakami H, Matsui J, Tanabe J, Matsuki K, Yamashita M, Suda T. HMG-CoA reductase inhibitor, simvastatin improves reverse cholesterol transport in type 2 diabetic patients with hyperlipidemia. J Atheroscler Thromb 2008; 15:20-5. [PMID: 18270459 DOI: 10.5551/jat.e512] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
AIM ApoA-I and HDL promote cellular cholesterol efflux in the early stages of the reverse cholesterol transport (RCT) pathway. A low plasma HDL-C level is characteristic of atherogenic dyslipidemia in patients with type 2 diabetes. We evaluated plasma lipid levels and the expression of factors related to RCT in type 2 diabetic patients, and the effects of an HMG-CoA reductase inhibitor, simvastatin, were studied. METHODS Messenger RNA (mRNA) expression in circulating mononuclear cells was analyzed by reverse transcription-polymerase chain reaction (RT-PCR), focusing on the following factors: liver X receptor alpha (LXR alpha), ATP-binding cassette A1 (ABCA1), scavenger receptor class B type 1 (SR-B1), apolipoprotein E (ApoE), apolipoprotein A-1 (ApoA-1), caveolin, and cholesterol ester transfer protein (CETP). Type 2 diabetic subjects (n=29) were divided into three subgroups: patients with normolipidemia (DM group, n=11), patients with untreated hyperlipidemia (DMHL group, n=10), and those with hyperlipidemia treated with simvastatin 5-10mg/day (DMST group, n=8). The control group (CNT group) included seven healthy volunteers. RESULTS Simvastatin treatment significantly increased plasma levels of ApoA-I compared to the other three groups. Simvastatin treatment improved the expression of mRNA for LXRalpha, ABCA1, and ApoA-I compared with DMHL or control groups. CONCLUSION Our data suggest that RCT may be reduced in type 2 diabetic patients with hyperlipidemia, and simvastatin may be able to improve reverse cholesterol transport for this population of diabetic patients.
Collapse
Affiliation(s)
- Jing-Zhi Guan
- Department of Endocrinology and Metabolism, Hirosaki University Graduate School of Medicine
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Dallinga-Thie GM, Dullaart RPF, van Tol A. Derangements of intravascular remodeling of lipoproteins in type 2 diabetes mellitus: consequences for atherosclerosis development. Curr Diab Rep 2008; 8:65-70. [PMID: 18367001 DOI: 10.1007/s11892-008-0012-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
In type 2 diabetes mellitus, elevated fasting and postprandial plasma triglycerides, small dense low-density lipoprotein particles, low high-density lipoprotein (HDL) cholesterol levels, and increased action of lipid transfer proteins may enhance peripheral lipid accumulation and increase cardiovascular risk. Despite low HDL cholesterol, plasma's ability to stimulate cellular cholesterol efflux, reflecting an early step in the reverse cholesterol transport pathway, appears to be maintained, perhaps implicating a compensatory mechanism.
Collapse
Affiliation(s)
- Geesje M Dallinga-Thie
- Laboratory of Experimental Vascular Medicine G1-113, Academic Medical Center Amsterdam, PO Box 22660, 1100DD Amsterdam, the Netherlands.
| | | | | |
Collapse
|