1
|
Fu X, Zhao Y, Ke Y, Gao Y, Wang M, Chen Y, Huo W, Wang L, Zhang W, Wu Y, Li X, Zhang D, Hu F, Hu D, Zhang M. Mitochondrial DNA copy number and risk of cardiovascular disease and all-cause mortality: a systematic review and meta-analysis of observational studies. QJM 2025; 118:5-15. [PMID: 39607770 DOI: 10.1093/qjmed/hcae208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 09/28/2024] [Indexed: 11/30/2024] Open
Abstract
Increasing studies have explored the correlation of mitochondrial DNA copy number (mtDNA-CN) abnormalities with cardiovascular disease (CVD) and all-cause mortality; however, their findings are contradictory. This systematic review and meta-analysis sought to quantitatively summarize current studies to elucidate the impact of mtDNA-CN on CVD outcomes and all-cause mortality. Relevant studies were searched for in PubMed, Embase and Web of Science databases, up to 23 October 2023. Summary relative risks (RRs) and 95% confidence intervals (CIs) were calculated with the random-effects model. In total, 22 articles were included in the systematic review, 13 of which were included in the meta-analysis of CVD outcomes and 8 in all-cause mortality. Compared to the highest mtDNA-CN level, the summary RR (95% CI) for the lowest mtDNA-CN level was 2.09 (95% CI 1.59-2.75) for CVD, 1.70 (95% CI 1.29-2.24) for coronary heart disease (CHD), 1.43 (95% CI 1.15-1.79) for heart failure (HF), 1.88 (95% CI 1.08-3.28) for stroke and 1.33 (95% CI 1.21-1.47) for all-cause mortality. Lower mtDNA-CN may increase the risk of CVD, including CHD, HF and stroke, as well as all-cause mortality. MtDNA-CN is a potential predictor of CVD and all-cause mortality.
Collapse
Affiliation(s)
- Xueru Fu
- Department of General Practice, The Affiliated Luohu Hospital of Shenzhen University Medical School, Shenzhen, Guangdong, People's Republic of China
| | - Yang Zhao
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Yamin Ke
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Yajuan Gao
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Mengmeng Wang
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Yaobing Chen
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Weifeng Huo
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Longkang Wang
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Wenkai Zhang
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Yuying Wu
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Xi Li
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Dongdong Zhang
- Department of General Practice, The Affiliated Luohu Hospital of Shenzhen University Medical School, Shenzhen, Guangdong, People's Republic of China
| | - Fulan Hu
- Department of Biostatistics and Epidemiology, School of Public Health, Shenzhen University Medical School, Shenzhen, Guangdong, People's Republic of China
| | - Dongsheng Hu
- Department of General Practice, The Affiliated Luohu Hospital of Shenzhen University Medical School, Shenzhen, Guangdong, People's Republic of China
| | - Ming Zhang
- Department of General Practice, The Affiliated Luohu Hospital of Shenzhen University Medical School, Shenzhen, Guangdong, People's Republic of China
| |
Collapse
|
2
|
Petrica L, Gadalean F, Muntean DM, Jianu DC, Vlad D, Dumitrascu V, Bob F, Milas O, Suteanu-Simulescu A, Glavan M, Ursoniu S, Balint L, Mogos-Stefan M, Ienciu S, Cretu OM, Popescu R, Gluhovschi C, Iancu L, Vlad A. Mitochondrial DNA and Inflammation Are Associated with Cerebral Vessel Remodeling and Early Diabetic Kidney Disease in Patients with Type 2 Diabetes Mellitus. Biomolecules 2024; 14:499. [PMID: 38672515 PMCID: PMC11048277 DOI: 10.3390/biom14040499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 04/03/2024] [Accepted: 04/08/2024] [Indexed: 04/28/2024] Open
Abstract
Cerebrovascular disease accounts for major neurologic disabilities in patients with type 2 diabetes mellitus (DM). A potential association of mitochondrial DNA (mtDNA) and inflammation with cerebral vessel remodeling in patients with type 2 DM was evaluated. A cohort of 150 patients and 30 healthy controls were assessed concerning urinary albumin/creatinine ratio (UACR), synaptopodin, podocalyxin, kidney injury molecule-1 (KIM-1), N-acetyl-β-(D)-glucosaminidase (NAG), interleukins IL-17A, IL-18, IL-10, tumor necrosis factor-alpha (TNFα), intercellular adhesion molecule-1 (ICAM-1). MtDNA-CN and nuclear DNA (nDNA) were quantified in peripheral blood and urine by qRT-PCR. Cytochrome b (CYTB) gene, subunit 2 of NADH dehydrogenase (ND2), and beta 2 microglobulin nuclear gene (B2M) were assessed by TaqMan assays. mtDNA-CN was defined as the ratio of the number of mtDNA/nDNA copies, through analysis of the CYTB/B2M and ND2/B2M ratio; cerebral Doppler ultrasound: intima-media thickness (IMT)-the common carotid arteries (CCAs), the pulsatility index (PI) and resistivity index (RI)- the internal carotid arteries (ICAs) and middle cerebral arteries (MCAs), the breath-holding index (BHI). The results showed direct correlations of CCAs-IMT, PI-ICAs, PI-MCAs, RI-ICAs, RI-MCAs with urinary mtDNA, IL-17A, IL-18, TNFα, ICAM-1, UACR, synaptopodin, podocalyxin, KIM-1, NAG, and indirect correlations with serum mtDNA, IL-10. BHI correlated directly with serum IL-10, and serum mtDNA, and negatively with serum IL-17A, serum ICAM-1, and NAG. In neurologically asymptomatic patients with type 2 DM cerebrovascular remodeling and impaired cerebrovascular reactivity may be associated with mtDNA variations and inflammation from the early stages of diabetic kidney disease.
Collapse
Affiliation(s)
- Ligia Petrica
- Department of Internal Medicine II, Division of Nephrology, “Victor Babes” University of Medicine and Pharmacy, No. 2, Eftimie Murgu Sq., 300041 Timisoara, Romania; (L.P.); (F.B.); (O.M.); (A.S.-S.); (M.G.); (L.B.); (M.M.-S.); (S.I.); (C.G.); (L.I.)
- Centre for Molecular Research in Nephrology and Vascular Disease, Faculty of Medicine, “Victor Babes” University of Medicine and Pharmacy, No. 2, Eftimie Murgu Sq., 300041 Timisoara, Romania; (D.M.M.); (D.C.J.); (D.V.); (V.D.); (S.U.); (R.P.); (A.V.)
- Centre for Cognitive Research in Neuropsychiatric Pathology (Neuropsy-Cog), Faculty of Medicine, “Victor Babes” University of Medicine and Pharmacy, No. 2, Eftimie Murgu Sq., 300041 Timisoara, Romania
- Center for Translational Research and Systems Medicine, Faculty of Medicine, “Victor Babes” University of Medicine and Pharmacy, No. 2, Eftimie Murgu Sq., 300041 Timisoara, Romania
- County Emergency Hospital Timisoara, 300723 Timisoara, Romania
| | - Florica Gadalean
- Department of Internal Medicine II, Division of Nephrology, “Victor Babes” University of Medicine and Pharmacy, No. 2, Eftimie Murgu Sq., 300041 Timisoara, Romania; (L.P.); (F.B.); (O.M.); (A.S.-S.); (M.G.); (L.B.); (M.M.-S.); (S.I.); (C.G.); (L.I.)
- Centre for Molecular Research in Nephrology and Vascular Disease, Faculty of Medicine, “Victor Babes” University of Medicine and Pharmacy, No. 2, Eftimie Murgu Sq., 300041 Timisoara, Romania; (D.M.M.); (D.C.J.); (D.V.); (V.D.); (S.U.); (R.P.); (A.V.)
- County Emergency Hospital Timisoara, 300723 Timisoara, Romania
| | - Danina Mirela Muntean
- Centre for Molecular Research in Nephrology and Vascular Disease, Faculty of Medicine, “Victor Babes” University of Medicine and Pharmacy, No. 2, Eftimie Murgu Sq., 300041 Timisoara, Romania; (D.M.M.); (D.C.J.); (D.V.); (V.D.); (S.U.); (R.P.); (A.V.)
- Center for Translational Research and Systems Medicine, Faculty of Medicine, “Victor Babes” University of Medicine and Pharmacy, No. 2, Eftimie Murgu Sq., 300041 Timisoara, Romania
- Department of Functional Sciences III, Division of Pathophysiology, “Victor Babes” University of Medicine and Pharmacy, No. 2, Eftimie Murgu Sq., 300041 Timisoara, Romania
| | - Dragos Catalin Jianu
- Centre for Molecular Research in Nephrology and Vascular Disease, Faculty of Medicine, “Victor Babes” University of Medicine and Pharmacy, No. 2, Eftimie Murgu Sq., 300041 Timisoara, Romania; (D.M.M.); (D.C.J.); (D.V.); (V.D.); (S.U.); (R.P.); (A.V.)
- Centre for Cognitive Research in Neuropsychiatric Pathology (Neuropsy-Cog), Faculty of Medicine, “Victor Babes” University of Medicine and Pharmacy, No. 2, Eftimie Murgu Sq., 300041 Timisoara, Romania
- County Emergency Hospital Timisoara, 300723 Timisoara, Romania
- Department of Neurosciences VIII, Division of Neurology I, “Victor Babes” University of Medicine and Pharmacy, No. 2, Eftimie Murgu Sq., 300041 Timisoara, Romania
| | - Daliborca Vlad
- Centre for Molecular Research in Nephrology and Vascular Disease, Faculty of Medicine, “Victor Babes” University of Medicine and Pharmacy, No. 2, Eftimie Murgu Sq., 300041 Timisoara, Romania; (D.M.M.); (D.C.J.); (D.V.); (V.D.); (S.U.); (R.P.); (A.V.)
- County Emergency Hospital Timisoara, 300723 Timisoara, Romania
- Department of Biochemistry and Pharmacology IV, Division of Pharmacology, “Victor Babes” University of Medicine and Pharmacy, No. 2, Eftimie Murgu Sq., 300041 Timisoara, Romania
| | - Victor Dumitrascu
- Centre for Molecular Research in Nephrology and Vascular Disease, Faculty of Medicine, “Victor Babes” University of Medicine and Pharmacy, No. 2, Eftimie Murgu Sq., 300041 Timisoara, Romania; (D.M.M.); (D.C.J.); (D.V.); (V.D.); (S.U.); (R.P.); (A.V.)
- County Emergency Hospital Timisoara, 300723 Timisoara, Romania
- Department of Biochemistry and Pharmacology IV, Division of Pharmacology, “Victor Babes” University of Medicine and Pharmacy, No. 2, Eftimie Murgu Sq., 300041 Timisoara, Romania
| | - Flaviu Bob
- Department of Internal Medicine II, Division of Nephrology, “Victor Babes” University of Medicine and Pharmacy, No. 2, Eftimie Murgu Sq., 300041 Timisoara, Romania; (L.P.); (F.B.); (O.M.); (A.S.-S.); (M.G.); (L.B.); (M.M.-S.); (S.I.); (C.G.); (L.I.)
- Centre for Molecular Research in Nephrology and Vascular Disease, Faculty of Medicine, “Victor Babes” University of Medicine and Pharmacy, No. 2, Eftimie Murgu Sq., 300041 Timisoara, Romania; (D.M.M.); (D.C.J.); (D.V.); (V.D.); (S.U.); (R.P.); (A.V.)
- County Emergency Hospital Timisoara, 300723 Timisoara, Romania
| | - Oana Milas
- Department of Internal Medicine II, Division of Nephrology, “Victor Babes” University of Medicine and Pharmacy, No. 2, Eftimie Murgu Sq., 300041 Timisoara, Romania; (L.P.); (F.B.); (O.M.); (A.S.-S.); (M.G.); (L.B.); (M.M.-S.); (S.I.); (C.G.); (L.I.)
- Centre for Molecular Research in Nephrology and Vascular Disease, Faculty of Medicine, “Victor Babes” University of Medicine and Pharmacy, No. 2, Eftimie Murgu Sq., 300041 Timisoara, Romania; (D.M.M.); (D.C.J.); (D.V.); (V.D.); (S.U.); (R.P.); (A.V.)
- County Emergency Hospital Timisoara, 300723 Timisoara, Romania
| | - Anca Suteanu-Simulescu
- Department of Internal Medicine II, Division of Nephrology, “Victor Babes” University of Medicine and Pharmacy, No. 2, Eftimie Murgu Sq., 300041 Timisoara, Romania; (L.P.); (F.B.); (O.M.); (A.S.-S.); (M.G.); (L.B.); (M.M.-S.); (S.I.); (C.G.); (L.I.)
- Centre for Molecular Research in Nephrology and Vascular Disease, Faculty of Medicine, “Victor Babes” University of Medicine and Pharmacy, No. 2, Eftimie Murgu Sq., 300041 Timisoara, Romania; (D.M.M.); (D.C.J.); (D.V.); (V.D.); (S.U.); (R.P.); (A.V.)
- County Emergency Hospital Timisoara, 300723 Timisoara, Romania
| | - Mihaela Glavan
- Department of Internal Medicine II, Division of Nephrology, “Victor Babes” University of Medicine and Pharmacy, No. 2, Eftimie Murgu Sq., 300041 Timisoara, Romania; (L.P.); (F.B.); (O.M.); (A.S.-S.); (M.G.); (L.B.); (M.M.-S.); (S.I.); (C.G.); (L.I.)
- Centre for Molecular Research in Nephrology and Vascular Disease, Faculty of Medicine, “Victor Babes” University of Medicine and Pharmacy, No. 2, Eftimie Murgu Sq., 300041 Timisoara, Romania; (D.M.M.); (D.C.J.); (D.V.); (V.D.); (S.U.); (R.P.); (A.V.)
- County Emergency Hospital Timisoara, 300723 Timisoara, Romania
| | - Sorin Ursoniu
- Centre for Molecular Research in Nephrology and Vascular Disease, Faculty of Medicine, “Victor Babes” University of Medicine and Pharmacy, No. 2, Eftimie Murgu Sq., 300041 Timisoara, Romania; (D.M.M.); (D.C.J.); (D.V.); (V.D.); (S.U.); (R.P.); (A.V.)
- Centre for Cognitive Research in Neuropsychiatric Pathology (Neuropsy-Cog), Faculty of Medicine, “Victor Babes” University of Medicine and Pharmacy, No. 2, Eftimie Murgu Sq., 300041 Timisoara, Romania
- Center for Translational Research and Systems Medicine, Faculty of Medicine, “Victor Babes” University of Medicine and Pharmacy, No. 2, Eftimie Murgu Sq., 300041 Timisoara, Romania
- County Emergency Hospital Timisoara, 300723 Timisoara, Romania
- Department of Functional Sciences III, Division of Public Health and History of Medicine, “Victor Babes” University of Medicine and Pharmacy, No. 2, Eftimie Murgu Sq., 300041 Timisoara, Romania
| | - Lavinia Balint
- Department of Internal Medicine II, Division of Nephrology, “Victor Babes” University of Medicine and Pharmacy, No. 2, Eftimie Murgu Sq., 300041 Timisoara, Romania; (L.P.); (F.B.); (O.M.); (A.S.-S.); (M.G.); (L.B.); (M.M.-S.); (S.I.); (C.G.); (L.I.)
- Centre for Molecular Research in Nephrology and Vascular Disease, Faculty of Medicine, “Victor Babes” University of Medicine and Pharmacy, No. 2, Eftimie Murgu Sq., 300041 Timisoara, Romania; (D.M.M.); (D.C.J.); (D.V.); (V.D.); (S.U.); (R.P.); (A.V.)
- County Emergency Hospital Timisoara, 300723 Timisoara, Romania
| | - Maria Mogos-Stefan
- Department of Internal Medicine II, Division of Nephrology, “Victor Babes” University of Medicine and Pharmacy, No. 2, Eftimie Murgu Sq., 300041 Timisoara, Romania; (L.P.); (F.B.); (O.M.); (A.S.-S.); (M.G.); (L.B.); (M.M.-S.); (S.I.); (C.G.); (L.I.)
- Centre for Molecular Research in Nephrology and Vascular Disease, Faculty of Medicine, “Victor Babes” University of Medicine and Pharmacy, No. 2, Eftimie Murgu Sq., 300041 Timisoara, Romania; (D.M.M.); (D.C.J.); (D.V.); (V.D.); (S.U.); (R.P.); (A.V.)
- County Emergency Hospital Timisoara, 300723 Timisoara, Romania
| | - Silvia Ienciu
- Department of Internal Medicine II, Division of Nephrology, “Victor Babes” University of Medicine and Pharmacy, No. 2, Eftimie Murgu Sq., 300041 Timisoara, Romania; (L.P.); (F.B.); (O.M.); (A.S.-S.); (M.G.); (L.B.); (M.M.-S.); (S.I.); (C.G.); (L.I.)
- Centre for Molecular Research in Nephrology and Vascular Disease, Faculty of Medicine, “Victor Babes” University of Medicine and Pharmacy, No. 2, Eftimie Murgu Sq., 300041 Timisoara, Romania; (D.M.M.); (D.C.J.); (D.V.); (V.D.); (S.U.); (R.P.); (A.V.)
- County Emergency Hospital Timisoara, 300723 Timisoara, Romania
| | - Octavian Marius Cretu
- Department of Surgery I, Division of Surgical Semiology I, “Victor Babes” University of Medicine and Pharmacy, No. 2, Eftimie Murgu Sq., 300041 Timisoara, Romania;
- Emergency Clinical Municipal Hospital Timisoara, 300041 Timisoara, Romania
| | - Roxana Popescu
- Centre for Molecular Research in Nephrology and Vascular Disease, Faculty of Medicine, “Victor Babes” University of Medicine and Pharmacy, No. 2, Eftimie Murgu Sq., 300041 Timisoara, Romania; (D.M.M.); (D.C.J.); (D.V.); (V.D.); (S.U.); (R.P.); (A.V.)
- County Emergency Hospital Timisoara, 300723 Timisoara, Romania
- Department of Microscopic Morphology II, Division of Cell and Molecular Biology II, “Victor Babes”, University of Medicine and Pharmacy, No. 2, Eftimie Murgu Sq., 300041 Timisoara, Romania
| | - Cristina Gluhovschi
- Department of Internal Medicine II, Division of Nephrology, “Victor Babes” University of Medicine and Pharmacy, No. 2, Eftimie Murgu Sq., 300041 Timisoara, Romania; (L.P.); (F.B.); (O.M.); (A.S.-S.); (M.G.); (L.B.); (M.M.-S.); (S.I.); (C.G.); (L.I.)
- Centre for Molecular Research in Nephrology and Vascular Disease, Faculty of Medicine, “Victor Babes” University of Medicine and Pharmacy, No. 2, Eftimie Murgu Sq., 300041 Timisoara, Romania; (D.M.M.); (D.C.J.); (D.V.); (V.D.); (S.U.); (R.P.); (A.V.)
| | - Lavinia Iancu
- Department of Internal Medicine II, Division of Nephrology, “Victor Babes” University of Medicine and Pharmacy, No. 2, Eftimie Murgu Sq., 300041 Timisoara, Romania; (L.P.); (F.B.); (O.M.); (A.S.-S.); (M.G.); (L.B.); (M.M.-S.); (S.I.); (C.G.); (L.I.)
- Centre for Molecular Research in Nephrology and Vascular Disease, Faculty of Medicine, “Victor Babes” University of Medicine and Pharmacy, No. 2, Eftimie Murgu Sq., 300041 Timisoara, Romania; (D.M.M.); (D.C.J.); (D.V.); (V.D.); (S.U.); (R.P.); (A.V.)
- County Emergency Hospital Timisoara, 300723 Timisoara, Romania
| | - Adrian Vlad
- Centre for Molecular Research in Nephrology and Vascular Disease, Faculty of Medicine, “Victor Babes” University of Medicine and Pharmacy, No. 2, Eftimie Murgu Sq., 300041 Timisoara, Romania; (D.M.M.); (D.C.J.); (D.V.); (V.D.); (S.U.); (R.P.); (A.V.)
- County Emergency Hospital Timisoara, 300723 Timisoara, Romania
- Department of Internal Medicine II, Division of Diabetes, Nutrition, and Metabolic Diseases, “Victor Babes” University of Medicine and Pharmacy, No. 2, Eftimie Murgu Sq., 300041 Timisoara, Romania
| |
Collapse
|
3
|
Basei FL, e Silva IR, Dias PRF, Ferezin CC, Peres de Oliveira A, Issayama LK, Moura LAR, da Silva FR, Kobarg J. The Mitochondrial Connection: The Nek Kinases' New Functional Axis in Mitochondrial Homeostasis. Cells 2024; 13:473. [PMID: 38534317 PMCID: PMC10969439 DOI: 10.3390/cells13060473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 02/28/2024] [Accepted: 02/29/2024] [Indexed: 03/28/2024] Open
Abstract
Mitochondria provide energy for all cellular processes, including reactions associated with cell cycle progression, DNA damage repair, and cilia formation. Moreover, mitochondria participate in cell fate decisions between death and survival. Nek family members have already been implicated in DNA damage response, cilia formation, cell death, and cell cycle control. Here, we discuss the role of several Nek family members, namely Nek1, Nek4, Nek5, Nek6, and Nek10, which are not exclusively dedicated to cell cycle-related functions, in controlling mitochondrial functions. Specifically, we review the function of these Neks in mitochondrial respiration and dynamics, mtDNA maintenance, stress response, and cell death. Finally, we discuss the interplay of other cell cycle kinases in mitochondrial function and vice versa. Nek1, Nek5, and Nek6 are connected to the stress response, including ROS control, mtDNA repair, autophagy, and apoptosis. Nek4, in turn, seems to be related to mitochondrial dynamics, while Nek10 is involved with mitochondrial metabolism. Here, we propose that the participation of Neks in mitochondrial roles is a new functional axis for the Nek family.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Jörg Kobarg
- Faculty of Pharmaceutical Sciences, University of Campinas, Campinas 13083-871, Brazil; (F.L.B.); (P.R.F.D.)
| |
Collapse
|
4
|
Nguyen J, Win PW, Nagano TS, Shin EH, Newcomb C, Arking DE, Castellani CA. Mitochondrial DNA copy number reduction via in vitro TFAM knockout remodels the nuclear epigenome and transcriptome. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.29.577835. [PMID: 38352513 PMCID: PMC10862824 DOI: 10.1101/2024.01.29.577835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
Mitochondrial DNA copy number (mtDNA-CN) is associated with several age-related chronic diseases and is a predictor of all-cause mortality. Here, we examine site-specific differential nuclear DNA (nDNA) methylation and differential gene expression resulting from in vitro reduction of mtDNA-CN to uncover shared genes and biological pathways mediating the effect of mtDNA-CN on disease. Epigenome and transcriptome profiles were generated for three independent human embryonic kidney (HEK293T) cell lines harbouring a mitochondrial transcription factor A (TFAM) heterozygous knockout generated via CRISPR-Cas9, and matched control lines. We identified 4,242 differentially methylated sites, 228 differentially methylated regions, and 179 differentially expressed genes associated with mtDNA-CN. Integrated analysis uncovered 381 Gene-CpG pairs. GABAA receptor genes and related pathways, the neuroactive ligand receptor interaction pathway, ABCD1/2 gene activity, and cell signalling processes were overrepresented, providing insight into the underlying biological mechanisms facilitating these associations. We also report evidence implicating chromatin state regulatory mechanisms as modulators of mtDNA-CN effect on gene expression. We demonstrate that mitochondrial DNA variation signals to the nuclear DNA epigenome and transcriptome and may lead to nuclear remodelling relevant to development, aging, and complex disease.
Collapse
Affiliation(s)
- Julia Nguyen
- Department of Pathology and Laboratory Medicine, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Phyo W. Win
- Department of Pathology and Laboratory Medicine, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Tyler Shin Nagano
- Department of Pathology and Laboratory Medicine, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Elly H. Shin
- Department of Pathology and Laboratory Medicine, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Charles Newcomb
- McKusick-Nathans Institute, Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Dan E. Arking
- McKusick-Nathans Institute, Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Christina A. Castellani
- Department of Pathology and Laboratory Medicine, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
- Department of Epidemiology and Biostatistics, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
- McKusick-Nathans Institute, Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Children’s Health Research Institute, Lawson Research Institute, London, Ontario, Canada
| |
Collapse
|
5
|
Mietus-Snyder M, Perak AM, Cheng S, Hayman LL, Haynes N, Meikle PJ, Shah SH, Suglia SF. Next Generation, Modifiable Cardiometabolic Biomarkers: Mitochondrial Adaptation and Metabolic Resilience: A Scientific Statement From the American Heart Association. Circulation 2023; 148:1827-1845. [PMID: 37902008 DOI: 10.1161/cir.0000000000001185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/31/2023]
Abstract
Cardiometabolic risk is increasing in prevalence across the life span with disproportionate ramifications for youth at socioeconomic disadvantage. Established risk factors and associated disease progression are harder to reverse as they become entrenched over time; if current trends are unchecked, the consequences for individual and societal wellness will become untenable. Interrelated root causes of ectopic adiposity and insulin resistance are understood but identified late in the trajectory of systemic metabolic dysregulation when traditional cardiometabolic risk factors cross current diagnostic thresholds of disease. Thus, children at cardiometabolic risk are often exposed to suboptimal metabolism over years before they present with clinical symptoms, at which point life-long reliance on pharmacotherapy may only mitigate but not reverse the risk. Leading-edge indicators are needed to detect the earliest departure from healthy metabolism, so that targeted, primordial, and primary prevention of cardiometabolic risk is possible. Better understanding of biomarkers that reflect the earliest transitions to dysmetabolism, beginning in utero, ideally biomarkers that are also mechanistic/causal and modifiable, is critically needed. This scientific statement explores emerging biomarkers of cardiometabolic risk across rapidly evolving and interrelated "omic" fields of research (the epigenome, microbiome, metabolome, lipidome, and inflammasome). Connections in each domain to mitochondrial function are identified that may mediate the favorable responses of each of the omic biomarkers featured to a heart-healthy lifestyle, notably to nutritional interventions. Fuller implementation of evidence-based nutrition must address environmental and socioeconomic disparities that can either facilitate or impede response to therapy.
Collapse
|
6
|
Markin AM, Markina YV, Bogatyreva AI, Tolstik TV, Chakal DA, Breshenkov DG, Charchyan ER. The Role of Cytokines in Cholesterol Accumulation in Cells and Atherosclerosis Progression. Int J Mol Sci 2023; 24:ijms24076426. [PMID: 37047399 PMCID: PMC10094347 DOI: 10.3390/ijms24076426] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/21/2023] [Accepted: 03/27/2023] [Indexed: 03/31/2023] Open
Abstract
Atherosclerosis is the most common cardiovascular disease and is the number one cause of death worldwide. Today, atherosclerosis is a multifactorial chronic inflammatory disease with an autoimmune component, accompanied by the accumulation of cholesterol in the vessel wall and the formation of atherosclerotic plaques, endothelial dysfunction, and chronic inflammation. In the process of accumulation of atherogenic lipids, cells of the immune system, such as monocytes, macrophages, dendritic cells, etc., play an important role, producing and/or activating the production of various cytokines—interferons, interleukins, chemokines. In this review, we have tried to summarize the most important cytokines involved in the processes of atherogenesis.
Collapse
|
7
|
Li YJ, Jin X, Li D, Lu J, Zhang XN, Yang SJ, Zhao YX, Wu M. New insights into vascular aging: Emerging role of mitochondria function. Biomed Pharmacother 2022; 156:113954. [DOI: 10.1016/j.biopha.2022.113954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 10/29/2022] [Accepted: 11/01/2022] [Indexed: 11/09/2022] Open
|
8
|
Preanalytical Variables in the Analysis of Mitochondrial DNA in Whole Blood and Plasma from Pancreatic Cancer Patients. Diagnostics (Basel) 2022; 12:diagnostics12081905. [PMID: 36010255 PMCID: PMC9406772 DOI: 10.3390/diagnostics12081905] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/28/2022] [Accepted: 08/05/2022] [Indexed: 02/07/2023] Open
Abstract
Given the crucial role of mitochondria as the main cellular energy provider and its contribution towards tumor growth, chemoresistance, and cancer cell plasticity, mitochondrial DNA (mtDNA) could serve as a relevant biomarker. Thus, the profiling of mtDNA mutations and copy number variations is receiving increasing attention for its possible role in the early diagnosis and monitoring therapies of human cancers. This applies particularly to highly aggressive pancreatic cancer, which is often diagnosed late and is associated with poor prognosis. As current diagnostic procedures are based on imaging, tissue histology, and protein biomarkers with rather low specificity, tumor-derived mtDNA mutations detected from whole blood represents a potential significant leap forward towards early cancer diagnosis. However, for future routine use in clinical settings it is essential that preanalytics related to the characterization of mtDNA in whole blood are thoroughly standardized, controlled, and subject to proper quality assurance, yet this is largely lacking. Therefore, in this study we carried out a comprehensive preanalytical workup comparing different mtDNA extraction methods and testing important preanalytical steps, such as the use of different blood collection tubes, different storage temperatures, length of storage time, and yields in plasma vs. whole blood. To identify analytical and preanalytical differences, all variables were tested in both healthy subjects and pancreatic carcinoma patients. Our results demonstrated a significant difference between cancer patients and healthy subjects for some preanalytical workflows, while other workflows failed to yield statistically significant differences. This underscores the importance of controlling and standardizing preanalytical procedures in the development of clinical assays based on the measurement of mtDNA.
Collapse
|
9
|
Mitochondrial DNA Is a Vital Driving Force in Ischemia-Reperfusion Injury in Cardiovascular Diseases. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:6235747. [PMID: 35620580 PMCID: PMC9129988 DOI: 10.1155/2022/6235747] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 05/06/2022] [Indexed: 11/28/2022]
Abstract
According to the latest Global Burden of Disease Study, cardiovascular disease (CVD) is the leading cause of death, and ischemic heart disease and stroke are the cause of death in approximately half of CVD patients. In CVD, mitochondrial dysfunction following ischemia-reperfusion (I/R) injury results in heart failure. The proper functioning of oxidative phosphorylation (OXPHOS) and the mitochondrial life cycle in cardiac mitochondria are closely related to mitochondrial DNA (mtDNA). Following myocardial I/R injury, mitochondria activate multiple repair and clearance mechanisms to repair damaged mtDNA. When these repair mechanisms are insufficient to restore the structure and function of mtDNA, irreversible mtDNA damage occurs, leading to mtDNA mutations. Since mtDNA mutations aggravate OXPHOS dysfunction and affect mitophagy, mtDNA mutation accumulation leads to leakage of mtDNA and proteins outside the mitochondria, inducing an innate immune response, aggravating cardiovascular injury, and leading to the need for external interventions to stop or slow the disease course. On the other hand, mtDNA released into the circulation after cardiac injury can serve as a biomarker for CVD diagnosis and prognosis. This article reviews the pathogenic basis and related research findings of mtDNA oxidative damage and mtDNA leak-triggered innate immune response associated with I/R injury in CVD and summarizes therapeutic options that target mtDNA.
Collapse
|
10
|
Chen T, Wang X, Jia J, Wang D, Gao Y, Yang X, Zhang S, Niu P, Shi Z. Reduced mitochondrial DNA copy number in occupational workers from brominated flame retardants manufacturing plants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 809:151086. [PMID: 34687703 DOI: 10.1016/j.scitotenv.2021.151086] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 10/04/2021] [Accepted: 10/15/2021] [Indexed: 06/13/2023]
Abstract
Decabrominated diphenyl ether (BDE-209) and its substitute decabromodiphenyl ethane (DBDPE) are two flame retardants that have similar structure and are widely used in various industrial products. The accumulation and potential toxicity of them to human health have already aroused attention, and some research showed that they may affect mitochondrial function. Therefore, this study focused on the population with high exposure to brominated flame retardants (BFRs) and the related changes in mtDNA copy number (mtDNAcn) in whole blood. 334 blood samples were collected from three groups of people in Shandong Province, including 42 BDE-209 occupational exposure workers from the BDE-209 manufacturing plant, 131 DBDPE occupational exposure workers from the DBDPE manufacturing plant, and 161 non-BFRs occupational exposure residents from the BFRs contaminated area. We measured the levels of BDE-209, DBDPE in serum sample, and the mtDNAcn in whole blood sample and analyzed these data by multiple linear regression. The average concentrations of BDE-209, DBDPE and ∑(BDE-209 + DBDPE) in BDE-209 occupational workers were 3510, 639 and 4600 ng/g lw, respectively; the average concentrations of BDE-209, DBDPE and ∑(BDE-209 + DBDPE) in DBDPE occupational workers were 229, 4040 and 4470 ng/g lw, respectively; the average concentrations of BDE-209, DBDPE and ∑(BDE-209 + DBDPE) in non-BFRs occupational exposure residents were 66.3, 45.7 and 137 ng/g lw, respectively. The relative mtDNAcn was 0.823 in BDE-209 occupational workers, 0.845 in DBDPE occupational workers and 0.989 in non-BFRs occupational exposure residents. A 10-fold increase in BDE-209, DBDPE concentrations was separately associated with a 0.068 and 0.063 decrease in mtDNAcn. Therefore, our study implied that BFRs may affect mitochondrial function. As increasing BFRs exposure has emerged in recent years, the relationship between BFRs exposure and mitochondrial function needs further study.
Collapse
Affiliation(s)
- Tian Chen
- School of Public Health and Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Xueting Wang
- School of Public Health and Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Jiaxin Jia
- School of Public Health and Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Dejun Wang
- Shandong Center for Disease Control and Prevention, Jinan 250014, Shandong, China
| | - Yanxin Gao
- Shandong Center for Disease Control and Prevention, Jinan 250014, Shandong, China
| | - Xin Yang
- School of Public Health and Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Shixuan Zhang
- School of Public Health and Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Piye Niu
- School of Public Health and Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China.
| | - Zhixiong Shi
- School of Public Health and Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China.
| |
Collapse
|
11
|
Abstract
Advances in population-scale genomic sequencing have greatly expanded the understanding of the inherited basis of cardiovascular disease (CVD). Reanalysis of these genomic datasets identified an unexpected risk factor for CVD, somatically acquired DNA mutations. In this review, we provide an overview of somatic mutations and their contributions to CVD. We focus on the most common and well-described manifestation, clonal hematopoiesis of indeterminate potential. We also review the currently available data regarding how somatic mutations lead to tissue mosaicism in various forms of CVD, including atrial fibrillation and aortic aneurism associated with Marfan Syndrome. Finally, we highlight future research directions given current knowledge gaps and consider how technological advances will enhance the discovery of somatic mutations in CVD and management of patients with somatic mutations.
Collapse
Affiliation(s)
- J. Brett Heimlich
- Department of Medicine, Division of Cardiovascular Medicine, Vanderbilt University Medical Center
| | - Alexander G. Bick
- Department of Medicine, Division of Genetic Medicine, Vanderbilt University Medical Center
| |
Collapse
|
12
|
Valdés-Aguayo JJ, Garza-Veloz I, Vargas-Rodríguez JR, Martinez-Vazquez MC, Avila-Carrasco L, Bernal-Silva S, González-Fuentes C, Comas-García A, Alvarado-Hernández DE, Centeno-Ramirez ASH, Rodriguez-Sánchez IP, Delgado-Enciso I, Martinez-Fierro ML. Peripheral Blood Mitochondrial DNA Levels Were Modulated by SARS-CoV-2 Infection Severity and Its Lessening Was Associated With Mortality Among Hospitalized Patients With COVID-19. Front Cell Infect Microbiol 2022; 11:754708. [PMID: 34976854 PMCID: PMC8716733 DOI: 10.3389/fcimb.2021.754708] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 11/29/2021] [Indexed: 12/22/2022] Open
Abstract
Introduction During severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, the virus hijacks the mitochondria causing damage of its membrane and release of mt-DNA into the circulation which can trigger innate immunity and generate an inflammatory state. In this study, we explored the importance of peripheral blood mt-DNA as an early predictor of evolution in patients with COVID-19 and to evaluate the association between the concentration of mt-DNA and the severity of the disease and the patient’s outcome. Methods A total 102 patients (51 COVID-19 cases and 51 controls) were included in the study. mt-DNA obtained from peripheral blood was quantified by qRT-PCR using the NADH mitochondrial gene. Results There were differences in peripheral blood mt-DNA between patients with COVID-19 (4.25 ng/μl ± 0.30) and controls (3.3 ng/μl ± 0.16) (p = 0.007). Lower mt-DNA concentrations were observed in patients with severe COVID-19 when compared with mild (p= 0.005) and moderate (p= 0.011) cases of COVID-19. In comparison with patients with severe COVID-19 who survived (3.74 ± 0.26 ng/μl) decreased levels of mt-DNA in patients with severe COVID-19 who died (2.4 ± 0.65 ng/μl) were also observed (p = 0.037). Conclusion High levels of mt-DNA were associated with COVID-19 and its decrease could be used as a potential biomarker to establish a prognosis of severity and mortality of patients with COVID-19.
Collapse
Affiliation(s)
- José J Valdés-Aguayo
- Molecular Medicine Laboratory, Unidad Académica de Medicina Humana y C.S, Universidad Autónoma de Zacatecas, Zacatecas, Mexico
| | - Idalia Garza-Veloz
- Molecular Medicine Laboratory, Unidad Académica de Medicina Humana y C.S, Universidad Autónoma de Zacatecas, Zacatecas, Mexico
| | - José R Vargas-Rodríguez
- Molecular Medicine Laboratory, Unidad Académica de Medicina Humana y C.S, Universidad Autónoma de Zacatecas, Zacatecas, Mexico
| | - María C Martinez-Vazquez
- Molecular Medicine Laboratory, Unidad Académica de Medicina Humana y C.S, Universidad Autónoma de Zacatecas, Zacatecas, Mexico
| | - Lorena Avila-Carrasco
- Molecular Medicine Laboratory, Unidad Académica de Medicina Humana y C.S, Universidad Autónoma de Zacatecas, Zacatecas, Mexico
| | - Sofia Bernal-Silva
- Departamento de Microbiología, Facultad de Medicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico.,Centro de Investigación en Ciencias de la Salud y Biomedicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico
| | | | - Andreu Comas-García
- Departamento de Microbiología, Facultad de Medicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico.,Centro de Investigación en Ciencias de la Salud y Biomedicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico
| | - Diana E Alvarado-Hernández
- Centro de Investigación en Ciencias de la Salud y Biomedicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico
| | | | - Iram P Rodriguez-Sánchez
- Facultad de Ciencias Biológicas, Laboratorio de Fisiología Molecular y Estructural, Universidad Autónoma de Nuevo León, Nuevo León, Mexico
| | | | - Margarita L Martinez-Fierro
- Molecular Medicine Laboratory, Unidad Académica de Medicina Humana y C.S, Universidad Autónoma de Zacatecas, Zacatecas, Mexico
| |
Collapse
|
13
|
Sundquist K, Sundquist J, Palmer K, Memon AA. Role of mitochondrial DNA copy number in incident cardiovascular diseases and the association between cardiovascular disease and type 2 diabetes: A follow-up study on middle-aged women. Atherosclerosis 2021; 341:58-62. [PMID: 34876297 DOI: 10.1016/j.atherosclerosis.2021.11.020] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 11/09/2021] [Accepted: 11/19/2021] [Indexed: 11/15/2022]
Abstract
BACKGROUND AND AIMS Mitochondrial DNA copy number (mtDNA-CN) is a surrogate biomarker of mitochondrial dysfunction and is associated with type 2 diabetes (T2D) and cardiovascular disease (CVD). However, despite being associated with both CVD and T2D, it is not known what role mtDNA-CN has in the association between T2D and CVD. Our aims were to investigate whether, (1) baseline mtDNA-CN is associated with CVD incidence and (2) mtDNA-CN has a role as a mediator between T2D and CVD. METHOD We quantified absolute mtDNA-CN by droplet digital PCR method in a population-based follow-up study of middle aged (52-65 years) women (n = 3062). The median follow-up period was 17 years. RESULTS Our results show that low baseline levels of mtDNA-CN (<111 copies/μL) were associated with an increased risk of CVD (HR = 1.32, 95% CI = 1.08; 1.63) as well as with specific CVDs: coronary heart disease (HR = 1.28, 95% CI = 0.99; 1.66), stroke (HR = 1.26, 95% CI = 0.87; 1.84) and abdominal aortic aneurysm (HR = 2.61, 95% CI = 1.03; 6.62). The associations decreased but persisted even after adjustment for potential confounders. Furthermore, our results show that the total effect of T2D on future risk of CVD was reduced after controlling for mtDNA-CN and the proportion mediated by mtDNA-CN was estimated to be 4.9%. CONCLUSIONS Lower baseline mtDNA-CN is associated with incident CVD and may have a mediating effect on the association between T2D and CVD; however, this novel observation needs to be confirmed in future studies.
Collapse
Affiliation(s)
- Kristina Sundquist
- Center for Primary Health Care Research, Lund University/Region Skåne, Malmö, 20502, Sweden
| | - Jan Sundquist
- Center for Primary Health Care Research, Lund University/Region Skåne, Malmö, 20502, Sweden
| | - Karolina Palmer
- Center for Primary Health Care Research, Lund University/Region Skåne, Malmö, 20502, Sweden
| | - Ashfaque A Memon
- Center for Primary Health Care Research, Lund University/Region Skåne, Malmö, 20502, Sweden.
| |
Collapse
|
14
|
Association of Mitochondrial DNA Copy Number and Telomere Length with Prevalent and Incident Cancer and Cancer Mortality in Women: A Prospective Swedish Population-Based Study. Cancers (Basel) 2021; 13:cancers13153842. [PMID: 34359743 PMCID: PMC8345403 DOI: 10.3390/cancers13153842] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 07/26/2021] [Accepted: 07/27/2021] [Indexed: 12/09/2022] Open
Abstract
Changes in mitochondrial DNA copy number (mtDNA-CN) and telomere length have, separately, been proposed as risk factors for various cancer types. However, those results are conflicting. Here, mtDNA-CN and relative telomere length were measured in 3225 middle-aged women included in a large population-based prospective cohort. The baseline mtDNA-CN in patients with prevalent breast cancer was significantly higher (12.39 copies/µL) than cancer-free individuals. During an average of 15.2 years of follow-up, 520 patients were diagnosed with cancer. Lower mtDNA-CN was associated with decreased risk of genital organ cancer (hazard ratio (HR), 0.84), and shorter telomere length was associated with increased risk of urinary system cancer (HR, 1.79). Furthermore, mtDNA-CN was inversely associated with all-cause (HR, 1.20) and cancer-specific mortality (HR, 1.21) when considering all cancer types. Surprisingly, shorter telomere length was associated with decreased risk of cancer-specific mortality when considering all cancer types (HR, 0.85). Finally, lower mtDNA-CN and shorter telomere length were associated with increased risk of both all-cause and cancer-specific mortality in genital organ cancer patients. In this study population, we found that mtDNA-CN and telomere length were significantly associated with prevalent and incident cancer and cancer mortality. However, these associations were cancer type specific and need further investigation.
Collapse
|
15
|
Park SH, Lee SY, Kim SA. Mitochondrial DNA Methylation Is Higher in Acute Coronary Syndrome Than in Stable Coronary Artery Disease. In Vivo 2021; 35:181-189. [PMID: 33402465 DOI: 10.21873/invivo.12247] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 10/08/2020] [Accepted: 10/13/2020] [Indexed: 01/03/2023]
Abstract
BACKGROUND/AIM Decreased mitochondrial DNA copy number (mtDNA-CN) has been associated with coronary artery disease (CAD). We aimed to clarify the difference between stable CAD (SCAD) and acute coronary syndrome (ACS) regarding mtDNA-CN and the DNA methylation ratio in regions influencing the regulation of mitochondrial biogenesis. MATERIALS AND METHODS Using quantitative real-time polymerase chain reaction, mtDNA-CN was measured in peripheral blood leukocytes sampled from 50 patients with SCAD and 50 with ACS. We then conducted bisulfite modification of DNA followed by methylation-specific polymerase chain reaction to quantify mtDNA methylation in the mitochondrial D-loop region (mtDLR) and nuclear DNA methylation in the promoter region of nuclear peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PPARGC1A) gene. RESULTS Compared to patients with SCAD, those with ACS had significantly lower relative mtDNA-CN (0.89±0.24 vs. 1.00±0.28, p=0.013) and higher DNA methylation ratio of the mtDLR (1.11±0.24 vs. 1.00±0.25, p=0.027) Conclusion: Our findings suggest that increased DNA methylation in the mtDLR, which translates into reduced mtDNA content, may affect the clinical phenotype of CAD.
Collapse
Affiliation(s)
- Sang Hyun Park
- Department of Internal Medicine, School of Medicine, Eulji University, Daejeon, Republic of Korea
| | - Soo Young Lee
- Department of Pharmacology, School of Medicine, Eulji University, Daejeon, Republic of Korea
| | - Soon Ae Kim
- Department of Pharmacology, School of Medicine, Eulji University, Daejeon, Republic of Korea
| |
Collapse
|
16
|
Ganel L, Chen L, Christ R, Vangipurapu J, Young E, Das I, Kanchi K, Larson D, Regier A, Abel H, Kang CJ, Scott A, Havulinna A, Chiang CWK, Service S, Freimer N, Palotie A, Ripatti S, Kuusisto J, Boehnke M, Laakso M, Locke A, Stitziel NO, Hall IM. Mitochondrial genome copy number measured by DNA sequencing in human blood is strongly associated with metabolic traits via cell-type composition differences. Hum Genomics 2021; 15:34. [PMID: 34099068 PMCID: PMC8185936 DOI: 10.1186/s40246-021-00335-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 05/26/2021] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND Mitochondrial genome copy number (MT-CN) varies among humans and across tissues and is highly heritable, but its causes and consequences are not well understood. When measured by bulk DNA sequencing in blood, MT-CN may reflect a combination of the number of mitochondria per cell and cell-type composition. Here, we studied MT-CN variation in blood-derived DNA from 19184 Finnish individuals using a combination of genome (N = 4163) and exome sequencing (N = 19034) data as well as imputed genotypes (N = 17718). RESULTS We identified two loci significantly associated with MT-CN variation: a common variant at the MYB-HBS1L locus (P = 1.6 × 10-8), which has previously been associated with numerous hematological parameters; and a burden of rare variants in the TMBIM1 gene (P = 3.0 × 10-8), which has been reported to protect against non-alcoholic fatty liver disease. We also found that MT-CN is strongly associated with insulin levels (P = 2.0 × 10-21) and other metabolic syndrome (metS)-related traits. Using a Mendelian randomization framework, we show evidence that MT-CN measured in blood is causally related to insulin levels. We then applied an MT-CN polygenic risk score (PRS) derived from Finnish data to the UK Biobank, where the association between the PRS and metS traits was replicated. Adjusting for cell counts largely eliminated these signals, suggesting that MT-CN affects metS via cell-type composition. CONCLUSION These results suggest that measurements of MT-CN in blood-derived DNA partially reflect differences in cell-type composition and that these differences are causally linked to insulin and related traits.
Collapse
Affiliation(s)
- Liron Ganel
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO, USA
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Lei Chen
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO, USA
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Ryan Christ
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO, USA
| | - Jagadish Vangipurapu
- Institute of Clinical Medicine, Internal Medicine, University of Eastern Finland, Kuopio, Finland
| | - Erica Young
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO, USA
- Department of Medicine, Cardiovascular Division, Washington University School of Medicine, St. Louis, MO, USA
| | - Indraniel Das
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO, USA
| | - Krishna Kanchi
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO, USA
| | - David Larson
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO, USA
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA
| | - Allison Regier
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO, USA
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Haley Abel
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO, USA
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA
| | - Chul Joo Kang
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO, USA
| | - Alexandra Scott
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO, USA
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Aki Havulinna
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland
- Finnish Institute for Health and Welfare (THL), Helsinki, Finland
| | - Charleston W K Chiang
- Center for Genetic Epidemiology, Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Quantitative and Computational Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
| | - Susan Service
- Center for Neurobehavioral Genetics, Jane and Terry Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles, Los Angeles, CA, USA
| | - Nelson Freimer
- Center for Neurobehavioral Genetics, Jane and Terry Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles, Los Angeles, CA, USA
| | - Aarno Palotie
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland
- Analytical and Translational Genetics Unit (ATGU), Psychiatric & Neurodevelopmental Genetics Unit, Departments of Psychiatry and Neurology, Massachusetts General Hospital, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Samuli Ripatti
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Johanna Kuusisto
- Institute of Clinical Medicine, Internal Medicine, University of Eastern Finland, Kuopio, Finland
- Department of Medicine, Kuopio University Hospital, Kuopio, Finland
| | - Michael Boehnke
- Department of Biostatistics and Center for Statistical Genetics, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Markku Laakso
- Institute of Clinical Medicine, Internal Medicine, University of Eastern Finland, Kuopio, Finland
- Department of Medicine, Kuopio University Hospital, Kuopio, Finland
| | - Adam Locke
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO, USA
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Nathan O Stitziel
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO, USA.
- Department of Medicine, Cardiovascular Division, Washington University School of Medicine, St. Louis, MO, USA.
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA.
| | - Ira M Hall
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO, USA.
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA.
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
17
|
Sazonova MA, Ryzhkova AI, Sinyov VV, Sazonova MD, Kirichenko TV, Doroschuk NA, Karagodin VP, Orekhov AN, Sobenin IA. Mutations of mtDNA in some Vascular and Metabolic Diseases. Curr Pharm Des 2021; 27:177-184. [PMID: 32867647 DOI: 10.2174/1381612826999200820162154] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 06/05/2020] [Accepted: 06/12/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND The present review article considers some chronic diseases of vascular and metabolic genesis, the causes of which may be mitochondrial dysfunction. Very often, in the long course of the disease, complications may occur, leading to myocardial infarction or ischemic stroke and, as a result, death. In particular, a large percentage of human deaths nowadays belongs to cardiovascular diseases, such as coronary heart disease (CHD), arterial hypertension, cardiomyopathies, and type 2 diabetes mellitus. OBJECTIVE The aim of the present review was the analysis of literature sources, devoted to an investigation of a link of mitochondrial DNA mutations with chronic diseases of vascular and metabolic genesis. RESULTS The analysis of literature indicates the association of the mitochondrial genome mutations with coronary heart disease, type 2 diabetes mellitus, hypertension, and various types of cardiomyopathies. CONCLUSION The detected mutations can be used to analyze the predisposition to chronic diseases of vascular and metabolic genesis. They can also be used to create molecular-cell models necessary to evaluate the effectiveness of drugs developed for the treatment of these pathologies. MtDNA mutations associated with the absence of diseases of vascular and metabolic genesis could be potential candidates for gene therapy of the said diseases.
Collapse
Affiliation(s)
- Margarita A Sazonova
- Laboratory of angiopathology, Institute of General Pathology and Pathophysiology, Russian Academy of Medical Sciences, Moscow, Russian Federation
| | - Anastasia I Ryzhkova
- Laboratory of angiopathology, Institute of General Pathology and Pathophysiology, Russian Academy of Medical Sciences, Moscow, Russian Federation
| | - Vasily V Sinyov
- Laboratory of angiopathology, Institute of General Pathology and Pathophysiology, Russian Academy of Medical Sciences, Moscow, Russian Federation
| | - Marina D Sazonova
- Laboratory of angiopathology, Institute of General Pathology and Pathophysiology, Russian Academy of Medical Sciences, Moscow, Russian Federation
| | - Tatiana V Kirichenko
- Laboratory of Cellular and Molecular Pathology of Cardiovascular System, Research Institute of Human Morphology, Moscow, Russian Federation
| | - Natalya A Doroschuk
- Laboratory of angiopathology, Institute of General Pathology and Pathophysiology, Russian Academy of Medical Sciences, Moscow, Russian Federation
| | - Vasily P Karagodin
- Laboratory of angiopathology, Institute of General Pathology and Pathophysiology, Russian Academy of Medical Sciences, Moscow, Russian Federation
| | - Alexander N Orekhov
- Laboratory of angiopathology, Institute of General Pathology and Pathophysiology, Russian Academy of Medical Sciences, Moscow, Russian Federation
| | - Igor A Sobenin
- Laboratory of angiopathology, Institute of General Pathology and Pathophysiology, Russian Academy of Medical Sciences, Moscow, 0
| |
Collapse
|
18
|
Utyro O, Perła-Kaján J, Kubalska J, Graban A, Jakubowski H. Telomere length and mtDNA copy number in human cystathionine β-synthase deficiency. Free Radic Biol Med 2020; 160:219-226. [PMID: 32768567 DOI: 10.1016/j.freeradbiomed.2020.07.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 07/24/2020] [Accepted: 07/27/2020] [Indexed: 10/23/2022]
Abstract
Telomere shortening and mitochondrial DNA (mtDNA) copy number are associated with human disease and a reduced life span. Cystathionine β-synthase (CBS) is a housekeeping enzyme that catalyzes the first step in metabolic conversion of homocysteine (Hcy) to cysteine. Mutations in the CBS gene cause CBS deficiency, a rare recessive metabolic disease, manifested by severe hyperhomocysteinemia (HHcy) and thromboembolism, which ultimately reduces the life span. However, it was not known whether telomere shortening or mtDNA is involved in the pathology of human CBS deficiency. We quantified leukocyte telomere length (TL), mtDNA copy number, and plasma Hcy levels in CBS-/- patients (n = 23) and in sex- and age-matched unaffected CBS+/+ control individuals (n = 28) 0.08-57 years old. We found that TL was significantly increased in severely HHcy CBS-/- female patients but unaffected in severely HHcy CBS-/- male patients, relative to the corresponding CBS+/+ controls who had normal plasma Hcy levels. In multiple regression analysis TL was associated with CBS genotype in women but not in men. MtDNA copy number was not significantly affected by the CBS-/- genotype. Taken together, these findings identify the CBS gene as a new locus in human DNA that affects TL in women and illustrate a concept that a housekeeping metabolic gene can be involved in telomere biology. Our findings suggest that neither telomere shortening nor reduced mtDNA copy number contribute to the reduced life span in CBS-/- patients.
Collapse
Affiliation(s)
- Olga Utyro
- Department of Biochemistry and Biotechnology, Poznań University of Life Sciences, 60-632, Poznań, Poland; Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704, Poznań, Poland
| | - Joanna Perła-Kaján
- Department of Biochemistry and Biotechnology, Poznań University of Life Sciences, 60-632, Poznań, Poland
| | - Jolanta Kubalska
- Department of Genetics, Institute of Psychiatry and Neurology, 02-957, Warsaw, Poland
| | - Ałła Graban
- Department of Genetics, Institute of Psychiatry and Neurology, 02-957, Warsaw, Poland
| | - Hieronim Jakubowski
- Department of Biochemistry and Biotechnology, Poznań University of Life Sciences, 60-632, Poznań, Poland; Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers University-New Jersey Medical School, International Center for Public Health, Newark, NJ, 07103, USA.
| |
Collapse
|
19
|
Castellani CA, Longchamps RJ, Sumpter JA, Newcomb CE, Lane JA, Grove ML, Bressler J, Brody JA, Floyd JS, Bartz TM, Taylor KD, Wang P, Tin A, Coresh J, Pankow JS, Fornage M, Guallar E, O'Rourke B, Pankratz N, Liu C, Levy D, Sotoodehnia N, Boerwinkle E, Arking DE. Mitochondrial DNA copy number can influence mortality and cardiovascular disease via methylation of nuclear DNA CpGs. Genome Med 2020; 12:84. [PMID: 32988399 PMCID: PMC7523322 DOI: 10.1186/s13073-020-00778-7] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 09/04/2020] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Mitochondrial DNA copy number (mtDNA-CN) has been associated with a variety of aging-related diseases, including all-cause mortality. However, the mechanism by which mtDNA-CN influences disease is not currently understood. One such mechanism may be through regulation of nuclear gene expression via the modification of nuclear DNA (nDNA) methylation. METHODS To investigate this hypothesis, we assessed the relationship between mtDNA-CN and nDNA methylation in 2507 African American (AA) and European American (EA) participants from the Atherosclerosis Risk in Communities (ARIC) study. To validate our findings, we assayed an additional 2528 participants from the Cardiovascular Health Study (CHS) (N = 533) and Framingham Heart Study (FHS) (N = 1995). We further assessed the effect of experimental modification of mtDNA-CN through knockout of TFAM, a regulator of mtDNA replication, via CRISPR-Cas9. RESULTS Thirty-four independent CpGs were associated with mtDNA-CN at genome-wide significance (P < 5 × 10- 8). Meta-analysis across all cohorts identified six mtDNA-CN-associated CpGs at genome-wide significance (P < 5 × 10- 8). Additionally, over half of these CpGs were associated with phenotypes known to be associated with mtDNA-CN, including coronary heart disease, cardiovascular disease, and mortality. Experimental modification of mtDNA-CN demonstrated that modulation of mtDNA-CN results in changes in nDNA methylation and gene expression of specific CpGs and nearby transcripts. Strikingly, the "neuroactive ligand receptor interaction" KEGG pathway was found to be highly overrepresented in the ARIC cohort (P = 5.24 × 10- 12), as well as the TFAM knockout methylation (P = 4.41 × 10- 4) and expression (P = 4.30 × 10- 4) studies. CONCLUSIONS These results demonstrate that changes in mtDNA-CN influence nDNA methylation at specific loci and result in differential expression of specific genes that may impact human health and disease via altered cell signaling.
Collapse
Affiliation(s)
- Christina A Castellani
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ryan J Longchamps
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jason A Sumpter
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Charles E Newcomb
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - John A Lane
- Department of Laboratory Medicine and Pathology, University of Minnesota School of Medicine, Minneapolis, MN, USA
| | - Megan L Grove
- Human Genetics Center, School of Public Health, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Jan Bressler
- Human Genetics Center, School of Public Health, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Jennifer A Brody
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA
| | - James S Floyd
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Traci M Bartz
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA
- Department of Biostatistics, University of Washington, Seattle, WA, USA
| | - Kent D Taylor
- Institute for Translational Genomics and Population Sciences, Los Angeles BioMedical Research Institute at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Penglong Wang
- Framingham Heart Study, Framingham, MA, USA
- Population Sciences Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Adrienne Tin
- Department of Epidemiology and the Welch Center for Prevention, Epidemiology and Clinical Research, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Josef Coresh
- Department of Epidemiology and the Welch Center for Prevention, Epidemiology and Clinical Research, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - James S Pankow
- Division of Epidemiology & Community Health, School of Public Health, University of Minnesota, Minneapolis, MN, USA
| | - Myriam Fornage
- Human Genetics Center, School of Public Health, University of Texas Health Science Center at Houston, Houston, TX, USA
- Brown Foundation Institute of Molecular Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Eliseo Guallar
- Department of Epidemiology and the Welch Center for Prevention, Epidemiology and Clinical Research, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Brian O'Rourke
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Nathan Pankratz
- Department of Laboratory Medicine and Pathology, University of Minnesota School of Medicine, Minneapolis, MN, USA
| | - Chunyu Liu
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Daniel Levy
- Framingham Heart Study, Framingham, MA, USA
- Population Sciences Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Nona Sotoodehnia
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Eric Boerwinkle
- Human Genetics Center, School of Public Health, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Dan E Arking
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
20
|
Vyas CM, Ogata S, Reynolds CF, Mischoulon D, Chang G, Cook NR, Manson JE, Crous-Bou M, De Vivo I, Okereke OI. Lifestyle and behavioral factors and mitochondrial DNA copy number in a diverse cohort of mid-life and older adults. PLoS One 2020; 15:e0237235. [PMID: 32785256 PMCID: PMC7423118 DOI: 10.1371/journal.pone.0237235] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 07/02/2020] [Indexed: 01/15/2023] Open
Abstract
Mitochondrial DNA copy number (mtDNAcn) is a putative biomarker of oxidative stress and biological aging. Modifiable factors, including physical activity (PA), avoidance of heavy alcohol use and smoking, and maintaining good mental health, may reduce oxidative stress and promote healthy aging. Yet, limited data exist regarding how these factors are associated with mtDNAcn or whether age, sex or race/ethnicity moderate associations. In this cross-sectional study, we selected 391 adults (183 non-Hispanic White, 110 Black and 98 Hispanic; mean = 67 years) from the VITAL-DEP (VITamin D and OmegA-3 TriaL-Depression Endpoint Prevention) ancillary to the VITAL trial. We estimated associations between lifestyle and behavioral factors (PA, alcohol consumption, cigarette smoking and depression) and log-transformed mtDNAcn using multivariable linear regression models. MtDNAcn was not correlated with chronological age; women had ~17% higher mtDNAcn compared to men. There were no significant associations between PA measures (frequency, amount or intensity) or alcohol consumption with mtDNAcn. Cigarette smoking (per 5 pack-years) was significantly associated with mtDNAcn (percent difference = -2.9% (95% confidence interval (CI) = -5.4%, -0.4%)); a large contrast was observed among heavy vs. non-smokers (≥30 vs. 0 pack-years): percent difference = -28.5% (95% CI = -44.2%, -8.3%). The estimate of mtDNAcn was suggestively different for past vs. no depression history (percent difference = -15.1% 95% CI = -30.8%, 4.1%), but this difference was not statistically significant. The association between smoking and log-mtDNAcn varied by sex and race/ethnicity; it was stronger in men and Black participants. While chance findings cannot be excluded, results from this study support associations of smoking, but not chronological age, with mtDNAcn and suggest nuanced considerations of mtDNAcn as indicative of varying oxidative stress states vs. biological aging itself.
Collapse
Affiliation(s)
- Chirag M. Vyas
- Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Soshiro Ogata
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Charles F. Reynolds
- Department of Psychiatry, UPMC and University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - David Mischoulon
- Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Grace Chang
- Department of Psychiatry, VA Boston Healthcare System, Brockton, Massachusetts, United States of America
| | - Nancy R. Cook
- Division of Preventive Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, Massachusetts, United States of America
| | - JoAnn E. Manson
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
- Division of Preventive Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, Massachusetts, United States of America
| | - Marta Crous-Bou
- Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, Massachusetts, United States of America
- IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Madrid, Spain
| | - Immaculata De Vivo
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, Massachusetts, United States of America
| | - Olivia I. Okereke
- Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
21
|
Morjane I, Charoute H, Ouatou S, Elkhattabi L, Benrahma H, Saile R, Rouba H, Barakat A. Association of c.56C > G (rs3135506) Apolipoprotein A5 Gene Polymorphism with Coronary Artery Disease in Moroccan Subjects: A Case-Control Study and an Updated Meta-Analysis. Cardiol Res Pract 2020; 2020:5981971. [PMID: 32832146 PMCID: PMC7424381 DOI: 10.1155/2020/5981971] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 02/29/2020] [Accepted: 03/03/2020] [Indexed: 11/18/2022] Open
Abstract
PURPOSE Coronary artery diseases (CAD) are clinical cardiovascular events associated with dyslipidemia in common. The interaction between environmental and genetic factors can be responsible for CAD. The present paper aimed to examine the association between c.56C > G (rs3135506) APOA5 gene polymorphism and CAD in Moroccan individuals and to perform an association update meta-analysis. MATERIALS AND METHODS The c.56C > G variant was genotyped in 122 patients with CAD and 134 unrelated controls. Genetic association analysis and comparison of biochemical parameters were performed using R statistical language. In addition, a comprehensive meta-analysis including eleven published studies in addition to our case-control study results was conducted using Review Manager 5.3. Publication bias was examined by Egger's test and funnel plot. RESULTS The case-control study data showed that the c.56C > G polymorphism was associated with CAD susceptibility under codominant (P-value = 0.001), recessive (P-value <0.001) and log-additive (P-value = 0.008) inheritance models. In addition, this polymorphism was significantly associated with increased levels of systolic and diastolic blood pressures, triglycerides, glycemia, and total cholesterol. Furthermore, meta-analysis showed a significant association between the c.56C > G gene polymorphism and increased risk of CAD under recessive (OR = 3.39[1.77-6.50], P value <0.001) and homozygote codominant (OR = 3.96[2.44-6.45], P value <0.001) models. CONCLUSION Our case-control study revealed a significant association between c.56C > G polymorphism and CAD in the Moroccan population. In addition, meta-analysis data supported the implication of this polymorphism in CAD susceptibility.
Collapse
Affiliation(s)
- Imane Morjane
- Laboratory of Genomics and Human Genetics, Institut Pasteur Du Maroc, Casablanca, Morocco
- Laboratory of Biology and Health, Faculty of Sciences Ben M'Sik, Hassan II University of Casablanca, Casablanca, Morocco
| | - Hicham Charoute
- Laboratory of Genomics and Human Genetics, Institut Pasteur Du Maroc, Casablanca, Morocco
| | - Sanaa Ouatou
- Laboratory of Genomics and Human Genetics, Institut Pasteur Du Maroc, Casablanca, Morocco
| | - Lamiae Elkhattabi
- Laboratory of Genomics and Human Genetics, Institut Pasteur Du Maroc, Casablanca, Morocco
- Laboratory of Biology and Health, Faculty of Sciences Ben M'Sik, Hassan II University of Casablanca, Casablanca, Morocco
| | - Houda Benrahma
- Laboratory of Genomics and Human Genetics, Institut Pasteur Du Maroc, Casablanca, Morocco
- National Reference Laboratory (LNR), Faculty of Medicine, Mohammed VI University of Health Sciences (UM6SS), Casablanca, Morocco
| | - Rachid Saile
- Laboratory of Biology and Health, Faculty of Sciences Ben M'Sik, Hassan II University of Casablanca, Casablanca, Morocco
| | - Hassan Rouba
- Laboratory of Genomics and Human Genetics, Institut Pasteur Du Maroc, Casablanca, Morocco
| | - Abdelhamid Barakat
- Laboratory of Genomics and Human Genetics, Institut Pasteur Du Maroc, Casablanca, Morocco
| |
Collapse
|
22
|
Hsieh AY, Kimmel E, Pick N, Sauvé L, Brophy J, Kakkar F, Bitnun A, Murray MC, Côté HC. Inverse relationship between leukocyte telomere length attrition and blood mitochondrial DNA content loss over time. Aging (Albany NY) 2020; 12:15196-15221. [PMID: 32703912 PMCID: PMC7467389 DOI: 10.18632/aging.103703] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 07/06/2020] [Indexed: 05/16/2023]
Abstract
Leukocyte telomere length (LTL) and whole blood mitochondrial DNA (WB mtDNA) content are aging markers impacted by chronic diseases such as human immunodeficiency virus (HIV) infection. We characterized the relationship between these two markers in 312 women ≥12 years of age living with HIV and 300 HIV-negative controls. We found no relationship between the two markers cross-sectionally. In multivariable models, age, ethnicity, HIV, and tobacco smoking were independently associated with shorter LTL, and the former three with lower WB mtDNA. Longitudinally, among a subgroup of 228 HIV participants and 68 HIV-negative controls with ≥2 biospecimens ≥1 year apart, an inverted pattern was observed between the rates of change in LTL and WB mtDNA content per year, whereby faster decline of one was associated with the preservation of the other. Furthermore, if HIV viral control was not maintained between visits, increased rates of both LTL attrition and WB mtDNA loss were observed. We describe a novel relationship between two established aging markers, whereby rates of change in LTL and WB mtDNA are inversely related. Our findings highlight the importance of maintaining HIV viral control, the complementary longitudinal relationship between the two markers, and the need to consider both in aging studies.
Collapse
Affiliation(s)
- Anthony Y.Y. Hsieh
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver V6T 2B5, British Columbia, Canada
- Centre for Blood Research, University of British Columbia, Vancouver V6T 1Z3, British Columbia, Canada
| | - Elana Kimmel
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver V6T 2B5, British Columbia, Canada
- Centre for Blood Research, University of British Columbia, Vancouver V6T 1Z3, British Columbia, Canada
| | - Neora Pick
- Oak Tree Clinic, BC Women's Hospital, Vancouver V6H 3N1, British Columbia, Canada
- Women's Health Research Institute, Vancouver V6H 2N9, British Columbia, Canada
- Department of Medicine, Division of Infectious Diseases, University of British Columbia, Vancouver V5Z 1M9, British Columbia, Canada
| | - Laura Sauvé
- Oak Tree Clinic, BC Women's Hospital, Vancouver V6H 3N1, British Columbia, Canada
- Women's Health Research Institute, Vancouver V6H 2N9, British Columbia, Canada
- Department of Pediatrics, University of British Columbia, Vancouver V6H 0B3, British Columbia, Canada
| | - Jason Brophy
- Department of Pediatrics, Children's Hospital of Eastern Ontario, University of Ottawa, Ottawa K1H 8L1, Ontario, Canada
| | - Fatima Kakkar
- Department of Pediatrics, Centre Hospitalier Universtaire Sainte-Justine, Université de Montréal, Montréal H3T 1C5, Quebec, Canada
| | - Ari Bitnun
- Department of Pediatrics, Hospital for Sick Children, University of Toronto, Toronto M5G 1X8, Ontario, Canada
| | - Melanie C.M. Murray
- Oak Tree Clinic, BC Women's Hospital, Vancouver V6H 3N1, British Columbia, Canada
- Women's Health Research Institute, Vancouver V6H 2N9, British Columbia, Canada
- Department of Medicine, Division of Infectious Diseases, University of British Columbia, Vancouver V5Z 1M9, British Columbia, Canada
| | - Hélène C.F. Côté
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver V6T 2B5, British Columbia, Canada
- Centre for Blood Research, University of British Columbia, Vancouver V6T 1Z3, British Columbia, Canada
- Women's Health Research Institute, Vancouver V6H 2N9, British Columbia, Canada
| |
Collapse
|
23
|
Castellani CA, Longchamps RJ, Sun J, Guallar E, Arking DE. Thinking outside the nucleus: Mitochondrial DNA copy number in health and disease. Mitochondrion 2020; 53:214-223. [PMID: 32544465 DOI: 10.1016/j.mito.2020.06.004] [Citation(s) in RCA: 200] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 05/19/2020] [Accepted: 06/08/2020] [Indexed: 02/07/2023]
Abstract
Mitochondrial DNA copy number (mtDNA-CN) is a biomarker of mitochondrial function and levels of mtDNA-CN have been reproducibly associated with overall mortality and a number of age-related diseases, including cardiovascular disease, chronic kidney disease, and cancer. Recent advancements in techniques for estimating mtDNA-CN, in particular the use of DNA microarrays and next-generation sequencing data, have led to the comprehensive assessment of mtDNA-CN across these and other diseases and traits. The importance of mtDNA-CN measures to disease and these advancing technologies suggest the potential for mtDNA-CN to be a useful biomarker in the clinic. While the exact mechanism(s) underlying the association of mtDNA-CN with disease remain to be elucidated, we review the existing literature which supports roles for inflammatory dynamics, immune function and alterations to cell signaling as consequences of variation in mtDNA-CN. We propose that future studies should focus on characterizing longitudinal, cell-type and cross-tissue profiles of mtDNA-CN as well as improving methods for measuring mtDNA-CN which will expand the potential for its use as a clinical biomarker.
Collapse
Affiliation(s)
- Christina A Castellani
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Ryan J Longchamps
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Jing Sun
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
| | - Eliseo Guallar
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States; The Welch Center for Prevention, Epidemiology and Clinical Research, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
| | - Dan E Arking
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States.
| |
Collapse
|
24
|
Koller A, Fazzini F, Lamina C, Rantner B, Kollerits B, Stadler M, Klein-Weigel P, Fraedrich G, Kronenberg F. Mitochondrial DNA copy number is associated with all-cause mortality and cardiovascular events in patients with peripheral arterial disease. J Intern Med 2020; 287:569-579. [PMID: 32037598 PMCID: PMC7318579 DOI: 10.1111/joim.13027] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 12/18/2019] [Accepted: 01/15/2020] [Indexed: 12/11/2022]
Abstract
BACKGROUND Dysfunctional mitochondria have an influence on inflammation and increased oxidative stress due to an excessive production of reactive oxygen species. The mitochondrial DNA copy number (mtDNA-CN) is a potential biomarker for mitochondrial dysfunction and has been associated with various diseases. However, results were partially contrasting which might have been caused by methodological difficulties to quantify mtDNA-CN. OBJECTIVE We aimed to investigate whether mtDNA-CN is associated with peripheral arterial disease (PAD) as well as all-cause mortality and cardiovascular events during seven years of follow-up. METHODS A total of 236 male patients with PAD from the Cardiovascular Disease in Intermittent Claudication (CAVASIC) study were compared with 249 age- and diabetes-matched controls. MtDNA-CN was measured with a well-standardized plasmid-normalized quantitative PCR-based assay determining the ratio between mtDNA-CN and nuclear DNA. RESULTS Individuals in the lowest quartile of mtDNA-CN had a twofold increased risk for PAD which, however, was no longer significant after adjusting for leukocytes and platelets. About 67 of the 236 patients had already experienced a cardiovascular event at baseline and those in the lowest mtDNA-CN quartile had a 2.34-fold increased risk for these events (95% CI 1.08-5.13). During follow-up, 37 PAD patients died and 66 patients experienced a cardiovascular event. Patients in the lowest mtDNA-CN quartile had hazard ratios of 2.66 (95% CI 1.27-5.58) for all-cause-mortality and 1.82 (95% CI 1.02-3.27) for cardiovascular events compared with the combined quartile 2-4 (adjusted for age, smoking, CRP, diabetes, prevalent cardiovascular disease, leukocytes and platelets). CONCLUSION This investigation supports the hypothesis of mitochondrial dysfunction in peripheral arterial disease and shows an association of low mtDNA-CNs with all-cause-mortality and prevalent and incident cardiovascular disease in PAD patients with intermittent claudication.
Collapse
Affiliation(s)
- A Koller
- From the, Department of Genetics and Pharmacology, Institute of Genetic Epidemiology, Medical University of Innsbruck, Innsbruck, Austria
| | - F Fazzini
- From the, Department of Genetics and Pharmacology, Institute of Genetic Epidemiology, Medical University of Innsbruck, Innsbruck, Austria
| | - C Lamina
- From the, Department of Genetics and Pharmacology, Institute of Genetic Epidemiology, Medical University of Innsbruck, Innsbruck, Austria
| | - B Rantner
- Department of Vascular Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - B Kollerits
- From the, Department of Genetics and Pharmacology, Institute of Genetic Epidemiology, Medical University of Innsbruck, Innsbruck, Austria
| | - M Stadler
- 3rd Medical Department of Metabolic Diseases and Nephrology, Hietzing Hospital, Vienna, Austria.,Diabetes Research Group, Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - P Klein-Weigel
- Clinic of Angiology, Center of Vascular Medicine, Ernst von Bergmann Klinikum, Potsdam, Germany
| | - G Fraedrich
- Department of Vascular Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - F Kronenberg
- From the, Department of Genetics and Pharmacology, Institute of Genetic Epidemiology, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
25
|
Maximov VN, Malyutina SK, Orlov PS, Ivanoschuk DE, Mikhailova SV, Shapkina MY, Hubacek J, Holmes M, Bobak M, Voevoda MI. Copy Number of the Mitochondrial DNA of Leucocytes as an Aging Marker and Risk Factors for the Development of Age-Related Diseases in Humans. ADVANCES IN GERONTOLOGY 2020. [DOI: 10.1134/s2079057020010129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
26
|
The alterations of mitochondrial DNA in coronary heart disease. Exp Mol Pathol 2020; 114:104412. [PMID: 32113905 DOI: 10.1016/j.yexmp.2020.104412] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Revised: 02/24/2020] [Accepted: 02/27/2020] [Indexed: 12/17/2022]
Abstract
Coronary heart disease (CHD) is the major cause of death in modern society. CHD is characterized by atherosclerosis, which could lead to vascular cavity stenosis or obstruction, resulting in ischemic cardiac conditions such as angina and myocardial infarction. In terms of the mitochondrion, the main function is to produce adenosine triphosphate (ATP) for cells. And the alterations (including mutations, altered copy number and haplogroups) of mitochondrial DNA (mtDNA) are associated with the abnormal expression of oxidative phosphorylation (OXPHOS) system, resulting in mitochondrial dysfunction, then leading to perturbation on the electron transport chain and increased ROS generation and reduction in ATP level, contributing to ATP-producing disorders and oxidative stress, which may further accelerate development or vulnerability of atherosclerosis and myocardial ischemic injury. Therefore, the mtDNA defects may play an important role in making an early diagnosis, identifying disease-specific biomarkers and therapeutic targets, and predicting outcomes for patients with atherosclerosis and CHD. In this review, we aim to summarize the contribution of mtDNA mutations, altered mtDNA copy number and mtDNA haplogroups on the occurrence and development of CHD.
Collapse
|
27
|
Zhang X, Wang T, Ji J, Wang H, Zhu X, Du P, Zhu Y, Huang Y, Chen W. The distinct spatiotemporal distribution and effect of feed restriction on mtDNA copy number in broilers. Sci Rep 2020; 10:3240. [PMID: 32094402 PMCID: PMC7039872 DOI: 10.1038/s41598-020-60123-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 02/05/2020] [Indexed: 12/22/2022] Open
Abstract
Mitochondrial DNA (mtDNA) copy number reflects the abundance of mitochondria in cells and is dependent on the energy requirements of tissues. We hypothesized that the mtDNA copy number in poultry may change with age and tissue, and feed restriction may affect the growth and health of poultry by changing mtDNA content in a tissue-specific pattern. TaqMan real-time PCR was used to quantify mtDNA copy number using three different segments of the mitochondrial genome (D-loop, ATP6, and ND6) relative to the nuclear single-copy preproglucagon gene (GCG). The effect of sex, age, and dietary restriction (quantitative, energy, and protein restriction) on mtDNA copy number variation in the tissues of broilers was investigated. We found that mtDNA copy number varied among tissues (P < 0.01) and presented a distinct change in spatiotemporal pattern. After hatching, the number of mtDNA copies significantly decreased with age in the liver and increased in muscle tissues, including heart, pectoralis, and leg muscles. Newborn broilers (unfed) and embryos (E 11 and E 17) had similar mtDNA contents in muscle tissues. Among 42 d broilers, females had a higher mtDNA copy number than males in the tissues examined. Feed restriction (8-21 d) significantly reduced the body weight but did not significantly change the mtDNA copy number of 21 d broilers. After three weeks of compensatory growth (22-42 d), only the body weight of broilers with a quantitatively restricted diet remained significantly lower than that of broilers in the control group (P < 0.05), while any type of early feed restriction significantly reduced the mtDNA copy number in muscle tissues of 42 d broilers. In summary, the mtDNA copy number of broilers was regulated in a tissue- and age-specific manner. A similar pattern of spatiotemporal change in response to early feed restriction was found in the mtDNA content of muscle tissues, including cardiac and skeletal muscle, whereas liver mtDNA content changed differently with age and dietary restriction. It seems that early restrictions in feed could effectively lower the mtDNA content in muscle cells to reduce the tissue overload in broilers at 42 d to some degree.
Collapse
Affiliation(s)
- Xiangli Zhang
- College of Livestock Husbandry and Veterinary Engineering, Henan Agricultural University, No. 15 Longzi Lake University Campus, Zhengzhou, 450046, P.R. China
| | - Ting Wang
- College of Livestock Husbandry and Veterinary Engineering, Henan Agricultural University, No. 15 Longzi Lake University Campus, Zhengzhou, 450046, P.R. China
| | - Jiefei Ji
- College of Livestock Husbandry and Veterinary Engineering, Henan Agricultural University, No. 15 Longzi Lake University Campus, Zhengzhou, 450046, P.R. China
| | - Huanjie Wang
- College of Livestock Husbandry and Veterinary Engineering, Henan Agricultural University, No. 15 Longzi Lake University Campus, Zhengzhou, 450046, P.R. China
| | - Xinghao Zhu
- College of Livestock Husbandry and Veterinary Engineering, Henan Agricultural University, No. 15 Longzi Lake University Campus, Zhengzhou, 450046, P.R. China
| | - Pengfei Du
- College of Livestock Husbandry and Veterinary Engineering, Henan Agricultural University, No. 15 Longzi Lake University Campus, Zhengzhou, 450046, P.R. China
| | - Yao Zhu
- College of Livestock Husbandry and Veterinary Engineering, Henan Agricultural University, No. 15 Longzi Lake University Campus, Zhengzhou, 450046, P.R. China
| | - Yanqun Huang
- College of Livestock Husbandry and Veterinary Engineering, Henan Agricultural University, No. 15 Longzi Lake University Campus, Zhengzhou, 450046, P.R. China.
| | - Wen Chen
- College of Livestock Husbandry and Veterinary Engineering, Henan Agricultural University, No. 15 Longzi Lake University Campus, Zhengzhou, 450046, P.R. China
| |
Collapse
|
28
|
Longchamps RJ, Castellani CA, Yang SY, Newcomb CE, Sumpter JA, Lane J, Grove ML, Guallar E, Pankratz N, Taylor KD, Rotter JI, Boerwinkle E, Arking DE. Evaluation of mitochondrial DNA copy number estimation techniques. PLoS One 2020; 15:e0228166. [PMID: 32004343 PMCID: PMC6994099 DOI: 10.1371/journal.pone.0228166] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 01/08/2020] [Indexed: 12/16/2022] Open
Abstract
Mitochondrial DNA copy number (mtDNA-CN), a measure of the number of mitochondrial genomes per cell, is a minimally invasive proxy measure for mitochondrial function and has been associated with several aging-related diseases. Although quantitative real-time PCR (qPCR) is the current gold standard method for measuring mtDNA-CN, mtDNA-CN can also be measured from genotyping microarray probe intensities and DNA sequencing read counts. To conduct a comprehensive examination on the performance of these methods, we use known mtDNA-CN correlates (age, sex, white blood cell count, Duffy locus genotype, incident cardiovascular disease) to evaluate mtDNA-CN calculated from qPCR, two microarray platforms, as well as whole genome (WGS) and whole exome sequence (WES) data across 1,085 participants from the Atherosclerosis Risk in Communities (ARIC) study and 3,489 participants from the Multi-Ethnic Study of Atherosclerosis (MESA). We observe mtDNA-CN derived from WGS data is significantly more associated with known correlates compared to all other methods (p < 0.001). Additionally, mtDNA-CN measured from WGS is on average more significantly associated with traits by 5.6 orders of magnitude and has effect size estimates 5.8 times more extreme than the current gold standard of qPCR. We further investigated the role of DNA extraction method on mtDNA-CN estimate reproducibility and found mtDNA-CN estimated from cell lysate is significantly less variable than traditional phenol-chloroform-isoamyl alcohol (p = 5.44x10-4) and silica-based column selection (p = 2.82x10-7). In conclusion, we recommend the field moves towards more accurate methods for mtDNA-CN, as well as re-analyze trait associations as more WGS data becomes available from larger initiatives such as TOPMed.
Collapse
Affiliation(s)
- Ryan J. Longchamps
- Department of Genetic Medicine, McKusick-Nathans Institute, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
| | - Christina A. Castellani
- Department of Genetic Medicine, McKusick-Nathans Institute, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
| | - Stephanie Y. Yang
- Department of Genetic Medicine, McKusick-Nathans Institute, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
| | - Charles E. Newcomb
- Department of Genetic Medicine, McKusick-Nathans Institute, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
| | - Jason A. Sumpter
- Department of Genetic Medicine, McKusick-Nathans Institute, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
| | - John Lane
- Department of Laboratory Medicine and Pathology, University of Minnesota Medical School, Minneapolis, MN, United States of America
| | - Megan L. Grove
- Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, United States of America
| | - Eliseo Guallar
- Department of Epidemiology and the Welch Center for Prevention, Epidemiology and Clinical Research, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States of America
| | - Nathan Pankratz
- Department of Laboratory Medicine and Pathology, University of Minnesota Medical School, Minneapolis, MN, United States of America
| | - Kent D. Taylor
- LABioMed and Department of Pediatrics, at Harbor-UCLA Medical Center, Institute for Translational Genomics and Population Sciences, Torrance, CA, United States of America
| | - Jerome I. Rotter
- LABioMed and Department of Pediatrics, at Harbor-UCLA Medical Center, Institute for Translational Genomics and Population Sciences, Torrance, CA, United States of America
| | - Eric Boerwinkle
- Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, United States of America
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, United States of America
| | - Dan E. Arking
- Department of Genetic Medicine, McKusick-Nathans Institute, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
| |
Collapse
|
29
|
Peripheral Blood Mononuclear Cells and Platelets Mitochondrial Dysfunction, Oxidative Stress, and Circulating mtDNA in Cardiovascular Diseases. J Clin Med 2020; 9:jcm9020311. [PMID: 31979097 PMCID: PMC7073649 DOI: 10.3390/jcm9020311] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 01/16/2020] [Accepted: 01/19/2020] [Indexed: 12/14/2022] Open
Abstract
Cardiovascular diseases (CVDs) are devastating disorders and the leading cause of mortality worldwide. The pathophysiology of cardiovascular diseases is complex and multifactorial and, in the past years, mitochondrial dysfunction and excessive production of reactive oxygen species (ROS) have gained growing attention. Indeed, CVDs can be considered as a systemic alteration, and understanding the eventual implication of circulating blood cells peripheral blood mononuclear cells (PBMCs) and or platelets, and particularly their mitochondrial function, ROS production, and mitochondrial DNA (mtDNA) releases in patients with cardiac impairments, appears worthwhile. Interestingly, reports consistently demonstrate a reduced mitochondrial respiratory chain oxidative capacity related to the degree of CVD severity and to an increased ROS production by PBMCs. Further, circulating mtDNA level was generally modified in such patients. These data are critical steps in term of cardiac disease comprehension and further studies are warranted to challenge the possible adjunct of PBMCs’ and platelets’ mitochondrial dysfunction, oxidative stress, and circulating mtDNA as biomarkers of CVD diagnosis and prognosis. This new approach might also allow further interesting therapeutic developments.
Collapse
|
30
|
Sobenin IA, Zhelankin AV, Khasanova ZB, Sinyov VV, Medvedeva LV, Sagaidak MO, Makeev VJ, Kolmychkova KI, Smirnova AS, Sukhorukov VN, Postnov AY, Grechko AV, Orekhov AN. Heteroplasmic Variants of Mitochondrial DNA in Atherosclerotic Lesions of Human Aortic Intima. Biomolecules 2019; 9:biom9090455. [PMID: 31500189 PMCID: PMC6770808 DOI: 10.3390/biom9090455] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 09/02/2019] [Accepted: 09/03/2019] [Indexed: 12/16/2022] Open
Abstract
Mitochondrial dysfunction and oxidative stress are likely involved in atherogenesis. Since the mitochondrial genome variation can alter functional activity of cells, it is necessary to assess the presence in atherosclerotic lesions of mitochondrial DNA (mtDNA) heteroplasmic mutations known to be associated with different pathological processes and ageing. In this study, mtDNA heteroplasmy and copy number (mtCN) were evaluated in the autopsy-derived samples of aortic intima differing by the type of atherosclerotic lesions. To detect mtDNA heteroplasmic variants, next generation sequencing was used, and mtCN measurement was performed by qPCR. It was shown that mtDNA heteroplasmic mutations are characteristic for particular areas of intimal tissue; in 83 intimal samples 55 heteroplasmic variants were found; mean minor allele frequencies level accounted for 0.09, with 12% mean heteroplasmy level. The mtCN variance measured in adjacent areas of intima was high, but atherosclerotic lesions and unaffected intima did not differ significantly in mtCN values. Basing on the ratio of minor and major nucleotide mtDNA variants, we can conclude that there exists the increase in the number of heteroplasmic mtDNA variants, which corresponds to the extent of atherosclerotic morphologic phenotype.
Collapse
Affiliation(s)
- Igor A Sobenin
- Institute of Experimental Cardiology, National Medical Research Center of Cardiology, 121552 Moscow, Russia.
- Institute of General Pathology and Pathophysiology, 125315 Moscow, Russia.
- Research Institute of Threpsology and Healthy Longevity, Plekhanov Russian University of Economics, 115093 Moscow, Russia.
| | - Andrey V Zhelankin
- Federal Research and Clinical Center of Physical-Chemical Medicine, 119435 Moscow, Russia.
| | - Zukhra B Khasanova
- Institute of Experimental Cardiology, National Medical Research Center of Cardiology, 121552 Moscow, Russia.
| | - Vasily V Sinyov
- Institute of Experimental Cardiology, National Medical Research Center of Cardiology, 121552 Moscow, Russia.
- Institute of General Pathology and Pathophysiology, 125315 Moscow, Russia.
| | - Lyudmila V Medvedeva
- Federal Research Center of Transplantology and Artificial Organs, 123182 Moscow, Russia.
| | - Maria O Sagaidak
- Vavilov Institute of General Genetics, 117971 Moscow, Russia.
- Moscow Institute of Physics and Technology, Dolgoprudny, 141701 Moscow Region, Russia.
| | - Vsevolod J Makeev
- Vavilov Institute of General Genetics, 117971 Moscow, Russia.
- Moscow Institute of Physics and Technology, Dolgoprudny, 141701 Moscow Region, Russia.
- Engelhardt Institute of Molecular Biology, 119991 Moscow, Russia.
| | - Kira I Kolmychkova
- Institute for Atherosclerosis Research, Skolkovo Innovation Center, 143026 Moscow, Russia.
| | - Anna S Smirnova
- Institute for Atherosclerosis Research, Skolkovo Innovation Center, 143026 Moscow, Russia.
| | - Vasily N Sukhorukov
- Institute of Experimental Cardiology, National Medical Research Center of Cardiology, 121552 Moscow, Russia.
- Research Institute of Human Morphology, 117418 Moscow, Russia.
| | - Anton Y Postnov
- Institute of Experimental Cardiology, National Medical Research Center of Cardiology, 121552 Moscow, Russia.
- Research Institute of Human Morphology, 117418 Moscow, Russia.
| | - Andrey V Grechko
- Federal Scientific Clinical Center for Resuscitation and Rehabilitation, 141534 Moscow Region, Russia.
| | - Alexander N Orekhov
- Institute for Atherosclerosis Research, Skolkovo Innovation Center, 143026 Moscow, Russia.
- Research Institute of Human Morphology, 117418 Moscow, Russia.
| |
Collapse
|
31
|
Volobueva A, Grechko A, Yet SF, Sobenin I, Orekhov A. Changes in Mitochondrial Genome Associated with Predisposition to Atherosclerosis and Related Disease. Biomolecules 2019; 9:E377. [PMID: 31426564 PMCID: PMC6723661 DOI: 10.3390/biom9080377] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Revised: 08/08/2019] [Accepted: 08/13/2019] [Indexed: 12/16/2022] Open
Abstract
Atherosclerosis-related cardiovascular diseases remain the leading cause of morbidity and mortality, and the search for novel diagnostic and therapeutic methods is ongoing. Mitochondrial DNA (mtDNA) mutations associated with atherosclerosis represent one of the less explored aspects of the disease pathogenesis that may bring some interesting opportunities for establishing novel molecular markers and, possibly, new points of therapeutic intervention. Recent studies have identified a number of mtDNA mutations, for which the heteroplasmy level was positively or negatively associated with atherosclerosis, including the disease at its early, subclinical stages. In this review, we summarize the results of these studies, providing a list of human mtDNA mutations potentially involved in atherosclerosis. The molecular mechanisms underlying such involvement remain to be elucidated, although it is likely that some of them may be responsible for the increased oxidative stress, which plays an important role in atherosclerosis.
Collapse
Affiliation(s)
- Aleksandrina Volobueva
- Laboratory of Gene Therapy, Biocad Biotechnology Company, Saint-Petersburg, Strelnya 198515, Russia
| | - Andrey Grechko
- Federal Scientific Clinical Center for Resuscitation and Rehabilitation, Moscow 109240, Russia
| | - Shaw-Fang Yet
- Institute of Cellular and System Medicine, National Health Research Institutes, 35 Keyan Road, Zhunan Town, Miaoli County 35053, Taiwan
| | - Igor Sobenin
- Laboratory of Medical Genetics, Russian Cardiology Research and Production Complex, Moscow, Russia
| | - Alexander Orekhov
- Institute for Atherosclerosis Research, Skolkovo Innovative Center, Moscow 121609, Russia.
- Institute of Human Morphology, Moscow 117418, Russia.
| |
Collapse
|
32
|
Ferrari L, Pavanello S, Bollati V. Molecular and epigenetic markers as promising tools to quantify the effect of occupational exposures and the risk of developing non-communicable diseases. LA MEDICINA DEL LAVORO 2019; 110:168-190. [PMID: 31268425 PMCID: PMC7812541 DOI: 10.23749/mdl.v110i3.8538] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 06/06/2019] [Indexed: 12/18/2022]
Abstract
Non-communicable diseases (NCDs) are chronic diseases that are by far the leading cause of death in the world. Many occupational hazards, together with social, economic and demographic factors, have been associated to NCDs development. Genetic susceptibility or environmental exposures alone are not usually sufficient to explain the pathogenesis of NCDs, but can be integrated in a more complex scenario that can result in pathological phenotypes. Epigenetics is a crucial component of this scenario, as its changes are related to specific exposures, therefore potentially able to display the effects of environment on the genome, filling the gap between genetic asset and environment in explaining disease development. To date, the most promising biomarkers have been assessed in occupational cohorts as well as in case/control studies and include DNA methylation, histone modifications, microRNA expression, extracellular vesicles, telomere length, and mitochondrial alterations.
Collapse
Affiliation(s)
- Luca Ferrari
- EPIGET - Epidemiology, Epigenetics and Toxicology Lab, Department of Clinical Sciences and Community Health, Università degli Studi di Milano, via San Barnaba 8, 20122 Milan, Italy..
| | | | | |
Collapse
|
33
|
Ashar FN, Zhang Y, Longchamps RJ, Lane J, Moes A, Grove ML, Mychaleckyj JC, Taylor KD, Coresh J, Rotter JI, Boerwinkle E, Pankratz N, Guallar E, Arking DE. Association of Mitochondrial DNA Copy Number With Cardiovascular Disease. JAMA Cardiol 2019; 2:1247-1255. [PMID: 29049454 DOI: 10.1001/jamacardio.2017.3683] [Citation(s) in RCA: 191] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Importance Mitochondrial dysfunction is a core component of the aging process and may play a key role in atherosclerotic cardiovascular disease. Mitochondrial DNA copy number (mtDNA-CN), which represents the number of mitochondria per cell and number of mitochondrial genomes per mitochondrion, is an indirect biomarker of mitochondrial function. Objective To determine whether mtDNA-CN, measured in an easily accessible tissue (buffy coat/circulating leukocytes), can improve risk classification for cardiovascular disease (CVD) and help guide initiation of statin therapy for primary prevention of CVD. Design, Setting, and Participants Prospective, population-based cohort analysis including 21 870 participants (20 163 free from CVD at baseline) from 3 studies: Cardiovascular Health Study (CHS), Atherosclerosis Risk in Communities Study (ARIC), and Multiethnic Study of Atherosclerosis (MESA). The mean follow-up was 13.5 years. The study included 11 153 participants from ARIC, 4830 from CHS, and 5887 from MESA. Analysis of the data was conducted from March 10, 2014, to January 29, 2017. Exposures Mitochondrial DNA-CN measured from buffy coat/circulating leukocytes. Main Outcomes and Measures Incident CVD, which combines coronary heart disease, defined as the first incident myocardial infarction or death owing to coronary heart disease, and stroke, defined as the first nonfatal stroke or death owing to stroke. Results Of the 21 870 participants, the mean age was 62.4 years (ARIC, 57.9 years; MESA, 62.4 years; and CHS, 72.5 years), and 54.7% of participants were women. The hazard ratios for incident coronary heart disease, stroke, and CVD associated with a 1-SD decrease in mtDNA-CN were 1.29 (95% CI, 1.24-1.33), 1.11 (95% CI, 1.06-1.16), and 1.23 (95% CI, 1.19-1.26). The associations persisted after adjustment for traditional CVD risk factors. Addition of mtDNA-CN to the 2013 American College of Cardiology/American Heart Association Pooled Cohorts Equations for estimating 10-year hard atherosclerosis CVD risk was associated with improved risk classification (continuous net reclassification index, 0.194; 95% CI, 0.130-0.258; P < .001). Mitochondrial DNA-CN further improved sensitivity and specificity for the 2013 American College of Cardiology/American Heart Association recommendations on initiating statin therapy for primary prevention of ASCVD (net 221 individuals appropriately downclassified and net 15 individuals appropriately upclassified). Conclusions and Relevance Mitochondrial DNA-CN was independently associated with incident CVD in 3 large prospective studies and may have potential clinical utility in improving CVD risk classification.
Collapse
Affiliation(s)
- Foram N Ashar
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Yiyi Zhang
- Departments of Epidemiology and Medicine, and Welch Center for Prevention, Epidemiology, and Clinical Research, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland
| | - Ryan J Longchamps
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - John Lane
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis
| | - Anna Moes
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Megan L Grove
- School of Public Health, Human Genetics Center, The University of Texas Health Science Center at Houston
| | | | - Kent D Taylor
- Institute for Translational Genomics and Population Sciences and Department of Pediatrics, Los Angeles Biomedical Research Institute at Harbor, University of California, Los Angeles Medical Center, Torrance
| | - Josef Coresh
- Departments of Epidemiology and Medicine, and Welch Center for Prevention, Epidemiology, and Clinical Research, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland
| | - Jerome I Rotter
- Institute for Translational Genomics and Population Sciences and Department of Pediatrics, Los Angeles Biomedical Research Institute at Harbor, University of California, Los Angeles Medical Center, Torrance.,Division of Genomic Outcomes, Departments of Pediatrics and Medicine, Harbor, University of California, Los Angeles Medical Center, Torrance
| | - Eric Boerwinkle
- School of Public Health, Human Genetics Center, The University of Texas Health Science Center at Houston
| | - Nathan Pankratz
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis
| | - Eliseo Guallar
- Departments of Epidemiology and Medicine, and Welch Center for Prevention, Epidemiology, and Clinical Research, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland
| | - Dan E Arking
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
34
|
Fazzini F, Lamina C, Fendt L, Schultheiss UT, Kotsis F, Hicks AA, Meiselbach H, Weissensteiner H, Forer L, Krane V, Eckardt KU, Köttgen A, Kronenberg F. Mitochondrial DNA copy number is associated with mortality and infections in a large cohort of patients with chronic kidney disease. Kidney Int 2019; 96:480-488. [PMID: 31248648 DOI: 10.1016/j.kint.2019.04.021] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 03/29/2019] [Accepted: 04/05/2019] [Indexed: 12/16/2022]
Abstract
Damage of mitochondrial DNA (mtDNA) with reduction in copy number has been proposed as a biomarker for mitochondrial dysfunction and oxidative stress. Chronic kidney disease (CKD) is associated with increased mortality and risk of cardiovascular disease, but the underlying mechanisms remain incompletely understood. Here we investigated the prognostic role of mtDNA copy number for cause-specific mortality in 4812 patients from the German Chronic Kidney Disease study, an ongoing prospective observational national cohort study of patients with CKD stage G3 and A1-3 or G1-2 with overt proteinuria (A3) at enrollment. MtDNA was quantified in whole blood using a plasmid-normalized PCR-based assay. At baseline, 1235 patients had prevalent cardiovascular disease. These patients had a significantly lower mtDNA copy number than patients without cardiovascular disease (fully-adjusted model: odds ratio 1.03, 95% confidence interval [CI] 1.01-1.05 per 10 mtDNA copies decrease). After four years of follow-up, we observed a significant inverse association between mtDNA copy number and all-cause mortality, adjusted for kidney function and cardiovascular disease risk factors (hazard ratio 1.37, 95% CI 1.09-1.73 for quartile 1 compared to quartiles 2-4). When grouped by causes of death, estimates pointed in the same direction for all causes but in a fully-adjusted model decreased copy numbers were significantly lower only in infection-related death (hazard ratio 1.82, 95% CI 1.08-3.08). A similar association was observed for hospitalizations due to infections in 644 patients (hazard ratio 1.19, 95% CI 1.00-1.42 in the fully-adjusted model). Thus, our data support a role of mitochondrial dysfunction in increased cardiovascular disease and mortality risks as well as susceptibility to infections in patients with CKD.
Collapse
Affiliation(s)
- Federica Fazzini
- Division of Genetic Epidemiology, Department of Medical Genetics, Molecular and Clinical Pharmacology, Medical University of Innsbruck, Innsbruck, Austria
| | - Claudia Lamina
- Division of Genetic Epidemiology, Department of Medical Genetics, Molecular and Clinical Pharmacology, Medical University of Innsbruck, Innsbruck, Austria
| | - Liane Fendt
- Division of Genetic Epidemiology, Department of Medical Genetics, Molecular and Clinical Pharmacology, Medical University of Innsbruck, Innsbruck, Austria
| | - Ulla T Schultheiss
- Institute of Genetic Epidemiology, Faculty of Medicine and Medical Center, University of Freiburg, Freiburg, Germany; Renal Division, Department of Medicine IV, Medical Center-University of Freiburg, Faculty of Medicine, Freiburg, Germany
| | - Fruzsina Kotsis
- Institute of Genetic Epidemiology, Faculty of Medicine and Medical Center, University of Freiburg, Freiburg, Germany
| | - Andrew A Hicks
- Institute for Biomedicine, EURAC Research, Affiliated Institute of the University of Lübeck, Bolzano, Italy
| | - Heike Meiselbach
- Department of Nephrology and Hypertension, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Hansi Weissensteiner
- Division of Genetic Epidemiology, Department of Medical Genetics, Molecular and Clinical Pharmacology, Medical University of Innsbruck, Innsbruck, Austria
| | - Lukas Forer
- Division of Genetic Epidemiology, Department of Medical Genetics, Molecular and Clinical Pharmacology, Medical University of Innsbruck, Innsbruck, Austria
| | - Vera Krane
- Division of Nephrology, Department of Internal Medicine I, Division of Nephrology and Comprehensive Heart Failure Centre, University Hospital Würzburg, Würzburg, Germany
| | - Kai-Uwe Eckardt
- Department of Nephrology and Hypertension, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), Erlangen, Germany; Department of Nephrology and Medical Intensive Care, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Anna Köttgen
- Institute of Genetic Epidemiology, Faculty of Medicine and Medical Center, University of Freiburg, Freiburg, Germany
| | - Florian Kronenberg
- Division of Genetic Epidemiology, Department of Medical Genetics, Molecular and Clinical Pharmacology, Medical University of Innsbruck, Innsbruck, Austria.
| | | |
Collapse
|
35
|
Soltész B, Urbancsek R, Pös O, Hajas O, Forgács IN, Szilágyi E, Nagy-Baló E, Szemes T, Csanádi Z, Nagy B. Quantification of peripheral whole blood, cell-free plasma and exosome encapsulated mitochondrial DNA copy numbers in patients with atrial fibrillation. J Biotechnol 2019; 299:66-71. [PMID: 31063814 DOI: 10.1016/j.jbiotec.2019.04.018] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 04/18/2019] [Accepted: 04/20/2019] [Indexed: 12/22/2022]
Abstract
Mitochondrial DNA (mtDNA) copy number changes have been associated with various diseases. Several studies showed that mtDNA content in peripheral blood was associated with oxidative stress and cardiovascular disease. Atrial fibrillation (AF) is one of the severe cardiovascular diseases. We aimed to determine the mtDNA copy numbers in peripheral blood, in cell-free plasma and in exosomes of AF patients and healthy controls. Peripheral blood was drawn from 60 AF patients and 72 healthy controls. DNA was isolated from EDTA blood and plasma. Exosomes were isolated from cell-free plasma and then exosome encapsulated DNA (exoDNA) was extracted. Quantitative-real-time PCR was performed with Human Mitochondrial DNA (mtDNA) Monitoring Primer Set. Statistical analysis of the data was performed. We found statistically significant difference in mtDNA copy numbers in DNA isolated from peripheral whole blood, cell-free plasma and exosome samples of controls' (44.4 ± 18.0, 27.2 ± 30.1, 11.5 ± 8.7), and patients' group (43.4 ± 13.6, 26.2 ± 26.4, 14.5 ± 12.3). However there was no significant difference in mtDNA copy number between the two study groups either in peripheral blood, in cell-free plasma and in exosomes, and even in different sexes and ages. We found the highest copy number of mtDNA in peripheral blood, followed by plasma and exosomes. We did not find differences between patients and controls, neither age nor gender had effect on the mtDNA copy number. According to our results the mtDNA copy numbers did not differ in AF patients.
Collapse
Affiliation(s)
- Beáta Soltész
- Department of Human Genetics, Faculty of Medicine, University of Debrecen, Debrecen, Hungary.
| | - Réka Urbancsek
- Institute of Cardiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Ondrej Pös
- Department of Molecular Biology, Faculty of Natural Sciences, Comenius University, Bratislava, Slovakia
| | - Orsolya Hajas
- Institute of Cardiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Ildikó Noémi Forgács
- Institute of Cardiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Edina Szilágyi
- Department of Human Genetics, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Edina Nagy-Baló
- Institute of Cardiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Tomas Szemes
- Department of Molecular Biology, Faculty of Natural Sciences, Comenius University, Bratislava, Slovakia
| | - Zoltán Csanádi
- Institute of Cardiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Bálint Nagy
- Department of Human Genetics, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
36
|
Wang XB, Cui NH, Zhang S, Liu ZJ, Ma JF, Ming L. Leukocyte telomere length, mitochondrial DNA copy number, and coronary artery disease risk and severity: A two-stage case-control study of 3064 Chinese subjects. Atherosclerosis 2019; 284:165-172. [DOI: 10.1016/j.atherosclerosis.2019.03.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 03/03/2019] [Accepted: 03/12/2019] [Indexed: 01/29/2023]
|
37
|
Wu S, Li X, Meng S, Fung T, Chan AT, Liang G, Giovannucci E, De Vivo I, Lee JH, Nan H. Fruit and vegetable consumption, cigarette smoke, and leukocyte mitochondrial DNA copy number. Am J Clin Nutr 2019; 109:424-432. [PMID: 30721920 PMCID: PMC6367969 DOI: 10.1093/ajcn/nqy286] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 09/21/2018] [Indexed: 12/11/2022] Open
Abstract
Background Mitochondrial dysfunction is an important component of the aging process and has been implicated in the development of many human diseases. Mitochondrial DNA copy number (mtDNAcn), an indirect biomarker of mitochondrial function, is sensitive to oxidative damage. Few population-based studies have investigated the impact of fruit and vegetable consumption and cigarette smoke (2 major sources of exogenous antioxidants and oxidants) on leukocyte mtDNAcn. Objectives We investigated the association between fruit and vegetable consumption, cigarette smoke, and leukocyte mtDNAcn based on data from the Nurses' Health Study (NHS). Methods Data from 2769 disease-free women in the NHS were used to examine the cross-sectional associations between dietary sources of antioxidants, cigarette smoke, and leukocyte mtDNAcn. In vitro cell-based experiments were conducted to support the findings from the population-based study. Results In the multivariable-adjusted model, both whole-fruit consumption and intake of flavanones (a group of antioxidants abundant in fruit) were positively associated with leukocyte mtDNAcn (P-trend = 0.005 and 0.02, respectively), whereas pack-years of smoking and smoking duration were inversely associated with leukocyte mtDNAcn (P-trend = 0.01 and 0.007, respectively). These findings are supported by in vitro cell-based experiments showing that the administration of naringin, a major flavanone in fruit, led to a substantial increase in mtDNAcn in human leukocytes, whereas exposure to nicotine-derived nitrosamine ketone, a key carcinogenic ingredient of cigarette smoke, resulted in a significant decrease in mtDNAcn of cells (all P < 0.05). Further in vitro studies showed that alterations in leukocyte mtDNAcn were functionally linked to the modulation of mitochondrial biogenesis and function. Conclusions Fruit consumption and intake of dietary flavanones were associated with increased leukocyte mtDNAcn, whereas cigarette smoking was associated with decreased leukocyte mtDNAcn, which is a promising biomarker for oxidative stress-related health outcomes.
Collapse
Affiliation(s)
- Shaowei Wu
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, China
| | - Xin Li
- Department of Epidemiology, Richard M Fairbanks School of Public Health, Indiana University, Indianapolis, IN
| | | | - Teresa Fung
- Nutrition, Harvard TH Chan School of Public Health, Boston, MA
- Department of Nutrition, Simmons College, Boston, MA
| | - Andrew T Chan
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, MA
| | - Geyu Liang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu, China
| | - Edward Giovannucci
- Departments of Epidemiology
- Nutrition, Harvard TH Chan School of Public Health, Boston, MA
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA
| | - Immaculata De Vivo
- Departments of Epidemiology
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA
| | - Jin Hyup Lee
- Department of Food and Biotechnology
- Institutes of Natural Sciences, Korea University, Sejong, Republic of Korea
| | - Hongmei Nan
- Department of Epidemiology, Richard M Fairbanks School of Public Health, Indiana University, Indianapolis, IN
- Indiana University Melvin and Bren Simon Cancer Center, Indianapolis, IN
| |
Collapse
|
38
|
Chocron ES, Munkácsy E, Pickering AM. Cause or casualty: The role of mitochondrial DNA in aging and age-associated disease. Biochim Biophys Acta Mol Basis Dis 2019; 1865:285-297. [PMID: 30419337 PMCID: PMC6310633 DOI: 10.1016/j.bbadis.2018.09.035] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 08/20/2018] [Accepted: 09/04/2018] [Indexed: 12/19/2022]
Abstract
The mitochondrial genome (mtDNA) represents a tiny fraction of the whole genome, comprising just 16.6 kilobases encoding 37 genes involved in oxidative phosphorylation and the mitochondrial translation machinery. Despite its small size, much interest has developed in recent years regarding the role of mtDNA as a determinant of both aging and age-associated diseases. A number of studies have presented compelling evidence for key roles of mtDNA in age-related pathology, although many are correlative rather than demonstrating cause. In this review we will evaluate the evidence supporting and opposing a role for mtDNA in age-associated functional declines and diseases. We provide an overview of mtDNA biology, damage and repair as well as the influence of mitochondrial haplogroups, epigenetics and maternal inheritance in aging and longevity.
Collapse
Affiliation(s)
- E Sandra Chocron
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX 78245-3207, USA
| | - Erin Munkácsy
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX 78245-3207, USA
| | - Andrew M Pickering
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX 78245-3207, USA; Department of Molecular Medicine, School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78245-3207, USA.
| |
Collapse
|
39
|
Yue P, Jing S, Liu L, Ma F, Zhang Y, Wang C, Duan H, Zhou K, Hua Y, Wu G, Li Y. Association between mitochondrial DNA copy number and cardiovascular disease: Current evidence based on a systematic review and meta-analysis. PLoS One 2018; 13:e0206003. [PMID: 30403687 PMCID: PMC6221293 DOI: 10.1371/journal.pone.0206003] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 10/04/2018] [Indexed: 11/24/2022] Open
Abstract
Background Mitochondria are energy-producing structure of the cell and help to maintain redox environment. In cardiovascular disease, the number of mitochondrial DNA (mtDNA) will changes accordingly compare to normal condition. Some investigators ask whether it has a clear association between mtDNA and cardiovascular disease with its adverse events. Thus, we conduct the meta-analysis to assess the role of circulating mtDNA in evaluating cardiovascular disease. Methods The meta-analysis was conducted in accordance with a predetermined protocol following the recommendations of Cochrane Handbook of Systematic Reviews. We searched the Pubmed, Embase, the Cochrane Central Register of Controlled Trials and World Health Organization clinical trials registry center to identify relevant studies up to the end of October 2017. Data were analyzed using STATA. Besides, publication bias and meta-regression analysis were also conducted. Results We collected results from 5 articles for further analyses with 8,252 cases and 20,904 control. The normalized mtDNA copy number level is lower in cardiovascular disease (CVD) than the control groups with a pooled standard mean difference (SMD) of -0.36(95%CI,-0.65 to -0.08); The pooled odds ratio (OR) for CVD proportion associated with a 1-SD (standard deviation) decrease in mtDNA copy number level is 1.23 (95% CI,1.06–1.42); The OR for CVD patients with mtDNA copy number lower than median level is 1.88(95% CI,1.65–2.13); The OR for CVD patients with mtDNA copy number located in the lowest quartile part is 2.15(95% CI, 1.46–3.18); the OR between mtDNA copy number and the risk of sudden cardiac death (SCD) is 1.83(95% CI, 1.22–2.74). Conclusion Although inter-study variability, the overall performance test of mtDNA for evaluating CVD and SCD revealed that the mtDNA copy number presented the potential to be a biomarker for CVD and SCD prediction. Given that, the fewer copies of mtDNA, the higher the risk of CVD.
Collapse
Affiliation(s)
- Peng Yue
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China.,Ministry of Education Key Laboratory of Women and Children's Diseases and Birth Defects, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China.,West China Medical School, Sichuan University, Chengdu, Sichuan, China
| | - Siyuan Jing
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China.,West China Medical School, Sichuan University, Chengdu, Sichuan, China
| | - Lei Liu
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China.,Ministry of Education Key Laboratory of Women and Children's Diseases and Birth Defects, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China.,West China Medical School, Sichuan University, Chengdu, Sichuan, China
| | - Fan Ma
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China.,Ministry of Education Key Laboratory of Women and Children's Diseases and Birth Defects, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China.,West China Medical School, Sichuan University, Chengdu, Sichuan, China
| | - Yi Zhang
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China.,Ministry of Education Key Laboratory of Women and Children's Diseases and Birth Defects, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Chuan Wang
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China.,Ministry of Education Key Laboratory of Women and Children's Diseases and Birth Defects, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Hongyu Duan
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China.,Ministry of Education Key Laboratory of Women and Children's Diseases and Birth Defects, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Kaiyu Zhou
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China.,Ministry of Education Key Laboratory of Women and Children's Diseases and Birth Defects, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China.,Program for Changjiang Scholars and Innovative Research Team in University, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yimin Hua
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China.,Ministry of Education Key Laboratory of Women and Children's Diseases and Birth Defects, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China.,Program for Changjiang Scholars and Innovative Research Team in University, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Gang Wu
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China.,Ministry of Education Key Laboratory of Women and Children's Diseases and Birth Defects, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China.,Program for Changjiang Scholars and Innovative Research Team in University, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yifei Li
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China.,Ministry of Education Key Laboratory of Women and Children's Diseases and Birth Defects, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
40
|
Hefti E, Blanco JG. Mitochondrial DNA heteroplasmy in cardiac tissue from individuals with and without coronary artery disease. Mitochondrial DNA A DNA Mapp Seq Anal 2018; 29:587-593. [PMID: 28521548 PMCID: PMC5694712 DOI: 10.1080/24701394.2017.1325480] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 04/19/2017] [Accepted: 04/27/2017] [Indexed: 01/11/2023]
Abstract
The cellular environment associated with coronary artery disease (CAD) can lead to mitochondrial DNA (mtDNA) damage. Mitochondrial variants in some copies of mtDNA (heteroplasmy) and mtDNA content are potential genetic biomarkers for CAD-associated disease states. Massively parallel sequencing and qRT-PCR techniques were used to measure heteroplasmic variants and mtDNA content in heart samples from donors with (n = 8) and without (n = 7) documented CAD. Both groups showed increased numbers of heteroplasmic mtDNA variants in the control region (CR) (p < .0010, ANOVA). The donors with CAD displayed a 41.07% increase in heteroplasmic mtDNA variant number in the CR (p = .043), an 87.50% increase in the number of heteroplasmic mtDNA deletions (p = .12), and a 48.76% increase in the number of heteroplasmic mtDNA single nucleotide variants (p = .029). These data suggest potential trends towards higher cardiac mtDNA heteroplasmy levels in heart samples from donors with CAD.
Collapse
Affiliation(s)
- Erik Hefti
- Department of Pharmaceutical Sciences, The School of Pharmacy and Pharmaceutical Sciences, The State University of New York at Buffalo, Buffalo, New York, United States of America
| | - Javier G. Blanco
- Department of Pharmaceutical Sciences, The School of Pharmacy and Pharmaceutical Sciences, The State University of New York at Buffalo, Buffalo, New York, United States of America
| |
Collapse
|
41
|
Chemotherapeutic-Induced Cardiovascular Dysfunction: Physiological Effects, Early Detection-The Role of Telomerase to Counteract Mitochondrial Defects and Oxidative Stress. Int J Mol Sci 2018. [PMID: 29534446 PMCID: PMC5877658 DOI: 10.3390/ijms19030797] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Although chemotherapeutics can be highly effective at targeting malignancies, their ability to trigger cardiovascular morbidity is clinically significant. Chemotherapy can adversely affect cardiovascular physiology, resulting in the development of cardiomyopathy, heart failure and microvascular defects. Specifically, anthracyclines are known to cause an excessive buildup of free radical species and mitochondrial DNA damage (mtDNA) that can lead to oxidative stress-induced cardiovascular apoptosis. Therefore, oncologists and cardiologists maintain a network of communication when dealing with patients during treatment in order to treat and prevent chemotherapy-induced cardiovascular damage; however, there is a need to discover more accurate biomarkers and therapeutics to combat and predict the onset of cardiovascular side effects. Telomerase, originally discovered to promote cellular proliferation, has recently emerged as a potential mechanism to counteract mitochondrial defects and restore healthy mitochondrial vascular phenotypes. This review details mechanisms currently used to assess cardiovascular damage, such as C-reactive protein (CRP) and troponin levels, while also unearthing recently researched biomarkers, including circulating mtDNA, telomere length and telomerase activity. Further, we explore a potential role of telomerase in the mitigation of mitochondrial reactive oxygen species and maintenance of mtDNA integrity. Telomerase activity presents a promising indicator for the early detection and treatment of chemotherapy-derived cardiac damage.
Collapse
|
42
|
Guyatt AL, Burrows K, Guthrie PAI, Ring S, McArdle W, Day INM, Ascione R, Lawlor DA, Gaunt TR, Rodriguez S. Cardiometabolic phenotypes and mitochondrial DNA copy number in two cohorts of UK women. Mitochondrion 2018; 39:9-19. [PMID: 28818596 PMCID: PMC5832987 DOI: 10.1016/j.mito.2017.08.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 06/06/2017] [Accepted: 08/10/2017] [Indexed: 12/14/2022]
Abstract
The mitochondrial genome is present at variable copy number between individuals. Mitochondria are vulnerable to oxidative stress, and their dysfunction may be associated with cardiovascular disease. The association of mitochondrial DNA copy number with cardiometabolic risk factors (lipids, glycaemic traits, inflammatory markers, anthropometry and blood pressure) was assessed in two independent cohorts of European origin women, one in whom outcomes were measured at mean (SD) age 30 (4.3) years (N=2278) and the second at 69.4 (5.5) years (N=2872). Mitochondrial DNA copy number was assayed by quantitative polymerase chain reaction. Associations were adjusted for smoking, sociodemographic status, laboratory factors and white cell traits. Out of a total of 12 outcomes assessed in both cohorts, mitochondrial DNA copy number showed little or no association with the majority (point estimates were close to zero and nearly all p-values were >0.01). The strongest evidence was for an inverse association in the older cohort with insulin (standardised beta [95%CI]: -0.06, [-0.098, -0.022], p=0.002), but this association did not replicate in the younger cohort. Our findings do not provide support for variation in mitochondrial DNA copy number having an important impact on cardio-metabolic risk factors in European origin women.
Collapse
Affiliation(s)
- Anna L Guyatt
- MRC Integrative Epidemiology Unit, University of Bristol, Oakfield House, Oakfield Grove, Bristol BS8 2BN, UK; School of Social and Community Medicine, University of Bristol, Oakfield House, Oakfield Grove, Bristol BS8 2BN, UK
| | - Kimberley Burrows
- MRC Integrative Epidemiology Unit, University of Bristol, Oakfield House, Oakfield Grove, Bristol BS8 2BN, UK; School of Social and Community Medicine, University of Bristol, Oakfield House, Oakfield Grove, Bristol BS8 2BN, UK
| | - Philip A I Guthrie
- School of Social and Community Medicine, University of Bristol, Oakfield House, Oakfield Grove, Bristol BS8 2BN, UK
| | - Sue Ring
- MRC Integrative Epidemiology Unit, University of Bristol, Oakfield House, Oakfield Grove, Bristol BS8 2BN, UK; School of Social and Community Medicine, University of Bristol, Oakfield House, Oakfield Grove, Bristol BS8 2BN, UK
| | - Wendy McArdle
- MRC Integrative Epidemiology Unit, University of Bristol, Oakfield House, Oakfield Grove, Bristol BS8 2BN, UK; School of Social and Community Medicine, University of Bristol, Oakfield House, Oakfield Grove, Bristol BS8 2BN, UK
| | - Ian N M Day
- School of Social and Community Medicine, University of Bristol, Oakfield House, Oakfield Grove, Bristol BS8 2BN, UK
| | - Raimondo Ascione
- Bristol Heart Institute, School of Clinical Sciences, University of Bristol, Bristol, UK
| | - Debbie A Lawlor
- MRC Integrative Epidemiology Unit, University of Bristol, Oakfield House, Oakfield Grove, Bristol BS8 2BN, UK; School of Social and Community Medicine, University of Bristol, Oakfield House, Oakfield Grove, Bristol BS8 2BN, UK
| | - Tom R Gaunt
- MRC Integrative Epidemiology Unit, University of Bristol, Oakfield House, Oakfield Grove, Bristol BS8 2BN, UK; School of Social and Community Medicine, University of Bristol, Oakfield House, Oakfield Grove, Bristol BS8 2BN, UK
| | - Santiago Rodriguez
- MRC Integrative Epidemiology Unit, University of Bristol, Oakfield House, Oakfield Grove, Bristol BS8 2BN, UK; School of Social and Community Medicine, University of Bristol, Oakfield House, Oakfield Grove, Bristol BS8 2BN, UK.
| |
Collapse
|
43
|
Huang CH, Kuo CL, Huang CS, Liu CS, Chang CC. Depleted Leukocyte Mitochondrial DNA Copy Number Correlates With Unfavorable Left Ventricular Volumetric and Spherical Shape Remodeling in Acute Myocardial Infarction After Primary Angioplasty. Circ J 2017; 81:1901-1910. [PMID: 28626147 DOI: 10.1253/circj.cj-17-0088] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
BACKGROUND Left ventricular (LV) shape influences LV systolic function. It is possible to assess LV shape using 3-D echocardiography sphericity index (SI). Maintaining mitochondrial DNA copy number (MCN) is important for preserving mitochondrial function and LV systolic function after acute myocardial infarction (AMI). Information is limited, however, regarding the relationship between leukocyte MCN and the subsequent change in LV shape after AMI. METHODS AND RESULTS Fifty-five AMI patients undergoing primary angioplasty were recruited. Plasma MCN was measured before primary angioplasty using quantitative polymerase chain reaction. 3-D echocardiography measurement of SI was performed at baseline, and at 1-, 3-, and 6-month follow-up. AMI subjects with MCN lower than the median had a higher 6-month SI and LV volume compared with those with higher MCN. Baseline echocardiographic parameters were similar between the 2 groups. MCN was negatively correlated with 3- and 6-month SI, and 3- and 6-month LV volume. On multiple linear regression analysis, baseline plasma MCN could predict LV SI and LV volume at 6 months after primary angioplasty for AMI, even after adjusting for traditional prognostic factors. CONCLUSIONS In AMI patients, higher plasma leukocyte MCN at baseline was associated with favorable LV shape and remodeling at 6-month follow-up. Plasma leukocyte MCN may provide a novel prognostic biomarker for LV remodeling after AMI.
Collapse
Affiliation(s)
- Ching-Hui Huang
- Division of Cardiology, Department of Internal Medicine, Changhua Christian Hospital
- Institute of Statistics and Information Science, National Changhua University of Education
- School of Medicine, College of Medicine, Kaohsiung Medical University
- Department of Beauty Science and Graduate Institute of Beauty Science Technology, Chienkuo Technology University
| | - Chen-Ling Kuo
- Vascular and Genomic Center, Changhua Christian Hospital
| | | | - Chin-San Liu
- Vascular and Genomic Center, Changhua Christian Hospital
- Department of Neurology, Changhua Christian Hospital
| | - Chia-Chu Chang
- Department of Nephrology, Changhua Christian Hospital
- Medical Research Center, Department of Internal Medicine, Changhua Christian Hospital
- School of Medicine, Chung Shan Medical University
| |
Collapse
|
44
|
Lien LM, Chiou HY, Yeh HL, Chiu SY, Jeng JS, Lin HJ, Hu CJ, Hsieh FI, Wei YH. Significant Association Between Low Mitochondrial DNA Content in Peripheral Blood Leukocytes and Ischemic Stroke. J Am Heart Assoc 2017; 6:JAHA.117.006157. [PMID: 29151031 PMCID: PMC5721740 DOI: 10.1161/jaha.117.006157] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Background Cumulative evidence has shown that low mitochondrial DNA (mtDNA) content is related to elevated oxidative stress and atherosclerosis, which play important roles in ischemic stroke. The objective of this study was to explore the association between mtDNA content in peripheral blood leukocytes and ischemic stroke. Methods and Results A total of 350 patients with first‐ever ischemic stroke and 350 healthy controls were recruited in this case‐control study. The mtDNA content in peripheral blood leukocytes was determined by quantitative real‐time polymerase chain reaction. The levels of oxidized glutathione, reduced glutathione, and 8‐hydroxy‐2′‐deoxyguanosine were measured by ELISA kits. Multivariate logistic regression models were used to analyze the relationship between mtDNA content in peripheral blood leukocytes and ischemic stroke. Our results show that mtDNA content of patients with ischemic stroke was notably lower compared with controls. A significant association was found between low mtDNA content and ischemic stroke. Furthermore, significant interactions were identified between low mtDNA and proven risk factors in patients with ischemic stroke. The levels of oxidized glutathione and 8‐hydroxy‐2′‐deoxyguanosine were significantly greater in patients with ischemic stroke compared with controls. Conclusions Our results demonstrate that low mtDNA content in peripheral blood leukocytes is associated with ischemic stroke. The relationship of low mtDNA content and ischemic stroke was particularly notable in individuals who had low mtDNA content combined with diabetes mellitus, metabolic syndrome, or cigarette smoking. Oxidative stress may be one of the contributory factors to decreased mtDNA content in patients with ischemic stroke.
Collapse
Affiliation(s)
- Li-Ming Lien
- Department of Neurology, Shin-Kong WHS Memorial Hospital, Taipei, Taiwan.,School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Hung-Yi Chiou
- School of Public Health, College of Public Health, Taipei Medical University, Taipei, Taiwan
| | - Hsu-Ling Yeh
- Department of Neurology, Shin-Kong WHS Memorial Hospital, Taipei, Taiwan.,School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Shang-Yen Chiu
- School of Public Health, College of Public Health, Taipei Medical University, Taipei, Taiwan
| | - Jiann-Shing Jeng
- Stroke Center and Department of Neurology, National Taiwan University Hospital, Taipei, Taiwan
| | - Huey-Juan Lin
- Department of Neurology, Chi-Mei Medical Center, Tainan, Taiwan
| | - Chaur-Jong Hu
- School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Department of Neurology, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
| | - Fang-I Hsieh
- School of Public Health, College of Public Health, Taipei Medical University, Taipei, Taiwan
| | - Yau-Huei Wei
- Department of Medicine, Mackay Medical College, New Taipei City, Taiwan.,Center for Mitochondrial Medicine and Free Radical Research, Changhua Christian Hospital, Changhua City, Taiwan
| |
Collapse
|
45
|
Association of mitochondrial DNA in peripheral blood with depression, anxiety and stress- and adjustment disorders in primary health care patients. Eur Neuropsychopharmacol 2017. [PMID: 28647451 DOI: 10.1016/j.euroneuro.2017.06.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Mitochondrial dysfunction may result in a variety of diseases. The objectives here were to examine possible differences in mtDNA copy number between healthy controls and patients with depression, anxiety or stress- and adjustment disorders; the association between mtDNA copy number and disease severity at baseline; and the association between mtDNA copy number and response after an 8-week treatment (mindfulness, cognitive based therapy). A total of 179 patients in primary health care (age 20-64 years) with depression, anxiety and stress- and adjustment disorders, and 320 healthy controls (aged 19-70 years) were included in the study. Relative mtDNA copy number was measured using quantitative real-time PCR on peripheral blood samples. We found that the mean mtDNA copy number was significantly higher in patients compared to controls (84.9 vs 75.9, p<0.0001) at baseline. The difference in mtDNA copy number between patients and controls remained significant after controlling for age and sex (ß=8.13, p<0.0001; linear regression analysis). The mtDNA copy number was significantly associated with Patient Health Questionnaire (PHQ-9) scores (β=0.57, p=0.02) at baseline. After treatment, the change in mtDNA copy number was significantly associated with the treatment response, i.e., change in Hospital Anxiety and Depression Scale (HADS-D) and PHQ-9 scores (ß=1.00, p=0.03 and ß=0.65, p=0.04, respectively), after controlling for baseline scores, age, sex, BMI, smoking status, alcohol drinking and medication. Our findings show that mtDNA copy number is associated with symptoms of depression, anxiety and stress- and adjustment disorders and treatment response in these disorders.
Collapse
|
46
|
Peripheral blood mitochondrial DNA content in relation to circulating metabolites and inflammatory markers: A population study. PLoS One 2017; 12:e0181036. [PMID: 28704533 PMCID: PMC5509283 DOI: 10.1371/journal.pone.0181036] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Accepted: 06/26/2017] [Indexed: 12/17/2022] Open
Abstract
Mitochondrial DNA (mtDNA) content might undergo significant changes caused by metabolic derangements, oxidative stress and inflammation that lead to development and progression of cardiovascular diseases. We, therefore, investigated in a general population the association of peripheral blood mtDNA content with circulating metabolites and inflammatory markers. We examined 310 subjects (50.6% women; mean age, 53.3 years) randomly selected from a Flemish population. Relative mtDNA content was measured by quantitative real-time PCR in peripheral blood cells. Peak circulating metabolites were quantified using nuclear magnetic resonance spectroscopy. The level of inflammation was assessed via established inflammatory markers. Using Partial Least Squares analysis, we constructed 3 latent factors from the 44 measured metabolites that explained 62.5% and 8.5% of the variance in the contributing metabolites and the mtDNA content, respectively. With adjustments applied, mtDNA content was positively associated with the first latent factor (P = 0.002). We identified 6 metabolites with a major impact on the construction of this latent factor including HDL3 apolipoproteins, tyrosine, fatty acid with αCH2, creatinine, β-glucose and valine. We summarized them into a single composite metabolite score. We observed a negative association between the composite metabolic score and mtDNA content (P = 0.001). We also found that mtDNA content was inversely associated with inflammatory markers including hs-CRP, hs-IL6, white blood cell and neutrophil counts as well as neutrophil-to-lymphocyte ratio (P≤0.0024). We demonstrated that in a general population relative peripheral blood mtDNA content was associated with circulating metabolites indicative of perturbed lipid metabolism and with inflammatory biomarkers.
Collapse
|
47
|
Association between peripheral blood cells mitochondrial DNA content and severity of coronary heart disease. Atherosclerosis 2017; 261:105-110. [PMID: 28242046 DOI: 10.1016/j.atherosclerosis.2017.02.013] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Revised: 02/03/2017] [Accepted: 02/17/2017] [Indexed: 12/21/2022]
Abstract
BACKGROUND AND AIMS Leukocyte mitochondrial DNA (mtDNA) content reflects the oxidant-induced cell damage, which has been observed in a wide range of cardiovascular diseases. However, whether it correlates with coronary heart disease (CHD), which closely relates to oxidative stress, has never been elucidated before. The aim of this study was to explore association between mtDNA content and the presence and severity of CHD. METHODS The study population consisted of 400 individuals (290 with CHD and 110 controls). A quantitative real-time PCR was performed to measure the relative content of mtDNA in peripheral blood cells (PBCs). Gensini score was used to evaluate the severity of coronary stenotic lesions. An unconditional multivariate logistic regression was developed to estimate the association between CHD risk and mtDNA content by using odds ratio (OR). This study is registered with ClinicalTrials.gov, number NCT02500823. RESULTS CHD patients, compared to controls, had lower mtDNA content (median, 0.78 vs. 0.83, p < 0.001), and mtDNA levels significantly decreased following an increasing Gensini score (p < 0.001). By using the first (highest mtDNA content) quartile of mtDNA content of controls as reference, the adjusted ORs (95% CIs) for individuals in the second, third and highest quartile of mtDNA content were 1.78 (95% CI, 1.15-3.51), 2.21 (95% CI, 1.65-3.74) and 4.83 (95% CI, 2.67-8.64), respectively (p for trend <0.001). CONCLUSIONS These preliminary results suggest that expression of mtDNA may be associated with atherogenesis. The level of peripheral blood mtDNA in predicting the severity of coronary atherosclerosis may have a relatively certain value.
Collapse
|
48
|
Zhang J, Xu S, Xu Y, Liu Y, Li Z, Zhang Y, Jin Y, Xue X, Wang H. Relation of Mitochondrial DNA Copy Number in Peripheral Blood to Postoperative Atrial Fibrillation After Isolated Off-Pump Coronary Artery Bypass Grafting. Am J Cardiol 2017; 119:473-477. [PMID: 27887690 DOI: 10.1016/j.amjcard.2016.10.017] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2016] [Revised: 10/04/2016] [Accepted: 10/04/2016] [Indexed: 12/31/2022]
Abstract
Oxidative stress has been considered to be an important factor contributing to postoperative atrial fibrillation (PoAF). Mitochondrial DNA (mtDNA) copy number in peripheral blood has been found to be associated with a patient's oxidative stress. Therefore, we sought to determine whether there was association between mtDNA copy number and the onset of atrial fibrillation. mtDNA copy numbers were measured using the quantitative real-time polymerase chain reaction in peripheral blood from 485 consecutive patients with sinus rhythm undergoing coronary artery bypass grafting. The blood was collected before surgery. In the cohort, the incidence of PoAF was 20.8% (101/485). The mean mtDNA copy number was significantly higher in patents with PoAF than in those with sinus rhythm (36.43 vs 16.63, p <0.001). The receiver operating characteristic analysis proved that the mtDNA copy number could predict PoAF with good sensitivity and specificity (area under the curve = 0.814, cutoff = 20.91, sensitivity = 70.3%, specificity = 80.2%, p <0.001). On multivariate logistic and Cox regression analysis, mtDNA copy number was shown to be a significant independent risk factor for PoAF (odds ratio = 10.01, p <0.001 and hazard ratio = 7.011, p = 0.004). There was a strong positive correlation between mtDNA copy number and malondialdehyde in patients with PoAF (r = 0.449, p = 0.01). In conclusion, we showed that elevated mtDNA copy number in peripheral blood is associated with PoAF. Further investigation is needed to validate mtDNA copy number as a predictive biomarker for PoAF and to explore its potential role in arrhythmogenesis.
Collapse
Affiliation(s)
- Jian Zhang
- Department of Cardiovascular Surgery, General Hospital of Shenyang Military Area Command, Shenyang, Liaoning, China
| | - Shu Xu
- Department of Cardiovascular Surgery, General Hospital of Shenyang Military Area Command, Shenyang, Liaoning, China; Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shanxi, China
| | - Yinli Xu
- Department of Cardiovascular Surgery, General Hospital of Shenyang Military Area Command, Shenyang, Liaoning, China
| | - Yu Liu
- Department of Cardiovascular Surgery, General Hospital of Shenyang Military Area Command, Shenyang, Liaoning, China
| | - Zhi Li
- Department of Cardiovascular Surgery, General Hospital of Shenyang Military Area Command, Shenyang, Liaoning, China
| | - Yuji Zhang
- Department of Cardiovascular Surgery, General Hospital of Shenyang Military Area Command, Shenyang, Liaoning, China
| | - Yan Jin
- Department of Cardiovascular Surgery, General Hospital of Shenyang Military Area Command, Shenyang, Liaoning, China
| | - Xiaodong Xue
- Department of Cardiovascular Surgery, General Hospital of Shenyang Military Area Command, Shenyang, Liaoning, China.
| | - Huishan Wang
- Department of Cardiovascular Surgery, General Hospital of Shenyang Military Area Command, Shenyang, Liaoning, China.
| |
Collapse
|
49
|
Peripheral Blood Mitochondrial DNA and Myocardial Function. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 982:347-358. [DOI: 10.1007/978-3-319-55330-6_19] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
50
|
Zhou MC, Zhu L, Cui X, Feng L, Zhao X, He S, Ping F, Li W, Li Y. Reduced peripheral blood mtDNA content is associated with impaired glucose-stimulated islet β cell function in a Chinese population with different degrees of glucose tolerance. Diabetes Metab Res Rev 2016; 32:768-774. [PMID: 27103506 PMCID: PMC5108437 DOI: 10.1002/dmrr.2814] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Revised: 02/17/2016] [Accepted: 04/13/2016] [Indexed: 12/15/2022]
Abstract
AIMS Our aim is to explore the associations between mitochondrial DNA (mtDNA) content and basal plasma glucose, plasma glucose after oral glucose administration and oxidative stress in a Chinese population with different levels of glucose tolerance. We also aimed to investigate the effect of mtDNA content on basal and oral glucose-stimulated insulin secretion. METHODS Five hundred and fifty-six Chinese subjects underwent a 75-g, 2-h oral glucose tolerance test. Subjects with diabetes (n = 159), pre-diabetes (n = 197) and normal glucose tolerance (n = 200) were screened. Blood lipid profile was assessed, and levels of the oxidative stress indicators superoxide dismutase, glutathione reductase (GR) and 8-oxo-2'-deoxyguanosine (8-oxo-dG) were measured. Levels of HbA1c , plasma glucose, insulin and C-peptide were also determined. Measurements were taken at 0, 30, 60 and 120 min after 75 g oral glucose tolerance test. Peripheral blood mtDNA content was assessed using a real-time polymerase chain reaction assay. Insulin sensitivity was evaluated by homeostatic model assessment of insulin resistance and Matsuda index (ISIM ). Basal insulin secretion index (HOMA-β), early phase disposition index (DI30 ) and total phase disposition index (DI120 ) indicate insulin levels at different phases of insulin secretion. RESULTS Peripheral blood mtDNA content was positively associated with DI30 and DI120 and was negatively associated with plasma glucose measured 30, 60 and 120 min after oral glucose administration. However, there was no correlation between mtDNA content and basal insulin secretion (HOMA-β), serum lipid or oxidative stress indicators (8-oxo-dG, superoxide dismutase, GR). HbA1c was negatively associated with GR (r = -0.136, p = 0.001). Multiple linear regression analysis showed that reduced peripheral blood mtDNA content increased the risk of impaired glucose-stimulated β cell function (DI30 : β = 0.104, p = 0.019; DI120 : β = 0.116, p = 0.009). CONCLUSIONS Decreased peripheral blood mtDNA content was more closely associated with glucose-stimulated insulin secretion than with basal secretion. Reduction in glucose-stimulated insulin secretion causes postprandial hyperglycaemia. The oxidative stress was probably largely influenced by hyperglycaemia; it was probably that the decreased mt DNA content led to hyperglycaemia, which caused elevated oxidative stress. © 2016 The Authors. Diabetes/Metabolism Research and Reviews Published by John Wiley & Sons Ltd.
Collapse
Affiliation(s)
- Mei-Cen Zhou
- Department of Endocrinology, Key Laboratory of Endocrinology, Ministry of Health, Peking Union Medical College Hospital, Beijing, China
| | - Lixin Zhu
- Nankou Community Health Service Centers, Beijing, China
| | - Xiangli Cui
- Nankou Community Health Service Centers, Beijing, China
| | | | | | - Shuli He
- Department of Nutrition, Peking Union Medical College Hospital, Beijing, China
| | - Fan Ping
- Department of Endocrinology, Key Laboratory of Endocrinology, Ministry of Health, Peking Union Medical College Hospital, Beijing, China
| | - Wei Li
- Department of Endocrinology, Key Laboratory of Endocrinology, Ministry of Health, Peking Union Medical College Hospital, Beijing, China
| | - Yuxiu Li
- Department of Endocrinology, Key Laboratory of Endocrinology, Ministry of Health, Peking Union Medical College Hospital, Beijing, China.
| |
Collapse
|